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D'INTELLIGENCE ARTIFICIELLE ROBUSTES POUR L'UAS-S4 
 

Seyed Mohammad HASHEMI 

 
RÉSUMÉ 

 
La gestion du trafic aérien (ATM) et l'évitement des collisions aériennes (ACA) sont les 
problèmes les plus importants dans le transport aérien. Une prédiction de trajectoire d'aéronef 
(ATP) précise, un modèle de dynamique de vol (FDM) précis et un contrôle de dynamique de 
vol (FDC) efficace sont les exigences fondamentales pour les opérations basées sur la 
trajectoire, telles que l'ATM et l'ACA. L'objectif de cette thèse est de concevoir et de 
développer ces trois exigences fondamentales mentionnées ci-dessus pour les opérations 
critiques basées sur les trajectoires. Pour chaque exigence fondamentale, une étude de 
recherche approfondie a été menée pour atteindre ses objectifs relatifs. 

La première étude s'est concentrée sur la précision de la prédiction de trajectoire d'aéronef 
(ATP). Cette étude a commencé par la formulation d'un ATP en tant que problème de 
régression de séries chronologiques. Ensuite, six modèles de réseaux de neurones basés sur les 
données ont été conçus et affinés pour produire des ATP précis. Leurs architectures étaient 
basées sur la régression logistique (LR), la régression vectorielle de support (SVR), le réseau 
neuronal approfondi (DNN), le réseau neuronal convolutif (CNN), le réseau neuronal récurrent 
(RNN) et la mémoire à long et à court terme (LSTM). Les six modèles ATP ont été évalués en 
termes de précision de leur prédiction et leur super-efficacité a été confirmée. Malgré leurs 
excellentes performances, nous avons pu générer des échantillons contradictoires pour les 
induire en erreur, ce qui présente un problème de sécurité concernant les modèles ATP basés 
sur le réseau neuronal. Par conséquent, un algorithme de défense a été conçu en se basant sur 
une stratégie de recyclage contradictoire. Les nouveaux modèles ATP robustes basés sur 
l'apprentissage ont montré d'excellentes performances contre les attaques adverses tout en 
exécutant leurs tâches ATP avec précision. 

La deuxième étude portait sur la conception d'un contrôleur de dynamique de vol (FDC) 
efficace. S'appuyant sur le modèle de dynamique de vol programmé linéaire local UAS-S4 
(LLS-FDM) disponible au laboratoire de recherche sur les commandes actives, l'avionique et 
l'aéroservoélasticité (LARCASE), un FDM non linéaire a été conçu en se basant sur l’approche 
de la logique floue Takagi-Sugeno (TS). Simultanément, le modèle de référence souhaité a été 
déterminé, puis stabilisé à l'aide d'un régulateur quadratique linéaire (LQR). En ce qui concerne 
le FDM de référence, un FDC "basé sur un modèle" a été conçu pour le FDM UAS-S4, qui a 
très bien fonctionné en se basant sur des erreurs de suivi. Ensuite, un contrôleur de logique 
floue (FLC) contenant des gains adaptatifs robustes a été conçu afin de prendre en compte les 
non-linéarités et les incertitudes dues à la fuzzification et aux perturbations externes. Les 
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résultats ont confirmé que le contrôleur à logique floue adaptative robuste pouvait stabiliser la 
dynamique de vol et suivre avec précision les variables d'état du modèle de référence. 

La troisième étude a été menée pour la conception d'une méthode précise de modélisation de 
la dynamique de vol (FDM). Des FDM précis permettent aux ingénieurs de concevoir des FDC 
basés sur des modèles très efficaces. Des essais en vol ont été effectués sur l'UAS-S4 Ehecatl 
(au LARCASE) et ensuite 216 FDM locaux ont été obtenus en utilisant le modèle interne de 
dynamique de vol à planification linéaire locale (LLS-FDM) conçu pour gérer 216 conditions 
de vol. Le LLS-FDM a été encore augmenté en utilisant les méthodologies d'interpolation et 
d'extrapolation des k plus proches voisins. S'appuyant sur ces données augmentées, la 
régression vectorielle de support (SVR) a été utilisée comme algorithme de référence pour la 
régression LLS-FDM. Le SVR formé pouvait prédire le FDM de l’UAS-S4 pour l'ensemble 
du domaine de vol. Un diagramme Root Locus a été utilisé pour valider le SVR-FDM UAS-
S4 en évaluant la proximité des valeurs propres prédites avec leurs valeurs d'origine. La 
précision de la prédiction SVR a été étudiée pour différentes conditions de vol, le nombre de 
voisins et une gamme de fonctions du noyau. Malgré les excellentes performances du SVR 
formé, le FDM était vulnérable aux échantillons contradictoires. Par conséquent, Adversarial 
Retraining Defense (ARD) a été développée en s'appuyant sur des FDM contradictoires, qui 
ont été créés via la méthode de signe de gradient rapide adaptée (AFGSM) pour concevoir un 
Robust-SVR FDM. Le Robust-SVR FDM a très bien fonctionné lors d'attaques contradictoires 
tout en offrant de meilleures propriétés dans le domaine temporel pour la stabilisation des 
variables d'état que le LLS-FDM. 

Mots-clés : prédiction de trajectoire d'aéronef, réseau de neurones, attaques adverses, contrôle 
de la dynamique de vol, logique floue, gains adaptatifs robustes, stabilité de Lyapunov, modèle 
de dynamique de vol, augmentation des données, régression vectorielle de support. 
 



 

NOVEL TRAJECTORY PREDICTION AND FLIGHT DYNAMICS MODELLING 
AND CONTROL BASED ON ROBUST ARTIFICIAL INTELLIGENCE 

ALGORITHMS FOR THE UAS-S4 
 

Seyed Mohammad HASHEMI 
 

ABSTRACT 

 
Aerial Traffic Management (ATM) and Aerial Collision Avoidance (ACA) are the most 
important issues in aviation transportation. Accurate Aircraft Trajectory Prediction (ATP), 
precise Flight Dynamics Model (FDM), and efficient Flight Dynamics Control (FDC) are the 
main fundamental requirements, for trajectory-based operations, such as ATM and ACA. The 
aim of this thesis is to design, and further develop these above-mentioned three fundamental 
requirements for critical trajectory-based operations. For each fundamental requirement, a 
thorough research study was conducted to meet its related objectives. 

The first study focused on accurate Aircraft Trajectory Prediction (ATP). This study began 
with formulating an ATP as a time series regression problem. Next, six data-driven Neural 
Network models were designed and fine-tuned to produce accurate ATPs. Their architectures 
were based on Logistic Regression (LR), Support Vector Regression (SVR), Deep Neural 
Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), 
and Long-Short Term Memory (LSTM). The six ATP models were evaluated in terms of 
prediction accuracy, and their super-efficiency was confirmed. Despite their excellent 
performance, we could generate adversarial samples to mislead them. This issue presents a 
security concern regarding Neural Network-based ATP models. Therefore, a defense algorithm 
was designed based on an adversarial retraining strategy. The new, robust learning-based ATP 
models showed excellent performance against adversarial attacks while still performing their 
ATP tasks accurately. 

The second study addressed the design of an efficient Flight Dynamics Controller (FDC). 
Relying on the available UAS-S4 Local Linear Scheduled Flight Dynamics Model (LLS-FDM) 
at the Laboratory of Research in Active Controls, Avionics and Aeroservoelasticity 
(LARCASE), a nonlinear FDM was designed based on the Takagi-Sugeno (TS) Fuzzy Logic 
approach. Simultaneously, the desired reference model was determined, and then stabilized 
using a Linear Quadratic Regulator (LQR). Regarding the reference FDM, a “model-based” 
FDC was designed for the UAS-S4 FDM, which worked very well based on tracking errors. 
Next, a Fuzzy Logic Controller (FLC) containing robust adaptive gains was designed in order 
to consider the nonlinearities and uncertainties due to fuzzification and external disturbances. 
The results confirmed that the robust adaptive fuzzy logic controller could stabilize the flight 
dynamics and accurately track the reference model state variables.  

The third study was conducted for the design of an accurate Flight Dynamics Modelling (FDM) 
method. Accurate FDMs allow engineers to design highly efficient model-based FDCs. Flight 
tests were conducted on the UAS-S4 Ehecatl (at the LARCASE), and 216 local FDMs were 
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obtained by using the in-house Local Linear Scheduling Flight Dynamics Model (LLS-FDM) 
designed to handle 216 flight conditions. The LLS-FDM was further augmented using the k-
nearest neighbor interpolation and extrapolation methodologies. Relying on this augmented 
data, Support Vector Regression (SVR) was used as a benchmarking algorithm for the LLS-
FDM regression. The trained SVR could predict the UAS-S4 FDM for the entire flight 
envelope. A Root Locus diagram was utilized to validate the UAS-S4 SVR-FDM by evaluating 
the predicted eigenvalues’ closeness to their original values. The SVR prediction accuracy was 
studied for different flight conditions, number of neighbors, and a range of kernel functions. 
Despite the excellent performance of the trained SVR, the FDM was vulnerable to adversarial 
samples. Hence, an Adversarial Retraining Defense (ARD) was developed by relying on 
adversarial FDMs, that were created via the Adapted Fast Gradient Sign Method (AFGSM) to 
design a Robust-SVR FDM. The Robust-SVR FDM worked very well under adversarial 
attacks while providing better time domain properties for state variable stabilization than the 
LLS-FDM.   

Keywords: Aircraft Trajectory Prediction, Neural Network, Adversarial Attacks, Flight 
Dynamics Control, Fuzzy Logic, Robust Adaptive Gains, Lyapunov Stability, Flight Dynamics 
Model, Data Augmentation, Support Vector Regression. 
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INTRODUCTION 
 
Air Traffic Management and Control (ATMC) with the special aim of Aerial Collision 

Avoidance (ACA) is the most important issue in aerial transportation. Aerial collisions are the 

type of accidents that occur when at least two aircraft come into an unsafe mutual zone and 

damage each other. An aerial collision  can lead to loss of handling and even destruction 

(Cockcroft & Lameijer, 2003). 

0.1            Brief History 

The first catastrophic aerial collision occurred in France in 1912, killing both French Army 

pilots in a midair crash. This collision inspired   researchers to define anti-collision safety 

requirements (A. Cook, 2007). A catastrophic aircraft collision over the Grand Canyon which 

led to the death of all 128 passengers and crew in 1950 gave a strong motivation to researchers 

to design a reliable safety procedure to avoid aerial collisions.  

It took almost two decades to design the first prototype of the Aerial Collision Avoidance 

(ACA) system, which was first utilized in 1970. The  broad  range of alarms and unnecessary 

resolution advisories due to its simple, conservative approach motivated researchers to 

improve this first ACA system prototype (J. Kuchar & Drumm, 2007). A large number of 

studies have been undertaken  to design a more reliable and efficient collision avoidance 

systems (Albaker & Rahim, 2009).  

The importance of Air Traffic Management and Collision Avoidance (ATMCA) system 

improvement is reinforced by the information presented in Table 0.1 (U.S. Department of 

Transportation, 2021), showing the number of pilot-reported Near Midair Collisions (NMAC).  

Table 0.1 Number of Pilot-Reported Near Midair Collisions (NMAC) by Degree of Hazard 

Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 
Critical 14 12 15 27 29 56 67 20 19 23 
Potential 37 45 52 91 95 179 208 131 55 66 
No hazard 27 17 19 27 33 43 38 19 13 18 
NMAC 31 17 23 42 31 74 90 38 32 24 
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These NMACs were reported by pilots of general aviation, air carriers, and other aircraft 

utilized for public-use operations. This information was shared by the Federal Aviation 

Administration (FAA) Aviation Safety Information Analysis and Sharing (ASIAS) system 

(U.S. Department of Transportation, 2021). Table 0.1 lists the NMACs by the degree of hazard; 

all occurred despite the use of modern anti-collision systems.  

Based on the ASIAS information, despite all modifications and improvements, the number of 

NMAC reports has remained high. This situation indicates that major research contributions 

are needed for the ATMCA system improvement. In this way, the fundamental requirements 

and algorithms that ATMCA relies and functions based on them must be improved. 

0.2            Problem Statement       

For problem statement, firstly, it is needed to explain the “Encounter” situation. Then novel 

algorithms for solving encounter scenarios should be determined in order to avoid aerial 

collisions. 

0.2.1          Encounter Situation  

In the Encounter situation it is assumed that a flight zone containing different aircraft that are 

equipped with the transponders and receivers for establishing communications with each other. 

The "Owner" aircraft knows its future trajectory for a specific time, while receiving 

information related to the altitude, heading, velocity, and position of the other “Intruder” 

aircraft. The collision avoidance algorithm defines a virtual border that includes three zones 

around the "Owner" aircraft. 

The external zone is called the “Caution Area” and is located where the ACA system gives an 

alert to make the owner aircraft aware of an intruder aircraft. The middle zone is called the 

“Warning Area”, where the ACA system must perform its critical task. In this zone, the owner 

aircraft adopts a new safe path given by a resolution algorithm, relying on its flight dynamics 

controller to avoid potential collisions. The core zone is called the “Collision Area” in which 

the distance between the owner and the intruder aircraft is not long enough and a collision 
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would most likely occur (Henely, 2017). At this point, it is needed to be aware of the 

fundamental requirements for detecting conflicts and then solving the encounter situations. 

0.2.2         Air Traffic Management and Collision Avoidance Requirements 

Successful requirements in the “Caution Area” and in the “Warning Area” can guarantee aerial 

collision avoidance. The first requirement is a reliable Trajectory Prediction (TP) algorithm 

that is the fundamental tool for the “Caution Area”, and it plays a key role toward early conflict 

detection. The second requirement is an efficient Flight Dynamics Control (FDC) algorithm 

that is the essential tool in the “Warning Area” for performing trajectory resolution accurately. 

The third requirement is a precise Flight Dynamics Model (FDM), that is the most important 

element for designing a model-based flight dynamics controller. The improvement of these 

requirements can significantly increase the reliability and efficiency of the ATMCA systems. 

0.3            Solutions  

Many causes can increase the probabilities of aerial collisions. Parametric and non-parametric 

uncertainties, human errors, communication failures, hacks and security attacks are the most 

common reasons that can lead to errors in navigation, and therefore, in aircraft deviation from 

its desired flight trajectory (Kochenderfer, Holland, & Chryssanthacopoulos, 2012).  

The key requirements for improving the ATMCA systems reliability and efficiency can be 

classified in three categories. The first essential step towards an anti-collision algorithm 

improvement is to design a highly accurate Trajectory Prediction (TP). Accurate TPs not only 

provide early conflict detection, but they can also reduce unnecessary alarms and resolutions.  

Once a conflict has been detected (by the TP), a new safe path must be followed by the aircraft 

in order to escape from the detected conflict. Accurate tracking of the new safe path can 

guarantee collision avoidance. An efficient Flight Dynamics Controller (FDC) is needed to 

achieve this task, which is the second requirement. 

Basically, Flight Dynamics Controllers that function by relying on excellent Flight Dynamics 

Models can provide evidently excellent performance (Xu & Shi, 2015). Therefore, the design 
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of an accurate Flight Dynamics Model can significantly improve a flight dynamics controller’s 

effectiveness.  

Given their inter-dependency, the design of accurate Trajectory Prediction (TP) algorithms, 

Flight Dynamics Controllers (FDCs), and aircraft Flight Dynamics Models (FDMs) can meet 

ATMCA requirements with high reliability. 

0.4            Thesis Organization 

Following the above introduction, this thesis is composed of six Chapters. Chapter 1 gives a 

bibliographical literature review in fields of trajectory prediction, as well as flight dynamics 

modeling and control. Trajectory Prediction (TP) strategies from traditional to modern were 

investigated. Traditional model-based TP strategies were reviewed, including kinetic, point-

mass, kinematic, and receding horizon. Modern approaches from probabilistic to data-driven 

were analyzed to determine which would offer the best performance. Model-based Flight 

Dynamics Control (FDC) algorithms were investigated, including their classical, optimal, 

adaptive, robust, and intelligent approaches. Methodologies to obtain accurate Flight 

Dynamics Model (FDM) were also described at the end of Chapter 1, as they are essential to 

the FDC performance. 

Chapter 2 expresses the three studies composed of their new objectives, new methodologies, 

and original contributions of this research.  

In the first study, the design of a reliable and accurate trajectory prediction algorithm was 

determined as the 1st objective, followed by the novel proposed methodology in order to meet 

that objective. At its end, the novelties and contributions were highlighted.  

In the second study, the design of a flight dynamics controller, that is robust in the presence of 

uncertainties was determined as the second objective, followed by the new methodology and 

its contributions.  
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The third study concerned a procedure for obtaining an excellent secured FDM, that was 

represented as the third objective. The relevant new methodology and its original contributions 

were presented. 

Chapters 3-5 contain the journal articles that satisfy the first to the third studies’ objectives, 

respectively. Innovative data-driven models designed for accurate trajectory prediction based 

on deep neural networks (Chapter 3) fulfilled the first objective. The second objective was met 

in Chapter 4, with the new design methodology of a robust adaptive fuzzy flight dynamics 

controller. In Chapter 5, a novel flight dynamics modeling approach based on secured Support 

Vector Regression against adversarial attacks, satisfied the third objective.  

Chapter 6 gives a general discussion based on the results in presented in Chapters 3-5. After 

Chapter 6, conclusion that obtained from the carried-out research is presented. 

Recommendations for future work and research areas needed to investigate are presented with 

the aim of further development of this integrated approach with the aim to increase the 

performance of trajectory-based operation systems.  





 

CHAPTER 1 
 
 

Literature Review 

This chapter represents the literature review on the fundamental requirements for improving 

aerial trajectory-based operations, such as aerial traffic management and collision avoidance. 

Research studies on Trajectory Prediction (TP), Flight Dynamics Control (FDC), and precise 

Flight Dynamics Modelling (FDM) approaches were investigated separately and are reviewed 

below in three sections. 

1.1 Trajectory Prediction (TP) 

Basically, Trajectory Prediction (TP) can be discussed from three perspectives: deterministic, 

probabilistic, and probabilistic-deterministic. These types of approaches have been utilized for 

a variety of trajectory-based operations (Georgiou et al., 2018). 

1.1.1 Deterministic TP 

Deterministic trajectory prediction refers to the techniques in which future paths are fully 

determined using their initial and parameter values. “Lookup Table” is a simple deterministic 

TP method that can be easily implemented based on a performance database. Several studies 

were carried out at the LARCASE (Laboratory of Research in Active Controls, Avionics and 

Aeroelasticity) to perform flight trajectory prediction using Lookup Tables (Ghazi, Botez, & 

Tudor, 2015; Ghazi, Tudor, & Botez, 2015; A. Murrieta-Mendoza & R. M. Botez, 2015). 

While the algorithms based on Lookup Tables developed in these works could predict and 

optimize the flight trajectories very well, their performance decreased when heading angle 

turns and environmental uncertainties were introduced. 

There exist other deterministic TP methods that are based on a "Kinetic" model (Fossen, 2011). 

In this approach, the future flight trajectory can be predicted via mathematical equations 

containing an aircraft’s forces and moments (Nuic, Poles, & Mouillet, 2010). (Delahaye, 

Puechmorel, Tsiotras, & Féron, 2014) completed a survey study on using Kinetic models for 

TP that revealed their satisfactory performance for the Air Traffic Management and Control 
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(ATMC). However, their efficiency decreased due to the computational complexity of the 

Kinetic model approach in real-time operations (Ghasemi Hamed, Gianazza, Serrurier, & 

Durand, 2013; Herty & Visconti, 2018; Karr, Vivona, Woods, & Wing, 2017). To overcome 

that problem of calculations complexity, a simplified version was developed, called the “Point-

Mass” model, for fast-time simulations (Weitz, 2015). This method has been useful for a wide 

range of TP applications (Ghasemi Hamed et al., 2013), but  due to the varying mass and center 

of gravity of aircraft, the accuracy of TPs produced with a Point-Mass model was not used as 

much as expected due to safety issues. 

The use of “Kinematic” model is another method for trajectory prediction (Anderson, 

Vasudevan, & Johnson-Roberson, 2021). This method does not rely  upon the knowledge of 

an aircraft’s forces and moments, and it was  implemented to provide statistical trajectory 

prediction (Y. Lin, Zhang, & Liu, 2018). However, predicted trajectories using Kinematic 

models were not precise enough due to the lack of information regarding system dynamics. 

Among the deterministic approaches, the most successful one was then developed using 

dynamics and kinematic models. This approach was further developed into an optimal 

technique called "receding horizon planning " (Bellingham, Richards, & How, 2002).  This 

technique was used for Model Predictive Control (MPC) (Camacho & Alba, 2013), as well as 

for trajectory prediction (Ayhan & Samet, 2016), path planning (Mousavi, Heshmati, & 

Moshiri, 2013), and collision avoidance (Chaloulos, Hokayem, & Lygeros, 2010). 

While MPC approaches offer good performance in light traffic zones, their performance 

decreases dramatically in crowded zones (Ekaputri & Syaichu-Rohman, 2013), where the 

algorithm  must solve a complex Dynamic Programming (DP) problem while respecting a wide 

range of constraints (Plancher, Manchester, & Kuindersma, 2017). Hence, probabilistic 

approaches have been developed to overcome this challenge. 

 

1.1.2 Probabilistic TP 

Many research studies were conducted on trajectory prediction based on probabilistic 

approaches (Weiyi Liu & Hwang, 2011; Wiest, Höffken, Kreßel, & Dietmayer, 2012). 
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Evolutionary algorithms quickly became some of the utilized probabilistic methodologies used 

for trajectory prediction and path planning (Nikolos, Valavanis, Tsourveloudis, & Kostaras, 

2003). Among these algorithms, Particle Swarm Optimization (PSO), Genetic Algorithm 

(GA), and hybrid PSO-GA have offered good performance.  Particle Swarm Optimization 

(PSO) was used to generate 3D geometrical position based on B-spline curves (Foo, Knutzon, 

Kalivarapu, Oliver, & Winer, 2009). Genetic Algorithms (GAs) were utilized for greedy 

regression and path prediction in highly convex scenarios (Cobano, Conde, Alejo, & Ollero, 

2011).  

The GA execution time is higher than that of the PSO approach, while the PSO is poor in local 

search compared to the GA  (Kachitvichyanukul, 2012). In an attempt to profit from  the 

benefits of both GA and PSO approaches, a combined PSO-GA algorithm was proposed by 

(Duan, Luo, Shi, & Ma, 2013). Therefore, the hybrid PSO-GA algorithm was designed for the 

UAVs formations while avoiding collisions based on their predicted trajectories. performing. 

Their results showed that the hybrid PSO-GA could outperform individual PSO and GA 

algorithms in terms of trajectory prediction accuracy. With respect to their contributions, these 

evolutionary algorithms incorporated only local nearby consistencies in their optimization 

process, and they generated to-the-point location regardless of the entire trajectory (Al-Salami, 

2009). 

1.1.3 Deterministic-Probabilistic TP 

With the goal of exploiting the advantages of both deterministic and probabilistic techniques, 

Neural Networks (NNs) have provided many hybrid estimation algorithms (H. Wang et al., 

2017). Learning algorithms from simple Multi-Layer Perceptron (MLP) to advanced Deep 

Neural Networks (DNNs) successfully aggregate the deterministic-probabilistic advantages 

(Nanjundappan, 2016). In this hybrid approach, deterministic datasets and architectures that 

rely on probabilistic activation functions are expected to learn who to predict future 

trajectories. 

Machine Learning (ML) algorithms have been broadly applied for trajectory prediction, and 

they have offered excellent performances when enough training dataset were provided. Hidden 
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Markov Model (HMM) (Fine, Singer, & Tishby, 1998), Decision Tree (DT) (Song & Ying, 

2015), Deep Neural Network (DNN) (Weibo Liu et al., 2017) are known as the most powerful 

algorithms for TP time series regression. These algorithms are investigated in the following 

paragraphs.  

A long-term path prediction algorithm was successfully implemented by use of a trained 

hidden Markov model (HMM) (Ayhan & Samet, 2016). In addition to the aircraft's 3D 

position, environmental data was considered as the fourth dimension of the training dataset to 

solve the weather uncertainties. Unfortunately, HMMs are expensive in terms of memory and 

computing time, as they require solving Dynamic Programming (DP) in order to perform 

optimal path regression. 

Random Forest, a decision tree-based algorithm, was utilized for aircraft trajectory prediction 

and  showed good performance due to its tendency to the high variance and low bias.  

(Hernández, Magaña, & Berna, 2018). Worth to mention, such variance-bias trade-off results 

in model complexity, and decision tree-based algorithms may have instability problems, and 

therefore become unstable, as small changes in their input data may lead to huge changes in 

their optimal structure. 

Among the Deep Neural Network (DNN) approaches, long-term 4D trajectory prediction was 

performed using a deep generative neural network while considering environmental 

uncertainties (Y. Liu & Hansen, 2018). In (Wu, Chen, Sun, Zheng, & Wang, 2017), Recurrent 

Neural Network (RNN) was designed to estimate aircraft trajectories by relying on sequences 

of their geometrical data. High improvements in the geometrical position predictions accuracy 

were found in results. By conceding a sequence of geometrical data, a Long Short-Term 

Memory (LSTM) trajectory prediction algorithm was designed and, proven to outperform its 

predecessor (Park, Kim, Kang, Chung, & Choi, 2018).  

Although a survey study by Guan et al., (2016) revealed that DNNs could outperform all other 

Machine Learning approaches, their sensitivity to adversarial attacks was their major weakness 

(Madry, Makelov, Schmidt, Tsipras, & Vladu, 2017). Designing robust DNNs against 



11 

adversarial attacks (Chakraborty, Alam, Dey, Chattopadhyay, & Mukhopadhyay, 2018) would 

thus satisfy security issues while benefiting from their probabilistic-deterministic advantages. 

1.2 Flight Dynamics Control (FDC) 

After conflict detection relying on the predicted trajectory, in order to track a new safe 

trajectory, an appropriate Flight Dynamics Control (FDC) algorithm is needed. Basically, the 

problem of Flight Dynamics Control (FDC) for trajectory prediction (TP) can be categorized 

into five classes: Classical, Optimal, Adaptive, ' Robust, and Artificial Intelligence. (Karnopp, 

Margolis, & Rosenberg, 2012). These approaches are discussed in the next sub-section. 

1.2.1 Classical Flight Dynamics Control 

In the classical control theory, the Proportional Integrated Derivative (PID) controller is known 

as the generic standard controller for industrial purposes (Amoroso, Liverani, Francia, & 

Ceruti, 2021). This controller works by relying on its feedback signal; its aim is to reduce the 

error during stabilization and tracking by adjusting the control signal. 

The PID is used for a wide range of UAVs  (Unmanned Aerial Vehicles) as a flight dynamics 

controller (Kada & Ghazzawi, 2011), and is also employed for the flight dynamics stabilization 

of our UAS-S4 at LARCASE (M. A. J. Kuitche & Botez, 2019). While a PID controller can 

stabilize flight dynamics without needs of complex calculations to obtain the control signal, 

this stabilization requires significant control signal efforts. Moreover, it cannot handle well 

enough the parametric and non-parametric uncertainties well. These lacunae underscore the 

need for control approaches that can stabilize aircraft flight dynamics with the least control 

efforts, and further reinforce the need to design an optimal flight dynamics controller.  

1.2.2 Optimal Flight Dynamics Control 

Optimal control is a mathematical process that computes the control and state variables values 

of a dynamic system while minimizing a specific cost function (Lewis, Vrabie, & Syrmos, 

2012). This cost function considers the energy consumed by the generation of the control 

signals required to approaches state variables to specific setpoint.  
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The Linear Quadratic Regulator (LQR) is known as the most user-friendly optimal approach 

and it has been used for many FDC cases.  The LQR is able to respect a wide range of 

determined constraints, and it showed very good flight dynamics control efficiency when it 

was utilized for our UAS-S4 (Yañez-Badillo, Kuitche, & Botez, 2020). The LQR was then 

modified into the Linear Quadratic Gaussian (LQG) controller in order to solve linear time-

varying FDC problems (Chrif & Kadda, 2014). However, in such cases, where function based 

on the state variables estimation, the LQR performance degrades, and worsens with increasing 

distance from the equilibrium point (Yit, Rajendran, & Wee, 2016). This issue can be solved 

through the Adaptive control approach (Åström & Wittenmark, 2013).  

1.2.3 Adaptive Flight Dynamics Control 

Adaptive Flight Dynamics Control (FDC) is based on a control strategy that tunes its gains in 

order to deal with varying parameters, model imperfection, and uncertainties (Landau, Lozano, 

M'Saad, & Karimi, 2011). This method can solve the problem with our designed UAS-S4 

Linear Quadratic Regulator (LQR) as described in the previous subsection (1.2.2).  

Linear and non-linear adaptive FDC strategies have been utilized for flight dynamics 

stabilization and tracking (Landau et al., 2011). The proposed linear adaptive control could 

handle small range of time-varying parameters. Hence, in (Xian, Wang, & Yang, 2019), a 

nonlinear adaptive controller was designed for a wide range time-varying parameters. In this 

way, they validated their proposed flight dynamics controller of the UAV that was transporting 

a varying payload.  

Another study addressed a model-based adaptive controller that has shown great performance 

when it worked by relying on flight dynamics models (Whitehead & Bieniawski, 2010). But 

the Adaptive FDC was impacted by overreactions to small changes in varying parameters, and 

uncertainties. This is an important issue which can be solved by using a robust control approach 

(Ioannou & Sun, 2012). 
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1.2.4 Robust Flight Dynamics Control 

Robust control is known as the best static approach for explicitly dealing with uncertainties. It 

can stabilize flight dynamics model while disturbances and modelling errors are taken into 

consideration (Chabir, Boukhnifer, Bouteraa, Chaibet, & Ghommam, 2016). 

A robust controller that can perform its control task while removing the adverse effects of 

external disturbances, such as wind shear, gust, and turbulence was designed and evaluated by 

(Mokhtari & Cherki, 2015). The robust control approach was utilized in (McEneaney & 

Fitzpatrick, 2002) for the UAV control,  where it was designed to operate based on time-

varying parameters and without access to  high-order dynamics. 

While the robust FDC approach could stabilize state variables regardless of parameter 

information, stability was only guaranteed for a limited range of uncertainties. A combination 

of robust and adaptive control approaches can thus offer much better performance compared 

to each individual control approach. 

1.2.5 Artificial Intelligence Flight Dynamics Control 

Fuzzy Logic is a fundamental Artificial Intelligence (AI) approach (De Silva, 2018) for critical 

control systems, such as those used in UAVs.  It can efficiently solve mathematical 

complexities while dealing with nonlinearities and uncertainties (J. Lin, Zhou, Lu, Wang, & 

Yi, 2020). The use of  fuzzy logic in FDC makes it  possible to extract accurate inputs from 

the approximate ones by following an intuitive converting process (Babaei, Mortazavi, & 

Moradi, 2011). 

The impressive advantages of the fuzzy logic approach were illustrated when it was employed 

for the UAV navigation and flight dynamics control with the aim of specific path tracking 

(Doitsidis, Valavanis, Tsourveloudis, & Kontitsis, 2004). Takagi-Sugeno models (Hušek & 

Narenathreyas, 2016) have provided a methodology that made possible the use of Fuzzy Logic 

Control (FLC) by  relying on simplified FDMs. Despite its considerable abilities, its robustness 

was not ideal due to the imperfect fuzzy model produced after the fuzzification process. 

Therefore, a robust control strategy must be embedded inside the fuzzy logic controller. 
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Regarding the Flight Dynamics Control (FDC) investigation a model-based robust adaptive 

fuzzy approach can be the most proper control approach. This model-based controller can 

function very accurately if a precise flight dynamics model is provided. Therefore, in the 

following section strategies for Flight Dynamics Model (FDM) improvement are investigated. 

1.3 Flight Dynamics Model (FDM) Improvement 

The Flight Dynamics Controllers (FDCs) investigated in the previous section (1.2) rely on the 

UAV Flight Dynamics Model (FDM). Given the direct relationship between the UAV FDM 

accuracy and its model-based FDC performance, improving the UAV-FDM results in 

increasing the FDC efficiency in the closed-loop architecture (Hjalmarsson, Gevers, & De 

Bruyne, 1996). 

1.3.1 Nonlinear Flight Dynamics Model 

Basically, the UAV Flight Dynamics Model must be represented through its nonlinear 

differential equations in order to be the most accurate possible (Lone & Cooke, 2014). 

Nonlinear FDMs are extremely useful for flexible-structure aircraft (Palacios, Murua, & Cook, 

2010; Shearer & Cesnik, 2007). On the other hand, Nonlinear Differential Equations (NDEs) 

increase the computational complexity for a model-based flight dynamics controller, and they 

can degrade the controller's time-domain properties in real-time operations (Stengel, 2015; 

Zúñiga, Souza, & Góes, 2020). In contrast, fixed structure aircraft can provide acceptable 

maneuvers using a linearized FDM; this  linear FDM approach has been broadly used for fixed-

wing UAVs (M. V. Cook, 2012). 

1.3.2 Linearized FDM 

Aircraft system nonlinear equations were determined, and their state equations were further 

linearized in (Duke, Antoniewicz, & Krambeer, 1988). Linearization about a specific 

equilibrium point allowed state and control matrices dimensional stability derivatives to 

provide a simplified flight dynamics model for the corresponding controller.  
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Linear FDMs have been used successfully for a variety of model-based FDCs. These FDCs 

include  Proportional Integrated Derivative (PID) control  (M. Liu, Egan, & Santoso, 2015), 

Adaptive control  (Zhen, Tao, Xu, & Song, 2019), optimal Model Predictive Control (MPC)  

(Iskandarani, Givigi, Fusina, & Beaulieu, 2014), and Sliding Mode Control (SMC)  (Bouadi, 

Bouchoucha, & Tadjine, 2007), which could all successfully perform the FDM stabilization 

task. The common drawback of these studies is  their performance reduction with changing the 

flight conditions such as altitude, speed, and mass (Gaonkar & Peters, 1986) the need for FDMs 

that consider the effects of flight condition changes. 

1.3.3 Local Linear Scheduled FDM 

It is possible to estimate a nonlinear FDM using several local linear FDMs. This approach  was 

first introduced in (Slotine & Li, 1991), where local linear FDMs corresponding to specific 

flight conditions were scheduled, and local controllers were designed. This flight dynamics 

control approach is known as “gain-scheduled control” (Shamma & Athans, 1990). 

Gain-scheduled control was utilized at the LARCASE to obtain the UAS-S4 flight dynamics 

model. This Local Linear Scheduled Flight Dynamics Model (LLS-FDM) was then used for 

the optimal model-based controller (Yañez-Badillo et al., 2020). LLS-FDM performance 

reduces with increasing flight dynamics’ distances from their equilibrium points, highlighting 

the need of a regression algorithm to improve the flight dynamics model in flight conditions 

that become distant from equilibrium points.  

1.3.4 Regressed Scheduled Local Linear FDMs 

Fuzzy Logic methodologies can estimate a nonlinear FDM composed of the soft association 

of local linear models (Cheng, Rees, Cao, & Feng, 1996). For a smooth regression among local 

models, fine expert-designed membership functions are considered (Civanlar & Trussell, 

1986).  This approach can reduce the computational complexity in real-time operations 

(Albertos, Sala, & Olivares, 1998). The Takagi-Sugeno (TS) fuzzy logic approach could 

provide a nonlinear FDM using several linear state-space representations of local FDMs 
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(Mehran, 2008). The excellent accuracy of this approach is limited by the fuzzy logic rules for 

the design of the FDC. 

An accurate nonlinear FDM can be obtained by relying on local linear FDMs if an appropriate 

regression algorithm is used. There are many regression algorithms, using simple 

interpolations to advanced Neural Network regression models (Chatterjee & Hadi, 2013). With 

the exponential growth of data acquisition equipment, data-driven regression algorithms can 

be utilized to improve Local Linear Scheduled Flight Dynamics Model (LLS-FDM) accuracy. 

The weaknesses of various approaches to trajectory prediction, flight dynamics control, and 

flight dynamics model improvement were detailed in sections 1.1, 1.2, and 1.3, respectively. 

Chapter 2 introduces the research objectives and the approaches deployed to meet the research 

objectives, and then it highlights the original contributions of this research study. 



 

CHAPTER 2 
 
 

Research Objectives, Methodologies, and Contributions 

2.1 Objectives, Methodologies, and Contributions 

This research was conducted in three separate novel studies. Each study was organized based 

on its objectives, its methodologies, and its original contributions. 

2.1.1 First Study – The Aircraft Trajectory Prediction (TP) Problem  

2.1.1.1 Objective 1 

This goal of this research study was to formulate the flight trajectory prediction as a regression 

problem. Neural-network models, from conventional to deep data-driven approaches, were 

utilized to solve the aircraft trajectory regression problem. The trajectory prediction models 

were designed to respect security issues. In other words, the prediction models should be robust 

against adversarial samples in case of adversarial attacks.  

2.1.1.2 Methodology 1 

To fulfill these aims, firstly, aircraft Trajectory Prediction (TP) was formulated as a time-series 

regression problem. Next, six data-driven models, Logistic Regression (LR), Support Vector 

Regression (SVR), Deep Neural Network (DNN), Convolutional Neural Network (CNN), 

Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM), were designed to 

perform accurate regressions. Adversarial samples were then generated through an Adapted 

Fast Gradient Sign Method (AFGSM) with the aim to evaluate the robustness of these designed 

TP models. The TP models were then retrained based on the Adversarial Retraining method 

so they could be robust against adversarial attacks. 

2.1.1.3 Contributions  

The original contributions of this study are summarized below: 
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  1- The design of six original data-driven models for aircraft Trajectory Prediction.  

 2- The design of an original Adapted Fast Gradient Sign Method (AFGSM) to generate 

adversarial samples for time series regression problems. 

 3- The characterization of possible security challenges by imposing adversarial samples 

into TP models. 

 4- The design of a defense algorithm based on the Adversarial Retraining method to 

make the TP models robust against adversarial attacks. 

The results from this first study confirmed the realization of its objectives and made original 

contributions.  It was published in the Aerospace Journal. 

Article 1:  
 

Hashemi, S. M., Botez, R. M., & Grigorie, T. L. (2020). New reliability studies 

of data-driven aircraft trajectory prediction. Aerospace, 7(10), 145. 

DOI:10.3390/aerospace7100145 

 

2.1.2 Second Study – The Design of a Flight Dynamics Controller (FDC) 

2.1.2.1 Objective 2 

The objective of the second study was the design of an intelligent model-based Flight 

Dynamics Controller (FDC). The designed controller should stabilize flight dynamics while 

considering aircraft system nonlinearities, imperfections. The FDC needs also to be enough 

robust in the presence of uncertainties and external disturbances such as wind sheer, gust, and 

turbulence. The effectiveness of this intelligent FDC was validated while it was implemented 

on the UAS-S4. 

2.1.2.2 Methodology 2 

In order to achieve the above objective, the UAS-S4 Local Linear Scheduled FDM (LLS-

FDM) was considered for 9 altitudes, 5 masses, and 4 speeds. Next, the nonlinear FDM 

containing its time-varying mass was linearized around two equilibrium points. The nonlinear 

FDM was then represented with the Takagi-Sugeno (TS) Fuzzy Logic Model (FLM) by relying 
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on the soft association of local linear models. To design a model-based FDC design, an optimal 

reference model was determined and then stabilized by the Linear Quadratic Regulator (LQR) 

procedure to measure the reference model tracking error errors. Next, a Fuzzy Logic Controller 

(FLC) was designed, such that its adaptive gains could handle FDM nonlinearities. The FLC 

adaptive gains were thus robust enough in order to remove the adverse effects of imperfect 

fuzzified FDM and external disturbances. 

2.1.2.3 Contribution 2 

The novelties related to the second study are explicitly pointed out as the following: 

  1- The design of a customized Takagi-Sugeno Fuzzy Logic FDM for LARCASE’s UAS-

S4. 

 2- The redesign of adaptive gains inside the Fuzzy Logic FDC, thereby making the 

controller robust against external disturbances.  

 3- The proposal and application of a general Theorem (followed by its Lyapunov 

stability proof) with the aim to generalize the designed FDC for a variety of UAVs. 

The novel contributions from the results of the second study were fully described in the second 

article, which will be soon published in the Aeronautical Journal. 

Article 2:  
 

Hashemi, S., & Botez, R. (2022). Lyapunov-based Robust Adaptive 

Configuration of the UAS-S4 Flight Dynamics Fuzzy Controller. The 

Aeronautical Journal, 1-23. doi:10.1017/aer.2022.2.  

 

2.1.3 Third Study – The UAS-S4 Flight Dynamics Model (FDM) Improvement 

2.1.3.1 Objective 3 

Improving the UAS-S4 FDM accuracy under marginal flight conditions is the third research 

objective. Marginal flight condition refers to the state between two trimmed flight dynamics 

models regarding scheduled altitude, mass, and speed. The Local Linear Scheduled LLS-FDM 

at LARCASE did not accurately represent the flight dynamics behaviour under marginal flight 
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conditions. In fact, our supper-efficient Robust Adaptive Fuzzy Logic (RAFL) controller relied 

on the Fuzzy Logic Model which applied membership functions on the UAS-S4 LLS-FDM. 

That is why other model-based control approaches (Such as LQR) could not offer excellent 

performance under marginal flight conditions using LLS-FDM as discussed in Literature 

Review. In this way, a regression algorithm must be employed to accurately estimate an FDM 

in marginal flight conditions, and it can be useful for any model-based FDC approaches such 

as the LQR that has optimal purposes.  

2.1.3.2 Methodology 3 

To achieve the objective of FDM high accuracy under marginal conditions, local FDMs related 

to a sort of flight conditions were used to design a Local Linear Scheduling Flight Dynamics 

Model (LLS-FDM) for the UAS-S4 Ehecatl. The initial flight envelope that contained these 

local FDMs was then augmented based on interpolation and extrapolation strategies. In 

accordance with the augmented dataset, the Support Vector Machine (SVM) methodology was 

utilized as a benchmarking regression algorithm. Although the SVR could give excellent 

performance for the FDM regression and prediction, it remained sensitive against adversarial 

FDM samples. Hence, it was secured against adversarial attacks by means of an adversarial 

retraining defense algorithm. The robust SVR provided secured and precise FDMs for the 

UAS-S4 for its entire flight envelope. 

2.1.3.3 Contribution 3 

The novel achievements of the third study are summarized below: 

   1- A Data Augmentation method based on the k-nearest neighbours was developed in order to 

enlarge the UAS-S4 FDM dataset for the designed SVR algorithm. 

 2- A UAS-S4 FDM was regressed using the Support Vector Machine (SVM) methodology. 

 3- The UAS-S4 FDC was hacked by generating local adversarial FDM samples, and by 

imposing them into the UAS-S4 SVR-FDM. 

 4- An analysis of the impact of kernel function types on the FDM robustness against 

adversarial attacks was completed. 
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 5- A defense algorithm was designed to make the UAS-S4 SVR-FDM robust in case of 

adversarial attacks. 

The methodologies and results of this study related to the design of the SVR-FDM were 

presented (as an invited paper) and published at the American Institute of Aeronautics and 

Astronautics (AIAA), Sci-Tech 2022 Forum. 

Conference Paper:  
 

Hashemi, S. M., & Botez, R. M. (2022). Support Vector Regression 

Application for the Flight Dynamics New Modelling of the UAS-S4. 

In AIAA SCITECH 2022 Forum (p. 2576).  

The complete methodologies and results of this work related the robust-SVR against 

adversarial attacks were written in a paper submitted for publication in the SAE International 

Journal of Aerospace, Special Issue on Unmanned Aircraft Systems (UAS) and Autonomy. 

Article 3:  
 

Hashemi, S. M., & Botez, R. M., A Novel Flight Dynamics Modeling using 

Robust Support Vector Regression against Adversarial Attacks. 

This article was submitted for publication in SAE International Journal of 

Aerospace, On November 23, 2021 
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Résumé 

Deux facteurs principaux, incluant la précision de la régression et la robustesse des attaques 

adverses, de six modèles de prédiction de trajectoire sont mesurés dans cet article à l'aide de 

l'ensemble de données publiques du système de gestion des flux de trafic (TFMS) des 

trajectoires des aéronefs à voilure fixe sur un itinéraire spécifique fourni par la Federal Aviation 

Administration. Six régresseurs basés sur les données ayant leurs architectures souhaitées, de 

l'apprentissage en profondeur conventionnel de base à l'apprentissage en profondeur avancé, 

sont explorés en termes de précision et de fiabilité de leurs trajectoires prédites. La principale 

contribution de l'article est que l'existence d'échantillons contradictoires a été caractérisée pour 

un problème de trajectoire d'avion, qui est redéfini comme une tâche de régression dans cet 

article. En d'autres termes, même si les algorithmes basés sur les données soient actuellement 

les meilleurs régresseurs, il est montré qu'ils peuvent être attaqués par des échantillons 

contradictoires. Les échantillons contradictoires sont similaires aux échantillons 

d'entraînement; cependant, ils peuvent causer des régresseurs finement entraînés à effectuer 

des prédictions incorrectes, ce qui pose un problème de sécurité pour les algorithmes de 

prédiction de trajectoire basés sur l'apprentissage. Il est montré que même si les algorithmes 

basés sur l'apprentissage en profondeur (par exemple, la mémoire à long et à court terme 



24 

(LSTM)) aient une précision de régression plus élevée par rapport aux classificateurs 

conventionnels (par exemple, la régression à vecteur de support (SVR), ils sont plus sensibles 

aux états spécialement conçus, qui peuvent être soigneusement manipulés pour rediriger leurs 

états prédits vers des états incorrects. Ce fait pose un réel problème de sécurité pour les 

aéronefs, car les attaques adverses peuvent entraîner des collisions intentionnelles et 

délibérément conçues de systèmes intégrés pouvant inclure tout type de prédicteur de 

trajectoire basé sur l'apprentissage. 

Abstract 

Two main factors, including regression accuracy and adversarial attack robustness, of six 

trajectory prediction models are measured in this paper using the traffic flow management 

system (TFMS) public dataset of fixed-wing aircraft trajectories in a specific route   provided 

by the Federal Aviation Administration. Six data-driven regressors with their desired 

architectures, from basic conventional to advanced deep learning, are explored in terms of the 

accuracy and reliability of their predicted trajectories. The main contribution of the paper is 

that the existence of adversarial samples was characterized for an aircraft trajectory problem, 

which is recast as a regression task in this paper. In other words, although data-driven 

algorithms are currently the best regressors, it is shown that they can be attacked by adversarial 

samples. Adversarial samples are similar to training samples; however, they can cause finely 

trained regressors to make incorrect predictions, which poses a security concern for learning-

based trajectory prediction algorithms. It is shown that although deep-learning-based 

algorithms (e.g., long short-term memory (LSTM)) have higher regression accuracy with 

respect to conventional classifiers (e.g., support vector regression (SVR)), they are more 

sensitive to crafted states, which can be carefully manipulated even to redirect their predicted 

states towards incorrect states. This fact poses a real security issue for aircraft as adversarial 

attacks can result in intentional and purposely designed collisions of built-in systems that can 

include any type of learning-based trajectory predictor. 
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3.1 Introduction 

Avionics transportation standards and policies established by official agencies require all 

aviation companies to respect the approved safety protocols. These standards have been 

developed to ensure safe aircraft transportation, especially for modern automatic flights. Huge 

investments have been made in the United States over the last decades by the Federal Aviation 

Administration (FAA) into “The Next-Generation of Aerial Transportation” project, with the 

aim of increasing the safety and reliability of flights (Adesina, Adagunodo, Dong, & Qian, 

2019). 

Safety protocols are required for air traffic control, safe path definition, and collision 

avoidance, which determine conditions in which aircraft are allowed to fly, while safety 

policies reduce the chance of collisions. In this way, aircraft trajectory prediction (ATP) can 

be considered as an excellent tool for achieving safe aerial transportation. This prediction 

method may be used at different times, including for short-term and long-term predictions. 

Long-term prediction is useful for air traffic control, fuel consumption optimization, and 

logistics operations while short-term prediction is useful for conflict detection. The predicted 

trajectories may be utilized by ground computer units as part of an air traffic control system 

(ATCS) or by computer units of the aerial collision avoidance system (ACAS) in the cockpit. 

Many aerial control tasks are processed by avionics systems. Such tasks might include aircraft 

trajectory optimization (Murrieta-Mendoza, Romain, & Botez, 2016) and its application into 

flight management systems (A. Murrieta-Mendoza & R. Botez, 2015), which aim to reduce 

operational costs (A. Murrieta-Mendoza & R. M. Botez, 2015), fuel consumption, and adverse 

environmental side effects (Dancila, Beulze, & Botez, 2016). A variety of algorithms, such as 

genetic algorithm (GA) (Patrón & Botez, 2015), particle swarm optimization (PSO) (Murrieta-

Mendoza, Ruiz, Kessaci, & Botez, 2017), ant colony (Murrieta-Mendoza, Hamy, & Botez, 

2017), bee colony (Murrieta-Mendoza, Botez, & Bunel, 2018), beam search (Murrieta-

Mendoza, Ternisien, Beuze, & Botez, 2018), and harmony search (Ruby & Botez, 2016) have 

been employed to solve aircraft trajectory optimization problems. However, the main aim of 

avionics control systems is aerial collision avoidance (Nolan, 2011), where ATP contributes 

to solving encounter scenarios efficiently. This paper is focused on ATP accuracy and 
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reliability; the accuracy of predicted trajectories was assessed using the error rate in the test 

phase, and the reliability of ATP neural network models was evaluated based on the fooling 

rate for the adversarial attack. Evaluating the ACAS performance analysis based on data-driven 

trajectory predictors was not the aim of this article. 

Generally, the predicted trajectory for each moving aircraft, produced by an algorithm, consists 

of a sequence of position states in the Cartesian space with their respective displacements from 

other sequences needed to prevent aircraft from colliding with each other. In cases when a safe 

zone constraint related to the predicted paths is violated, real-time adjustment is required from 

the prediction system in order to rearrange the aircraft position states (Gardner et al., 2016). In 

this type of setup, the computational complexity of the predictors is a key factor in providing 

a rapid and practical solution (Kochenderfer et al., 2012) as delays in aircraft equipped with 

aircraft trajectory prediction (ATP) systems can result in costly and mainly dangerous 

collisions. In this paper, a novel algorithm is proposed for real-time and accurate ATP in order 

to meet the high standards of a reliable control system. 

Among all the algorithms developed for ATP, neural networks, especially deep learning 

approaches, have shown the most accurate performance if enough training data are provided. 

Many public trajectory datasets that are available online can be used for this aim. Deep learning 

(DL) models trained for path prediction purposes significantly outperform any other data-

driven algorithms based on comparisons of runtime, from regression correctness to 

computational complexity. Unfortunately, recent studies have uncovered the vulnerability of 

all data-driven models, whereby some input samples can be purposely manipulated to mislead 

them (Jin, Li, Xu, Wang, & Tang, 2020). These fake samples are known as adversarial samples 

and, unfortunately, detection of fake sample intrusion is presently an ongoing problem for the 

machine learning community. In this paper, the existence and impacts of these samples are 

characterized in relation to ATP for both conventional regressors and cutting-edge deep 

learning models. 

The organization of this paper is as follows. The common approaches developed for air vehicle 

trajectory prediction are reviewed in the following section. Brief explanations of data-driven 

predictors are provided in the Section 3.3. Section 3.4 is dedicated to our experimental results 
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and to a deep analysis of adversarial attacks on a variety of trained models. Finally, the related 

ongoing problems are elaborated for future works. For instance, we can characterize the 

existence of adversarial attacks for any learning-based algorithm while there is no certain 

systematic defense. Moreover, unfortunately, studies show that these adversarial samples are 

transferable from one model to another, even if they have been manipulated for other 

algorithms. 

3.2 Related Works on Trajectory-Based Operations 

Generally, trajectory-based operations are categorized as either short- or long-term predictions, 

whereby each prediction type has its own advantages relevant to the corresponding task. Figure 

3.1 depicts the general setup of an aircraft encounter scenario, which could be visualized in 

short- and/or long-term prediction frameworks.  

 

Figure 3.1 Encounter scenario 
 

Although encounter scenarios, such as the one shown in Figure 3.1, have been solved using 

Traffic Collision Avoidance System (TCAS) without future trajectories, the collision 

avoidance task can be performed more optimally by relying on predicted trajectories. In fact, 

it is known that the TCAS modifies the owner’s future trajectory if an intruder enters into the 

owner’s resolution advisory zone. Moreover, the TCAS design is based on the current aircraft 
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position and on its conservative virtual unsafe zone. Hence, many false alarms and unnecessary 

resolution advisory events may occur during the flight. In this way, the collision zone can be 

reduced using an accurately predicted trajectory (position of aircraft in the nth step), which 

leads to avoiding unnecessary trajectory modification. Therefore, the design of a reliable and 

precise trajectory prediction algorithm is needed (Munoz, Narkawicz, & Chamberlain, 2013).  

There is a large volume of research targeting these frameworks. Since the trajectory prediction 

could be formulated as a regression problem, these researches could be mainly employed for 

improving regression performance (J. K. Kuchar & Yang, 2000). In all these frameworks, the 

encounter scenario is defined based on owner and intruder attitudes (Munoz et al., 2013). The 

encounter scenario may occur due to the pilot mistake (A Ceruti, Bombardi, & Piancastelli, 

2016), lack of visibility (Saggiani et al., 2007), actuator failure (Z. Yu et al., 2020), or loss of 

communications (Z.-q. Yu, Liu, Zhang, Qu, & Su, 2019). When an intruder arrives in the 

vicinity of the owner’s neighborhood, after intruder detection (Alessandro Ceruti, Curatolo, 

Bevilacqua, & Marzocca, 2015), the ACAS resolution advisories commands should be 

transferred to the fixed-wing aircraft control system, which is supposed to deflect control 

surfaces with the aim to modify future trajectory. The control system of the owner aircraft (that 

is flying in a specific route) updates its subsequent trajectory with respect to the built-in 

regression model, while sensory radar information is being provided simultaneously (Julian, 

Kochenderfer, & Owen, 2019). Finally, the safety control system takes proper actions in order 

to avoid a possible collision (Guo, Yu, & Zhang, 2020). 

3.2.1 Collision Avoidance 

Model predictive control is an algorithm designed for trajectory prediction and path planning 

(Benavides, Kaneshige, Sharma, Panda, & Steglinski, 2014; Sahawneh & Beard, 2014). This 

strategy is used to model both the dynamics and the kinematics of a moving vehicle in order 

to predict the most appropriate trajectory to be followed. In contrast to this deterministic 

approach, a stochastic method is proposed in (Jilkov, Ledet, & Li, 2018), which implements 

the assembly of the multiple models to be tuned via optimization techniques. Since real-time 

optimization for prediction, even for a single model, is very costly, an adaptive control model 

that runs quadratic programming optimizers is developed in (Pereida & Schoellig, 2018). 
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In (M. Wang, Luo, & Walter, 2016), a nonlinear model predictive setup was proposed in an 

effort to solve multi-convex obstacles. A linear optimization algorithm was designed for the 

owner aircraft model to avoid collisions with other aircraft models. A multiagent control policy 

for handling complex encounter scenarios is discussed in (Dai, Cao, Xia, & Gao, 2017). Since 

the agents were distributed, and the agreement of each agent was needed, the optimization 

problem was expensive. Instead, their optimization procedure generated more accurate 

position states that were followed by the aircraft. 

Given that nonlinearities and uncertainties are involved in all these optimization problems, 

research efforts have been employed to develop evolutionary algorithms for fine path 

regression. Particle swarm optimization (PSO) has been adapted to generate 3D position states 

illustrated by B-spline curves (Foo et al., 2009). Genetic algorithm (GA) is a greedy-based 

evolutionary procedure that has been utilized for greedy regression in highly convex scenarios 

(Cobano et al., 2011). This algorithm incorporates only local nearby consistencies in its 

optimization routine with the aim of generating to-the-point states regardless of the entire path. 

In order to fully take advantage of the benefits of GA and PSO approaches, their combination 

has been proposed in (Duan et al., 2013), and it was demonstrated that the combined GA–PSO 

algorithm was able to outperform GA and PSO individually. 

In addition to these greedy approaches, data-driven algorithms have been developed for 

trajectory predictions by rectifying the trajectories’ local state shortcomings. For example, a 

neural-network-based clustering approach that implements an unsupervised learning process 

is discussed in (Barratt, Kochenderfer, & Boyd, 2018). In some research studies, deep neural 

networks have been utilized for two aims, firstly for safe zone clustering and, secondly, for 

correct position prediction of an aircraft over time (Andersson, Wzorek, & Doherty, 2017; 

Pham, Tran, Alam, Duong, & Delahaye, 2019). Deep reinforcement learning approaches have 

also been embedded into this setup, and promising results have been reported thus far (X. Wang 

et al., 2019). 
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3.2.2 Data-Driven Trajectory Prediction 

A long-term aircraft trajectory is predicted using a trained hidden Markov model (HMM) 

(Ayhan & Samet, 2016) using 3D positional and, in addition, environmental data, which are 

considered as the fourth dimension of the dataset needed to consider weather uncertainties. 

That work divides the whole path into small patches of 3D cubes and then predicts the future 

trajectory under real flight conditions. Similarly, a long-term four-dimensional (4D) aircraft 

trajectory has been predicted using a deep generative neural network architecture modeled in 

the presence of uncertainties, such as wind, convective weather, and temperature (Y. Liu & 

Hansen, 2018). 

In (Wu et al., 2017), aircraft trajectory prediction is considered as a flight sequence estimation 

problem. That work proposes a recurrent neural network for trajectory prediction. The results 

reveal noticeable improvements in state predictions. Following this idea, a long short-term 

memory (LSTM) algorithm has been developed which outperformed its predecessor (Park et 

al., 2018). Although a comparative study conducted in (Guan, Lv, Sun, & Liu, 2016) showed 

that deep learning algorithms outperform all other machine learning approaches, a variety of 

their models were implemented to further investigate their prediction capability, as well as 

their vulnerability to adversarial attacks. 

Overall, the trajectory may be predicted using conventional approaches (e.g., model predictive 

control (MPC)) based on aircraft dynamics models or modern data-driven techniques (e.g., 

deep neural network (DNN)) that rely on large amounts of recorded data. Studies have shown 

that modern data-driven techniques outperform conventional approaches if enough training 

data is available and security issues are respected. It is known that in conventional approaches, 

uncertainties backpropagate through the prediction horizon, and errors increase dramatically. 

Hence, the data-driven algorithms were adopted for trajectory prediction, and the ATP task 

was performed regardless of aircraft dynamics models, which is a remarkable advantage of 

data-driven predictors. A carefully tuned and real-time predictable path is therefore required 

for each aircraft. Since data-driven algorithms have been used for path prediction, they have 

been found to be not completely fault-tolerant, and they may create security issues for aviation 

transportation systems. In the following section, some of our benchmarking algorithms and 
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datasets are explained. Then, we will explain how the adversarial samples can be generalized 

to models being trained using standard aircraft trajectory datasets. 

3.3 Building Data-Driven Predictors 

Data-driven predictors have shown great performance in all regression tasks, which is also 

shown in our present study. Therefore, several different learning-based algorithms are explored 

for solving the aircraft trajectory regression problem (ATRP). The benchmarking algorithms 

that we will propose range from conventional (e.g., logistic regression) to state-of-the-art (e.g., 

convolutional neural network). The performance of these algorithms is totally dependent on 

the characteristics of the given dataset and on its sample distributions, in which sampling 

distribution is defined as a probability distribution of a statistic that is derived   from a 

considered population. Since there is no practical approach to define the best regression 

algorithm for our dataset, conducting experiments on all of them to determine the most proper 

one is needed. Although, nowadays, deep learning-based approaches (such as CNN, LSTM) 

are the best performing algorithms, there is no guarantee of outperforming conventional 

algorithms, such as support vector regression (SVR). Due to these reasons, six regression 

algorithms have been included in our study. These regression algorithms are logistic regression 

(LR), support vector regression (SVR), deep neural network (DNN), convolutional neural 

network (CNN), recurrent CNN (RNN) and, finally, long short-term memory (LSTM). Our 

motivation for utilizing all these algorithms is to measure and compare the strength, 

generalizability, and robustness of these models. Brief explanations are provided for each of 

these algorithms in the following subsections. 

3.3.1 Logistic Regression (LR) 

Logistic regression has the potential to fit its results to the training data if the uniformity of the 

given dataset is standard and without fluctuations. Since our experimental dataset is “evenly” 

distributed over time, it does not contain noticeable fluctuations and, thus, LR can learn from 

the finely tuned mentioned dataset finely and make accurate predictions (Ter Braak & Looman, 

1986). 
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By assuming that the given inputs and outputs to the algorithm are 𝑋 = [𝑥 𝑥 … 𝑥 ] and 𝑌 = [𝑦 𝑦 … 𝑦 ] , respectively, Equation (3.1) is considered for LR model learning 

(Grimm & Yarnold, 1995): 

 𝑌 = 1exp (𝜃 − 𝜃 𝑥 − 𝜃 𝑥 −⋯− 𝜃 𝑥 ) (3.1) 

where 𝜃 is the weight vector that could be obtained during training by optimization using a 

relevant cost function 𝐽(𝜃). Conventionally, the cost function is defined in Equation (3.2) 

(Friedman, Hastie, & Tibshirani, 2001). 

 𝐽(𝜃) = 1𝑚 −𝑦 log ℎ (𝑥 ) − (1 − 𝑦 ) log 1 − ℎ (𝑥 )  (3.2) 

where the number of samples is denoted by m in the training set, and ℎ (𝑋), known as the 

hypothesis, is defined in Equation (3.3) (Allison, 2012). 

 ℎ (𝑋) = 1exp (−𝜃𝑋 ) (3.3) 

where 𝜃 ∈ 𝜃 . One of the crucial observations is that the logistic function 𝜃 considered in the 

above equations increases the risk of saturation during the training phase; the regularization 

term is added, as shown in Equation (3.4), to rectify this problem (Friedman et al., 2001): 

 
𝜆2𝑚 𝜃  (3.4) 

where 𝜆 the regularization term that binds the cost function given by Equation (3.3) to more 

parameters shown in Equation (3.4) in order to improve the model’s precision. λ should be 

manually tuned with respect to the training statistics. Training statistics refer to weight vectors 

obtained while running an iterative process for learning, in which their fine tuning increases 

the chance of obtaining better weight vectors. The addition of this term to Equation (3.2) 

contributes to avoiding overfitting of the dataset and the need to memorize samples. We trained 
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this LR model on some standard aircraft trajectory datasets and fine-tuned its hyperparameters. 

The basic problem of this regressor is its generalization to complicated patterns, which could 

be challenging for the LR model to learn. Hence, support vectors are used to capture data 

distribution better than the LR, even in cases when the training data are not linearly separable. 

3.3.2 Support Vector Regression (SVR) 

This conventional regressor is based on the well-known principle of support vector machines, 

which is capable of learning from high-dimensional spaces. The concept supported by the SVR 

is the mapping of training data from the Euclidean space to another higher dimension space by 

using the “kernel trick”, then the learning of the decision boundaries. There are many kernel 

functions that could implement this mapping, such as homogeneous/inhomogeneous 

polynomials, tanh, Gaussian, and others. Different experiments were performed by us on these 

kernels in order to determine and adopt the best ones. The optimization process employed for 

our SVR model is given in Equation (3.5) (D.-R. Chen, Wu, Ying, & Zhou, 2004): 

 min 12 ‖𝜃‖    𝑠. 𝑡. 𝜃 𝑥 + 𝑏 − 𝑦 ≤ 𝜖𝑦 − 𝜃 𝑥 − 𝑏 ≤ 𝜖 (3.5) 

where 𝜖 denotes the decision boundary precision which should be tuned carefully. The 

performance of the SVR model as well as the performance of any other learning-based 

algorithm is totally dependent on the type of regression task and on the dataset used for 

training. Moreover, SVR learns from a mapped subspace, which could be very challenging. To 

address this potential problem, some other algorithms that can learn from raw samples are 

used. The state-of-the-art of these algorithms will be reviewed in the following subsections. 

3.3.3 Deep Neural Network (DNN) 

Neural network algorithms have been implemented for many regression tasks. It has been 

shown that multilayer perceptrons (MLPs) can produce accurate models for any regression 

problem if enough training samples are provided (Rocha, Cortez, & Neves, 2007). With the 

advancement of deep neural networks, many interesting architectures have been introduced, 

outperforming MLPs. These algorithms learn from raw data, and can be used to solve time 
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series problems (Qiu, Zhang, Ren, Suganthan, & Amaratunga, 2014), such as aircraft trajectory 

prediction. 

Unlike conventional data-driven models, modern DNNs learn from training sample 

distributions with any dimensionality; sometimes, dimension conversion has to be conducted 

with respect to the complexity of the regression task. This fact means that learning-based 

algorithms can be categorized into feature-based (conventional algorithms such as SVR, LR) 

and raw inputs (modern deep learning algorithms, such as CNN, LSTM). The latter category 

does not need to be provided by handcrafted feature vectors, but they need more training 

samples than conventional algorithms. Otherwise, their performance may decrease. It is 

important to have a large enough dataset for training deep learning algorithms. When there is 

no access to a large dataset, transferring of dimensions can be applied to enhance sample 

distributions in order to improve the algorithm performance. To some extent, DNNs can be 

sensitive to the volume of the training set, and their performance may degrade if the training 

dataset is not large enough. To rectify this issue, several data augmentation algorithms have 

been proposed (Van Dyk & Meng, 2001). 

Similarly to MLPs, input, hidden, and output layers are the mains components of DNNs. New 

proposed architectures for DNNs include very dense hidden layers with a massive number of 

filters. AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), GoogLeNet (Szegedy et al., 2015), 

and ResNet (He, Zhang, Ren, & Sun, 2016) are some of the modern architectures proposed for 

DNNs. 

Cutting-edge DNN architectures consist of very deep hidden layers, but they also take 

advantage of modern blocks in their hidden layers, such as dropout (Srivastava, Hinton, 

Krizhevsky, Sutskever, & Salakhutdinov, 2014), rectified nonlinear activation functions 

(Glorot, Bordes, & Bengio, 2011), and optimized cost functions with momentum and adaptive 

learning rates (Zeiler, 2012). “Dropout” is a regularization technique for training a neural 

network. It randomly freezes some weight vectors in the training process and avoids updating 

them to the end of the ongoing epoch, which boosts the training performance especially for 

very dense CNNs. Rectified nonlinear activation function is a discrete activation function 
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including two linear functions. Mathematically, 𝑅𝑒𝐿𝑢 (𝑥) = 0 𝑓𝑜𝑟 𝑥 ≤ 0𝑥 𝑓𝑜𝑟 𝑥 > 0 . It has been 

demonstrated that it outperforms the traditional sigmoid function in neural network training. 

Momentum and adaptive learning rate tune the training cost function with slightly perturbation 

weight vectors toward the maximum variations direction. 

The abovementioned DNN architectures have been developed for complex computer vision 

applications, and they are not fully compatible with the aircraft trajectory regression problem 

(ATRP). Therefore, we propose our DNN architecture, adapted to our dataset as shown in 

Figure 3.2. 

 

Figure 3.2 Proposed deep neural network (DNN) architecture 
for the aircraft trajectory regression problem (ATRP). 

 

This figure shows the architecture of our proposed DNN. There are three types of blocks, 

namely the input vector (input layer), dense (hidden layer), and fully connected (FC). The 

dense and FC layers are the same, but the latter is not connected to any other layers after it. 

The highlighted parts of each block specify its input and output dimensions as well as the 

number of trained filters (weight vectors per layer) shown in triplet of (number of filters, input 

dimensions, output dimensions). For instance, by considering the input of Dense 2, triplet of 
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(8,5,1) means that there are eight filters in this layer, and the dimension of the input vector is 5 × 1. Moreover, the connection between layers is shown with oriented arrows. 

The input layer in this architecture is a 1 × 5 × 1 tuple consisting of one filter. Filter dimension 

is defined based on the input dataset which consists of five recorded measured parameters 

represented as [latitude, longitude, altitude, velocity, time] × . “Hidden layers” are shown as 

five dense layers that are fully connected to the next layer in order to produce outputs as [latitude, longitude, altitude, time] × . Except for the latter layer, all other layers include 

batch normalization (Ioffe & Szegedy, 2015) with normal distribution, dropout with a 0.5 ratio, 

and rectified linear unit (𝑅𝑒𝐿𝑈) activation function as a nonlinearity. 

Unfortunately, there is no deterministic approach for designing DNN architecture that is 

obtained after running several exploratory experiments and after achieving the desired DNN 

performance in terms of regression accuracy or error rate. In order to avoid overfitting our 

model to the training set, “early stopping” (Prechelt, 1998) was used to achieve the highest 

regression accuracy while keeping it still generalizable. 

Although DNN filters are capable of learning very complex sample distributions, incorporating 

convolution layers can noticeably improve model performance. These layers could be added 

with/without dense hidden layers, and they could be revealed by running experiments on the 

given dataset. In the next subsection, our desired CNN architecture for the ATRP is presented. 

 

3.3.4 Convolutional Neural Network (CNN) 

Assuming that a random function 𝑔 (𝜃) and an input sample 𝑥 ∈ 𝑋  are given, then their 

convolution, 𝑔 ⊛ 𝑥  for 𝑖 ∈ 1, 2, 3, … ,𝑛  will give a “convolution filter” if Equation (3.6) 

approaches to zero (Kullback & Leibler, 1951): 

 𝑑 𝑑 ∥ 𝑑 = − 𝑑 log 𝑑𝑑 = 0 (3.6) 
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where 𝑑  denotes the Kullback–Leibler divergence of filter distributions 𝑑  and input 

distributions 𝑑 . 

CNNs use the backpropagation technique for their cost function optimization, and the filter 

size totally depends on the dataset features. For the ATRP, 𝑔 (𝜃) with dimensions of 5 × 1 is 

suggested, as well as our DNN filter size. Our proposed CNN architecture, adapted to the 

ATRP upon conducting various experiments, is shown in Figure 3.3, which has only one 

difference with respect to Figure 3.2. In this architecture, there are convolution layers followed 

by a max-pooling operation which interpolates the dimensions of the outputs to half of it for 

each dense layer. This operation reduces potential noise in the input vectors. 

 

Figure 3.3 Proposed convolutional neural network (CNN) 
architecture for the ATRP 
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The initialization scheme, batch normalization, regularization, and dropout ratio have been set 

to be the same as the ones of our DNN architecture, with one exception: the inclusion of a max-

pooling (MaxP) operation for dimension reduction and noise removal purposes. Max-pooling 

is a post-processing operation that usually comes after convolution layer operation, which 

shrinks the input dimensions by half. It has been shown that these operations reduce potential 

noise in the input vectors. The ratio of MaxP is chosen to be 0.5 in order to reduce the input 

sequence by half, which is a default value for all the deep learning packages. 

Although this proposed CNN architecture outperforms the aforementioned DNN, it is still not 

appropriate for our regression task. Therefore, this architecture is extended to include some 

recurrent blocks, thus aiming to improve the characterization of input sample distributions. 

3.3.5 Recurrent CNN (RNN) 

Recurrent neural networks (RNN) are versions of CNNs/RNNs developed for complex input 

streams (input data distributed over time characterized by strong dependency between 

consecutive vectors) as their current states are dependent upon their previous and subsequent 

states. In fact, multiple feedbacks among the layers are needed to maintain the dependency of 

distributions. For this type of dataset, a recurrent neural network (RNN) may outperform 

common CNN. RNN implements transitions between consecutive input vectors, which are 

distributed over time using connected states. Each state is similar to a hidden layer in a typical 

CNN. Connection between states could be bijective from one state to another, which is called 

“feedback”. RNN states and feedbacks can extract the input vector dependence on time. 

Since samples in our dataset are distributed over time, a suitable RNN architecture is proposed 

for the ATRP, as shown in Figure 3.4. The interpretation of this architecture is as same as the 

one shown as Figure 3.3 with one difference. In this architecture, feedbacks from one state 

(layer) to another state have been shown by dotted arrows. For example, gradient information 

which has been computed for states of Dense 5 will be transferred to states of Dense 3, and 

affect its weight vectors. This setup tracks temporal dependency in a sequence of input streams. 
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Normally feedback from the last convolutional layer to the first dense layer provides the least 

gradient vanishing (Conv 4 to Dense1). Consecutive feedbacks in the last layers are normally 

executed in order to avoid gradient saturation (Dense 6 to Dense 4, and Dense 5 to Dense 3). 

 

Figure 3.4 Proposed recurrent CNN (RNN) architecture for the ATRP 

This architecture is similar to our designed CNN-based architecture. Hidden layers have been 

empirically designed to achieve competitive performance with our CNN. The activation 

function used for this RNN is “tanh  with a random bias vector”. Kernel, bias, and recurrent 

initializers have been set to a truncated normal distribution of samples with 𝜇 = 0.5 and 𝑠𝑡𝑑 =0.5. The constraints applied to the recurrent blocks are max-norm, while there are no 

constraints defined for kernel or bias. As explained earlier, the dropout is a regularization 

scheme which randomly freezes some weight vectors from their updates. The dropout ratio 

identifies the probability of randomly selection of neurons. When this dropout ratio is set to 
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0.5, then it means that there is a 50% chance for every neuron to be frozen in each epoch. In 

this paper, a dropout ratio of 0.5 was considered for all the layers. There are three recurrent 

blocks in our proposed RNN. 

Since there is no optimal approach in order to automatize this process, different feedbacks have 

been tested for hidden layers. While designing the architecture for our RNN, consecutive 

feedbacks (from one state to another) were discovered from one hidden layer to another in 

addition to gradient saturation to memorize their dependencies among samples, in which the 

generalizability of the model was negatively affected. In other words, the chance of 

overtraining of RNN is very high, which highly depends on the number of feedbacks among 

hidden layers. If this setup is not tuned properly, the gradient information might be saturated, 

and the training track would be lost. Therefore, a feedback was set up from the sixth dense 

layer to the fourth and from the fifth to the third dense layer. 

Since the dimensionality of our input training data is low, 5 × 1, a connection is set from the 

fourth convolution layer to the first dense layer in order to rectify the gradient vanishing 

problem. “Gradient vanishing” refers to any operation which may give a “zero” value to the 

gradient information. If gradient vectors vanish, then no weight vector can be updated. As 

shown in our previous networks, the last layer of the RNN’s final mapping is fully connected 

to the output. 

Although RNNs are very much qualified for time-distributed feature learning, some short-term 

dependencies of the input vector among its measured states may be lost within training. Short-

term dependency can be expressed by the relation between velocity and acceleration, or 

velocity and displacement. Therefore, a long short-term memory (LSTM) algorithm is 

implemented to solve the problem discussed here. 

3.3.6 Long Short-Term Memory (LSTM) 

Currently, the use of LSTM algorithms represents the cutting-edge data-driven approach for 

classification tasks as they are conveniently generalizable for regression problems. LSTMs 

incorporate three major gates: input, output, and forget (Hochreiter & Schmidhuber, 1997). 
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The LSTM relying on cooperation of these blocks can temporarily remember some information 

about previously input vectors. The forget gate is used for tracking similar patterns over 

time/sequence. The schematic of our LSTM adapted to our regression task is depicted in Figure 

3.5.  

 

Figure 3.5 Proposed long short-term memory (LSTM) 
architecture for the ATRP 

 

Dimensions of our LSTM input are 5 × 1 for a given number of five measured parameters 

corresponding to the latitude, longitude, altitude, speed, and time for input vector. The 

dimensions of our LSTM output are 4 × 1, and include four predicted parameters 

corresponding to the latitude, longitude, altitude, and time for output vector. Gates have been 

represented by blue blocks followed by hyperbolic operations of ℎ. This module tunes the 

timing of output vectors derived from the states. 

As seen in Figure 3.5, the conducted LSTM architecture includes the input unit followed by a 

hyperbolic tangent (tanh  ) activation function. For recurrent activation, a “hard sigmoid” 
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(between LSTM blocks) is used, through the linear activation function works fine as well. 

Kernel, recurrent, and bias initializers are chosen to be “random uniform functions” with “min” 

and “max” values equal to 0.05. For all these modules, 𝐿  similarity metric (Euclidean 

distance) is embedded with regularization constant 𝜆 = 0.01. For simplicity of calculations, 

we have not taken any kernel, bias, or recurrent constraints into account. Moreover, the dropout 

ratio for all the layers was tentatively set to 0.5. 

Basically, sensitivity analysis is useful for LSTMs aimed at classification tasks. Hence, for this 

regression problem no sensitivity analysis was conducted for this LSTM architecture. We have 

adopted this network due to its very good regression accuracy with respect to the accuracy of 

previous deep networks. 

3.4 Numerical Results 

In this section, a brief explanation is provided regarding the dataset used and utilization 

procedure, and then the prediction results of several models are discussed. 

3.4.1 Dataset 

The benchmarking dataset for conducting the proposed research is the traffic flow management 

system publicly available online for educational use. Each record of this dataset contains 

latitude, longitude, altitude, velocity, and time obtained from 1676 flights (Aqib et al., 2019). 

3.4.2 Measuring the Resiliency of Models 

As stated earlier, all six employed algorithms were trained with the maximum generalizability 

possible for our dataset. We implemented a 10-fold cross validation (Wiens, Dale, Boyce, & 

Kershaw, 2008) for all these models and then controlled their comprehensiveness by using an 

early stopping technique. Experiments were further performed with the aim to determine the 

extent to which these models could resist given perturbations and random noise. 

We assume that the trained model was built, including post-activation operations, on the 

training set of 𝑥 ∈ 𝑋 . The following optimization problem was further solved: 
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 𝑚𝑖𝑛‖𝑥 − 𝑥‖ ≤ 𝜖      𝑠. 𝑡.   𝑓(𝑥 ) ≠ 𝑓(𝑥) (3.7) 

In general, this optimization problem is known as an “adversarial attack” (Goodfellow, Shlens, 

& Szegedy, 2014), which results in producing samples similar to the original samples but 

which might lead to mistakes in the model and, thus, its correction is needed. 

Although classification and regression tasks are similar to each other, Equation (3.7) should be 

updated to non-label values for regression problems. In fact, unlike classification, there is no 

label for input vectors in the regression task. Therefore, to justify adversarial optimization 

problem we would need to replace the “label” with a “threshold” and solve for it. To achieve 

the minimum perturbation of ϵ, the following optimization statement is suggested: 

 min‖𝑥 − 𝑥‖ ≤ 𝜖      𝑠. 𝑡.   min‖𝑓(𝑥 ) − 𝑓(𝑥)‖ ≥ 𝛿. (3.8) 

Optimizing for 𝜖 and 𝛿 generates a series of samples that are remarkably similar to the 

legitimate inputs, but they are totally different to their associated outputs. In other words, after 

running the optimization inequality as defined in Equation (3.8), the manipulated input, 𝑥, is 

similar to the given legitimate input 𝑥 although their associated output vectors are not similar. 

This optimization problem could be developed to include certain conditions, namely by 

redirecting the 𝑓(𝑥) towards a predefined or random value, which can identify a targeted 

attack. This condition could add overhead to our abovementioned optimization problem and, 

therefore, we do not analyze it in the current paper. In our future studies, we will study possible 

approaches for the defense of our developed prediction models against adversarial attacks. 

Having access to the training set, parameters, and hyperparameters of the trained model 

constitute a white-box attack, although it would still be possible to attack even without them. 

Both white- and black-box attacks are explained next. 

The architectures and training setups of all six models were all the same in this paper, as 

explained earlier. For the training data with columns of latitude, longitude, altitude, time, and 

speed, the models were finely trained to predict their future states (latitude, longitude, altitude, 
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time). The given input sample 𝑥  was randomly perturbed while keeping it close to its 

associated original value by using an 𝐿  similarity metrics.  

There is no generic approach to define the exact values for these hyperparameters. We 

empirically obtained these values and they can be changed following the adversary’s 

suggestions. Here, the initial values assigned to 𝜖 and 𝛿 are 0.01 and 100, respectively. Table 

3.1 summarizes the values of 𝜖 and 𝛿 achieved for all models trained on the traffic flow 

management system (TFMS) public dataset of aircraft trajectories. 

 

Table 3.1 Mean values of 𝜖 and 𝛿 for training samples of the TFMS dataset 

 LR SVR DNN CNN RNN LSTM 𝜖 0.0103 0.0174 0.0139 0.0165 0.0237 0.0142 𝛿 59 126 207 67 106 92 

 

Table 3.1 compares 𝜖 and 𝛿 values found by use of six benchmarking regression algorithms. 

Basically, adoption of smaller values for 𝜖 results in higher similarity between generated 

adversarial samples and their associated legitimate samples. Additionally, adoption higher 

values for 𝛿 leads to higher discrepancies between the ground-truth and the predicted outputs. 

Ground-truth is defined for supervised learning methods in order to measure the accuracy of 

the training set. Among these models, higher values for 𝛿 were achieved using DNN, which 

means this model yields higher variation in its predictions for legitimate inputs. 

We generated adversarial samples for all the records of the dataset and we tested them by using 

of all the trained models. Interestingly, by applying these samples, all models predicted 

incorrectly. 

Table 3.2 lists the fooling rates of all six models with their prediction confidence scores. This 

table compares fooling rates of six victim models against adversarial attacks that were 

generated by FGSM algorithm. 
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Table 3.2 Fooling rate and prediction confidence of the models 

 LR SVR DNN CNN RNN LSTM 

Fooling rate  100 100 100 100 100 100 

Prediction confidence score 0.784 0.843 0.732 0.879 0.910 0.881 

Unfortunately, all these models were completely vulnerable against adversarial samples. The 

results shown in Table 3.2 clearly restate a security concern regarding the robustness of the 

data-driven models, including the conventional and advanced deep learning architectures. 

Scaled values of prediction confidence reveal the weakness of each model in terms of its 

prediction. The main difference between these algorithms is their prediction confidence. 

Apparently, RNN predicted wrongly with the highest confidence. 

Another important concern is the transferability of the generated fake samples from one model 

to another. To evaluate this situation, adversarial samples were crafted for each model, and 

were feed-forwarded to another model. The results of this experiment are shown in Table 3.3. 

This table statistically explains the transferability property of adversarial samples. 

Table 3.3 Transferability of adversarial samples from one model to another model 

 LR SVR DNN CNN RNN LSTM 

LR 100 78.36 84.14 91.23 89.66 91.17 

SVR 81.23 100 84.17 95.07 84.56 89.59 

DNN 90.07 89.23 100 95.81 97.33 94.46 

CNN 86.75 88.71 91.63 100 91.55 93.57 

RNN 97.29 94.58 90.67 95.58 100 98.26 

LSTM 79.16 81.92 89.99 93.52 88.37 100 

 

This table depicts the transferability of adversarial samples from one victim model to another. 

Reported percentage values are averaged among all 10 folds, which is equivalent to say that 

the given dataset was divided into 10 equal-size segments versus time and, thus, each one of 

them was considered a test segment. Finally, the average of accuracy was we computed for 
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these segments. The most transferable adversarial samples for each model are shown in Table 

3.3 in bold characters. For instance, 81.23% of total crafted adversarial samples for SVR are 

successfully transferable to the LR model. 

Although LSTM is more advanced than the RNN, it is more vulnerable to transferred 

adversarial attacks. Equation (3.8) is further explored for a better understanding of crafted 

samples. A first impression could be that adversarial samples are “noises”. To accept or reject 

this impression, we need to run experiments to determine if 𝜖 and 𝛿 constitute “noise” (or not). 

To answer the abovementioned question, we utilized the local intrinsic dimensionality (LID) 

score (Ma et al., 2018). This score differentiates “noisy samples” from “crafted adversarial 

samples”. Assuming that 𝑑 (𝑥) refers to the distance from legitimate sample 𝑥  to its nearest 

neighbors, 𝑑 (𝑥), then the maximum of the neighbor distances can be found in which 𝑘 is the 

number of neighbor samples. Therefore, the LID score can be computed as shown in Equation 

(3.9). 

 𝐿𝐼𝐷(𝑥) = − 1𝑘 𝑙𝑜𝑔 𝑑 (𝑥)𝑑 (𝑥)  (3.9) 

Around 15% of the training set and generated random noisy samples were randomly selected 

using Gaussian distribution with 10 different values of 𝜇 ∈ [−1, 1]  and 𝜎 ∈ [−0.75, 0.75]. 
For fairness comparison, we repeated this generation 10 times and exported all the generated 

noisy samples into the original dataset by building a new directory to include both noisy and 

legitimate samples. We also generated new adversarial samples for every record in the original 

training set and further exported them into the adversarial category. Eventually, a logistic 

regression algorithm is trained for two considered classes in order to classify legitimate and 

adversarial samples. Table 3.4 summarizes the details of this binary classification. 

Table 3.4 primarily compares the accuracy of LR on the LID scores as well its setups for 

training. For example, the first row of this table shows that LR without cross validation has 

86.36% and 84.27% accuracy in training and test, respectively. These accuracies have been 

achieved at the 120th iteration with 𝐿  regularization penalty and with a prediction tolerance 
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(error) of 1𝑒 . Training has been executed using four CPU core (jobs) without weight 

normalization (false fitting intercept). The inverse of the regularization strength (C) for this 

model is set to 0.002. 

 

Table 3.4 Performance comparison of logistic regression (LR) on local intrinsic 
dimensionality (LID) scores. The solver for this LR classifier is “liblinear” 

 Max 
Iteration 

Training 
Accuracy 

(%) 

Test 
Accuracy 

(%) 
Penalty Tolerance Fitting 

Intercept 
# 

Jobs C 

Without 
cross-
validation 

120 86.36 84.27 𝐿  1𝑒  False 4 0.002 

5-fold 
cross-
validation 

100 91.23 87.75 𝐿  1𝑒  False 4 0.001 

10-fold 
cross-
validation 

95 92.13 86.49 𝐿  1𝑒  True 8 0.003 

15-fold 
cross-
validation 

85 92.67 86.18 𝐿  1𝑒  True 8 0.002 

 

As shown in Table 3.4, the LR is favorably used for the binary classes of the LID scores, and 

it supports our previous hypothesis (can adversarial samples be interpreted as noisy samples 

or not?) regarding the fundamental difference between noisy and adversarial samples. For a 

very good characterization of the distribution values of the original, noisy, and adversarial 

samples, we plotted their LID scores in Cartesian space. Please note that LID is a score given 

to every input. Figure 3.6 visually shows distribution of LID scores for triplet of original, noisy, 

and adversarial samples. 

Figure 3.6 shows the LID score comparisons for random samples chosen from the training set. 

As this figure indicates, original and noisy samples lie in the same LID subspace, which 

denotes their structural similarity. Conversely, adversarial samples are located in a separated 

upper subspace different from the original and noisy sets. To demonstrate that these LID scores 

were also statistically different, we trained an LR in order to classify LID scores of original, 
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noisy, and adversarial samples. Obviously, higher values of accuracy of the trained LR mean 

better classification for LIDs. 

 

Figure 3.6 (a) The LID score for the 1st random set 

 

 

Figure 3.6 (b) The LID score for the 2nd random set 
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Figure 3.6 (c) The LID score for the 3rd random set 

 

 

Figure 3.6 (d) The LID score for the 4th random set 
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Figure 3.6 (e) The LID score for the 5th random set 
 

 

 

Figure 3.6 (f) The LID score for the 6th random set 
 

Figure 3.6 The LID score comparisons for different random 
samples chosen from the training set 
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We summarize the details of the LR in Table 3.4 as well as other training information. Overall, 

Table 3.4 statistically proves that LIDs for adversarial samples are far from original and noisy 

samples, and Figure 3.6 shows this difference visually. 

Generating adversarial samples with respect to the intrinsic characteristics of the given dataset 

could be very costly in terms of optimization overhead. In other words, Equation (3.8) does 

not always show a complex optimization task and could be a non-polynomial problem. These 

problems cannot be solved by polynomial functions approximation (of any degree). Therefore, 

Equation (3.8) could be replaced by a faster operation, namely, by taking advantage of gradient 

information backpropagated through the network during its training. Generating adversarial 

samples relying on gradient information was first introduced in the computer vision 

community, and was called “fast gradient sign method” (FGSM) (Goodfellow et al., 2014). 

We will adapt this attack for our regression task. 

The FGSM is categorized as a white-box and non-targeted adversarial attack, mainly for 

architectures trained by backpropagation, and requires the model gradient information. For a 

given input 𝑥 , the FGSM crafts adversarial sample 𝑥, as defined in Equation (3.10): 

 �́� = 𝑥 + 𝜖 × 𝑠𝑖𝑔𝑛 𝛻 𝐽(𝜃, 𝑥, 𝑙)  (3.10) 

where 𝐽 is the cost function of the model, and 𝜖 is a float scalar to be defined by a local search. 

Since the FGSM attack was introduced for classification purposes, we needed to update the 

label index of 𝑙 to a bounded value by providing a “supremum” and an “infimum”. Therefore, 

Equation (3.10) should be written under the following form (Goodfellow et al., 2014): 

 �́� = 𝑥 + 𝜖 × 𝑠𝑖𝑔𝑛 𝛻 𝐽(𝜃, 𝑥, 𝑣)  (3.11) 

where 𝑣 ∉ [𝑎 − 𝜆,𝑎 + 𝜆] is an output value, and 𝑎 is the actual value as defined in the training 

set. Our adapted version of the FGSM (AFGSM) requires its optimization for both 𝜖 and 𝜆. 

In our next experiment, we generated adversarial samples using the AFGSM for our proposed 

DNN, CNN, RNN, and LSTM architectures. We also studied the transferability property of 

crafted samples, as shown in Table 3.5.  
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Table 3.5 Transferability of adversarial samples crafted by the adapted fast  
gradient sign method (AFGSM). The highest values are in bold characters 

 LR SVR DNN CNN RNN LSTM 

DNN 78.25 86.94 100 91.25 89.36 90.71 

CNN 85.13 84.58 92.47 100 91.55 92.05 

RNN 90.96 92.37 88.24 93.37 100 91.08 

LSTM 91.45 90.33 89.69 89.99 92.28 100 

Table 3.5 compares the transferability of adversarial samples using our proposed AFGSM 

algorithm. For instance, the first element in Table 3.5 suggests that 78.25% of total crafted 

adversarial samples are successfully transferable from DNN to the LR model. As shown in 

Table 3.5, all the models are vulnerable to our version of FGSM attack. 

Not surprisingly, generated adversarial samples using the AFGSM for DNN and CNN are the 

most transferable samples to each other and are shown in bold characters (91.25, 92.47). 

Moreover, AFGSM-generated adversarial samples for RNN architecture are the samples most 

transferable to the CNN model (93.37). One hypothesis could be that this is related to their 

same utilized convolution layers, regardless of their filters shape, sizes, or order. 

3.4.3 Adversarial Retraining 

One potential defense against the threat of adversarial attack would be to train models by use 

of a combination of legitimate and adversarial samples. In other words, both original and 

crafted adversarial samples could be fed with the correct labels to the model within it training, 

with the aim of avoiding being misled during the testing time. Equation (3.12) shows our 

proposed retraining policy: 

 𝐽(𝑥 ,𝑦 ,𝜃) = 𝑐𝐽(𝑥 ,𝑦 ,𝜃) + (1 − 𝑐)𝑐𝐽(𝑥 ,𝑦 ,𝜃) (3.12) 

where 𝑐 is a constant value set to 0.25, 0.5 and 0.75 for our dataset. Table 3.6 presents the 

performance of the retraining policy for 3 different c values. 
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Table 3.6 Performance comparison of data-driven models by adversarial retraining 

 c LR SVR DNN CNN RNN LSTM 

Fooling rate (%) 

0.25 86.45 77.36 80.35 81.06 78.37 79.08 

0.50 83.25 76.28 79.47 81.69 79.84 74.41 

0.75 84.27 75.79 80.23 81.97 80.56 73.19 

Regression accuracy (%) 

0.25 66.16 56.33 61.74 57.19 59.67 61.54 

0.50 64.87 57.13 64.24 58.36 58.14 60.79 

0.75 68.97 52.87 61.58 60.76 59.42 59.45 

 

3.5 Conclusions 

In this paper, the accuracy of data-driven regressors was investigated for conventional (LR and 

SVR) and state-of-the-art (DNN, CNN, RNN, and LSTM) algorithms for aircraft trajectory 

prediction by use of the traffic flow management system (TFMS) of aircraft trajectories. 

Although the results testify the higher performance of the modern algorithms in terms of 

regression accuracy, they also show the lowest resiliency against crafted adversarial attacks. 

We implemented FGSM and AFGSM adversarial attacks for all the trained models, and 

measured their fooling rates. Interestingly, conventional classifiers showed a higher robustness 

to adversarial attacks compared to the advanced deep neural networks.  

As a pro-active approach for improving the robustness of the models, we adversarially trained 

all of them, which also increased their error rates. This increased error rate poses a security 

issue for learning-based regressors, especially since adversarial samples are transferable from 

any learned model to another model, as already shown. For our future work, a data-driven 

regression algorithm will be developed that will give a reasonable tradeoff between regression 

accuracy and fooling rate. 
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Résumé 

Parallèlement à la demande croissante de véhicules aériens sans pilote (UAVs) pour la 

surveillance et la reconnaissance, des contrôleurs avancés sont nécessaires pour ces systèmes 

critiques. Cet article propose la conception d’un contrôleur de dynamique de vol qui prend en 

compte diverses incertitudes pour l'UAS-S4 Ehécatl d'Hydra Technologies. Afin d'être réaliste, 

en plus des non-linéarités de la dynamique de vol, trois sources principales d'incertitudes sont 

considérées, comme celles causées par des paramètres de contrôleur inconnus, des erreurs de 

modélisation et des perturbations externes. Un contrôleur de logique floue adaptatif robuste est 

conçu, en charge de la dynamique de vol non linéaire en présence d'une variété d'incertitudes. 

La dynamique de vol non linéaire est modélisée en se basant sur la méthode Takagi-Sugeno 

par l'association souple de modèles linéaires locaux. Étant donné que ce contrôleur est basé sur 

un modèle, un modèle de référence optimal est défini, qui est stabilisé par la procédure du 

régulateur quadratique linéaire. Un contrôleur à logique floue est alors conçu pour le modèle 

non linéaire. Enfin, dans le but de gérer les incertitudes, les gains du contrôleur flou sont 

reconfigurés, et sont ajustés continuellement par des lois adaptatives robustes basées sur la 

théorie du Lyapunov. Les performances du contrôleur à logique floue adaptative robuste UAS-
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S4 sont évaluées en termes de stabilisation de la dynamique latérale et longitudinale du vol, et 

du suivi des variables d'état du modèle de référence pour diverses incertitudes. 

Abstract 

In tandem with the fast-growing demand for Unmanned Aerial Vehicles UAVs for surveillance 

and reconnaissance, advanced controllers for these critical systems are needed. This paper 

proposes a flight dynamics controller design that considers various uncertainties for the Hydra 

Technologies UAS-S4 Ehécatl. In order to be realistic, in addition to flight dynamics 

nonlinearities, three main sources of uncertainties are considered, as those caused by unknown 

controller’s parameters, modeling errors, and external disturbances. A robust adaptive fuzzy 

logic controller is designed, in charge of nonlinear flight dynamics in presence of a variety of 

uncertainties. The nonlinear flight dynamics is modeled based on the Takagi-Sugeno method 

relying on the soft association of local linear models. Since this controller is model-based, an 

optimal reference model is defined, which is stabilized by the Linear Quadratic Regulator 

procedure. A fuzzy logic controller is then designed for the nonlinear model. Lastly, with the 

aim to handle the uncertainties, the gains of the fuzzy controller are reconfigured, and are 

continuously adjusted by Lyapunov-based robust adaptive laws. The performance of the UAS-

S4 robust adaptive fuzzy logic controller is evaluated in terms of lateral and longitudinal flight 

dynamics stabilization, and the reference model state variables tracking under various 

uncertainties. 

4.1 Introduction 

Unmanned Aerial Vehicles (UAVs) are remotely controlled aircraft designed to perform 

specific tasks. Due to the fast-growing demand for UAVs aimed at a variety of applications, 

the design of UAVs has remained a dynamic research field (Cir, 2011). In most cases, UAVs 

have been produced for military and disaster relief purposes, as well as for surveillance and 

reconnaissance (Watts, Ambrosia, & Hinkley, 2012). The UAS-S4 Ehecatl is such an UAV, 

designed and manufactured by the Hydra Technologies company in Mexico to perform 

military and civilian surveillance (M. A. J. Kuitche & Botez, 2019).  
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Critical UAV systems are equipped with accurate flight dynamics controllers (H. Chen, Wang, 

& Li, 2009). Designing an efficient controller requires an accurate flight dynamics model 

(Tuzcu, Marzocca, Cestino, Romeo, & Frulla, 2007). In fact, the access to the flight dynamics 

model enhances our ability to evaluate the controller performance in the early phases of the 

UAV development instead of relying mainly on flight test phases, which dramatically improves 

flight safety while reducing both costs and time (X. Yu, Guo, Zhang, & Jiang, 2021). The 

present work seeks to design a fully functional controller for the UAS-S4 based on its flight 

dynamics model. In this context, the model refers to the mathematical representation of the 

UAS-S4 flight dynamics system, which is basically used for its better understanding, 

prediction, and control. 

Since fixed-wing UAS-S4s have the minimum number of required control surfaces, only a few 

actuators should provide a safe and reliable flight. While utilizing a fewer number of actuators 

results in a simpler UAV flight dynamics model, flight stability may become more affected in 

the presence of uncertainties (Borello, Cestino, & Frulla, 2010). These uncertainties may be 

external disturbances (dues to environmental conditions (Ghommam, Saad, Mnif, & Zhu, 

2020)), unknown controller parameters (affected by actuator and sensor imperfections (Cao & 

Hovakimyan, 2007)), and model imperfections (dues to model approximation and to 

experimental errors (Bucolo, Buscarino, Famoso, Fortuna, & Frasca, 2019)). Additionally, 

following changes in flight conditions, the flight dynamics behave nonlinearly (Q. Wang & 

Stengel, 2004). In order to provide stable flight, it is essential to obtain an accurate 

mathematical flight dynamics model for the UAS-S4, and then to design an efficient controller 

that can consider flight dynamics nonlinearities and uncertainties.  

Basically, any UAV flight dynamics model depends on its geometrical data, aerodynamic 

performance estimation, onboard actuators and sensors model, controller model, signal 

processing, and environmental functioning conditions (Stengel, 2015). By conducting flight 

tests, the model parameters can be determined. The interpretation of UAV propulsion and 

actuation systems in terms of its mass and inertia are the essential requirements for obtaining 

an accurate UAV model. To that end, both linear and nonlinear representations of aircraft 

models are shown in (Etkin & Reid, 1959). When obtaining an accurate flight dynamics model 
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is possible, a model-based controller will be highly successful in performing the intended tasks 

(Brosilow & Joseph, 2002). Thanks to the equipment available at our LARCASE (The Active 

Control, Avionics and Aeroservoelasticity Research Laboratory), including the UAS-S4, the 

Price-Païdoussis subsonic blow down wind tunnel, and the tow Research Aircraft Flight 

Simulators (RAFS) level-D for the [R]-too and Cessna Citation X (R. Botez, 2018), the 

accurate modeling of UAS-S4 flight dynamics is possible. Thus, the “model-based” control 

approach can be used to design the desired UAS-S4 controller. 

From the classical control theory aspect, the PID approach is known as the generic and standard 

industrial control law (Amoroso et al., 2021). Basically, this controller operates via the 

feedback mechanism with the objective of reducing the stabilization and tracking error by 

modifying its signal. Although the PID technique can stabilize UAS-S4 flight dynamics 

without needing complex calculations for tuning the corresponding controller gains (M. A. J. 

Kuitche & Botez, 2019), performing the stabilization tasks requires major control signal 

efforts. The need of such a controller that gives the desired output while considering a cost 

function led us at our LARCASE to investigate the LQR approach. The LQR methodology 

controls the state variables by using an optimal state-feedback law computed while minimizing 

a fine-tuned energy-like cost function (Minchala-Avila, Garza-Castañón, Vargas-Martínez, & 

Zhang, 2015). This method showed high efficiency when it was utilized for our UAS-S4 flight 

dynamics control (Yañez-Badillo et al., 2020). However, state variables estimation decreases 

the LQR’s effectiveness, which worsens with increasing distance from the equilibrium point 

(Hashemi, Menhaj, & Amani, 2006). With respect to the designed PID and LQR controllers 

for our UAS-S4, we need to design an efficient flight dynamics controller that can solve 

challenges including, parametric and nonparametric uncertainties while flight dynamics 

behaves nonlinearly. 

A control strategy is expected to be designed, such that it could work very well despite 

uncertainties (Lungu, Lungu, & Grigorie, 2013). These issues led us to choose the Fuzzy Logic 

Control (FLC) method, which has proven its ability to handle nonlinearities in a broad range 

of operation (Grigorie & Botez, 2011). Fuzzy Logic can provide a nonlinear model constructed 

by the soft association of several local linear models, while reduces computational complexity 
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for the controller in real time operations. Then, a Fuzzy Logic Controller can be designed based 

on the provided Fuzzy Logic Model (FLM). Where, the classical feedback control technique 

aimed at flight dynamics stabilization and tracking can be employed to control each local 

model. The designed Fuzzy Logic Controller (FLC) can be developed into the Adaptive FLC 

that can solve uncertainties due to unknown controller parameters (affected by actuator and 

sensor imperfections (Cho, Seo, & Lee, 2007)). 

The objective of this article is the adaptive fuzzy methodology reconfiguration aimed at UAVs 

flight dynamics control for a wide range of uncertainties that may be caused by unknown 

controller’s parameters. The novelty of this study is to modify the adaptive laws in order to 

make them robust against external disturbances (e.g., wind turbulence, wind shear, wind gust) 

or model imperfections (dues to fuzzification and defuzzification process errors) which were 

not considered in (Cho et al., 2007). Moreover, a general Theorem, followed by its stability 

proof is given to be useful for flight dynamics control of a variety of UAVs. 

This paper is arranged in five sections. Following Section 4.1 on “Introduction”, the UAS-S4 

flight dynamics model and its fuzzy logic representation are stated in Section 4.2. The fuzzy 

controller developed for the desired reference model is described, and then its robustness and 

adaptive aspects are developed in Section 4.3. Section 4.4 presents the simulation results and 

their numerical analysis. The research contributions and achievements are summarized in 

Section 4.5, and they are followed by an outline of proposed future works.  

4.2 UAS-S4 Flight Dynamics Modeling 

The first essential step towards the design of an efficient controller for a flight dynamics system 

is the calculation of an appropriate model that accurately expresses the system dynamics 

behavior. In this way, the UAS-S4 is considered as the case study which is equipped with 

elevators, ailerons and rudders that are controlling its loads through the pitch, roll, and yaw 

axes. Figure 4.1 shows Hydra Technologies UAS-S4 Ehecatl, and Table 4.1 lists its 

specifications. 

. 
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Figure 4.1 Hydra Technologies UAS-S4 Ehecatl 
 

Table 4.1 UAS-S4 specifications (geometrical and flight data) 

Specifications Values 
Wingspan 4.2 m 
Wing area 2.3 m2 
Total length 2.5 m 
Mean aerodynamic chord 0.57 m 
Empty weight  50 kg 
Maximum take-off weight 80 kg 
Loitering airspeed 35 knots 
Maximum speed 135 knots 
Service ceiling 15000 ft 
Operational range 120 km 

 

For an UAV that flies in a broad operating range, a vast number of internal and external factors 

could affect its flight dynamics behavior. To obtain an accurate model for the design of an 

efficient controller, the flight dynamics data was mapped in a Mach-altitude flight envelope. 

A scheduled model was provided to represent the flight envelope containing nodes associated 

to the flight dynamics trim models. For each node, the flight dynamics model nonlinearities 

and parametric uncertainties were reduced.  

The model in charge of each node was mathematically represented using differential equations 

with respect to the time-varying mass, and then linear models were designed around several 

equilibrium points. The controller was allocated to all nodes, in which a time-varying mass 

existed. Figure 4.2 depicts step-by-step procedure followed to reach the research objective.  
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Figure 4.2 The followed procedure to control the 

UAS-S4 flight dynamics 
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Firstly, the flight envelope schedules the UAS-S4 flight dynamics model for 9 altitudes and 4 

speeds. Then, the nonlinear model considering time-varying mass is linearized around several 

equilibrium points. Linearized models apply to the defined membership functions in order to 

obtain the UAS-S4 Fuzzy Logic Model (FLM). Next, the Fuzzy Logic Controller (FLC) 

computes the control signal based on the provided UAS-S4 FLM. Finally, the desired and 

controlled flight dynamics values are compared, and the error is used by the adaptation block 

for adjusting FLC gains. The UAS-S4 flight dynamics model and its controller design are 

explained in details in the following sections. 

 

4.2.1 UAS-S4 Linear Local Models 

By considering the aircraft differential equations of motion (Caughey, 2011), UAS-S4 state 

variables can be linearly modeled about its several equilibrium points. The UAS control 

problem can be solved for both its lateral and longitudinal motions. In this paper, the state 

variables of the UAS-S4 both lateral and longitudinal motions are controlled. 

The state variables of the longitudinal flight dynamics are represented by 𝑋 = [𝑢  𝑤  𝑞  𝜃] , 

with the axial velocity 𝑢, vertical velocity 𝑤, pitch rate 𝑞, and pitch angle 𝜃 while the control 

input is 𝛿 = [𝛿 𝛿 ] . Even though the control vector is formed by the elevator deflection 𝛿  and thrust 𝛿 , the former plays the key role for the pitch control. The lateral flight dynamics 

state variables represented by 𝑋 = [𝑣  𝑝 𝜂  𝜑] , with the side velocity 𝑣, roll rate 𝑝, yaw rate 𝜂, and roll angle 𝜑. Based on the aileron and ruder deflections, 𝛿 = [𝛿 𝛿 ]  is in charge 

of lateral controls input. 

Knowing that the linearized state-space representation of the model around an equilibrium 

point is (Nelson, 1998): 

 𝑋(𝑡) = 𝐴 𝑋(𝑡) + 𝐵 𝛿(𝑡) (4.1) 

where the longitudinal state-space matrices are: 
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𝐴 = 𝐺𝐻𝑀 + 𝑀 𝐻0
𝐺𝐻𝑀 + 𝑀 𝐻0

0𝑢𝑀 + 𝑢 𝐻1
−𝑔 𝑐𝑜𝑠 𝜃−𝑔 𝑠𝑖𝑛 𝜃00  

𝐵 = ⎣⎢⎢
⎡ 𝐺𝐻𝑀 + 𝑀 𝐻0

𝐺𝐻𝑀 + 𝑀 𝐻0 ⎦⎥⎥
⎤
 

(4.2) 

and the lateral state-space matrices are: 

 𝐴 = ⎣⎢⎢
⎡𝑌𝐿𝑁0

𝑌𝐿𝑁1
−(𝑢 − 𝑌 )𝐿𝑁0

𝑔 𝑐𝑜𝑠 𝜃000 ⎦⎥⎥
⎤ , 𝐵 = 0𝐿𝑁0

𝑌𝐿𝑁0  (4.3) 

where 𝐺 ,𝐺 ,𝐻 ,𝐻 ,𝑀 ,𝑀 ,𝑀  are the UAS-S4 longitudinal state matrix dimensional 

stability derivatives, and 𝐺 ,𝐻 ,𝑀  are its longitudinal control matrix dimensional stability 

derivatives. In addition, 𝑌 ,𝑌 ,𝑌 , 𝐿 , 𝐿 , 𝐿 ,𝑁 ,𝑁 ,𝑁  are the UAS-S4 lateral state matrix 

dimensional stability derivatives, and 𝑌 , 𝐿 ,𝑁  are its lateral control matrix dimensional 

stability derivatives.  

In order to obtain the UAS-S4 state-space matrices’ elements, it is needed to compute the 

dimensional aerodynamic coefficients and their derivatives. While several research projects on 

aircraft modeling have been conducted at the LARCASE (Bardela & Botez, 2017; R. M. Botez 

et al., 2015; Rodriguez & Botez, 2013), the most comprehensive study on the UAS-S4 

modeling was detailed in (M. A. J. Kuitche & Botez, 2019). The UAS-S4 model was obtained 

at the LARCASE using four sub-models representatives of “aerodynamics”, “actuator”, 

“propulsion”, and “mass and inertia”. 

The first sub-model (aerodynamics) was set up according to the Fderivatives in-house code; 

this code was based on new aerodynamics methodologies added to DATCOM (Anton, Botez, 

& Popescu, 2011). The second sub-model (propulsion) was built using a two-stroke engine 

integration model relying on the operation of an internal combustion engine (Otto Cycle (M. 

A. J. Kuitche, Botez, Viso, Maunand, & Moyao, 2020)), and on the propeller analysis (Blade 
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Element Theory (Romeo, Cestino, Pacino, Borello, & Correa, 2012)). Raymer and DATCOM 

techniques were used to implement the third sub-model (mass and inertia (Tondji & Botez, 

2017)). Finally, the fourth sub-model (a control surface actuation system) was designed using 

the servomotors’ characteristics, and the final UAS-S4 model was obtained by the sub-models 

integration (M. A. J. Kuitche & Botez, 2019).  

In this way, the UAS-S4 flight dynamics related to both longitudinal and lateral motions was 

represented using several linear state-space models. Each state-space model expresses the 

linearized state variables about a specific equilibrium point corresponding to a certain range of 

altitudes and speeds. However, by increasing the operational range about an equilibrium point, 

the modeling error due to the linearization also increases. In order to enhance the models’ 

accuracy, several equilibrium points can be considered, and consequently, several local linear 

models can be better fitted into the actual flight dynamics model. Therefore, a fuzzy logic 

approach is utilized for the UAS-S4 modeling. 

4.2.2 UAS-S4 Fuzzy Logic Model 

Basically, an aircraft nonlinear Flight Dynamics Model (FDM) can be represented through its 

affine system formulation (Z. Lin, 2002) by the equation 𝑋 = 𝔽(𝑋) + 𝔾(𝑋) 𝛿, where the 

control input vector 𝛿 is adjusting the state vector variables 𝑋 using 𝔽:ℝ → ℝ  and 𝔾:ℝ →ℝ  functions, that are unknown. A simple nonlinear FDM was found to be more efficient than 

a complex nonlinear system for the design of a model-based controller, which was our main 

objective. The higher efficiency of the simple nonlinear FDM was due to its reduced 

computational complexity, while providing fast control signal calculations in real-time 

operations (Ying, 1998). Therefore, the fuzzy logic approach was chosen, as it provided this 

procedure for approximating affine nonlinear systems (Zeng, Keane, & Wang, 2006).  

Fuzzy logic offers the type of models that can be used to support the impression of partial 

truths, where the truth concept may range between “completely true” and “entirely false” 

(Zadeh, 1988). Fuzzy logic provides a tool for assembling several local linear models, relying 

on membership functions, with the objective of approximating a nonlinear model. The Takagi-
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Sugeno Fuzzy Logic modeling method is known as a practical and user-friendly technique for 

modeling real physical systems (Takagi & Sugeno, 1985), and was chosen in this study. 

The Takagi-Sugeno Fuzzy Logic Model (T-S FLM) consists of a set of models that have been 

locally linearized about their equilibrium points. Based on the expert-defined fuzzy rules in 

Equation (4.4), the association of local models can approximate the actual nonlinear 

continuous-time flight dynamics model. According to the T-S procedure for generating rules, 

the 𝑖th rule of the fuzzy model is defined as the following (Takagi & Sugeno, 1985). 

 Rule :  if      𝑥  is  𝛤  and … and 𝑥  is 𝛤 then  𝑋(𝑡) = 𝐴 𝑋(𝑡) + 𝐵 𝛿(𝑡)where 𝑖 = 1, … , 𝑗  (4.4) 

where the state variables vector 𝑋(𝑡) ∈ 𝑅  is controlled by the input 𝛿(𝑡) ∈ 𝑅 for a 𝑗 number 

of defined rules. The state-space matrices for the UAS-S4 model should then be converted into 

their controllable Canonical form, as shown in Equation (4.5). 

 𝐴 × = ⎣⎢⎢⎢
⎡ 0     10     0  ⋯      0  ⋮ ⋱ ⋮0 0𝑎 𝑎 ⋯ 0 1𝑎 𝑎 ⎦⎥⎥⎥

⎤
 (4.5) 

The fuzzy logic model representation based on the first-order models relying on 𝑗 rules is 

(Takagi & Sugeno, 1985): 

 𝑋(𝑡) = ∑ 𝜙 (𝑡) 𝐴 𝑋(𝑡) + 𝐵 𝛿(𝑡)∑ 𝜙 (𝑡)  (4.6) 

It should be mentioned that  𝜙 (𝑡) = ∏ 𝛤 𝑋(𝑡)  activates the 𝑖th rule by considering the 

collected grades 𝛤 𝑋(𝑡)  that are associated with the membership of 𝑋(𝑡) in 𝛤 . An 

appropriate algorithm is further designed for flight dynamics control by utilizing the fuzzy 

model presented in this section. 
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4.3 Flight Dynamics Control 

Having effective control over a UAV’s flight dynamics would allow efficient flights in terms 

of their costs and safety. This section first defines the desired reference model for the chosen 

model-based control strategy by utilizing the LQR controller that performed very well under 

ideal conditions for the UAS-S4. The controlled model specifications (using the LQR 

methodology) about the equilibrium point are considered as the reference specifications for the 

controlled model using the Robust Adaptive Fuzzy Logic Control (RAFLC) methodology. 

4.3.1 Reference Model 

Basically, a reference model should define the desirable response of the controlled system to 

the input command. The design of the reference model is one of the basic aspects of an adaptive 

control strategy. In addition to offering performance index values (whether for frequency-

domain or time-domain characteristics), the reference model should also satisfy its constraints, 

such as its relative degree and order. 

According to the above-mentioned concerns regarding the reference model definition, the 

desired reference model specifications are determined using the Linear Quadratic Regulator 

(LQR) procedure applied around the equilibrium point. An LQR controls the state variables 

using an optimal state-feedback law, that is computed while minimizing a fine-tuned cost 

function (Boughari & Botez, 2012). The design of an LQR is based on the linear state-space 

model representation, as given in Equation (4.1). The LQR algorithm calculates the control 

signal while minimizing the following energy-based cost function: 

 𝐽 = 12 𝑋 (𝑡)𝒬 𝑋(𝑡) + 𝛿 (𝑡) 𝑅 𝛿(𝑡) 𝑑𝑡 (4.7) 

where 𝒬 and 𝑅 are the weight matrices (positive-semi-definite or positive-definite), that clarify 

the importance of cost function related to the state vector and the control vector, respectively.  

Consequently, the LQR control law is: 

 𝛿(𝑡) = −𝛫 𝑋(𝑡) (4.8) 
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Following the state feedback gain 𝛫 and state variables vector 𝑋 values, the LQR procedure 

stabilizes the flight dynamics of the closed-loop model with respect to the state-space variables 

using Equation (4.9): 

 𝑋(𝑡) = (𝐴 − 𝐵𝛫) 𝑋(𝑡) + 𝐵𝛫 𝛿(𝑡) (4.9) 

The feedback gain Κ is computed by: 

 𝛫 = 𝑅 𝐵 𝒫 (4.10) 

where matrix 𝒫 is obtained by solving the following algebraic Riccati equation: 

 𝐴 𝒫 + 𝒫𝐴 + 𝒬 − 𝒫𝑃𝐵𝑅 𝐵 𝒫 = 0 (4.11) 

Next, the control block of the UAS-S4 model needs to be designed by taking into account the 

controlled reference model. The Fuzzy Logic Control (FLC) approach is employed in order to 

solve the challenge of model nonlinearities, as well as to outperform linear controllers. 

4.3.2 Fuzzy Logic Controller (FLC) 

Over the past two decades, the use of fuzzy logic for systems control has been developed for a 

variety of industrial applications. In most comparison studies, the FLC outperforms classical 

controllers in solving the challenges of nonlinearities, mathematical complexities, and in 

uncertainties removal (Babaei et al., 2011; J. Lin et al., 2020; Radhakrishnan & Swarup, 2020). 

In fact, FLC allowed obtaining accurate inputs from approximate inputs through an intuitive 

converting process (Babaei et al., 2011).  

Basically, the FLC implementation is done in three fundamental steps: fuzzification, fuzzy 

interface, and defuzzification (Mehrjerdi, Saad, & Ghommam, 2010). The fuzzification block 

converts crisp data into fuzzy data using proper membership functions. The prepared data is 

then fed to the Fuzzy Inference System (FIS), which processes the fuzzy data and performs the 

control tasks according to the IF-THEN rules. Finally, the computed fuzzy control signal is 

converted into its real signal values through the defuzzification block. The FLC signal is 

applied to the UAS-S4 flight dynamics which is modeled using FLM. This control signal is 
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computed as function of the error (the difference between the measured and the desired flight 

dynamics values). Figure 4.3 shows the concept of FLC utilized in the closed-loop architecture 

in charge of the UAS-S4 flight dynamics.  

 

Figure 4.3 The fuzzy logic controller utilized for the UAS-S4 flight dynamics 
 

Regarding the Takagi-Sugeno Fuzzy Logic Model (T-S FLM) described in subsection 4.2.2, 

the UAS-S4 FLM should be controlled by use of a compatible FLC. Hence, the T-S Fuzzy 

Logic Controller (T-S FLC) is needed to be designed. 

4.3.3 T-S Fuzzy Logic Controller 

Takagi-Sugeno Fuzzy Logic Control (T-S FLC) method can manage nonlinearities and time-

varying parameters while avoiding control algorithm complexity (Tseng, Chen, & Uang, 

2001). T-S FLC proved its efficiency on nonlinear systems in terms of state variables 

regulation and reference model tracking (Kamalasadan & Ghandakly, 2007). The T-S FLC is 

structured based on the classical feedback compensator theory (Doyle, Francis, & 

Tannenbaum, 2013), that is established for each local model. The rule-based control law can 

be mathematically represented by Equation (4.12) (Takagi & Sugeno, 1985). 

 Rule :  if      𝑥  is  𝛤  and … and 𝑥  is 𝛤 then  𝛿(𝑡) = −𝐾 𝑋(𝑡) + 𝑍 𝑟(𝑡)where 𝑖 = 1, … , 𝑗  (4.12) 

where the state variables are controlled by 𝛿(𝑡), and rely on the reference signal 𝑟(𝑡)  and 

adjustable gains denoted by 𝐾 ×  and 𝑍 × .  

The T-S FLC output is given by Equation (4.13): 
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 𝛿(𝑡) = ∑ 𝜙 (𝑡) −𝐾 𝑋(𝑡) + 𝑍 𝑟(𝑡)∑ 𝜙 (𝑡)  (4.13) 

By considering 𝜙 (𝑡) = ∏ 𝛤 𝑋(𝑡) , which activates the 𝑖th rule of the fuzzy controller 

based on the collected grades 𝛤 𝑋(𝑡)  associated with the membership of 𝑋(𝑡) in 𝛤 . With 

the aim of obtaining a zero-value tracking error, 𝜙 (𝑡) = 𝜙 (𝑡) 𝑍  should be determined in 

order to formulate Lyapunov function for the system to become asymptotically stable; when 

the gain of the reference signal value was 1, the controller could fires the proper rule with the 

same collected grade in the fuzzy model. 

The T-S control law can be reproduced, as shown in Equation (4.14): 

 𝜙 (𝑡)𝑍 𝛿(𝑡) − 𝜙 (𝑡)𝑍 −𝐾 𝑋(𝑡) + 𝑍 𝑟(𝑡) = 0 (4.14) 

Even though the FLC handles nonlinearities, it is affected by the adverse effects of parameters 

uncertainties. Since the concept of adjustable gains is supposed to overcome these problems, 

the modified Adaptive Fuzzy Logic Controller (AFLC) is employed, as it relies on adjustable 

gains. Additionally, we consider the other two main sources of uncertainties, namely "external 

disturbance", and " model imperfection". The robust adaptive configuration of the T-S FLC is 

our solution. 

4.3.4 Adaptive T-S Fuzzy Logic Controller 

In Control Systems Engineering, uncertainty is an issue that may appear due to a variety of 

reasons, and it can adversely affect controller performance. Uncertainty presence may reduce 

controller robustness, and may lead to systems dynamics instabilities. Therefore, an algorithm 

should control the nonlinear flight dynamics model while remaining efficient in the presence 

of uncertainties. To fulfill this objective, a reference model is defined by applying the T-S 

FLC. Then, the errors are measured by subtracting the UAS-S4 state variables values from the 

reference model’s state variables values (Cho et al., 2007). Finally, using a Lyapunov function 

(which relies on the measured error) for guarantying the flight dynamics asymptotic stability, 
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the adaptation laws for gain tuning are calculated. Equation (4.15) defines the reference model 

containing the desired state variables, as follows: 

 𝑋 (𝑡) = 𝐴 𝑋 (𝑡) + 𝐵 𝑟(𝑡) (4.15) 

If 𝑘 ×  and 𝑧 ×  are assumed to be the gains of the desired compensator corresponding to 

each fuzzy rule, which can regulate the closed-loop response, such that the UAS-S4 state 

variables exactly follow the reference model state variables, then 𝐴 = 𝐴 − 𝐵 𝑘  and 𝐵 =𝐵 𝑧  need to be satisfied. By rearranging these last formulations as 𝐴 = 𝐴 + 𝐵 𝑘  and 𝐵 =𝐵 𝑧 , and then, by substituting them into Equation (4.6), the aircraft’s T-S fuzzy logic 

representation using the reference model is given in Equation (4.16). 

 𝑋 (𝑡) = 𝐴 + ∑ 𝜙 (𝑡)𝐵 𝑧 𝑘∑ 𝜙 (𝑡) 𝑋 (𝑡) + ∑ 𝜙 (𝑡)𝐵 𝑧∑ 𝜙 (𝑡) 𝛿 (𝑡) (4.16) 

The error is defined as 𝐸(𝑡) = 𝑋(𝑡) − 𝑋 (𝑡). This error is further obtained by subtracting 

Equation (4.16) from Equation (4.15). Therefore, the next Equation (4.17) represents this error. 

 

𝐸  (𝑡) = 𝐴 𝐸 (𝑡) + ∑ 𝜙 (𝑡)𝐵 𝑧 𝑘∑ 𝜙 (𝑡) 𝑋 (𝑡)
+ ∑ 𝜙 (𝑡)𝐵 𝑧∑ 𝜙 (𝑡) 𝛿 (𝑡) − ∑ 𝜙 (𝑡)𝐵∑ 𝜙 (𝑡) 𝑟 (𝑡) 

(4.17) 

By replying Equation (4.14) into Equation (4.17), the error can be obtained using next Equation 

(4.18): 

 

𝐸  (𝑡) = 𝐴 𝐸 (𝑡) + ∑ 𝜙 (𝑡)𝐵 (𝑘 𝑧 − 𝐾 𝑍 )∑ 𝜙 (𝑡) 𝑋 (𝑡)
+ ∑ 𝜙 (𝑡)𝐵 (𝑧 − 𝑍 )∑ 𝜙 (𝑡) 𝛿 (𝑡) 

(4.18) 

In order to converge the error to zero, the following Lyapunov function for the stabilization 

analysis and reference signal tracking was employed: 
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𝑉 = 𝐸 𝑃𝐸 + 1𝛾 (𝑘 − 𝐾 ) 𝑧 (𝑘 − 𝐾 )

+ 1𝛾 (𝑧 − 𝑍 ) 𝑧 (𝑧 − 𝑍 )  

(4.19) 

where 𝑃 = 𝑃 > 0 is positive-definite matrices and  𝐴  stability assumption is guaranteed by 

use of 𝐴 𝑃 + 𝑃𝐴 < −𝑄    for all matrices 𝑄   = 𝑄 > 0. In addition, 𝛾  and 𝛾  are positive 

constant parameters that are used to finely tune the gains. The gains of the fuzzy controller in 

Equation (4.13) can be adjusted via the following adaptation laws (based on FLC gains and 

their derivatives), obtained by solving Equation (4.19) (Cho et al., 2007). 

 𝐾 = 𝛾 sign(𝑧  )𝜙 𝐵 𝑃𝐸 𝑋∑ 𝜙 ,𝑍 = −𝛾 sign(𝑧 )𝜙 𝐵 𝑃𝐸 (𝛿 + 𝐾 𝑋)𝑍 ∑ 𝜙  (4.20) 

The stability theorem of adaptive gains is given in (Cho et al., 2007). Uncertainties dues to the 

unknown controller’s parameters could affect the adaptive gain 𝑍 , and may approach it to zero 

value. Since adaptive gain 𝑍  appears in the denominator of Equation (4.20), in order to 

guarantee the model stability, the adaptation laws should be modified in cases when the 

denominator approaches to zero. Therefore, the modified tuning law for an adaptive fuzzy 

controller is represented in Equation (4.21) (S. M. Hashemi, R. M. Botez, & L. T. Grigorie, 

2020a): 

 

𝑍 = 𝑤 ,0,         if |𝑍 | > 𝑍     or     𝑍 = 𝑍   and 𝑤  sign(𝑍 ) < 0otherwise  
where                                    𝑤 = −𝛾  sign(𝑧  )𝐵 𝑃𝐸 (𝛿 + 𝐾 𝑋)𝑍 ∑ 𝜙  

(4.21) 

With respect to the stability proof given in (Cho et al., 2007), By assuming a uniformly-

bounded reference input while analyzing the stable reference model, the control law (𝐾 ,𝑍 ,𝜙 ) 

and tracking error 𝐸 were guaranteed bounded for all 𝑗 fuzzy logic rules. The convergence of 

the reference model was ensured, such that 𝑙𝑖𝑚→ 𝐸 (𝑡) = 0, as the tracking error 𝐸 converges 

to zero. This assumption is clarified in the mathematical proof of the general theorem 
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formulated for the designed robust adaptive fuzzy logic laws after Equation (4.26). Although 

the presented Adaptive Fuzzy Logic Controller (AFLC) can control nonlinear flight dynamics 

in the presence of uncertainties, that are dues to unknown controller’s parameters, it remains 

sensitive against other sources of uncertainties. Model imperfection and external disturbances 

are the two main causes of uncertainties that adversely affect controller performance, and both 

of them can be solved using robust control theory. 

4.3.5 Robust Adaptive T-S Fuzzy Logic Controller 

Robust control is a static approach that deals explicitly with uncertain parameters and 

disturbances. In other words, it is utilized to guarantee stability and to obtain robust 

performance while taking into account disturbances and modeling errors (both of which are 

assumed to be “bounded” (Chabir et al., 2016)).  

The uncertainties dues to external disturbances, such as wind shear, gust, and turbulence can 

be considered mathematically as bounded functions 𝑑(𝑋, 𝑡), in which 𝐷 × = [0  0 … 0  1] . 

 𝑋(𝑡) = ∑ 𝜙 (𝑡) 𝐴  𝑋(𝑡) + 𝐵  𝛿(𝑡)  ∑ 𝜙 (𝑡) + 𝐷𝑑(𝑋, 𝑡) (4.22) 

Additionally, even if an aircraft is modeled by a “skilled expert”, relying on “perfect aircraft 

data”, uncertainties in modeling may be dues to other causes: 

- Time-varying parameters, where a fixed controller can not always stabilize its state 

variables. 

- Ignoring high-order dynamics for the nominal model simplification. 

- Nonlinearities, where systems contain nonlinear dynamics, and models are represented 

approximately (such as our aircraft nonlinear dynamics, which is approximated using 

Fuzzy Logic modeling). 

Eventually, uncertainties associated with modeling errors of system dynamics can be added 

mathematically into the state-space matrices of a T-S fuzzy model, as shown in Equation 

(4.23): 
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 𝑋(𝑡) = ∑ 𝜙 (𝑡) [𝐴 + 𝜖 ] 𝑋(𝑡) + [𝐵 + 𝜖 ] 𝛿(𝑡)  ∑ 𝜙 (𝑡) + 𝐷𝑑(𝑋, 𝑡) (4.23) 

where the errors are bounded, such as 𝜖 < 𝜀 and 𝜖 < 𝜀 for 𝑖 = 1, … , 𝑗. 
Equation (4.23) can be written under the following form: 

 
𝑋 (𝑡) = 𝐴 + ∑ 𝜙 (𝑡)𝐵 𝑧 𝑘∑ 𝜙 (𝑡) 𝑋 (𝑡) + ∑ 𝜙 (𝑡)𝐵 𝑧∑ 𝜙 (𝑡) 𝛿 (𝑡)+ 𝜖(𝑋, 𝛿) + 𝐷𝑑(𝑋, 𝑡) 

(4.24) 

and then by considering the uncertainties defined as 𝑓(𝜖,𝑑) = 𝜖(𝑋, 𝛿) + 𝐷𝑑(𝑋, 𝑡) the model 

would be: 

 
𝑋 (𝑡) = 𝐴 + ∑ 𝜙 (𝑡)𝐵 𝑧 𝑘∑ 𝜙 (𝑡) 𝑋 (𝑡) + ∑ 𝜙 (𝑡)𝐵 𝑧∑ 𝜙 (𝑡) 𝛿 (𝑡)+ 𝑓(𝜖,𝑑) 

(4.25) 

Following a procedure for computing adaptive gains similar to the ones used in the previous 

subsection, and based on a robust control strategy (Dullerud & Paganini, 2013), the modified 

adaptation laws are: 

 

𝐾 = 𝛾  𝑠𝑖𝑔𝑛(𝑧  )𝜙 𝐵 𝑃𝐸 𝑋∑ 𝜙 − 𝜗𝐾 𝐸 , 
𝑍 = 𝑤 ,0,         if |𝑍 | > 𝑍     𝑜𝑟     𝑍 = 𝑍   and 𝑤  sign(𝑍 ) < 0otherwise  

𝑤 = −𝛾 sign(𝑧 )𝐵 𝑃𝐸 (𝛿 + 𝐾 𝑋)𝑍 ∑ 𝜙 − 𝜗𝑍 𝐸  

(4.26) 

Theorem: Considering a UAV flight dynamics model represented by Equation (4.25); its 

desired reference flight dynamics model is given in Equation (4.15) (which respects 𝐴 𝑃 +𝑃𝐴 < −𝑄    Inequality), in which the control function is represented by Equation (4.13), 

which is tuned by the robust adaptive laws, shown in Equation (4.26). By assuming uniformly-

bounded reference input and stable reference model, signals corresponding to the control law 

(𝐾 ,𝑍 ,𝜙 ) and 𝐸  are guaranteed to be bounded for all fuzzy rules. The reference model 
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tracking convergence is ensured, so that 𝑙𝑖𝑚→ 𝐸 (𝑡) = 0, as the tracking error 𝐸 converges to 

zero. 

Proof: The stability analysis is done based on the designed adaptive laws, as seen in Equations 

(4.20) and (4.21), by use of the Lyapunov function, described in Equation (4.19). The 

conditions |𝑍 | > 𝑍   or  𝑍 = 𝑍   and 𝑤  sign(𝑍 ) < 0 were considered, and 𝑉 = −𝐸 𝑄𝐸  

was obtained. In the condition expressed by 𝑍 = 𝑍 , when the Lyapunov function is 

represented with Equation (4.19), its time derivative is given by: 

 𝑉 = −𝐸 𝑄𝐸 + 2𝐸 𝑃∑ 𝜙 (𝑡) 𝐵  (𝑧 − 𝑍 )(𝐾 𝑋 + 𝛿)∑ 𝜙 (𝑡)  (4.27) 

As  |𝑧 | > 𝑍  , so that (𝑧 − 𝑍 )𝑠𝑖𝑔𝑛 (𝑧 ) < 0, therefore: 

 𝐸 𝑃∑ 𝜙 (𝑡) 𝐵  (𝑧 − 𝑍 )(𝐾 𝑋 + 𝛿)∑ 𝜙 (𝑡) < 0 (4.28) 

which means that 𝑉 < 0. Hence, for both conditions shown in Equation (4.21): 

 

𝑍 = 𝑤 ,0,         if |𝑍 | > 𝑍     or     𝑍 = 𝑍   and 𝑤  sign(𝑍 ) < 0otherwise  
𝑤ℎ𝑒𝑟𝑒         𝑤 = −𝛾  𝑠𝑖𝑔𝑛(𝑧  )𝐵 𝑃𝐸 (𝛿 + 𝐾 𝑋)𝑍 ∑ 𝜙  

(4.21) 

Following Equation (4.28) one obtains: 

 𝑉 > −𝐸 𝑄𝐸  (4.29) 

Therefore: 

 𝐸 𝐸  ≤  𝑉(0) − 𝑉(∞)𝜆  (𝑄)  (4.30) 

while relying on the Barbalat’s lemma, 𝑙𝑖𝑚→ 𝐸 (𝑡) = 0. 
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Then, by considering that the adaptive laws contain a robust term represented by Equation 

(4.26) in the conditions expressed by  |𝑍 | > 𝑍   or  𝑍 = 𝑍   and 𝑤  sign(𝑍 ) < 0, the 

Lyapunov function is expressed by Equation (4.19), therefore, its time derivative becomes:  

 

𝑉 ≤ −𝜆  (𝑄) 𝐸 + 3𝜆  (𝑃)𝜀 𝐸 + 𝜆  (𝑃)𝜀‖𝑋 ‖+ 2𝜆  (𝑃)𝜀 ‖𝐾 ‖ 𝐸
+ 2𝜆  (𝑃)𝜀 𝐸  |𝑍 𝑟| + ‖𝐾 ‖ 𝐸
− 𝜗 (𝑘 − 𝐾 ) 𝑧 (𝑘 − 𝐾 )
− 𝜗 𝑧 (𝑧 − 𝑍 )
+ 𝜗 (𝑘 − 𝐾 ) 𝑧 − 𝐾 𝐸
+ 𝜗 (𝑧 − 𝑍 ) 𝑧 − 𝑍 𝐸  

(4.31) 

We can determine 𝑄 , so that 6𝜆 (𝑃)𝜀 < 𝜆 (𝑄). Therefore: 

 

𝑉 ≤ − 12 𝜆  (𝑄) 𝐸 + 𝜆  (𝑃)𝜀‖𝑋 ‖
+ 2𝜆  (𝑃)𝜀 ‖𝐾 ‖ 𝐸
+ 2𝜆  (𝑃)𝜀 𝐸  |𝑍 𝑟| + ‖𝐾 ‖ 𝐸
− 𝜗 (𝑘 − 𝐾 ) 𝑧 (𝑘 − 𝐾 )
− 𝜗 𝑧 (𝑧 − 𝑍 )
+ 𝜗 (𝑘 − 𝐾 ) 𝑧 − 𝐾 𝐸
+ 𝜗 (𝑧 − 𝑍 ) 𝑧 − 𝑍 𝐸  

(4.32) 
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If we consider that: 
 𝑉 ≤ −𝛼𝑉 + 𝛽 (4.33) 

Where: 

 𝛼 = 𝑚𝑖𝑛 12 𝜆 (𝑄),𝜗𝑚𝑎𝑥 𝜆 (𝑄), 𝛾 , 𝛾  (4.34) 

And: 

 

𝛽 = 𝜆  (𝑃)𝜀‖𝑋 ‖ + 2𝜆  (𝑃)𝜀 ‖𝐾 ‖ 𝐸
+ 2𝜆  (𝑃)𝜀 𝐸  |𝑍 𝑟| + ‖𝐾 ‖ 𝐸
+ 𝜗 (𝑘 − 𝐾 ) 𝑧 − 𝐾 𝐸
+ 𝜗 (𝑧 − 𝑍 ) 𝑧 − 𝑍 𝐸  

(4.35) 

Therefore, 𝑉 ≤  causes exponentially convergence of the Lyapunov function, and feasible 

stable region in order to guarantee the flight dynamics stability is:  

 𝕆 = 𝑥  𝛽𝛼 < 𝑉  (4.36) 

In other words, adaptive gains guarantee the flight dynamics stability, as long as the amount 

of bounded uncertainties respect the threshold (the border of Equation (4.36) as the feasible 

stable region). Additionally, the leakage factor 𝜗 in the robust term should be carefully tuned 

based on a trade-off; a larger value for 𝜗 improves the controller robustness, while a smaller 

value provides more accurate reference model state variables tracking (Blažič, Matko, & 

Škrjanc, 2010). The mechanism of our designed T-S-based robust adaptive fuzzy logic 

controller (RAFLC) block diagram is depicted in Figure 4.4. 
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Figure 4.4 The designed robust adaptive T-S fuzzy logic 
controller (RAFLC) mechanism 
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4.4 Results 

The effectiveness of the designed RAFL controller is evaluated in terms of UAS-S4 state 

variables stabilization and reference model state variables tracking. The efficiency of 

adaptation laws can be assessed by the convergence of the reference model’s state variables 

tracking error. The designed RAFL controller was utilized for all trim conditions and showed 

very good servo-accuracy performance. The numerical results corresponding to several trim 

conditions were utilized to demonstrate the controller’s functioning in details. By assuming 

that the aircraft is in the trim condition at the 𝑠𝑝𝑒𝑒𝑑 = 45 𝑚/𝑠, 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 = 6,100 𝑚, and its 

mass is varying in time between 53 kg and 55 kg, the trim for the local models of the UAS-S4 

are obtained through the following two Fuzzy Logic rules: 

𝑅𝑢𝑙𝑒 1:    if 𝐸  is positive    then 𝑋(𝑡) = 𝐴 𝑋(𝑡) + 𝐵 𝛿(𝑡)𝑅𝑢𝑙𝑒 2:    if 𝐸  is negative   then 𝑋(𝑡) = 𝐴 𝑋(𝑡) + 𝐵 𝛿(𝑡) 

Knowing that, the UAS-S4 Fuzzy model was designed using 216 local FDMs. If a reference 

model was not employed, we had to calculate the membership functions using state variables. 

But, since we firstly designed the desired reference model, and the UAS-S4 FDM was 

supposed to track the reference model, we utilized the tracking error for calculating 

membership functions (which were used for all trim conditions). Hence, we defined the 

membership functions such that: 

𝑀𝐹 = 0, 𝐸 < −0.10.5 + 5𝐸1, 𝐸 > +0.1  , 𝑀𝐹 = 1, 𝐸 < −0.10.5 − 5𝐸0, 𝐸 > +0.1   
The corresponding longitudinal and lateral state-space matrices are: 

𝐴 = −0.0726−0.3729−0.13080
0.2346−4.5992−1.35990

−0.954743.33250.46641
−9.7830−0.2240−0.01180 ,  𝐵 = −0.01330.0631−0.15250  
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𝐴 = −0.0640−0.3616−0.13690
0.2434−4.2617−1.26850

−1.087043.82660.44551
−9.7844−0.2514−0.01260 ,  𝐵 = −0.01240.0592−0.14540  

𝐴 = −0.2423−0.06190.08700
0.2954−12.8788−0.23681

−50.32860.8274−0.16020.0060
9.7613000 ,  𝐵 = 00.6512−0.00780

0.03860.0074−0.16280  

𝐴 = −0.2473−0.05940.09550
0.0629−14.2328−0.18861

−56.07170.8345−0.17480.0013
9.7615000 ,  𝐵 = 00.8058−0.00810

0.04400.0091−0.19930  

and the reference model state-space matrices for longitudinal and lateral flight dynamics are 

expressed by: 

𝐴 = −0.07073−0.3818−0.10930
0.2392−4.621−1.3070

−0.970443.410.28671
−9.97600.6919−2.2250 ,  𝐵 = 0.17770−0.8432.0370  

𝐴 = −0.2423−0.06550.08690
0.2992−13.227−0.24881

−50.32430.5562−0.17510.0060
9.8117−4.6161−0.15730 ,  𝐵 = 04.6072−0.0550

0.27770.0532−1.1710  

To analyze the designed controller effectiveness, the convergence of state variables (flight 

dynamics) for the reference model and controlled UAS-S4 model are evaluated during the 

flight dynamics stabilization. Regarding the initial state variables vectors 𝑋 = [0  0  0  0.1]  

and 𝑋  = [0  0  0  0.08] , Figure 4.5 depicts the Robust Adaptive Fuzzy Logic Controller 

(RAFLC) performance in terms of pitch angle, pitch rate, roll angle, and yaw rate stabilization 

while tracking those of the reference model, with respect to the control surfaces angles 

deflection limits (−20 < 𝛿 < 15, −40 < 𝛿 < 40, 𝑎𝑛𝑑 − 30 < 𝛿 < 30 ). 
For the longitudinal flight dynamics study, Figure 4.5(a) and Figure 4.5(c) show that the RAFL 

controller can stabilize the UAS-S4 pitch angle and the pitch rate, respectively. Figure 4.5(b) 

shows the elevator deflection during the pitch angle stabilization. For the lateral flight 
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dynamics study, Figure 4.5(d) and Figure 4.5(f) illustrate the UAS-S4 roll angle and yaw rate 

regulation, respectively. Figure 4.5(e) shows the aileron deflection during the roll angle 

stabilization. 

 

Fig 4.5(a) Pitch angle stabilization of the controlled UAS-S4 
with respect to the reference model 

 

 

Fig 4.5(b) The UAS-S4 elevator angle deflection time 
variation in order to control the pitch angle 
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Fig 4.5(c) Pitch rate stabilization of the controlled UAS-S4 
with respect to the reference model 

 

 

Fig 4.5(d) Roll angle stabilization of the controlled UAS-S4 
with respect to the reference model 
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Fig 4.5(e) The UAS-S4 aileron angle deflection time variation 
in order to control the roll angle 

 

 

Fig 4.5(f) Yaw rate stabilization of the controlled UAS-S4 with 
respect to the reference model 

 
Figure 4.5 the RAFL controller performance in terms of 

longitudinal and lateral state variables stabilization 
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State variables stabilization using the RAFL control mechanism was performed very well, 

while the UAS-S4 state variables track the reference model’s state variables as well. Tracking 

the reference model state variables including pitch angle, pitch rate, roll angle, and yaw rate 

are shown in figure 4.6 during stabilization.  

Figure 4.6(a) indicates the pitch angle and pitch rate convergence during stabilization. Figure 

4.6(b) depicts the convergence error, that is expressed as the difference between the controlled 

UAS-S4 pitch angle and its reference pitch angle.  Figure 4.6(c) shows the roll angle and yaw 

rate convergence towards stabilization. The convergence error obtained between the reference 

model and the controlled UAS-S4 model for the roll angle is shown in Figure 4.6(d). 

 

 

Fig 4.6(a) Convergence of longitudinal state variables 
(including pitch angle and pitch rate) while the UAS-S4 is 

tracking the reference model with the aim of stabilizing its state 
variables. 
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Fig 4.6(b) Convergence error between the reference model and 
the controlled UAS-S4 for the pitch angle 

 
 

 

Fig 4.6(c) Convergence of lateral state variables (including roll 
angle and yaw rate) while the UAS-S4 is tracking the reference 

model with the aim of stabilizing its state variables. 
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Fig 4.6(d) Convergence error between the reference model and 
the controlled UAS-S4 for the roll angle 

 
Figure 4.6 The RAFL controller performance in terms of 

convergence error 

It should be noted that this work is a part of an ongoing research project to design a novel aerial 

collision avoidance system. This project will predict the future trajectory of an aircraft, and if 

a conflict will detected, then the system will provide a new safe trajectory for the aircraft to 

follow (S. M. Hashemi, R. M. Botez, & T. L. Grigorie, 2020b). According to the Traffic 

Collision Avoidance System (TCAS) criteria (Munoz et al., 2013), our UAS-S4 has to change 

its altitude using its elevator in order to avoid collisions. Hence, we analyzed our RAFL 

controller performance in terms of reference pitch angle tracking. With this aim, soft time-

varying bounded signals are considered as the controller reference input in order to evaluate 

the controller’s performance. For evaluating this model-based RAFL controller, the tracking 

error (the error obtained when the controlled UAS-S4 state variables track the reference model 

state variables) is considered as the “performance index”. In this approach, a valid bounded 

reference input excites both the UAS-S4 and its reference model state variables, and the 

tracking error should converge to zero. Assuming the reference state as 𝜃 = 1.7 cos 0.5𝑡 , and 

initial condition given as 𝑋 = [0  0  0  0.2]  and 𝑋  = [0  0  0  0.18] , the RAFL controller 

performance is shown in   Figure 4.7.  
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Fig 4.7(a) The UAS-S4 state variable is tracking the reference 
model pitch angle 

 

 

Fig 4.7(b) Concurrent longitudinal reference model state 
variables tracking 

 
Figure 4.7 RAFLC performance in terms of pitch angle and 

pitch rate tracking in the absence of uncertainties 
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where the RAFL controller task is to control the UAS-S4 state variables, such that they track 

the reference model state variables accurately. As seen in Figures 4.7(a) and 4.7(b), the 

designed controller for UAS-S4 is able to perform its task in terms of reference model state 

variables tracking. 

The adaptive gains effectiveness is well identified when uncertainties are considered. We 

therefore incorporated the uncertainties dues to the unknown controller’s parameters (𝑓 = 0.02 cos 𝑡), and the controller performance was quantified in terms of pitch angle as state 

variable. Figure 4.8 shows the controller effectiveness in terms of the reference model state 

variables tracking by the controlled UAS-S4 state variables (Figure 4.8(a)), and tracking errors 

(Figure 4.8(b)). Figure 4.8(a) shows that, even though the RAFL controller efficiency was 

slightly degraded in terms of integrated tracking error (especially at the extremums), the RAFL 

controller could still handle the unknown controller’s parameters uncertainties. Its 

performance is very good accordingly the reference model’s tracking error, as shown in Figure 

4.8(b). 

 

Fig 4.8(a) The reference model pitch angle tracking by 
controlled UAS-S4 state variables 
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Fig 4.8(b) The tracking error convergence for pitch angle 

Figure 4.8 The RAFL controller performance in terms of the 
reference model pitch angle tracking in the presence of 

uncertainties caused by unknown controller’s parameters 

In addition to the uncertainties related to the controller, model external disturbances and 

modeling errors are other sources of uncertainties that the controller is designed to remove 

their adverse effects. Figure 4.9 shows the efficiency of the controller under all considered.  

 
Fig 4.9(a) The reference model pitch angle tracking by 

controlled UAS-S4 state variable 
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Fig 4.9(b) Controlled UAS-S4 state variables track the reference 
model state variables 

 
Figure 4.9 The RAFL controller performance in presence of 

external disturbances and modeling errors 

 

As shown in Figure 4.9, the controlled UAS-S4 state variables (pitch angle and pitch rate) 

followed the reference model state variables quite accurately. Although the controller 

performance slightly decreased compared to the case of controller’s uncertainty (Figure 4.8), 

especially at the extremums, the robust terms 𝜗𝐾 𝐸  and 𝜗𝑍 𝐸  in the adaptation laws 

could handle all uncertainties dues to the controller parameters, such as model external 

disturbances and modeling errors. 

The next challenge is the controller robustness threshold required to respect a feasible region 

for guarantying UAS-S4 stability. Figure 4.10 displays a visual representation of the 

uncertainties surpassing the feasible region. This figure shows three separate time varying 

regions. The first region (0 − 20 sec) shows the quality of the reference model state variables 

tracking (by controlled UAS-S4 state variables) when it is not affected by uncertainties.  
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Figure 4.10 Comparing the AFLC with the Robust AFLC 

(RAFLC) in terms of reference model tracking for different  
uncertainties situations (from none to unbounded) 
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The second region (20 − 42 sec) depicts the controller performance when uncertainties 

(unknown controller’s parameters, external disturbances and modeling errors) are considered 

in which 𝑓(𝜖,𝑑) =  0.05 cos 0.9𝑡 + 0.01 cos 7𝑡, and indicates that the controller does  

manage the bounded uncertainties after a short initial adjustment period. The third region (42 − 50 sec) illustrates the state variables trajectories when the uncertainties surpass their 

boundaries, and therefore, the controller can not guarantee the stability and convergence of the 

UAS-S4 state variables, as the uncertainties moved the state variables outside the feasible 

region.  

For comparison purposes, the RAFLC and AFLC approaches were chosen in the flight 

dynamics control algorithm. As seen on Figure 4.10, when uncertainties were dues to the 

external disturbances and model imperfection, the RAFLC approach could track the reference 

state variable with less fluctuations than the AFLC approach. The average time delays for the 

RAFLC and AFLC approaches were 0.3 sec and 0.01 sec, respectively. In real-time operations, 

these average time delays are acceptable. Therefore, it can be concluded that the RAFLC 

outperformed the AFLC, and has provided a stabler flight in presence of uncertainties. 

In addition to the above approaches for controller performance evaluation, the controller 

effectiveness can be assessed based on the tracking error value. In this approach, the 

differences between the controlled UAS-S4 and its reference model state variables are 

measured; they are further considered for evaluation the RAFL controller performance. In 

details, by considering the sampling time (0.01 seconds), the Sum of Absolute Tracking Errors 

(SATE) while the controlled UAS-S4 state variables are tracking the reference model state 

variables (during 40 seconds) characterizes the “performance index”.  

The SATEs for two types of reference models in three trim conditions are represented on 

Tables 4.2 - 4.4. Concretely, each individual reference model was stabilized using the LQR 

procedures by determining both proper weighting matrices (𝒬 and 𝑅). The stabilized reference 

model by assuming 𝒬 = 1 and 𝑅 = 1 is named “moderate”, and the stabilized reference model 

by assuming 𝒬 = 50 and 𝑅 = 1 is named “rigorous”. 
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Table 4.2 Sum of Absolute Tracking Errors  (𝑡𝑖𝑚𝑒 = 40 𝑠𝑒𝑐 and 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =0.01 𝑠𝑒𝑐) while the controlled UAS-S4 state variables are tracking the reference model states 

Flight 
condition 

Considered 
uncertainties 

Reference 
model 

Sum of Absolute 
Tracking Errors (SATE) 
Pitch angle  (𝑟𝑎𝑑) 

Pitch rate (𝑟𝑎𝑑/𝑠) 

Altitude =   6,100 𝑚 
Speed =  45 𝑚/𝑠 
Mass = 
 53 − 55 𝑘𝑔 
 

without uncertainty 
Moderate 14.55 13.32 
Rigorous  15.16 13.81 

unknown controller’s 
parameters  

Moderate 25.62 24.53 
Rigorous  27.03 25.99 

unknown controller’s 
parameters, external 
disturbances,  
and model imperfection 

Moderate 33.56 30.85 

Rigorous  40.52 33.57 

Altitude = 3000 𝑚 
Speed =  39 𝑚/𝑠 
Mass =  65 − 67 𝑘𝑔 

without uncertainty 
Moderate 14.71 13.45 
Rigorous  15.33 13.94 

unknown controller’s 
parameters  

Moderate 25.82 24.79 
Rigorous  27.27 26.31 

unknown controller’s 
parameters, external 
disturbances,  
and model imperfection 

Moderate 33.92 31.26 

Rigorous  40.88 33.98 

Altitude =  100 𝑚 
Speed = 
 26 𝑚/𝑠 
Mass =  
75−77 𝑘𝑔 

without uncertainty 
Moderate 14.84 13.66 
Rigorous  15.46 14.05 

unknown controller’s 
parameters  

Moderate 25.98 24.95 
Rigorous  27.46 26.36 

unknown controller’s 
parameters, external 
disturbances,  
and model imperfection 

Moderate 34.09 31.44 

Rigorous  41.34 34.34 

 

According to the recorded tracking error for both pitch angle and pitch rate, it can be inferred 

that there is a proportional relationship between the SATE value and the reference model 

rigorousness. When the reference model is tuned such that, it strictly concerns fast time-domain 

response, tracking the reference model state variables becomes more difficult for RAFL 

controlled UAS-S4, and consequently, the tracking accuracy decreases. 
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Another observation is that although the robust adaptive fuzzy controller can guide the UAS-

S4 state variables to track very well the reference model state variables, its accuracy degrades 

when large uncertainties occur. This inference is obtained from Table 4.3 that lists the SATEs 

for different uncertainties  𝑓(𝜖,𝑑) in three flight conditions, and for two types of reference 

models. 

Table 4.3 Sum of Absolute Tracking Errors (𝑡𝑖𝑚𝑒 = 40 𝑠𝑒𝑐 and 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =0.01 𝑠𝑒𝑐) while the controlled UAS-S4 state variables are tracking the reference model state 
variables in the presence of various uncertainties 

 
Flight  
condition 
 

 
Uncertainties 𝑓(𝜖,𝑑) 

 
Reference 

model 
 

Sum of Absolute Tracking 
Error (SATE) 

Pitch angle  (𝑟𝑎𝑑) 
Pitch rate (𝑟𝑎𝑑/𝑠) 

Altitude = 6,100 𝑚 
Speed = 45 𝑚/𝑠 
Mass = 53 − 55 𝑘𝑔 

0.05 sin 0.9t+ 0.01 cos 7t Moderate 26.67 25.62 
Rigorous 28.34 27.34 0.07 sin 0.9t+ 0.01 cos 7t Moderate 28.35 26.46 
Rigorous 30.21 28.11 

Altitude = 3000 𝑚 
Speed = 39 𝑚/𝑠 
Mass = 65 − 67 𝑘𝑔 

0.05 sin 0.9t+ 0.01 cos 7t Moderate 26.96 25.89 
Rigorous 28.61 27.63 0.07 sin 0.9t+ 0.01 cos 7t Moderate 28.66 26.75 
Rigorous 30.49 28.52 

Altitude = 100 𝑚 
Speed = 26 𝑚/𝑠 
Mass = 75−77 𝑘𝑔 

0.05 sin 0.9t+ 0.01 cos 7t Moderate 27.08 26.01 
Rigorous 28.75 27.73 0.07 sin 0.9t+ 0.01 cos 7t Moderate 28.72 26.84 
Rigorous 30.60 28.51 

 

For instance, in the second flight condition (Altitude = 3000 𝑚, Speed = 39 𝑚/𝑠, Mass = 65 −67 𝑘𝑔), by considering “rigorous” reference model (𝒬 = 50 and 𝑅 = 1), the pitch rate SATE 

is 27.63 𝑟𝑎𝑑 𝑠 for smaller uncertainties (0.05 sin 0.9t), and the pitch rate SATE is 28.52 𝑟𝑎𝑑 𝑠 for larger uncertainties (0.07 sin 0.9t). 
Finally, according to the RAFLC architecture, adaptation weights are assigned to the adaptive 

laws in order to regulate the RAFL controller gain. The SATE for different adaptation weights 

values are listed in Table 4.4. 
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Table 4.4 Sum of Absolute Tracking Errors (𝑡𝑖𝑚𝑒 = 40 𝑠𝑒𝑐 and 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =0.01 𝑠𝑒𝑐) the controlled UAS-S4 state variables are tracking the reference model state 
variables in the presence of uncertainties for different adaptation weight values 

 
Flight condition 

 
Adaptation weights 

 
Reference model 

 

Sum of Absolute  
Tracking Error (SATE) 
Pitch angle  (𝑟𝑎𝑑) 

Pitch rate (𝑟𝑎𝑑/𝑠) 

Altitude = 6,100 𝑚 
Speed = 45 𝑚/𝑠 
Mass = 53 − 55 𝑘𝑔 

𝛾 = 𝛾 = 0.001 
Moderate 26.67 25.62 
Rigorous 28.34 27.34 𝛾 = 𝛾 = 0.0001 
Moderate 25.96 24.91 
Rigorous 27.68 26.69 

Altitude = 3000 𝑚 
Speed = 39 𝑚/𝑠 
Mass = 65 − 67 𝑘𝑔 

𝛾 = 𝛾 = 0.001 
Moderate 26.96 25.89 
Rigorous 28.61 27.63 𝛾 = 𝛾 = 0.0001 
Moderate 26.25 25.22 
Rigorous 27.93 26.95 

Altitude = 100 𝑚 
Speed = 26 𝑚/𝑠 
Mass = 75 − 77 𝑘𝑔 

𝛾 = 𝛾 = 0.001 
Moderate 27.08 26.01 
Rigorous 28.75 27.73 𝛾 = 𝛾 = 0.0001 
Moderate 26.35 25.33 
Rigorous 28.04 26.98 

 

Table 4.4 shows that small values for the weights of adaptation laws result in lower SATE. For 

instance, in the first flight condition (Altitude = 6,100 𝑚, Speed = 45 𝑚/𝑠, Mass = 53 −55 𝑘𝑔), by considering “Moderate” reference model (𝒬 = 1 and 𝑅 = 1), the pitch angle SATE 

is 26.67 rad if the adaptation weights are small (𝛾 = 𝛾 = 0.0001 if the adaptation weights 

are large (𝛾 = 𝛾 = 0.001), and pitch angle SATE is 25.96 rad if the adaptation weights are 

small (𝛾 = 𝛾 = 0.0001). However, these weights must be carefully tuned, as if they would 

be too-small, they could cause the UAS-S4 state variables to drift outside the feasible region.  

4.5 Conclusion 

A Robust Adaptive Fuzzy Logic (RAFL) flight dynamics controller was designed for Hydra 

Technologies UAS-S4 Ehecatl. The UAS-S4 was mathematically modeled using the Takagi-

Sugeno fuzzy logic method to design its corresponding controller.  Adaptive gains were 

assigned to the fuzzy controller to ensure that it could perform very well despite uncertainties. 

For the adaptive control mechanism, a reference model was defined, which was stabilized 
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through the LQR method. The numerical results show that there is an inverse relationship 

between the reference model rigorousness and the RAFL controller performance. When the 

controlled UAS-S4 state variables track the reference model state variables, the tracking errors 

increase if the reference model strictly determines ideal time-domain response properties, such 

as rise-time or settling-time. The tuneable controller gains were adjusted utilizing Lyapunov-

based adaptation laws, that became robust against uncertainties. The controller’s performance 

was evaluated in terms of reference model state variables tracking for a variety of uncertainties. 

In-line with the requirements for cruise conditions, the RAFL controller was able to stabilize 

the UAS-S4 lateral and longitudinal flight dynamics, as well as the reference model state 

variables; the tracking error converged to zero. In addition, Sum of Absolute Tracking Errors 

(SATE) results proved that the RAFL controller could handle uncertainties that were dues to 

the controller's unknown parameters, modeling errors, and external disturbances. Small values 

for the weights of adaptation laws resulted in lower SATE. Based on numerical studies, for 

higher values of uncertainties, the controller performance degraded slightly; however, the 

controller could maintain the UAS-S4 state variables in the asymptotically stable region. The 

robust control algorithms showed that if the uncertainties surpass their boundaries, the 

controller cannot guarantee the reference model state variables’ tracking. For further studies, 

we recommend the RAFL controller development by utilizing a fuzzy logic reference model 

to improve the RAFLC efficiency in order to reduce reference state variables tracking error. 
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Résumé 

Un modèle de dynamique de vol (FDM) précis du système aérien sans pilote (UAS) nous 

permet de concevoir un contrôleur efficace dans ses premières phases de développement et 

d'augmenter la sécurité tout en réduisant les coûts. Les tests en vol sont normalement effectués 

pour un nombre préétabli de conditions de vol, puis des méthodes mathématiques sont utilisées 

pour obtenir le FDM pour l'enveloppe de vol. Pour notre UAS-S4 Ehecatl, 216 FDM locaux 

correspondant à différentes conditions de vol ont été utilisés pour créer son modèle de 

dynamique de vol de planification linéaire locale (LLS-FDM). Les données initiales de 

l'enveloppe de vol contenant 216 FDM locaux ont été augmentées à l'aide de méthodologies 

d'interpolation et d'extrapolation, augmentant ainsi le nombre de FDM locaux compensés de 

216 jusqu'à 3 642. En s'appuyant sur cet ensemble de données augmenté, la méthodologie 

Support Vector Machine (SVM) a été utilisée dans l’algorithme de régression d'analyse 

comparative en raison de ses excellentes performances lorsque les échantillons d'apprentissage 

ne pouvaient pas être séparés d’une manière linéaire. La régression de vecteur de support 

(SVR) entraînée a prédit le FDM pour l'ensemble du domaine de vol. Même si le SVR-FDM 

ait montré d'excellentes performances, il est resté vulnérable aux attaques adverses. Par 

conséquent, nous l'avons modifié à l'aide d'un algorithme de défense de reconversion 

contradictoire en le transformant en un SVR-FDM robuste. Pour les études de validation, la 
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qualité du FDM de l’UAS-S4 prédit a été évaluée en se basant sur le diagramme du lieu des 

racines (Root Locus). La proximité des valeurs propres prédites vers les valeurs propres 

d’origine a confirmé la très grande précision du SVR-FDM de l’UAS-S4. La précision de la 

prédiction du SVR a été évaluée pour 216 conditions de vol, différents nombres de voisins, et 

des diverses fonctions du noyau ont également été prises en compte. De plus, les performances 

de régression ont été analysées en se basant sur la réponse échelonnée des variables d'état dans 

l'architecture de contrôle en boucle fermée. Le SVR-FDM a fourni le temps de montée et le 

temps de stabilisation les plus courts, mais il a échoué lorsque des attaques contradictoires ont 

imposé le SVR. Cependant, les propriétés de réponse pas à pas du Robust-SVR-FDM ont 

montré qu'elle pouvaient fournir des résultats plus précis que l'approche LLS-FDM, tout en 

protégeant le contrôleur des attaques adverses. 

Abstract 

An accurate Unmanned Aerial System (UAS) Flight Dynamics Model (FDM) allows us to 

design its efficient controller in early development phases, and to increase safety while 

reducing costs. Flight tests are normally conducted for a pre-established number of flight 

conditions, and then mathematical methods are used to obtain the FDM for the entire flight 

envelope. For our UAS-S4 Ehecatl, 216 local FDMs corresponding to different flight 

conditions were utilized to create its Local Linear Scheduling Flight Dynamics Model (LLS-

FDM). The initial flight envelope data containing 216 local FDMs was further augmented 

using interpolation and extrapolation methodologies, thus increasing the number of trimmed 

local FDMs up to 3642. Relying on this augmented dataset, the Support Vector Machine 

(SVM) methodology was used as a benchmarking regression algorithm due to its excellent 

performance when training samples could not be separated linearly. The trained Support 

Vector Regression (SVR) predicted the FDM for the entire flight envelope. Although the SVR-

FDM showed an excellent performance, it remained vulnerable against adversarial attacks. 

Hence, we modified it using an adversarial retraining defense algorithm by transforming it into 

a Robust SVR-FDM. For validation studies, the quality of predicted UAS-S4 FDM was 

evaluated based on the Root Locus diagram. The predicted eigenvalues’ closeness to the 

original eigenvalues confirmed the high accuracy of the UAS-S4 SVR-FDM. The SVR 
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prediction accuracy was evaluated at 216 flight conditions, for different numbers of 

neighbours, and a variety of kernel functions were also considered. In addition, the regression 

performance was analyzed based on the state variables’ step response in the closed-loop control 

architecture. The SVR-FDM provided the shortest rise-time and settling time, but it failed 

when adversarial attacks imposed the SVR.  However, the Robust-SVR-FDM step response 

properties showed that it could provide more accurate results than the LLS-FDM approach, 

while protecting the controller from adversarial attacks. 

5.1 Introduction 

Unmanned Aerial Systems (UASs) have been successfully utilized mainly for surveillance and 

reconnaissance (Ebeid, Skriver, Terkildsen, Jensen, & Schultz, 2018; Saggiani et al., 2007). 

The fast-growing demand for UASs highlights the need of special attention to the safety and 

efficiency of such critical systems (Alzahrani, Oubbati, Barnawi, Atiquzzaman, & Alghazzawi, 

2020). According to the aviation transportation industry, the advancement of flight dynamics 

modelling and control is one of the most important factors needed to improve the safety and 

efficiency of UASs (Stengel, 2015; Vega et al., 2020). Hence, our goal is to design such an 

intelligent algorithm for accurate flight dynamics modelling that improves the corresponding 

controller performance.  

The UAS-S4 Ehecatl (designed and manufactured by Hydra Technologies company) was 

utilized to evaluate and experimentally validate the developed FDM algorithm and controller 

(R. Botez, 2018). Figure 5.1 shows the Hydra Technologies’ UAS-S4 Ehecatl. 
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Figure 5.1 Hydra Technologies UAS-S4 Ehecatl 
 

This UAS is equipped with elevators, ailerons, and rudders that control moments around the 
pitch, roll, and yaw axes. Table 5.1 lists its main specifications. 

Table 5.1 The UAS-S4 geometrical and flight data Specification 

Specifications Values 
Wingspan 4.2 m 
Wing area 2.3 m2 
Total length 2.5 m 
Mean aerodynamic chord 0.57 m 
Empty weight  50 kg 
Maximum take-off weight 80 kg 
Loitering airspeed 35 knots 
Maximum speed 135 knots 
Service ceiling 15000 ft 
Operational range 120 km 

In this context, the "model" refers to the mathematical representation of the UAS-S4 Flight 

Dynamics Model (FDM). UAS modeling is crucial, as its FDM is used for the design and 

development of a flight dynamics controller. Having access to an UAS-S4 FDM enhances our 

ability to evaluate its controller performance in the early stage of its development; which 

allowed us to increase its flight safety while reducing flight costs (Chabir et al., 2016; Ghazi, 

Botez, & Achigui, 2015; Q. Wang & Stengel, 2004; Zhou et al., 2021).  
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The UAS-S4 FDM was obtained based on 216 flight cases (M. Kuitche, Segui, Botez, & Ghazi, 

2017; M. A. J. Kuitche & Botez, 2019; M. A. J. Kuitche, Botez, Guillemin, & Communier, 

2020a, 2020b) using the equipment including an UAS-S4, a wind-tunnel (R. Botez, 2018), and 

a level D research aircraft flight simulator (R. M. Botez et al., 2015). The flight envelope 

consisted of 216 local FDMs, where each FDM designed for a specific range of altitude, speed, 

and mass. The trimmed local FDMs were represented based on the state-space system, 

linearized around their corresponding equilibrium points. Given that local FDMs’ accuracy 

decreases with the increasing distance with respect to their equilibrium points, a proper 

regression can thus provide a more precise FDM for the entire flight envelope (Mosbah, Botez, 

& Dao, 2016). 

For the regression problems, data-driven algorithms have shown great efficiency in a variety 

of applications (Andrianantara, Ghazi, & Botez, 2021; Hashemi et al., 2020b; Segui & Botez, 

2021). Despite their excellent performance in terms of regression accuracy, they have 

disadvantages related to their high dependency on a large quantity of training data. For data-

driven regression using small-sized datasets, training data augmentation is required (Santi, 

Ceruti, Liverani, & Osti, 2021; Van Dyk & Meng, 2001). With this aim, “interpolation” and 

“extrapolation” are the most well-known practical methods for data augmentation, and both of 

them operate based on the k-nearest neighbors principal (Giridhara, Mishra, Venkataramana, 

Bukhari, & Dengel, 2019). Relying on an augmented dataset, data-driven algorithms can safely 

be employed for FDM regression. In this study, we utilized the Support Vector Regression 

(SVR) methodology as the benchmarking algorithm. Because it has excellent ability when 

training samples can not be separated linearly (Awad & Khanna, 2015). Figure 5.2 shows this 

procedure for developing the UAS-S4 Flight Dynamics Model (FDM). 
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Figure 5.2 The procedure to obtain the UAS-S4 FDM for its entire flight envelope 
 

As shown in Figure 5.2, a flight envelope containing 216 local state-space FDMs 

corresponding to various trim flight conditions (red nodes) for 9 altitudes (0 − 6000 𝑚), 6 

masses (53 − 76 𝑘𝑔), and 4 speeds (26 − 45𝑚 𝑠⁄ ) was constructed, and then, the  number of 

local FDMs was increased from 216 to 3642 using interpolation and extrapolation 

methodologies in the data augmentation block. Next, kernel functions were used to map the 

data from a low dimensional space into a high dimensional space in which the data were 

linearly separated using support vectors. Finally, the trained SVR predicted the UAS-S4 flight 

dynamics model for the entire flight envelope. 

Although the need of a large-scale dataset (a minor challenge) can be solved through data 

augmentation, security attacks (a major challenge) are potential threats for data-driven 

regression algorithms (Q. Liu et al., 2018). In fact, it is possible to mislead a neural network-

based FDM using adversarial data, generated by carefully manipulating original data. This 

deception operation is known as an “Adversarial Attack” in the Artificial Intelligence (AI) 

community (S. Huang, Papernot, Goodfellow, Duan, & Abbeel, 2017). In our work, in case of 

adversarial attacks, the SVR provided a wrong local FDM for the controller in the supposed 

flight conditions. The controller then generates incorrect commands (for the control surfaces) 

which results in the UAS instability and collapse (Tuzcu et al., 2007). Development of an 

effective defense algorithm against adversarial attacks on SVR-based FDMs becomes 

therefore a priority for reliable UASs.  
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Four original contributions of our research paper are: 

1. The design of a data augmentation procedure to prepare a large-scale dataset for flight 

dynamics modelling using any data-driven regression algorithm; 

2. The design and testing of a data-driven regression algorithm for accurate flight 

dynamics modelling when training samples could not be separated linearly; 

3. A realistic hacking of an UAS controller by imposing adversarial attacks on its neural 

network-based FDM; and 

4. The design of an effective defense algorithm to render the FDM and controller robust 

against adversarial attacks.  

This paper is composed of five sections beginning with the introduction. The UAS-S4 is 

modelled in Section 5.2 using scheduled local FDMs (under different flight conditions) which 

are then augmented through interpolation and extrapolation procedures. The SVR model was 

designed, fine-tuned, and trained for the UAS-S4 FDM regression in order to predict its FDM 

in any flight condition.  Section 5.3 introduces the concept of adversarial attacks and discusses 

it from both white-box and black-box aspects. After imposing an adversarial attack on the 

UAS-S4 SVR-based FDM, we show how to render it robust by designing a defense algorithm 

using adversarial samples. Section 5.4 presents the results, and shows the improved UAS-S4 

FDM accuracy obtained by relying on the SVR and details the SVR sensitivity to adversarial 

attacks. This section also evaluates the efficiency of the defense algorithm against adversarial 

attacks based on the performance of a controller for the UAS-S4 FDM. Finally, a 

comprehensive conclusion and the opportunities for future works are discussed in Section 5.5. 

5.2 The UAS-S4 Flight Dynamics Model (FDM) 

5.2.1 Local Linear Scheduled Flight Dynamics Model (LLS-FDM) 

By considering the UAS-S4’s differential equations of lateral and longitudinal motion 

(Caughey, 2011), its flight dynamics can be linearly modeled around its equilibrium points for 

216 flight conditions. The state variables including the axial velocity 𝑢, vertical velocity 𝑤, 

pitch rate 𝑞, and pitch angle 𝜃 constitute the longitudinal state vector 𝑋 = [𝑢  𝑤  𝑞  𝜃] , 
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where 𝑋  is controlled by the longitudinal input vector 𝛿 = [𝛿 𝛿 ] , which consists of 

the elevator deflection δ  and thrust δ . The state variables including the lateral velocity 𝑣, 

roll rate 𝑝, yaw rate 𝜂, and roll angle 𝜑 constitute the lateral state vector 𝑋 = [𝑣  𝑝 𝜂  𝜑] , 

which is controlled by the lateral input vector 𝛿 = [𝛿 𝛿 ] , composed of the aileron and 

ruder deflections, respectively.  

 For any trim condition, the UAS-S4 Flight Dynamics Model (FDM) can be represented based 

on the following state-space system by utilizing the state vector 𝑋, input vector 𝛿, and output 

vector 𝑌 (Nelson, 1998): 

 𝑋(𝑡) = 𝐴 𝑋(𝑡) + 𝐵 𝛿(𝑡) 𝑌(𝑡) = 𝐶 𝑋(𝑡) + 𝐷 𝛿(𝑡)  (5.1) 

where the longitudinal state-space matrices are: 

 

𝐴 = 𝐺𝐻𝑀 + 𝑀 𝐻0
𝐺𝐻𝑀 + 𝑀 𝐻0

0𝑢𝑀 + 𝑢 𝐻1
−𝑔 𝑐𝑜𝑠 𝜃−𝑔 𝑠𝑖𝑛 𝜃00  

𝐵 = ⎣⎢⎢
⎡ 𝐺𝐻𝑀 + 𝑀 𝐻0

𝐺𝐻𝑀 + 𝑀 𝐻0 ⎦⎥⎥
⎤ ,𝐶 = 0001 ,𝐷 = 0  (5.2) 

and the lateral state-space matrices are: 

 

𝐴 = ⎣⎢⎢
⎡𝑌𝐿𝑁0

𝑌𝐿𝑁1
−(𝑢 − 𝑌 )𝐿𝑁0

𝑔 𝑐𝑜𝑠 𝜃000 ⎦⎥⎥
⎤ 

𝐵 = 0𝐿𝑁0
𝑌𝐿𝑁0 𝐶 = 0001 ,𝐷 = 0  (5.3) 

Based on the above modeling approach, the UAS-S4 FDM was obtained using 216 local linear 

state-space representations that was named the Local Linear Scheduling (LLS) FDM 

(Lawrence & Rugh, 1995; Sadeghzadeh, Mehta, & Zhang, 2011). Each state-space FDM 
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expressed the linearized state variables around a specific equilibrium point corresponding to a 

certain combination of altitudes, speeds and masses. To obtain a large number of local linear 

FDMs, the use of data augmentation methodologies is required. 

5.2.2 Data Augmentation 

In Artificial Intelligence (AI), data augmentation refers to a procedure to generate synthetic 

data that are used for training data-driven algorithms to improve their performance (Dubost et 

al., 2019). While there is a high number of data-augmentation techniques, interpolation and 

extrapolation are considered as the most well-known practical methods for solving the 

regression problems. Figure 5.3 shows the process of local FDMs augmentation using 

interpolation methodology based on the k-nearest neighbors. 

 

Figure 5.3 Augmenting local FDMs using an interpolation 
methodology based on the k-nearest neighbors  

(Giridhara et al., 2019) 

Based on its three nearest neighbors, the centroid of the three local FDMs associated with the 

closest operating points embedding is computed. The new local FDM can then be generated 

by an interpolation between the centroid and the FDM corresponding to its original operating 

point.  Equation (5.4) represents this generation process (Giridhara et al., 2019): 

 �̅� = 𝑍 − 𝑍 𝜆 + 𝑍  (5.4) 
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where 𝑍 , 𝑍 , and �̅�  denote the computed centroid, the original, and the new local FDM 

embedding, respectively. 𝜆  is an adjustable factor for tuning the interpolation degree. 

Following a similar methodology, data can be augmented using extrapolation. Figure 5.4 

demonstrates the process for augmenting local FDMs using an extrapolation methodology 

based on the k-nearest neighbors.  

 

Figure 5.4 Augmenting local FDMs using an extrapolation 
methodology based on the k-nearest neighbors  

(Giridhara et al., 2019) 
 

Using the three nearest neighbors, the centroid of the three local FDMs related to the closest 

operating points embedding is computed. The new local FDM can then be generated via an 

extrapolation between the archived centroid value and the FDM related to the original 

operating point, as represented in Equation (5.5) (Giridhara et al., 2019). 

 �̅� = 𝑍 − 𝑍 𝜆 + 𝑍  (5.5) 

It should be mentioned that 𝜆 (scalar) needs to be selected carefully from its valid interpolation 

and extrapolation ranges, as 𝜆 ∈ [0,1] and 𝜆 ∈ [0,∞). 

By use of the above-mentioned data augmentation techniques, the number of training datasets 

was increased from 216 to 3642. Based on the new augmented dataset, an improved regression 

algorithm can provide a more accurate (compared to the use of a smaller data set) FDM for 

any flight condition in the flight envelope. 
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5.2.3 Support Vector Regression (SVR) of a Flight Dynamics Model 

There is no doubt regarding the excellent effectiveness of data-driven predictors in regression 

tasks when a large dataset is provided (Dijkstra & Veldkamp, 1988). However, small-sized 

datasets can be successfully enlarged using data augmentation methodologies. Relying on the 

augmented dataset, we utilized Support Vector Regression (SVR) as the benchmarking 

algorithm. It is worth noting that while the performance of an SVR depends on the dataset 

characteristics and its sample distributions, its computational complexity is not affected by the 

number of input variables or features for a dataset (input dimensionality (Cherkassky & Ma, 

2004)). Besides, the SVR performs the regression task favorably when training samples cannot 

be separated linearly (Sebald & Bucklew, 2000). Hence, the SVR is employed for capturing 

data distribution. 

This conventional regressor is based on the Support Vector Machines (SVM) principle, which 

is known as deserving “high-dimensional space” learning algorithm (Gunn, 1998). Following 

the “kernel trick” procedure, the SVR maps the training data into desired higher dimension 

space, and then learns the regression decision boundaries. A variety of kernel functions (e.g. 

polynomial, tanh, Gaussian) can be utilized for the mapping task (Lorenzi, Mercier, & 

Melgani, 2012). We carried out several experiments using these kernels and adopted the most 

effective one for our training data.  

The SVR optimization process is represented by Equation (5.6) (D.-R. Chen et al., 2004): 

 min 12 ‖𝛩‖    s. t. Θ 𝑥 + 𝑏 − 𝑦 ≤ 𝜖𝑦 − Θ 𝑥 − 𝑏 ≤ 𝜖 (5.6) 

where 𝑥 ∈ 𝕏 is the given input, 𝑦 ∈ 𝕐 is the output, and Θ denotes weighting vector. 

Moreover, 𝑏 is bias term, and  𝜖 adjusts the regression decision boundary, which needs to be 

tuned carefully. Weighting vectors are obtained during an iterative learning process, and their 

fine-tuning decreases the chance of overfitting (in order to avoid exactly fitting on a particular 

dataset and lose of generalization for other input data). 
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Figure 5.5 shows the trained Neural Network architecture for the UAS-S4 flight dynamics 

model prediction. The designed SVR learns relying on training data applied to the input layer 

(altitude, speed, and mass) and expected in the output containing the state matrix 𝐴 and control 

matrix 𝐵. In details, the input neurons fully propagate the input vector into all the kernel 

functions that are designated for dimensional mapping. Next, the kernel functions’ outputs 

directly update the SVR weight vector. Finally, the output layer computes 𝐴 and 𝐵 based on 

the input vector, weight vector, biased term, and decision boundaries. 

 

Figure 5.5 Architecture of the Trained Support Vector Regression (SVR) for the 
UAS-S4 Flight Dynamics Model (FDM) 

 

Although neural network-based models can accurately perform the FDM regression task, they 

remain always vulnerable to adversarial attacks viewed as a potential threat. The following 

section describes the concept of adversarial attack, its effects on the FDM regression, and its 

proper countermeasure for securing the UAS-S4 data-driven FDM. 

5.3 Adversarial Attacks 

An “adversarial attack” is modeled as an optimization problem, solved to produce specially 

crafted samples that, while similar to the original samples, can deliberately mislead a prediction 

model (X. Huang et al., 2020). By assuming the original training samples 𝑥 ∈ 𝕏 , solving the 

following optimization problem results in generating adversarial crafted samples: 

 min ‖𝑥 − 𝑥‖ <  𝜀   s. t.  ‖𝑓(𝑥) − 𝑓(𝑥)‖ < 𝛾 (5.7) 
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where 𝜀 is the injected perturbation that back-propagates through the deep network and 𝛾 

denotes the threshold for surpassing the eligible regression boundary.  

Regarding the aim of the adversarial attack optimization problem (based on Equation (5.7)), 

even though the absolute value of the added perturbation is less than the random noise value, 

the error rate associated with the perturbation is significant, as injected perturbation exactly 

crafts the samples by exploiting the model’s vulnerabilities (Fan et al., 2020). 

Adversarial attacks can be classified based on their learning phases into two groups, known as 

"poisoning attacks" and "evasion attacks" (Jiang, Li, Liu, Luo, & Lu, 2020). poisoning (or 

causative) attacks occur during the training phase. If the dataset for training a target model is 

accessible, a model may be attacked by the injection of adversarial vulnerabilities. In other 

words, the targeted model is trained while it is sensitive to certain perturbations and so 

surpasses the threshold in the regression problem. Other attacks may occur during the test-

phase; these are called evasion (or exploratory) attacks. Instead of manipulating a model’s 

parameters or architecture, the evasion technique guides a model towards generating selected 

adversarial outputs. Since evasion-based attacks require less time and less computational effort 

than poisoning attacks to generate adversarial samples, they have been more common and more 

successful (Biggio et al., 2013). Hence, our FDM attack algorithm is designed based on the 

evasion procedure.  

Evasion adversarial attacks can be generated using either white-box or black-box 

methodologies (Gil, Chai, Gorodissky, & Berant, 2019). White-box attacks use methods that 

require transparency of the data-driven model and its training data, while black-box attacks are 

used when the training set and model parameters are not available. In this way, white-box 

attackers generate adversarial samples by relying on their knowledge on the parameters, hyper-

parameters, and architecture of the prediction model (Meng, Lin, Jung, & Wu, 2019). In this 

study, given our access to the training data and the SVR model details, a white-box adversarial 

attack methodology is used. Preparing for this type of attack is more practical for the prediction 

model development, as the developer can better identify model weaknesses, and can improve 

its robustness during the training phase. Several different white-box attack techniques have 

been developed for a variety of applications (Chakraborty et al., 2018; Sun, Tan, & Zhou, 2018; 
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Q. Wang, Liu, Xie, & Zhang, 2021). The Fast Gradient Sign Method (FGSM) as the base-line 

successful algorithm has been reformulated for the regression problem that can mislead FDMs. 

5.3.1 Adapted Fast Gradient Sign Method (AFGSM) 

The Fast Gradient Sign Method is a non-targeted attack that operates based on gradient 

information (Goodfellow et al., 2014). Formulation of the AFSGM for solving a regression 

problem can be represented as Equation (5.8) (Hashemi et al., 2020b): 

 𝑥 = 𝑥 +  𝜀 × 𝑠𝑖𝑔𝑛 (𝐽(𝜃, 𝑥,𝜎)) (5.8) 

where 𝐽 is the cost function relying on weight vector 𝜃, input 𝑥, and output 𝜎, in which 𝜎 ∉[𝑎 − 𝜇,𝑎 + 𝜇]. It other words, adversarial samples are located out of the eligible band, where 𝑎 denotes the bias for the eligible band while its wide is 2 𝜇. When a float scalar perturbation 𝜀 is injected into the output layer, relying on both optimized 𝜀 and 𝜇, the adversarial sample 𝑥 

will be generated as shown in Equation (5.8), Now we need to secure the regression model 

against adversarial samples through a proper defense strategy. 

 

5.3.2 Defense against Adversarial Attacks 

Generally, defense algorithms can be categorized into two aspects based on their operation 

mechanisms (X. Huang et al., 2020). The typical and most popular countermeasures are the 

adversarial training-based defenses (Mani, Moh, & Moh, 2019), In which, an expert trains the 

targeted model using adversarial samples that can be obtained from various optimization 

procedures. The other well-known defense methods rely on model structure reconfiguration 

(Goel, Agarwal, Vatsa, Singh, & Ratha, 2020), in which by the use of random addition of 

hidden layers or several parallel prediction models and their extrapolation the model mistakes 

are avoided. Our strategy was based on generating Adversarial samples, and then use them 

through the Adversarial Retraining defense methodology. 
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5.4 Results 

The SVR performance is analyzed using different tools. As explained in Section 2, the SVR 

output gives the UAS-S4 FDM through the state and control matrices’ prediction for any flight 

condition in the flight envelope. Since there are an infinite number of state-space 

representations for a FDM, the numerical differences between the original and predicted 

elements of state-space matrices cannot be used for evaluating the SVR prediction accuracy. 

In fact, the location of closed loop poles can represent a dynamic model behavior. Therefore, 

that infinite number of state space representations for a specific dynamics model can be 

demonstrated by a unique “Root Locus” diagram; a tool   for prediction accuracy assessment. 

Another criterion that needs to be evaluated is the SVR regression precision. Using this 

criterion, the performance of the controlled UAS-S4 state variables based on the predicted 

FDM (provided by the SVR and Robust-SVR) can be compared to those based on the original 

FDM (provided by the LLS). 

5.4.1 The UAS-S4 FDM Root-Locus Diagram 

Assume that the UAS-S4 FDM is in the trim flight condition is expressed by the 𝑠𝑝𝑒𝑒𝑑 =43 ,  𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 = 6000 𝑚,  𝑚𝑎𝑠𝑠 = 53 𝑘𝑔; it is important to note that this trimmed local 

FDM has not  been used for data augmentation or as a training sample.  

The original longitudinal state-space matrices under the elevator angle actuation are:  

𝐴  = −0.064−0.361−0.1360
0.2434−4.261−1.2680

−1.08743.8260.44551
−9.784−0.251−0.0120 ,𝐵  = −0.0120.0592−0.1450  

and the predicted matrices are: 

𝐴 = −0.063−0.376−0.1370
0.2501−4.362−1.2710

−1.09541.9910.45311
−9.876−0.269−0.0130 ,𝐵  = −0.0120.0580−0.1480  
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The Root Locus diagram is used to compare the original with the predicted state-space 

matrices and their stability. As seen in Figure 5.6, the SVR accurately predicts the UAS-S4 

trimmed FDM eigenvalues. 

 

Figure 5.6 Root Locus diagram of the UAS-S4 longitudinal flight dynamics model under 
its elevator angle actuation 

 

The original lateral state-space matrices under the aileron angles actuation are: 

𝐴  = −0.234−0.0580.09430
0.0617−13.99−0.1761

−55.240.8235−0.6420.0011
−9.591000 ,𝐵  = 00.8058−0.0080  

and the predicted matrices are: 

𝐴 = −0.241−0.0600.09550
0.0611−14.23−0.1821

−56.050.8122−0.6490.0012
−9.591000 ,𝐵  = 00.7889−0.0070  
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The following Root Locus diagram shows the SVR performance in terms of the UAS-S4 lateral 

FDM prediction accuracy under the aileron angle actuation. As seen in Figure 5.7, the predicted 

eigenvalues are very close to the original ones.  

 

Figure 5.7 Root Locus diagram of the UAS-S4 lateral flight dynamics model under aileron 
angle actuation 

 

For the lateral FDM under rudder angle actuation, the original state-space matrices are: 

𝐴  = −0.234−0.0580.09430
0.0617−13.99−0.1761

−55.240.8235−0.6420.0011
−9.591000 ,𝐵  = −0.0440.0091−0.1990   

and the predicted matrices are: 

𝐴 = −0.241−0.0600.09550
0.0611−14.23−0.1821

−56.050.8122−0.6490.0012
−9.591000 ,𝐵  = −0.0430.0082−0.1960  

Figure 5.8 shows the Root Locus diagram of the UAS-S4 lateral FDM under rudder angle 

actuation.  
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Figure 5.8 Root Locus diagram of the UAS-S4 lateral flight dynamics model under rudder 
angle actuation 

 

The Root Locus diagrams in Figures 5.6, 5.7 and 5.8 graphically show the SVR’s success in 

accurate UAS-S4 FDM eigenvalues prediction, in which the predicted eigenvalues were found 

to be very close to their original values. These diagrams allowed the SVR prediction accuracy 

to be evaluated for different flight conditions. These validation studies were performed for 5 

flight conditions, as their 5 corresponding UAS-S4 FDMs have not been used for data 

augmentation or as training samples. As previously mentioned, the UAS-S4 FDM prediction 

accuracy was evaluated separately for the elevator, aileron, and rudder actuation. The Mean 

Absolute Error (MAE in %) was considered as a performance index calculated for the actual 

and the predicted eigenvalues. Table 5.2 shows the SVR prediction errors for the UAS-S4 

FDM for different flight conditions and control surface actuators. As shown in Table 5.2, the 

SVR could accurately predict the UAS-S4 FDM for different flight conditions. Its performance 

was found to be slightly better for the first flight condition, where the UAV operated at the 

lowest altitude, speed, and mass. The Mean Absolute Error (MAE) low percentages confirm 

the excellent SVR prediction accuracy for a variety of flight conditions, as the MAE never 

exceeded 2.38%.  
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Table 5.2 The UAS-S4 FDM prediction accuracy using the SVR  
at 5 flight conditions 

Flight Condition Control Surface 
 used for Actuation 

Mean Absolute 
 Error % 

1 
Altitude = 100 𝑚 
Speed = 26 𝑚/𝑠 
Mass = 53 𝑘𝑔 

Elevator 1.71 
Aileron 2.29 
Rudder 2.07 

2 
Altitude = 2250 𝑚 
Speed = 32.3 𝑚/𝑠 
Mass = 57.6 𝑘𝑔 

Elevator 1.74 
Aileron 2.33 
Rudder 2.11 

3 
Altitude = 4500 𝑚 
Speed = 38.6 𝑚/𝑠 
Mass = 66.8 𝑘𝑔 

Elevator 1.78 
Aileron 2.36 
Rudder 2.14 

4 
Altitude = 6000 𝑚 
Speed = 43 𝑚/𝑠 
Mass = 76 𝑘𝑔 

Elevator 1.81 
Aileron 2.38 
Rudder 2.17 

5 
Altitude = 6000 𝑚 
Speed = 43 𝑚/𝑠 
Mass = 53 𝑘𝑔 

Elevator 1.75 
Aileron 2.33 
Rudder 2.12 

Since the data augmentation process used in a neighbour-based algorithm was the fundamental 

process for the SVR, we conducted another study to evaluate the different number of 

neighbours used for data augmentation. Note that the UAS-S4 FDM was considered in the trim 

condition, where 𝑣=43 𝑚/𝑠, 𝑎𝑙𝑡=6000 𝑚 and 𝑀=53 𝑘𝑔. Table 5.3 shows the SVR accuracy 

obtained for the UAS-S4 FDM prediction when different numbers of neighbors are used in the 

data augmentation process.  

Table 5.3 represents the UAS-S4 FDM prediction accuracy for four different numbers of 

neighbours under elevator, aileron, and rudder angle actuation, separately. According to the 

MAE values considered as the performance index, it was found that a high number of 

neighbours (5 neighbours compared to 4, 3, and 2 neighbours) can provide better data 

augmentation, and consequently more accurate FDM prediction. However, a high number of 

neighbours causes computational complexity in the data augmentation process. Adopting 3 

nearest local FDMs in the neighbourhood of the original FDM that is supposed to be 

augmented is a satisfactory trade off for the interpolation and extrapolation methods. 



116 

Table 5.3 The UAS-S4 FDM prediction accuracy using SVR with 
 different numbers of neighbors used for data augmentation 

Number of neighbors 
for data augmentation 

Control Surface 
used for actuation 

Mean Absolute 
Error % 

2 
Elevator 1.86 
Aileron 2.45 
Rudder 2.21 

3 
Elevator 1.75 
Aileron 2.33 
Rudder 2.12 

4 
Elevator 1.71 
Aileron 2.30 
Rudder 2.07 

5 
Elevator 1.69 
Aileron 2.28 
Rudder 2.05 

 

The other factor that affects the SVR performance is the type of kernel function in the hidden 

layer. Table 5.4 shows the UAS-S4 FDM prediction accuracy while considering a range of 

kernel functions in the SVR.  

Table 5.4 The UAS-S4 FDM prediction accuracy while 
Considering a range of kernel functions for the SVR 

Number of neighbors 
for data augmentation 

Control Surface 
used for Actuation 

Mean Absolute 
Error % 

Polynomial 𝜇 = 0,  𝛾 = 1 

elevator 1.89 
aileron 2.47 
rudder 2.28 

Gaussian 𝜇 = 0,  𝜎 = 0.5 

elevator 1.75 
aileron 2.33 
rudder 2.12 

RBF 𝜇 = 0,  𝜎 = 0.5 

elevator 1.81 
aileron 2.39 
rudder 2.16 

Sigmoidal ℎ = 0,  𝐶 = 1 

elevator 1.83 
aileron 2.41 
rudder 2.17 
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Four types of kernel functions were employed: polynomial, gaussian, radial basis, and 

sigmoidal. Their fine-tuned parameters are described in Table 5.4. According to the calculated 

MAE, the SVR based on the Gaussian function gave the best performance for the UAS-S4 

FDM among all the kernel functions utilized, as shown in Table 5.4. Therefore, the Gaussian-

based SVR augmented data relying on 3 neighbors is considered for further studies on the 

regression effectiveness in the control loop. 

5.4.2 Regression effectiveness under the operation of a unique LQR 

According to the UAS-S4 LLS-FDM, the flight envelope contains 216 local linearized state-

space representations, where each one corresponds to a specific case of altitude, speed, and 

mass. The accuracy of the local linear FDMs degrade when operating points move away from 

equilibrium points, but the FDM accuracy can be improved using nonlinear regression. Figure 

5.9 graphically demonstrates this issue. 

 
Figure 5.9 FDM design based on “Local Linear 

Scheduling” and “SVR” approaches 

In Figure 5.9, both the “LLS” and the “SVR” approaches can provide almost the same FDM 

around the equilibrium points. The effectiveness of the SVR approach is the most notable in 
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the marginal flight condition, where it can provide a significantly more accurate FDM 

compared to the Local Linear approach. Following this observation, it is clear that a more 

accurate FDM can improve model-based controller performance. To assess the extent of these 

improvements, the initial (LLS) and developed (SVR) FDMs’ accuracies were compared in 

the marginal flight condition while they were used in the same LQR control loop. 

Assume that the UAS-S4 FDM is in the trim condition, where the 𝑠𝑝𝑒𝑒𝑑 = 43 ,  𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 =6000𝑚 and  𝑀𝑎𝑠𝑠 = 53 𝑘𝑔; its initial longitudinal LLS-FDM is represented by state-space 

matrices: 

𝐴  = −0.064−0.361−0.1360
0.2434−4.261−1.2680

−1.08743.8260.44551
−9.784−0.251−0.0120 ,𝐵  = −0.0120.0592−0.1450  

In the initial (LLS approach) flight envelope, this linearized state-space FDM was allocated to 

the operation range of 𝑠𝑝𝑒𝑒𝑑 = 41.8 − 43 ,  𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 = 5,625 − 6000 𝑚,  𝑀𝑎𝑠𝑠 = 53 −55 𝑘𝑔. We assume that the UAS-S4 is operating within the flight conditions that are at the 

margin of the mentioned operation range, where the 𝑠𝑝𝑒𝑒𝑑 = 41.8 ,  𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 =5625 𝑚,  𝑀𝑎𝑠𝑠 = 55 𝑘𝑔. When the UAS-S4 operates in this marginal flight condition, the 

initial state-space representation in the trim condition cannot accurately determine the flight 

dynamics behavior. In order to solve this problem, our designed SVR algorithm predicts the 

UAS-S4 FDM for any flight conditions away from the trim conditions in the flight envelope. 

For instance, the state-space matrices of the local UAS-S4 FDM predicted under the elevator 

actuation for the above-mentioned marginal flight condition are:  

𝐴 = −0.0726−0.3729−0.13080
0.2346−4.5992−1.35990

−0.954743.33250.46641
−9.7830−0.2240−0.01180 ,  𝐵 = −0.01330.0631−0.15250  

The developed FDM (predicted by the SVR) efficiency was evaluated in control loop using 

the same controller as the one that was used for the UAS-S4 trimmed FDM (Yañez-Badillo et 

al., 2020). The Linear Quadratic Regulator (LQR) is employed as the controller in the closed-
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loop architecture (Boughari, Ghazi, Botez, & Theel, 2017a, 2017b). Figure 5.10 shows the 

LQR controller time-domain performance during the above marginal flight conditions. 

 
Figure 5.10 The controlled pitch angle step responses of the developed 

(SVR) and the initial (LLS) UAS-S4 FDMs 

In this figure the controlled pitch angle step responses for the initial and the developed UAS-

S4 FDMs are plotted in the marginal flight conditions. It can be observed that our designed 

SVR-FDM (developed model) can provide more accurate FDM, as the same LQR controller 

gives a better time-domain response compared to the LLS-FDM (initial model) response. Table 

5.5 represents the pitch angle step response results using time-domain performance indexes for 

the “rise time”, the “settling time”, and “over-shoot”. 

Table 5.5 The controlled step response properties of the developed and 
 the original UAS-S4 FDM 

 The developed UAS-S4 FDM The initial UAS-S4 FDM 
Rise time 4.87 sec 5.63 sec 
Settling time 8.08 sec 9.13 sec 
Over-shoot 0.14% 0.25% 
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According to Table 5.5, the SVR can provide a more accurate FDM in the marginal flight 

condition, as   the SVR-based predicted FDM allows the same LQR controller to give a faster 

pitch angle step response in the marginal flight condition. In fact, for the pitch angle step 

response, the rise-time, settling time, and the over-shoot decreased by 0.76 sec, 1.05 sec, and 

0.105% respectively, as seen in Table 5.5. 

5.4.3 Robustness against Adversarial Attacks  

Security issues are always a huge concern for Artificial Intelligence-based control systems. By 

imposing an adversarial attack on the FDM, the controller that works based on that model can 

be hacked. We generated an adversarial sample using the Adapted Fast Gradient Sign Method 

(AFGSM), and we further applied it to the UAS-S4 SVR-FDM. The adversarial sample could 

mislead the UAS-S4 SVR-FDM prediction. Figure 5.11 shows the effect of an imposed 

adversarial attack on the UAS-S4 longitudinal FDM prediction.  

 

Figure 5.11 The effect of an imposed adversarial attack on the UAS-S4 
longitudinal FDM prediction 
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According to Figure 5.11, before imposing such an adversarial attack on the SVR-FDM, the 

original (blue) and predicted (red) eigenvalues are very close together. However, the hacked 

eigenvalues (green) in the Root Locus diagram show that an adversarial sample can mislead 

the data-driven model, so that the SVR predicts the UAS-S4 FDM far from its original values. 

This incorrect prediction directly affects the FDM controller, and causes it to generate the 

wrong commands for the control surfaces. Assume that the UAS-S4 operates in the marginal 

flight condition 𝑆𝑝𝑒𝑒𝑑 = 42 ,  𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 = 5,700𝑚,  𝑀𝑎𝑠𝑠 = 55 𝑘𝑔, and the LQR controls 

its state variables. Figure 5.12 shows the UAS-S4 pitch angle step response under LQR 

controller operation when different types of FDMs are used. 

 
Figure 5.12 The UAS-S4 pitch angle step response using a LQR controller 

when different types of FDMs are used while an adversarial attack is imposed 

The model-based controller shows the best performance in terms of time-domain properties 

when it relies on the SVR-FDM (green). However, it approached failure when an adversarial 

attack was imposed on the SVR-FDM (red). As shown in Figure 5.12, the Robust SVR-FDM 

(black) offered a better step response compared to the conventional Local Linear scheduled 

FDM (Blue) under an imposed adversarial attack. The time-domain properties in terms of 
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“rise” and “settling” times are given in Table 5.6. As seen in Figure 5.12 and Table 5.6 the 

SVR-FDM provided the fastest responses (4.87 sec for rise-time and 8.08 for settling time), 

but it failed when it approached to an adversarial sample. Meanwhile, the Robust SVR-FDM 

efficiency was lower than that of the SVR-FDM, and better than the LLS-FDM while 

remaining robust against adversarial attacks (see Table 5.6). 

Table 5.6 The UAS-S4 pitch angle step response time-domain characteristics 
under the LQR controller when different types of FDM are used 

 Rise Time (sec) Settling Time (sec) Adversarial Attack 
Examination 

LLS-FDM 5.63 9.13 Pass 
Robust SVR-FDM 5.29 8.64 Pass 
SVR-FDM 4.87 8.08 Fail 

A similar type of analysis was done for the lateral control surfaces. The UAS-S4 roll angle step 

responses with the LQR controller when different types of FDMs are used are presented in 

Figure 5.13.  

 
Figure 5.13 The UAS-S4 roll angle step responses using the LQR controller 

when different types of FDMs are used while an adversarial attack is imposed 
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With the SVR-FDM, the controller offers the best time-domain performance for the roll angle 

(green). However, it fails when is submitted to an adversarial sample (red). As shown in Figure 

5.13, the Robust SVR-FDM (black) provides a faster step response compared to the 

conventional LLS-FDMs (blue), under an imposed adversarial attack. The time-domain 

properties are given in terms of rise time and settling time in Table 5.7. 

 
Table 5.7 The UAS-S4 roll angle step response time-domain characteristics  

under the LQR controller when different types of FDM are used 

 Rise Time (sec) Settling Time (sec) Adversarial Attack  
Examination 

Local Linear FDM 4.29 7.21 Pass 
Robust SVR-FDM 4.05 6.76 Pass 
SVR-FDM 3.74 6.22 Fail 

 

As indicated in Table 5.7, the SVR-FDM provided the fastest roll angle step response (3.74 

sec for rise-time and 6.22 sec for settling time); however, its failure in case of adversarial 

attacks convinced us to improve it. The Robust SVR-FDM effectiveness was smaller than that 

of the SVR-FDM, but better than that of the LLS-FDM, while remaining robust against 

adversarial attacks. 

Continuing with lateral control studies, the UAS-S4 yaw angle step response is presented in 

Figure 5.14, revealing that using an SVR-FDM, the LQR controller performs the best time-

domain step response for the yaw angle (green). However, its failure to when perform using 

adversarial samples is unacceptable. In contrast, the Robust SVR-FDM (black) gave a faster 

step response compared to the LLS-FDMs (blue) under an imposed adversarial attack. 
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Figure 5.14 The UAS-S4 yaw angle step response with an LQR controller when 

different types of FDMs are used while an adversarial attack is imposed 
 

The time-domain specifications in terms of rise time and settling time are listed in Table 5.8. 

 
Table 5.8 The UAS-S4 yaw angle step response time-domain characteristics  

under the LQR controller when different types of FDM are used 

 Rise Time (sec) Settling Time (sec) Adversarial Attack 
Examination 

LLS-FDM 4.81 7.90 Pass 
Robust SVR-FDM 4.56 7.51 Pass 
SVR-FDM 4.24 6.98 Fail 

 

As seen in Table 5.8, it is clear that using the SVR-FDM for a model-based controller resulted 

in the fastest yaw angle step response (4.24 sec for rise-time and 6.98 for settling time). 

However, its failure to perform under adversarial attacks motivated us to make more 

improvements. Our Robust SVR-FDM’s effectiveness on yaw angle control was less than that 
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of the SVR-FDM and more than that of the LLS-FDM’s, while it proved its robustness against 

adversarial attacks. 

Following the lateral and longitudinal step response analyses described above, the study was 

performed for all marginal flight condition, and the average time-domain step response 

improvements of the UAS-S4 state variables are given in Table 5.9.     

 
Table 5.9 The SVR and Robust-SVR step response improvements compared  

to the LLS-FDM performance for 120 marginal flight conditions. 

 Average Rise Time 
improvement (%) 

Average Settling Time 
improvement (%) 

Control Surfaces Angle Pitch Roll Yaw Pitch Roll Yaw 
Robust SVR-FDM 6.1 5.6 5.2 5.3 6.2 4.9 
SVR-FDM 13.5 12.9 11.9 11.5 13.7 11.6 

 

Table 5.9 shows that the SVR-FDM improved time-domain step response properties much 

better than the Robust SVR-FDM. However, the Robust SVR-FDM could preserve the 

controller against adversarial attacks, as the SVR-FDM failed due to its weakness against 

adversarial samples.  

According to the tables and figures presented above, our designed Robust-SVR outperformed 

the conventional flight dynamics modelling approach (Local Linear Scheduled) in terms of 

prediction accuracy, and also outperformed the modern data-driven flight dynamics modelling 

approach (Support Vector Regression) in terms of robustness against adversarial attacks. 

5.5 Conclusions 

In this study, 216 Local Linear Scheduling (LLS) Flight Dynamics Models (FDM) 

corresponding to 216 trim flight conditions were used. The flight envelope data was then 

augmented using interpolation and extrapolation methodologies. These methodologies gave 

the three closest neighbors of the original operating point supposed in the flight envelope. Next, 

the centroid of the embedding local FDMs was computed. Then, the new FDM was generated 

through interpolation and extrapolation methodologies between the centroid and the original 
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operating point. Following this procedure, the number of trimmed local FDMs was increased 

by up to 3,642. Relying on the augmented dataset, the Support Vector Regression (SVR) 

methodology was used as the benchmarking algorithm. The designed SVR predicted very well 

the UAS-S4 FDM for the entire flight envelope.  

For validation studies, the initial (LLS) and the developed (SVR) UAS-S4 FDM were 

evaluated based on the Root Locus diagram for elevator, rudder, and aileron angle actuation. 

The predicted eigenvalues’ closeness to the actual eigenvalues confirmed the high accuracy of 

the SVR-based UAS-S4 FDM. According to the Mean Absolute Errors (MAE) performance 

index, the excellent SVR prediction accuracy for a variety of flight conditions was confirmed, 

as the MAE never exceeded 2.38%. In addition, a high number of neighbours (5) compared to 

a lower number of neighbors (4, 3, and 2) could provide better data augmentation, and 

consequently more accurate FDM prediction. However, a high number of neighbours causes 

computational complexity for data augmentation. The SVR based on a Gaussian kernel 

function (with 3 neighbors) showed the best performance for the UAS-S4 FDM compared to 

the conditions when the kernel functions such as the RBF, Sigmoidal, and Polynomial were 

used.  

The regression performance was then analyzed based on the pitch, roll, and yaw angle step 

response in closed-loop control architecture. Compared to the initial UAS-S4 FDM, our new 

developed UAS-S4 FDM provided more accurate local FDMs especially in marginal flight 

conditions. By using the new developed UAS-S4 SVR-FDM, the controller could improve the 

time-domain response properties for the pitch angle step response by as much as 0.76 seconds 

faster rise-time, 1.05 seconds faster settling time and 0.105% less over-shoot compared to the 

initial LLS-FDM. Moreover, the robust version of the SVR could also detect adversarial 

samples, and saved the controller against adversarial attacks.



 

CHAPTER 6 
 
 

DISCUSSION OF THE RESULTS 

The aim of this research study was to design and further develop the fundamental requirements 

for critical aerial trajectory-based operations, especially Air Traffic Management and Collision 

Avoidance (ATMCA) systems. Three original studies were conducted, in which novel 

Artificial Intelligence algorithms were developed to provide accurate Trajectory Prediction 

(TP), Flight Dynamics Model (FDM), and Flight Dynamics Control (FDC), respectively. 

Six data-driven models were utilized to develop TP models: Logistic Regression (LR), Support 

Vector Regression (SVR), Deep Neural Network (DNN), Convolutional Neural Network 

(CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM). Their 

performances were evaluated, and their 99.85% average regression accuracy on the air corridor 

revealed that our TP models gave excellent results.  

Therefore, all six models are qualified for their use in trajectory-based operation systems. 

Meanwhile, each TP model has its own unique advantage (while some of them have their 

drawbacks). Among the six TP models, the LR model is the easiest in terms of implementation, 

but it cannot separate nonlinear samples. The SVR model implementation and its fine-tuning 

are complex, especially when the best kernel function must be determined, but it can separate 

nonlinear samples. The DNN model offers the simplest architecture among 4 deep approaches 

(including DNN, CNN, RNN, LSTM). The RNN model provides better performance, for 

datasets for which its samples are correlated. The LSTM model gives the best performance 

when there is a time relation between the samples. When these trade-offs between their unique 

abilities and architecture complexities are known, the appropriate TP model can be selected 

for any trajectory-based operation system.  

With respect to their TP excellent performance, all the TP models were sensitive to adversarial 

samples. Adversarial samples caused a 100% fooling rate in all six models, while the LR and 

RNN models gave the lowest (0.78) and the highest (0.91) prediction confidence scores, 

respectively. Adversarial samples were transferable from one model to another. At least 
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79.16% of the total adversarial samples for the LSTM model were successfully transferable to 

the LR model, while 98.26% of the total adversarial samples for the RNN model were 

successfully transferable to the LSTM model. Finally, our designed defence algorithm based 

on the “Adversarial Retraining” approach using Adapted Fast Gradient Sign Method-based 

adversarial samples successfully secured our TP models against adversarial attacks.   

By using our reliable TP models, conflicts can be detected easily, and then an efficient Flight 

Dynamics Control (FDC) algorithm can lead an aircraft to track a safe trajectory. Our model-

based Robust Adaptive Fuzzy Logic FDC (RAFL-FDC) is designed by using the UAS-S4 

Local Linear Scheduled Flight Dynamics Model (LLS-FDM) available at the LARCASE. To 

accurately track a trajectory, a FDC must give excellent performance in terms of flight 

dynamics stabilization, and in tracking state variables of the reference model. Results showed 

that the designed RAFL controller could stabilize the UAS-S4’s lateral and longitudinal flight 

dynamics very well, even in the presence of uncertainties. The RAFL controller could also 

track the reference model’s state variables accurately.  

 Following the adaptive gains of the fuzzy controller redesign, so that they would contain 

robust terms for handling a wide range of uncertainties, we compared the Robust-AFL (RAFL) 

and the AFL control approaches. In the presence of uncertainties dues to external disturbances 

and model imperfections, the RAFL controller could track the reference model state variables 

with less fluctuations than the AFL controller. According to the results, the average time delays 

for the AFL and the RAFL controllers were 0.01 sec and 0.3 sec, respectively. These average 

time delays are very good in real-time operations. Therefore, it can be inferred that the RAFL 

controller outperformed the AFL controller, and provided a stabler flight under uncertainties. 

According to the performance index based on the Sum of Absolute Tracking Errors (SATEs), 

the reference model state variables’ tracking accuracies were evaluated for a variety of 

uncertainties and for different reference models. The RAFL controller could handle larger 

uncertainties than the AFL controller, as long as the state variables remained in the feasible 

region and did not surpass the threshold defined based on the given Lyapunov stability proof. 

The other conclusion was that, when the reference model rigorously determined fast time-

domain response, tracking the reference model state variables became more difficult for the 
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RAFL controller, and resulted in higher tracking error in comparison with the moderately 

determined reference model. In addition, selecting small values for the weights of adaptation 

laws resulted in lower SATEs and improved performance. 

The accuracy of the FDM has a significant impact on the model-based FDC performance. 

Although the designed RAFL controller based on the UAS-S4 LLS-FDM showed excellent 

effectiveness, in the third study, a novel methodology was designed to obtain accurate FDMs. 

This method was based on the Support Vector Regression (SVR) application to the LLS-FDM.  

The Root Locus diagram confirmed that the SVR could accurately perform the FDM 

regression. The performance index was based on the Mean Absolute Error (MAE), and it was 

obtained from the differences between the original and the predicted eigenvalues in the Root 

Locus diagram. The MAE percentages (%) showed the SVR excellent efficiency for a variety 

of flight conditions, for which they never exceeded 2.38%. Overall, the SVR provided its best 

performance at the lowest flight conditions expressed in terms of altitude, speed and mass.  

According to the MAE, having a high number of neighbours for a local FDM, leads to a better 

data augmentation, and therefore to a more accurate FDM prediction. However, it significantly 

increases the computational complexity during the data augmentation process. Hence, a trade-

off between the prediction accuracy and computational complexity can determine the 

appropriate number of neighbours. Relying on the MAE, the Gaussian kernel function 

illustrated its superiority over other kernel functions.  

The SVR-FDM was utilized in a closed-loop control architecture using the Linear Quadratic 

Regulator (LQR) methodology. Under marginal flight conditions, the SVR-FDM allowed the 

LQR controller to give a step response compared to the LLS-FDM’s response. For instance, 

for the pitch angle step response, the rise-time and the settling time decreased by 0.76 and 1.05 

sec, respectively. Despite the significant improvements of time-domain properties achieved by 

using the SVR-FDM, the UAS-S4 SVR-FDM was sensitive to adversarial FDM samples. 

These adversarial samples misloaded the LQR, so that the LQR generated incorrect control 

commands for the actuators. The SVR-FDM was then secured against Adversarial FDM 

samples, using the improved model version called Robust-SVR-FDM. The results showed that 
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both SVR and Robust-SVR could provide more accurate FDM compared to those of the LLS 

approach. Although the Robust-SVR-FDM was not as accurate as the SVR-FDM, its step 

responses showed that it was secured against adversarial attacks. 

 

 



 

CONCLUSION 

 

This research was conducted to design and improve three fundamental requirements for 

avoiding aerial collisions. The three following studies were considered: of aircraft trajectory 

prediction (ATP), flight dynamics modelling (FDM), and a flight dynamics controller (FDC), 

that were validated on the UAS-S4 at the LARCASE.  

In the first study, novel data-driven regressors were designed for trajectory prediction (TP). 

Although all six models could accurately predict the trajectories, deep architecture regressors 

(including DNN, CNN, RNN, and LSTM) showed better performance than conventional 

regressors (LR and SVR) in terms of regression accuracy. However, deep models were more 

sensitive to adversarial samples generated through the Adapted Fast Gradient Sign Method 

(AFGSM). Adversarial sample transferability significantly increases the importance of 

adversarial attacks. Hence, an adversarial retraining defence algorithm was designed to 

improve the six data-driven models’ robustness, The results confirmed the data-driven ATP 

models' excellent performance in terms of prediction accuracy and adversarial attack 

robustness. 

A model-based Fuzzy Logic FDC was designed for the UAS-S4 using its Local Linear 

Scheduled Flight Dynamics Model (LLS-FDM) in the second study. This Fuzzy Logic 

controller utilizes adaptive gains that contain robust terms. A general theorem and its stability 

proof were described for the designed Robust Adaptive Fuzzy Logic Controller (RAFLC). The 

RAFLC was evaluated in terms of state variable stabilization and reference model tracking. 

The results confirmed the excellent performance of the FDC at handling nonlinearities by 

relying on adaptive gains. The valuable impact of robust terms in the presence of uncertainties 

was demonstrated, as the UAS-S4 state variables could accurately track the reference model 

in the presence of uncertainties due to external disturbances and model imperfection. 

Finally, in the third study a new methodology was developed to obtain very accurate FDMs. 

By considering the available LLS-FDM, the number of local FDMs was augmented from 216 

to 3,642 through K-nearest neighbour interpolation and extrapolation methodologies. By 

relying on the enlarged FDM dataset, Support Vector Regression (SVR) was designed to 



132 

predict the FDM for the entire flight envelope. The validation studies based on Root Locust 

diagrams showed that the SVR could provide more accurate FDM than using LLS approach. 

In addition, the Mean Absolute Error (MAE) was considered as the performance index, and 

their values showed the superiority of the SVR-FDM in marginal flight conditions. Moreover, 

the SVR-FDM showed a strong resiliency against adversarial FDM samples. It could secure 

the FDC by utilizing Robust-SVR that had been reinforced by the adversarial retraining 

defense algorithm. 

In this research designed highly reliable and accurate TP, FDM, and FDC algorithms were 

designed following fundamental requirements for any trajectory-based operations, such as air 

traffic control, path planning and optimization, and especially aerial collision avoidance. 

 



 

RECOMMENDATIONS 
 
Several recommendations for future work related to this research can be made.  Starting with 

the first study, other types of Deep Neural Networks (DNNs), such as “Autoencoders”, could 

be investigated, as they have unique abilities when some part of the dataset is missing. Hence, 

when faced with communication or sensor failures, Autoencoders can still predict future 

trajectories very well. From the second study, reinforcement learning controllers could be 

utilized instead of the RAFL Controllers. These controllers have super-fast responses in the 

presence of uncertainties that have not yet been experienced. As for the third study, 

investigating other approaches for generating adversarial FDM samples would be worthwhile, 

such as the “deep fool”. This effort could improve the success rate of adversarial retraining 

defence algorithms when adversarial attacks would be approached. 
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