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Modélisation Dynamique et Analyse Modale de Robots Manipulateurs à Plusieurs
Degrés de Liberté avec Articulations Flexibles

Thanh Trung DO

RÉSUMÉ

En raison de leur flexibilité dans la production et du fait de leur interaction sécuritaire avec

l’humain, les robots à maillons rigides et à articulations flexibles (élastiques) ont reçu récemment

beaucoup d’attention de la part des chercheurs et des ingénieurs au milieu d’application.

Auparavant, l’élasticité des articulations était souvent négligée à cause de la complexité des

modèles dynamiques. En outre, les limites de la capacité à mesurer et à calculer la dynamique

ont fait en sorte que le modèle de robot avec des articulations rigides soit souvent utilisé à des

fins de simulation et de contrôle. Cette approche peut cependant entraîner l’instabilité du robot

pendant le travail.

Le premier objectif de cette recherche est de développer des modèles mathématiques pertinents

pour les robots à articulations flexibles afin de simuler et de prédire leur comportement dynamique.

Outre des méthodes expérimentales telles que l’analyse modale, nous avons établi un modèle

analytique pour calculer les fréquences naturelles et les rapports d’amortissement pour des

configurations de robots arbitraires. Nous avons montré que le modèle proposé prenait en

compte l’effet de la gravité et les paramètres du contrôleur du robot.

Le deuxième objectif est de contribuer à une procédure d’optimisation afin d’identifier les

paramètres de rigidité et d’amortissement des joints dans lesquels les informations modales

incomplètes sont supposées être mesurées dans plusieurs configurations de robots. Pour les

robots à articulation flexible, ces paramètres sont essentiels pour comprendre leur comportement

dynamique. Nous avons montré que la procédure proposée pouvait identifier des paramètres

inconnus malgré que les rapports d’amortissement soient estimés avec des écarts.

Le dernier objectif est de proposer un algorithme efficace pour résoudre le problème de la

dynamique inverse dans des applications en temps réel. Le produit de cet algorithme qui

comprend une liste d’expressions mathématiques écrites en code C/Matlab optimisé, peut être

utilisé dans la conception de lois de contrôle avancées basées sur des modèles. Nous avons

démontré que notre algorithme pouvait être utilisé pour contrôler des robots articulaires flexibles

avec les lois de contrôle d’action prédictive.

Mots-clés: robot à joint flexible, linéarisation, analyse modale, identification, dynamique

inverse, différenciation symbolique,
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ABSTRACT

Thanks to of their production flexibility and safety in human interactions, robots with rigid links

and flexible (elastic) joints have recently received the attention from researchers and application

engineers. In the past, the elasticity of the joints was often neglected due to the complexity of

the robot dynamic models. In addition, the limitations in the ability to measure and calculate the

dynamics led to the robot model with rigid joints being often used for simulation and control

purposes. However, this approach can lead to the robot instability during its functioning.

The first objective of this research is to develop relevant mathematical models for flexible joint

robots in order to simulate and predict their dynamic behavior. In addition to experimental

methods such as modal analysis, we established an analytical model to compute the natural

frequencies and damping ratios for arbitrary robot configurations. We showed that the proposed

model could consider the effect of gravity and the parameters of the robot’s controller.

The second objective is to contribute an optimization procedure to identify the stiffness and

damping parameters of joints in which the incomplete modal information is assumed to be

measured in several robot configurations. For flexible joint robots, these parameters are essential

to understanding their dynamic behavior. We showed that the proposed procedure could identify

unknown parameters, even when the damping ratios are estimated with deviations.

The last objective is to propose an efficient algorithm to solve the inverse dynamics problem in

real-time applications. The output of this algorithm, including a list of mathematical expressions

written in optimized C/Matlab code, can be used in the design of advanced model-based control

laws. We demonstrated that our algorithm can be used to control flexible joint robots with the

feedforward control laws.

Keywords: flexible-joint robot, linearization, modal analysis, identification, inverse dynamics,

symbolic differentiation,
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INTRODUCTION

0.1 Motivation

Robot manipulators are defined as rigid bodies interconnected by joints. One of the most

advantageous features of robots is that they can be reprogrammed to perform complicated tasks

in a large workspace.

Industrial requirements are steadily increasing with regards to the accuracy and load-carrying

capabilities of robots, while the flexibility of the robot’s components, such as links, joints,

gear/belt transmissions, has become increasingly significant. The accuracy of the robot’s end-

effector is limited by its static and dynamic deflections, especially when the robot is controlled

at high speed for assembling tasks or when it is used in a machining process that requires high

contact forces with the workpiece. In general, the deflections of manipulators are dependent

upon the following factors (Dwivedy & Eberhard, 2006; De Luca & Book, 2016):

• transmissions elements;

• the total lengths of links;

• link materials and shapes;

• the masses and positions of the centers of masses; and

• the contact forces/moments.

The use of special materials with high stiffness and strength in the design of the robot structure

can improve robot accuracy. In addition, optimal design methods can be applied to maximize

their fundamental frequency, i.e. to reduce the vibration of the links. In many applications,

manipulators are designed for specific purposes, such as a larger workspace, higher speed, lower

energy consumption, or lower rigidity for safer operation, in which the flexibility of the joints is

of more concern than the flexibility of the links.
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Overall, the main problem of manipulators with flexible components is how to control their

vibrations to achieve higher accuracy and avoid resonant phenomena that may cause damage to

the robot’s mechanical structure.

0.2 Research problems

For the case of a robot with rigid links and flexible joints, the flexible joints introduce extra

degrees of freedom into the system. In addition, because the number of actuators is less than the

number of degrees of freedom of the robot, the control problem of flexible joint robots is quite

challenging. This research focuses on the vibration and control problems based on numerical

simulations.

To improve the accuracy of the flexible joint robot used in a machining process, the vibration

problem of the robot should be studied. In principle, the dynamic behavior of a robotic system for

a given configuration can be characterized by modal parameters, including natural frequencies,

damping ratios and mode shapes. These parameters can be identified from the input and

output responses measured using the experimental modal analysis or operational modal analysis

technique (Ewins, 2000; Brincker & Ventura, 2015), in the time domain or frequency domain.

While this approach is very efficient, it requires more effort if the modal analysis is conducted on

several robot configurations, as the modal parameters will depend on the robot configuration and

the stiffness/damping parameters of joints due to their flexibility. Several works, including those

of (Chu, Zhang, Chen & Sun, 2015) and (Berninger, Fuderer & Rixen, 2020), have showed that

the modal parameters are also affected by the parameters of the controller. Therefore, to compute

modal parameters for any configuration, it is necessary to first establish an analytical model. In

this model, all robot parameters are assumed to be predetermined. Among the kinematic and

dynamic parameters of a flexible joint robot, the stiffness and damping parameters at flexible

joints play an essential role in the vibration analysis and design of controllers. The stiffness

parameter of the joints can be identified by measuring the deformation at each joint or deflection
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of the end-effector (Dumas, Caro, Garnier & Furet, 2011) using external sensors/devices such

as laser trackers. The remaining damping parameters can be estimated based on the vibration

analysis using experimental measurements. Meanwhile, the use of advanced model-based

control laws to control flexible joint robots is a robust approach in order to reduce undesired

vibrations (De Luca, 2000; De Luca & Book, 2016). For these control laws, the inverse dynamic

problem of flexible joint robots must be solved online, where the most challenging task is how

to compute the high-order derivatives of link dynamics. If the dynamic models of robots are

established using the Lagrangian formulation, the solution of the inverse dynamics problem

quickly becomes very complicated.

0.3 Objectives

This research aims to find relevant mathematical models based on numerical simulations for

the vibration analysis, parameter identification, and control of industrial manipulators with

rigid links and flexible joints. To achieve this goal, the following three specific objectives are

considered:

• The first objective is to develop an analytical model for computing natural frequencies and

damping ratios of robots with flexible joints. The proposed model is derived from the

closed-loop control system. Therefore, the effects of gravity, external forces, and control

parameters are considered. Based on this model and the given physical parameters of the

robot, we can simulate natural frequencies and damping ratios in the workspace.

• The second objective is to identify flexible joints’ stiffness and damping parameters based

on incomplete modal information measured using the modal analysis techniques. An

optimization procedure is proposed in which the objective function is derived from the

linearized model. These identified parameters are crucial for the model-based control

problem and the simulation of the dynamic behavior of robots.
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• The third objective is to develop a symbolic algorithm to generate the inverse dynamics of

flexible joint robots for advanced model-based control laws. The output of this algorithm is

written in the C/Matlab code and it can be used for real-time applications.

0.4 Thesis organization and outline

This article-based thesis contains four chapters and is structured as follows.

Chapter 1 presents primary the references related to three subjects: the modeling, identification,

and control of flexible joint manipulators.

Chapter 2 contains the first journal article. General dynamic equations of flexible joint robots,

including prismatic and/or revolute joints, are established based on the Lagrangian formulation.

The effect of robot’s tool and external forces/moments applied on the end-effector is also

considered in this model. From the dynamic model, linearized dynamic equations are developed

for the vibration analysis. The effect of control parameters is also included in the proposed

linearized model. Therefore, modal parameters for any robot configuration can be computed

straightforwardly. Modal parameters obtained from the linearized model are validated using the

operational modal technique based on the vector autoregression model.

Chapter 3 presents the second journal article. The purpose of this chapter is to discuss a new

optimization procedure to identify the stiffness and damping parameters of flexible joint robots.

The proposed method is developed based on the inverse eigenvalue problem for linear systems

and the model updating in structural dynamics. From natural frequencies and damping ratios

simulated/measured (using simulated/experimental data) and the linearized dynamic model

obtained in chapter 2, stiffness and damping parameters are found by solving the least-square

optimization problem. The influence of damping ratio deviation on identification parameters is

also investigated.
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Chapter 4 presents the third journal article for the model-based control problem. A new symbolic

differentiation algorithm is proposed to automatically generate the inverse dynamics of flexible

joint robots in optimized code. The proposed algorithm is developed based on the well-known

recursive Newton-Euler algorithm for rigid bodies, recursive differentiation and computer algebra

systems such as Maple software. The results obtained in this chapter can be used for real-time

simulation and control purposes, e.g., a model-based control design using feedforward + PD

control. The proposed algorithm outperforms other algorithms.

Conclusions are presented at the end of the thesis, along with several recommendations for

future work.

0.5 Contributions

The following papers with reviewing committees have been submitted/published in international

journals and conferences by the supervisors and author during the completion of this research.

Journal papers

1. Thanh-Trung Do, Viet-Hung Vu, Zhaoheng Liu, Linearization of dynamic equations for

vibration and modal analysis of flexible joint manipulators. Published in Mechanism and

Machine Theory, vol. 167, January 2022.

2. Thanh-Trung Do, Viet-Hung Vu, Zhaoheng Liu, Identification of stiffness and damping

parameters for flexible joint manipulators. Submitted in Acta Mechanica, November 2021.

3. Thanh-Trung Do, Viet-Hung Vu, Zhaoheng Liu, Symbolic differentiation algorithm for

inverse dynamics of serial robots with flexible joints. Published in ASME-Journal of

Mechanisms and Robotics, vol. 13, no. 6, December 2021.
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Conference papers

1. Thanh-Trung Do, Viet-Hung Vu, Zhaoheng Liu, NAFID-A Grid Tool for output only modal

analysis. Published in the Surveillance conference, INSA Lyon, France, pp. 119-127, 2019.

2. Thanh-Trung Do, Viet-Hung Vu, Zhaoheng Liu, Analytical modal analysis of flexible joint

manipulators. Published in the 27th Canadian Congress of Applied Mechanics Conference

(CANCAM2019), Sherbrooke, Québec, Canada, 2019.

3. Thanh-Trung Do, Viet-Hung Vu, Zhaoheng Liu, Automatic generation of inverse dynamics

for industrial robots with flexible joints using a computer algebra-Poster. Published in the

conference: Applications of Computer Algebra (ACA2019), Montréal, Québec, Canada,

2019.

4. Thanh-Trung Do, Viet-Hung Vu, Zhaoheng Liu, Dynamic linearization and modal analysis

of flexible manipulators. Published in the 27th International Congress on Sound and

Vibration (ICSV27), Praha, Czech Republic, 2021.



CHAPTER 1

LITERATURE REVIEW

This chapter presents a literature review for the dynamic modeling, modal analysis, parameter

identification, and inverse dynamic control problems of manipulators.

1.1 Dynamic modeling

This section offers a brief review of the dynamic models for the flexible joint robots used

for model-based simulation and control purposes. The critical assumptions summarized

in (De Luca & Book, 2016) are used to orient this review. Generally, a flexible joint robot can be

considered as a multibody dynamics system in which its dynamic equations can be established

using the Lagrangian formulation, the Newton-Euler equations, Kane dynamics, the principle

of virtual power, and the principle of virtual work (Schiehlen, 1990, 1993). To describe the

kinematic quantities of a robot, the standard/modified Denavit-Hartenberg notations (Tsai, 2003;

Khalil & Dombre, 2004; Siciliano, Sciavicco, Villani & Oriolo, 2009) can be used.

1.1.1 Generalized coordinates

Because of the presence of flexible joints, more generalized coordinates are required to describe

the configuration of a flexible joint robot than that of the robot with rigid joints. The following

coordinates can be used to describe the configuration of a flexible joint 𝑖: the link (joint)

coordinate 𝑞𝑖, the motor angle before the reduction gear 𝑞
′
m,i, and the motor angle after the

reduction gear 𝑞m,i (see Fig. 4.1 for more details). The relation between motor coordinates 𝑞
′
m,i

and 𝑞m,i is given by: 𝑞
′
m,i = 𝑁𝑖𝑞m,i with the gear ratio 𝑁𝑖 ≥ 1. Therefore, vectors of coordinates
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for the robot with 𝑛 flexible joints can be grouped as:

𝒒 = [𝑞1, 𝑞2, . . . , 𝑞𝑛]T (1.1)

𝒒′m = [𝑞′m,1, 𝑞
′
m,2, . . . , 𝑞

′
m,n]T (1.2)

𝒒m = [𝑞m,1, 𝑞m,2, . . . , 𝑞m,n]T (1.3)

1.1.2 Dynamic equations of a robot with multiple flexible joints

We consider a manipulator with 𝑛 flexible joints controlled by 𝑛 electrical motors. Based on the

multibody dynamic theory, the robot is modeled as 2𝑛 rigid bodies including 𝑛moving rigid links

and 𝑛 rotors. Note that the motor stators are combined with the rigid links for simplification.

When the Lagrangian formulation is applied, the kinetic energy of all the rigid links and motors

must be computed, as well as the potential energy of the rigid bodies and elastic springs due

to flexible joints. Generalized forces/moments can be computed from the virtual work. The

dynamic equations can also include the friction forces/moments at the motors and joints, based

on the dissipation function.

The complete model

When accounting for the inertial coupling between links and rotors, the dynamic equations of the

robot are expressed in the complete model as follows (Tomei, 1991; De Luca & Tomei, 1996):

⎡⎢⎢⎢⎢⎣
𝑴 (𝒒) 𝑺(𝒒)
𝑺T(𝒒) 𝑩

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
�𝒒
�𝒒m

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
𝑪 (𝒒, �𝒒) 𝑪1(𝒒, �𝒒)
𝑪2(𝒒, �𝒒) 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
�𝒒
�𝒒m

⎤⎥⎥⎥⎥⎦ +⎡⎢⎢⎢⎢⎣
𝒈(𝒒)

0

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
𝑲 −𝑲
−𝑲 𝑲

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝒒

𝒒m

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣

𝝉f ( �𝒒)
𝝉f,m( �𝒒m)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑱T(𝒒)𝝉ext

𝝉m

⎤⎥⎥⎥⎥⎦ (1.4)

where 𝑴 ∈ R𝑛×𝑛 is the symmetric mass matrix of the rigid links (including the mass of motors),

𝑩 ∈ R𝑛×𝑛 is the diagonal inertia matrix of the rotor (multiplied by squared gear ratios), 𝑺 ∈ R𝑛×𝑛
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is the upper-triangular mass matrix due to inertial coupling between the links and the rotors ;

𝑪 ∈ R𝑛×𝑛 is the Coriolis matrix of rigid links, 𝑪1,𝑪2 ∈ R𝑛×𝑛 are the Coriolis matrices due to

inertial coupling between the links and the rotors; 𝒈 ∈ R𝑛 is the vector of gravity forces/torques,

𝑲 ∈ R𝑛×𝑛 is the constant diagonal matrix of shaft torsional stiffness coefficients, 𝝉f , 𝝉f,m ∈ R𝑛

are the vectors of joint and motor friction torques; 𝝉m ∈ R𝑛 is the vector of the motor’s torques;

𝑱 ∈ R6×𝑛 is the geometric Jacobian matrix, and 𝝉ext ∈ R6 is the vector of external forces/torques
at the end-effector.

The reduced model

Based on the assumption originally proposed in (Spong, 1987) in which a robot’s electrical

motors have high gear ratios (> 100), the angular velocity of the rotor 𝑖 is much greater than

the angular velocity of the rigid link 𝑖 − 1, which the motor is fixed in. Therefore, the effect of

inertial couplings between links and rotors can be neglected. Consequently, the equations of

motion of the robot are rewritten in the reduced model as follows:

⎡⎢⎢⎢⎢⎣
𝑴 (𝒒) 0

0 𝑩

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
�𝒒
�𝒒m

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
𝑪 (𝒒, �𝒒) 0

0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
�𝒒
�𝒒m

⎤⎥⎥⎥⎥⎦ +⎡⎢⎢⎢⎢⎣
𝒈(𝒒)

0

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
𝑲 −𝑲
−𝑲 𝑲

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝒒

𝒒m

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣

𝝉f ( �𝒒)
𝝉f,m( �𝒒m)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑱T(𝒒)𝝉ext

𝝉m

⎤⎥⎥⎥⎥⎦ (1.5)

It can be seen in the reduced form that the upper and lower sub-matrices in the generalized mass

matrix have vanished, and therefore, the Coriolis sub-matrices 𝑪1 and 𝑪2 are zero.

1.2 Modal analysis

The well-known modal analysis techniques can be used to identify the modal parameters (natural

frequencies, damping ratios and mode shapes ) of mechanical systems, structures and robotic

systems (Ewins, 2000; Brincker & Ventura, 2015). The experimental modal analysis needs the

input and output responses to be measured, while the operational modal analysis only needs
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to measure the output response. Another method, analytical modal analysis, can also be used

for this purpose. In this approach, a linearized model must be derived appropriately from the

dynamical model of the investigated system. This section presents some of the literature on

identifying/computing the modal parameters of robots.

In (Vu, Liu, Thomas, Li & Hazel, 2016) the authors presented an algorithm based on the vector

autoregression model to identify natural frequencies and damping ratios of a Scompi robot in

the grinding process. Based on the operational modal analysis technique, the modal information

was extracted from acceleration signals. The discrete modal participation factor was proposed

to distinguish decoupled and coupled mode shapes in different directions. The decoupled mode

shapes can be further used to identify the joint stiffness.

A method to identify the modal parameters of a lightweight robot with a rotating tool installed at

the end-effector was presented in (Vu, Liu, Thomas & Hazel, 2017). Their proposed method is a

combination of the vector autoregressive model and the sliding window technique, and thus.

it can be used for a system with slow-variable configurations. This method was validated by

numerical simulation for the system with 3-DOFs and experimentally under different working

conditions, including stationary and non-stationary.

In (Mousavi, Gagnol, Bouzgarrou & Ray, 2017) the authors proposed a linearized dynamic

model based on the matrix structural analysis method to compute the modal parameters of robots

in which the flexibility of both joints and links were considered. The proportional damping

model was used to describe the damping effect. The authors demonstrated that this model could

be used to analyze and predict the dynamic behavior of the Stäubli industrial robot along a

machining trajectory. Furthermore, the authors integrated the cutting force model in milling

operations into the linearized model to establish a stability limit diagram for chatter prediction.

In (Sun, Zhang & Dong, 2020), a prediction model of natural frequencies for a 6R industrial

robot was proposed based on the partial least square method. The main idea of this approach is

the use of natural frequencies measured in several selected configurations using modal analysis

techniques to construct the prediction model, based on the joint coordinates. The resulting
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model can thus be used to compute the natural frequencies of robots in the whole workspace.

This work does not consider the damping ratio distribution in the workspace.

1.3 Parameter identification problem

A method based on fuzzy logic combined with a genetic algorithm was proposed to identify the

stiffness parameters of joints for modular robots in (Li, Liu, Peng & Liu, 2002). The damping

parameters cannot be identified with this method. The objective function is defined as the sum

of the squared differences between the natural frequencies obtained from the analytical and

experimental models. The authors demonstrated that by converting the equivalent deterministic

model into a fuzzy model, the accuracy of the joint parameters could be improved by using a

genetic algorithm.

Authors in (Lightcap & Banks, 2007) used the motion capture method for link position

measurements to identify all the parameters of the Mitsubishi PA10-6CE robot with rigid links

and flexible joints. The regressor matrix was established based on the motor angles and link

positions. Therefore, all the robot parameters, including the joint stiffness parameters, could be

estimated using the least-squares method.

In (Wernholt & Moberg, 2011), nonlinear gray-box models were proposed to estimate the

elasticity parameters (spring-damper pairs) of a six-axis industrial robot in which the objective

function is derived by minimizing the discrepancy between the nonparametric and the parametric

frequency response functions. The authors demonstrated that stiffness parameters were accurately

estimated, but the damping parameters required further refinement.

In (Gautier, Jubien, Janot & Robet, 2013) researchers presented a method to identify the joint

stiffness of a single flexible joint robot. Because the actual and simulated motor forces/torques

are used for the identification problem, the estimation of the joint position and its derivatives

is unnecessary as presented in (Lightcap & Banks, 2007). This method can be expanded for

multi-flexible joint robots.
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In (Bottin, Cocuzza, Comand & Doria, 2020) the joint stiffness of an Adept robot has been

experimentally identified using the selective modal approach. The authors demonstrated that

the modal stiffness and damping coincide with joint stiffness and damping. Therefore, the

stiffness parameters of joints can be computed from the identified natural frequencies. Based

on the penalty function defined as the sum of the squared differences between the measured

and simulated natural frequencies, the stiffness parameters are further improved by solving

the optimization problem. In addition, a formulation was proposed to compute the damping

parameters from the stiffness parameters and natural frequencies.

1.4 Inverse dynamics control problem

Theoretically, the control algorithms designed for robots with rigid links and rigid joints presented

in (Siciliano et al., 2009; Chung, Fu & Kröger, 2016) can be used to control robots with flexible

joints if the robot joint has a high enough stiffness, the effect of external forces/moments on the

robot links and end-effector are small, and the desired robot motion is low. To achieve high

performance, the effect of elastic joints must be considered. This section briefly reviews several

control laws based on the inverse dynamics problem of the flexible joint robot.

In (De Luca, 2000), authors presented feed-forward control laws based on the inverse dynamics

of flexible joint robots. The input motor torques have two parts: a feed-forward part and a

feedback part. The first part relates to the nominal motor torques computed from the dynamic

model for a given desired motion. To compute inverse dynamics, the desired joint trajectory

should be at least four times differentiable if using the reduced model Eq. (1.5), while if using

the complete model Eq. (1.4), the desired joint trajectory should be at least 2(𝑛 + 1) times
differentiable (𝑛 is the number of flexible joints). To compensate for model uncertainties or

external disturbance, the PD control is combined with the first part. The main advantage of

this approach is that the control law does not require additional sensors to measure the joint

positions. However, the inverse dynamics must be computed online for the real-time tracking

problem with different desired trajectories. This method can also be applied for robots with both

rigid and flexible joints (De Luca, 1998).
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The control problems of visco-elastic joint robots were addressed in (De Luca, Farina&Lucibello,

2005). The authors state that for any value of the joint viscosity, the numerical stability of

the dynamic feedback design can be obtained when using either the reduced or the complete

dynamic models of robots.

In (Albu-Schäffer, Ott & Hirzinger, 2007) a unified passivity-based control was proposed for the

control problems of flexible joint robots, such as position, torque and impedance control. The

main advantage of passivity-based controllers is that they are robust to uncertainties parameters

of the robot or load parameters. However, this approach requires additional torque sensors

to measure joint torques for the state feedback, while motor positions are measured using the

encoders implemented on the motors. For this approach, numerical differentiation methods are

used to estimate the motor speed and the first derivative of the joint torques.

In (Moberg & Hanssen, 2008) two control laws, including feedback linearization and feedfor-

ward control for flexible joint robots, are investigated where the robot parameters and state

measurements are assumed to be perfect. The authors show that feedforward control performs

better than feedback linearization control when considering the effect of the sampling rate,

measurement noise, and parameter uncertainty.

A new online algorithm was proposed in (Buondonno & De Luca, 2015) to compute the

inverse dynamics of flexible joint robots in real-time control. This algorithm (developed

based on the recursive Newton-Euler algorithm for robots with rigid links) can be used to

design the feedforward control law or the feedback linearization control law. Soon after,

in (Buondonno & De Luca, 2016), the authors applied this algorithm to control robots with

variable stiffness actuation.

When industrial robots move in a high-speed motion for the given trapezoidal velocity profile,

the effect of joint elasticity is significant. In order to eliminate vibration in this case, three input

shaping methods were proposed in (Kim & Croft, 2018) in which the controller is based on the

PD control on the motor side and feedforward control is based on a rigid model to control the
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robots. From their simulation and experimental results on a 6DOF industrial robot, the authors

found that the proposed methods could apply to real robots.

A novel global tracking control approach was presented in (Giusti, Malzahn, Tsagarakis &Althoff,

2018) to control flexible joint robots with high gear ratios and high joint stiffness. Based on the

reduced dynamic model, the authors combine two control schemes: inverse dynamics control

and passivity-based tracking control, to guarantee that the proposed controller is robust against

model uncertainties and external disturbances. The results obtained for tracking control of a

7-DOF robot with mixed rigid/elastic joints show the effectiveness of this approach.
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Abstract

This paper presents the dynamic model and analytical modal analysis for robotic manipulators

with rigid links and flexible joints. Dynamic equations of general robots with both prismatic

and revolute joints are firstly developed using the Lagrangian formulation in minimal joint

and motor coordinates. Next, linearized dynamic equations taking into account the influence

of gravity forces, external forces, and control parameters are formulated based on the Taylor

series. Therefore, the robot’s modal parameters can be computed for any configuration based on

a state-space matrix derived from the linearization model. To illustrate the proposed method,

modal parameters of a flexible joint robot with six degrees of freedom are computed using the

analytical method and estimated using the operational modal technique based on the vector

autoregression model. Results obtained by both methods agree very well with each other.

2.1 Introduction

The dynamic behavior of mechanical systems, such as structures, machines, and robotic systems,

is characterized by modal information, including three parameters: natural frequencies, damping

ratios, and mode shapes. When available, these parameters can be used to predict the system’s

local dynamic behavior, set up a default detection and diagnostics baseline, or update the system’s

stiffness and damping parameters (Friswell & Mottershead, 1995). In machining operations, the

knowledge about modal parameters in the workspace is very important because they can be used
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to adjust cutting parameters appropriately to improve machining accuracy, i.e., to avoid chatter

vibration (Quintana & Ciurana, 2011).

In practical applications, the estimation of modal parameters is complicated because it is

necessary to conduct experiments to measure physical quantities at specific points using sensors,

such as position, velocity, acceleration signals and even excitation forces/moments.

The well-known experimental modal analysis technique (EMA) (Maia & Silva, 1997) can be

used to identify the modal parameters of mechanical systems. This technique requires output

and input responses (excitation forces/moments) for modal parameter estimation algorithms.

The measured data is used to establish frequency response functions (FRFs) (Ewins, 2000).

Therefore, modal parameters can be extracted from these functions. For the EMA technique,

the excitation forces can be generated by impact hammers, and then both excitation forces and

acceleration signals are measured simultaneously using force sensors and accelerometers.

In machining operations, the measurement of excitation forces of a machine for the modal

analysis is complicated because excitation sources are affected by several factors, such as random

loads and the controller of the machine. In addition, it is unfeasible to stop the working machine

to measure input and output responses. The cost of force sensors is also an essential factor that

should be taken into account. The use of output-only responses to identify modal parameters

leads to an innovative technique called operational modal analysis (OMA) (Brincker & Ventura,

2015). For this technique, modal parameters can be extracted from output responses in the

time/frequency domain.

The estimation of modal parameters for robotic systems is challenging because such systems

are considered as time-varying systems. In Karim, Hitzer, Lechler & Verl (2017); Hao, Wang,

Liu & Yun (2020), the author used the EMA technique to estimate modal parameters of industrial

robots in their workspace. In Vu et al. (2016), the vector autoregression model is used to

identify modal information of the lightweight Scompi robot in working operations. The dynamic

behavior of a milling robot depending on its configurations was investigated in Maamar, Gagnol,

Le & Sabourin (2020) in which robot’s modal parameters are extracted using the OMA technique
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based on the transmissibility function-based method (TFB) (Devriendt & Guillaume, 2008).

Overall, modal parameters of a robot depend on its configuration (Zaghbani, Songmene & Bonev,

2013; Mejri et al., 2016) in which the robot’s parameters such as mass, inertia, stiffness, damping

parameters are assumed to be constant. In several works such as Bernzen (1999); Chu et al.

(2015); Berninger et al. (2020), the authors have pointed out that the controller’s effect should

be considered for estimating modal parameters.

Most works mentioned above estimate modal parameters of a robot at several points in the

robot’s workspace. The main reason is that the use of the EMA technique, for example, to

identify modal parameters, is costly and time-consuming. Generally, it is impossible to conduct

modal tests at every robot’s configuration in its workspace.

Recently, several authors have developed analytical methods to compute modal parameters of

flexible multibody and robotic systems (Palomba & Vidoni, 2019; Bottin et al., 2020). These

methods have been developed based on linearized equations (Ginsberg, 1998; Lynch & Vander-

ploeg, 1995). The most advantage of this approach is that modal parameters can be computed

in the whole workspace. However, analytical methods require knowledge about the robot’s

kinematic/dynamic parameters.

A new analytical formulation is proposed to compute modal parameters of flexible-joint

manipulators in which the influence of gravity forces, external forces and PD control parameters

is taken into account. The robot’s full modal mapping can be obtained in a single computation run

when the kinematic/dynamic parameters are predetermined. This modal mapping is beneficial

because it allows us to quickly extract the robot’s modal information at the desired configuration.

For the validation purpose, the OMA technique based on the vector autoregression (VAR) model

is used to estimate modal parameters from motor positions instead of from acceleration signals

as the traditional approach.

The rest of the paper is organized as follows. In Section 2.2, the dynamical model of flexible joint

robots is presented using the Lagrangian formulation. Next, the PD controller with the gravity

compensation is discussed in order to establish the closed-loop dynamics for analytical modal
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analysis. In Section 2.3, the state-space matrix is formulated to compute modal parameters.

In Section 2.4, frequencies and damping ratios of a 6-DOF Scompi flexible joint robot with both

prismatic/revolute joints are computed. The OMA technique based on the VAR model is used to

re-estimated modal parameters obtained from the analytical model. Finally, conclusions are

given in Section 2.5.

2.2 Dynamics of flexible-joint robots

2.2.1 Assumptions

In order to derive equations of motion of a general robot with 𝑛 flexible joints, the following

assumptions adapted from De Luca & Book (2016) are used in this work:

1. All links are considered as rigid bodies, in which the link (𝑖 + 1) is controlled by the motor 𝑖
fixed to the link 𝑖.

2. All flexible joints are considered as lumped-parameter models.

3. Gear ratios of the motors are large, (> 100).

By using the last assumption (Spong, 1987), equations of motion of the robot can be written

in reduced form. Note that this form is benefit for the model-based control (Buondonno & De

Luca, 2015).

2.2.2 Dynamic equations

Based on the Lagrangian formulation (Siciliano et al., 2009), equations of motion of a general

flexible-joint robot are expressed in a matrix form as follows:

⎡⎢⎢⎢⎢⎣
𝑴 (𝒒) 0

0 𝑩

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
�𝒒
�𝒒m

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
𝑪 (𝒒, �𝒒) �𝒒

0

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
𝒈(𝒒)

0

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
𝑫 0

0 𝑫m

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
�𝒒
�𝒒m

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
𝑲𝑾2 −𝑲𝑾
−𝑲𝑾 𝑲

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝒒

𝒒m

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑱T(𝒒)𝝉ext

𝝉m

⎤⎥⎥⎥⎥⎦ (2.1)



19

in which all terms in Eq. (2.1) are explained in Appendix I.1.

In the literature (De Luca & Tomei, 1996; Ott, 2008; De Luca & Book, 2016), authors considered

flexible-joint robots with revolute joints only. By using the matrix 𝑾 proposed in this work,

dynamic equations of flexible-joint robots are derived in a general form in which both prismatic

and revolute joints are considered.

2.2.3 Closed-loops dynamics

In order to study the dynamic behavior of a flexible joint robot, controllers should be used to

track/follow the reference paths or points in the joint/task space. These controllers are used to

solve two main control problems: tracking control and set-point control, in which the vector

of motor torques 𝝉m is often formulated based on feedback signals measured using sensors

implemented in the robot. In De Luca (2000); De Luca & Book (2016), several control strategies

were proposed to compute 𝝉m, such as the simple PID control, the feedforward+PD control, and

computed-torque control.

For the modal analysis problem of a flexible joint robot in its workspace, the simple PD control

scheme with gravity compensation proposed in Tomei (1991) is applied for the set-point control.

This controller is the special case of the model-based feedforward+PD method (De Luca, 2000).

Based on this control law, the desired (reference) position of joints is: 𝒒d = const, while

their velocity and acceleration are: �𝒒d = 0 and �𝒒d = 0. Therefore, the motor torque vector is

formulated as follows:

𝝉m = 𝑾−1
(
𝒈(𝒒d) − 𝑱T(𝒒d)𝝉ext

)
︸����������������������������︷︷����������������������������︸

feedforward

+ 𝑲P(𝒒dm − 𝒒m) − 𝑲D �𝒒m︸�����������������������︷︷�����������������������︸
PD controller

(2.2)

where 𝑲P and 𝑲D are proportional and derivative gain matrices, respectively. These matrices can

be chosen as diagonal positive definite matrices to guarantee the system stability. In Eq. (2.2),

𝒒dm is the desired position of motors (rotors) which is determined from the first line of Eq. (2.1)
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by setting �𝒒d = 0 and �𝒒d = 0. Thus, one obtains:

𝒒dm = 𝑾𝒒d + (𝑲𝑾)−1
(
𝒈(𝒒d) − 𝑱T(𝒒d)𝝉ext

)
(2.3)

Substituting Eq. (2.2) into Eq. (2.1) leads to 2𝑛 closed-loop dynamic equations as follows:

𝚪
�
=

⎡⎢⎢⎢⎢⎣
𝑴 (𝒒) �𝒒 + 𝑪 (𝒒, �𝒒) �𝒒 + 𝒈(𝒒) + 𝑫 �𝒒 + 𝑲𝑾 (𝑾𝒒 − 𝒒m) − 𝑱T(𝒒)𝝉ext

𝑩 �𝒒m + 𝑫m �𝒒m − 𝑲 (𝑾𝒒 − 𝒒m) −𝑾−1 (
𝒈(𝒒d) − 𝑱T(𝒒d)𝝉ext

) − 𝑲P(𝒒dm − 𝒒m) + 𝑲D �𝒒m

⎤⎥⎥⎥⎥⎦ = 0

(2.4)

2.3 Analytical modal analysis

2.3.1 Linearization

By using the following definitions:

𝒛
�
= [𝒒T, 𝒒T

m]T, �𝒛 �
= [ �𝒒T, �𝒒T

m]T, and �𝒛 �
= [ �𝒒T, �𝒒T

m]T (2.5)

Eq. (2.4) can be rewritten in a compact form as:

𝚪( �𝒛, �𝒛, 𝒛) = 0 (2.6)

The linearized dynamic equations of a flexible joint robot can be derived using the Taylor

series expansion (Ginsberg, 1998; Lynch & Vanderploeg, 1995) about an ’equilibrium position’

{ �𝒛d, �𝒛d, 𝒛d} defined by:

�𝒛d =
⎡⎢⎢⎢⎢⎣
0

0

⎤⎥⎥⎥⎥⎦ , �𝒛d =
⎡⎢⎢⎢⎢⎣
0

0

⎤⎥⎥⎥⎥⎦ , 𝒛d =

⎡⎢⎢⎢⎢⎣
𝒒d

𝒒dm

⎤⎥⎥⎥⎥⎦ (2.7)

Consequently, the linearized equations can be expressed as follows:

𝑴Δ�𝒛 + 𝑫Δ �𝒛 + 𝑲Δ𝒛 = 0 (2.8)
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where Δ�𝒛 = �𝒛 − �𝒛d, Δ �𝒛 = �𝒛 − �𝒛d and Δ𝒛 = 𝒛 − 𝒛d represent the perturbation vectors about the

desired equilibrium position { �𝒛d, �𝒛d, 𝒛d}. In addition, three matrices (𝑴, 𝑫, and 𝑲 ∈ R2𝑛×2𝑛)
in Eq. (2.8) are determined by:

𝑴
�
=

𝜕𝚪
𝜕 �𝒛

����
( �𝒛d, �𝒛d,𝒛d)

=

⎡⎢⎢⎢⎢⎣
𝑴 (𝒒d) 0

0 𝑩

⎤⎥⎥⎥⎥⎦ , (2.9)

𝑫
�
=

𝜕𝚪
𝜕 �𝒛

����
( �𝒛d, �𝒛d,𝒛d)

=

⎡⎢⎢⎢⎢⎣
𝑫 0

0 𝑫m + 𝑲D

⎤⎥⎥⎥⎥⎦ , (2.10)

𝑲
�
=

𝜕𝚪
𝜕𝒛

����
( �𝒛d, �𝒛d,𝒛d)

=

⎡⎢⎢⎢⎢⎣
𝑲G(𝒒d) + 𝑲𝑾2 −𝑲𝑾

−𝑲𝑾 𝑲 + 𝑲P

⎤⎥⎥⎥⎥⎦ (2.11)

where the matrix 𝑲G ∈ R𝑛×𝑛 is derived as follows:

𝑲G(𝒒d) = 𝜕𝒈(𝒒)
𝜕𝒒

����
𝒒d

− 𝜕 (𝑱T(𝒒)𝝉ext)
𝜕𝒒

����
𝒒d

(2.12)

It can be seen that two matrices 𝑴 and 𝑲 depend on the robot’s configuration, i.e., the vector of

joint coordinates 𝒒d. Furthermore, the matrices 𝑫 and 𝑲 are functions of damping and stiffness

coefficients at joints/motors, as well as the stiffness and damping gains of the controller. The

effect of the gravity forces and external forces/moments on the stiffness system is also included

in Eq. (2.12) that makes more/less ’artificial stiffness’ into the stiffness matrix 𝑲. Note that the

effect of the controller on the modal parameters was also discussed in Inman (2017) for linear

systems, in which the positive position feedback (PPF) control used to modify dynamic behavior

of linear systems is similar to the PD control law presented above.

To the best of our knowledge, the linearized model of a general robot with both flexible

revolute/prismatic joints presented in Eq. (2.8) including the effects of gravity and external

forces/moments Eq. (2.12) is firstly proposed in this study.
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2.3.2 Modal parameters in the workspace

By assuming that the physical robot’s parameters (masses, positions of center of masses, inertia

tensor, and stiffness/damping parameters), as well as the gain matrices 𝑲P and 𝑲D of the PD

controller are constants and predetermined, Eq. (2.8) can be used for the analytical modal analysis

(AMA) of the robot. Because the damping matrix 𝑫 is non-proportional, modal parameters can

be found by solving the following eigenvalue problem (Inman, 2017):

(𝑨 − 𝜆𝑘 𝑰)𝒚𝑘 = 0 (2.13)

where the state matrix 𝑨 ∈ R4𝑛×4𝑛 is derived from the linearized mass, damping and stiffness

matrices, (𝑴, 𝑫 and 𝑲 ) as follows:

𝑨 =

⎡⎢⎢⎢⎢⎣
0 𝑰

−𝑴−1
𝑲 −𝑴−1

𝑫

⎤⎥⎥⎥⎥⎦ (2.14)

where 𝑰 denotes the identity matrix. If a eigenvalue 𝜆𝑘 is found from the characteristic

polynomial, det (𝑨 − 𝜆𝑘 𝑰) = 0, a corresponding eigenvector 𝒚𝑘 ∈ C4𝑛 can be therefore obtained
from Eq. (2.13). In practice, 𝜆𝑘 may be real and/or a pair of complex conjugate numbers.

Therefore, three different cases may occur (Troger & Steindl, 1991):

• Case 1: If all eigenvalues have negative real parts, i.e., lie on the left-hand side of the complex

plane, then the dynamic behavior of the robot at 𝒒d is asymptotically stable.

• Case 2: If at least one of eigenvalues has a positive real part, i.e., lies on the right-hand side

of the complex plane, then the dynamic behavior of the robot at 𝒒d is unstable. Therefore,

gain matrices need to be changed appropriately to achieve stability.

• Case 3: If one of eigenvalues has zero real part, then dynamic behavior of the robot at 𝒒d

may be stable or unstable.

For the under-damped case, all eigenvalues are complex numbers. A complex conjugate pair

can be expressed as:

𝜆𝑘,𝑘∗ = −𝜔𝑘𝜁𝑘 ± 𝑗𝜔𝑘

√
1 − 𝜁2𝑘 (2.15)
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for 𝑘 = 1, . . . , 2𝑛. As a result, a natural frequency 𝜔𝑘 and a damping ratio 𝜁𝑘 are computed

from 𝜆𝑘 as follows:

𝜔𝑘 =
√
real(𝜆𝑘 )2 + imag(𝜆𝑘 )2 (rad/s), (2.16)

𝜁𝑘 = − real(𝜆𝑘 )
𝜔𝑘

(2.17)

where 𝑓𝑘 =
𝜔𝑘

2𝜋 (Hz). In addition, a complex mode shape vector 𝒖𝑘 ∈ C2𝑛 corresponding to 𝜔𝑘

and 𝜁𝑘 is determined from the first 2𝑛 elements of the eigenvector 𝒚𝑘 (Inman, 2017):

𝒖𝑘 =
[
𝑰 0

]
𝒚𝑘 (2.18)

As a result, modal parameters of a flexible joint robot (for given the desired positions of joint

coordinates 𝒒d, all kinematic/dynamic parameters and the PD controller gains) are computed

using the following steps:

• Step 1: Evaluate the mass matrix 𝑴 (𝒒d) and the matrix 𝑲G(𝒒d) using Eq. (2.12).
• Step 2: Compute the linearized mass, damping and stiffness matrices using Eqs. (2.9−2.11).
• Step 3: Establish the state matrix using Eq. (2.14).

• Step 4: Solve eigenvalue problem using Eq. (2.13) in order to find eigenvalues 𝜆𝑘 and

eigenvectors 𝒚𝑘 for 𝑘 = 1, . . . , 2𝑛.

• Step 5: Extract natural frequencies, damping ratios and mode shapes using Eqs. (2.16−2.18).

Note that in the ’Step 4’, the eig function in Matlab can be used to solve the eigenvalue problem

using the numerical method.

2.4 Numerical simulation

2.4.1 Scompi robot and its parameters

The lightweight Scompi robot with six degrees of freedom developed at Hydro Quebec research

institute is shown in Fig. 2.1. The robot is designed to be quickly installed on a track and to
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Figure 2.1 Model of the Scompi robot (left) and its kinematic

representation using the standard Denavit-Hartenberg

convention (right)

perform in the confined space for machining tasks of large complex hydro-power equipment

such as grinding, polishing and welding (Hazel, Cóté, Laroche & Mongenot, 2012).

The Scompi robot has a total weight about 39 (kg) including six rigid links connected together

by six joints, in which the first joint is a prismatic joint, and the others are revolute joints. All

joints are driven by stepping motors coupled to harmonic drivers with high gear ratios. The

first joint is designed based on the rack-and-pinion mechanism in which 𝑟1 is the rack gear’s

radius (Hazel et al., 2012) defined by 𝑟1 = 0.057 (m) (Lessard, Swiatek, Liu & Hazel, 2011). For

other revolute joints, 𝑟𝑖 = 1, for 𝑖 = 2, . . . , 6. In addition, the stiffness and damping parameters

of the Scompi robot (Pham, Hamelin, Hazel & Liu, 2020) are presented in Table 2.1.

For the kinematic modeling of the Scompi robot, the standard Denavit-Hartenberg (DH)

convention is used (Denavit & Hartenberg, 1955; Tsai, 2003) in which the DH parameters are

listed in Table 2.2.
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Table 2.1 Damping/stiffness parameters of joints and motors

𝑖 1 2 3 4 5 6 scale factor unit
𝑑f,𝑖 2.73 24.74 5.76 9.37 8.74 8.74 1 (N·s/m) or (N·m·s/rad)
𝑑fm,𝑖 9.46 9.46 9.46 9.46 5.90 5.90 10−4 (N·m·s/rad)
𝑘𝑖 25 120 120 57 29 29 1000 (N·m/rad)

Table 2.2 DH parameters of the Scompi robot with

𝑎2 = 0.192, 𝑎3 = 0.420, 𝑑5 = 0.380, and 𝑑6 = 0.088

link 1 2 3 4 5 6 unit
𝜃𝑖

𝜋
2

𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 (rad)

𝑑𝑖 𝑞1 0 0 0 𝑑5 𝑑6 (m)

𝑎𝑖 0 𝑎2 𝑎3 0 0 0 (m)

𝛼𝑖 0 𝜋
2

0 𝜋
2

𝜋
2

− 𝜋
2

(rad)

The other dynamic parameters including masses, inertia tensors, positions of the center of masses,

gear ratios obtained from manufacturers or CAD data are presented in Table 2.3 and Table 2.4.

Table 2.3 Physical parameters of rigid links

link 1 link 2 link 3 link 4 link 5 link 6 unit
𝑚𝑖 19.0000 5.7230 5.1660 4.4250 3.3020 1.0220 (kg)
𝑥C,𝑖 0.0210 -0.0540 -0.1380 0.0110 0.0 -0.0040 (m)
𝑦C,𝑖 0.0310 0.0030 0.0 0.0120 -0.0260 0.0390 (m)
𝑧C,𝑖 -0.2260 0.0140 -0.0190 0.1610 -0.0220 0.0 (m)
𝐼xx,𝑖 0.0 0.0100 0.0080 0.0440 0.0120 0.0010 (kg·m2)
𝐼xy,𝑖 0.0 0.0030 0.0 0.0 0.0 0.0 (kg·m2)
𝐼xz,𝑖 0.0 -0.0030 -0.0100 0.0020 0.0 0.0 (kg·m2)
𝐼yz,𝑖 0.0 0.0440 0.1600 0.0440 0.0060 0.0010 (kg·m2)
𝐼zy,𝑖 0.0 0.0 0.0 0.0070 -0.0010 0.0 (kg·m2)
𝐼zz,𝑖 0.0 0.0430 0.1600 0.0080 0.0080 0.0120 (kg·m2)

2.4.2 Simulation results

Using the analytical formulation presented in Section 2.3, modal parameters of the Scompi robot

are computed in two cases:
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Table 2.4 Gear ratios and inertia moments of motors

𝑖 1 2 3 4 5 6 scale factor unit
𝑁𝑖 51 160 160 160 160 160 1 (-)

𝐼r𝑖 ,𝑧 1.71 2.65 2.42 1.26 0.91 0.86 10−4 (kg·m2)

Figure 2.2 Different configurations of the robot in its

workspace for computing modal parameters: robot’s joints

depending on configurations (left), robot’ configurations in the

Cartesian space (right)

Case 1: There is no robot’s tool.

Case 2: A tool with the mass 𝑚E = 4 (kg) is added to the end-effector.
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Figure 2.3 Undamped natural frequencies for 50

configurations: without additional mass (blue line), with

additional mass (orange line)

To illustrate modal parameters of the Scompi robot in its workspace, 50 joint’s configurations

shown in Fig. 2.2 are used in which several configurations are plotted for illustration purpose.

The first and last joints are hold constant with 𝑞d
1
= 0 (m) and 𝑞d

6
= 0 (rad), and other joints are
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Figure 2.4 Damping ratios for 50 configurations: without

additional mass (blue line), with additional mass (orange line)

varied linearly in the following intervals:

𝑞d2 ∈ [−𝜋

6
,
𝜋

6
], 𝑞d3 ∈ [2𝜋

3
,
𝜋

3
], 𝑞d4 ∈ [− 𝜋

18
,
𝜋

3
], 𝑞d5 ∈ [−2𝜋

3
,−𝜋

3
]
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For simplification, external forces/moments are set to zero, 𝝉ext = 0. In addition, the inertia

tensor and position of the center of mass for the robot’s tool are set to zero, i.e., 𝑰 (𝑛)
E

= 0 and

𝒔(𝑛)
E

= 0 with 𝑛 = 6.

In addition, the gain matrices 𝑲P and 𝑲D in Eqs. (2.9) and (2.10)) for both cases are:

𝑲P = 1000 diag(15, 15, 15, 15, 15, 15) (2.19)

𝑲D = diag(52, 52, 52, 52, 52, 52) (2.20)

Modal parameters of twelve modes are computed simultaneously using Matlab 2018b, in which

the computation time for one configuration is approximately 0.003 (s) using a Laptop with 12Gb
memory, Intel Core i7, CPU@2.20 GHz. The simulation results for 50 configurations are shown

in Fig. 2.3 and Fig. 2.4.

It can be seen in Fig. 2.3 that the lowest frequency is about 5.13 (Hz), while the highest frequency

is 851.14 (Hz). Because the robot’s tool is added to the end-effector, the natural frequency curves

for the second case are clearly lower than those for the first case. In addition, the frequencies for

modes 8, 9, 10, and mode 11 change significantly when adding the extra mass to the end-effector

in which the deviations are approximately 12.08 (Hz), 11.70 11.60 (Hz), and 49 (Hz). In modes

4, 5, 6, and mode 12, their frequencies are nearly constant, i.e., they are independent to the

robot’s configuration. The modes 4 and 5 are closely spaced modes (Reynders, Houbrechts & De

Roeck, 2012) because their frequencies are close the common mean, approximately 12.88 (Hz).

On the other hand, the damping ratios presented in Fig. 2.4 vary in the range: from 1.25 (%) for

mode 7 to 80.61 (%) for mode 12. In practice, modes with high damping ratios are often ignored

or are difficult to observe because the system does not vibrate or vibrate in a very short time.

Generally, the damping ratio curves for the first case are lower than those for the second case

except for mode 7. Most damping ratios for all modes are less than 27 (%). In the last mode, the

damping ratios are greater than 80 (%) for both cases. It can be seen that damping ratios in
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modes 4 and 5 in two cases are nearly constant, approximately 16.16 and 16.71 (%). Besides,

modes 4, 5 and 12 are nearly independent of the robot’s configuration.

Obviously, natural frequencies and damping ratios of the Scompi robot change very complicatedly

in its workspace, and they depend clearly on the robot’s configurations. Therefore, the linearized

model proposed is advantageous in achieving the configuration-dependent modal parameters for

flexible joint robots.

Figure 2.5 Frequencies and damping ratios depending on

controller gains
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Furthermore, the influence of controller gains on natural frequencies and damping ratios of

the first and second modes (case 1) is shown in Fig. 2.5. For numerical simulations, diagonal

elements of the matrix 𝑲P are set to be equal and changed linearly from 2000 to 15000,

𝑲D = 0.425
√
𝑲P, and other parameters are hold constant. For example, at the first configuration,

the first frequency rises from 2.39 to 6.51 (Hz), the first damping ratio declines from 9.44 to

7.85 (%). For these modes, when increasing diagonal elements of 𝑲P, natural frequencies of the

Scompi robot increase, while its damping ratios decrease.

The effect of the control parameters on the first and second mode shapes (case 1) is shown

in Fig. 2.6 with two values of controller gains 𝐾P,𝑖𝑖 = 12000 and 15000 (𝑖 = 1, . . . , 6). Because

eigenvalues obtained from Eq. (2.18) are complex vectors, they are therefore presented in polar

coordinates in which one component of an eigenvector is described by a phase and a logarithmic

magnitude. Note that in Fig. 2.6, the first six components of eigenvectors corresponding to

modal coordinates of six joints are plotted.

2.4.3 Validation

To validate the Scompi’s modal parameters obtained using the analytical model presented

in Section 2.4.2, the OMA technique based on the VARmethod in the time domain is applied (Vu,

Thomas, Lafleur & Marcouiller, 2013; Vu et al., 2016). The most advantage of the OMA

technique is that modal parameters can be extracted from output-only response, such as position,

velocity and acceleration signals. The input responses (excitation forces/moments) do not need

to be measured because they are considered as white noise processes (Brincker & Ventura,

2015).

In order to produce the output responses, an impulse force is applied at the end-effector along

𝑦0-axis with the amplitude 50 (N) in the time interval 𝑡 ∈ [0.2, 0.2 + 6Δ𝑡] (s) with Δ𝑡 = 0.001

(s). The PD controller with gravity compensation described by Eq. (2.2) is used to compute the

motor torques for vibration reduction under the external force (see Fig. A I-1 and Fig. A I-2 in
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Figure 2.6 Complex mode shapes depending on controller gains

Appendix I.2). Therefore, the output responses can be obtained by solving the direct dynamics

problem described in Eq. (2.1) using numerical integration methods, e.g., ode-solvers in Matlab.
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Figure 2.7 Motor positions (case 2)

For the direct dynamics, an initial condition of joint coordinates at 𝑡 = 0 (s) can be selected from

50 configurations presented in Fig. 2.2. For example, if the 8-th configuration is chosen as an
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initial condition, then we have:

𝒒(0) = [0.0, −0.374, 1.9448, 0.0, −1.9448, 0.0]T (2.21)

while the initial condition of motor coordinates is computed from Eq. (2.3) with zero external

forces/moments:

𝒒m(0) = [0.0, −0.374, 1.9446, −0.0001, −1.9449, 0.0]T (2.22)

At 𝑡 = 0 (s), we assume that �𝒒(0) = �𝒒m(0) = 0.

Using the function ode45 in Matlab with the fixed step integration Δ𝑡 = 0.001 (s), motor

positions (angles) with respect to time are shown in Fig. 2.7. It can be seen that motor positions

are reduced exponentially to the desired values for a short time using the feedforward+PD

controller. From motor positions (output responses), the Scompi robot’s modal parameters

can be identified using the VAR method. Note that motor positions are used to identify modal

parameters because they can be measured very accurately using encoders integrated into all

motor drivers.

To estimate modal parameters, a very high model order range, the order from 2 to 100, is

investigated. For each model order, matrices of autoregressive parameters (ARs) are firstly

computed using pseudo-inverse method based on QR or SVD techniques. Next, a discrete state-

space matrix for eigenvalue problem is derived from ARs (Vu, Thomas, Lakis & Marcouiller,

2011). Therefore, modal parameters including undamped natural frequencies, damping ratios

and complex mode shapes can be extracted from eigenvalues and eigenvectors of the discrete

state-space matrix. For example, stabilization diagrams describing all frequencies and damping

ratios versus the model orders are illustrated in Fig. 2.8 (case 1) and Fig. 2.9 (case 2). In addition,

the information about complex mode shapes is used to eliminate unstable frequencies/damping

ratios using single-mode validation criteria proposed in Reynders et al. (2012) such as the

relative eigenfrequency and damping ratio differences, modal assurance criterion (MAC), as

well as the order modal assurance (OMAC) (Vu et al., 2011).



35

Figure 2.8 Stable natural frequencies and damping ratios

(green color) are identified from the motor positions (case 1)

To identify physical modes, i.e., modes appearing in complex conjugate pairs, the grid algorithm

implemented in the NAFID-tool is applied (Do, Vu & Liu, 2019). The main idea of this
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Figure 2.9 Stable natural frequencies and damping ratios

(green color) are identified from the motor positions (case 2)

algorithm is to automatically search frequencies/damping ratios with small deviations in the
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given ranges (frequency/damping resolutions) along the model-order axis. If the number of

frequencies/damping values found is equal or greater than the number of repeating frequencies

defined by the user, then frequencies/damping ratios in these ranges are considered to be stable.

In NAFID-tool, the default values of frequency and damping resolutions are 0.1 (Hz) and 0.1 (%),

respectively. For example, the red points marked by green squares in Fig. 2.9 represent stable

vibration modes because their undamped frequencies and damping ratios are nearly constant

along the model-order axis. The blue points are unstable frequencies/damping ratios due to

computational error or noise.

Table 2.5 Frequencies and damping ratios corresponding to

the 8-th configuration obtained using AMA and OMA methods

AMA-Case 1 OMA-Case 1 AMA-Case 2 OMA-Case 2
mode 𝑓 (Hz) 𝜁 (%) 𝑓 (Hz) 𝜁 (%) 𝑓 (Hz) 𝜁 (%) 𝑓 (Hz) 𝜁 (%)
1 6.3692 7.6686 6.4191 7.6685 5.9634 7.1538 6.0133 7.1538
2 6.9642 11.2981 6.9191 11.3001 6.6522 10.8175 6.6133 10.8185
3 9.8842 12.7399 9.9191 12.7214 9.2928 11.9109 9.3133 11.8997
4 12.7170 16.1988 12.7170 16.2361 12.6414 16.1256 12.6133 16.1264
5 13.1418 16.7181 13.1191 16.7334 13.1418 16.7181 13.1133 16.7640
6 25.5949 26.5926 25.6191 26.6241 25.3752 25.6469 25.4133 25.6637
7 37.0199 1.3938 37.0197 1.4237 33.1574 2.3513 33.1133 2.3514
8 58.3984 2.9817 58.4191 3.0212 46.3479 2.1881 46.3133 2.1703
9 58.8631 3.4643 58.8191 3.4564 49.3412 3.3381 49.3133 3.3375
10 94.3825 2.2483 94.4191 2.2508 92.0281 2.2052 92.0275 2.1623
11 183.2303 17.0471 183.2191 17.0463 138.7911 12.5831 138.8000 12.5469
12 850.8082 80.5774 – – 850.5782 80.5557 – –

The natural frequencies and damping ratios obtained using the analytical and VAR methods are

summarized in Table 2.5. There are eleven stable frequencies/damping ratios identified using

the NAFID-tool in which the computation time is approximately 120 (s). It can be seen that

the results obtained show an excellent matching. However, the 12-th mode is very difficult to

identify, even the fixed time step Δ𝑡 is set to 0.0005 (s) to detect the highest frequency (the

Nyquist frequency) up to 1000 (Hz). It can explain by the fact that the last mode has a very high

damping ratio, > 80 (%) for both cases.

Furthermore, acceleration signals of the end-effectors are also used to estimate modal parameters

(see Fig. A I-2 in Appendix I.2). However, there are eight stable modes found using NAFID-tool

(see Fig. A I-3). It can be inferred that the motor position signals may contain more ’useful
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information’ for the modal parameter estimation than that obtained from the end-effector’s

acceleration signals. This exploration may be considered a promising aspect of future research.

Overall, numerical simulations prove that the proposed formulation for the modal analysis

can be used to compute natural frequencies and damping ratios of flexible-joint robots in the

workspace.

2.5 Conclusions

Analytical formulations for the dynamic simulation and computing modal parameters of

flexible-joint robots in their workspace are presented in this paper. First, dynamic equations

of a general robot with prismatic and revolute joints are established based on the Lagrangian

formulation, and then linearized equations for the modal analysis are derived using the Taylor

series expansion. Using the proposed formulations, natural frequencies and damping ratios

depend on the robot’s configuration, the gravity and external forces, and the control parameters.

Modal parameters of the lightweight Scompi robot with six flexible joints are computed for

various configurations. The results obtained from the analytical method are validated using the

operational modal analysis technique based on the vector autoregression model in which the

output responses for the identification problem are motor position signals instead of acceleration

signals as traditional approaches. The proposed formulations can be used to identify stiffness

and damping parameters of flexible joints and to optimize control parameters for vibration

suppression. Future works include the effect of cutting forces and other control strategies on

computing modal parameters.
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Abstract

Knowledge of the stiffness and damping parameters is critical to understanding the dynamic

behavior of robotic manipulators, especially in robotic machining applications. This paper

presents an optimization procedure to identify stiffness and damping parameters of joints and

motors for manipulators with flexible joints. Based on the linearization model obtained from

the dynamic equations of the robot with the PD controller, the measured natural frequencies

and damping ratios on different robot configurations, the objective function is derived from the

characteristic equation of the eigenvalue problem. Therefore, stiffness and damping parameters

are found by solving the optimization problem with bound constraints. Numerical simulations

for a robot with two flexible joints are performed to illustrate the applicability of the proposed

method. The influence of damping ratio deviation on identified parameters is investigated for

several cases.

3.1 Introduction

Dynamic modeling of robotic manipulators for model-based simulation and control requires

prior knowledge of physical parameters such as masses, moments of inertia, centers of masses,

and spring coefficients and parameters related to friction Chung et al. (2016).
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For a robot with rigid links and joints, the identification problem of the mentioned parameters

above has been presented in many papers such as Swevers, Verdonck & De Schutter (2007); Wu,

Wang & You (2010); Hollerbach, Khalil & Gautier (2016) using computer-aided design software

(CAD) or through experimental measurements. For the latter, the robot dynamic equations have

to be expressed as the product of a regressor matrix (depending on joint positions, speeds and

accelerations) and a vector of minimal/base dynamic parameters (grouped inertial parameters).

From measured or estimated joint positions, speeds and accelerations, as well as the motor

torques, these parameters will be found from the overdetermined linear equations using the

pseudo inverse matrix method Swevers, Ganseman, De Schutter & Van Brussel (1996).

For a robot with rigid links and flexible joints, dynamic equations of the robot are quite compli-

cated because the joint and motor coordinates are independent Spong (1987); De Luca & Book

(2016). There are several works to consider the parameter identification problem of these robots.

In Zollo, Lopez, Spedaliere, Aracil & Guglielmelli (2015), a general method to identify all

dynamic parameters of robots with elastic joints was presented. This method was developed

based on the dynamic identification methods for robots with rigid links and joints. The main

drawback of this method is that it requires many sensors to measure the motion variables

(positions, speeds and accelerations of joints and motors). Note that only motor angle positions

are available to measure using encoders for industrial robots. In Miranda-Colorado & Moreno-

Valenzuela (2018), a method based on the filtered dynamic model was proposed. However, this

method is also required to measure the positions and speeds of joints and motors.

In Ohr et al. (2006), the frequency response functions (FRFs) established based on the motor

torques, and motor speeds were used to identify flexibility parameters of the 6-axis industrial

manipulator with flexible joints. Each joint in the first three joints of the robot were modeled

by three degrees of freedom with three-dimensional spring-damper pairs and the other joints

were modeled by one degree of freedom with one spring-damper pair. However, the use of

spring/damping parameters in the model-based control strategy is not a simple task. In Neubauer,

Gattringer, Müller, Steinhauser & Höbarth (2015), authors applied the genetic and gradient-based
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minimization algorithms to identify stiffness and damping parameters of the Stäubli TXL robot.

The objective function was derived from the measured frequency response matrix, and the motor

transfer matrix of the linearized system for the first three joints in which the linearized system

used was parameter-independent of the PD controller. In addition, to reduce the effect of the

controller on measured input and output response when conducting experimental modal analysis,

the authors proposed the use of small feedback gains of the controller. However, this can make

the robot unstable in some configurations because of the influence of gravity. A similar approach

based on FRFs for identification of stiffness and damping parameters of industrial robots has

recently been presented in Huynh, Assadi, Dambly, Rivière-Lorphèvre & Verlinden (2021). By

minimizing the error between the measured and simulated FRFs in the sensor frame, a direct

method based on the genetic algorithm followed by a deterministic procedure was presented to

update stiffness and damping parameters of multibody systems and robotic arms. The stiffness

and damping parameters of the first three joints for the KUKA-KR90 R3100 robot were updated

successfully using this method.

The main contribution of this work is to present an optimization procedure for determining

stiffness and damping parameters of robotic manipulators with flexible joints. Our approach is

developed based on the inverse eigenvalue problem for linear systems Chu & Golub (2005);

Mottershead & Ram (2006) and the model updating method Friswell & Mottershead (1995). It

consists of the following three steps. (1) Modal parameters (natural frequencies and damping

ratios) for several robot configurations in working condition (controlled by the PD controller)

are identified by using experimental modal analysis (EMA) Ewins (2000); Mejri et al. (2013) or

operational modal analysis (OMA) technique Zaghbani et al. (2013); Vu et al. (2011, 2016). (2)

The objective function is derived from the characteristic polynomial of the inverse eigenvalue

problem, i.e., based on the linearized dynamic model, the measured natural frequencies and

damping ratios. (3) The unknown stiffness and damping parameters are therefore determined by

solving the optimization problem in Matlab through the nonlinear least-squares algorithms. In

this work, we focus on the last two steps while the first step is assumed to be completed.

The main advantages of the proposed method are:
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• Natural frequencies and damping ratios in step 1 can be estimated using OMA instead of EMA

as most previous researches. This is because our approach does not require measuring the

input response (forces/torques). In addition, the motor positions measured using the encoders

can be used as the output response for OMA in order to identify modal parameters Do,

Vu & Liu (2022).

• The objective function obtained from the characteristic polynomial is more straightforward

than other approaches based on the frequency response functions as presented in the literature.

• The linearized dynamic model used to compute modal parameters takes the influence of the

PD control gains.

It is important to note that in the mentioned methods above, kinematic and dynamic parameters

of rigid links and motors are assumed to be predetermined, such as from manufacturing or CAD

data. In addition, the robot configurations are assumed to be measured using internal/external

sensors such as laser trackers.

The remainder of this paper is organized as follows. In Section 3.2, the dynamic equations of

motion of flexible joint robots with the PD controller are briefly presented using the Lagrangian

formulation. In Section 3.3, the direct and inverse eigenvalue problem of flexible joints robots

are discussed based on the linearized model. The objective function is derived in Section 3.4

in order to identify stiffness and damping parameters. The application of numerical methods

to solve the optimization is also addressed. In Section 3.5, the identification of stiffness and

damping parameters for the planar robot with two flexible joints are performed. The effect

of noise on optimal solution is investigated. Finally, conclusions and future works are given

in Section 3.6.

3.2 Dynamic modeling of flexible joint manipulators with the PD controller

A brief description of the dynamic equations and linearized model of flexible joint robots is

presented. For the modeling of a flexible joint robot, we assume that the robot has rigid links

and flexible joints.
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3.2.1 Dynamic equations

Based on the Lagrangian formulation and the well-known assumption proposed in (Spong, 1987),

the equations of motion for a robot consisting of 𝑛 flexible prismatic and revolute joints and no

external forces/moments acting on the end-effector can be expressed as follows (Do et al., 2022):

𝑴 (𝒒) �𝒒 + 𝑪 (𝒒, �𝒒) �𝒒 + 𝒈(𝒒) + 𝑫 �𝒒 + 𝑲𝑾 (𝑾𝒒 − 𝒒m) = 0 (3.1)

𝑩 �𝒒m + 𝑫m �𝒒m − 𝑲 (𝑾𝒒 − 𝒒m) = 𝝉m (3.2)

where 𝒒 = [𝑞1, 𝑞2, . . . , 𝑞𝑛]T and 𝒒m = [𝑞m,1, 𝑞m,2, . . . , 𝑞m,𝑛]T are vectors of joint coordinates

and motor coordinates (angle positions of motors after reduction), respectively.

It can be seen that, Eq. (3.1) describes the dynamics of rigid links where 𝑴 and 𝑪 ∈ R𝑛×𝑛

represent mass and centrifugal Coriolis matrices, respectively, and 𝒈 ∈ R𝑛 is the gravity vector,

while Eq. (3.2) describes the dynamics of motors where 𝑩 = diag(𝑁2
1
𝐼r1,𝑧, 𝑁

2
2
𝐼r2,𝑧, . . . , 𝑁

2
𝑛 𝐼r𝑛,𝑧)

is the diagonal inertia matrix of motors in which 𝐼r𝑖 ,𝑧 is the inertia moment of motor 𝑖 about its

rotating 𝑧-axis and 𝑁𝑖 is the gear ratio. The matrix𝑾 is defined by: 𝑾 = diag( 1𝑟1 ,
1
𝑟2
, . . . , 1

𝑟𝑛
),

where 𝑟𝑖 describes the characteristic radius of joint driver 𝑖. Note that 𝑟𝑖 = 1 if the joint 𝑖 is

revolute. Therefore, if the robot has flexible revolute joints (De Luca & Tomei, 1996; Ott, 2008;

De Luca & Book, 2016), then𝑾 is the identity matrix.

The stiffness and damping matrices of joints and motors are defined as follows:

𝑲 = diag(𝑘1, 𝑘2, . . . , 𝑘𝑛), (3.3)

𝑫 = diag(𝑑f,1, 𝑑f,2, . . . , 𝑑f,𝑛) (3.4)

𝑫m = diag(𝑑fm,1, 𝑑fm,2, . . . , 𝑑fm,𝑛) (3.5)

where 𝑘𝑖 is the stiffness parameter of joint 𝑖, while 𝑑f,𝑖 and 𝑑fm,1 are viscous coefficients of joint

𝑖 and motor 𝑖, respectively.
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Based on the PD control with constant gravity compensation proposed in (Tomei, 1991), the

vector of motor torques 𝝉m is given by (Do et al., 2022)

𝝉m = 𝑾−1𝒈(𝒒d) + 𝑲P(𝒒dm − 𝒒m) − 𝑲D �𝒒m (3.6)

where 𝑲P and 𝑲D are, respectively, proportional and derivative gain matrices, and 𝒒d and 𝒒dm are

the vectors of the desired joint and motor positions, respectively, in which 𝒒dm is determined by:

𝒒dm = 𝑾𝒒d + (𝑲𝑾)−1𝒈(𝒒d) (3.7)

Substituting Eq. (3.6) into Eq. (3.1) and Eq. (3.2), one leads to the closed-loop control system:

𝚪
�
=

⎡⎢⎢⎢⎢⎣
𝑴 (𝒒) �𝒒 + 𝑪 (𝒒, �𝒒) �𝒒 + 𝒈(𝒒) + 𝑫 �𝒒 + 𝑲𝑾 (𝑾𝒒 − 𝒒m)

𝑩 �𝒒m + 𝑫m �𝒒m − 𝑲 (𝑾𝒒 − 𝒒m) −𝑾−1𝒈(𝒒d) − 𝑲P(𝒒dm − 𝒒m) + 𝑲D �𝒒m

⎤⎥⎥⎥⎥⎦ = 0 (3.8)

3.2.2 Linearized dynamic model

By using the notation 𝒛
�
= [𝒒T, 𝒒T

m]T and the Taylor series expansion (Ginsberg, 1998;

Lynch & Vanderploeg, 1995), the linearized model of a flexible joint robot about the de-

sired equilibrium position 𝒛d = [(𝒒d)T, (𝒒dm)T]T and �𝒛d = 0, �𝒛d = 0 is derived from Eq. (3.8) as

follows (Do et al., 2022):

𝑴Δ�𝒛 + 𝑫Δ �𝒛 + 𝑲Δ𝒛 = 0 (3.9)
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where Δ�𝒛 = �𝒛 − �𝒛d, Δ �𝒛 = �𝒛 − �𝒛d and Δ𝒛 = 𝒛 − 𝒛d represent the perturbation vectors, and the three

linearized matrices 𝑴, 𝑫, and 𝑲 ∈ R2𝑛×2𝑛 in Eq. (3.9) are defined as:

𝑴 =

⎡⎢⎢⎢⎢⎣
𝑴 (𝒒d) 0

0 𝑩

⎤⎥⎥⎥⎥⎦ , (3.10)

𝑫 =

⎡⎢⎢⎢⎢⎣
𝑫 0

0 𝑫m + 𝑲D

⎤⎥⎥⎥⎥⎦ , (3.11)

𝑲 =

⎡⎢⎢⎢⎢⎣
𝑲G(𝒒d) + 𝑲𝑾2 −𝑲𝑾

−𝑲𝑾 𝑲 + 𝑲P

⎤⎥⎥⎥⎥⎦ (3.12)

and 𝑲G ∈ R𝑛×𝑛 is the gradient of 𝒈 with respect to 𝒒:

𝑲G(𝒒) = 𝜕𝒈(𝒒)
𝜕𝒒

(3.13)

The following properties can be observed from Eqs. (3.10−3.13):
• The linearized mass matrix 𝑴 is symmetric positive definite and it depends on the desired

configuration 𝒒d. i.e., when the robot changes the configuration, elements of this matrix will

be varied.

• The linearized damping matrix 𝑫 is symmetric and depends on damping parameters of

joints/motors, as well as derivative gains of the controller.

• The linearized stiffness matrix 𝑲 is symmetric and depends on not only 𝒒d, but also joint

stiffness parameters and proportional gains of the controller.

One of the most advantages of the linearized model described by Eq. (3.9) is that it allows us to

compute modal parameters of flexible joint robots for any desired configuration in operating

conditions. When gain parameters of the PD controller are adjusted while other parameters

remain constant, the natural frequencies and damping ratios of the robot will change. In other

words, the PD controller plays the role of a virtual spring-damper system in which the gain

parameters are similar to spring and damping coefficients.
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3.3 Direct and inverse eigenvalue problems

Based on the linearized model derived from the previous section, two problems are introduced:

the direct eigenvalue and inverse eigenvalue problems of flexible joint robots. We assume that

all constant kinematic/dynamic parameters of links and motors (masses, positions of center of

masses, inertia tensors, gear ratios, and gain parameters) are predetermined.

3.3.1 The direct eigenvalue problem of flexible-joint robots

For the direct eigenvalue problem, given the stiffness and damping parameters as well as the

desired configuration 𝒒d, the eigenvalues and eigenvectors (mode shapes) can be computed from

the linearized matrices defined in Eq. (3.9).

Because the damping matrix 𝑫 described by Eq. (3.11) is non-proportional, in which 𝑫 ≠

𝛼𝑴 + 𝛽𝑲 where 𝛼 and 𝛽 are constants of proportionality, modal parameters of flexible-joint

robots can be obtained using the state-space formulation presented in (Do et al., 2022). In this

work, the quadratic eigenvalue formulation for the general eigenvalue problem (Inman, 2017) is

used for computing eigenvalues, as well as for the identification parameter problem discussed

in Section 3.3.2 . From Eq. (3.9), the eigenvalue problem can be formulated as follows (Inman,

2017): (
𝑴𝜆2𝑘 + 𝑫𝜆𝑘 + 𝑲

)
𝒖𝑘 = 0 (3.14)

where 𝜆𝑘 and 𝒖𝑘 are an eigenvalue and an eigenvector, respectively. Since the mass matrix 𝑴 is

symmetric positive definite, the existence of a matrix square root 𝑺 fulfills (Inman, 2017):

𝑴 = 𝑺 𝑺 (3.15)

where 𝑺 is also a positive matrix. By pre-multiplying Eq. (3.14) with an inversion matrix (𝑺)−1,
and replacing 𝒖𝑘 by (𝑺)−1𝑺 𝒖𝑘 , after some manipulations, Eq. (3.14) can be rearranged as
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follows: (
𝑰𝜆2𝑘 + (𝑺)−1𝑫 (𝑺)−1𝜆𝑘 + (𝑺)−1𝑲 (𝑺)−1

)
︸������������������������������������������������︷︷������������������������������������������������︸

𝑨𝑘

𝑺 𝒖𝑘︸︷︷︸
𝒗𝑘

= 0 (3.16)

where 𝑨𝑘 is the polynomial matrix and 𝒗𝑘 is an intermediate eigenvector. For a nontrivial

solution 𝒗𝑘 , an eigenvalue 𝜆𝑘 must be a root of the characteristic polynomial of order 4𝑛:

|𝑨𝑘 | �= det
(
𝑰𝜆2𝑘 + (𝑺)−1𝑫 (𝑺)−1𝜆𝑘 + (𝑺)−1𝑲 (𝑺)−1

)
= 0 (3.17)

where 𝑰 ∈ R2𝑛×2𝑛 denotes the identity matrix. By solving Eq. (3.17) using numerical methods,
we will have 4𝑛 solutions in real and/or complex numbers (usually complex conjugate pairs).

Once a solution 𝜆𝑘 is obtained from Eq. (3.17), a corresponding eigenvalue 𝒗𝑘 can be determined

from Eq. (3.16), and therefore, 𝒖𝑘 = (𝑺)−1𝒗𝑘 .

If a complex eigenvalue 𝜆𝑘 has a negative real part (the under-damped case), then a natural

frequency 𝜔𝑘 (> 0) and a damping ratio 𝜁𝑘 (< 1) are computed as follows:

𝜔𝑘 =
√
Re(𝜆𝑘 )2 + Im(𝜆𝑘 )2 (rad/s), (3.18)

𝜁𝑘 = −Re(𝜆𝑘 )
𝜔𝑘

(3.19)

where Re(𝜆𝑘 ) and Im(𝜆𝑘 ) are the real and imaginary parts of 𝜆𝑘 . In this case, 𝒖𝑘 is a complex

eigenvector.

3.3.2 The inverse eigenvalue problem of flexible-joint robots

Generally, the purpose of the inverse eigenvalue problem is to determine the mass, damping and

stiffness matrices based on the completed or partitioned natural frequencies, damping ratios and

mode shapes measured using experiments (Chu & Golub, 2005).

In this work, the inverse eigenvalue problem of flexible joint robots is to find the approximate

values of the stiffness and damping parameters of joints and motors. To solve this problem, we
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assume that several natural frequencies and damping ratios at different robot configurations are

measured, e.g., using the OMA technique.

Note that in practice, while natural frequencies can be identified with great accuracy, damping

ratios are more difficult to determine than frequencies because they are sensitive to noise. For

example, if the stabilization diagram is used to identify stable modes (Cara, Juan, Alarcon,

Reynders & De Roeck, 2013), the criteria used to identify stable natural frequencies, damping

ratios and mode shapes are: 2% for the frequency, 5% for the damping ratio, and 5% for the

mode shape. For each specific case, the criterion for the identification of the damping ratios may

be higher.

From 𝑁 measured natural frequencies 𝜔̂𝑘 and damping ratios 𝜁𝑘 , the corresponding eigenvalues

𝜆̂𝑘 for 𝑘 = 1, . . . , 𝑁 can be expressed as:

𝜆̂𝑘 = −𝜔̂𝑘 𝜁𝑘 + 𝑗 𝜔̂𝑘

√
1 − 𝜁2𝑘 (3.20)

where 𝑗2 = −1. By substituting 𝜆𝑘 = 𝜆̂𝑘 into the left-hand side of Eq. (3.17), one obtains

| 𝑨̂𝑘 | = det
(
𝑰𝜆̂2𝑘 + (𝑺)−1𝑫̂ (𝑺)−1𝜆̂𝑘 + (𝑺)−1𝑲̂ (𝑺)−1

)
(3.21)

where 𝑨̂𝑘 represents the polynomial matrix of the inverse eigenvalue problem. Note that the

diagonal elements of matrices 𝑫̂ and 𝑲̂ depend on unknown stiffness and damping parameters,

while the matrix 𝑺 is a constant because it depends on the given robot configuration.

Theoretically, if 𝜆̂𝑘 is a true solution of the characteristic polynomial | 𝑨̂𝑘 |, then the real and
imaginary parts of | 𝑨̂𝑘 | must be equal to zero:

Re( | 𝑨̂𝑘 |) = 0, and Im( | 𝑨̂𝑘 |) = 0. (3.22)

For 𝑘 = 1, . . . , 𝑁 , we can establish an over-determined nonlinear system from Eq. (3.22) in

order to determine the unknown parameters.
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In practice, the equality conditions in Eq. (3.22) are impossible to achieve because 𝜆̂𝑘 is affected

by noise. Therefore, we propose that the condition Eq. (3.22) is rewritten as follows:

(
Re( | 𝑨̂𝑘 |)

)2
+

(
Im( | 𝑨̂𝑘 |)

)2
→ 0. (3.23)

3.4 Identification of stiffness and damping parameters

This section presents an optimization procedure based on the inverse eigenvalue problem to

identify the stiffness and damping parameters of joints and motors.

3.4.1 Selection of modal parameters

We assume that 𝑛𝑐 different robot configurations are chosen for conducting modal testing in

order to estimate modal parameters. Note that singular configurations (Siciliano et al., 2009;

Angeles, 2014) (the geometric Jacobian matrix depending on the joint coordinates is singular or

not full rank) must be avoided to ensure that the robot is stable when conducting experiments.

For the 𝑖-th configuration, we assume that 𝑛c𝑖 stable modes of vibrations are identified using

modal analysis tools. However, only 𝑛s𝑖 natural frequencies 𝜔̂𝑖,𝑘 and 𝑛s𝑖 damping ratios 𝜁𝑖,𝑘 for

𝑘 = 1, . . . , 𝑛s𝑖 and 𝑛s𝑖 ≤ 𝑛c𝑖 are used for the optimization problem. These frequencies should

be selected in the lower frequency range, as they contain the basic information of the system

and seem to be less affected by noise than high frequencies. For example, the fundamental

frequency of industrial robotics is identified from 10 to 14 (Hz) (Iglesias, Sebastián & Ares,

2015). In addition, the higher frequencies related to the resonances of robot links (Bisu, Cherif,

Gérard & KNevez, 2012) are not to be selected.

Consequently, complex eigenvalues are expressed as:

𝜆̂𝑖,𝑘 = −𝜔̂𝑖,𝑘 𝜁𝑖,𝑘 + 𝑗 𝜔̂𝑖,𝑘

√
1 − 𝜁2𝑖,𝑘 (3.24)
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and the total number of eigenvalues for 𝑛𝑐 configurations is given by:

𝑁 =
𝑛c∑
𝑖=1

𝑛s𝑖 (3.25)

3.4.2 Optimization problem

In order to find the vectors of the stiffness and damping parameters defined by 𝒌 ∈ R𝑛 and

𝒅 ∈ R2𝑛:

𝒌 = [𝑘1, 𝑘2, . . . , 𝑘𝑛]T (3.26)

𝒅 = [𝑑f,1, 𝑑f,2, . . . , 𝑑f,𝑛, 𝑑fm,1, 𝑑fm,2, . . . , 𝑑fm,𝑛]T (3.27)

the following objective function, 𝐹 (𝒌, 𝒅) defined based on Eq. (3.23) is minimized:

𝐹 (𝒌, 𝒅) =
𝑛c∑
𝑖=1

𝑛s𝑖∑
𝑘=1

(
Re( | 𝑨̂𝑖,𝑘 |)

)2
+

(
Im( | 𝑨̂𝑖,𝑘 |)

)2
(3.28)

subject to:

0 < 𝒌 ≤ 𝒌max (3.29)

0 < 𝒅 ≤ 𝒅max (3.30)

In Eq. (3.28), the terms Re( | 𝑨̂𝑖,𝑘 |) and Im( | 𝑨̂𝑖,𝑘 |) represent the real and imaginary parts of
| 𝑨̂𝑖,𝑘 |, respectively. Here, the matrix 𝑨̂𝑖,𝑘 is established based on Eq. (3.21), but with the scale

factor of 1/𝜔̂𝑖,𝑘 . Therefore, | 𝑨̂𝑖,𝑘 | is defined as follows:

| 𝑨̂𝑖,𝑘 | = det

(
𝑰𝜆̂2𝑖,𝑘 + (𝑺𝑖)−1𝑫̂𝑖 (𝑺𝑖)−1𝜆̂𝑖,𝑘 + (𝑺𝑖)−1𝑲̂𝑖 (𝑺𝑖)−1

𝜔̂𝑖,𝑘

)
(3.31)
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Proper selection of the objective function and the scale factor is crucial to finding the optimal

solution. Numerical simulations presented in Section 3.5 will prove the efficiency of the proposed

objective function.

The upper bounds of the stiffness and damping parameters in Eq. (3.29) and Eq. (3.30) can

generally be set arbitrarily. However, the upper bound of 𝒌 can be obtained from prior knowledge,

e.g., from the manufacturer or using measurements based on the kinostatic approach (Dumas

et al., 2011).

In order to obtain the best approximate solution the number of distinct eigenvalues 𝑁 used

in Eq. (3.28) should be greater than the total number of unknowns:

dim(𝒌) + dim(𝒅) < 𝑁 (3.32)

3.4.3 Optimization method

The nonlinear optimization problem with bound constraints presented above can be solved

using the lsqnonlin function in Matlab. Because the objective function is derived from the

determinant of complex matrices, its gradient (first-order partial derivatives of the objective

function with respect to parameter vectors 𝒌 and 𝒅) is difficult to compute analytically. Therefore,

the numerical differentiation method is applied to compute the approximate gradient.

Furthermore, to increase the opportunity of finding a global solution, we recommend using the

MultiStart function implemented in Matlab Global Optimization Toolbox (MathWorks, 2020b).

This function allows us to support many initial values randomly assigned or predetermined by

the user. Computationally, MultiStart will attempt to search many local solutions based on a

matrix of initial values in which each row of this matrix represents a vector of initial values.

Based on the local solutions, the best/optimal solution (𝒌★, 𝒅★) is determined if the objective
function 𝐹 (𝒌★, 𝒅★) is minimal. Note that when multiple initial values are used to find an optimal
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solution, we can apply parallel computation for a multi-core computer to reduce the computation

time.

3.5 Numerical simulations

In this section, six stiffness and damping parameters of the planar flexible joint robots are

identified using the above procedure. The robot’s physical parameters and modal parameters are

assumed to be predetermined.

Figure 3.1 Model of the flexible joint robot: a) front view

and b) top view
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3.5.1 Robot description

The planar robot shown in Fig. 3.1 includes two rigid links and two flexible joints. Four

generalized coordinates are used to establish dynamic equations of motion: the vector of joint

coordinates 𝒒 = [𝑞1, 𝑞2]T, and the motor coordinates 𝒒m = [𝑞m,1, 𝑞m,2]T.

Based on the Lagrangian formulation, the dynamic equations and a linearized model of the robot

can be obtained by using computer algebra systems, such as the symbolic Maple software. For

example, the mass matrix and gravity vector of the links are computed as follows:

𝑴 =

⎡⎢⎢⎢⎢⎣
𝐼1 + 𝐼2 + 𝑚1𝑥

2
C1

+ 𝑚2(𝑎21 + 𝑥2
C2
) + 2𝑚2𝑎1𝑥C2

cos 𝑞2 𝑚2𝑎1𝑥C2
cos 𝑞2

𝑚2𝑎1𝑥C2
cos 𝑞2 𝐼2 + 𝑚2𝑥

2
C2

⎤⎥⎥⎥⎥⎦ , (3.33)

𝒈 =

⎡⎢⎢⎢⎢⎣
𝑔(𝑚1𝑥C1

+ 𝑚2𝑎1) cos 𝑞1 + 𝑔𝑚2𝑥C2
cos 𝑞12

𝑔𝑚2𝑥C2
cos 𝑞12

⎤⎥⎥⎥⎥⎦ (3.34)

To establish the linearized dynamic model, the matrix 𝑲G in Eq. (3.12) is derived from 𝒈 as

follows:

𝑲G = −𝑔
⎡⎢⎢⎢⎢⎣
(𝑚1𝑥C1

+ 𝑚2𝑎1) sin 𝑞1 + 𝑚2𝑥C2
sin 𝑞12 𝑚2𝑥C2

sin 𝑞12

𝑚2𝑥C2
sin 𝑞12 𝑚2𝑥C2

sin 𝑞12

⎤⎥⎥⎥⎥⎦ (3.35)

where 𝑞12 = 𝑞1 + 𝑞2 and 𝑔 = 9.81 (m·s−2).

The following kinematic and dynamic parameters of the planar robot shown in Fig. 3.1 are

used for numerical simulations: the lengths of links 𝑎1 = O0O1 = 0.4 and 𝑎2 = O1E =

0.5 (m); the masses of links 𝑚1 = 20 and 𝑚2 = 10 (kg);the positions of the centers of mass
𝑥C1

= O0C1 = 0.2, 𝑥C2
= O1C2 = 0.25 (m); and the inertia moments of links 𝐼1 = 0.2667 and

𝐼2 = 0.2083 (kg·m2). The inertia matrix of the motors (reflected through the square of the gear
ratios) is 𝑩 = diag(4.0572, 2.2148) (kg·m2). Because the robot has two flexible revolute joints,
𝑾 is the identity matrix.
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In addition, the gain matrices of the PD controller are chosen as follows:

𝑲P = diag(3600, 3600), (N·m/rad) (3.36)

𝑲D = diag(60, 60) (N·m·s/rad) (3.37)

For the direct eigenvalue problem, the stiffness and damping matrices are given by:

𝑲 = diag(2000, 1600), (N·m/rad) (3.38)

𝑫 = diag(3.91, 2.21), (N·m·s/rad) (3.39)

𝑫m = diag(2.04, 1.68) (N·m·s/rad) (3.40)

Table 3.1 Simulated frequencies and damping ratios

joint modal data 1 modal data 2

configuration 𝑞1(rad) 𝑞2(rad) 𝑓1 (Hz) 𝜁1 (%) 𝑓4 (Hz) 𝜁4 (%)
1 1.474 1.765 2.83 12.03 9.38 12.34

2 0.133 1.947 3.01 13.06 9.15 13.54

3 2.193 0.839 2.29 8.75 12.1 7.72

4 0.667 0.501 2.18 8.29 13.68 7.47

5 0.946 0.443 2.16 8.28 13.93 7.49

6 2.24 2.208 3.26 15.08 8.97 14.65

7 -1.373 1.717 2.93 11.5 9.46 11.98

8 0.849 0.179 2.13 8.1 14.88 7.62

9 0.549 2.582 3.53 17.7 8.87 15.46

10 2.945 2.577 3.58 17.65 8.88 15.33

11 -2.307 2.945 3.78 19.04 8.92 14.99

12 1.627 0.974 2.32 9.07 11.51 8.08

13 -2.088 1.638 2.88 11.08 9.61 11.39

14 2.335 1.686 2.81 11.54 9.52 11.75

15 1.856 2.96 3.66 19.03 8.95 14.57

3.5.2 Modal data

In the method presented here, the robot’s modal parameters must be obtained first. Appendix

II shows how the natural frequencies and damping ratios of the robot are computed from the
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eigenvalues of the direct eigenvalue problem. To consider only partitioned modal parameters

of the several modes estimated in practice, we use modal parameters in the first mode ( 𝑓1, 𝜁1)

and fourth mode ( 𝑓4, 𝜁4) as the input of the optimization problem. In addition, to guarantee the

constraint Eq. (3.32), we use 15 arbitrary configurations (see Fig. II-1 and Fig. II-4). The results

are summarized in Table 3.1. It can be seen that the total number of natural frequencies/damping

ratios is 𝑁 = 30, while the number of unknowns is dim(𝒌) + dim(𝒅) = 6 (see Eq. (3.41)).

Therefore, the condition in Eq. (3.32) is guaranteed.

Because this paper aims to use modal data to identify unknown parameters, the OMA tests on

this real manipulator are unnecessary. However, to illustrate a real scenario, we suppose that

the modal data are affected by noise. Because damping ratios are often difficult to estimate

accurately, we add a small error to the damping ratios of the fifth and seventh columns in Table 3.1

in order to examine the influence of damping ratio deviation on the identified parameters. Note

that the natural frequencies ( 𝑓1, 𝑓4) are held constant.

The following cases are considered with different noise levels:

• Case 1: The values of the damping ratios (𝜁1, 𝜁4) are held constant (the influence of the noise

on the modal parameters is negligible).

• Cases 2 & 3: The values of the damping ratios (𝜁1, 𝜁4) are modified by adding −0.5% and

0.5%, respectively.

• Cases 4 & 5: The values of the damping ratios (𝜁1, 𝜁4) are modified by adding −1% and 1%,

respectively.

• Cases 6 & 7: The values of the damping ratios (𝜁1, 𝜁4) are modified by adding −2% and 2%,

respectively.
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Figure 3.2 Local minimums

3.5.3 Results

The optimization problem presented in Section 3.4.2 is solved numerically using the MultiStart

and lsqnonlin functions in Matlab to find 𝒌 and 𝒅 defined by

𝒌 = [𝑘1, 𝑘2]T, 𝒅 = [𝑑f,1, 𝑑f,2, 𝑑fm,1, 𝑑fm,2]T (3.41)

with the bound constraints

0 ≤ 𝒌 ≤ 5000 (N·m/rad), 0 ≤ 𝒅 ≤ 100 (N·m·s/rad) (3.42)
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For example, the local minimums corresponding to the 1000 initial values of the second case are

illustrated in Fig. 3.2.

Table 3.2 Identified stiffness and damping parameters of

joints and motors

𝑘1 𝑘2 𝑑f,1 𝑑f,2 𝑑fm,1 𝑑fm,2 𝐹 (𝒌★, 𝒅★)
true value 2000 1600 3.91 2.21 2.04 1.68 0.0

Case 1 2000 1600 3.91 2.21 2.04 1.68 2.49e-11

Case 2 1997.6 1600.3 2.84 2.10 2.86 0.00 9.98e+09

Case 3 2002.3 1600.1 4.99 2.31 1.09 3.98 9.15e+09

Case 4 1995.0 1601.8 1.78 1.97 3.55 0.0 5.30e+10

Case 5 2004.9 1600.1 6.10 2.41 0.0 6.20 3.65e+10

Case 6 1994.0 1604.5 0.0 1.66 2.82 0.0 2.61e+11

Case 7 2005.4 1600.7 7.96 2.64 0.0 10.46 1.50e+11

The results obtained in all seven cases are summarized in Table 3.2, in which the last column

describes the minimum of the objective function. It can be seen in case 1 that if modal parameters

are not affected by noise, the stiffness and damping parameters are accurately identified. In

addition, because the objective function is nearly equal to zero, the solution obtained in this case

is the globally optimal solution. In the other cases, the obtained stiffness parameters are close to

the ’true’ values. However, the obtained damping parameters are significantly affected by the

damping ratio deviation. For example, in cases 5 and 7, the damping parameters are unreliable,

especially for parameters 𝑑f,1 and 𝑑fm,2, when the damping ratios are biased about 1% and 2%.

3.6 Conclusions and future work

In this paper, we have presented an optimization procedure for estimating the stiffness and

damping parameters of flexible joint robots. The objective function was established based on the

linearized dynamic model and measured modal information. We have proposed an optimization

strategy based onmultiple initial values to solve the optimization problem. Numerical simulations

for a planar robot with two flexible joints showed that all stiffness and damping parameters

could be accurately identified if natural frequencies and ratios were measured correctly. The

effect of noise on identified parameters was investigated to illustrate the real-life modal data.
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The proposed method requires identifying the robot’s natural frequencies and damping ratios in

several different configurations, and so the selection of natural frequencies and damping ratios

in the frequency and damping ranges will be the subject of future work. The optimal number

of modal parameters utilized to identify stiffness and damping parameters will also be studied

further. We expect to apply the proposed method to real applications for robotic manipulators

with multiple flexible joints.
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Abstract

A new symbolic differentiation algorithm is proposed in this paper to automatically generate

the inverse dynamics of flexible joint robots in symbolic form, and results obtained can be

used in real-time applications. The proposed method with O(𝑛) computational complexity is
developed based on the recursive Newton-Euler algorithm, the chain rule of differentiation,

and the computer algebra system. The input of the proposed algorithm consists of symbolic

matrices describing the kinematic and dynamic parameters of the robot. The output is the inverse

dynamics solution written in portable and optimized code (C-code/Matlab-code). An exemplary,

numerical simulation for inverse dynamics of the Kuka LWR4 robot with seven flexible joints is

conducted using Matlab, in which the computational time per cycle of inverse dynamics is about

0.02 millisecond. The numerical example provides very good matching results versus existing

methods, while requiring much less computation time and complexity.

4.1 Introduction

Recent years have seen a great deal of attention directed at dynamic modeling, identification,

and control for lightweight robots with rigid links and flexible joints (Albu-Schäffer et al., 2007;

Moberg, 2010; Hazel et al., 2012; Kim & Croft, 2018). The objectives are to increase the load

to weight ratio, to achieve low energy consumption, to allow access to hard-to-reach areas, as

well as to improve the safety when interacting with humans. In machining applications such as
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milling, grinding, and polishing processes using industrial robots, the vibration reduction of

the robot’s links as well as tool center point due to changing high cutting/impact forces, and

therefore, improve the surface accuracy, is the essential task (Iglesias et al., 2015).

In order to reduce undesired vibration due to flexible transmission elements, model-based control

methods such as feedforward+PD, static/dynamic feedback linearization, and passivity-based

controls (Albu-Schäffer et al., 2007; Chung et al., 2016; De Luca & Book, 2016) are used

to compute driving motor torques. It can be pointed out that the main component of any

model-based controller is the inverse dynamics module, which is used to calculate motor torques

in order to realize desired motions. For real-time applications, the computational efficiency of

inverse dynamics is the most critical factor because the sampling time of 1 (ms) is often used in

practice.

The inverse dynamics problem of robots with rigid joints and links has been intensively studied for

over forty years. There are threemainmethods used to formulate equations ofmotion and compute

the inverse dynamics: Newton-Euler, Lagrangian, and Kane formulations (Kane & Levinson,

1983; Schiehlen, 1990). These methods may be formulated in numerical/symbolical formalism,

in non-recursive/recursive form (Schiehlen, 1997). Inverse dynamics based on non-recursive

Newton-Euler formulation was addressed in Schiehlen & Erberhard (2014), while a non-recursive

method based on the Lagrangian formulation can be found in any robotic textbook (Siciliano

et al., 2009). The recursive form of the Lagrangian formulation was proposed in Hollerbach

(1980). The well-known O(𝑛) recursive Newton-Euler algorithm (RNEA) (Luh, Walker & Paul,

1980) is the most efficient algorithm used to compute the robot’s inverse dynamics in real-

time, especially when the number of links 𝑛 ≥ 6. The most compact form of RNEA was

proposed in Featherstone (2008), where spatial notations are used to compute kinematic/dynamic

quantities of rigid links. Inverse dynamics of redundantly actuated systems was presented

in Wang, Belzile, Angeles & Li (2019) using natural orthogonal complement (NOC) and

Moore-Penrose pseudoinverse methods. In Khalil, Boyer & Morsli (2017), a general algorithm

based on RNEA was addressed to solve direct/inverse dynamics of rigid/flexible robots with

tree structure having fixed or floating base. Recently, a general approach using the modular
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form of RNEA is proposed in Kumar, Szadkowski, Mueller & Kirchner (2020) to solve inverse

dynamics for series-parallel hybrid systems with closed loops. Several multibody software, such

as SYMORO+ (Khalil & Creusot, 1997), MapleSim (DynaFlexPro) (Schmitke & Goossens,

2011), and Neweul-M2 (Kurz, Eberhard, Henninger & Schiehlen, 2010), can be used to derive

the inverse dynamics solution in symbolic form.

The inverse dynamics problem of flexible-joint robots is more complicated than that of rigid-joint

robots since the number of actuators of a flexible joint robot is less than its number of degrees of

freedom. In addition, higher-order derivatives of the joint positions are required to compute the

second derivative of torques of rigid links (De Luca, 2000).

Recently, a very efficient algorithm with O(𝑛) complexity, called EJNEA, was proposed

in Buondonno & De Luca (2015); Buondonno & De Luca (2016) to solve the inverse dynamics

of flexible-joint robots in real-time. For the case of the Kuka LWR4 robot, the computation time

per cycle using EJNEA takes approximately 0.033 (ms) in Matlab using the standard computer.

From the results obtained in Guarino Lo Bianco (2009), authors in Buondonno & De Luca (2015)

developed analytical formulations to compute higher-order derivatives of kinematic/dynamic

quantities recursively. This algorithm can be used to design model-based controllers for robot

systems with series elastic actuators (SEA) (Pratt & Williamson, 1995) as well as with variable

stiffness actuators (VSA) (Buondonno & De Luca, 2016). A simple version of EJNEA was

applied for the passivity-based tracking controller (Giusti et al., 2018).

Based on the screw/Lie group formulation (Müller, 2017), an O(𝑛) algorithm was proposed to

compute the first and second derivatives of inverse dynamics for serial manipulators. The similar

approach was discussed thoroughly in Park, Kim, Jang & Hong (2018). Transformation matrices

for the kinematic description are established using the product of exponential formulation.

Kinematic and dynamic quantities of links are computed using Lie brackets of joint screws.

The advantage of this approach is that the inverse dynamics solution of rigid links and its time

derivatives can be expressed in compact form. In Yang et al. (2018), a new O(𝑛) recursive
algorithm using Lie groups, called RLGA, was presented. This algorithm was applied to
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compute driving torques of heavy-duty industrial robots in the robotic friction stir welding

process. The number of operations of RLGA is even less than that of EJNEA, i.e., the former

provides better performance for real-time applications.

In this work, a new algorithm with O(𝑛) complexity, called SDRNEA, is presented to

automatically generate inverse dynamics of serial robots with flexible joints in symbolic form. It

was inspired by the work (Buondonno & De Luca, 2015). The proposed algorithm based on

computer algebra systems is combined with two symbolic algorithms featuring optimized code

generation. To the best of our knowledge, this is the first study in which the inverse dynamics

solution of flexible-joint robots has been completed in symbolic form.

This paper is organized as follows. In Sect. 4.2, the dynamic modeling and inverse dynamics of

flexible-joint robots in reduced form are briefly addressed. Then, the mathematical background

is presented in Sect. 4.3. In Sect. 4.4, the proposed algorithm is discussed to compute torques of

rigid links and their derivatives in symbolic form. In Sect. 4.5, the inverse dynamics problem of

the Kuka LWR4 robot with seven flexible joints is simulated using Matlab. Finally, conclusions

are given in Sect. 4.6.

Figure 4.1 Model of a flexible joint
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4.2 Dynamic equations and inverse dynamics

This section presents the dynamic modeling and inverse dynamics problem of flexible-joint

robots using the assumptions presented in De Luca & Book (2016). Because the Spong’s

assumption (high gear ratios of motors, > 100) is used equations of motion is expressed in

reduced form (Spong, 1987). Note that equations of motion in completed form were presented

in Tomei (1990); De Luca & Tomei (1996); De Luca & Book (2016).

4.2.1 Dynamic equations

Each flexible joint is described by two coordinates as shown in Fig. 4.1: joint coordinate 𝑞𝑖 and

motor coordinate 𝑞m,𝑖. Note that 𝑞
′
m,𝑖 is the motor coordinate before the reduction gears with

which 𝑞′m,𝑖 = 𝑟𝑖𝑞m,𝑖 and the gear ratio 𝑟𝑖.

The robotwith 𝑛flexible joints ismodeled as 2𝑛 rigid bodies: 𝑛 rigid links and 𝑛 rotors. The robot’s

configuration is described by two vectors of joint and motor coordinates: 𝒒 = [𝑞1, 𝑞2, . . . , 𝑞𝑛]T

and 𝒒m =
[
𝑞m,1, 𝑞m,2, . . . , 𝑞m,𝑛

]T
. Using the Lagrangian formulation and Spong’s assumption,

equations of motion of the robot in reduced form (neglecting the inertial couplings between links

and motors) are expressed as (Spong, 1987; De Luca & Tomei, 1996; De Luca & Book, 2016):

𝑴 (𝒒) �𝒒 + 𝑪 (𝒒, �𝒒) �𝒒 + 𝒈(𝒒) + 𝝉f ( �𝒒) = 𝑲 (𝒒m − 𝒒) (4.1)

𝑱m �𝒒m + 𝝉fm( �𝒒m) + 𝑲 (𝒒m − 𝒒) = 𝝉m (4.2)

where 𝑴 ∈ R𝑛×𝑛 is a mass matrix of rigid links (including the mass of motors); 𝑪 ∈ R𝑛×𝑛 is a

Coriolis matrix; 𝒈 ∈ R𝑛 is a vector of gravity forces; 𝑲 ∈ R𝑛×𝑛 is a constant diagonal matrix

of spring constants; 𝑲 (𝒒 − 𝒒m) ∈ R𝑛 is a vector of elastic torques; 𝑱m ∈ R𝑛×𝑛 is a constant

diagonal matrix of the rotor and gear inertia moments in their rotational axes; 𝝉m ∈ R𝑛 is a vector

of motor torques; 𝝉f , 𝝉fm ∈ R𝑛 are vectors of joint and motor frictions, and they are modeled
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as (Armstrong-Helouvry, 1991):

𝝉f = 𝑫v �𝒒 + 𝑫csign( �𝒒) (4.3)

𝝉fm = 𝑫v,m �𝒒m + 𝑫c,msign( �𝒒m) (4.4)

where 𝑫v, 𝑫v,m ∈ R𝑛×𝑛 and 𝑫c, 𝑫c,m ∈ R𝑛×𝑛 are the diagonal matrices of viscous and Coulomb

damping coefficients, respectively. Note that the effect of external forces/moments and internal

damping of flexible joints is not considered in this work.

Eq. (4.1) and Eq. (4.2) describes the dynamics of rigid links and motors, respectively. If all

joints are rigid, then 𝒒m = 𝒒, one can therefore combine Eq. (4.1) and Eq. (4.2) into a single

equation:

(𝑴 (𝒒) + 𝑱m) �𝒒 + 𝑪 (𝒒, �𝒒) �𝒒 + 𝒈(𝒒) + 𝝉★f ( �𝒒) = 𝝉m (4.5)

where 𝝉★
f
is a vector of joint and motor frictions.

4.2.2 Inverse dynamics

If all joints are rigid, 𝝉m can be directly computed from Eq. (4.5) for the desired joint

motions 𝒒 (d) , �𝒒 (d) , and �𝒒 (d) . For the flexible-joint robot, 𝝉m is computed using Eq. (4.1)

and Eq. (4.2) (De Luca, 2000).

Indeed, by denoting 𝝉 as a vector of driving torques of rigid links:

𝝉
�
= 𝑴 (𝒒) �𝒒 + 𝑪 (𝒒, �𝒒) �𝒒 + 𝒈(𝒒) (4.6)

𝒒m is found from Eq. (4.1) as follows:

𝒒m = 𝒒 + 𝑲−1(𝝉 + 𝝉f) (4.7)
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Thus, the first and second time derivatives of 𝒒m are:

�𝒒m = �𝒒 + 𝑲−1( �𝝉 + �𝝉f) = �𝒒 + 𝑲−1( �𝝉 + 𝑫v �𝒒) (4.8)

�𝒒m = �𝒒 + 𝑲−1( �𝝉 + �𝝉f) = �𝒒 + 𝑲−1( �𝝉 + 𝑫v�𝒒) (4.9)

where �𝝉 and �𝝉 ∈ R𝑛 denote are the first and second time derivatives of 𝝉, respectively. Substitut-

ing Eq. (4.7), Eq. (4.8) and Eq. (4.9) into Eq. (4.2), the vector of motor torques 𝝉m is obtained

as:

𝝉m = 𝑱m �𝒒m + 𝝉fm( �𝒒m) + 𝝉 (4.10)

As a result, given the desired motion in the joint space such as 𝒒 (d) , �𝒒 (d) , �𝒒 (d) , �𝒒 (d) and 
𝒒 (d) , the
inverse dynamics solution of the flexible joint robot is determined by Eq. (4.10) where �𝒒 (d)m and

�𝒒 (d)m are determined by Eq. (4.8) and Eq. (4.9).

For a flexible-joint robot, the most challenging of inverse dynamics in real-time applications is

how to formulate 𝝉, �𝝉, and �𝝉 efficiently. If 𝝉 is derived using the Lagrangian formulation, the
computation of �𝝉 and �𝝉 is extremely complicated. A new symbolic algorithm is presented in

Sect. 4.4 to compute 𝝉, �𝝉 and �𝝉 efficiently using computer algebra systems.

4.3 Mathematical background

In this section, several essential notations are presented for computing inverse dynamics of

robots.

4.3.1 Kinematic representation

Consider two rigid links, 𝑖 − 1 and 𝑖, in the inertial reference frame 𝑂0𝑥0𝑦0𝑧0, connected by a

revolute/translational joint 𝑖 shown in Fig. 4.2. Two body-fixed frames (BF)𝑖−1 (O𝑖−1𝑥𝑖−1𝑦𝑖−1𝑧𝑖−1)

and (BF)𝑖 (O𝑖𝑥𝑖 𝑦𝑖𝑧𝑖) are defined using the Denavit-Hartenberg (DH) convention (Siciliano et al.,
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Figure 4.2 Kinematic representations of two links using DH

convention

2009). Therefore, the position of O𝑖 and orientation of link 𝑖 in (BF)𝑖−1 are expressed as:

𝑻𝑖 =

⎡⎢⎢⎢⎢⎣
𝑹𝑖 𝒑𝑖

0 1

⎤⎥⎥⎥⎥⎦ (4.11)

where 𝑹𝑖 ∈ R3×3 is the rotation matrix and 𝒑𝑖 ∈ R3 is the position vector of O𝑖 with respect to

O𝑖−1. Using four DH parameters (𝜃𝑖, 𝑑𝑖, 𝑎𝑖, 𝛼𝑖), the terms in Eq. (4.11) are given by:

𝒑𝑖 =
[
𝑎𝑖 cos 𝜃𝑖, 𝑎𝑖 sin 𝜃𝑖, 𝑑𝑖

]T
, (4.12)

𝑹𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
cos 𝜃𝑖 − sin 𝜃𝑖 cos𝛼𝑖 sin 𝜃𝑖 sin𝛼𝑖

sin 𝜃𝑖 cos 𝜃𝑖 cos𝛼𝑖 − cos 𝜃𝑖 sin𝛼𝑖

0 sin𝛼𝑖 cos𝛼𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.13)
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Since (𝑹𝑖)−1 = 𝑹T
𝑖 , the position of O𝑖 with respect to O𝑖−1 expressed in (BF)𝑖 is defined by:

𝒑★𝑖 = 𝑹T
𝑖 𝒑𝑖 =

[
𝑎𝑖, 𝑑𝑖 sin𝛼𝑖, 𝑑𝑖 cos𝛼𝑖

]T
(4.14)

4.3.2 Kinematic and dynamic parameters

For a robot with 𝑛 rigid links, DH parameters can be grouped by a matrix 𝑯 ∈ R𝑛×5 as:

𝑯 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝜃1 𝑑1 𝑎1 𝛼1 𝜉1
...

...
...

...
...

𝜃𝑛 𝑑𝑛 𝑎𝑛 𝛼𝑛 𝜉𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.15)

where 𝜃𝑖 = 𝑞𝑖 and 𝜉𝑖 = 0 for a prismatic joint, while 𝑑𝑖 = 𝑞𝑖 and 𝜉𝑖 = 1 for a revolute joint,

𝑖 = (1, . . . , 𝑛).

Dynamic parameters of the link 𝑖 are assumed to be constant including: 𝑚𝑖 is the mass;

𝒑c,𝑖 = [𝑥c,𝑖 , 𝑦c,𝑖 , 𝑧c,𝑖]T is the position vector of the center of mass C𝑖 with respect to O𝑖 in

(BF)𝑖; and 𝑰c,𝑖 is the inertia tensor of this link with respect to C𝑖 in (BF)𝑖. Because 𝑰c,𝑖 has six
independent components (𝐼xx,𝑖, 𝐼xy,𝑖, 𝐼xz,𝑖, 𝐼yy,𝑖, 𝐼yz,𝑖, 𝐼zz,𝑖), dynamic parameters of 𝑛 links can be

grouped by a matrix 𝚪 ∈ R𝑛×10 as:

𝚪 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑚1 𝑥c,1 𝑦c,1 𝑧c,1 𝐼xx,1 𝐼xy,1 𝐼xz,1 𝐼yy,1 𝐼yz,1 𝐼zz,1
...

...
...

...
...

...
...

...
...

...

𝑚𝑛 𝑥c,𝑛 𝑦c,𝑛 𝑧c,𝑛 𝐼xx,n 𝐼xy,n 𝐼xz,n 𝐼yy,n 𝐼yz,n 𝐼zz,n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.16)

4.4 Symbolic derivatives for inverse dynamics

In this section, symbolic algorithms are presented to establish 𝝉, �𝝉, and �𝝉 in symbolic form. The
following notations are used:
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• 𝒈0 ∈ R3: the gravity vector,
• 𝒒, �𝒒, �𝒒, �𝒒 and 
𝒒 ∈ R𝑛: vectors of joint positions, velocities, accelerations, jerks, and snaps,

• 𝝎𝑖 , �𝝎𝑖 ∈ R3: vectors of angular velocities and accelerations of link 𝑖,

• 𝒂𝑖 , 𝒂c,𝑖 ∈ R3: vectors of linear accelerations of O𝑖 and C𝑖,

• 𝒑c,𝑖 ∈ R3: position vector of C𝑖 in (BF)𝑖,
• 𝒇c,𝑖 ∈ R3: vector of inertial forces at C𝑖, and 𝒇𝑖 , 𝒏𝑖 ∈ R3: vectors of reaction forces and

moments exerted on link 𝑖 by link 𝑖 − 1,

• 𝒔, 𝒖, 𝒗 ∈ R19𝑛: vectors of intermediate and torque variables, and their derivatives,
• 𝑺 ∈ R19𝑛×2 and 𝑼,𝑽 ∈ R16𝑛×2: symbolic matrices including intermediate variables and

expressions.

Note that all kinematic/dynamic quantities of link 𝑖 are expressed in its frame (BF)𝑖. In addition,
a skew-symmetric matrix of a vector 𝒃 ∈ R3 is denoted by 𝒃̂.

4.4.1 Symbolic recursive Newton-Euler algorithm

The symbolic recursive Newton-Euler algorithm with O(𝑛) complexity, called SRNEA, is

proposed in Alg. 1 to automatically generate 𝝉 in symbolic form. This algorithm is developed

based on RNEA using the numerical formalism (Luh et al., 1980; Siciliano et al., 2009), and

symbolic formalism (Khalil & Dombre, 2004). In comparison to RNEA in Khalil & Dombre

(2004), our method is more straightforward and systematic.

The foundational idea of SRNEA is the use of intermediate variables to store and replace

intermediate expressions during the forward and backward recursive computations. Therefore,

the recursive computation with two loops using the numerical formalism is entirely replaced by

the computation sequence without loops.

In Alg. 1, the forward recursion used to compute kinematics from link 1 to link 𝑛 includes three

stages: (1) recursive angular velocities, (2) recursive angular accelerations, and (3) recursive

linear accelerations. This strategy allows us to extract angular acceleration components of all

links efficiently, and use them to compute �𝝉 (see Alg. 2, from line 5 to line 7). The backward
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Algorithm 1 Recursive Newton-Euler algorithm using the symbolic approach

1: Inputs:
𝑯, 𝚪, 𝒒, �𝒒, �𝒒, 𝒈0, 𝒔

2: Outputs:
𝑺

3: Initialize:
𝑘 = 0, 𝑺 = 0, 𝑛 = Dim(𝒒), 𝝎0 = 0, �𝝎0 = 0, 𝒂0 = −𝒈0, 𝒇𝑛+1 = 0, 𝒏𝑛+1 = 0,
𝒛0 = [0, 0, 1]T, 𝑹𝑛+1 = diag(1, 1, 1)

4: for 𝑖 = 1 by 1 to 𝑛 do ⊲ the forward recursion
5: [𝑹𝑖 , 𝒑

★
𝑖 , 𝜉𝑖] = GetDHParameters(𝑯, 𝑖)

6: 𝒛𝑖 = 𝑹T
𝑖 𝒛0

7: 𝝎𝑖 = 𝑹T
𝑖 (𝝎𝑖−1 + 𝜉𝑖 �𝑞𝑖 𝒛0)

8: 𝑺 = SaveExpressions(𝑺, [𝑠𝑘+1, 𝑠𝑘+2, 𝑠𝑘+3],𝝎𝑖)
9: 𝝎𝑖 = ReplaceExpressions(𝝎𝑖 , [𝑠𝑘+1, 𝑠𝑘+2, 𝑠𝑘+3])
10: 𝑘 = 𝑘 + 3
11: end for
12: for 𝑖 = 1 by 1 to 𝑛 do
13: �𝝎𝑖 = 𝑹T

𝑖 ( �𝝎𝑖−1 + 𝜉𝑖 ( �𝑞𝑖 𝒛0 + �𝑞𝑖𝝎𝑖−1𝒛0))
14: 𝑺 = SaveExpressions(𝑺, [𝑠𝑘+1, 𝑠𝑘+2, 𝑠𝑘+3], �𝝎𝑖)
15: �𝝎𝑖 = ReplaceExpressions( �𝝎𝑖 , [𝑠𝑘+1, 𝑠𝑘+2, 𝑠𝑘+3])
16: 𝑘 = 𝑘 + 3
17: end for
18: for 𝑖 = 1 by 1 to 𝑛 do
19: 𝛀𝑖 = �̂𝝎𝑖 + 𝝎2

𝑖

20: 𝒂𝑖 = 𝑹T
𝑖 𝒂𝑖−1 +𝛀𝑖 𝒑

★
𝑖 + (1 − 𝜉𝑖) ( �𝑞𝑖 𝒛𝑖 + 2 �𝑞𝑖𝝎𝑖 𝒛𝑖)

21: 𝑺 = SaveExpressions(𝑺, [𝑠𝑘+1, 𝑠𝑘+2, 𝑠𝑘+3], 𝒂𝑖)
22: 𝒂𝑖 = ReplaceExpressions(𝒂𝑖 , [𝑠𝑘+1, 𝑠𝑘+2, 𝑠𝑘+3])
23: 𝑘 = 𝑘 + 3
24: end for
25: for 𝑖 = 𝑛 by −1 to 1 do ⊲ the backward recursion
26: [𝑚𝑖 , 𝒑c,𝑖 , 𝑰𝑖] = GetMCIParameters(𝚪, 𝑖)
27: 𝒇c,𝑖 = 𝑚𝑖 (𝒂𝑖 +𝛀𝑖 𝒑c,𝑖)
28: 𝑺 = SaveExpressions(𝑺, [𝑠𝑘+1, 𝑠𝑘+2, 𝑠𝑘+3], 𝒇c,𝑖)
29: 𝒇c,𝑖 = ReplaceExpressions( 𝒇c,𝑖 , [𝑠𝑘+1, 𝑠𝑘+2, 𝑠𝑘+3])
30: 𝒇𝑖 = 𝑹𝑖+1 𝒇𝑖+1 + 𝒇c,𝑖
31: 𝑺 = SaveExpressions(𝑺, [𝑠𝑘+4, 𝑠𝑘+5, 𝑠𝑘+6], 𝒇𝑖)
32: 𝒇𝑖 = ReplaceExpressions( 𝒇𝑖 , [𝑠𝑘+4, 𝑠𝑘+5, 𝑠𝑘+6])
33: 𝒏★𝑖 = 𝑰𝑖 �𝝎𝑖 + 𝝎𝑖 𝑰𝑖𝝎𝑖

34: 𝒏𝑖 = 𝑹𝑖+1𝒏𝑖+1 + 𝒑̂★𝑖 𝒇𝑖 + 𝑚𝑖 𝒑̂c,𝑖𝒂𝑖 + 𝒏★𝑖
35: 𝑺 = SaveExpressions(𝑺, [𝑠𝑘+7, 𝑠𝑘+8, 𝑠𝑘+9], 𝒏𝑖)
36: 𝒏𝑖 = ReplaceExpressions(𝒏𝑖 , [𝑠𝑘+7, 𝑠𝑘+8, 𝑠𝑘+9])
37: 𝜏𝑖 = (1 − 𝜉𝑖)𝒛T

𝑖 𝒇𝑖 + 𝜉𝑖 𝒛
T
𝑖 𝒏𝑖

38: 𝑘 = 𝑘 + 9
39: end for
40: 𝑺 = SaveExpressions(𝑺, [𝑠18𝑛+1, 𝑠18𝑛+2, . . . , 𝑠19𝑛], [𝜏1, 𝜏2, . . . , 𝜏𝑛])
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recursion is used to compute inertial forces/moments, reaction forces/moments and joint torques

from link 𝑛 to link 1.

The input vector 𝒔 of SRNEA composes of 19𝑛 intermediate variables which is used to store

and replace all intermediate expressions in recursive computations. Note that the last 𝑛 elements

of 𝒔 represents 𝑛 variables of 𝝉. The output of SRNEA is the symbolic matrix 𝑺 in which the

first and second column are used to store intermediate variables and expressions, respectively.

Generally, the structure of 𝑺 is given by:

𝑺 =
[
𝑺T
𝜔, 𝑺

T
�𝜔, 𝑺

T
a , 𝑺

T
br, 𝑺

T
𝜏

]T
(4.17)

where 𝑺𝜔, 𝑺 �𝜔, 𝑺a ∈ R3𝑛×2 are matrices of angular velocities, angular accelerations and linear
accelerations, respectively; 𝑺br ∈ R9𝑛×2 is a matrix of inertial forces/moments and reaction
forces/moments. Note that 𝑺𝜏 ∈ R𝑛×2 is a matrix of joint torques (see Alg. 1, line 40).

Four following functions are implemented in Alg. 1 to manipulate symbolic expressions.

• GetDHParameters(𝑯, 𝑖) is used to extract kinematic parameters of link 𝑖 from 𝑯.

• GetMCIParameters(𝚪, 𝑖) is used to extract dynamic parameters of link 𝑖 from 𝚪, in

which the third output parameter is defined by: 𝑰𝑖 = 𝑰c,𝑖 − 𝑚𝑖 𝒑̂
2
c,𝑖.

• SaveExpressions(𝐴, 𝐵, 𝐶) is used to save sequentially kinematic/dynamic quantities.
Here, intermediate variables (𝐵) and intermediate expressions (𝐶) are saved in the first and

second columns of 𝐴, respectively.

• ReplaceExpressions(𝐶, 𝐵) is used to replace complex expressions (𝐶) by intermediate
variables (𝐵).

4.4.2 Derivatives of recursive Newton-Euler algorithm

Given the symbolic matrix 𝑺 obtained from Alg. 1, the row 𝑖 of 𝑺 may be expressed as:

𝑠𝑖 = 𝑆𝑖,2(𝒒, �𝒒, �𝒒, 𝑠1, . . . , 𝑠𝑖−1)︸�������������������������︷︷�������������������������︸
𝑓𝑖

(4.18)
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where 𝑠𝑖 and 𝑓𝑖 represent the intermediate variable and expression, respectively. Because 𝑓𝑖 is

an implicit function of time, but depends on 𝒒, �𝒒, �𝒒, and 𝑠1, . . . , 𝑠𝑖−1, �𝑓𝑖 is computed using the
chain rule:

�𝑠𝑖 = d 𝑓𝑖
d𝑡

=
𝜕 𝑓𝑖
𝜕𝒒

�𝒒 + 𝜕 𝑓𝑖
𝜕 �𝒒 �𝒒 + 𝜕 𝑓𝑖

𝜕 �𝒒 �𝒒︸��������������������︷︷��������������������︸
�𝑓★𝑖

+
𝑖−1∑
𝑘=1

𝜕 𝑓𝑖
𝜕𝑠𝑘

�𝑠𝑘

= �𝑓 ★𝑖 +
𝑖−1∑
𝑘=1

𝜕 𝑓𝑖
𝜕𝑠𝑘

�𝑠𝑘︸�������������︷︷�������������︸
�𝑓𝑖

(4.19)

Due to the special structure of 𝑺 defined by Eq. (4.17), one has:

d

d𝑡
(𝑺𝜔) ≡ 𝑺 �𝜔 (4.20)

Therefore, Eq. (4.19) becomes:

�𝑠𝑖 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑠3𝑛+𝑖 , for 1 ≤ 𝑖 ≤ 3𝑛

�𝑓𝑖, for 3𝑛 + 1 ≤ 𝑖 ≤ 19𝑛

(4.21)

By taking time derivative both sides of Eq. (4.21), one obtains:

�𝑠𝑖 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
�𝑠3𝑛+𝑖 , for 1 ≤ 𝑖 ≤ 3𝑛

�𝑓𝑖, for 3𝑛 + 1 ≤ 𝑖 ≤ 19𝑛

(4.22)

where �𝑓𝑖 is computed from Eq. (4.19):

�𝑓𝑖 = �𝑓 ★𝑖 +
𝑖−1∑
𝑘=1

𝜕 �𝑓𝑖
𝜕𝑠𝑘

�𝑠𝑘 +
𝑖−1∑
𝑘=1

𝜕 �𝑓𝑖
𝜕 �𝑠𝑘

�𝑠𝑘 (4.23)
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and �𝑓 ★𝑖 is defined as:

�𝑓 ★𝑖 =
𝜕 �𝑓𝑖
𝜕𝒒

�𝒒 + 𝜕 �𝑓𝑖
𝜕 �𝒒 �𝒒 + 𝜕 �𝑓𝑖

𝜕 �𝒒 �𝒒 + 𝜕 �𝑓𝑖
𝜕�𝒒
𝒒 (4.24)

From Eq. (4.21) and Eq. (4.22), a new algorithm, called DRNEA, is proposed in Alg. 2 to

formulate �𝝉 and �𝝉 in symbolic form. The input of DRNEA is the symbolic matrix 𝑺 obtained

from SRNEA, while the output includes symbolic matrices𝑼 and 𝑽 composed of intermediate

variables and expressions for evaluating �𝝉 and �𝝉, respectively.

In Alg. 2, we use two vectors of intermediate variables, 𝒖 and 𝒗, to sequentially replace two

vectors �𝒔 and �𝒔 appearing on both sides of Eq. (4.21) and Eq. (4.22). This technique, also applied
in Alg. 1, is straightforward to implement and computationally efficient. It allows reducing the

complexity of resulting expressions when computing the derivative of large expressions.

As a result, the symbolic expressions used to compute 𝝉, �𝝉 and �𝝉 are derived from the matrices

𝑺,𝑼 and 𝑽 as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑆1,1 = 𝑆1,2
...

...

𝑆19𝑛,1 = 𝑆19𝑛,2

𝑈1,1 = 𝑈1,2

...
...

𝑈16𝑛,1 = 𝑈16𝑛,2

𝑉1,1 = 𝑉1,2
...

...

𝑉16𝑛,1 = 𝑉16𝑛,2

(4.25)
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Figure 4.3 Schematic diagram of the proposed algorithm

4.4.3 Generation of optimized code

The direct use of Eq. (4.25) for evaluating 𝝉, �𝝉 and �𝝉 may be inefficient in real-time applications.
This is because there are many common subexpressions in Eq. (4.25), which leads to redundant

computation. This issue is briefly summarized as follows (Samin & Fisette, 2003; Uchida, 2011):

• Common subexpressions, such as trigonometric functions cos() and sin(), and products of
these functions, are repeated many times.

• Constant subexpressions should be computed off-line.

• Several intermediate expressions are zero, redundant or useless due to special kinematic/dy-

namic parameters of the robot. These expressions should be eliminated.

• The intermediate variables have to be declared in the final output code. It is inefficient

memory management if the number of variables are too large.

In Fig. 4.3, a framework is presented to generate optimized code using computer algebra systems.

For example, the codegen[optimize] function in Maple can be used for this purpose (Wittkopf,

2008). Common subexpressions in Eq. (4.25) are identified and replaced automatically by new
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Algorithm 2 Derivatives of recursive Newton-Euler algorithm using symbolic approach

1: Inputs:
𝑺, 𝒒, �𝒒, �𝒒, �𝒒, 
𝒒 , 𝒔, 𝒖, 𝒗

2: Outputs:
𝑼, 𝑽

3: Initialize:
𝑼 = 0, 𝑽 = 0, 𝑛 = Dim(𝒒) ,
𝒒★ = [𝒒T, �𝒒T, �𝒒T, �𝒒T]T,

�𝒒★ = [ �𝒒T, �𝒒T, �𝒒T, 
𝒒T]T

4: for 𝑖 = 1 by 1 to 19𝑛 do ⊲ the first time derivative

5: if 𝑖 <= 3𝑛 then
6: 𝑢𝑖 = 𝑠3𝑛+𝑖
7: else
8: 𝑓𝑖 = 𝑆𝑖,2

9: �𝑓𝑖 =
3𝑛∑
𝑘=1

𝜕 𝑓𝑖
𝜕𝑞★𝑘

�𝑞★𝑘 +
𝑖−1∑
𝑘=1

𝜕 𝑓𝑖
𝜕𝑠𝑘

𝑢𝑘

10: 𝑼 = SaveExpressions(𝑼, 𝑢𝑖 , �𝑓𝑖)
11: end if
12: end for
13: for 𝑖 = 1 by 1 to 19𝑛 do ⊲ the second time derivative

14: if 𝑖 <= 3𝑛 then
15: 𝑣𝑖 = 𝑢3𝑛+𝑖
16: else

17: �𝑓𝑖 =
4𝑛∑
𝑘=1

𝜕 �𝑓𝑖
𝜕𝑞★𝑘

�𝑞★𝑘 +
𝑖−1∑
𝑘=1

𝜕 �𝑓𝑖
𝜕𝑠𝑘

𝑢𝑘 +
𝑖−1∑
𝑘=1

𝜕 �𝑓𝑖
𝜕𝑢𝑘

𝑣𝑘

18: 𝑽 = SaveExpressions(𝑽, 𝑣𝑖 , �𝑓𝑖)
19: end if
20: end for

temporary variables. Therefore, the total number of intermediate and temporary variables in

the output code will increase, ≥ 51𝑛. However, the number of operations and trigonometric

functions will decrease. Consequently, the computation time for an inverse dynamics solution

per cycle is further reduced.

Several Maple procedures have been developed by the authors to identify constant subexpressions

and to eliminate useless expressions. In addition, the intermediate/temporary variables are

recycled to reduce the total allocated memory for these variables in the output code, thus ensuring

better performance.
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X 10
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X 15
Y 5510

X 10
Y 3565

Figure 4.4 The number of operations (left), intermediate

expressions/variables (right) for computing 𝝉, �𝝉 and �𝝉

4.4.4 Computational complexity

To analyze the computational complexity of SDRNEA, six different robot models with pure

revolute joints are examined with 𝑛 = (5, 10, 15, . . . , 30) joints. In addition, the kinematic
and dynamics parameters of these robots are chosen generally, i.e., no zero parameters in the

matrices 𝑯 and 𝚪 (see Eq. (4.15) and Eq. (4.16)).

For each robot, symbolic expressions defined by Eq. (4.25) are generated automatically using

SDRNEA implemented in Maple, version 2018. The computation time for generating optimized

code varies from 82 (s) for 𝑛 = 5 to 7047 (s) for 𝑛 = 30, using an HP Laptop (the Intel Core

i7-2720QM, CPU 2.20GHz and 12Gb RAM). Note that all symbolic expressions needed to

evaluate 𝝉, �𝝉 and �𝝉 are generated only once using SDRNEA.

The numerical simulations for each model are conducted in Matlab in order to verify the

agreement between SDRNEA and EJRNE methods. Joint motions used to compute 𝝉, �𝝉, and
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Figure 4.5 Computational complexity of three methods for

computing 𝝉, �𝝉 and �𝝉: EJNEA (Buondonno & De Luca,

2015), LRGA (Yang et al., 2018), and SDRNEA

�𝝉 are chosen as ninth-order polynomials (see Sect. 4.5). In addition, the kinematic and dynamic
parameters of robots are chosen arbitrarily. From simulation results, the maximal derivations

between two methods are approximately 1.0−10 (N·m) for 𝝉 and 1.0−9 (N·m·s−1) for �𝝉 and

1.0−8 (N·m·s−2) for �𝝉, due to the rounding error.

A number of operations, intermediate expressions, and variables used to evaluate 𝝉, �𝝉 and �𝝉
shown in Fig. 4.4 are measured using the codegen[cost] function in Maple. Using the polyfit

function in Matlab, the computational complexity of SDRNEA is:

O(𝑛) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
323𝑛 − 309 additions/subtractions

389𝑛 − 325 multiplications

(4.26)

Furthermore, the number of operations obtained using the SDRNEA method is compared to that

obtained by other algorithms, such as EJNEA (Buondonno & De Luca, 2015) and LRGA (Yang
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et al., 2018) (see page 499). Results obtained with three methods are illustrated in Fig. 4.5. It

can be seen that the proposed algorithm outperforms other algorithms.

For a robot with special several kinematic and dynamic parameters, e.g., constant or zero, the

number of operations obtained using the SDRNEA may be further reduced. It can be concluded

that the proposed method can be used to compute the inverse dynamics of flexible-joint robots

for real-time simulation and control.

4.5 Numerical simulations

In this section, the inverse dynamics of the Kuka LWR4 robot with seven flexible joints (Bischoff

et al., 2010) is presented to verify the effectiveness of the proposed algorithm.

4.5.1 Robot parameters

The model of the Kuka LWR4 robot shown in Fig. 4.6 has the DH parameters:

𝑯 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑞1 0 0 𝜋/2 1

𝑞2 0 0 −𝜋/2 1

𝑞3 𝑑3 0 −𝜋/2 1

𝑞4 0 0 𝜋/2 1

𝑞5 𝑑5 0 𝜋/2 1

𝑞6 0 0 −𝜋/2 1

𝑞7 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.27)
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and the dynamics parameters:

𝚪 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚1 𝑥c,1 𝑦c,1 𝑧c,1 𝐼xx,1 𝐼xy,1 𝐼xz,1 𝐼yy,1 𝐼yz,1 𝐼zz,1

𝑚2 𝑥c,2 𝑦c,2 𝑧c,1 𝐼xx,2 𝐼xy,2 𝐼xz,2 𝐼yy,2 𝐼yz,2 𝐼zz,2

𝑚3 𝑥c,3 𝑦c,3 𝑧c,3 𝐼xx,3 𝐼xy,3 𝐼xz,3 𝐼yy,3 𝐼yz,3 𝐼zz,3

𝑚4 𝑥c,4 𝑦c,4 𝑧c,4 𝐼xx,4 𝐼xy,4 𝐼xz,4 𝐼yy,4 𝐼yz,4 𝐼zz,4

𝑚5 𝑥c,5 𝑦c,5 𝑧c,5 𝐼xx,5 𝐼xy,5 𝐼xz,5 𝐼yy,5 𝐼yz,5 𝐼zz,5

𝑚6 𝑥c,6 𝑦c,6 𝑧c,6 𝐼xx,6 0 0 𝐼yy,6 𝐼yz,6 𝐼zz,6

𝑚7 0 0 𝑧c,7 𝐼xx,7 0 0 𝐼yy,7 0 𝐼zz,7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.28)

For numerical simulation, 𝑑3 = 0.40 (m) and 𝑑5 = 0.49 (m) while all dynamic parameters

in Eq. (4.28) are referred from (Buondonno & De Luca, 2015) for a simple comparison. The

spring constants are set to 1000 (N·m/rad), the friction parameters of links are set to zero. The
friction matrices and rotor inertia moment of motors are given by (Jubien, Gautier & Janot,

2014):

𝑫v,m = diag(14.3, 15.5, 6.50, 11.1, 4.37, 2.42, 1.75), (N·m·s/rad)
𝑫c,m = diag(11.6, 10.7, 8.60, 8.02, 7.38, 4.64, 6.02), (N·m·s/rad)
𝑱m = diag(3.20, 3.05, 1.98, 2.06, 0.801, 0.48, 0.381) (kg·m2)

4.5.2 Trajectory planning

Joint motions of the robot are given by:

𝒒(𝑡) = 𝒒0 + (𝒒f − 𝒒0)𝜂(𝑡) (4.29)
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Figure 4.6 Model of the Kuka LWR4 robot (left) and the

kinematic representation using DH convention (right)

where 𝑡 ∈ [0, 𝑇], 𝑇 is the final time; 𝒒0 and 𝒒f are the initial and final positions. The motion

profile 𝜂(𝑡) is defined by a ninth-order polynomial (Biagiotti & Melchiorri, 2009):

𝜂(𝑡) = 70𝑡
9 − 315𝑡

8 + 540𝑡7 − 420𝑡
6 + 126𝑡5 (4.30)

where 𝑡 = 𝑡/𝑇 . From Eq. (4.30), the time derivatives of 𝜂 including �𝜂(𝑡), �𝜂(𝑡), �𝜂(𝑡), and 
𝜂(𝑡)
can be computed analytically. Thus, the derivatives of 𝒒 are given by:

�𝒒(𝑡) = (𝒒f − 𝒒0) �𝜂(𝑡), �𝒒(𝑡) = (𝒒f − 𝒒0) �𝜂(𝑡), (4.31)

�𝒒(𝑡) = (𝒒f − 𝒒0)�𝜂(𝑡), 
𝒒(𝑡) = (𝒒f − 𝒒0)
𝜂(𝑡). (4.32)
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Figure 4.7 Desired positions, velocities and accelerations of

joints (left) and motors (right)

4.5.3 Simulation results

The desired motions of joints and motors with 𝑇 = 3 (s) and 𝒒T
0
=

[− 𝜋
4
,− 𝜋

4
, 𝜋
4
, 𝜋
4
,− 𝜋

4
,−2𝜋

3
, 𝜋
4

]
,

𝒒T
f
=

[
5𝜋
6
, 2𝜋
3
,−5𝜋

6
,−2𝜋

3
, 3𝜋
4
, 𝜋
2
,−3𝜋

4

]
(rad) are illustrated in Fig. 4.7. Due to the presence of
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Figure 4.8 Torques and their derivatives of rigid links: joint 1

to joint 4

flexible joints, the desiredmotions of joints andmotors are distinctive, especially for accelerations.

Numerical simulations of 𝝉, �𝝉 and �𝝉 are presented in Fig. 4.8 and Fig. 4.9. Using SDRNEA, a

total of only 1289 additions/subtractions, 1516 multiplications, and 12 cos() and sin() functions
are used to evaluate 𝝉, �𝝉 and �𝝉. In addition, there are 356 variables used to store 516 intermediate
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Figure 4.9 Torques and their derivatives of rigid links: joint

5 to joint 7

expressions, i.e., several variables are recycled when generating optimized code. It can be seen

that the number of operations obtained for the robot is less than that presented in Eq. (4.26)

because several robot parameters are zero. This means that the application of the proposed

method for the Kuka LWR4 robot is even more efficient than other methods.
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Figure 4.10 Motor torques

Finally, the desired motor torques 𝝉m are shown in Fig. 4.10. The results obtained using

SDRNEA are in agreement with those obtained using EJNEA as shown in Fig. 4.11, with very

small deviations, (less than 4.10−14 (N·m)). The computation time of 𝝉m per iteration in Matlab

2018b using SDRNEA is 0.0193 (ms), while using EJNEA is 0.0351 (ms), i.e., the proposed

algorithm is run faster 1.85 times. Note that the computation time for each method is averaged

by 50 thousand simulations in which 𝝉m is converted to C-code using the Coder Toolbox and

mex function.

4.6 Conclusions

This paper addresses a new algorithm for automatically generating inverse dynamics of serial

robots with flexible joints in symbolic form. The algorithm is developed based on the symbolic
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Figure 4.11 Motor driving torque deviations between

EJNEA and SDRNEA methods (=𝝉EJNEA
m − 𝝉SDRNEA

m )

Newton-Euler algorithm and symbolic differentiation algorithm using the computer algebra

system. The inverse dynamics solution written in optimized Matlab-code or C-code can be

used for model-based control. The proposed algorithm can be applied/expanded to handle the

optimal trajectory planning of robots in real-time. Future work will focus on symbolic-numerical

algorithms to compute the inverse dynamics of flexible-joint robots.



CONCLUSION AND RECOMMENDATIONS

Conclusion

This thesis presented dynamic models of flexible joint robots for vibration and modal analysis,

as well as for parameter identification. In addition, a general algorithm was proposed to

automatically generate inverse dynamics in symbolic form for robots with flexible joints,

including serial elastic actuators and variable stiffness actuators.

The first paper presented a linearized model for vibration and modal analysis specifically for

manipulators with flexible joints using the PD control. The proposed analytical model considers

the influence of gravity and the parameters of the PD controller are taken into account. Therefore,

we can compute natural frequencies and damping ratios for any desired robot configuration. To

examine this model, we investigated the vibration of the Scompi robot under an impact force,

in which numerical experiments simulated real-world situations (as we conducted the modal

analysis). The natural frequencies and damping ratios calculated from the proposed model agree

very well with those identified from the operational modal analysis technique based on the vector

autoregression model.

In addition, we can evaluate/predict the robot’s stability under impact forces through the natural

frequencies and the damping ratios found from the proposed linearized model if the robot’s

parameters are predetermined accurately. Based on the similar procedures presented in this

paper, we can establish new linearized models for vibration and modal analysis problems if a

robot uses other controllers.

By applying the linearization model proposed in the first paper, an optimization procedure was

presented in the second paper to identify the stiffness and damping parameters of flexible joint

robots. These parameters play an important role in predicting the dynamic behavior of robots.

We proposed constructing a new objective function based on the determinant of the characteristic
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polynomial of the inverse eigenvalue problem in order to determine these parameters. The

inputs of the objective function are the robot’s natural frequencies and damping ratios measured

at several configurations. To find unknown parameters, we proposed the use of the global

optimization strategy based on a nonlinear least squares algorithm in which multiple initial

values are used to find an optimal solution. Through numerical simulations for the case of a

planar robot with two flexible joints, we showed that the stiffness parameters could be found

with high confidence, even when the deviation of the damping ratios were up 2(%). However,
the damping parameters found in this way were significantly affected when the damping ratio

deviation increased beyond 2(%).

Finally, in the third paper, we presented a new efficient algorithm based on computer algebra

systems for automatically generating the inverse dynamics of flexible joint robots. The

computational complexity of our algorithm is linear with the number of a robot’s joints. The

proposed algorithm was developed based on the symbolic recursive Newton-Euler algorithm

and symbolic differentiation technique in which all mathematical expressions (output code)

obtained are written in symbolic recursive form. We proposed a framework for generating

optimized output-code for real-time simulation and control purposes in which the sampling

rate for control is about 1 millisecond. We showed that the inverse dynamics of the Kuka robot

with six flexible joints obtained by our method and by the EJNEA method agreed with each

other. Furthermore, we demonstrated that our algorithm outperformed other algorithms when

comparing the numeric operations required to compute inverse dynamics. The results obtained

in this paper can be applied in practical applications, especially for computing the motor torques

in advanced model-based control laws, such as the feedforward control law.
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Recommendations

The results obtained from this research can be further extended to improve the accuracy of

the proposed mathematical models for simulation and control purposes. We recommend the

following potential directions for future work.

1) In order to establish the linearized model from the closed control system for analytical modal

analysis in a desired robot configuration, we need to use a control law. e.g., the PD control law

with the constant gravity compensation used in the first paper. Thus, if another control law is

used to control a flexible joint robot, a new linearized model must be reestablished using the

Taylor expansion. To validate this model, one can compare natural frequencies and damping

ratios obtained from the proposed model and those obtained through numerical simulations or

experiments.

2) To investigate the vibration problem of a flexible joint robot in machining progresses, we

need to establish a linearized model in which the effect of reaction forces/moments from the

work-piece on the robot end-effector must be considered. Note that these forces/moments will

depend on the robot’s configuration. In principle, these forces/moments will change the stiffness

and damping characteristics of the robot in the machining process. Therefore, we can model

them as spring-damper systems with constant stiffness and damping coefficients. Using the

geometric Jacobian matrix, we can combine these forces/moments into dynamic equations, and

then a new linearized model can be reestablished, as in the steps presented in the first paper. If

the modal information of the robot is estimated in the machining process, then we can apply the

procedures presented in the second paper to identify the stiffness and damping parameters of

these reaction forces/moments.

3) If a linearized model is used to identify the stiffness and damping parameters of a flexible

joint, the natural frequencies and damping ratios of the robot must first be estimated at several
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robot configurations. Although the software for modal analysis can be used for this purpose, they

often need to measure the acceleration signals and/or exciting forces/moments using external

sensors/devices. In the case of industrial robots, the motor positions can be measured using

encoders that are integrated into all motors. Therefore, we need to develop efficient tools to

automatically extract modal parameters from motor positions instead of acceleration signals in

order to reduce the identification time. For example, the operational modal analysis technique

based on the vector autoregression model can be further developed for this purpose.

4) The symbolic algorithm presented in the third paper can be applied to compute the inverse

dynamics of flexible joint robots in order to design feedforward control laws. When applying

this algorithm to the feedback linearization control laws (Buondonno & De Luca, 2016) in which

the elastic joint torques are measured using strain gauges or extra sensors, we need to evaluate

the joint accelerations and jerks online, i.e., to solve the forward dynamics problem. Therefore,

this algorithm can be modified to generate automatically dynamic terms (mass matrix, Coriolis

and centrifugal forces) and their time derivatives in optimized code for real-time control.



APPENDIX I

DYNAMIC MODELING AND SIMULATION

1. Derivation of dynamic equations

In this section, equations of motion of a general flexible-joint robot with prismatic and revolute

joints are formulated. The effect of a robot’s tool is also included in dynamic equations.

All kinematic/dynamic parameters of the robot are assumed to be predetermined. Minimal

coordinates of the robot include: a vector of joint coordinates 𝒒 = [𝑞1, 𝑞2, . . . , 𝑞𝑛]T and a

vector of motor coordinates after reduction 𝒒m = [𝑞m,1, 𝑞m,2, . . . , 𝑞m,𝑛]T.

Using the standard Denavit-Hartenberg convention Denavit & Hartenberg (1955); Tsai (2003),

the relative position and orientation of BF𝑖 (body-fixed frame 𝑖 at the origin O𝑖) with respect

to BF𝑖−1 (body-fixed frame 𝑖 − 1 at the origin O𝑖−1) are determined by a transformation matrix

𝑻 (𝑖−1)
𝑖 ∈ R4×4:

𝑻 (𝑖−1)
𝑖 =

⎡⎢⎢⎢⎢⎣
𝑹(𝑖−1)

𝑖 𝒑 (𝑖−1)𝑖

0 1

⎤⎥⎥⎥⎥⎦ (A I-1)

where 𝒑 (𝑖−1)𝑖 ∈ R3 and 𝑹(𝑖−1)
𝑖 ∈ R3×3 represent the position of O𝑖 and orientation of BF𝑖,

respectively. Therefore, the absolute position and orientation of the link 𝑖 in IF0 (the inertial

reference frame), are derived as:

𝑻 (0)
𝑖 = 𝑻 (0)

1
𝑻 (1)
2

. . .𝑻 (𝑖−2)
𝑖−1 𝑻 (𝑖−1)

𝑖 =

⎡⎢⎢⎢⎢⎣
𝑹(0)

𝑖 𝒑 (0)𝑖

0 1

⎤⎥⎥⎥⎥⎦ (A I-2)

When 𝑖 = 𝑛, 𝑻 (0)
𝑛 represents the position and orientation of the last link.
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If C𝑖 and E are the center of mass of the link 𝑖 and robot’s tool, then their absolute positions in

IF0 are computed using Eq. (A I-2) as follows:

𝒑 (0)
C𝑖

= 𝒑 (0)𝑖 + 𝑹(0)
𝑖 𝒔(𝑖)𝑖 (A I-3)

𝒑 (0)
E

= 𝒑 (0)𝑛 + 𝑹(0)
𝑛 𝒔(𝑛)

E
(A I-4)

where 𝒔(𝑖)𝑖 and 𝒔(𝑛)
E

∈ R3 are the constant position vector of C𝑖 and E in BF𝑖 and BF𝑛, respectively.

To take time derivative of Eq. (A I-3) and Eq. (A I-4), one obtains �𝒑 (0)
C𝑖

and �𝒑 (0)
E
.

The angular velocity matrix of link 𝑖 in BF𝑖 is defined by Siciliano et al. (2009):

𝝎(𝑖)
𝑖 = (𝑹(0)

𝑖 )T( �𝑹(0)
𝑖 ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 −𝜔(𝑖)

𝑖,𝑧 𝜔(𝑖)
𝑖,𝑦

𝜔(𝑖)
𝑖,𝑧 0 −𝜔(𝑖)

𝑖,𝑥

−𝜔(𝑖)
𝑖,𝑦 𝜔(𝑖)

𝑖,𝑥 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A I-5)

and its angular velocity vector in BF𝑖 is:

𝝎(𝑖)
𝑖 =

[
𝜔(𝑖)

𝑖,𝑥 𝜔(𝑖)
𝑖,𝑦 𝜔(𝑖)

𝑖,𝑧

]T
(A I-6)

The angular velocity matrix of the robot’s tool in IF0 is computed as Siciliano et al. (2009):

𝝎(0)
E

= ( �𝑹(0)
𝑛 ) (𝑹(0)

𝑛 )T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 −𝜔(0)

𝑛,𝑧 𝜔(0)
𝑛,𝑦

𝜔(0)
𝑛,𝑧 0 −𝜔(0)

𝑛,𝑥

−𝜔(0)
𝑛,𝑦 𝜔(0)

𝑛,𝑥 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A I-7)

and its angular velocity vector in IF0 is:

𝝎(0)
E

=
[
𝜔(0)

𝑛,𝑥 𝜔(𝑖)
𝑛,𝑦 𝜔(0)

𝑛,𝑧

]T
(A I-8)
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Using the assumptions mentioned in Section 2.2.1, the angular velocity vector of the rotor 𝑖 in

RF𝑖 (rotor-fixed frame 𝑖) is reduced to De Luca & Book (2016):

𝝎(r𝑖)
r𝑖 = 𝑹(r𝑖)

𝑖−1𝝎
(𝑖−1)
𝑖−1 +

[
0 0 𝑁𝑖 �𝑞m,𝑖

]T
≈

[
0 0 𝑁𝑖 �𝑞m,𝑖

]T
(A I-9)

where 𝑹(r𝑖)
𝑖−1 is the constant rotation matrix of BF𝑖−1 with respect to RF𝑖, 𝑁𝑖 (> 100) and 𝑞m,𝑖 is

the gear ratio and coordinate of the motor 𝑖, respectively. The linear velocity of the rotor’s center

of mass does not need to be computed because the mass of motor 𝑖 is combined into the mass of

link 𝑖 − 1.

The torsional deflection 𝑒𝑖 of flexible joint 𝑖 is defined as follows:

𝑒𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑞𝑖 − 𝑞m,𝑖 if the joint 𝑖 is revolute

𝑞𝑖
𝑟𝑖
− 𝑞m,𝑖 if the joint 𝑖 is prismatic

(A I-10)

where 𝑟𝑖 represents the ’characteristic radius’ of the joint’s driver 𝑖 which is used to convert the

rotational motion of the motor 𝑖 to the translational motion of the joint 𝑖.

The kinetic energy of all links, the robot’s tool and rotors is computed as follows:

𝐾 =
1

2

𝑛∑
𝑖=1

(
𝑚𝑖 ( �𝒑 (0)C𝑖

)T �𝒑 (0)
C𝑖

+ (𝝎(𝑖)
𝑖 )T𝑰 (𝑖)𝑖 𝝎(𝑖)

𝑖

)
+

1

2
𝑚E( �𝒑 (0)E

)T �𝒑 (0)
E

+ 1

2
(𝝎(0)

E
)T𝑰 (0)

E
𝝎(0)
E

+ 1

2

𝑛∑
𝑖=1

(𝝎(r𝑖)
r𝑖 )T𝑰 (r𝑖)r𝑖 𝝎(r𝑖)

r𝑖

=
1

2
�𝒒T𝑴 �𝒒 + 1

2
�𝒒T
m𝑩 �𝒒m (A I-11)

where 𝑚𝑖 and 𝑰 (𝑖)𝑖 ∈ R3×3 are the mass and inertia tensor of the link 𝑖 about C𝑖 in BF𝑖; 𝑚E and

𝑰 (0)
E

is the mass and inertia tensor of the robot’s tool about E in IF0; 𝑰
(r𝑖)
r𝑖 ∈ R3×3 is the inertia

tensor of rotor 𝑖 in RF𝑖; 𝑴 ∈ R𝑛×𝑛 are the mass matrix of the robot’s links and tool. The matrix

𝑩 is defined by:

𝑩 = diag(𝑁2
1 𝐼r1,𝑧, 𝑁

2
2 𝐼r2,𝑧, . . . , 𝑁

2
𝑛 𝐼r𝑛,𝑧) (A I-12)
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where 𝐼r𝑖 ,𝑧 is the inertial moment of the rotor 𝑖 about its rotating 𝑧-axis.

The potential energy is computed as follows:

𝑃 =
1

2

𝑛∑
𝑖=1

𝑘𝑖𝑒
2
𝑖 −

𝑛∑
𝑖=1

𝑚𝑖𝒈
T
0 𝒑

(0)
C𝑖

− 𝑚E𝒈
T
0 𝒑

(0)
E

=
1

2
(𝑾𝒒 − 𝒒m)T𝑲 (𝑾𝒒 − 𝒒m) −

𝑛∑
𝑖=1

𝑚𝑖𝒈
T
0 𝒑

(0)
C𝑖

− 𝑚E𝒈
T
0 𝒑

(0)
E

(A I-13)

where 𝑘𝑖 the stiffness coefficient of the motor shaft 𝑖; 𝒈0 ∈ R3 is the gravity vector in IF0. Here,

the matrices𝑾 and 𝑲 are defined by:

𝑾 = diag( 1
𝑟1

,
1

𝑟2
, . . . ,

1

𝑟𝑛
) (A I-14)

𝑲 = diag(𝑘1, 𝑘2, . . . , 𝑘𝑛), (A I-15)

Note that 𝑟𝑖 = 1 if the joint 𝑖 is revolute, 𝑖 = (1, . . . , 𝑛).

The Rayleigh dissipation function is computed as follows:

Φ =
1

2

𝑛∑
𝑖=1

𝑑f,𝑖 �𝑞2𝑖 +
1

2

𝑛∑
𝑖=1

𝑑fm,𝑖 �𝑞2m,𝑖 =
1

2
�𝒒T𝑫 �𝒒 + 1

2
�𝒒T
m𝑫m �𝒒m (A I-16)

where 𝑑f,𝑖 and 𝑑fm,𝑖 are viscous coefficients of joint 𝑖 on the link side and on the motor side,

respectively.

𝑫 = diag(𝑑f,1, 𝑑f,2, . . . , 𝑑f,𝑛), (A I-17)

𝑫m = diag(𝑑fm,1, 𝑑fm,2, . . . , 𝑑fm,𝑛) (A I-18)

The virtual work of nonconservative forces is computed as follows:

𝛿𝑊 = (𝑱T𝝉(0)
ext )T𝛿𝒒 + 𝝉T

m𝛿𝒒m (A I-19)
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where 𝝉(0)
ext ∈ R6 is the vector of external forces and moments applied at E in IF0; 𝑱 ∈ R6×𝑛 is

the geometric Jacobian matrix Siciliano et al. (2009) derived from �𝒑 (0)
E

and 𝝎(0)
E
; 𝝉m ∈ R𝑛 is the

vector of motor torques; 𝛿𝒒 and 𝛿𝒒m are vectors of virtual displacements.

From all kinematic/dynamic quantities presented above, equations of motion of the flexible-joint

robot with 𝑛 links and the robot’s tool using the Lagrangian formulation Siciliano et al. (2009)

are expressed as follows:

𝑴 (𝒒) �𝒒 + 𝑪 (𝒒, �𝒒) �𝒒 + 𝒈(𝒒) + 𝑫 �𝒒 + 𝑲𝑾 (𝑾𝒒 − 𝒒m) = 𝑱T(𝒒)𝝉ext (A I-20)

𝑩 �𝒒m + 𝑫m �𝒒m − 𝑲 (𝑾𝒒 − 𝒒m) = 𝝉m (A I-21)

where 𝑪 ∈ R𝑛×𝑛 is the matrix of centrifugal/Coriolis terms and 𝒈 ∈ R𝑛 is the vector of gravity

terms.

2. Dynamic simulation for modal analysis

This section presents simulation results of the Scompi robot presented in Section 2.4.3 in which

the mass 𝑚E = 4 (kg) is added to the end-effector.

The motor torques are computed using the control law presented in Eq. (2.2) and the results

obtained are shown in Fig. I-1. In addition, the linear accelerations of the end-effector �𝒙E are
derived from Eq. (A I-4) in which �𝒙E depends on joint variables, such as 𝒒, �𝒒 and �𝒒. Based
on Eq. (2.1), these variables are computed using numerical integration methods. The simulation

results of �𝒙E are plotted in Fig. I-2. Using NAFID-tool, eight stable poles are identified as shown
in Fig. I-3.
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Figure-A I-1 Motor torques (case 2)
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Figure-A I-2 Impact force and linear accelerations of the

end-effector (case 2)
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Figure-A I-3 Stable natural frequencies and damping ratios (green

color) are identified from the end-effector accelerations (case 2)



APPENDIX II

COMPUTATION OF MODAL PARAMETERS

We assume that the joint coordinates 𝑞1 and 𝑞2 are in the intervals: 0 ≤ 𝑞1 ≤ 2𝜋 and 0 ≤ 𝑞2 ≤ 𝜋,

the natural frequencies and damping ratios of the robot are computed as follows:

• Step 1: Compute 𝑞1,𝑖 = 𝑖 𝜋𝑝 and 𝑞2, 𝑗 = 𝑗 𝜋𝑝 for 𝑖 = 0, . . . , 2𝑝 and 𝑗 = 0, . . . , 𝑝.

• Step 2: Evaluate the linearized matrices 𝑴, 𝑫, and 𝑲 for each configuration (𝑞1,𝑖 , 𝑞2, 𝑗 ).

• Step 3: Compute the matrix square root 𝑺 from the matrix 𝑴.

• Step 4: Solve for the eigenvalues using Eq. (3.17), and the natural frequencies damping ratios

using Eq. (3.18) and Eq. (3.19), respectively.

Note that the matrix square root in Step 3 can be obtained using the sqrtm function, while the

eigenvalues in Step 4 can be computed using the polyeig function in Matlab.

For example, when 𝑝 = 720, the natural frequencies and damping ratios in the joint space are

shown from Fig. II-1 to Fig. II-4 in which the blue points with indices are used to identify the

stiffness and damping parameters.

Figure-A II-1 Natural frequencies and damping ratios of the

first mode in the joint space
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Figure-A II-2 Natural frequencies and damping ratios of the

second mode in the joint space

Figure-A II-3 Natural frequencies and damping ratios of the

third mode in the joint space
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Figure-A II-4 Natural frequencies and damping ratios of the

fourth mode in the joint space
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