
Dataset Generation and Machine Learning Approaches for
Android Malware Detection

by

Zakeya NAMRUD

MANUSCRIPT-BASED THESIS PRESENTED TO ÉCOLE DE
TECHNOLOGIE SUPÉRIEURE IN PARTIAL FULFILLMENT FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
Ph.D.

MONTREAL, APRIL 30, 2022

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Zakeya NAMRUD, 2022

This Creative Commons license allows readers to download this work and share it with others as long as
the author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Sègla Kpodjedo, Thesis Supervisor
Department of Software and IT Engineering, École de technologie supérieure

Mr. Chamseddine Talhi, Co-supervisor
Department of Software and IT Engineering, École de technologie supérieure

Mr. Georges Kaddoum, President of the Board of Examiners
Department of Electrical Engineering, École de technologie supérieure

Mrs. Latifa Guerrouj, Member of the jury
Department of Software and IT Engineering, École de technologie supérieure

Mr. Hamid Mcheick, External Independent Examiner
Software engineering and distributed applications, Université du Québec à Chicoutimi

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON "APRIL 01, 2022"

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

FOREWORD

The dissertation is organized into five chapters, three of which being articles published or

submitted. No changes were applied to these journal submissions or publications. In the

first chapter, I discuss my research objectives, contributions, and the methodologies that

we used in this research. Next, I did a comprehensive literature review, and background

discussion. Chapters 3,4 and 5 are the published journal papers. The thesis is concluded

with a discussion of the results and future research directions.

ACKNOWLEDGEMENTS

Many people helped make this thesis feasible. I would want to thank everyone who helped

make this Ph.D thesis feasible. I am especially grateful to my family without whom it

would not be possible to complete the work.

Génération de jeux de données et approches basées sur l’apprentissage
automatique pour la détection des logiciels malveillants sur Android

Zakeya NAMRUD

RÉSUMÉ

Les logiciels malveillants sont de plus en plus complexes et nombreux sur Android. Face
à cette complexité et présence grandissantes, les méthodes d’apprentissage automatique
sont de plus en plus utilisées pour aider les systèmes Android à détecter ces logiciels.
Cet apprentissage machine se construit sur des modèles de comportements dynamiques
et/ou de caractéristiques statiques des apps Android. La présente thèse s’articule autour
de l’analyse statique d’apps Android pour l’extraction de métriques pertinentes pour la
détection de logiciels malveillants par apprentissage machine.

L’accès à des bancs d’essais de qualité peut constituer un frein à la proposition d’approches
d’apprentissage machine efficaces. En premier abord, le travail présenté dans ce document
a donc consisté en la proposition de scripts qui appliquent diverses analyses statiques
sur une app et en extraient une suite de métriques inspirées de divers travaux de la
littérature. De plus, nous proposons sur cette base un banc d’essai de plus de 17000 apps
pour l’évaluation d’approches d’apprentissage machine.

Le présent travail comprend également des expériences d’apprentissage automatique
menées en utilisant des stratégies de classification qui définissent les caractéristiques
statiques légitimes des applications bénignes en opposition à celles des applications
malveillantes. En général, les applications bénignes partagent des caractéristiques simi-
laires, tandis que les applications malveillantes présentent des caractéristiques anormales.
En nous appuyant sur les jeux de données développés, nous proposons et testons les
performances de divers modèles de classification dans la détection des applications malveil-
lantes.

Les modèles testés incluent des classificateurs courants, ainsi que des modèles plus avancés
de Support Vector Machine et Deep Learning, dont les hyperparamètres ont été réglés
pour améliorer la précision et l’efficacité de la détection des logiciels malveillants. Enfin,
nous avons examiné sur la base des permissions Android, les divergences possibles de
patterns d’utilisation entre les applications bénignes et les logiciels malveillants et ce,
selon diverses categories d’apps.

Mots-clés: sécurité mobile, analyse statique, ingénierie inverse, informatique mobile,
apprentissage machine, apprentissage profond

Dataset Generation and Machine Learning Approaches for Android
Malware Detection

Zakeya NAMRUD

ABSTRACT

In recent years, Android malware has substantially increased both in incidence and
developmental complexity. To address this, machine learning approaches are increasingly
used to help Android systems detect such software. Such approaches are built on models
and metrics encapsulating dynamic behaviors and/or static characteristics of Android
apps. This thesis focuses on the static analysis of Android apps for the extraction of
relevant metrics for malware detection by machine learning.

Quality benchmarks are essential to proposing effective machine learning approaches.
Therefore, the work presented in this document first proposes scripts able to apply diverse
static analyses on an app and extract a set of metrics inspired by various works in the
literature. In addition, we propose on this basis a dataset of more than 17,000 apps for
the evaluation of machine learning approaches for Android malware detection.

This thesis also includes machine learning experiments using classification strategies that
define the legitimate static characteristics of benign versus malicious applications. Put
trivially, benign applications will share similar characteristics, while malicious applications
will exhibit anomalous characteristics that ought to be identified. Based on the developed
datasets, we propose and test the performance of various classification models in detecting
malicious applications.

The tested models include common classifiers, as well as more advanced Support Vector
Machine and Deep Learning models, whose hyperparameters have been tuned to improve
the accuracy and efficiency of malware detection. Finally, we examined on the basis of
Android permissions and security risks, the possible discrepancies between permission
usage patterns of benign applications versus malware across different app categories.

Keywords: mobile security, static analysis, reverse engineering, mobile computing,
machine learning, deep learning

TABLE OF CONTENTS

Page

INTRODUCTION .. 1
1.1 Overview . 1
1.2 Statement of Problem and Research Motivation .4
1.3 Requirements of a Potential approach .5
1.4 Scope of Proposed Research .6
1.5 Technical Contributions .6
1.6 Thesis Outline .8
1.7 Summary .8

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 13
2.1 Background . 13

2.1.1 Android app development . 13
2.1.2 Distribution and security of Android apps . 16
2.1.3 Vulnerabilities in Android Apps . 16

2.1.3.1 Android permissions . 16
2.1.3.2 Security Smells . 18
2.1.3.3 Physical attacks . 18

2.1.4 Malware threats . 18
2.1.4.1 Malware classification . 19

2.2 Literature review . 24
2.2.1 Android application datasets . 24
2.2.2 Using Machine learning . 26

2.2.2.1 Static Analysis . 26
2.2.2.2 Dynamic Analysis . 29

CHAPTER 3 PROBING ANDROVUL DATASET FOR STUDIES ON
ANDROID MALWARE CLASSIFICATION .. 33

3.1 Abstract . 33
3.2 Introduction . 34
3.3 Background . 36

3.3.1 Vulnerability . 37
3.3.2 Dangerous Permissions . 37
3.3.3 AndroBugs . 37
3.3.4 Security Code Smells . 38

3.4 Related Work . 38
3.4.1 Dataset . 38
3.4.2 Malware Classification with machine learning . 40

3.5 AndroVul-T: the tool . 42
3.5.1 Dangerous permissions extraction . 43
3.5.2 AndroBugs extraction . 43

XIV

3.5.3 Code Smell extraction . 44
3.6 AndroVul-D: the dataset . 44

3.6.1 Data Selection . 45
3.6.2 Dataset Structure . 46
3.6.3 Dataset description . 47

3.7 Study Design . 48
3.7.1 Identifying malwares . 49
3.7.2 Correlation Analysis on the Androzoo data . 50
3.7.3 Used Classifiers . 50
3.7.4 Feature selection . 51
3.7.5 Performance Indicators . 52
3.7.6 Research Questions . 52
3.7.7 Answering the research Questions . 53

3.8 Experiments and Results . 55
3.8.1 Results . 55
3.8.2 Analysis and discussion of the experiments . 58

3.9 Limitations and Threats to validity . 59
3.10 Conclusion . 61

CHAPTER 4 DEEP LEARNING BASED ANDROID ANOMALY DETECTION
USING A COMBINATION OF VULNERABILITIES
DATASET .. 65

4.1 Abstract . 65
4.2 Introduction . 66
4.3 Background . 68

4.3.1 Android Vulnerabilities . 68
4.3.1.1 Dangerous Permissions . 69
4.3.1.2 AndroBugs Vulnerabilities . 69
4.3.1.3 Code Smell . 70

4.3.2 Machine Learning (ML) . 70
4.3.2.1 Deep Learning (DL) . 71
4.3.2.2 Support Vector Machines (SVM) . 72

4.4 Methodology . 72
4.4.1 Dataset . 73
4.4.2 Feature extraction . 73
4.4.3 General architecture of our machine learning approach 75
4.4.4 Android Malware Detection based on Deep Learning 76
4.4.5 Android Malware Detection based on support vector machine 81

4.5 Experiments . 82
4.5.1 Performance Indicators . 82
4.5.2 Experimental setup . 83
4.5.3 Results . 83
4.5.4 Comparison with well-known anti-virus tool . 87

XV

4.6 Related work . 87
4.6.1 Static Analysis . 88
4.6.2 Dynamic Analysis . 89
4.6.3 Hybrid Analysis . 90

4.7 Conclusion . 92

CHAPTER 5 DEEP-LAYER CLUSTERING TO IDENTIFY PERMISSION
USAGE PATTERNS OF ANDROID APP CATEGORIES 95

5.1 Abstract . 95
5.2 Introduction . 96
5.3 Background . 98

5.3.1 Permission System . 98
5.3.2 Clustering model . 100

5.4 Study Objectives and data collection . 103
5.4.1 Data collection . 103

5.4.1.1 Feature Extraction . 104
5.4.1.2 Applications Categories . 107

5.5 Proposed Approach . 107
5.5.1 Approach overview . 107
5.5.2 Deep-layer clustering . 109
5.5.3 Clusters analysis . 112

5.6 Empirical study . 112
5.6.1 Analysis of Cohesion . 113

5.6.1.1 Analytical technique . 113
5.6.1.2 Results for RQ1 . 115

5.6.2 Produced inferred pattern . 117
5.6.2.1 Analytical technique . 118
5.6.2.2 Results for RQ2 . 119

5.6.3 Pattern generalization evaluation . 119
5.6.3.1 Analytical technique . 120
5.6.3.2 Results for RQ3 . 123

5.7 RELATED WORK .. 124
5.7.1 Research related to dataset generation . 124
5.7.2 Permissions based study . 126
5.7.3 Category based study . 128

5.8 Conclusion . 131

CONCLUSION AND RECOMMENDATIONS . 133
6.1 General conclusion . 133
6.2 Articles in peer-reviewed journals and conferences . 134

BIBLIOGRAPHY .. 135

LIST OF TABLES

Page

Table 2.1 The most widely used Android malware datasets . 25

Table 2.2 Comparison between various state-of-art solutions . 32

Table 3.1 App categories in our dataset . 49

Table 3.2 Selected one Classifies form each four known Machine learning
categories . 51

Table 3.3 Information about the datasets’ sizes and the selected thresholds
for all experiments . 55

Table 3.4 AUC and F1 results when considering only AndroZoo apps
(Benign & Malicious) . 55

Table 3.5 AUC and F1 results when considering Benign apps from
(AndroZoo & Malicious apps from VirusShare) . 56

Table 3.6 AUC and F1 results when considering Benign apps from
AndroZoo & Malicious apps from VirusShare and Androzoo 56

Table 3.7 Comparison with related work . 58

Table 3.8 Severity Level Artifacts . 62

Table 3.9 Dangerous Permissions . 62

Table 3.10 Dangerous Permissions . 63

Table 3.11 Regular expressions used in our tool containing Smali type for
code smell . 64

Table 4.1 Dataset description . 74

Table 4.2 Best hyper-parameters . 81

Table 4.3 Comparison between the results of datasets with 11,814 samples,
and 18,780 samples . 84

Table 4.4 DL Confusion matrix . 85

Table 4.5 The experimentation results for SVM parameters . 86

XVIII

Table 4.6 SVM Confusion matrix . 86

Table 4.7 Comparison between DL,SVM classifiers and the Related work 87

Table 4.8 Comparison with well known anti-virus tool. 88

Table 4.9 Comparison between state of the art research and our approach 92

Table 5.1 Level of permission protection . 100

Table 5.2 Dangerous permissions and their related groups in Android 6.0 101

Table 5.3 New or changed permission groups . 102

Table 5.4 The dataset contents . 106

Table 5.5 The distribution of Benign & Malware App Categories in the
dataset . 108

Table 5.6 SOM-Kmeans average cohesiveness and summary of inferred
usage patterns. 117

Table 5.7 Comparison between two models (with and without MP) 124

Table 5.8 Comparison between various state-of-art solutions . 129

LIST OF FIGURES

Page

Figure 1.1 Downloads of mobile applications globally from 2018 to 2024.2

Figure 1.2 First contribution . 10

Figure 1.3 Second contribution . 11

Figure 1.4 Third contribution . 12

Figure 2.1 Android application build process . 14

Figure 2.2 Mobile malwares classification . 20

Figure 2.3 Global mobile malware distribution in 2019 . 23

Figure 2.4 2019’s top Android malware distribution . 23

Figure 3.1 Overview of the AndroVul tool . 42

Figure 3.2 Parsing and Quantifying vulnerability data . 43

Figure 3.3 Data Selection and Gathering . 45

Figure 3.4 Information and vulnerabilities extracted from an Android app 47

Figure 3.5 Findings from RQ 1 . 59

Figure 3.6 Findings from RQ 2 . 59

Figure 4.1 Installation of mobile malicious packages in Android from 2017
to 2020 . 67

Figure 4.2 General architecture of a Deep Learning model. 71

Figure 4.3 Dataset Visualization . 74

Figure 4.4 Design Methodology for malware detection in Android 77

Figure 4.5 The architecture of DL layers using Sequential neural network 80

Figure 4.6 Built DL model . 81

Figure 4.7 Comparison between history models Accuracy for 11,814
samples and 18,526 samples . 85

XX

Figure 4.8 Comparison between history models loss for 11,814 samples
and 18,526 samples . 85

Figure 5.1 Overview of Building the dataset . 105

Figure 5.2 Overview of the procedure of producing inferred pattern 109

Figure 5.3 Architecture of the SOM-Kmeans model . 113

Figure 5.4 The correlation between the quality matrices . 117

Figure 5.5 Overview of the quality matrices cohesion . 117

Figure 5.6 PUC & Category cohesion results of the identified permissions
usage patterns. 119

LIST OF ALGORITHMS

Page

Algorithm 4.1 VirusShare Android apps collection. 74

Algorithm 4.2 Feature Extraction Algorithm. 76

Algorithm 4.3 Deep Learning based Model.. 80

Algorithm 4.4 Support Vector Machine based Model.. 82

Algorithm 5.1 Feature Extraction . 106

Algorithm 5.2 Clusters Analysis . 112

Algorithm 5.3 A potential Malware (PM) . 121

INTRODUCTION

1.1 Overview

In modern societies, smartphones are an important part of many people’s everyday lives.

International Data Corporation (IDC) estimates that, by 2024, the smartphone market

will top 1.5 billion units, with most of the increase coming from new users in developing

countries (IDC, 2021). Android phones are currently the most commonly available mobile

devices, with more than three-quarters of smartphone users on an Android device (Li

et al., 2018a).

Google Play Store, which is the main online marketplace for Android applications (apps),

lists more than 3.43 million unique apps as of January 2021 (matters, 2021). Even from

these few statistics, it is clear that Android smartphones are a multi-billion-dollar industry,

and growing.

Along with the increase in unit numbers of smartphones, the devices have evolved from

being mobile phones to being miniature mobile computers. This change in use has

effectively expanded the parameters of smartphones for both business and personal use.

Available apps and those in development are geared to satisfying a broad range of everyday

needs, such as social networking, online banking and gaming, along with more traditional

tasks like phoning and texting. At the same time, the apps also need to be able to handle

user information that may be sensitive.

Mobile ecosystems are often targeted by cybercriminals based on the type of information

these systems handle. The first line of attack is usually to exploit vulnerabilities in apps.

Some cybercriminals even develop apps themselves as a means to access user information.

However, the majority of the attacks target the most popular apps, as gaining access

to the information of millions of smartphone users can prove lucrative to black market

2

sellers. Additionally, non-criminal actors may target user information in order to deliver

advertisements. Whether for criminal purposes or not, these ongoing attempts to illegally

access user information highlight the need for protecting smartphone users’ privacy and

security. The best way to approach that is through the detection and mitigation of the

technology’s vulnerabilities

Figure 1.1 Downloads of mobile applications globally from 2018 to 2024
Taken from (Clement, 2021)

The Android ecosystem is a topic of investigation in a number of research projects. Most

of these studies are looking into problems related to usability or violations of privacy and

security. A brief overview of the literature reveals privacy and/or security issues. For

example, (Zhou & Jiang, 2012) examined malware that is masked to appear as legitimate

apps; (Fahl et al., 2012) studied how invalid SSL certificates are accepted; (Drake, 2015)

looked at memory corruption; (Ikram et al., 2016) focused on the transmission of sensitive

3

information; (Calciati & Gorla, 2017; Almomani & Al Khayer, 2020; Iqbal et al., 2018)

studied permissions abuse. All of these research endeavours found that changes in the

Android ecosystem can have a broad range of effects related to malware vulnerability,

depending on the severity of the attack, the OS version, and the kind of devices that are

impacted.

An area of research that is notably also expanding its studies on Android malware. The

increase in the use of smartphones as everyday tools for financial transactions and control

of “smart” appliances, for example, have made these tools targets of data theft. The thefts

usually occur through malware that appears to be legitimate apps and are downloaded;

the apps then steal the targeted data from devices or even hold users’ data or devices for

ransom.

In response to the massive increase in data theft, tools are being designed that are

able to signal whether an app is benign or malicious. Some recent research includes

frequency analysis that can determine malware-generated API calls (Aafer et al., 2013;

Takahashi & Ban, 2019); dangerous permissions (Arp et al., 2014; Chakradeo et al., 2013;

Alqatawna et al., 2021); call sequence (Canfora et al., 2015; Vinod et al., 2019); and

fingerprinting (Karbab et al., 2020; Canfora et al., 2016; Dai et al., 2013). The developed

tools use program analysis, such as dynamic, static, and hybrid analysis. The results of

these analyses are varied. For instance, Chen et al.(Chen et al., 2016) found that the

most popular tools for malware classification gave dismal performances during testing

for the latest malware datasets. These test results should not be surprising, given the

fast evolution of the Android OS and the malware targeting it. Malware classifiers with

high performance at their creation may become obsolete within a few years or even a few

months. Therefore, the design of robust malware detection tools with a long lifespan is

4

highly challenging, as the tools need to be replaced or modified within a relatively short

time. This can lead to high costs related to retraining or replacement.

Given the above, what is urgently needed are malware classifiers designed to be robust

to changes. Specifically, studies investigating issues around Android smartphone vul-

nerabilities, privacy and security, and detection and mitigation tools should be ongoing,

considering that malicious actors are continuously changing their access and attack strate-

gies. The present thesis intends to contribute to the ongoing research efforts in this

expanding field of study.

1.2 Statement of Problem and Research Motivation

The Android ecosystem represents the latest evolution in consumer mobile communications.

It is an open source mobile platform that powers hundreds of millions of smartphones and

related devices, along with over a billion apps. Unfortunately, the Android’s popularity

has also drawn unwelcome attention to its technology and users, with the vast majority

of smartphone malware targeting the Android ecosystem. Despite the fact that malware

is usually distributed through third-party-operated markets, even large manufacturers

cannot ensure that their listed apps are malware-free. A few of the more common Android

malware threats are Spyware, Fake Installers, Bots, Phishing, Trojans, Root Exploits and

SMS Fraud. Some malware, like that found in Download-Trojans apps, only download

malicious code post-installation, making it difficult for compromised apps to be detected

by the market vendor, even vendors as large and expert as the Google Android Market.

To date, the majority of developed strategies for malware detection have used conventional

techniques, such as content signature. In that approach, a list of malware signature

definitions is used as a reference, with each app then compared to a malware signature

database. However, malware not included in the used database will not be detected with

5

this method. Chin et al.(Chin et al., 2011) studied malicious patterns, concluding that

signature-based strategies are consistently unable to keep up with the latest malware

innovations. Therefore, despite the large number of proposed strategies in the literature

aimed at detecting and analyzing malicious apps, the ever-changing Android malware

always seems to be one step ahead of most available detectors and classifiers.

One promising way to keep pace with innovative malware is to develop an anomaly

detection system which employs customized learning models. However, these models

require high quality and plentiful data that usually exceeds dataset availability. With

this in mind, the present thesis aims to develop a viable solution to the Android malware

problem that includes app processing, feature extraction, and the ability to determine

whether a perceived threat is benign or malicious.

1.3 Requirements of a Potential approach

In reviewing proposed approach in the relevant literature, we discovered several similar

requirements that all approaches appear to have. For our proposed approach, we assume

that an anomaly detection system has three main requirements, as listed below:

1. Flexibility: The proposed approach should be flexible and not restricted to limited

range of applications.

2. Quality: The proposed approach should ensure data quality.

3. High performance: The proposed approach should be tuning the hyper parameters to

achieve the desired performance level for the anomaly detection system.

6

1.4 Scope of Proposed Research

The proposed research focuses on mobile application security vulnerabilities that can be

exploited to inject malicious code that threaten Android devices. Machine learning and

static analysis will be employed in a scheme which identifies harmful apps to improve

the security of Android users. In order to detect and identify malware in mobile apps

that may cause security issues, static analysis is initially used for feature extraction and

dataset development. The developed datasets will provide malware detection researchers

an easy-to-use benchmark and scripts that reverse-engineer vulnerability information

generation. We will then, using our developed datasets, test common classifiers as well as

clustering and feature selection strategies to measure malware identification performance.

We have divided our detection process system into three general layers. In the first layer,

we developed the autonomous dataset generator tool to create a dataset with information

on the apps (benign and malicious) vulnerabilities as features. In the second layer, we

investigate the impact of those features in terms of distinguishing between malware and

benign apps by deploying several machine learning techniques. While in the third layer

we focus on risks that occur when permissions grant access to sensitive data.

1.5 Technical Contributions

Our research introduces a security vulnerabilities repository known as “AndroVul” (short

for Android Vulnerabilities) for identifying hidden malware in mobile apps that may result

in security threats. AndroVul utilizes a dataset with 16,180 apps that can be downloaded

either at Google Play Store or third-party venues. In our early experiments, we used four

classifiers for assessing the vulnerability information’s predictive power. When we used

our dataset in various combinations, the test results were overall very good, showing that

our approach is able to outperform earlier strategies in the literature. We found that our

7

method gives malware researchers important insights on the choice and calibration of

possible classifiers for use in malware detection. The main contributions of the present

research are as follows:

1. The development of a technique that employs reverse-engineering tools to simplify

vulnerability information generation regarding aspects such as dangerous permissions,

code smell, and vulnerabilities in AndroBugs in a wide range of applications.

2. The compilation of vulnerability data using 16,180 Android apps as a random sample.

The apps, which were downloaded from the dataset AndroZoo, were further extended

in our work by the addition of 3,978 malwares sourced from the VirusShare repository.

3. The publication of an in-depth study giving insights into the latest vulnerability

information prediction mined using our developed tool. Classifiers as well as data

labelling decisions are shown in this work to give better performance using our

information.

4. Developing a malware detection model based on deep learning and we investigated

several node architectures in hidden layers in order to get the highest possible

performance. The proposed model outperforms the state-of-the-art.

5. Developing a malware detection model based on SVM and investigated different

parameter settings to identify which were the best for our malware detection task.

6. Providing comparison of the performance of our DL and SVM classifiers, with respect

to state-of-the-art approaches and even some commercial anti-viruses and results show

that our classifiers are the most effective in identifying malicious applications. As such,

our models establish a new, important reference point in the current state-of-the-art

when it comes to malware detection.

8

7. Using an adapted combination of deep learning and the K-means clustering algorithm,

we provide a novel strategy for mining deep-layers permission usage patterns.

8. Assessing our approach’s efficacy by examining the coherence and the identified

patterns’ generalizability. The results reveal that our method was able to discover a

greater number of usage patterns at various degrees of usage cohesiveness.

1.6 Thesis Outline

This chapter provides a general introduction to the thesis problem statement and research

motivation. As well, the chapter presents the study’s main goals, objectives, proposed

methodology, and contributions. Chapter 2 presents a review of the relevant literature as

a means to frame the research problem and discuss gaps in the latest schemes. Chapters

3, 4, and 5 represent three published and submitted articles that focus on the stated

research problem:

1. Probing AndroVul dataset for studies on Android malware classification.

2. Deep learning Based Android Anomaly detection using a combination of vulnerabilities

dataset.

3. Deep-layers Clustering to identify permission usage patterns of Android apps’ cate-

gories.

1.7 Summary

The presented figures provide a summary of our contributions in this work. Figure 1.2 (a)

gives an overview for the AndroVul tool, while figure 1.2 (b) depicts how our datasets

were created using data from parsing/quantifying vulnerabilities. The primary objective is

9

extracting vulnerabilities from both malicious and benign apps, and generating a dataset.

As well, in order to detect malicious code, our developed machine learning models are

trained and tested. In figure 1.3 (a) the model for deep learning layers in a sequential

neural network is illustrated, along with our design methodology of Android malware

detection. In figure 1.3 (b), the Support Vector Machine (SVM) model is presented,

showing its training and testing phases. Our primary aim here is adding scalability as a

feature in our scheme in order to better detect and discern between benign and malicious

apps. In figure 1.4, a model combining SOM and K-means clustering based on a clustering

validity test is built using permission as features and the self-organizing map (SOM). Our

purpose is to describe the picture or pattern of how applications in a particular category

behave by optimizing our model.

10

a) Overview of the AndroVul tool

b) Parsing and Quantifying vulnerability data (i refers to the specific vulnerability)

Figure 1.2 First contribution

11

a) Deep Learning-based malware detection

b) Malware detection model

Figure 1.3 Second contribution

12

Cn

C3

C2

C1
Generated

dataset
SOM-Kmeans

Clusters

Algorithm to extract

the aimed info

Analytical

technique RQ1

Finding.1
Cohesion Matrices

Finding.2
Produced inferred

pattern

Finding.3
Pattern generalization

evaluation

Analytical

technique RQ2
Analytical

technique RQ3

a) The architecture of the SOM-Kmeans model and procedure of producing inferred pattern

Figure 1.4 Third contribution

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Background

This chapter presents a high-level overview of Android app development and security

mechanisms, followed by a review of the relevant literature. Additionally, we discuss

the framework for our analysis, focusing on the structure and functioning of Android

applications.

2.1.1 Android app development

In Android devices, apps are distributed through files called Android Packages (APK),

which are ZIP files. APK files hold bytecodes for the apps, as well as data such as

resources and third-party libraries. The APK files also includes a manifest in file format

that provides information on the capabilities of the app. In figure 2.1, a simplified

process is illustrated showing Java source code projects being translated into APK files

(Herong, 2021). As a way to boost security, apps function within a sandboxed environment.

Specifically, during the installation process, the Android OS gives the apps a Linux user

ID that is unique, and file permissions are set such that only a specific app can access

them. In this way, every app receives a unique Virtual Machine (VM), effectively isolating

that code from all other apps.

Several different components are utilized in building Android apps. The best source for

information regarding Android app components is official documentation.

1. Activities

Activities denote a single screen featuring a user interface. Apps typically have

several different activities for different purposes. For example, a music player may

14

Figure 2.1 Android application build process
Taken from (Herong, 2021)

15

feature an activity displaying available albums in list format, along with other

activities displaying the song currently playing and buttons for pausing the music,

fast-forwarding, shuffling song options, etc. All of these activities are independent

from each other and may be started by other apps, if the app grants permission. In

this case, for instance, an e-mail user would be able to launch an app’s “play” activity

in an audio file.

2. Services

Services represent background components which perform operations that have no

user interface. In music apps, for instance, music might be able to be played in the

background when a user is on another app. Various app components (broadcast

receiver, activity, etc.) can launch services.

3. Content providers

Multiple applications can share data through content providers. For example, one

app can store information that could be accessed and queried by other apps. In a

music player, the content provider stores information on the song currently playing.

This information may then be shared with, for instance, a social media application,

updating the “current listening” information of the user.

4. Broadcast receivers

The task of broadcast receivers is to monitor broadcast announcements and respond

appropriately to their message. For example, a broadcast might announce a low

battery, completion of a reboot process, an incoming text message, etc. There are

no user interfaces for broadcast receivers, as they generally only serve as component

gateways between components.

5. Intents

Intents are asynchronous messages that activate broadcast receivers, services, and

activities. In broadcast receivers, intents define any announcement currently in

broadcast. Using an incoming SMS text message as an example, an additional data

16

field may contain the message content as well as the phone number of the message

sender. In services and activities, intents define any action to be performed, such as

“send” or “view”. The intents could also involve other data that indicates what should

be acted upon. So, for instance, a music player application might send a “view” intent

to a browser which then launches a webpage showing information about the artist

performing the music.

2.1.2 Distribution and security of Android apps

Users of Android devices are able to install free or paid apps through Google Play Store,

which is the main application distribution platform for Android. Malicious apps are

constantly being screened through Google Bouncer, which is an automated anti-virus

system developed by Google. When installing apps from other sources outside Google

Play, users have to enable the settings option for “unknown sources” on the device and

accept any risk that may occur from the installation. For external app sources, users are

able to choose web-downloaded APK files or third-party markets.

2.1.3 Vulnerabilities in Android Apps

Vulnerabilities in Android apps are a growing problem. The main issues arise from Google

Play Store’s open format as well as from users’ ability to side-load apps. These options

limit oversight on the apps’ safety. At the same time, Android apps usually have some

form of limitation and flaws that leave them vulnerable to the actions of malicious players.

The following subsections provide a general overview of important Android vulnerabilities.

2.1.3.1 Android permissions

Application permissions in Android devices serve as controls for increasing the awareness

of users as well as limiting an app’s access to data considered “sensitive”, such as passwords

or bank account information (Source.android.com, 2021). During installation, a package

17

manager grants apps permissions, with the application framework responsible for enforcing

system permissions.

However, because apps, by their nature, require interactive access to other apps or system

services, they occasionally have to move beyond the sandbox via an Android permission

model that enforces restrictions only for certain operations. Permissions occur at the four

following protection levels (Developer.android.com, 2021b):

1. Normal: This protection level designates a permission that is low-risk, which means

it will permit apps access to API calls such as SET_ WALLPAPER. This form of

access will not harm users (Developer.android.com, 2021b).

2. Dangerous: This protection level designates a permission that is high-risk, meaning

that it will permit apps access to API calls that are potentially harmful, such as

READ_CONTACTS. This form of access could result in the leak of sensitive user

data or even the loss of control of the Android device. Permissions designated as

“dangerous”, also referred to as "runtime" permissions, must be explicitly approved

by the device user prior at run-time. In other words, it is up to the user to grant a

permission or deny the runtime permission (Developer.android.com, 2021b).

3. Signature: This protection level designates a permission granted when the requesting

app has been signed using the same certificate as the app (being requested) uses. The

signature in this case constitutes permission granted (Developer.android.com, 2021b).

4. Signature-or-System: This protection level designates a permission granted only when

the requesting app is either signed using the same certificate as the app (see “Signature”

protection level above) or exists on the same Android system (Developer.android.com,

2021b).

18

2.1.3.2 Security Smells

“Code smells”, in computer programming, is a term used to describe elements within

a code which may potentially be problematic. In a publication on code refactoring,

Fowler (Fowler, 2018) investigated some of the more common code smells. Research on

code smells in Android has thus far mainly looked at issues around energy consumption

(Gottschalk et al., 2012), performance (Hecht et al., 2016), and maintainability (Hecht

et al., 2015; Palomba et al., 2017).

In the present research work, we explore the concept of security code smells in relation

to security vulnerabilities. It is worth noting that security code smells refer to aspects

of a code which indicate a potential security vulnerability, while security vulnerabilities

refer to security problems which compromise the privacy and security of users. Similar

to conventional code smells, security code smells often concern a technical component,

albeit one directly or indirectly related to security.

2.1.3.3 Physical attacks

Due in part to their ease of portability, smartphones have become a repository for many

users’ day-to-day private information, ranging from contact lists to bank-related passwords.

This makes smartphones even more of a target for theft than wallets. Stolen mobile

devices, as well as lost devices, are an increasing security threat (Dunham, 2008; Murray,

2021).

2.1.4 Malware threats

The word “malware” is a relatively new term that was formed by combining the first

syllable of “malicious” and the last syllable of “software”. As its name implies, malware

represents malicious code that is developed for the sole purpose of attacking a target

with malignant and abusive behavior, such as disrupting system operation, executing

unwanted programs and commands, gaining unauthorized access to system resources, and

19

collecting sensitive information without permission. Most malware exploits vulnerabilities

that already exist in systems (Chen & Peikari, 2008).

The targeting of smartphones by malware is increasing exponentially, despite extensive

efforts to thwart it. According to Aittokallio (Aittokallio, 2021), upwards of 15 million

mobile devices have been infected by malware globally, and more than half of the malware-

infected devices are Android smartphones.

Many researchers focus their studies on Android OS, as nearly 99% of detected malware

(as of 2013) targets Android systems (Chebyshev & Unuchek, 2014). The targeting of

Android is likely due to three main reasons: 1) Android’s general popularity: 2) Android’s

architecture makes it vulnerable to malicious interventions; and 3) Android offers app

developers extensive assistance and resources for developing and uploading apps in their

online stores. Moreover, Android malware developers have made great strides since the

first malware was detected on Android in 2010. Specifically, they have enhanced their

abilities both to distribute the malware and avoid being detected. For example, the

China-originating Ginmaster trojan was released in 2011. It was distributed via legitimate

apps through the injection of malicious code and easily resisted detection by, among other

tactics, encrypting URLs and changing class names (Chebyshev & Unuchek, 2014).

2.1.4.1 Malware classification

Both smartphone malware classifications and those of computer malware share many sim-

ilarities, with the different classifications being made according to specific characteristics.

To determine the malware classification, a range of questions can be asked about the

malware, such as:

1. Is the malware hiding either itself or its malicious function?

2. Can the malware be described as “non-cloning” or “self-cloning”?

20

3. Based on its manifestations, does the malware appear to be a part of a program (i.e.,

a piece of a code) or is it a stand-alone program?

Figure 2.2 depicts the main classifications for malware (Chen & Peikari, 2008).

Malware
types

self-
replicating

non-
replicating

Stand alone
Worm

Parasitic
Virus

Hide mali-
cious function

Trojan

Hide presence
Various types

Figure 2.2 Mobile malwares classification

21

1. Virus: A virus is malware which spreads through the insertion of a self-copy, enabling

it in this way to become part of other programs. Viruses proliferate from device to

device, infecting each device before moving to the next. Nearly all viruses have an

executable file, meaning that the virus can only become active on a system if a user

opens or runs the malicious program or host file. Executing the host code also executes

the viral code. Host programs continue to function even when infected. In fact, for

most viruses, the aim is to cloak their existence so that they can spread “invisibly”

from one device to the next through file-sharing, infected email attachments, etc.

(Chen & Peikari, 2008; Security, 2021).

2. Worm: A worm refers to standalone software which does not need a host program or

human intervention to spread. Instead, a worm will exploit a system’s vulnerabilities

or trick targeted users into downloading the software. Worms gain access to a

system through a vulnerability and then use the system’s information-transport

or file-transport features. This enables worms to move unaided. Some worms, to

outsmart detectors, use technologies such as encryption and ransomware to launch an

attack (Chen & Peikari, 2008; Security, 2021).

3. Trojan: A trojan describes a kind of malware that gets its name from the infamous

wooden horse used by the Greeks to get inside the city gates of Troy without the

Trojans knowing. To all appearances, a trojan looks like legitimate and benign

software. This benign appearance tricks the targeted users into loading and executing

the software. Then, when activated, the trojan starts launching attacks. These can

be as mundane as constantly presenting pop-up windows or as severely damaging

as deleting files or stealing sensitive data. Trojan are also well-known for creating

backdoors that provide other malicious players access to the targeted user’s system.

As mentioned above, both viruses and worms reproduce in a system by self-replicating

or infecting other files. However, trojans spread via user interaction, which may

include downloading and running an Internet file or opening an attachment on an

email (Chen & Peikari, 2008; Security, 2021).

22

4. Spyware: Spyware installs on a targeted user’s device as a program. The two primary

purposes of spyware are to monitor the activities of the device user, and to collect

protected personal information, like passwords, usernames, and contact lists. Once

collected, the information is transmitted by the spyware to a party that typically uses

it for either law enforcement or advertising purposes. The installation of spyware

usually happens when the targeted user accepts an offer of a “free” trial software

and downloads it. Spyware may even be installed simply by visiting a web page

(Chen & Peikari, 2008; Security, 2021). A recent example of common spyware on an

Android device is Nickispy, which is able to record phone calls when installed (Jiang,

2021).

5. A botnet: Bots are self-propagating malware. They attack smartphones by first

infecting the system and then connecting back to a server. The infected server, in

turn, serves as a command and control center that controls a whole network of systems

that have been infected. This network is called a “botnet”. Bots are able to perform

tasks such as collect passwords, register keystrokes, and launch Denial of Service

attacks. Bots can also open back doors within infected devices, allowing unauthorized

access to other malicious players (Security, 2021).

6. Trackware: As a program, trackware collects information which identifies a device

or a specific user of a specific device in relation to an app, such as one which gives

the general or even exact location of the device being used (Johnson, 2021).

7. Adware: Adware refers to apps where ads play during execution. Adware’s sole

purpose is generating revenue for the app developer. However, some adware is more

intrusive, changing settings on the system or leaking the device user’s private infor-

mation (Johnson, 2021). Figures 2.3 and 2.4 show malware classifications (Johnson,

2021). Some smartphone adware, such as RiskTool and AdWare, has been developed

for more nefarious purposes, like stealing a user’s private data.

23

Figure 2.3 Global mobile malware distribution in 2019
Taken from (Johnson, 2021)

Figure 2.4 2019’s top Android malware distribution
Taken from (Johnson, 2021)

24

2.2 Literature review

Research focusing on security is a hot topic, mainly owing to the large-scale distribution

of Android devices. In particular, numerous studies on mobile device security are being

conducted, but these are not simple endeavours, considering that this type of security has

several different actors involved. The present work examines Android-related literature

on vulnerabilities in security, with an emphasis on how datasets and machine learning can

identify malware. The review begins by presenting various analyses on how vulnerabilities

can be identified. This chapter also reviews the state-of-the-art in malware detection.

Because the purpose of this study is to improve on existing detection and mitigation

methods, it is useful to review the latest literature in the field, along with some earlier

work that laid the foundation for malware detection and mitigation.

2.2.1 Android application datasets

Various datasets have been collected and studied in order to understand the behavior

of one particular application or apps in general. These datasets strongly influence both

the accuracy and execution performance of malware detection strategies. The data are

extracted at different levels, namely the operating system (OS), the app, and the device’s

hardware. For a few years after the Android system’s introduction over a decade ago, very

few datasets representing labeled malware for Androids were available to the public (Bose

et al., 2008; Enck et al., 2009; Shabtai et al., 2012; Yamaguchi et al., 2011; Zhou & Jiang,

2012). Then, in 2012, one of the first labeled datasets (Android Malware Genome Project)

was released (Zhou & Jiang, 2012). This dataset featured over 1,200 samples of Android

malware. A few years later, the Drebin dataset was publicly released (Arp et al., 2014). It

contained substantially more samples of Android malware, but it was also soon outdated

(Wei et al., 2017). So, another dataset had its debut in 2017, showcasing over 24,000

malware samples that had been collected from 2010 to 2016 (Wei et al., 2017). However,

within the Drebin and the later dataset, there was clear evidence of data drift (Arp et al.,

2014). The Drebin dataset in particular was found to be inadequate for training in light of

25

the ever-evolving complexity of malware threats (Grano et al., 2017). In the later dataset

were about 400 apps from the F-Droid repository, and among these were approximately

600 versions for each application. As well, 8 unique code smells were extracted (Wang

et al., 2019).

From 2014 to 2018, (Wang et al., 2019) developed a dataset of Android malware from

Google Play’s application maintenance results, using VirusTotal for app labelling. In

addition to collecting and labeling malicious apps, other information was also collected

for each sample, such as the name of the app and its package name, the malware family

name, the name of the developer, a description of the app, user ratings, the type of

installation, the category of the app, and how many times it was flagged on VirusTotal

(Wang et al., 2019). Another recent dataset of apps was made publicly available by

AndroZoo (Allix et al., 2016). It contains over 14 million Android applications that are

available on Google Play Store, as well as on some smaller markets and repositories.

The purpose of AndroZoo is to develop a collection of apps for research purposes that is

comprehensive and up-to-date.

Table 2.1 presents a listing of the Android malware datasets that are most commonly

consulted today, including details on their main features and size.

Table 2.1 The most widely used Android malware datasets

Dataset Size Features Year Metadata
Genome (Zhou & Jiang, 2012) 1,200 Permissions 2010-2011 No

Drebin (Arp et al., 2014) 5,560 Permissions
API calls 2014 No

Piggybacking (Li et al., 2017) 1,497 Permissions
API calls 2016 No

Krutz et al. (Krutz et al., 2015) 4,416 Permissions
intents 2015 No

Grano et al. (Grano et al., 2017) 600 Code smells
user reviews 2017 No

Wang et al. (Wang et al., 2019) 9,133 No 2014-2018 yes

26

2.2.2 Using Machine learning

The next subsection provides an overview of research work on malware detection for the

Android environment. The two main detection techniques are dynamic analysis and static

analysis. In dynamic analysis, apps are investigated within a run-time environment. The

researchers look at the system’s responses to the apps’ dynamic behavior, with dynamic

features such as system calls, resources usage and network connections being monitored.

Static analysis, on the other hand, investigates source code in apps for detecting malicious

patterns. However, instead of executing the source code, executable apps are disassembled

down to the files for the source code. There, any number of features can be extracted,

including broadcast receivers, intents, permissions, APIs, data and control flow, and

hardware components. In both dynamic and static analysis, data are collected as a means

to train the classifiers for machine learning, which will then create separation modeling

between the apps’ malicious and benign characteristics. The next subsections present

some recent important research studies focusing on dynamic and static analysis in Android

app malware detection.

2.2.2.1 Static Analysis

In (Arp et al., 2014) published a study proposing DERBIN. This is a static analysis frame-

work which extracts from the AndroidManifest.xml features (e.g., filtered intents,requested

permissions, hardware components, app components) for generating joint vector space

(Arp et al., 2014). The authors also employed Support Vector Machine (SVM) in their

dataset as a way to separate benign and malicious app classes. They then tested their

proposed system using 123,453 benign apps and 5,560 malware apps showing a 94%

successful detection rate for malware and a 1% false positive rate (Arp et al., 2014).

As well, the proposed system provides the user with guidance on identifying malicious

patterns and suspicious properties (Arp et al., 2014).

27

A few years earlier, (Sanz et al., 2012) had proposed a strategy for detecting malicious

Android apps using machine learning. The method analyzes extracted permissions found

within the app. For this approach, the classification features include the following: the

uses-feature, which applies to the device used by the app; the total permissions for the

app; and tag uses-permission, which refers to each permission an app uses in order to

function. Moreover, (Sanz et al., 2012) adopted supervised machine learning methods

for the classification of Android apps as being either benign or malicious. They gathered

820 applications. To detect benign apps, the authors chose apps from different categories

on Google Play. These apps included: Web apps that were mostly developed using

JavaScript, HTMS and CSS; native applications that were developed using Android SDK;

and widgets that were relatively simplistic apps that are similar to Web apps and are

developed for Android Desktop.

In (Huang et al., 2013) study, the authors investigated using classification learning to

detect malicious apps on Android devices. The machine learning algorithms used in

the research were SVM, AdaBoost, Decision Tree (C4.5), and Naïve Bayes. A total

of 20 features were extracted during the research, such as requested permissions and

permissions that were actually used. The selected features’ values were then stored

under the classification of feature vector and represented by comma-separated values

displayed sequentially (Huang et al., 2013). In the work, the authors demonstrated

that the best result for their classifiers could detect upwards of 81% of malicious apps.

Hence, by combining the results from several classifiers, a filter could be quickly developed

for identifying even more suspicious apps (Huang et al., 2013). Overall, 480 malicious

and 124,769 benign apps were collected as a dataset and then utilized in the study’s

experiments (Huang et al., 2013).

In (Zarni Aung, 2013) research, a framework was introduced for developing machine

learning-based malware detection in Android devices. The authors aimed to employ their

framework both for detecting malicious apps and for enhancing users’ privacy and security

when using Android smartphones. The proposed system is able to extract permission

28

as features from APK files and then analyse them with machine learning classifiers in

order to determine if the app is malicious or benign. Examples of the features include

requested permissions like CHANGE_CONFIGURATION, WRITE_SMS, SEND_SMS,

CALL_PHONE, etc. The authors experiment on a dataset of 500 Android apps that

have 160 different features, and the best result is 91.6% in precision. (Zarni Aung, 2013).

In (Su & Chang, 2014) conducted research to find out if an app can be classified as

malware by investigating the app’s announced permission combination. The authors

employed two weighted methods in their study for adjusting the permissions’ weights.

The two approaches use permission occurrences for both of the samples, combined with

frequency gap between them. Some metrics determined by previous studies were then

used for determining risk scores, with a higher risk score denoting a high user risk and

the likelihood that the app is malware (Su & Chang, 2014).

In a study conducted by (Sanz et al., 2012), a machine learning technique was proposed for

malware detection and automatic categorization of Android apps. This strategy functions

by analyzing various sets of app features that have been extracted from source code files

(regarding printable string occurrence frequency), the Android market (regarding rating,

number of ratings, and permissions), and the AndroidManifest.xml file. In the study,

the authors employed the following five machine learning algorithms: Support Vector

Machines (SVM), K-Nearest Neighbour (KNN), Decision Trees (DT), Random Forest

(RF), and Bayesian Networks (BN). Overall, the study results showed BN as being the

best classifier of the five. RF was found to be the second-best, while DT was found to

be the worst (Sanz et al., 2012). In later related work, Sun et al.(Sun et al., 2017) used

SVM in their extraction strategy for detecting malware in Android devices. Based on

Keywords Correlation Distance (KCD), the approach combined features to form keyword

feature vectors. SVM was then employed for detecting novel malware as well as malicious

variants, giving an accuracy rate up to 88% (Sun et al., 2017).

29

In the proposed and developed IntelliAV, (Ahmadi et al., 2017) introduced a malware

detection system that is built into the Android device. IntelliAV, which utilizes static

analysis and machine learning, is currently (as of the time of the present thesis’ research)

available on Google Play Store. In (Ahmadi et al., 2017) study, the technique trained

and validated 19,722 VirusTotal apps, of which 9,664 were malicious. According to the

results of their experiments, the authors had a 92.5% true positive rate and a 4.2% false

positive one, based on 1,000 attributes that had been generated in training. Notably, this

is substantially smaller than those found in static analysis approaches that have machine

learning off-device. While the study’s results are not as successful as some dynamic

analysis and monitoring strategies, the available solution may potentially be used as a

complementary addition to other methods (Ahmadi et al., 2017).

2.2.2.2 Dynamic Analysis

In (Shabtai et al., 2012) study explored the use of an Artificial Neural Network (ANN)-

based system for detecting Android malware by analyzing system calls and permissions

in an app. In this work, the authors employed two kinds of ANNs: Feedforward Neural

Networks (FNN) and Recurrent Neural Networks (RNNs). The FFNs trained the proposed

model by using requested permissions for creating patterns that could distinguish between

malware and benign apps. The RNNs trained the proposed model using system calls from

the execution behaviours of benign apps (Shabtai et al., 2012).

In earlier research, (Zhao et al., 2011) developed detection engines called Antimaldroid

for detecting malware by utilizing either heuristics-based or permission-based methods.

The proposed Antimaldroid features two distinct engines that are either heuristic-based

or footprint-based. The heuristic-based detection engine essentially is used for detecting

zero-day malware, with the heuristics-based filtering automatically monitoring specific

malicious actions. These could include native Linux system calls or dynamic loading of

new code. Heuristic-based detection engines also analyze logged system calls in order

to find any malicious behaviors. On the other hand, the footprint-based one employs

30

behavioral footprint matching and permission-based filtering for detecting malware. The

behavioral footprint matching then attempts to match an app (based on its behaviors)

to other malware listed in AndroidManifest.xml according to its APIs, structural layout,

byte code, etc.(Zhao et al., 2011).

In (Wu & Hung, 2014) research into malware detection developed DroidDolphin. This

approach has been widely citepd in the literature and has succeeded in setting the standard

for machine learning-based dynamic detection of malware. Although DroidDolphin’s

performances are relatively low, with detection rates between 86% and 93%, it includes

64,000 app samples, of which around 32,000 are found to be malicious. The authors’

study was conducted using an emulator, further, The accuracy of detection increases

dramatically as the dataset grows, making this technology attractive. (Wu & Hung,

2014). Another important detection method is (Amos et al., 2013) STREAM, which

(Wu & Hung, 2014) DroidDolphin is often compared to. STREAM is typically citepd

in reference to machine learning-based dynamic analysis. ADroid (Bhatia & Kaushal,

2017) and SafeGuard (Jeong et al., 2017) both use dynamic analysis and monitoring

of real environments to detect malware. However, as neither of these two approaches

need root access, they cannot trace kernel calls and so cannot detect privilege escalations.

(Saracino et al., 2016) proposed a malware detection approach called MADAM that can

be launched directly on an Android smartphone device. It uses multi-level architecture

featuring machine learning and dynamic analysis. Although this technique is highly

promising, users need to install the MADAM apk, as well as Xposed for hooks and events

and SuperUser for root access (Saracino et al., 2016).

In related research, (Bhatia & Kaushal, 2017) develop a dynamic analysis strategy

that uses strace-based feature extraction, Monkey 5 exploration, and virtual machine

installation. The same year, (Yalew et al., 2017) published their study on the proposed

T2Droid method, which partly is run within ARM TrustZone’s secure zone.

31

Various latest-generation smartphones come with ARM TrustZone as a trusted execution

system for launching the system and apps. Furthermore, ARM TrustZone provides a

system overview and is guaranteed secure, which many antivirus softwares are not. On

the other hand, because this approach needs access to secure areas and full control of

hardware for software deployment, it is challenging to include it on mobile devices. Hence,

In (Yalew et al., 2017) study offers innovations which could be useful to manufacturers

and other players in the industry, though not necessarily the end user. Also in (Fan et al.,

2017) published a study on a dynamic analysis approach called DroidInjector, which

is based on injecting a library (via ptrace_attach) into the processes of apps that are

potentially malicious. The main purpose is to monitor these apps by gathering information

on their behaviour and then sending it to a remote server, where the information would be

analyzed. Information that could be recovered during this process might be, according to

(Fan et al., 2017) even more relevant than information retrieved using dynamic analysis

strategies that are based on ptrace or strace, e.g., DroidTrace (Zheng et al., 2014) .

Furthermore, the authors propose that their developed technique functions equally well

on an emulator as on a physical device (Fan et al., 2017). Although they do not offer

either quantitative results or an implementable app in their study, they mention their

intentions to deploy their proposed malware detection strategy on Android markets (Fan

et al., 2017).

32

Table 2.2 Comparison between various state-of-art solutions

R
ef
er
en
ce

G
en
er
at
ed

D
at
as
et

M
et
ad

at
a

Fe
at
ur
e

Se
le
ct
io
n

M
ac
hi
ne

Le
ar
ni
ng

D
at
as
et

Si
ze

Fe
at
ur
es

Li
m
ita

tio
ns

(A
rp

et
al
.,
20
14
)

3
7

7
3

5,
56
0

pe
rm

iss
io
ns

A
PI

ca
lls

A
nc
ie
nt

da
ta
se
t

(S
an

z
et

al
.,
20
12
)

7
7

3
3

82
0

pe
rm

iss
io
ns

Ve
ry

sm
al
ld

at
as
et

A
nc
ie
nt

da
ta
se
t

(H
ua

ng
et

al
.,
20
13
)

7
7

7
3

12
4,
76
9

pe
rm

iss
io
ns

A
nc
ie
nt

da
ta
se
t

la
ck

in
ac
cu
ra
cy

(Z
ar
ni

A
un

g,
20
13
)

7
7

7
3

50
0

pe
rm

iss
io
ns

A
nc
ie
nt

da
ta
se
t

Ve
ry

sm
al
ld

at
as
et

(S
u
&

C
ha

ng
,2

01
4)

3
3

7
7

53
5

pe
rm

iss
io
ns

A
nc
ie
nt

da
ta
se
t

Ve
ry

sm
al
ld

at
as
et

(A
hm

ad
ie

ta
l.,

20
17
)

3
7

7
3

19
,7
22

pe
rm

iss
io
ns

A
PI

s
la
ck

in
ac
cu
ra
cy

(S
ha

bt
ai

et
al
.,
20
12
)

3
7

7
3

44
sy
st
em

ca
lls

A
nc
ie
nt

da
ta
se
t

Ve
ry

sm
al
ld

at
as
et

(W
u
&

H
un

g,
20
14
)

3
7

7
3

64
,0
00

A
PI

ca
lls

C
on

su
m
e
re
so
ur
ce
s

(B
ha

tia
&

K
au

sh
al
,2

01
7)

7
7

7
3

10
0

sy
st
em

ca
lls

O
ve
r-
fit
tin

g
iss

ue
s

(S
ar
ac
in
o
et

al
.,
20
16
)

7
3

7
3

2,
80
0

sy
st
em

ca
lls

A
PI

s
M
an

ua
lly

co
nfi

gu
re
d

(Y
al
ew

et
al
.,
20
17
)

7
3

7
3

16
0

sy
st
em

ca
lls

A
PI

ca
lla

Em
ul
at
or

U
se
d

Av
oi
d
th
re
at
s

(F
an

et
al
.,
20
17
)

7
7

7
7

23
0

A
PI

ca
lls

Em
ul
at
or

U
se
d

M
an

ua
lly

co
nfi

gu
re
d

O
ur

wo
rk

3
3

3
3

18
,5
26

15
,8
93

Pe
rm

iss
io
ns

C
od

e
Sm

el
l

A
nd

ro
Bu

gs
Vu

ln
er
ab

ili
tie

s

CHAPTER 3

PROBING ANDROVUL DATASET FOR STUDIES ON ANDROID
MALWARE CLASSIFICATION

Zakeya Namruda, Sègla Kpodjedoa, Chamseddine Talhia, Alvine Boaye Belleb

a Department of Software and IT Engineering, École de Technologie Supérieure,
1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

b Department of Electrical Engineering and Computer Science, York University,
Toronto, ON M2J 4A6, Canada

Paper published in Journal of King Saud University-Computer and
Information Sciences, September 2021

3.1 Abstract

Security issues in mobile apps are increasingly relevant as this software has become

part of the daily life of billions of people. As the dominant OS, Android is a primary

target for ill-intentioned programmers willing to exploit its vulnerabilities by spreading

malwares. Significant research has been devoted to the identification of these malwares.

The current paper is an extension of our previous effort to contribute to research with

a new benchmark of Android vulnerabilities. We proposed AndroVul, a repository for

Android security vulnerabilities, that builds on AndroZoo – a well-known Android app

dataset – and contains data on vulnerabilities for a representative sample of about 16,000

Android apps. The present paper adds confirmed malwares from the VirusShare dataset

and explores more thoroughly the effectiveness of different machine learning techniques,

with respect to the classification of malicious apps. We investigated different classifiers

and feature selection techniques as well as different combinations for our input data. Our

results suggest that the classifier MPL is the leading classifier, with competitive results

that favorably compare to recent malware detection work. Additionally, we investigate

how to classify (as benign or malicious) AndroZoo apps based on the number of antivirus

flags they are tagged with. We found that different thresholds only marginally affect the

34

machine learning classifier results and that the strictest choice (i.e. one flag) performs

best on the confirmed malwares from VirusShare.

3.2 Introduction

With a market share of 73% (Statcounter, 2021), Android is undoubtedly the leading

mobile Operating System (OS) of our times. Besides, thanks to its openness, it is well-

positioned to become the default OS for new applications centered on the Internet of

Things (IoT). Security aspects are thus increasingly relevant as there are more incentives

for malware developers to target Android devices. Android security has accordingly been

extensively researched and that effort has been helped by the AndroZoo(Allix et al., 2016)

dataset put together by Allix et al.(Allix et al., 2016) in 2016. The AndroZoo dataset

is a very useful resource for Android researchers in general but security researchers still

have many hurdles to pass from the moment they discover AndroZoo to the moment they

can effectively get actionable data from it.

In (Namrud et al., 2019b), we proposed AndroVul, a repository aiming to provide

researchers working on anomaly detection of Android applications with: i) a benchmark

readily usable (to test hypotheses), and ii) tool that will jumpstart their data collection.

Our dataset includes data on 16,180 applications from Google Play store as well as third

party stores (Allix et al., 2016). Our tool extracted from these apps’ binaries called APKs

(Android Package Kits): 1) permissions classified as dangerous by the Android permission

system; 2) data collected via AndroBugs, a popular Android vulnerability scanner1; and

3) security code smells, as recently defined by (Gadient et al., 2017). Furthermore, we

proposed preliminary experiments aiming at probing the predictive power of these various

sources of vulnerability and found that it was preferable to include all of them, with

dangerous permissions data being the best input.

1 https://www.androbugs.com/

35

The present paper builds on that previous work with an extensive investigation of different

classifiers and feature selection techniques applied to various setups of our benchmark.

A key question that many researchers face when using AndroZoo for malware detection/

classification purposes relates to the labeling of the apps: which ones should be consid-

ered malwares? AndroZoo only gives the number of antivirus flags an app got on the

VirusTotal(virustotal, 2021) website and it is up to the researchers to know how to use

that information.

(Arp et al., 2014) — an influential paper published in 2016 — answered that question by

classifying as a malware any app with at least 2 flags from a set of ten selected antivirus

products. Since then, the set of antiviruses from VirusTotal has grown so the relevance

and completeness of that initial set of ten products is questionable. More importantly,

the number of antivirus flags is the information that is readily available from the main

AndroZoo file; there are no information on which antiviruses flagged an app. Typically,

papers who consider flags from a preselected group of antiviruses from VirusTotal are not

based on AndroZoo data. Papers based on AndroZoo usually settle on a threshold for

the number of antivirus flags as a way to decide whether an app should be considered

a malware or not. A standard threshold is 2: any app with at least 2 antivirus flags is

considered a malware (Arp et al., 2014). However, the literature also includes papers

using thresholds such as 1 (Li et al., 2017), 28 (Li et al., 2017), 8 (Li et al., 2016), or half

the antiviruses (Wei et al., 2017). Hence, there is no firm consensus on the threshold of

antivirus flags starting from which an app in the AndroZoo dataset should be considered

a malware.

In any case, this is an important question, with which we struggled as malware researchers

and which the current paper investigates through various setups of our dataset, which

we extended, since (Namrud et al., 2019b), with confirmed Android malwares from

VirusShare, a prominent repository of malware samples. In particular, the addition of

36

malwares from VirusShare serves as an interesting addition in the way of testing the

effectiveness of classifiers built using our dataset and different malware thresholds.

Moreover, we take interest in assessing possible performance differences between well-

known machine learning techniques (e.g., JRIP, Naive Bayes, MLP, and J48). We also

included feature selection options for a finer granularity of analysis as this — some-

times overlooked — step has proven to be a significant addition in some studies (Bhat-

tacharya & Goswami, 2018). In short, while our first effort focused on proposing AndroVul

and investigating the input data (the various vulnerability metrics), the current study

expands the previous investigation on two fronts: i) the labeling (as benign or malware)

of Androzoo apps; and ii) the effectiveness of the treatment (with machine learning) of

the input.

The current paper aims to be self-contained and as such, it includes elements from

(Namrud et al., 2019b). The rest of the paper is organized as follows: Sections 3.3 and

3.4 propose relevant background notions and related work on app datasets and malware

classification. Section 3.5 and Section 3.6 present the tool and datasets in AndroVul. In

Section 3.7, we lay out our study from preliminary statistical analyses to the definition of

research questions and investigations aiming at answering them. Section 3.8 presents and

discusses our results and findings. We then discuss some of the limitations and threats to

validity to the present work in Section 3.9. Finally, Section 3.10 concludes the paper and

outlines some future work.

3.3 Background

In this section, we briefly present the possible security vulnerabilities our dataset focuses

on: dangerous permissions (as defined by the Android system), troubling code attributes

(as collected by AndroBugs) and security code smells (as proposed in (Gadient et al.,

2017)).

37

3.3.1 Vulnerability

A vulnerability is a soft spot in a system, that places it in danger of an attack by

hackers, viruses or any other event that will lead to breaking the security of any system

(Mansourov & Campara, 2010). Mansourov and Campara (Mansourov & Campara, 2010)

define it as “a certain unit of knowledge about a fault in a system that allows exploiting

this system in unauthorized and possibly even malicious ways”. A fault in a system can

be triggered by several factors such as human error, poor specifications of requirements,

the use of processes that are poorly developed, the use of technologies that evolve rapidly,

or even the poor understanding of threats. Malicious software also known as malware are

a means to exploit faults in a system. Malware are usually referred to as viruses, worms,

trojan horses, backdoors, keystroke loggers, rootkits, or spyware.

3.3.2 Dangerous Permissions

A key security mechanism of Android is its permission system, which controls the privileges

of apps, that apps must request specific permissions in order to perform specific functions.

This mechanism requires that app developers declare which sensitive resources will be

used by their apps. App users have to agree with the requests when installing or using the

apps. Android defines several categories of permissions, among which”dangerous” ones,

deemed more critical and privacy sensitive since they provide access to system features

such as the camera, Internet, personal contacts, SMS, etc. Table 3.10 in the appendix

proposes a list of the various dangerous permissions as defined by the official Android

developer resource(Developer.android.com, 2021b).

3.3.3 AndroBugs

Androbugs is a popular security testing tool that checks Android apps for vulnerabilities

and potentially critical security issues. The tool reverse engineers APKs and looks for

various issues, from failures to adhere to best practices to the use of dangerous shell

38

commands or exposure to vulnerabilities from third party libraries. AndroBugs has a

proven track record of discovering security vulnerabilities in some of the most popular

apps or SDKs. It is a command line tool that issues reports with four severity levels:

Critical Confirmed vulnerability that should be solved (except for testing code), Warning

possible vulnerability that should be checked by developers, Notice Low priority issue

and Info.

3.3.4 Security Code Smells

“Code smells” refer to code source elements that may indicate deeper problems (Shezan

et al., 2017). In (Gadient et al., 2017), Ghafari et al. introduced security code smells in

Android apps as "symptoms in the code that signal the prospect of a security vulnerability".

After reviewing the literature, they identified 28 security code smells (Gadient et al., 2017)

that they regrouped into five categories, such as Insufficient Attack Protection, Security

Invalidation, Broken Access Control, Sensitive Data Exposure, and Lax Input Validation.

3.4 Related Work

3.4.1 Dataset

Dataset availability is a key issue when it comes to getting insights about a topic or

evaluating approaches or hypotheses. We briefly present below some of the most notable

efforts related to this issue in the context of Android apps and more specifically their

possible security concerns.

A number of repositories have been proposed over the years for the study of mobile apps.

F-Droid(F-droid, 2018) is such an effort; it is a repository of free open source Android

apps that have been used in an impressive number of studies. Recently, Allix et al. (Allix

et al., 2016) have proposed and continued to maintain AndroZoo, certainly the largest

Android app repository, with millions of apps (and APKs) from the Google Play store and

39

other third party markets. Even more recently, Geiger et al. (Geiger et al., 2018) made

available a graph–based database with information (metadata, commit and code history)

on 8,431 open-source Android apps available on GitHub and the Google Play Store. Also

notable, although slightly older, is Krutz et al. (Krutz et al., 2015), with a public dataset

centered on the lifecycle of 1,179 Android apps from F-Droid. Complementary to these

research initiatives, there are a number of websites such as AppAnnie and Koodous that

gather Android apps and perform various types of analyses, including downloads over

time and advertising analytics.

When it comes to security aspects, there have been a number of papers investigating

large numbers of Android apps but few propose publicly available data-sets. Among

those, we can citep Munaiah et al. (Munaiah et al., 2016) which propose data (e.g., app

category, permissions) on reverse engineered benign applications from Google Play store

and malware applications from several sources.

Our dataset on vulnerabilities of Android apps shares some similarity with the work

of Gkortzis et al. (Gkortzis et al., 2018), which also proposes a dataset of security

vulnerabilities but for open source systems (8,694). Similar to (Krutz et al., 2015), we

propose a subset of a well-known mobile app repository; we start with AndroZoo while

(Krutz et al., 2015) builds on F-Droid. Similar to (Krutz et al., 2015), we also propose

tool that interface with well-known reverse engineering and static analysis tools, but we

do so with a focus on security vulnerabilities and use a different set of tools. Overall, our

dataset and tool propose a unique offering for Android security researchers.

As touched upon in the introduction, malware research using AndroZoo involve deciding

on which of the apps present in the benchmark can be considered malwares. Different

approaches are present in the literature. They fall mostly into two categories based on

whether they rely on a preselected subset of antivirus results from VirusTotal or a given

number of antivirus flags as reported by AndroZoo data.

40

Zheng et al. (Zheng et al., 2012) focused on the top ten anti-virus products from VirusTotal

that flagged apps as malware. Their results were subsequently used by Shen et al. (Shen

et al., 2014) to evaluate the effectiveness of antivirus tools against malware obfuscation. In

(Yousefi-Azar et al., 2018), Yousefi-Azar et al. considered nineteen of the most well-known

antiviruses, including Kaspersky, Symantec, Avast, McAfee, AVG, Malwarebytes, etc.

Also notable is the work of Ma et al. (Ma et al., 2019), which considered, as malwares,

apps that were flagged by four well-established anti-viruses (i.e. McAfee, 360 Security

Guard, Kingsoft Antivirus, Norton). Some other approaches based their analysis on the

number of antivirus that flagged an app as possible malware. Li et al. (Li et al., 2017)

considered that even one flag was enough to classify an app as malware. Other studies

were more lenient, with Li et al. (Li et al., 2016) needing 8 antivirus flags before deciding

that an app is a malware, and Wei et al. (Wei et al., 2017) needing flags from at least

50% of the anti-viruses of VirusTotal before recognizing an app as a malware. Different

from these works, our paper attempts to evaluate the impact of different thresholds for

malware labelling in a machine learning context.

3.4.2 Malware Classification with machine learning

A primary intended use of our dataset will be as input for malware detection techniques.

Malware detection approaches generally use some form of machine learning to classify

candidate apps as malicious or not. The existing literature is quite extensive on that

subject. In this section, we will focus on the work that is the most recent and the closest

to our experiments.

Permissions, especially dangerous ones, have been used in lots of studies as inputs to

various classification approaches. A particular recent work of interest is the one of

Bhattacharya et al. (Bhattacharya & Goswami, 2017), which proposed a framework that

gathered permissions from apps’ manifest files and applied advanced feature selection

techniques. The features obtained from such process were organised into four groups

41

and used as input for fifteen different machine learning classifiers (including JRip, J48,

MPL, and NB) from Weka. The authors evaluated their approach on a sample of

170 apps and reported the highest accuracy to be 77.13%. Many other research work

investigated features other than permissions for malware detection purposes. For instance,

Sharma et al. (Sharma & Sahay, 2018) tried to leverage Dalvik2 opcode occurrences for

malware classification purposes. They selected 5531 android malwares from the DREBIN

repository (Arp et al., 2014) and 2691 benign apps from the Google Play Store. They

applied different machine learning techniques and reported the best detection accuracy

obtained to be 79.27%. Also of interest is the work of Sachdeva et al. (Sharma & Sahay,

2018), which focused on features extracted through Mobile Security Framework, an open

source tool dedicated to mobile app security(Abraham, 2020). The approach proposed

in (Sharma & Sahay, 2018) aimed at classifying apps with respect to three levels (Safe,

Suspicious, Highly Suspicious). The reported experiments involved many refined machine

learning classifiers applied on a corpus of 13,850 Android apps, with accuracy results up

to 81.80% when considering the three proposed levels and up to 93.63% when considering

a binary benign / malicious decision.

DroidDeepLearner is a weighted malware detection technique proposed by (Li et al.,

2018b). The method employs both dangerous API calls and risky permission combinations

as features in order to build a Deep Belief Network model capable of automatically

distinguishing malware from benign ones. Their method achieves over 90% accuracy with

237 features on the Drebin dataset, according to the findings.

Authors (Lee et al., 2020) investigated whether the dangerous permissions are a key

component of detection when determining whether an app is malicious or benign. They

used a total of 10,818 malicious and benign apps. To determine the accuracy of the

detection, they used four separate deep learning algorithms and measured them using the

confusion matrix. The selected features resulted in about 90% accuracy. We are different

then both (Li et al., 2018b; Lee et al., 2020), they focus only in dangerous permissions

2 Dalvik is a now discontinued process virtual machine in Google’s Android OS

42

while we investigated the use of vulnerabilities in different levels including dangerous

permissions.

3.5 AndroVul-T: the tool

Our repository proposes a tool that allows, given a directory of APKs, the automatic

generation of a CSV file with information on the apps vulnerabilities. To accommodate

statistical analysis, each vulnerability corresponds to a column, to which we attach some

quantitative data indicating its presence (for dangerous permissions), the certainty behind

it (for AndroBugs vulnerabilities), or its weight (for security code smells).

Figure 5.1 proposes an overview of the inner workings of our tool, which makes use of

very well-known tools to reverse engineer any APK. The tool APKtool3 is applied on

a given APK to reverse engineer its manifest file and Smali code, which is basically a

human readable description of the binary code (contained in a .dex file). Similarly, via

our tool, an APK can be given to the AndroBugs tool in order to generate a report on its

potential security vulnerabilities. Once we get these three artefacts from AndroBugs and

Figure 3.1 Overview of the AndroVul tool

Apktool, our tool proceeds on parsing dangerous permissions from the Android Manifest,

various vulnerabilities from AndroBugs and security code smells from the Smali code. Our

3 https://ibotpeaches.github.io/Apktool/

43

treatment of the extracted information is illustrated in Figure 3.2 and further detailed in

the subsections below.

Figure 3.2 Parsing and Quantifying vulnerability data (i refers to the specific
vulnerability)

3.5.1 Dangerous permissions extraction

Extracting dangerous permissions is a relatively straightforward process, after which we

fill in the csv file information about the presence (1) or absence (0) of any dangerous

permission. This is summed up in Equation 3.1, with Vi standing for the inherent

vulnerability coming with the granting of a given dangerous permission i4.

Vi=1..24 =

 1 if thepermissionisrequested

0 otherwise

 (3.1)

3.5.2 AndroBugs extraction

As for the AndroBugs report, we parse it to extract vulnerabilities tagged Critical or

Warning (see Section 3.3.3). To quantify the collected information for every vulnerabil-

4 i is the index assigned to a given possible vulnerability in our dataset of vulnerabilities

44

ity(V), we give a weight of 1 to Critical, 0.5 to Warning, and 0 otherwise. This is summed

up in Equation 3.2, with Vi standing for Critical or Warning-level security vulnerabilities

in our dataset.

Vi=1..41 =


1 if Vi ispresentandCritical

0.5 if Vi ispresentandaWarning

0 if Vi is not present


(3.2)

3.5.3 Code Smell extraction

We used regular expressions to parse the Smali code and extract security code smells

defined in (Gadient et al., 2017) and used successfully in (Habchi et al., 2019; Gadient

et al., 2019). After which, we compute (see Equation 3.3) for each vulnerability posed by

a security code smell, a ratio indicating the relative presence of that vulnerability; said

ratio is obtained by dividing the number of identified instances of the code smell (NSi)

by the number of lines of code in the Smali format (LOCSMALI).

Vi=1to9 = NSi

LOCSMALI
∗100 (3.3)

3.6 AndroVul-D: the dataset

Androvul-D is our dataset of 78 vulnerability metrics collected on a sample of Android

apps from AndroZoo. Figure 3.4 illustrates the process through which AndroVul-D

was generated and can serve as a blueprint for other researchers willing to generate

vulnerability datasets for their own sample of AndroZoo apps. The figure starts with a

researcher (carefully) selecting the Android apps she wants in her study or preliminary

tests, and follows up with the application of the scripts of AndroVul-T to generate csv

files filled with vulnerability metrics about each app of the dataset. Furthermore, since

45

AndroZoo does not have all the information related to the apps it archived, the researcher

may, as we did, have to go fetch some metadata (e.g., category) about an app from its

store. Additionally, a researcher may have to add known malwares from other sources.

Figure 3.3 Data Selection and Gathering

3.6.1 Data Selection

For our data selection, we resorted to the AndroZoo data-set which contained 5,848,157

apps when we started our investigation. The AndroZoo dataset proposes data on the

APKs it archived in a main CSV file containing important information for each application,

including hash keys (such as sha256, sha1, md5), size information (for APKs and DEX),

date of the binary, package name, version code, market place as well as information about

how well the app fared on the VirusTotal website (number of antiviruses that flag the

app as a malware, scan date). Using a sample size calculator5, we computed that to get a

representative sample with very high confidence level (99%) and confidence interval (1%),

we ought to consider 16,586 apps. After removing duplicates and some entries that are

not actual apps, we ended up with 16,180 APKs that were downloaded and used as input

for the AndroVul-T scripts.

5 https://www.surveysystem.com/sscalc.htm

46

To complement the above data, we resorted to data from VirusShare(Forensics, 2021) as a

way to obtain malware data that has been validated as such. VirusShare is a website that

collects virus data, whether from desktop or mobile software, from a variety of sources

(Zhu et al., 2018b). The data is offered in big archive files with malwares for desktop

or mobile environments. We used two uploaded archive files (dating from 2019-08-08 &

2019-06-02), which comprises around 127K desktop or mobile apps, of which we were able

to recover 3,978 Android APK files. These files come with no information other than a

hash for file integrity.

3.6.2 Dataset Structure

The dataset we propose consists of CSV files containing information (as illustrated in

Figure 3.4) about the 16,180 apps from AndroZoo and the 3,978 apps from VirusShare

(Forensics, 2021), one app per line. There are 78 columns in the file, each with a header

clearly indicating the information it provides. There are four types of information in the

CSV:

1. Information from the AndroZoo dataset, if applicable6, as described in Section 3.6.1

2. The nine (9) code smells extracted from the reverse engineered Smali code (see Table

3.11 in the Appendix)

3. The twenty-four (24) dangerous permissions, as parsed from the app’s manifest file

4. The forty (40) metrics derived from the six types of vulnerabilities provided by

AndroBugs

Overall, the file contains 78 metrics about info from AndroZoo, dangerous permissions,

Smali code smells and AndroBugs-tagged vulnerabilities.

6 Malicious apps from VirusShare do not have any info other than a hash.

47

Figure 3.4 Information and vulnerabilities extracted from an Android app

3.6.3 Dataset description

Apps from the AndroZoo dataset: here, we provide some descriptive statistics on our

data-sets, relatively to the date, the category, the store, APK size and number of antivirus

flags. With respect to the binary dates, 3.37% of the apps display an unreliable date

(1980). About 1 out of 4 apps are from 2016 to 2018, 2 out of 3 apps are from 2014 to 2018.

48

The APK sizes range from 7 KB to 330 MB, with an average of 9 MB and a standard

deviation of 12 MB. Marketplace–wise, the most dominant stores are the Google Play

Store (74%), appchina (10%), mi.com (2%) and anzhi (1%). When it comes to information

from the antiviruses of VirusTotal(virustotal, 2021), the apps in the dataset have between

0 (74% of the apps) and 40 flags, out of the 63 antiviruses; the average is 2 flags and

the standard deviation is 5.11. We also collected data related to the apps’ categories. A

sizable part of the apps (about 43%) could not be mapped to a category, mainly because

they are no longer available on the market stores. Another 14% of the apps are only

available in Chinese markets. Overall, we could find the category information for only

43% of the apps. Table 3.1 lists all the categories that make for at least 1% of the dataset.

Apps from the VirusShare dataset: there are no additional information coming with the

APKs in this dataset. We took interest in getting an estimate about how many of these

malicious apps would be classified as such, using a threshold of 3 antivirus flags from

VirusTotal, threshold that we used in our previous work (Namrud et al., 2019b). There

were issues in automating the scanning process from VirusTotal, so we proceeded with a

small random sample of 94 apps, giving us a confidence level of 95% with an interval of

20% (as computed from https://www.surveysystem.com/sscalc.htm). We found that 72%

of these apps were flagged three times or more (This means we can be 95% confident that

between 52% and 92% of the malicious Android apps from VirusShare(Forensics, 2021)

have 3 or more antivirus flags from VirusTotal).

3.7 Study Design

In this section, we lay out the design of our study, from preliminary sanity checks to

research questions and experimental design.

49

Table 3.1 App categories in our dataset

CATEGORY Proportion
GAME 1231 (7.61%)
EDUCATION 571 (3.53%)
LIFESTYLE 540 (3.34%)
BUSINESS 437 (2.70%)
ENTERTAINMENT 423 (2.62%)
TOOLS 416 (2.57%)
PERSONALIZATION 397 (2.45%)
BOOKS AND REFERENCE 373 (2.31%)
TRAVEL AND LOCAL 307 (1.90%)
MUSIC AND AUDIO 282 (1.74%)
NEWS AND MAGAZINES 254 (1.57%)
PRODUCTIVITY 245 (1.52%)
HEALTH AND FITNESS 211 (1.31%)
FINANCE 193 (1.19%)
COMMUNICATION 169 (1.05%)
SPORTS 165 (1.02%)
SOCIAL 161 (1.00%)

3.7.1 Identifying malwares

A first point to be addressed is the identification of malwares in the AndroZoo dataset.

Androzoo does not explicitly tag apps as malwares. Rather, it provides the number of

antiviruses from VirusTotal that flagged the app, with malware researchers left to decide

which number of antivirus flags is enough to label an app from AndroZoo as a malware.

In addition to AndroZoo, we gathered malware apps from the VirusShare (Forensics,

2021) repository to strengthen the generalisability of our experiments.

Overall, we took into account three malware datasets:

1. AZM: AndroZoo apps flagged as possible malwares.

2. VSM: malware dataset from VirusShare.

50

3. MM: dataset mixing malwares from AndroZoo and VirusShare.

3.7.2 Correlation Analysis on the Androzoo data

To get a quick initial sense of how much the collected metrics can contribute to malware

detection, we first proceeded to some statistical correlation analysis of the metrics to: i)

the number of antivirus flags; and ii) a binary value representing the benign / malicious

classification: 0 for benign or 1 for malware (with the threshold of 3 flags used in our

previous work (Namrud et al., 2019b) to label an app as a malware). We computed

Pearson correlations for all metrics and found some interesting values in all 3 categories:

1. for permissions, READ_PHONE_STATE returns the highest correlations with

respectively 0.35 for the number of antivirus flags and 0.38 for a benign/malware

decision;

2. for code smells, the Dynamic Code Loading metric yields 0.4 for the number of flags

and 0.38 for the binary decision;

3. and for Androbugs, the vulnerability Using critical function returns 0.34 (number of

flags) and 0.31 (binary decision) as correlation values.

All three metrics mentioned above returned p-values significantly lower than 0.05 (the

commonly accepted statistical significance threshold), as is the case for all but a few

metrics in the dataset.

3.7.3 Used Classifiers

We selected four classifiers representing four types of machine learning algorithms com-

monly used in the Android malware research community. More precisely, we used the

well known machine learning software Weka and selected NaiveBayes (NB) from its bayes

category, MLP classifier from its function category, JRip from its rules category, and J48

51

from its tree category as shown in table 3.2. Using these classifiers, we proceeded to the

commonly used statistical method that is the K-fold cross-validation. In short, it consists

in splitting, after random shuffling, the dataset in K groups; after which, each group is

used as a test group while the other K-1 groups are used for training. More specifically,

we chose, in accordance to many similar studies (e.g., (Bhattacharya & Goswami, 2017)),

K = 10 for a 10-fold cross validation study, in which 90% of the data is used for training

and 10% for testing (prediction).

Table 3.2 Selected one Classifies form each
four known Machine learning categories

Classifier Category
MLP Function
NaiveBayes Bayes
JRip Rules
J48 Tree

3.7.4 Feature selection

The features (vulnerability metrics in our case) extracted from our data constitute a

relatively large set that is likely to contain some duplication. To tackle this, along with

reducing risks of overfitting, feature selection is to be considered. It allows identifying

the best features and excluding the least important features. To do so, it generally relies

on assessing the information gained or lost by adding or removing a particular feature.

Various techniques have been proposed and implemented in tools for this purpose. In

this work, we relied on the well-established open source machine learning software Weka

and selected the following three attribute evaluators: ChiSquaredAttributeEval (CS),

InfoGainAttributeEval (IG), and ReliefFAttributeEval (RF).

52

3.7.5 Performance Indicators

The application of classifier results in decisions about individual apps that can be quanti-

tatively evaluated through various measures. As it relates to the detection of malwares,

we refer to True Positive (TP) as the number of malwares actually classified as such, True

Negative (TN) as the number of benign apps classified as such, False Positive (FP) as the

number of benign apps wrongly classified as malwares and finally False Negative (FN) the

number of malwares wrongly classified as benign. From these basic measures are derived

more insightful measures, commonly used in malware detection research work, such as:

1. Precision: It is the ratio of actual malwares in the set of apps classified as such:

TP/(TP+FP)

2. Recall: It is the ratio of malwares that were detected as such: TP/(TP+FN)

3. Accuracy: It is the percentage of correctly classified apps: (TP+TN)/(TP+TN+FP+FN).

4. F1-Measure: It is a performance indicator that takes into account both precision

and recall of the obtained classification: 2 * (Recall * Precision) / (Recall + Precision).

5. Area under ROC Curve (AUC): It is a measure of the predictive power of the

classifier that basically informs on how much the model is capable of distinguishing

between classes (here benign apps vs malwares).

For all these measures, the higher, the better, with 1 being the perfect value.

3.7.6 Research Questions

Our research questions flow from the above considerations (as laid out in the previous

subsections) and aim at answering the following research questions:

1. RQ1: Which classifiers and feature selection techniques perform the best?

53

2. RQ2: Relatively to Androzoo, which subset of apps should be labeled as malwares?

More specifically, how many antivirus flags from VirusTotal are enough to label an

app from the AndroZoo dataset as a malware.

To answer these questions, we propose the following experiments based on different slicing

of the AndroVul data.

3.7.7 Answering the research Questions

Our research questions are designed around two key elements pertaining to malware

classification: i) the input (the "best" dataset to use) and ii) the treatment (the "best"

machine learning technique to choose).

The first point is an important one when it comes to using AndroZoo for malware

classification. Given that AndroZoo only provides the number of antivirus flags (from

VirusTotal) for a given app, researchers typically have to decide which threshold to use to

consider a given app malicious or benign. The choice of a threshold is somewhat arbitrary

and rarely motivated so, in the following, we propose experiments to probe the choice of

a good threshold through the lens of its contribution to effective malware classification,

especially when it comes to classifying correctly confirmed malwares (elements from

VirusShare). We mainly focus on a single threshold below which apps are considered

benign: thresholds of 1, 2, 3, 5, 10 and 20 but also consider one experiment with two

thresholds: i) benign apps being those apps with 1 or zero antivirus flags, and ii) malware

apps being those apps with 10 or more flags.

The choices outlined above delineate subsets of our benchmark that ought to be clarified.

Taking as an example the threshold 1, meaning apps with one or more flags are considered

as malwares, we define three (3) malware datasets:

1. AZM1: the set of AndroZoo apps with 1 or more antivirus flags,

2. V SM : the set of malwares from VirusShare (Forensics, 2021), and

54

3. MM1: the mixed set of apps from AZM1 and V SM .

In single threshold experiments, the choice of a threshold also defines which apps from

AndroZoo should be considered benign; in this case, these are the apps with 0 antivirus

flags: AZB0. This means that, with a threshold of 1 for malware decision, the complete

datasets we use as input for malware classification are the following:

1. AZB0 (benign apps) ∪ AZM1 (malicious apps),

2. AZB0 (benign apps) ∪ V SM (malicious apps), and

3. AZB0 (benign apps) ∪ MM1 (malicious apps).

Therefore, our experiments explore respectively the antivirus flag thresholds 1 (AZB0 and

AZM1), 2 (AZB1 and AZM2), 3 (AZB2 and AZM3), 5 (AZB4 and AZM5), 10 (AZB9

and AZM10), and 20 (AZB19 and AZM20) as well as a double threshold 1 and 10 (AZB1

and AZM10) 7

Throughout these experiments, we computed and analyzed the effectiveness of our selected

classifiers (JRIP, NB, MPL, and J48) and feature selection techniques (CS, IG, and RF).

To assess the results of the experiments, we relied mostly on the F1-score and the AUC

measure, which are standard metrics recognized as more robust than, for instance, the

accuracy measure.

The answers to our two research questions come from the analysis and comparisons of

these numbers intra-experiment (RQ1: best classifiers and feature selection techniques)

and inter-experiment (RQ2: best input data).

7 Some of these configurations resulted in imbalanced data; so we used a SpreadSubsample
instance filter as an imbalance reduction technique.

55

3.8 Experiments and Results

The experiments defined in Section 3.7.7 are summarised in Table 3.3, which display, for

each experiment (Exp), data about its AndroZoo benign apps (antivirus flags and data

size), its AndroZoo malwares (antivirus flags and data size), its VirusShare malwares

(data size), and the combined set of AndroZoo and VirusShare malwares (data size). The

following sections present and discuss the performance metrics for AUC & F1 obtained

from these experiments.

Table 3.3 Information about the datasets’ sizes and the selected
thresholds for all experiments

AZ Benign AZ Malware VS Malware All Malware
flag| Size flag|Size Size Size

Exp 0 0|11,928 1+ | 4,201 3,978 8,179
Exp 1 0 - 1 | 13,086 2+ | 3,042 3,978 7,020
Exp 2 0 - 2 | 13,553 3+ | 2,621 3,978 6,599
Exp 3 0 - 4 | 13,933 5+ | 2,195 3,978 6,173
Exp 4 0 - 9 | 14,713 10+ | 1,397 3,978 5,375
Exp 5 0 - 19 | 15,722 20+ | 406 3,978 4,487
Exp 6 0 - 1 | 13,086 10+ | 1,397 3,978 5,375

3.8.1 Results

Table 3.4 AUC and F1 results when considering only AndroZoo apps (Benign &
Malicious)

AUC JRIP NB MPL J48
Exp 0 0.81 0.77 0.81 0.85
Exp 1 0.84 0.82 0.86 0.83
Exp 2 0.85 0.83 0.87 0.83
Exp 3 0.84 0.85 0.89 0.83
Exp 4 0.86 0.86 0.89 0.82
Exp 5 0.85 0.91 0.92 0.85
Exp 6 0.89 0.90 0.94 0.88

F1 JRIP NB MPL J48
Exp 0 0.78 0.72 0.77 0.80
Exp 1 0.82 0.76 0.80 0.82
Exp 2 0.81 0.76 0.81 0.82
Exp 3 0.83 0.78 0.83 0.83
Exp 4 0.83 0.80 0.83 0.82
Exp 5 0.82 0.83 0.85 0.85
Exp 6 0.86 0.82 0.88 0.87

56

Table 3.5 AUC and F1 results when considering Benign apps from (AndroZoo &
Malicious apps from VirusShare)

AUC JRIP NB MPL J48
Exp 0 0.92 0.88 0.94 0.90
Exp 1 0.92 0.88 0.93 0.90
Exp 2 0.92 0.87 0.92 0.90
Exp 3 0.91 0.89 0.93 0.89
Exp 4 0.91 0.86 0.92 0.88
Exp 5 0.92 0.85 0.91 0.88
Exp 6 0.92 0.88 0.93 0.91

F1 JRIP NB MPL J48
Exp 0 0.90 0.77 0.88 0.87
Exp 1 0.88 0.77 0.88 0.86
Exp 2 0.88 0.74 0.88 0.86
Exp 3 0.88 0.85 0.87 0.85
Exp 4 0.88 0.74 0.86 0.85
Exp 5 0.88 0.71 0.86 0.79
Exp 6 0.89 0.77 0.87 0.86

Table 3.6 AUC and F1 results when considering Benign apps from AndroZoo &
Malicious apps from VirusShare and Androzoo

AUC JRIP NB MPL J48
Exp 0 0.85 0.81 0.87 0.82
Exp 1 0.86 0.83 0.89 0.76
Exp 2 0.86 0.83 0.90 0.79
Exp 3 0.87 0.84 0.90 0.86
Exp 4 0.87 0.84 0.90 0.85
Exp 5 0.89 0.85 0.91 0.75
Exp 6 0.89 0.87 0.92 0.87

F1 JRIP NB MPL J48
Exp 0 0.81 0.69 0.80 0.75
Exp 1 0.82 0.72 0.83 0.79
Exp 2 0.82 0.71 0.83 0.79
Exp 3 0.83 0.72 0.83 0.82
Exp 4 0.84 0.72 0.83 0.82
Exp 5 0.85 0.71 0.85 0.79
Exp 6 0.86 0.76 0.86 0.84

Tables 3.4, 3.5, and 3.6 present the results of all experiments with no feature selection. A

first very clear output of our experiments is that the various feature selection techniques

only very marginally affected the results. We thus decided, for simplicity’s sake, against

displaying them in the summary tables.

Table 3.4 presents the experiments using AndroZoo data only. Below are the main

observations we can draw from it.

1. Experiment 0 posts the worst results (AUC: 0.77 - 0.85, F1: 0.72 - 0.80)

2. Experiments 1 & 2 (AUC: 0.82 - 0.87, F1: 0.76 - 0.82) propose very similar results,

with values within 0.01 from one experiment to the other, suggesting unsurprisingly

57

that there is not much difference between using two or three as the number of anti-virus

flags needed to label an app as a malware.

3. The same goes for Experiments 3 and 4 (AUC: 0.82-0.89, F1: 0.78-0.83), which

provide results at most 0.02 from one another. Additionally, aside from the classifier

NB, results from experiments 3 and 4 are relatively close to those from Experiments

1 & 2.

4. Experiment 5 (AUC: 0.85 - 0.92, F1: 0.82 - 0.85) and Experiment 6 (AUC: 0.88 - 0.94,

F1: 0.82 - 0.88) provide results that are distinct but suggest that higher malware

thresholds translate into better results for the classifiers. It should be noted, however,

for Experiment 6, which proposes the best performance measures that it leaves out a

lot of apps (any app having between 3 and 15 flags)

5. Overall, when it comes to classifier performance, MPL is the leading classifier, with

J48 coming in second.

Table 3.5 presents the experiments using AndroZoo data for benign apps and

VirusShare for malwares. The main insights are as follows:

1. Results are generally better than those involving only AndroZoo apps and around

0.90 in most cases, indicating the effectiveness of the vulnerability metrics in correctly

classifying VirusShare malwares.

2. MPL and JRIP are the leading classifiers and exhibit remarkable consistency over

the range of experiments, with their results always within 0.03 from one experiment

to the other. Similar (but somewhat lower) consistency can be observed with J48,

whereas the classifier NB proposes results that fall into a broader and generally lower

range, depending on the experiment, and especially for the F1 measure (0.71-0.85).

3. There’s no trend in the effectiveness of the classifiers as the malware thresholds get

higher, although the results from Experiment 0 (one antivirus flag is enough to classify

an AndroZoo app as a malware) are almost always the best ones.

58

Table 3.6 presents the experiments using only AndroZoo data for benign and An-

droZoo + VirusShare for malwares. The results propose a pattern very similar to

that of Table 3.4 (AndroZoo data only): worst results for Experiment 0, Experiments 1

& 2 as well as 3 & 4 being very close, better results as malware thresholds rise, etc.

3.8.2 Analysis and discussion of the experiments

MPL is clearly the leading classifier. It was the best (or close) classifier in all the

experiments. Furthermore, looking beyond the AUC and F1 measures, it provided

balanced performance for precision and recall, with their values almost always above 0.80

(and mostly above 0.85) and within 0.02 from one another meaning that the classifier

provides a classification with roughly equal precision and recall. JRIP is a close second;

while it visibly trails MPL on the AUC measure, it is as good as (and possibly slightly

better than) MPL on the F1 measure. The worst classifier is consistently the Naive Bayes

(NB) one.

Table 3.7 compares the results we obtained against those from recent papers. To represent

our experiments, we used the average of values obtained for the experiments involving

benign AndroZoo apps and malwares from VirusShare (Table 3.5). The table shows that

the results we obtained compare mostly favorably to the ones from previous studies.

Table 3.7 Comparison with related work

Papers Tool Accuracy F1 AUC
Bhattacharya et al. (Bhattacharya & Goswami, 2017) Weka 0.77 0.86 0.82
Sharma et al. (Sharma & Sahay, 2018) Weka 0.79 / /
Sachdeva et al. (Sachdeva et al., 2018) Weka 0.93 / /
AndroVul Weka 0.92 0.87 0.92

Figures 3.5 and 3.6 summarize the findings from RQ 1 and findings from RQ 2.

59

Findings from RQ 1
- The vulnerability metrics in our dataset classify mostly correctly benign and

malicious Android apps, and their results compare favorably to recent state-of-
the-art papers.

- MPL is the leading classifier; JRIP is a close second.

- Feature selection techniques are not impactful and ultimately not needed.

Figure 3.5 Findings from RQ 1

As for the best dataset, the emerging picture is mixed: the strictest approach (only apps

with no antivirus flags are considered benign) performed slightly better on VirusShare

dataset (confirmed malwares) but marginally worse on dataset configurations involving

AndroZoo apps labeled as malwares. On the other hand, the laxer approaches (highest

thresholds) performed equally or slightly better than mid-range thresholds. Still, the

main takeaway is that the differences between the results obtained from these thresholds

are small, suggesting that the choice of the threshold may not matter that much.

Findings from RQ 2
- Our results suggest that the choice of a given number of antivirus flags to decide

whether to label an AndroZoo app as malware is not really consequential when
it comes, notably, to classify proven malwares (from VirusShare).

- The strictest threshold for benign app classification (0 antivirus flag) performed
best with the VirusShare Dataset but lagged behind other dataset configurations
when the malware datasets include AndroZoo apps.

Figure 3.6 Findings from RQ 2

3.9 Limitations and Threats to validity

The present paper extends our previous paper (Namrud et al., 2019b) and set out to

provide a more complete benchmark for malware classification, along with empirical data

60

about the effectiveness of different classifiers and the impact of possible data labeling

decisions. As any work, it comes with limitations and some validity threats.

The main limitation of our dataset is that many of the apps do not have complete metadata

(category, ratings, etc.). AndroZoo does not store that info so there is a need to retrieve

it from the different stores. That retrieval may be hampered by the following scenarios: i)

the apps may no longer be available in those stores; and ii) the stores themselves do not

offer simple ways to automatically get the info. In these cases, HTML parsers have to be

written for webpages that could be in other languages or have structures that can (and

do) change. We plan future work to complement the data through the parsing of various

app store clones that keep app metadata even after their deletion from the main market

places.

As it relates to our study, some threats to validity are worth noting. An external threat

to validity of our results is that we mostly used a sample of AndroZoo, which itself does

not account for all Android Apps. However, AndroZoo is a widely used repository and we

took pains to extract a random sample large enough to be reasonably representative of

AndroZoo. That sample covers several different domains (see Table 3.1): game, education,

sports, and tools, to name a few. Furthermore, different from our previous paper, we

retrieved additional malware dataset, which we believe help mitigate these external validity

concerns.

As for threats to internal validity, it is worth noting that our investigation of different

classifiers and feature selection techniques relied mostly on default settings from the widely

used statistical tool Weka. Obviously, it is possible that our results and the ranking of

these classifiers could be altered with different settings or more elaborate versions of these

classifiers. However, to the best of our knowledge and based on the existing literature,

malware researchers generally do not engage in complex parameter tuning of the classifiers

they use. Furthermore, such parameter tuning may depend on a research expertise with

a given classifier and may introduce additional variability. Overall, we believe that our

61

results provide malware researchers with an informed perspective about which classifiers

to choose or avoid, especially if they do not intend to dedicate a significant amount of

time to tune the parameters used by these classifiers.

Overall, we believe that the provided dataset and the accompanying experiments can be

used to guide research ideas for anomaly detection, mining of safe / dangerous patterns,

etc. In addition, the accompanying scripts that we provide offer options for researchers

needing their own datasets. By relying on the instructions available on the AndroVul

GitHub repository8, they can add their APKs (in the apks folder) and run the provided

scripts.

3.10 Conclusion

The ubiquity of smartphones, and their growing use make the security of these devices as

important as that of standard computers. In this paper, we proposed a repository for

Android vulnerabilities and experiments on classifier performances for different benchmarks

(taken from the repository) to better support the research community engaged with

anomaly detection and security issues for Android apps. Our contributions are threefold.

First, we proposed a tool that harnesses well-known reverse engineering tools and greatly

simplifies the generation of diverse vulnerability information (i.e. dangerous permissions,

vulnerabilities from AndroBugs, and code smells in Smali code) for any app. Second, we

proposed vulnerability data on a random sample of 16,180 Android apps downloaded from

the well-established AndroZoo dataset, which we extended with 3,978 malwares retrieved

from the VirusShare repository. Our tool and data make it so that an Android app

researcher can start applying statistic analysis and machine learning experiments right

away on our benchmark or right after downloading his/her own set of APKs. Third, we

proposed detailed studies that provide: i) insights into the very good predictive power of

the vulnerability information mined by our tool; and ii) information into which classifiers

and data labelling decisions perform better. Our tool and data samples are available on

8 https://github.com/Zakeya/AndroVul

62

GitHub and we intend to build and extend on that repository, notably by working on

recovering more completely apps metadata.

Table 3.8 Severity Level Artifacts

Severity Level Description
Critical Confirmed security vulnerability

(except for testing code)
Warning AndroBugs Framework is not sure

if this is a security vulnerability.
Developers need to manually con-
firm.

Notice Low priority issue or AndroBugs
Framework tries to let you know
some additional information.

Info No security issue detected.

Table 3.9 Dangerous Permissions
(Definitions from Android) Taken from (Developer.android.com, 2021b)

Permission Description
USE_SIP Allows an application to use SIP service.
PROCESS_OUT-
GOING_CALLS

Allows an application to see the number being dialed
during an outgoing call with the option to redirect the
call to a different number or abort the call altogether.

BODY_SENSORS Allows applications to discover and pair bluetooth de-
vices.

SEND_SMS Allows an application to send SMS messages.
RECEIVE_SMS Allows an application to receive SMS messages.
READ_SMS Allows an application to read SMS messages.
RECEIVE_-
WAP_PUSH

Allows an application to receive WAP push messages.

RECEIVE_MMS Allows an application to monitor incoming MMS mes-
sages.

READ_EXTER-
NAL_STORAGE

Allows an application to read from external storage.

WRITE_EXTER-
NAL_STORAGE

Allows an application to write to external storage.

63

Table 3.10 Dangerous Permissions
(Definitions from Android) Taken from (Developer.android.com, 2021b)

Permission Description
READ_CALEN-
DAR

Allows an application to read the user’s calendar data.

WRITE_CALEN-
DAR

Allows an application to write the user’s calendar data.

CAMERA Required to be able to access the camera device.
READ_CON-
TACTS

Allows an application to read the user’s contacts data .

WRITE_CON-
TACTS

Allows an application to write the user’s contacts data.

GET_AC-
COUNTS

Allows access to the list of accounts in the Accounts
Service.

ACCESS_FINE_-
LOCATION

Allows an app to access precise location.

ACCESS_-
COARSE_LO-
CATION

Allows an app to access approximate location.

RECORD_AU-
DIO

Allows an application to record audio.

READ_PHONE_-
STATE

Allows read only access to phone state, including the
phone number of the device.

READ_PHONE_-
NUMBERS

Allows read access to the device’s phone number(s).

CALL_PHONE Allows an application to initiate a phone call without
going through the Dialer user interface.

ANSWER_-
PHONE_CALLS

Allows the app to answer an incoming phone call.

READ_CALL_-
LOG

Allows an application to read the user’s call log.

WRITE_CALL_-
LOG

Allows an application to write the user’s call log data.

ADD_VOICE-
MAIL

Allows an application to add voicemails into the system.

64

Table 3.11 Regular expressions used in our tool containing Smali type for code
smell Taken from (Ghafari et al., 2017)

Smell Code Symptom in Smali Code and Corresponding Escaped Regexes
Custom Scheme Chan-
nel Scheme registration code exists

Lorg/apache/http/conn/scheme/SchemeRegistry;->
, registerLorg/apache/http/conn/scheme/Scheme;
, Lorg/apache/http/conn/scheme/Scheme

Header Attachment
Header attachment code exists
Lorg/apache/http/client/methods/HttpGet;->
, addHeaderLjava/lang/String;Ljava/lang/String;

Unique Hardware Iden-
tifier

Hardware identifier access code for MACs and IMEI exists
Landroid/telephony/TelephonyManager;-\\
, getDeviceId\(\)
, Ljava/lang/String
Landroid/bluetooth/BluetoothAdapter;->
, getAddress\(\)
\, Ljava/lang/String
Landroid/net/wifi/WifiInfo;->
, getMacAddress\(\)
, Ljava/lang/String

Exposed Clipboard

Clipboard manipulation code exists
Landroid/content/ClipboardManager;->
, getPrimaryClip\(\)
, Landroid/content/ClipData
Landroid/content/ClipboardManager;->
, setPrimaryClipLandroid/content/ClipData;

Insecure Network Pro-
tocol

Http connection establishment code exists
Ljava/net/HttpURLConnection;- >
, Ljava/net/URL;

Improper Certificate
Validation

Customised certificate validation code exists
.implements Ljavax/net/ssl/X509TrustManager;

Dynamic Code Load-
ing

Dynamic code loading mechanism exists
Landroid/content/Context;->
, createPackageContextLjava/lang/String;I
, Landroid/content/Context

XSS-like Code Injec-
tion

WebView JavaScript setting code exists
Landroid/webkit/WebSettings;->
, setJavaScriptEnabledZ

Broken WebView’s
Sandbox

WebView Java interface code exists
Landroid/webkit/WebView;->
, addJavascriptInterface\(Ljava/lang/Object;
, Ljava/lang/String;\)

CHAPTER 4

DEEP LEARNING BASED ANDROID ANOMALY DETECTION USING
A COMBINATION OF VULNERABILITIES DATASET

Zakeya Namruda, Sègla Kpodjedoa, Chamseddine Talhia, Ahmed Balia, Alvine Boaye
Belleb

aDepartment of Software and IT Engineering, École de Technologie Supérieure,
1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

b Department of Electrical Engineering and Computer Science, York University,
Toronto, ON M2J 4A6, Canada

Paper published in Journal of Applied Sciences, August 2021

4.1 Abstract

As the leading mobile phone operating system, Android is an attractive target for

malicious applications trying to exploit the system’s security vulnerabilities. Although

several approaches have been proposed in the research literature for the detection of

Android malwares, many of them suffer from issues such as small training datasets, few

features (most studies are limited to permissions) that ultimately affect their performance.

In order to address these issues, we propose an approach combining advanced machine

learning techniques and Android vulnerabilities taken from the AndroVul dataset, which

contains a novel combination of features for three different vulnerability levels, including

dangerous permissions, code smells, and AndroBugs vulnerabilities. Our approach relies

on that dataset to train Deep Learning (DL) and Support Vector Machine (SVM) models

for the detection of Android malware. Our results show that both models are capable

of detecting malware encoded in Android APK files with about 99% accuracy, which is

better than the current state-of-the-art approaches.

66

4.2 Introduction

The adoption of mobile applications in a wide range of domains has made many activities,

from banking to education or gaming, simpler, faster, or more convenient. The dominant

mobile operating system is Android, thanks in part, to the high number of freely available

apps accessible through its official market (Google Play store9). The reach of the Android

system goes even beyond that official market since the open source OS allows users to

install unofficial (e.g., third-party) apps. A key security feature of Android is its permission

system; permissions sought by an Android application must be granted manually by the

user of the mobile device before the app is installed (on older OS versions) or before the

app can perform some operations (on newer OS versions). However, users are generally

uneducated about the risks of the permissions they can be asked to grant. They may

grant permissions allowing malicious apps to exploit security breaches (Sirisha et al.,

2019) and to monitor a mobile device without the user’s consent (Sabhadiya et al., 2019).

These malwares can cause severe malfunction, steal sensitive personal information (e.g.,

banking information, passwords), corrupt files, display unwanted advertisement, and even

lock the device unless a ransom is paid.

According to Haystack(Zink, 2021), 70% of mobile apps fetch users’ personal data and

hand it over to third-party companies. Furthermore, a report published by AV-TEST

security Institute(GmbH, 2020) states that there is an exponential increase of new

malicious program (malware) samples every year. In 2020, Kaspersky (CHEBYSHEV,

2021) detected around 5.7 million malicious installation packages for mobile devices, which

was an increase of 2.1 million over 2019 (see Figure 4.1). Given this increasing influx of

new malwares, typical signature-based malware detection approaches, which, in short,

rely on databases of specific characteristics of known malwares are not up to the task of

effectively safe-guarding Android devices from the malware threats. Malwares may go

undiscovered if their signature is not identified in the database, and the databases must

be continuously updated to stay relevant.

9 https://play.google.com/store/apps

67

Figure 4.1 Installation of mobile malicious packages in
Android from 2017 to 2020

Research literature on malware detection (e.g., (Kumaran & Li, 2016), (Sirisha et al.,

2019), (Li et al., 2018b)) includes advanced proposals using machine learning techniques

to detect with a higher accuracy unknown Android malware embedded in APK files.

Such work typically extracts features (e.g., permissions, and API calls in the code) from

known benign apps and malware, then uses machine learning algorithms (e.g., decision

tree, Random Forest) to uncover ways to detect malicious apps.

The present work builds on AndroVul(Namrud et al., 2019b), our previous research work

centered on the proposal of a dataset of vulnerability features of Android apps. Our

current study, not only adds around 6K apps to that dataset, but most importantly

explored the use of advanced techniques such as Deep Learning (DL) and Support Vector

Machine (SVM) to achieve the highest possible malware classification performances.

Overall, we started from reverse-engineering an Android application APK file into a set of

vulnerabilities features that can be used to reflect the application’s behaviors. As a result,

we obtain a dataset of more than 18K apps (about 6K more than in the original paper)

68

and 74 vulnerabilities features, which we use to experiment on DL and SVM models.

Thus, our contributions can be summarized as follows:

1. We developed a malware detection model based on deep learning and we investigated

several node architectures in hidden layers in order to get the highest possible

performance. The proposed model outperforms the state-of-the-art.

2. We developed a malware detection model based on SVM and investigated different

parameter settings to identify which were the best for our malware detection task.

3. We provide comparison of the performance of our DL and SVM classifiers, with respect

to state-of-the-art approaches and even some commercial anti-viruses and results show

that our classifiers are the most effective in identifying malicious applications. As such,

our models establish a new, important reference point in the current state-of-the-art

when it comes to malware detection.

The remainder of this paper is organized as follows: Section 5.3 introduces some background

concepts. Section 4.4 describes the overall design of our Android malware detection system

and how it operates. Section 4.5 shows the experimental results obtained when assessing

the performance of our models. Section 4.6 presents related work. Section 4.7 concludes

the paper and outlines future work.

4.3 Background

In this section, we define some concepts needed to better grasp our approach.

4.3.1 Android Vulnerabilities

Vulnerabilities, commonly referred to as security-sensitive defects, can be found statically

using rules that describe vulnerable code patterns. They are typically diverse in terms of

the components involved, the attack vector necessary for exploitation, and so forth. We

69

focus on common vulnerabilities that have a severity level that warrants their inclusion in

security reports and earlier Android security research in this study. We briefly list the

vulnerabilities that we have taken into consideration as features in our work.

4.3.1.1 Dangerous Permissions

The permission system in Android is a critical security feature since it regulates the rights

granted to apps, requiring them to request particular permissions in order to execute

specific operations. This approach necessitates the declaration by app developers of which

sensitive resources will be utilized by their applications. When installing or using the apps,

app users must consent to the requests made by the developers. According to Android,

there are several categories of permissions, among which are “dangerous” ones, which are

deemed more critical and privacy sensitive because they grant access to system features

such as cameras and internet access as well as personal contact information and SMS

messages, among other things (Tchakounté & Hayata, 2017).

4.3.1.2 AndroBugs Vulnerabilities

AndroBugs is a well-known security testing tool for Android applications, and it is used

to evaluate them for vulnerabilities and possibly critical security issues. APKs are reverse

engineered using the tool, which searches for a variety of concerns, ranging from a lack

of adherence to best practices to the usage of potentially dangerous shell commands or

the exposure to vulnerabilities via third-party libraries. It has a demonstrated track

record of uncovering security flaws in some of the most popular applications and software

development kits (SDKs). It is run as a command line utility and generates reports with

four severity levels: Critical is confirmed vulnerability that should be solved (except for

testing code). Warning is possible vulnerability that should be checked by developers.

Notice is a low priority issue, and Info is no security issue detected.

70

4.3.1.3 Code Smell

Code smells refer to code source items that may suggest more serious issues in the code

(Verbraeken et al., 2020). The term "security code smells" refers to "symptoms in the code

that signal the possibility of a security vulnerability" in Android applications, according to

Ghafari et al. (Gadient et al., 2017). Following a review of the literature, they identified

28 security code smells (Gadient et al., 2017) that they categorized into five categories,

including Insufficient Attack Protection, Security Invalidation, Broken Access control,

Sensitive Data Exposure, and Lax Input Validation.

4.3.2 Machine Learning (ML)

Machine Learning (ML) refers to a class of methods for automatically creating models

from data. These methods allow solving complex problems such as anomaly detection,

classification, clustering, and regression (Verbraeken et al., 2020). As Verbraeken et

al. (Verbraeken et al., 2020) point out, a problem can be solved with ML through two

phases: training and prediction. The training phase results in a trained model, after

which the trained model is deployed in practice at the prediction phase. During that

phase, the trained model is fed with new data and generates predictions by inferring

these new data. Different ML algorithms (e.g., supervised, unsupervised, classification,

regression) have been proposed depending on the kind of feedback that the algorithm

receives while learning (Verbraeken et al., 2020). Machine learning techniques have been

deployed in related proposals by some other security researchers in articles such as (Catak

et al., 2020), (Catak et al., 2021). In the current work, we investigated two of the most

powerful families of machine learning techniques: Deep Learning (DL) and Support Vector

Machines (SVM).

71

4.3.2.1 Deep Learning (DL)

Deep learning (Naway & Li, 2018) is a subfield of Artificial Neural Networks (ANNs)

and ML. The DL approach is rapidly gaining traction and is widely utilized in computer

vision, speech recognition, and natural language processing. At the same time, DL-based

malware detection for Android has become a major trend. A typical DL model for data

processing is an extremely deep neural network with numerous hidden layers of many

linked neurons. Each layer consists of several different neurons, each with its own weights

and likely activation mechanism. When data are fed into a neural network, the loss

function computes the prediction error. The optimizer is used to progressively change

the weights in order to reduce the loss function error and increase the accuracy. It trains

the data and assesses its accuracy on the test set. One of the dominant models in deep

learning is ANNs (Li et al., 2018c) which have been widely used for image recognition

and have shown promising results in contextual categorization in DL. An ANN algorithm

can learn hidden patterns from data on its own, combine them, and create much more

powerful decision rules (Li et al., 2018b). Figure 4.2 shows the overall DL definition,

which is composed of three layers, namely the input layer, the hidden layer, and the

output layer.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 4.2 General architecture of a Deep Learning model.

72

4.3.2.2 Support Vector Machines (SVM)

A Support Vector Machine (SVM) is a machine learning technique that, in its most basic

version, consists in finding a line that separates two classes of (training) data points, in

such a way that future data points can be accurately classified, depending on which side of

the line they end up on. In most cases, the line will be an hyperplane because the data will

often be in an N-dimensional (N denotes the number of features) space (Verma & Sharan,

2017). Additionally, among the possible hyperplanes that could separate the data into

two classes, the hyperplane which is the furthest from the two data classes it is separating

is preferred because it reduces risks of overfitting the model to the current training data.

Furthermore, it is not always possible (or even desirable) to neatly separate all the data

into two perfectly clean classes. A certain amount of mis-classification can be allowed in

order to account for outliers or erroneous data. Finally, the boundary between the two

classes of data may not be linear, in which case, there is a need to involve mathematical

kernels that can handle those situations. In our study, we use a nonlinear SVM with a

Gaussian radial basis function (rbf) kernel, which is a well established and robust version

of SVM. When constructing such classifier, two parameters must be passed as arguments.

The parameter C accounts for the intolerance to mis-classification of the training data;

the higher it is, the more the training data points will have to be correctly classified. The

other parameter gamma can be understood as controlling the influence of a single training

data point; the higher it is, the lower the reach of a single data point. The parameters C

and gamma work together and have to be carefully chosen.

4.4 Methodology

In this section, we present the sample of apps on which we performed our experiments,

the features we extract from a given apk, and information about the machine learning

techniques we selected.

73

4.4.1 Dataset

Our evaluation was carried out with the AndroVul (Namrud et al., 2019b) dataset, which

core is a sample of 18,780 Android apps collected from the AndroZoo10 repository. The

Androzoo project proposes along with the apks of its apps, metadata that includes the

number of antiviruses from the website Virus Total ((virustotal, 2021)) that flagged

the app as a malware. For our study, and consistent with (Namrud et al., 2019b), we

considered as benign apps the apps with zero flags and as malicious apps, the apps with

two or more antivirus flags.

To this core set of apps, we added malwares gathered from VirusShare(Forensics, 2021), a

malware repository intended to help security analysts and malware researchers. However,

the VirusShare repository is not dedicated to Android malwares and does not propose

any mechanisms or metadata to quickly identify which programs are apks and which are

not. It simply hosts a variety of files without even a specified extension. To recover the

Android malwares in that repository, we had to download Giga Bytes worth of potentially

harmful files and figure out a simple procedure to identify which files were Android apks.

As seen in Algorithm 4.1, we renamed all the files by adding the extension ".apk", then

tried to apply our reverse engineering scripts and tools. Files that return empty folders

after the reverse engineering are discarded; the others are saved as apks.

Table 4.1 contains a description of the datasets, and Figure 5 depicts a visualisation of

the datasets.

4.4.2 Feature extraction

We introduced the AndroVul dataset in (Namrud et al., 2019b) and the interested reader

can find full details in that publication. In this section, we propose a brief overview

of the feature extraction process and output as applied to an app. In short, we used

10 https://AndroZoo.uni.lu/

74

Algorithm 4.1 VirusShare Android apps collection.

Input: Execution files
1 for all files in folder do
2 file← rename(file.apk) .considering all files Android apps
3 APKfile←Open(file) .Reverse engineering APK with Android tools
4 Package←Get(files) if (Package← empty) then
5 Package← delete_it
6 else
7 Package← App_android
8 end
9 . App_android save it in Android folder

10 end

63.7%

21.2%
15.1%

Benign apps
VirusShare malware apps
Flagged Malware apps

Figure 4.3 Dataset Visualization

well-known static analysis tools (Apktool, AngroBugs) to extract three kinds of features,

i.e., dangerous permissions from the app’s manifest file, code smells from the app’s Smali

code representation, and AndroBugs vulnerabilities from the APK files. In Algorithm

4.2, we describe the general process for extracting the vulnerability features from an apk

file. It starts with the reverse engineering process (Line 2), followed by the extraction of

Table 4.1 Dataset description

App Samples

Benign 11,971
Flagged Malware 2,831
VirusShare Malware 3,978
Total 18,780

75

the desired features from their respective files (lines 3 -5). The extracted vulnerabilities

features are then mapped to values and written into a single csv file. The values mapped

to the features are determined as shown in the equations below:

permissions→


Requested_permission 1

Other_permissions 0

CodeSmells→
{
Weight(security codesmell)

AngroBugs_vulnerabilities→



Critical 1

Worning 0.5

Other 0

4.4.3 General architecture of our machine learning approach

Figure 4.4 presents the general architecture of our Android malware detection approach,

which is divided into three stages: pre-processing, training, and detection.

In the preprocessing phase, the original feature dataset is standardized by reducing the

mean and scaling to unit variance. The following formula is used to compute the standard

score of sample x:

z = (x−u)/s (4.1)

Where u denotes the mean of the training samples, and s denotes the standard deviation

of the training samples.

76

Algorithm 4.2 Feature Extraction Algorithm.

Input: Apk files; apps
Output: Dataset in CSV_file

1 for all apps in Dataset do
2 APKfile←Open(file) . Reverse engineering APK
3 Permissionslist←Get_Distinct_Permissions(manifestF ile) . Extracting

permissions from manifest file
4 Code_Smelllist←Get_CodeSmell(SmaliF iles) . Extracting code smell

from Smali files
5 AngroBugs_vulnerabilitieslist←

Get_AngroBugs_vulnerabilities(AndroBugs_report) . Extracting
AngroBugs_ vulnerabilities from AndroBugs_report

6 foreach app do
7 Permission← App[i].P ermission . Mapping permissions
8 Code_Smell← App[i].CodeSmell . Mapping code smells
9 AndroBugs_vulnerabilities← App[i].AngroBugsvulnerabilities .

Mapping AndroBugs_ vulnerabilities
10 end
11 end
12 CSV(file)← Append(CSV(file),Concat(V ector(P ermission),

V ector(Code_Smell),V ector(AngroBugs_vulnerabilities))) . Concatenating all
vulnerabilities features in CSV file

13 return (CSV(file))

As for training and testing, we opted for K-fold cross-validation. This validation approach

consists in splitting, after random shuffling, the dataset into K groups, after which each

group is used as a test group, while the other K-1 groups are used for training. More specif-

ically, we chose, in accordance to many similar studies (e.g., (Bhattacharya & Goswami,

2017)), K = 20 for a fold cross-validation study, in which 80% of the data is used for

training and 20% for testing (prediction).

4.4.4 Android Malware Detection based on Deep Learning

Figure 4.5 presents our system architecture for Android malware detection using Deep

Learning.

77

Figure 4.4 Design Methodology for malware
detection in Android

In the training phase, the malware and benign behavior patterns are learned by the

ANN (Xu et al., 2017). The DL model was designed for learning the pattern with four

hidden layers, a single input layer and a single output layer. Fully connected feed-forward

deep neural network architecture with four hidden layers was utilized to implement the

suggested approach. The rationale for limiting the number of hidden layers to four is

the complexity of the design. Figure 4.5 shows the architecture of the DL algorithm

and the number of nodes in each layer, and Figure 4.4 shows the overall model design.

The description of mapping layers is as follows. Seventy-four neurons are used in the

input layer to read the 74 features. The neurons are then linked to the first hidden

layer, known as the dense layer, where a mathematical computation is performed using

activation functions (Xu et al., 2017). The ReLU activation mechanism was used in this

case. Another non-linear activation feature that has become common in the field of DL is

the ReLU function. ReLU stands for Rectified Linear Unit. The key benefit of using the

ReLU mechanism is that it does not simultaneously activate all neurons. The neurons are

78

therefore disabled only if there is less than 0 in the output of the linear transformation.

In addition, the 74 features were also mapped into 74 dimensions, and 74 dimensions

are mapped into 32 dimensions in the second hidden layer. Thirty-two dimensions were

mapped in 32 dimensions of the third hidden layer. Finally, their values were mapped to

a single-dimensional output layer. Equations 4.2 and 4.3 define the activation function Y.

Y = max(0,x)+ bias (4.2)

where Y denotes the output, x denotes the data, and bias is used to train the neural

network on malware and benign patterns.

Weightedsum =
∑

i

WiXi (4.3)

where wi denotes the weight applied to each input node and xi denotes the input applied

to each node.

At the final output layer, the sigmoid function is applied to provide output values ranging

from 0 to 1. A function of activation is defined by equation 4.4.

Sigmoid=
(1

1+ e−x

)
(4.4)

Binary Cross Entropy loss function was used to compile the neural network model.

BinaryCrossEntropy = Error (y,f(X)) (4.5)

where y=actual values, f(x) = predicted values. Furthermore, the weights are changed

using the gradient descent optimizer (Huang et al., 2017). It changes the parameters in

such a way that the loss function can be reduced using Equation 4.6.

79

X =X−α
(
σ

dX
j(X)

)
(4.6)

where X is the new updated weight, α denotes the rate of learning, and j(X) denotes

the cost function, which is a quadratic equation based on the 74 features extracted from

Android applications. There are two primary hyperparameters that govern the network’s

architecture or topology, which are the number of layers and nodes found within each

hidden layer. Systematic experimentation allows configuring these hyperparameters when

solving a specific predictive modeling problem. We have increased the number of epochs

until the model was able to correctly classify the inputs. In the test phase, the DL model is

tested using 20% of the dataset. After training the model, we tested it using the remaining

3,706 samples. The trained neural network model determines whether the provided APK

file is malicious or benign based on the pattern. In the first experiment, the training

phase results were significantly higher than the testing phase’s, causing overfitting in

the model. However, when we increased the number of samples in the dataset for both

benign samples and malware samples, the overfitting was solved and the performance in

the training phase was almost the same as that in the testing phase.

In Algorithm 4.3, we describe the general process of our classifier generation phases

namely, data processing (lines 1-3), model building (Line 4), and model fitting (Line 5)

as well as using the model for prediction (lines 6-13). For the complexity discussion, we

focus on the prediction phase because once the model is trained, it can be reused as

much as there is a need. The time and space complexity of the model’s prediction phase

is O(p×nl1 + ...+nli−1×nli + ...+nln−1× o), where p is the number of features, nli is

the number of neurons at layer i in a neural network, and o is the number of outputs.

Therefore, the complexity is asymptotically quadratic, O(max(nli−1×nli)), in the size of

the network layers. The architecture and parameters of our DL model were determined

experimentally and tuned for best performance; they are described in Table 4.2 and Figure

4.6.

80

Figure 4.5 The architecture of DL layers using Sequential neural network

Algorithm 4.3 Deep Learning based Model.

Input: X : apps_features,Y : labels . label is benign or malware
Building_paramslist = (units,activation_function, input_dim,dpoint)
fitting_paramslist = (Xtrain,Ytrain, batch_size,epochs)
dpoint : decision_point . 0.5 by default
Output: predicted_app .benign or malware app

1 Xtrain,Xtest,Ytrain,Ytest . Splitting the dataset
2 Xtrain = sc.fittransform(Xtrain) .Feature Scaling using StandardScaler (sc)
3 Xtest = sc.transform(Xtest)
4 Model = build_ANN_model_architecture(Building_params) .ANN model

Building
5 Model← ANN_model_fit(fitting_params) .ANN model fitting
6 ypred =Model.predict(Xtest)
7 for app.pred ∈ ypred do
8 if (app.pred > dpoint) then
9 app←Malware ;

10 else
11 app←Benign ;
12 end
13 end

81

Figure 4.6 Built DL model

Table 4.2 Best hyper-parameters

Parameters Value
Number of units 74-74-74-32-32-1
Number of layers one input, 4 hidden, one out-

put
Activation function relu,sigmoid
Kernel initializer uniform
Dropout 0.2
optimizer adam
epochs 1000
batch_size 200
loss binary_crossentropy

4.4.5 Android Malware Detection based on support vector machine

We opted for a (non linear) Radial Basis Function (RBF) kernel SVM. In Algorithm 4.4,

we describe the general process of our SVM classifier, from the data processing (lines 1-3),

to the model building (Line 4), the model fitting (Line 5) as well as the prediction phase

(lines 6-9). The complexity of the training phase is polynomial, O(n2
sv×p+p3), in the

size of the model parameters, where p is number of features and nsv is the number of

support vectors). That relatively high complexity of the training model is compensated

82

by the low complexity of the prediction model, which is of only O(nsv×p) and can be

reused several times once the model is well trained.

Table 4.5 shows the best hyper-parameters for SVM model.

Algorithm 4.4 Support Vector Machine based Model.

Input: X : apps_features;Y : labels; . label is benign or malware
Building_paramslist = (C,kernel,gamma)
fitting_paramslist = (Xtrain,Ytrain) dpoint : decision_point . 0.5 by default
Output: predicted_app .benign or malware app

1 Xtrain,Xtest,Ytrain,Ytest . Splitting the dataset
2 Xtrain = sc.fittransform(Xtrain) .Feature Scaling using StandardScaler (sc)
3 Xtest = sc.transform(Xtest)
4 Model = build_SVM_model_architecture(Building_params) .SVM model

Building
5 Model← SVM_model_fit(fitting_params) .SVM model fitting
6 ypred =Model.predict(Xtest)
7 for app.pred ∈ ypred do
8 if (app.pred > dpoint) then
9 app←Malware ;

10 else
11 app←Benign ;
12 end
13 end

4.5 Experiments

4.5.1 Performance Indicators

As it relates to the detection of malwares, we refer to True Positive (TP) as the number

of malwares actually classified as such, True Negative (TN) as the number of benign apps

classified as such, False Positive (FP) as the number of benign apps wrongly classified as

malwares, and finally False Negative (FN) as the number of malwares wrongly classified

as benign. More informative measures, widely used in malware detection analysis work,

are derived from these simple measures, such as:

83

1. Precision: The ratio of actual malwares in the set of apps classified as such:

TP/(TP+FP)

2. Recall: The ratio of malwares that were detected as such: TP/(TP+FN)

3. Accuracy: The percentage of applications that have been appropriately categorised:

(TP+TN)/(TP+TN+FP+FN)

4. F1-Measure: A performance indicator that takes into account both the precision

and recall of the obtained classification: 2 * (Recall * Precision) / (Recall + Precision)

5. Area under ROC Curve (AUC): A measure of the predictive power of the classifier

that basically informs on how well the model can distinguish between classes (here,

benign apps vs malwares).

For all these measures, the higher, the better, with 1 being the perfect value.

4.5.2 Experimental setup

We conducted experiments with both DL and SVM models. All the experiments were

carried out using the same dataset. The experiments are done using the Python program-

ming language, and the following are the characteristics of the computer used for the

experiments; Windows 10(64 bit), Intel(R) Core(TM)i7-2600 CPU@ 3.40GHZ, and 16GB

RAM.

4.5.3 Results

In this section, we present obtained results. The factors below explain why our approach

was able to outperform other approaches. These include hyper-parameters tuning as well

as the combination of vulnerability features in our dataset.

Performance of DL model: initially, we used 11,814 apps; in this experiment, an app

which has 0 flag labelled as benign, whereas an app which has 2 or more flags labelled

84

as malware, and an app with one flag are excluded. The training phase performance

results were higher than the testing phase, which caused over-fitting in the model. To

solve this situation, we increased the size of the dataset by adding the malware apps

from VirusShare and apps with one flag as benign. Experimentally, from Table 4.3, we

can observe that the size of the dataset has increased from 11,814 to 18,780 to avoid

over-fitting and improve the performance.

Table 4.3 Comparison between the results of datasets with 11,814 samples, and
18,780 samples

Size of dataset Accuracy F1 AUC_score
11,814 samples 89% 90% 88%
18,780 samples 99.33% 99% 99.15%

Figures 4.7 and 4.8 illustrate the history model’s accuracy and loss for 11,814 and 18,526

samples, respectively. From the figures, it is clear that when we increase the size of

the dataset, the accuracy and loss curve lines in the training phase are very close to

the accuracy and loss curve lines in the testing phase. In the previous experiment, the

difference between the accuracy and loss curve lines was huge. The performance improved

when we increased the size of the dataset and the over-fitting problem was solved. If

the output layer’s Sigmoid result was greater than or equal to 0.5, the application was

categorised as malware. Values below 0.5 were considered benign.

As Table 4.4 indicates, the performance improved when we increased the size of the

dataset and the over-fitting problem was solved. If the output layer’s Sigmoid result was

greater than or equal to 0.5, the application was categorised as malware. Values below

0.5 were considered benign. Table 4.4 thus shows that the confusion matrix correctly

classifies the 2,406 benign samples as benign and 1,275 malware samples as malware. Out

of 3,706 app samples, 3,681 samples were predicted accurately and only 25 samples were

wrongly predicted.

85

a) Accuracy for 11,814 samples b) Accuracy for 18,526

Figure 4.7 Comparison between history models Accuracy for 11,814 samples
and 18,526 samples

a) Loss for 11,814 samples b) Loss for 18,526

Figure 4.8 Comparison between history models loss for 11,814 samples
and 18,526 samples

Performance of the SVM model: Table 4.5 illustrates the experimental results. When we

were tuning the hyperplane parameters, we noticed that when gamma is smaller than

0.01 and C is higher than 1,000, the results improve, i.e. both parameters increase the

Table 4.4 DL Confusion matrix

3706 Predicted class
Benign Malware

Sensitivity B(99.71%) 2406 7
Specificity M(98.61%) 18 1275

86

values of AUC, F1, and the accuracy. With such parameter values, we can therefore get

the correctly separating hyperplane and improve the performance of the model. Table 4.6

shows that the confusion matrix correctly classifies the 2,425 benign samples as benign

and 1,235 malware samples as malware. Out of 3,706 app samples, 3,660 were predicted

accurately and only 46 were wrongly predicted.

Challenges and discussion: improving the performance of the SVM classifier was challeng-

ing and involved some fine tuning with respect to the two parameters: C and gamma. Our

results showed that tuning C correctly is a vital step in the use of SVMs for structural

risk minimization 11. When gamma gets smaller, the results improve.

As for the DL, the configuration of the hyperparameters (the number of layers and nodes

in each hidden layer) for our specific predictive modeling problem was done via systematic

experimentation. It is worth noting that the time complexity of the DL algorithm is

higher than the time complexity of the SVM algorithm.

Table 4.5 The experimentation results for SVM parameters

C Gamma Accuracy F1 AUC_score
10 0.1 93.98% 91.4% 94%
100 0.1 94.7% 92.4% 94.75%
1000 0.1 95.1% 93% 95.2%
10 0.01 97.95% 96.95% 97.4%
100 0.01 98.38% 97.6% 97.97%

1000 0.01 98.76% 98.2% 98.5%

Table 4.6 SVM Confusion matrix

3706 Predicted class
Benign Malware

Sensitivity B(99.26%) 2425 18
Specificity M(97.78%) 28 1235

11 In RBF kernel, both C and gamma parameters need to be optimized simultaneously. If
gamma is large, the effect of C becomes negligible.

87

Table 4.7 shows the results (accuracy, F1 and AUC_score) obtained with our DL and SVM

classifiers. It also compares these results to the ones obtained by the best state-of-the-art

approach i.e. (Naway & Li, 2019). The highest accuracy for related work is 95.31%, but

our models show better performances in both DL and SVM classifiers. Their accuracies

are 99.33% and 98.76% respectively.

Table 4.7 Comparison between DL,SVM classifiers and the Related work

The classifier Accuracy F1 AUC_score

Deep Learning 99.33% 99.03% 99.15%

SVM 98.76% 98.2% 98.5%
Best result for State of
Art

95.31% 95.31 N/A

4.5.4 Comparison with well-known anti-virus tool

As we mentioned previously, the dataset has two kinds of malwares: the flagged malware

apps and the malware apps collected from the VirusShare repository. This repository

provides access to live malware and day one malware, motivating us to upload the

VirusShare malware apps to the Virus Total tool to scan them. We compared the

obtained results using our model to detect VirusShare malware apps, and the obtained

results using Virus Total tool to detect VirusShare malware apps (the same samples

used in our approach). We observed that our model was able to detect 99.33% of the

VirusShare malware apps, while Virus Total tool was able to detect only 75%. Table 4.8

shows a comparison with a well-known anti-virus tool (Virus Total).

4.6 Related work

Over the last few years, considerable effort has been devoted to the development of

novel methodologies for detecting Android malware anomalies using machine learning

techniques (e.g., (Baskaran & Ralescu, 2016), (Yerima et al., 2014), and (Al Ali et al.,

88

Table 4.8 Comparison with well
known anti-virus tool

Malware Detection Accuracy

Our approach 99.33%
Virus Total 75%

2017)). In the current section, we propose an overview of the different proposals through

the lens of the kind of analyses performed to obtain the features used in training the

machine learnique: static analysis, dynamic analysis, hybrid analysis.

4.6.1 Static Analysis

Static analysis is the easiest and least expensive method for obtaining the features that

will characterise an application. Permissions are the most commonly used features but

some other elements such as intent filters, api calls, etc. have been investigated as well.

Sirisha et al. (Sirisha et al., 2019) focused solely on permissions and proposed a a deep

neural network model which attained an accuracy of 85%, on a dataset of 398 apps (benign

and malware) and 331 features (permissions). Also focused on permissions, (Rehman

et al., 2018) proposed a framework that is both signature- and heuristic-based. They

performed experiments using various classifiers such as SVM, Decision Tree, J48 and

KNN, and used an existing dataset containing 401 apps and permissions as features. The

accuracy of their approach is 85%.

Differently, Kumaran and Li (Kumaran & Li, 2016) applied different ML algorithms

to features extracted from permissions and intent filters found in an app’s manifest.

They found that permissions performed much better than intent filters but that using

both sources yielded a detection accuracy of 91.7% percent (SVM) and 91.4% percent

(KNN), which outperforms the classification performance of either feature set individually.

More recently, Zhu et al. (Zhu et al., 2018b) proposed DroidDet, an Android malware

89

classification approach built on Random Forest. It utilizes various static features derived

from permissions and API calls and attained an accuracy of 88.26% on a dataset of 2,130

apps. Similarly, Li et al. (Li et al., 2018b) proposed a Deep Learning algorithm that

achieved 90% accuracy on a dataset of 2,800 apps (benign and malware) and 237 features

(permissions, API calls, and URLs). Also using deep learning, Naway et al. (Naway & Li,

2019) investigated static features (permissions, Intents, API calls, Invalid certificates) on

a dataset of 1,200 apps and attained an accuracy of 95.31%.

In our previous work (Namrud et al., 2019a), we proposed the AndroVul dataset and a

preliminary investigation of the dataset as it relates to the detection of malwares. More

precisely, we used the well-known machine learning software Weka and selected NaiveBayes

(NB) from its bayes category, RBF classifier from its function category, JRip from its rules

category, and J48 from its tree category. The selected machine learning approaches were

applied under identical settings and with default parameters. The objective of that paper

was to demonstrate the potential of the proposed features for the detection of malwares.

In contrast to that work, our key objective in this research work is to propose a finely

tuned machine learning appproach able to outperform existing approaches and anti-virus

products. The additional work required involved tuning the hyper-parameters of the

machine learning approaches, increasing the amount of malware apps, and conducting

additional experiments and comparisons with existing literature and antiviruses.

4.6.2 Dynamic Analysis

Dynamic analysis takes interest into an app’s behavior at run-time and may detect

malicious activity on an actual execution path. As such, it is resistant to code obfuscation

but on the other hand may have minimal code coverage, depending on how extensive and

complete are the execution scenarios it considers.

Mas’ud et al. (Mas’ ud et al., 2014) proposed a malware detection system that uses

dynamic analysis based on five different sets of features obtained through dynamic analysis.

90

It employs five separate ML classifiers in order to find the optimal combination for

efficiently classifying Android malware. The experimental results showed that a multilayer

perceptron classifier yielded the highest accuracy 83%. Martinelli et al. (Martinelli et al.,

2017) developed a method that utilizes a network of neural convolution implemented

through dynamic analysis of system calls occurrences. Their work is based on a recent

dataset composed of 7,100 apps. They created a number of user interface interactions and

system events during the duration of the application’s execution. The accuracy is 90%.

4.6.3 Hybrid Analysis

Hybrid analysis techniques (e.g., (Naway & Li, 2018), (Muttoo & Badhani, 2017)) entails

the use of both static and dynamic elements. This dual perspective improve the identifi-

cation’s accuracy but may come with more resource consumption, especially when the

analysis is done on a mobile device.

Yuan at al. (Yuan et al., 2014) presented a machine learning-based method for malware

detection that makes use of over 200 features collected from both static and dynamic

analysis of Android apps. The comparison of modelling results reveals that the deep

learning technique is particularly well-suited for Android malware detection, with a high

level of 96% accuracy when applied to real-world Android application collections. their

dataset contains 250 malware samples from contagio mobile12 and 250 benign apps from

Google Play Store.

In a subsequent work, Yuan at al. (Yuan et al., 2016b) developed another model based

on the DBN: the Droid Detector. The proposed method was validated against a broad

unbalanced dataset containing 20,000 benign and malicious samples. The results showed

that DBN performed well, with an accuracy of 96.76%. Around the same time, L. Xu et

al. (Xu et al., 2016) proposed an approach for identifying Android malware that relies

on autoencoders to analyse the app’s features. It then uses an SVM classifier to classify

12 http://contagiominidump.blogspot.com/

91

the apps as malicious or trustworthy. They conducted experiments on a dataset of 5,888

benign and malware apps, analysing static and dynamic elements separately and found

that static features outperformed dynamic features.

Some other security researchers deployed machine learning techniques to propose related

approaches. For instance, in (Catak et al., 2020), authors were mostly concerned with

metamorphic malware. The primary objective of this research is to provide a mechanism

for classifying malware based on its behaviour. They began their investigation by building

a dataset of API calls performed on the Windows operating system that reflects malicious

software behaviour. Long Short-Term Memory (LSTM) classifier was utilized to classify

the data in this investigation. The classifier’s result indicates an accuracy of up to 95%

with an F1-score of 0.83. The use of machine learning to handle security vulnerabilities is

similar to their approach. However, we have chosen to concentrate on Android platform

security issues rather than other platforms.

Table 4.9 presents the feature, dataset, and classifier used in each related work as well

as our approach. In particular, this table allows us to conclude that: 1) our work has

been tested on a dataset that includes more sort of features than the ones used by other

approaches; and 2) it outperforms existing approaches.

92

Table 4.9 Comparison between state of the art research and our approach

References Feature used Dataset used Used Classi-
fier

Accuracy

Paper (Sirisha
et al., 2019)

permissions 398 samples
331 features Deep Learn-

ing
85%

Paper (Li et al.,
2018b)

permissions,
APIs,URLs

2800 samples
237 features Deep Learn-

ing
90%

Paper
(Naway & Li,
2019)

permissions, APIs,
Invalid certificate 1200 samples Deep Learn-

ing
95.31%

Paper (Zhu
et al., 2018b)

permissions, APIs 2130 samples Random
Forest

88.26%

Paper
(Rehman
et al., 2018)

permissions 401 samples SVM 85%

Paper (Zhu
et al., 2018a)

permissions, APIs 2130 samples Random
Forest

89.91%.

Our previous
work(Namrud
et al., 2019b)

Permissions, Code smell,
AndroBugs
vulnerabilities

1600 samples
74 features

Weka (RBF)
provides best
result

83%

Our approach
Permissions, Code smell,
AndroBugs
vulnerabilities

18,526 samples
74 features

Deep learning
SVM

99.3%
98.76%
Respectively

4.7 Conclusion

Android is the most popular smartphone operating system, accounting for 85 percent

of the market. However, Android’s widespread acceptance and openness make it an

ideal target for malicious applications that take advantage of the system’s security

flaws. Signature-based malware detection present in most antiviruses is vulnerable to

new malware, so advanced technologies such as machine learning approaches have been

proposed to tackle malware detection. Our current work builds on and extends a previous

93

work in which we collected vulnerability features (e.g., code smells, dangerous permissions,

and vulnerabilities identified by the tool AndroBugs) from Android apks and proposed a

dataset of almost 12K apps from the AndroZoo repository. A first important contribution

was the addition (and reverse engineering of the features) of thousands of malwares from

VirusShare, a well-known virus repository. In general, the more data points, the better the

prediction models, so it was important and beneficial to our experiments and the research

community in general to improve the size of the dataset. The focus of the current paper is

on proposing highly efficient machine learning models able to fully leverage the potential of

the features we collected. To achieve that goal, we used two different advanced classifiers

(Deep Learning & SVM) to learn the malware and benign patterns. We implemented these

algorithms and experimented with them to get the best hyper parameters for malware

detection using the features we collected. Both of our classifiers achieve an accuracy of

around 99% and these results significantly outperform the state-of-art and a collection of

antivirus, as proposed on the site VirusTotal.

Short term future work involves the investigation of possible trends in Android malware

development (and thus detection); we plan to investigate the data on a multiple year basis

to identify whether some features become more relevant in the newest malware. This

is especially interesting, considering the relatively rapid pace at which the Android OS

changes. Longer term, we plan to apply the lessons learned while experimenting with DL

and SVM parameters on an expanded dataset of apps and features. More specifically, we

plan to investigate the potential of other features, especially those that can be obtained

from an app’s manifest file (intent filters, xml data, etc.). Additionnally, we would like to

investigate whether the category assigned to an app by a developer (whether a malicious

actor or not) should be a factor in the patterns learned by advanced techniques.

CHAPTER 5

DEEP-LAYER CLUSTERING TO IDENTIFY PERMISSION USAGE
PATTERNS OF ANDROID APP CATEGORIES

Zakeya Namruda, Sègla Kpodjedoa, Chamseddine Talhia, Ahmed Balia

a Department of Software and IT Engineering, École de Technologie Supérieure,
1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

Paper submitted for publication, September 2021

5.1 Abstract

With the increasing usage of smartphones in banks, medical services and m-commerce,

and the uploading of applications from unofficial sources, security has become a major

concern for smartphone users. Malicious apps can steal passwords, leak details, and

generally cause havoc with users’ accounts. Current anti-virus programs rely on static

signatures that need to be changed periodically and cannot identify zero-day malware.

The Android permission system is the central security mechanism that regulates the

execution of application tasks. Although recent advances in research have provided various

approaches and detection methods for finding malware apps, the available literature lacks

a full analysis of this subject. We fill this gap by: 1) Systematically and automatically

building a large dataset of malware and benign apps, which we have made available to

the community. Our dataset has around 16K apps and 118 features. 2) We offer a novel

approach for automatically identifying permission usage patterns, which are groupings of

permissions that developers frequently utilise together. The approach combines SOM and

K-means clustering algorithms to classify permissions according to app usage categories.

The results demonstrate that the proposed methodology is able to detect most of the

consistent and coherent permission usage patterns across a wide variety of application

categories. To assess our strategy, we add the identified patterns as features to our dataset

and then apply an SVM classifier for malware detection. Our results indicate that the

identified patterns improve the performance of the classifier.

96

5.2 Introduction

User statistics show that Android is the most widely used operating system (OS) on

mobile devices and is expected to remain the most popular OS until 2023 (O’Dea, 2021).

Smartphones have been a key target for application developers who wish to exploit

them for malicious purposes. Malicious tech is one of the biggest challenges with any

software platform, and Android is no exception. Android apps can pose severe threats

for Android users. According to Gartner, by the end of 2020, mobile applications were

downloaded over 493 million times per day, generating more than $198 billion in revenue

and making them popular computing tools for users worldwide. Such huge numbers are

mostly driven by the Google Android mobile OS, which has an impressive smartphone

market share of 82.8% (Gartner.com, 2021). This is mainly because it is open source and

has a massive collection of applications in the official Android app store as well as in

third-party Android app stores. However, their popularity comes at a cost: Android apps

are also a vehicle for spreading vulnerabilities. A key security mechanism of Android is

its permission system, which controls the privileges of applications. Under this system,

apps must request access to particular permissions in order to perform certain function-

alities. Moreover, the mechanism requires that app developers declare which sensitive

resources will be used by their applications. Users have to agree with the requests when

installing/running the applications. This constrains a given application to the resources

it can request at run-time. Android has established a set of best practices designed to

help developers properly define and operate permissions inside their source code. Unfor-

tunately, there is no integrated security mechanism to guarantee that the apps only ask

for the permissions they need. Moreover, developers do not always adhere to best prac-

tices guidelines (IDC, 2021), which makes the applications more sensitive to security issues.

In this paper, we explore the use of 103 permissions for around 16K apps on the Android

market. First, we investigate permission use for apps in different categories. Then we

present a novel methodology for mining permission usage patterns, which we refer to as

97

SOM+K-means. A permission use pattern is defined as a group of permissions utilised

together in apps. Our strategy is based on a comparison of how permissions are used to-

gether and their correlation to apps across different categories. The patterns’ permissions

are dispersed over several use cohesion levels/layers. Each level indicates the frequency of

co-usage of a set of permissions, while the distribution across various levels illustrates the

degree of co-usage.

Our approach utilises a form of SOM+K-means, which is a commonly used clustering

technique. SOM+K-means will identify probable permission usage patterns based on

an investigation of its usage frequency and consistency across a number of apps within

different categories. Utility permissions may be used by apps belonging to several

categories. As a result, the logic behind distributing permissions in a pattern based on

different levels of use cohesiveness is to distinguish between the most and least particular

permissions. Additionally, our methodology is also designed to be used to find patterns

associated with specific permissions that are of interest to a developer. SOM+K-means

provides a pattern-recognition engine to aid developers in examining various permission

usage patterns. So, we investigate the permission use for different categories of apps.

Furthermore, we assess the scalability of SOM+K-means as well as the generalizability of

the detected usage patterns to possible malware detection using Support Vector Machine

(SVM). Our findings reveal that, across a wide range of apps in different categories,

the detected usage patterns via SOM+K-means improve the malware detection model’s

effectiveness. The following is a brief summary of the paper’s significant contributions:

1. Using an adapted combination of deep learning and the K-means clustering algorithm,

we provide a novel strategy for mining deep-layer permission usage patterns.

2. We create and mine a big dataset of over 16K Android applications from the Google

Play Store, investigating around 46 categories and studying their use of 103 permis-

sions.

98

3. We assess our approach’s efficacy by examining the coherence and generalizability of

the identified patterns. The results reveal that our method was able to discover a

greater number of usage patterns at various degrees of usage cohesiveness.

The remainder of this paper is structured as follow:

We begin with a brief background in Section 5.3. In Section 5.4, we describe the data

gathering procedure and the study’s objectives. Section 5.5 details our strategy. Section

5.7 summarises the related work. Finally, Section 5.8 concludes and outlines future work.

5.3 Background

5.3.1 Permission System

In a pessimistic scenario, all Android applications are considered to be implicitly buggy

or malicious. The apps run in a process with a restricted user ID and are able to

access their own files only by default. If a given application requires information or

resources outside its sandbox, the permission must be explicitly requested. Permission

may be granted automatically by the system, or the system may request the user to

grant permission. Each Android application defines an XML-formatted file (Android

Manifest.xml), which, along with other metadata such as minimal OS version requirements,

contains the permission declarations to which it is requesting access (Etud.iro.umontreal,

2021). The required permission attributes are used to declare permissions in the manifest,

which is supplemented by a common namespace. For Google-defined permissions, this is

usually Android.permission. Applications can demand self-declared permissions, while

component permissions are identified by their tag names.

The Android manifestation includes entries automatically generated by the developer

environment. However, some fields must be inserted manually, particularly those relating

to permission declarations (Barrera et al., 2010).

Android’s permissions are classified into four levels of protection, as follows:

99

1. Normal (lower-risk permission, which grants demanding applications access to isolated

application level features).

2. Dangerous (higher-risk permission, which grants a demanding application access to

control the device or private user data).

3. Signature (permission is granted only if the declaring application and requesting

application have been done with the same certificate).

4. SignatureOrSystem (A permission that the system only allows to apps that are in

the Android system image or are signed with the same certificate as the app that

declared the permission).

At runtime, Android apps enforce permissions, but at install time, the user must accept

permissions. When a new application is installed by users in Android (regardless of

how the application is obtained), the application prompts users to accept or deny the

permissions requested. On Android 5.1 or earlier devices, application permissions are all

required or all denied, which means that users have no choice. They can either accept all

permissions or refuse the application altogether. In the latter case, they cannot use the

application at all, because they did not agree with certain permissions.

Since version 6.0 of Android, however, users are able to grant permissions while running

applications. This means that permission is no longer required to be granted during

the initial installation of an application. Version 6.0 (update) has provided users with

improved functionality and control over their applications. It gives them the possibility to

revoke app permissions at any time and one by one via the application’s setting interface.

For instance, a user might choose to grant a particular mode of transport application

access to the location of their device, while rejecting access to their contact list or SMS

services. Tables 5.1 and 5.2 describe permission protection levels, including dangerous

permissions.

100

Table 5.1 Level of permission protection
Taken from (Developer.android.com, 2021a)

Level of protection Description

Normal
A reduced risk that allows isolated application rights level features
to be enabled while posing minimal danger
to other applications, the system, or the user is available.

Dangerous

A higher-risk permission that
A higher-risk permission that grants
a requesting application access to sensitive user data or control over
the device, both of which might have a detrimental
impact on the user.

Signature
A permission that the system will only issue
if the seeking application is signed with
the same certificate as the one that declared the permission.

SignatureOrSystem

A permission that the system only allows to apps
that are in the Android system image
or are signed with the same certificate as
the app that declared the permission.

5.3.2 Clustering model

Self-organizing map: SOM (Kohonen, 2001) is an unsupervised learning network archi-

tecture in the area of machine learning. It is able to map high-dimensional data onto a

two-dimensional space usually defined as a map. The map is given as the set of nodes

within the input space field. This mapping indicates the similarity between the input

patterns as the proximity to the map. It offers an understandable methodology to capture

and classify the permissions of Android apps. Each SOM node is associated with a weight

vector that has the same size as the input vector. The learning algorithm repeats over

the input vectors and adjusts the weight vectors in accordance with what the algorithm

pulls in. For each input vector, the equivalent weight vector is chosen and manipulated

to be more like the original. Further, the neighbours of the best-matched weight vector

are also modified using a learning algorithm. This helps ensure convergence over several

iterations.

101

Table 5.2 Dangerous permissions and their related
groups in Android 6.0

Taken from (Developer.android.com, 2021a)

Permission Group Permissions

CALENDAR READ_CALENDAR
WRITE_CALENDAR

CAMERA CAMERA

CONTACTS
READ_CONTACTS
WRITE_CONTACTS
GET_ACCOUNTS

LOCATION ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION

MICROPHONE RECORD_AUDIO

PHONE

READ_PHONE_STATE
CALL_PHONE
READ_CALL_LOG
WRITE_CALL_LOG
ADD_VOICEMAIL
USE_SIP
PROCESS_OUTGOING_CALLS

SENSORS BODY_SENSORS

SMS

SEND_SMS
RECEIVE_SMS
READ_SMS
RECEIVE_WAP_PUSH
RECEIVE_MMS

STORAGE READ_EXTERNAL_STORAGE
WRITE_EXTERNAL_STORAGE

In 2000, Vesanto and Alhoniemi (Bengio et al., 2000) proposed using SOM for data

clustering in order to achieve better results and reduce computing time. In 2013, Bacao

et al. (Abaei et al., 2013) reported that SOM can be utilized instead of K-means for data

clustering. In recent years, study and implementation in similar fields has shown that

102

Table 5.3 New or changed permission groups
in Android 8 (marked with (*))

and 9
Taken from (Developer.android.com, 2021a)

Permission Group Permissions

CALL_LOG
READ_CALL_LOG,
WRITE_CALL_LOG,
PROCESS_OUTGOING_CALLS

PHONE

READ_PHONE_STATE
READ_PHONE_NUMBERS(*),
CALL_PHONE,
ANSWER_PHONE_CALLS(*),
ADD_VOICEMAIL,
USE_SIP,
ACCEPT_HANDOVER

SOM and K-means can be merged to construct a better tool for data clustering (Yu et al.,

2020).

Clustering Analysis by K-means Method:

K-means is the simplest of the clustering algorithms. It employs squared error as its

criterion (Kirchner et al., 2010). K-means begins with a random initial partition and

continues to reassign patterns to clusters on the basis of the similarities between the

cluster centres and the pattern(s) until the convergence criteria are met. Patterns would

not be reassigned from one cluster to another, as the squared error would then cease to

decrease dramatically after a number of iterations.

Silhouette index: Silhouette index (Rousseeuw, 1987) is a highly useful indicator of cluster

validity. It refers to methods for the interpretation and evaluation of consistency within

clusters of data. The technique provides a sense of how well each object is categorised by

displaying a clear picture of how successfully each element is classified. The silhouette

value is used to determine how close an entity is to its own cluster in relation to other

103

clusters (separation). The silhouette varies in accuracy from (−1) to (+1), where a high

value means that the object is well-suited to its own cluster and is poorly matched to

neighbouring clusters.

5.4 Study Objectives and data collection

Our motivation for this empirical study stems from: i) the absence of a built-in verification

system to ensure that no unnecessary permissions are requested, which reduces the attack

surface and makes the applications more exposed to security issues; and ii) the poor results

of the Google Play Protect13 system. Indeed, a recent evaluation of the best antivirus

software for Androids, performed at the software testing laboratory AV-Test(GmbH,

2020), has reported that the Play Protect system detected 76.4% of threats in September

2020 (GmbH, 2020).

Our main goals are the following: (1) To clarify the permission system use in different

categories of Android applications, and (2) to investigate the potential risk for these

applications to be harmful. In order to achieve our goals, we started by collecting our

dataset and labeled the data with respect to the dangerousness of the required permission

and the harmfulness risk of the application. In the following, we describe how we built

the dataset used in our study.

5.4.1 Data collection

For our data collection, we used the AndroZoo repository, which contained over 14,560,903

apps at the time we accessed it. The AndroZoo repository proposes data on the APKs

it archived in a main CSV file containing important information for each application,

including hash keys (such as sha256, sha1, md5), size information (for APKs and DEX),

date of binary, package name, version code and market place, as well as information about

how well the app fared on the VirusTotal website (number of antiviruses that flag the

app as a malware, scan date).

13 www.android.com/play-protect/

104

In this section we explain the procedure that we followed to create our two datasets.

Figure 5.1 illustrates the overview of collecting and building the data. The starting point

was downloading the information file for the AndroZoo repository, targeting the apps

from Google Play Store from 2019 and 2020. Then we randomly selected our 16K samples.

Each app from AndroZoo has its info (i.e., sha256, sha1, md5, apk size, dex size, dex

date, pkg name, vercodevt detection, vt scan date, markets). Next, we deployed the

information from the AndroZoo for each app to download its APK file and HTML page.

However, a significant number of those apps were removed from the Google Play Store

for policy reasons. This prompted us to search for it on mirror sites.

In finding the desired mirror site, however, we faced several issues, including language

and difficulties downloading the html page automatically (no pattern used). To address

these issues, we conducted extensive research and experiments to download the HTML

pages automatically. By the end of this step, we had collected APK files and their HTML

pages. The experimental dataset numbered 15,894 samples and 103 features (permissions).

Clustering is an unsupervised process, so there is no need to know the class label of the

samples. However, in order to check the efficiency and consistency of the clustering model,

we need to know the class labels of the experimental cases, i.e., we must differentiate

between “benign” and “malware” so that we can distinguish malware.

5.4.1.1 Feature Extraction

We used the info related to the 15,894 samples to download their APK files from the

AndroZoo repository. We then used these files as input to Apktool14 (reverse engineer tool)

and obtain the manifest file. Next, we modified AndroVul (Namrud et al., 2019b). We

employed the info related to those 15,894 to download their apk files from the AndroZoo

repository, after which the apk files were used as input to reverse-engineer and obtain the

manifest file. To do so, we accessed Apktool, and then modified AndroVul (Namrud et al.,

14 https://ibotpeaches.github.io/Apktool/

105

AndroZoo
repository

ApkTool
Permissions

&
Code Smell

Automated
script

Automated
script

Automated
script

Mirror Sites

Figure 5.1 Overview of Building the dataset

2019b) to extract all the relevant features, including 103 permissions in the manifest file.

In the meantime, HTML pages were deployed to parse metadata and extract the desired

features, such as category, rate, date of update, number of downloads, etc. This step

resulted in a dataset that contains around 16K samples in a CSV file, including 118 features

from different sources. Table 5.4 explains the dataset contents. Currently, there are 103

features (permissions) for the learning system. Algorithm 5.1 explains the procedure

for extracting and mapping the features in our dataset. We labeled the permission list

to distinguish between Dangerous, Normal, and Signature permissions according to the

protection level reported in the Android documentation. We also used different tags to

distinguish between permissions giving access to hardware and those giving access to user

information in order to investigate the differences in terms of permission use between

different categories of applications.

106

Algorithm 5.1 Feature Extraction

Input :Android Applications, (Apk files & HTML pages & AndroZoo info)
Dataset D

Output :A CSV file contains encpoded feature vectors for each App in the
dataset

1 for (allf ∈D) do
2 APKfile←Open(f)
3 manifestF ile← ApkToolAP Kfile

4 Permissionslist←Get_Distinct_Permissions(manifestF ile)
5 Metadatalist←Get_Distinct_Metadata(HTMLF ile)
6 for (each_permissions ∈ Permissions) do
7 if permissions ∈ Permissionslist then
8 V ector(P ermissions)← 1
9 end

10 else
11 V ector(P ermissions)← 0
12 end
13 end
14 end
15 CSV(file)← Append(CSV(file),Concat(V ector(AndroZoo_info),

V ector(Metadata),V ector(P ermission)))
16 return (CSV(file))

Table 5.4 The dataset contents

Source Feature’s name Feature’s type

AndroZoo info

Package_ name String
SHA256 String
SHA1 String
MD5 String
Apk _Size Integer
VT- Detection Integer
Date of scan Date
Dex_size Integer
Vercode Integer

APK file Permissions requested 103 features Binary

HTML page
Category’name String
App’s installs Integer
Updated_date Date

107

5.4.1.2 Applications Categories

When a developer releases an application on Google Play Store, he/she is required to

specify the category for the application’s release. Currently, Google Play Store has around

46 categories. The distribution is shown in the dataset in Table 5.5. Applications are

sorted within each category depending on a range of factors, such as ratings, reviews,

downloads, country of origin, etc. We have done an exhaustive analysis and found that

the number of malwares is not standardised across all categories. Certain categories such

as education, entertainment, games, and tools are particularly vulnerable to malware,

while others such as Word, comics, and events are slightly safer from security threats. In

our research, we purposefully look for ways to better leverage this knowledge.

5.5 Proposed Approach

In this section, we introduce our approach and the methodology based on mining permission

usage patterns of apps from different categories. Before delving into the algorithm,

we present a brief background, an overview of our method, and a description of our

experiments for investigating the identified permission usage patterns. Figure 5.2 shows

the overview of the procedure of producing inferred pattern.

5.5.1 Approach overview

Our technique begins with a collection of apps and a diverse range of permission schemes

collected from their apk files. The output is a collection of permission usage patterns,

each of which is a collection of apps arranged into distinct layers based on their frequency

of co-use. We define a pattern of app co-usage as a collection of applications that are

frequently used in conjunction with each other. A pattern is a collection of permissions

that are dispersed over many usage cohesion layers. A cohesion layer reflects the frequency

of co-use between apps. Indeed, similar permission usage patterns may exist across specific

apps, and those apps are more typically classified as belonging to the same category. As

108

Table 5.5 The distribution of Benign & Malware App Categories in the dataset

Category Benign Malware Category Benign Malware
Action 243 32 Maps 101 11
Adventure 206 10 Medical 148 29
Arcade 266 32 Music 938 165
Art 158 64 News 370 68
Auto 105 34 Not found 193 97
Beauty 63 13 Parenting 12 3
Board 104 9 Personalization 651 62
Books 755 138 Photography 237 51
Business 671 96 Productivity 422 60
Card 80 9 Puzzle 423 27
Casino 48 8 Racing 95 12
Casual 327 42 Role playing 233 26
Comics 50 5 Shopping 273 51
Communication 292 44 Simulation 269 19
Dating 27 7 Social 177 48
Education 1183 246 Sports 331 55
Entertainment 839 201 Strategy 122 14
Events 39 7 Tools 994 345
Finance 482 62 Travel 266 38
Food 201 30 Trivia 53 12
Health 243 55 Video players 115 33
House 64 23 Weather 40 12
Libraries 26 8 Word 32 1
Lifestyle 411 101

a result, we are looking for an approach that can record co-usage relationships between

permission usage patterns and app categories at various levels.

Our approach is as follows:

The input dataset is analysed to identify the various permissions that are unique to each

app. Every application in the dataset is assigned a usage vector that contains information

about used permissions. We aggregate the apps that are most commonly co-used by

permissions using the K-means clustering algorithm based on the SOM deep learning

109

Cn

C3

C2

C1
Generated

dataset
SOM-Kmeans

Clusters

Algorithm to extract
the aimed info

Analytical
technique RQ1

Finding.1
Cohesion Matrices

Finding.2
Produced inferred

pattern

Finding.3
Pattern generalization

evaluation

Analytical
technique RQ2

Analytical
technique RQ3

Figure 5.2 Overview of the procedure of producing inferred pattern

cluster. Permissions that are not consistently used across apps in a category are segregated

and treated as noisy data.

5.5.2 Deep-layer clustering

Our study aims to investigate the use of permissions, especially dangerous ones, in Android

applications and their prediction potential for risk (malware). More specifically, we seek to

understand and identify the weaknesses of the Android permission model. Although the

various techniques of analysis and data mining are certainly applicable, we build a cluster

model that combines the clustering of SOM and K-means centred on the silhouette index,

which is a cluster validity measure. The model inherits SOM’s advantage (unsupervised

deep learning) and K-means clustering is applied to the SOM results, addressing one of

the drawbacks (nodes with questionable clustering boundaries) of SOM. Furthermore, the

findings do not always yield a simple clustering due to the number of initial nodes and

the order of cases. The silhouette index is used by the model to assess the validity of

various clustering outcomes. As previously mentioned, we suggested a two-stage strategy

clustering approach to improve grouping accuracy.

110

SOM is a technique for mapping high-dimensional data to a low-dimensional space for

easy understanding. SOM technique relies on the following parameters:

1. Weight values are initialised with random numbers.

2. Every neuron calculates the squared Euclidean distance between the vector being

processed and its weight vector, which is a measure of the difference between the

input pattern and the neuron’s output.

3. The winning unit is the one that best approximates the input (the best matching

unit). This formula is used for distance calculation, as follows:

Dist =

√√√√i=n∑
i=0

(V i−Wi)2 (5.1)

Where V is the current input vector and W is the node’s weight vector. We take

a set of inputs and measure the absolute difference between them and the neuron.

Then we square the difference and sum the results. The winner will be the node that

yields the smallest square root.

4. A topological neighborhood of excitable neurons appears around the winning node.

The topological neighborhood model looks like this:

Tj,I (x) = exp(−S2j,I(x)/2σ2) (5.2)

Where Sj,I is the lateral distance between two neurons (j&I), I(x) is the winning

neuron, and σ is the neighborhood size. The neighbourhood radius in an SOM

must reduce over time and must be accomplished using an exponential formula. All

excitepd neurons change their weight vectors values to align with the input patterns.

The weight vectors of the winning unit are shifted closer to the input, and we change

the weight vectors of the units in its neighbourhood, but to a smaller degree. The

farther the unit is from the best matching unit, the less it is changed. The weight

update formula used in this work is given below:

111

∆Wj, i = η(t)∗Tj,I(x)(t)∗ (xi−wj,I) (5.3)

Where η(t) is the learning rate, Tj,I(x)(t) is the topological neighborhood , t is an

epoch, i is neuron, j is another neuron, and I(x) is best matching unit; Hence, this

denotes the winning neuron.

The K-means algorithm is used in the second stage for cluster analysis by assigning the

correct number of (K) clusters. The goal is to identify the distinct pattern in the data to

find the smallest possible difference between the attributes in the same classes. We propose

integrating the SOM and K-means approaches into the SOM+K-means architecture, as

shown in Figure 5.3. K-means is very commonly used in machine learning. In our study,

the K-means algorithm is used to obtain the best clustering results. The key idea is to

identify K centroids, one for each cluster. The basic K-means algorithm randomly selects

the centroid from the application list. After that, each item is placed according to its

centroid in a dataset. The K-means clustering partitions a dataset by reducing the total

cost function of the squares.

J =
k∑

j=1

x∑
i=1
‖Xi(j)−Cj‖2 (5.4)

Where ‖Xi(j)−Ci‖2is a chosen distance measure between an application Xi(j) and the

cluster center, and Cj is a measure of the distance between applications and their cluster

centroids (Ferdous et al., 2009). We separate the applications into K clusters, so the

application will be allocated to the one which is the smallest distance between K clusters.

As a result, our SOM4+K-means builds the clusters based on improving overall average

value of the silhouette index (the closer to 1, the better). Thus, we aim to increase the

overall average silhouette. In order to help the SOM+K-means model succeed in its search,

we tuned the K parameter in the K-means to gain a more qualitative interpretation of the

acquired data. In so doing, we noted that (K = 250) led to an overall average silhouette

112

of 99.4% and 250 clusters. Each resulting cluster was saved as an CSV file, including

identified permission usage patterns, apps, and their info from the main dataset.

5.5.3 Clusters analysis

This process generates clusters of permissions that are constantly used in conjunction with

one another, as well as several noisy points that are omitted. We extract the use vectors

of each generated cluster using logical disjunction in a single use vector. Each produced

cluster’s vector contains the name of the cluster, some statistical info, the permission

usage pattern, and the number of apps per category. Algorithm 5.2 briefly explains the

process of the produced results that were saved on one CSV file. This file will be exploited

as a starting point to obtain the rest of the findings.

Algorithm 5.2 Clusters Analysis

Input :Clusteri , i= 1,2, · · · ,250, all Clusters.
Output :CSVfile.

1 for app ∈ Categoryapps do
2 cati = group_category(app)
3 Clusteri = get_All_info(Clusteri)⊕pattern_permissionsClusteri

4 CSV(file)← Append(CSV(file),Concat(V ectorCluster(i))
5 return (CSV(file))
6 end

5.6 Empirical study

We describe the findings from our study of the proposed methodology of SOM+K-means

in this section. Our aim is to determine whether SOM+K-means can recognise usage

patterns of applications that are 1) coherent enough to provide useful information for the

relevant apps, and 2) generalizable for permission usage patterns. To do so, we investigate

the correlation between the resulting clusters and the permission usage patterns. We also

investigate the permission patterns deployed to calculate the potential malware vector

to train Support Vector Machine (SVM) and validate the enhancement of malicious

113

X1

X2

Xn

Wij Wij1
Wij2

Wijk

Cluster 1
Cluster 2

Cluster k

Input

SOM Kmeans

Figure 5.3 Architecture of the SOM-Kmeans model

application detection. For each experiment in this area, we present the study issues, the

method used to address them, and the resulting findings.

5.6.1 Analysis of Cohesion

As an initial experiment, we assessed the cohesion of the cluster’s quality identified by

SOM+K-means for various matrices, including the silhouette index metric, the Pattern

Usage Cohesion (PUC) metric, and the Category Cohesion (CC) metric. We intend to

answer the following research question:

RQ1. What is the quality of each resulting pattern and the correlation between its apps?

5.6.1.1 Analytical technique

Firstly, the similarity between an object and its own cluster has to be measured. Thus,

we utilise a cohesiveness metric, namely the silhouette index metric. The silhouette value

ranges between [-1,1], with a high value indicating that the object has a high affinity

for its own cluster but a low affinity for neighbouring clusters. The silhouette index is

calculated as follows:

114

For data point i ∈ Ci (data point i in the cluster Ci), where d(i, j) is the distance between

data points i and j in the cluster Ci. We are able to interpret a(i) as an indicator of how

successfully i is assigned to its cluster (The better the assignment, the lower the value).

a(i) = 1
|Ci|−1

∑
j∈Ci,i6=j

d(i, j) (5.5)

We then define the mean dissimilarity b(i) of point i to some cluster Ck as the mean of

the distance between i to all points in Ck (where Ck 6= Ci). For each data point i ∈ Ci.

b(i) =mink 6=i
1
|Ck|

∑
j∈Ck

d(i, j) (5.6)

We now define a silhouette (value) of one data point i

s(i) = b(i)−a(i)
max{a(i), b(i)} , if |Ci|> 1 (5.7)

Thus, the s(i) over all the data in the entire dataset provides a measure for the data’s

clustering accuracy.

Next, we must determine whether the identified patterns are sufficiently coherent to

reveal informative co-usage links between individual apps. As a result, we use a metric

for cohesiveness called Pattern Usage Cohesion (PUC), to quantify the cohesion of the

detected patterns. PUC was originally utilised for the cohesive utilisation that was

inspired by Perepletchikov et al (Perepletchikov et al., 2007). It assesses the uniformity

of co-use of an ensemble of entities, which in our context corresponds to a number of

applications in the form of a used permission model. The range of PUC values is [0,1].

The greater the PUC number, the stronger the usage cohesion, i.e., a usage pattern shows

optimal usage cohesion (PUC=1) if all permission patterns are always utilised together.

If p is a pattern of permission usage, then its PUC is defined as follows:

115

PUCp =
∑

pp ratio_used_apps(p,pp)
|perm(p)| ∈ [0,1] (5.8)

Where pp denotes a permission that contains the pattern p, and the ratio_used_apps(p,pp)

means the ratio of permissions that include the pattern. p and are used by each app. The

perm(p) defines the set of all permissions that are used in the pattern p.

The last metric, Category Cohesion (CC), measures the ratio of apps that belong to the

same category in each cluster. The CC confidence interval is [0,1]. The higher the CC

number, the stronger the CC for each category Cat(i) in the same cluster. Thus :

CCCi
=maxcati

|Apps(Cati,Ci)|
|Apps(Ci)|

(5.9)

Where the ratio of used Apps(Cati,Ci) denotes the number of app clusters (Ci) that

belong to the same category, and Apps(Ci) denotes the total apps in the cluster (Ci).

The analysis results of the three quality matrices are presented in the following subsection.

5.6.1.2 Results for RQ1

The cohesion of the three quality matrices is calculated based on the results of overall

average silhouette. Table 5.6 reports the silhouette cohesion matrix measuring the quality

cohesion for each cluster. From the table, we observe that an average silhouette score

is (98.1%) and standard deviation value is (0.1). These values are realistic, because our

clustering is based on the silhouette index, which is already high. Further, these values

reflect the co-usage relationships of the apps’ patterns, making them more cohesive.

The PUC outcomes also provide evidence that SOM+K-means exhibits consistent cohesion

with regard to the identified usage patterns. We found that at least 50% of the applications

are used together with high PUC. A noteworthy number of the apps have 100% PUC. For

116

example, an average PUC would be 60% and a standard deviation value (0.2). As well,

the category cohesion matrix carried out the qualitative aspect of the obtained results.

From it, we observe that an average 40% of the clusters contain apps that belong to the

same categories. Indeed, it is worth mentioning that we observed a trade-off between

usage cohesion of detected patterns and their distributed categories of apps.

Next, to acquire a better understanding of the correlation of the findings between cohesion

matrices with respect to the silhouette matrix, we calculated the distance between the

silhouette matrix and each PUC and CC matrix. This resulted in two new matrices:

(distance_Sil_PUC) and (distance_Sil_CC).

Figure 5.4 shows the correlation between the cohesion matrices on each axis. As can be

seen, the correlation ranges from −1 to +1. Values closer to zero mean that the two

cohesion matrices show no linear trend. The closer to 1 the correlation is, the stronger

their correlation; in other words, as one increases, so does the other. Thus, the closer to 1,

the stronger the relationship is. A correlation closer to −1 indicates similarity, However,

rather than both rising, one variable will drop as the other increases. The diagonals are all

1 (light), since the squares relate each variable to themselves. Our motivation here is to

study the correlation between the cohesion matrices in order to see the relation between

them and possibly to discard some of them. Based on this motivation, we investigated the

correlation between the PUC and CC matrices, and that between (distance_Sil_PUC)

and (distance_Sil_CC). Figure 5.4a provides the correlation between the PUC and CC

matrices, while Figure 5.4b shows the correlation between (distance_Sil_PUC) and

(distance_Sil_CC). It worth noting that both correlations yield very close results. As

well, Figure 5.5 shows the correlation between the clusters and cohesion matrices. We

observe that the correlation result is not sufficiently close to be useless and not far enough

away to be independent. Hence, it is important to consider all cohesion matrices. The

presence of correlation implies the absence of a linear relationship that demonstrates the

quality. From this, we can assume that cohesion matrices assess inferred patterns from

various perspectives.

117

Table 5.6 SOM-Kmeans average cohesiveness and
summary of inferred usage patterns

SIL PUC CC
Avg 0.981 0.6 0.4
StdDev 0.1 0.2 0.2
Nb Pattern 250

a) PUC & Category cohesion b) distance_Sil_PUC & distance_Sil_CC

Figure 5.4 The correlation between the quality matrices

5.6.2 Produced inferred pattern

The purpose of this study is to determine the reliability of the permission usage patterns

detected using SOM+K-means. We seek to answer the following research question:

Figure 5.5 Overview of the quality matrices cohesion

118

RQ2. How far does the concept of cohesive matrices go in obtaining representative

permission usage patterns?

5.6.2.1 Analytical technique

To address our second research question (RQ2), we study whether the patterns are

representative of the permission usage by applying two selective thresholds to maintain a

high level of usage cohesion.

First Selective Threshold: Based on PUC matrix, we calculate the median for the inferred

patterns in our case (Median = 0.42). Our motivation for applying this threshold concept

is as follows: We believe that the median for the PUC matrix is far enough away to

include a valuable pattern. In other words, the median covers the patterns that have

sufficient quality and generate a sufficient number of patterns. Thus, the median is

considered the threshold, and the second cut follows this criterion. This step resulted in

representative permission usage patterns, such that the representative permission usage

pattern ≥ Median.

Second Selective Threshold: To perform this step for each cluster, we only consider apps

that belong to the same category and have the highest value. Thus, based on the app

categories (AppsCati
) and Category Cohesion (CC) matrix, we calculate the number of

(AppsCati
) in each cluster (Ci).. Then we calculate the average for the (AppsCati

) matrix.

Our motivation is to apply the average as the threshold. In so doing, we observe that

the average is not particularly high when compared with total apps per cluster. This

observation leads us to remove some clusters, even though this may badly impact our

study.

As well, the average is not sufficiently small to be not representative enough; so, based

on this motivation, the average was chosen as the first threshold. According to this

criterion, the first cut was applied, leaving 58 clusters remaining. After this, each cluster

was assigned to the more representative app category. In other words, we selected the

119

category with the highest percentage of apps to represent the cluster’s pattern, as follows.

Category pattern = Max (AppsCati
) ∈ (Ci). In this step, we are logically motivated.

5.6.2.2 Results for RQ2

The obtained results are as follows. The analysis study provides 30 representative

permission usage patterns, including 12 different categories. Some of the categories have

more than one pattern. This step resulted in a dataset of inferred patterns. Figure

5.6 shows the statistical distribution for the cohesion matrices and provides additional

information about selective criteria.

Figure 5.6 PUC & Category cohesion results
of the identified permissions usage patterns.

5.6.3 Pattern generalization evaluation

In this study, our objective is to evaluate whether the representative permission usage

patterns identified with SOM+K-means can be generalizable in terms of being able to

120

identify malicious and benign apps, which would then validate our work. Our goal is to

address the following research question.

RQ3. To which extent are the discovered permission usage patterns consistent enough to

increase the ability to distinguish between malware and benign apps?

5.6.3.1 Analytical technique

To answer RQ3, we look at whether the discovered patterns will be sufficiently consistent

to aid in the differentiation of malicious and benign applications, and thus evaluate their

generalizability. We address RQ3 through the following experiment: The inferred patterns

are used as references to calculate the distance between each pattern’s category Pcati in the

inferred pattern dataset with patterns for the same category in the main dataset Pmaincati
.

We called this new set potential malware (PM). Hence, PMi = mini|Pcati−Pmaincati
|.

Our motivation here is to validate representative permission usage patterns and provide

evidence of their quality.

Algorithm 5.3 explains the procedure to calculate potential malware (PM). As input

1, Patternsi is the inferred pattern category, and Apps refer to all apps in our dataset.

After the variables are initialized in Line 3, we filter the apps based on their categories.

Then the app permissions were compared with inferred patterns, as shown in Line 9. We

count the differences and store it in pmi. If the cati has many inferred patterns, we select

min pmi., which means that the pattern has more similarities than the others. The chosen

result is then stored in PM , as shown in Line 18. Next, Line 19 is reinitialized to the

variables, after which we repeat all the procedures for all the apps. In the end, each app

will be mapped with integer values in PM , as follows:

If the value in PM equals zero, the app’s pattern is equal to one of the inferred patterns

with respect to its category. Otherwise, we count the differences between the app’s pattern

121

and category’s inferred patterns. The value with the smallest difference is then assigned

to the category.

PMapp→


0 ifIdenticalPattern

min otherwise

Algorithm 5.3 A potential Malware (PM)

Input :Patternsi , i= 1,2, · · · ,n, where set of Patterns.
Apps= [app,app2, ...,appm]

1 pi is a permission.
Output :PM list.

2 PM = []
3 count= 0, min=∞ , pmi = 0
4 for app ∈ Apps do
5 cati = get_category(app) .getting all apps for same category.
6 pattern_cati = get_category(cati) .getting the pattern for each category.
7 for p ∈ pattern_cati do
8 for perm ∈ app.permissions do
9 if perm /∈ p.permissions then

10 count= count+1
11 end
12 end
13 if min < count then
14 min= count
15 pmi =min

16 end
17 end
18 PM.append(pmi)
19 count= 0, min=∞ , pmi = 0 reinitialize the variables
20 end

Study 1: We labelled our dataset based on vt_detection features as benign and malware

by applying the Derbin (Arp et al., 2014) standard, which considers apps with 0& 1 flag

as benign and apps with ≥ 2 as malware, as shown below.

122

App→


Benign ifvt_detection < 2

Malware ifvt_detection≥ 2

Next, the machine learning classifier Support Vector Machine (SVM) was selected, as it

has been successfully used in many research-related works. Therefore, in this study, the

SVM method will be used to classify and distinguish between benign and malware apps.

Also, we aim to validate our inferred patterns in this study. The SVM model is applied

as follows:

1. SVM model were fed with the permissions as features.

2. The cross validation is applied 80% in the training phase and 20% in the testing

phase.

3. The hyper parameters C& Gamma are tuned in the training phase to fit our data.

4. The model is tested using 20% cross-validation.

Study 2: In this study, we add MP to the dataset as a feature and deploy the same

hyper parameters C & Gamma from Study 1. Thus, we apply the same model with

respect to C& Gamma hyper parameters in order to observe the results under the same

conditions.

To assess our model, we used three performance parameters: Accuracy, F1, and AUC.

These parameters are frequently used in machine learning to evaluate performance models.

To assess our model, we used three performance parameters: Accuracy, F1, and AUC.

These parameters are well-known in machine learning to evaluate the performance models.

1. This denotes the percentage of correctly classified apps: (TP +TN)/(TP +TN +

FP +FN)(Chicco & Jurman, 2020).

123

2. F1-Measure: This indicates a performance indicator that takes into account both the

precision and recall of the obtained classification: 2∗ (Recall ∗Precision)/(Recall+

Precision)(Chicco & Jurman, 2020).

3. Area under ROC Curve (AUC): This is a measure of the predictive power of the

classifier that basically informs us how much the model is capable of distinguishing

between classes (benign apps vs malware).

5.6.3.2 Results for RQ3

In Study 2, the training phase results were significantly higher than those in the testing

phase, causing overfitting in the model. Thus, we solve the overfitting using the random

oversampling technique. Random oversampling is the simplest strategy for balancing

a dataset’s imbalanced nature. It balances out the data by duplicating minority class

samples. The overfitting was solved and the performance in the training phase was almost

the same as that in the testing phase.

The obtained results are as follows.

Table 5.7 summarizes the results of the SVM classifier both without using the MP as a

feature and including the MP as a feature. We observe that there are improvements in

terms of distinguishing between malware and benign apps when we added the potential

malware feature. Hence, adding the detected patterns is more informative and creates

a notable change in the performance of the model. More specifically, the results from

the experiment confirm the above-mentioned findings. We believe that our approach can

be achieved and will succeed at improving Android security for developers and users.

The adaptation of our variant SOM+K-means method is one of the most important

contributions of this work for mining permission usage patterns.

124

Table 5.7 Comparison between two
models (with and without MP)

Gamma = 1 C = 100
Performance Matrix Accuracy F1 AUC
Without PM 93.5 92.9 92.5
With PM 94.1 93.2 94.1

5.7 RELATED WORK

5.7.1 Research related to dataset generation

Numerous repositories have been proposed over the years for the study of mobile apps.

Recently, the AndroZoo15 dataset was released, which includes over 13 million Android

apps from Google Play, other stores, and app repositories. The aim of AndroZoo is

to build robust app collections for software engineering research. F-Droid onlineF is a

repository of free open-source Android apps that have been used in an impressive number

of studies. Even more recently, Geiger et al. (Geiger et al., 2018) made available a

graph-based database with information (e.g., metadata and commit/code history) on

8,431 open-source Android apps located on GitHub and the Google Play Store. Also

notable, although slightly older, is Krutz et al.’s study (Krutz et al., 2015)], with a public

dataset centered on the lifecycle of 1,179 Android apps from F-Droid. Arp D et al. (Arp

et al., 2014) established the well-known DREBIN dataset, which is comprised of 131,611

applications of benign and malicious software. Samples were obtained in the August 2010

to October 2012 time-frame. To find out whether an application is malicious or benign,

each sample was sent to the VirusTotal service to examine the output of ten common

antivirus scanners (AntiVir, AVG, BitDefender, ClamAV, ESET, FSecure, Kaspersky,

McAfee, Panda, and Sophos). Any application that was scanned by at least two scanners

was detected as malicious.
15 https://androzoo.uni.lu/

125

Li et al. (Li et al., 2017) built a dataset of 1,497 apps pairs, where one application

piggybacks another that may contain malicious payloads. Their work was based on

AndroZoo. Using VirusTotal’s results, they flagged the relevant malware apps. F. Wei

et al. (Wei et al., 2017) prepared a dataset containing 24,650 samples dating from 2010

to 2016 that labeled Android malware. The samples were collected from several sources,

including Google Play, VirusShare, and security companies of third-parties. VirusTotal

was used to flag their apps. X. Jiang et al. (Zhou & Jiang, 2012) managed to collect

around 1,200 malware samples in August 2010 and manually analyzed the malware

samples. Wang H et al.built a dataset of 9,133 malware samples and set a threshold of 20

to indicate suspicious applications based on the number of VirusTotal16 engines recorded.

Size and coverage: Apart from AMD dataset (Wei et al., 2017), the great majority

of datasets currently available are limited and obsolete. For example, MalGenome

(Zhou & Jiang, 2012) and Drebin (Arp et al., 2014) are two of the most popular datasets.

Their production was done five years ago, and only a limited number of samples are

included. The literature also reports that the Drebin dataset has a replication issue

(Irolla & Dey, 2018). The AMD dataset, which contains a large number of malware sam-

ples, was developed in 2016. It includes several samples that overlap with the MalGenome

and Drebin projects, since it gathered samples from a broad range of sources, including

previously collected malware datasets.

Methods used to flag the ground truth: The rest of the three datasets heavily depend

on VirusTotal for accuracy in labelling the ground truth. It is worth noting that various

thresholds are utilized on VirusTotal to label malware samples. For example, Drebin

was developed based on the findings of ten well-known engines on VirusTotal. At least

two of the ten engines found one type of malicious activity in the original sample and

flagged it as a malware. As a threshold, one engine was employed in the Piggybacking

dataset, while AMD made use of 28 different engines (which, at that time, represented

16 https://www.virustotal.com/gui/

126

over 50% of the engines). Furthermore, despite the fact that VirusTotal is commonly

used in academia and industry, it contains very little exclusivity.

App Metadata: After looking into the issue, we assert that, to the best of our knowledge,

no other studies have focused on metadata (e.g., app description, app ratings, etc.)

relevant to malware in their samples. Furthermore, because previous works (Gorla et al.,

2014; Ma et al., 2015) have suggested incorporating app metadata for malicious/anomaly

detection, we believe it is critical to build a malware dataset containing all of the app

metadata to enable malware detection evaluation.

5.7.2 Permissions based study

The permission system has attracted considerable research interest. Several studies

have been conducted recently to investigate how permissions are used in Android apps

and whether or not they can help identify malware apps. In (Felt et al., 2011), Felt et

al.conducted a survey of 100 paid apps and 856 free apps from the Android Market. They

identified the most requested permissions and observed that both free and paid apps make

requests for at least one dangerous permission. Additionally, they created a tool that is

able to detect whether an app requests more permissions than necessary, noting that one-

third of the examined applications were over-privileged. In (Barrera et al., 2010), Barrera

et al. conducted a survey of the 1,100 most popular applications downloaded in 2009.

They discovered that only a small portion of the specified permissions are actively used

by developers. In (Wei et al., 2012), Wei et al. investigated the evolution of permissions

in the Android ecosystem, finding that dangerous permissions often outnumber other

permission types in all Android. Meanwhile, in (Krutz et al., 2017), Krutz et al. also

carried out a study on app permissions. They discovered that more experienced developers

are more likely to make permission-based modifications, and that permissions are usually

introduced earlier in an app’s lifetime.

In (Frank et al., 2012), the authors selected 188,389 applications from the official Android

market and studied the different requested permission combinations made by them. The

127

authors identified more than 30 common patterns of permission requests and found that

low-reputation applications often diverge from the permission request pattern observed in

high-reputation applications.

Other research has focused on defining risk signal as a way to identify malware applications.

In (Sarma et al., 2012), Sarma et al proposed a set of risk signals by analyzing the

permission patterns in apps taken from the Android Market within a dataset of 121

malicious apps. in (Zhou et al., 2012), Zhou et al. developed a system for detecting

malicious applications in official and alternative Android markets.

In (Scoccia et al., 2019), the authors performed an empirical research of 574 open-

source Android app GitHub repositories. They examined the incidence of four distinct

sorts of permission-related concerns throughout the duration of the apps’ lifetimes.

Their findings indicate that permission-related difficulties are a common occurrence in

Android applications. In (Almomani & Al Khayer, 2020), authors have conducted for

the last five years’ versions of the top Android apps to examine the Android platform’s

permissions mechanism. Additionally, the paper addresses Android’s user-permissions

model, which defines how applications manage sensitive data and resources. In(Xiao

et al., 2020), the authors introduced MPDroid, It is a new technique that combines static

analysis and collaborative filtering to determine the minimum permissions required for

an Android application based on its description and API usage. MPDroid begins by

utilising collaborative filtering to determine the app’s basic minimal permissions. Then,

using static analysis, the final minimal permissions required by an app are determined.

Finally, it assesses the danger of over privilege by analysing the app’s excess privileges,

i.e., the rights sought by the programme that are not essential. Experiments are run

on 16,343 popular Google Play applications. In(Wu et al., 2021), the authors manually

annotated 2,254 app descriptions from the Google Play Store to include 26 permissions

classified into ten categories. They used two natural language processing approaches

to enhance our annotated dataset in order to acquire additional permission semantics.

In(Arif et al., 2021), the authors proposed a multi-criteria decision-making-based (MCDM)

mobile malware detection system that evaluated Android mobile applications using a

128

risk-based fuzzy analytical hierarchy process (AHP) method. The study focuses on static

analysis, which employs permission-based features to evaluate the approach used by mobile

malware detection systems. Risk analysis is used to raise the mobile user’s awareness

when accepting any permission request that carries a high risk level. 10,000 samples

were collected from Drebin and AndroZoo for the assessment. The findings indicate a

high rate of accuracy of 90.54%. In(Jiang et al., 2020), the authors devised a method

for identifying Android harmful applications called fine-grained dangerous permission

(FDP), which collects characteristics that more accurately describe the difference between

malicious and benign applications. Among these features, for the first time, a fine-grained

feature for harmful permissions issued to components is offered. We examine 1700 benign

and 1600 malicious apps and show that FDP has a 94.5% TP rate.

Our approach is similar to (Scoccia et al., 2019; Almomani & Al Khayer, 2020; Xiao et al.,

2020; Wu et al., 2021) in terms of permission-related concerns, we dissimilar in terms of

the dataset (including the size, features, and the number of permissions), using machine

learning, and considering the categories’apps in their studies. In our present work, we

expand on the existing research. We also investigate similar properties and propose new

ones, which we define as application sustainability and malware risk.

5.7.3 Category based study

Apps in Android app stores are classified into various categories, such as Health&Fitness,

News&Magazine, Books&References, Music&Audio, etc. Each category has its own

set of functionalities, which means that applications in the same category have similar

functionalities. Permissions are one of these features. Several state-of-the-art studies

make a link between the apps’ requested permissions and the features that are standard in

its category. Some researchers proposed using category-based machine learning classifiers

to improve the efficiency of classification models in identifying malicious applications

within a certain category.

129

Table 5.8 Comparison between various state-of-art solutions

Reference Generated
Dataset

Category
based

Identify
permissions
usage pattern

Machine
Learning

Malware
detection Dataset size

(Scoccia et al.,
2019)

3 7 7 7 7 574

(Almomani & Al Khayer,
2020)

3 7 7 7 7

20 apps
with their
versions
(2016 to 2020)

(Xiao et al., 2020) 7 7 7 7 7 16,343
(Wu et al., 2021) 7 10 categories 7 3 7 2,254
(Yuan et al.,
2016a)

7 18 categories 7 3 3 13,005

(Arif et al., 2021) 7 7 7 3 3 10,000
(Jiang et al., 2020) 3 7 7 3 3 3100

Our work 3 46 categories 3 3 3 16,000

In (Grampurohit et al., 2014), as a feature, the authors used the category of applications

named by Google Play. Their results reveal that by using machine learning technology to

detect malicious malware, they used the applications’ permissions at app-level. Further,

they found that adding the application category feature improves detection efficiency

and accuracy. In (Lin et al., 2017), the target consists of both static and dynamic

analyses. The static analysis is focused on source code, user permissions and signatures,

while the dynamic analysis is based on the behavior of applications in running time. A

machine learning algorithm known as OKNN is then used to determine which category an

application belongs to. The size of the dataset in that study is 3,600 apps. In (Yuan et al.,

2016a) Yuan et al. presented an automated method for categorising Android apps. They

conducted experiments with 13,005 applications composed of 18 categories with Naive

Bayes. More specifically, in their approach, the malware application publisher can choose

an application category at random in order to avoid detection by the application market.

As a consequence, a method that can automatically categorize multiple types of apps can

be useful for organizing the Android Market as well as identifying malicious applications.

Studies show that the addition of an application category will greatly increase the efficiency

and accuracy of the detection when using machine leaning technology to detect malicious

130

apps (Grampurohit et al., 2014). Thus, application category is important for Android

malware detection. Several works involved category-based investigations, but for different

purposes. The one most related to our work was conducted by Sarma et al. (Sarma et al.,

2012). Thus, application category is important for Android malware detection.

Several works involved category-based investigations, but for different purposes. The

one most related to our work was conducted by Sarma et al. (Sarma et al., 2012).

Their approach is most similar to ours, in that it is also focused on permission use

through categories. However, it has a different purpose, with Sarma et al.(Sarma et al.,

2012) focusing on the similarities between app permission usage and their categories

to distinguish between malware and benign entities. We, on the other hand, are more

concerned with the overall app permission usage and in finding requested permission

patterns among different categories. Moreover, our work takes into account a different level

of granularity than previous works whose approaches infer malware app usage permissions

at the category level.

Nonetheless, to improve Android security, Sarma et al.(Sarma et al., 2012) investigated the

feasibility of using the permissions that an app requires, the category of the app, and the

permissions that other apps of the same category require. They created their 158,062-app

dataset in February 2011. The malware dataset consists of 121 apps obtained from the

Contagio Malware Dump. Some related work used category as a feature (Grampurohit

et al., 2014) in their training model to improve performance, whereas in our case, we are

more interested in exploring possible use permissions patterns across whole categories of

applications. Previous approaches assumed that the necessary permissions were selected

by the developer in advance and that he/she chooses an application category at random

in order to avoid detection by the application market (Yuan et al., 2016a). Without

using this assumption, our study will meaningfully supplement other research. Indeed,

our approach may be used as a preliminary step to infer sets of permissions that are

consistently used together, such that existing approaches could be used to learn how

to improve the ability to distinguish between benign and malware within the patterns’

131

permissions and category apps. Our novel findings focus on producing usage patterns of

permissions for various categories and on providing in-depth analysis of pattern cohesion

and the impact of patterns on malware detection. Table 5.8 shows the comparison

between various state-of-art solutions that study the Android permissions system in

different purposes.

5.8 Conclusion

With the exponential growth in the number of smartphones being used in services such

as banks, hospitals, and m-commerce, smartphone security has become a major concern.

The use of unofficial sources to upload applications is likewise concerning. Malicious

apps can be used to steal passwords, leak information, and build windows into phones.

Existing anti-virus software relies on static signatures that must be modified on a regular

basis and are incapable of detecting zero-day malware. The Android permission scheme

is the core Android security framework that governs application task execution. Despite

recent advancements in research that have provided a variety of approaches and detection

methods for locating malware applications, the available literature lacks a comprehensive

examination of the topic. We addressed this deficiency in this work by investigating all

the larger issues, resulting in two main achievements. 1) We created a huge dataset of

malware and benign apps in a systematic and automated manner and made it accessible

to the community. 2) We conducted a preliminary analytical analysis of various forms of

Android permissions and their potential associations with malicious intents, as well as

users’ impressions of the nature of the applications that use them.

Our research examined 118 separate features, 103 of which are permissions, on approxi-

mately 16K apps. Further, we proposed tentative findings on the ties between the use

of Android permissions tagged as unsafe by the permission scheme. Additionally, we

introduced a model that combines a self-organizing map (SOM) and K-means clustering.

Based on a clustering validity test, we built the resultant SOM+K-means using permis-

132

sions as features. Our overall achieved purpose was to describe pictures or patterns of

how applications in a particular category behave by optimizing our model.

CONCLUSION AND RECOMMENDATIONS

6.1 General conclusion

Third party apps are key drivers of the popularity of Android-run devices but the openness

of the Android ecosystem carry risks to its users. These users store sensitive information,

conduct confidential activities and complete financial transactions on their smartphones

on a daily basis. That state of affairs provides strong incentives for cyber criminals and

malware creators in search of systems to hack and compromise. Malware for smartphones

are getting more dangerous and difficult to detect. According to Legal-jobs (Vuleta, 2021),

malware infections have increased by 87% in the last decade, and Android applications and

users accounted for 98% of all malware targets on mobile devices. With the exponential

growth and sophistication of malware targeting mobile networks, it is critical to create

effective strategies to secure these systems.

An analysis of the literature on the topic revealed that the two major strategies used to

detect malware were signature-based techniques and anomaly-based techniques.

In this thesis, we focused on anomaly-based identification strategies. Anomaly-based

methods are more resistant to evasion and obfuscation threats, and they can detect

unknown malware and variants of known malware. However, these strategies do need

additional research and development to enhance prediction performance.

This thesis aims to provide innovative and effective malware identification strategies for

Android applications based on their vulnerabilities. In this respect, the major contribution

of our thesis are as below:

1. To help detect malware embedded within mobile applications, we proposed AndroVul,

a repository for security vulnerabilities. It consists of a sample of apps from the well

134

known Android app repository AndroZoo, complete with vulnerability information

extracted through reverse engineering and diverse static analyses.

2. Building on our generated dataset, we also investigated well-known classifiers and

feature selection methods used to detect malware. Experiments with the metrics

available in our dataset demonstrated that they can be very successful at detecting

malwares and can outperform comparable work, although with notable variations

depending on the classifiers selected. Thus, our work offers malware researchers

insights into the selection and tuning of classifiers to use while identifying malware.

3. We proposed and tuned two advanced classification techniques, Support Vector

Machine and Deep learning and found that they were able to achieve excellent results,

outperforming the state-of-art.

4. Finally, we carefully assess permissions requested by apps with respect to these apps’

categories and proposed a model integrating self-organizing maps (SOM) and K-means

clustering to get insignts into permission usage patterns depending on app categories.

6.2 Articles in peer-reviewed journals and conferences

1. Namrud Z, Kpodjedo S, Talhi C. AndroVul: a repository for Android security vulner-

abilities. InProceedings of the 29th Annual International Conference on Computer

Science and Software Engineering 2019 Nov 4 (pp. 64-71). Published.

2. Namrud Z, Kpodjedo S, Talhi C, Boaye Belle A. Probing AndroVul dataset for

studies on Android malware classification. Journal of King Saud University-Computer

and Information Sciences. 2021 Sep 22.(H-indexed and impact Factor is 13.473).

Published.

135

3. Namrud Z, Kpodjedo S, Talhi C, Bali A, Boaye Belle A. Deep Learning Based Android

Anomaly Detection Using a Combination of Vulnerabilities Dataset. Applied Sciences.

2021 Aug;11(16):7538. (H-indexed and impact Factor is 2.736). Published.

4. Namrud Z, Kpodjedo S, Bali A, Talhi C. Deep-layer clustering to identify permission

usage patterns of Android app categories. IEEE Access. 2022 Mar 2. (H-indexed and

impact Factor is 3.367). Published.

BIBLIOGRAPHY

Aafer, Y., Du, W. & Yin, H. (2013). Droidapiminer: Mining api-level features for robust
malware detection in android. International conference on security and privacy in
communication systems, pp. 86–103.

Abaei, G., Rezaei, Z. & Selamat, A. (2013). Fault prediction by utilizing self-organizing
map and threshold. 2013 ieee international conference on control system, computing
and engineering, pp. 465–470.

Abraham, A. (2020, March, 12). Mobile-security [Format]. Retrieved from https:
//github.com/MobSF/Mobile-Security-Framework-MobSF.

Ahmadi, M., Sotgiu, A. & Giacinto, G. (2017). Intelliav: Toward the feasibility of building
intelligent anti-malware on android devices. International cross-domain conference
for machine learning and knowledge extraction, pp. 137–154.

Aittokallio, A. (2021, January, 29). Report: mobile malware infection rate accelerating
[Format]. Retrieved from https://telecoms.com/281581/report-mobile-malware-
infection-rate-accelerating/.

Al Ali, M., Svetinovic, D., Aung, Z. & Lukman, S. (2017). Malware detection in android
mobile platform using machine learning algorithms. 2017 international conference
on infocom technologies and unmanned systems (trends and future directions)(ictus),
pp. 763–768.

Allix, K., Bissyandé, T. F., Klein, J. & Le Traon, Y. (2016). Androzoo: Collecting
millions of android apps for the research community. 2016 ieee/acm 13th working
conference on mining software repositories (msr), pp. 468–471.

Almomani, I. M. & Al Khayer, A. (2020). A comprehensive analysis of the android
permissions system. Ieee access, 8, 216671–216688.

Alqatawna, J., Ala’M, A.-Z., Hassonah, M. A., Faris, H. et al. (2021). Android botnet
detection using machine learning models based on a comprehensive static analysis
approach. Journal of information security and applications, 58, 102735.

Amos, B., Turner, H. & White, J. (2013). Applying machine learning classifiers to dynamic
android malware detection at scale. 2013 9th international wireless communications
and mobile computing conference (iwcmc), pp. 1666–1671.

Arif, J. M., Ab Razak, M. F., Mat, S. R. T., Awang, S., Ismail, N. S. N. & Firdaus, A.
(2021). Android mobile malware detection using fuzzy ahp. Journal of information
security and applications, 61, 102929.

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K. & Siemens, C. (2014).
Drebin: Effective and explainable detection of android malware in your pocket.
Ndss, 14, 23–26.

138

Barrera, D., Kayacik, H. G., Van Oorschot, P. C. & Somayaji, A. (2010). A methodology
for empirical analysis of permission-based security models and its application to
android. Proceedings of the 17th acm conference on computer and communications
security, pp. 73–84.

Baskaran, B. & Ralescu, A. (2016). A study of android malware detection techniques
and machine learning.

Bengio, Y., Buhmann, J., Abu-Mostafa, Y., Embrechts, M. & Zurada, J. (2000). Special
issue on ‘neural networks for data mining and knowledge discovery’. Ieee transactions
on neural networks, 11(3), 545–822.

Bhatia, T. & Kaushal, R. (2017). Malware detection in android based on dynamic analysis.
2017 international conference on cyber security and protection of digital services
(cyber security), pp. 1–6.

Bhattacharya, A. & Goswami, R. T. (2017). Dmdam: data mining based detection of
android malware. Proceedings of the first international conference on intelligent
computing and communication, pp. 187–194.

Bhattacharya, A. & Goswami, R. T. (2018). Community based feature selection method
for detection of android malware. Journal of global information management (jgim),
26(3), 54–77.

Bose, A., Hu, X., Shin, K. G. & Park, T. (2008). Behavioral detection of malware on
mobile handsets. Proceedings of the 6th international conference on mobile systems,
applications, and services, pp. 225–238.

Calciati, P. & Gorla, A. (2017). How do apps evolve in their permission requests? a
preliminary study. 2017 ieee/acm 14th international conference on mining software
repositories (msr), pp. 37–41.

Canfora, G., Medvet, E., Mercaldo, F. & Visaggio, C. A. (2015). Detecting android
malware using sequences of system calls. Proceedings of the 3rd international
workshop on software development lifecycle for mobile, pp. 13–20.

Canfora, G., Medvet, E., Mercaldo, F. & Visaggio, C. A. (2016). Acquiring and analyzing
app metrics for effective mobile malware detection. Proceedings of the 2016 acm on
international workshop on security and privacy analytics, pp. 50–57.

Catak, F. O., Yazı, A. F., Elezaj, O. & Ahmed, J. (2020). Deep learning based sequential
model for malware analysis using windows exe api calls. Peerj computer science, 6,
e285.

Catak, F. O., Ahmed, J., Sahinbas, K. & Khand, Z. H. (2021). Data augmentation based
malware detection using convolutional neural networks. Peerj computer science, 7,
e346.

139

Chakradeo, S., Reaves, B., Traynor, P. & Enck, W. (2013). Mast: Triage for market-scale
mobile malware analysis. Proceedings of the sixth acm conference on security and
privacy in wireless and mobile networks, pp. 13–24.

CHEBYSHEV, V. (2021). Mobile malware evolution 2020. Retrieved from https:
//securelist.com/mobile-malware-evolution-2020/101029/.

Chebyshev, V. & Unuchek, R. (2014). Mobile malware evolution: 2013. Kaspersky lab
zao’s securelist, 24.

Chen, T. M. & Peikari, C. (2008). Malicious software in mobile devices. In Handbook of
Research on Wireless Security (pp. 1–10). IGI Global.

Chen, W., Aspinall, D., Gordon, A. D., Sutton, C. & Muttik, I. (2016). More semantics
more robust: Improving android malware classifiers. Proceedings of the 9th acm
conference on security & privacy in wireless and mobile networks, pp. 147–158.

Chicco, D. & Jurman, G. (2020). The advantages of the matthews correlation coefficient
(mcc) over f1 score and accuracy in binary classification evaluation. Bmc genomics,
21(1), 1–13.

Chin, E., Felt, A. P., Greenwood, K. & Wagner, D. (2011). Analyzing inter-application
communication in android. Proceedings of the 9th international conference on mobile
systems, applications, and services, pp. 239–252.

Clement, J. (2021, January, 29). Mobile app downloads worldwide from 2018 to 2024, by
store [Format]. Retrieved from https://www.statista.com/statistics/1010716/apple-
app-store-google-play-app-downloads-forecast/.

Dai, S., Tongaonkar, A., Wang, X., Nucci, A. & Song, D. (2013). Networkprofiler:
Towards automatic fingerprinting of android apps. 2013 proceedings ieee infocom,
pp. 809–817.

Developer.android.com. (2021a, March, 2). Permissions on android [Format]. Retrieved
from https://developer.android.com/.

Developer.android.com. (2021b, February, 1). Manifest.permission [Format]. Retrieved
from https://developer.android.com/reference/android/Manifest.permission.

Drake, J. (2015). Stagefright: Scary code in the heart of android. Blackhat usa, 8.

Dunham, K. (2008). Mobile malware attacks and defense. Syngress.

Enck, W., Ongtang, M. & McDaniel, P. (2009). On lightweight mobile phone appli-
cation certification. Proceedings of the 16th acm conference on computer and
communications security, pp. 235–245.

140

Etud.iro.umontreal. (2021, March, 2). Replication package [Format]. Retrieved from http:
//www-etud.iro.umontreal.ca/~saiedmoh/MobileSoftRP/index.html.

F-droid. (2018, February, 11). android apks [Format]. Retrieved from https://www.f-
droid.org/.

Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B. & Smith, M. (2012).
Why eve and mallory love android: An analysis of android ssl (in) security. Pro-
ceedings of the 2012 acm conference on computer and communications security,
pp. 50–61.

Fan, W., Sang, Y., Zhang, D., Sun, R. & Liu, Y. (2017). Droidinjector: A process injection-
based dynamic tracking system for runtime behaviors of android applications.
Computers & security, 70, 224–237.

Felt, A. P., Greenwood, K. & Wagner, D. (2011). The effectiveness of application permis-
sions. Proceedings of the 2nd usenix conference on web application development,
pp. 7–7.

Ferdous, R. et al. (2009). An efficient k-means algorithm integrated with jaccard distance
measure for document clustering. 2009 first asian himalayas international conference
on internet, pp. 1–6.

Forensics, C. (2021, June, 29). Report: mobile malware infection rate accelerating
[Format]. Retrieved from https://virusshare.com/.

Fowler, M. (2018). Refactoring: improving the design of existing code. Addison-Wesley
Professional.

Frank, M., Dong, B., Felt, A. P. & Song, D. (2012). Mining permission request patterns
from android and facebook applications. 2012 ieee 12th international conference on
data mining, pp. 870–875.

Gadient, P., Nierstrasz, O. & Ghafari, M. (2017). Security in android applications. Phd
diss., master s thesis. university of bern.

Gadient, P., Ghafari, M., Frischknecht, P. & Nierstrasz, O. (2019). Security code smells
in android icc. Empirical software engineering, 24(5), 3046–3076.

Gartner.com. (2021, March, 2). Mobile users will provide personalized data streams
[Format]. Retrieved from http://www.gartner.com/newsroom/id/2654115.

Geiger, F.-X., Malavolta, I., Pascarella, L., Palomba, F., Di Nucci, D. & Bacchelli,
A. (2018). A graph-based dataset of commit history of real-world android apps.
Proceedings of the 15th international conference on mining software repositories,
pp. 30–33.

141

Ghafari, M., Gadient, P. & Nierstrasz, O. (2017). Security smells in android. 2017 ieee
17th international working conference on source code analysis and manipulation
(scam), pp. 121–130.

Gkortzis, A., Mitropoulos, D. & Spinellis, D. (2018). Vulinoss: a dataset of security vul-
nerabilities in open-source systems. Proceedings of the 15th international conference
on mining software repositories, pp. 18–21.

GmbH, A.-T. (2020, May, 14). Malware [Format]. Retrieved from www.av-test.org.

Gorla, A., Tavecchia, I., Gross, F. & Zeller, A. (2014). Checking app behavior against
app descriptions. Proceedings of the 36th international conference on software
engineering, pp. 1025–1035.

Gottschalk, M., Josefiok, M., Jelschen, J. & Winter, A. (2012). Removing energy code
smells with reengineering services. Informatik 2012.

Grampurohit, V., Kumar, V., Rawat, S. & Rawat, S. (2014). Category based malware
detection for android. International symposium on security in computing and
communication, pp. 239–249.

Grano, G., Di Sorbo, A., Mercaldo, F., Visaggio, C. A., Canfora, G. & Panichella, S.
(2017). Android apps and user feedback: a dataset for software evolution and
quality improvement. Proceedings of the 2nd acm sigsoft international workshop on
app market analytics, pp. 8–11.

Habchi, S., Moha, N. & Rouvoy, R. (2019). The rise of android code smells: who is to
blame? 2019 ieee/acm 16th international conference on mining software repositories
(msr), pp. 445–456.

Hecht, G., Rouvoy, R., Moha, N. & Duchien, L. (2015). Detecting antipatterns in android
apps. 2015 2nd acm international conference on mobile software engineering and
systems, pp. 148–149.

Hecht, G., Moha, N. & Rouvoy, R. (2016). An empirical study of the performance
impacts of android code smells. Proceedings of the international conference on
mobile software engineering and systems, pp. 59–69.

Herong. (2021, January, 30). Android application project build process [Format]. Retrieved
from http://www.herongyang.com/Android/Project-Android-Application-Project-
Build-Process.html.

Huang, C.-Y., Tsai, Y.-T. & Hsu, C.-H. (2013). Performance evaluation on permission-
based detection for android malware. In Advances in intelligent systems and
applications-volume 2 (pp. 111–120). Springer.

142

Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. (2017). Densely connected
convolutional networks. Proceedings of the ieee conference on computer vision and
pattern recognition, pp. 4700–4708.

IDC. (2021, January, 27). Smartphone market share [Format]. Retrieved from https:
//www.idc.com/promo/smartphone-market-share/os.

Ikram, M., Vallina-Rodriguez, N., Seneviratne, S., Kaafar, M. A. & Paxson, V. (2016).
An analysis of the privacy and security risks of android vpn permission-enabled
apps. Proceedings of the 2016 internet measurement conference, pp. 349–364.

Iqbal, S., Yasin, A. & Naqash, T. (2018). Android (nougats) security issues and solutions.
2018 ieee international conference on applied system invention (icasi), pp. 1152–
1155.

Irolla, P. & Dey, A. (2018). The duplication issue within the drebin dataset. Journal of
computer virology and hacking techniques, 14(3), 245–249.

Jeong, E. S., Kim, I. S. & Lee, D. H. (2017). Safeguard: a behavior based real-time
malware detection scheme for mobile multimedia applications in android platform.
Multimedia tools and applications, 76(17), 18153–18173.

Jiang, X., Mao, B., Guan, J. & Huang, X. (2020). Android malware detection using
fine-grained features. Scientific programming, 2020.

Jiang, X. (2021, February, 03). Security alert: New nickibot spyware found in alternative
android markets [Format]. Retrieved from https://www.csc2.ncsu.edu/faculty/
xjiang4/NickiBot/.

Johnson, J. (2021, February, 03). Distribution of leading android malware types in
2019 [Format]. Retrieved from https://www.statista.com/statistics/681006/share-
of-android-types-of-malware/.

Karbab, E. B., Debbabi, M., Derhab, A. & Mouheb, D. (2020). Scalable and robust
unsupervised android malware fingerprinting using community-based network parti-
tioning. computers & security, 97, 101965.

Kirchner, K., Delibašić, B. & Vukićević, M. (2010). Designing clustering process with
reusable components. Info m, 9(34), 23–29.

Kohonen, T. (2001). Self-organizing maps.-springer series in information sciences, v. 30,
springer.

Krutz, D. E., Mirakhorli, M., Malachowsky, S. A., Ruiz, A., Peterson, J., Filipski,
A. & Smith, J. (2015). A dataset of open-source android applications. 2015
ieee/acm 12th working conference on mining software repositories, pp. 522–525.

143

Krutz, D. E., Munaiah, N., Peruma, A. & Mkaouer, M. W. (2017). Who added that
permission to my app? an analysis of developer permission changes in open source
android apps. 2017 ieee/acm 4th international conference on mobile software
engineering and systems (mobilesoft), pp. 165–169.

Kumaran, M. & Li, W. (2016). Lightweight malware detection based on machine learning
algorithms and the android manifest file. 2016 ieee mit undergraduate research
technology conference (urtc), pp. 1–3.

Lee, C., Ko, E. & Lee, K. (2020). Methods to select features for android malware detection
based on the protection level analysis. International conference on information
security applications, pp. 375–386.

Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W. & Ye, H. (2018a). Significant permission iden-
tification for machine-learning-based android malware detection. Ieee transactions
on industrial informatics, 14(7), 3216–3225.

Li, L., Bissyandé, T. F., Le Traon, Y. & Klein, J. (2016). Accessing inaccessible
android apis: An empirical study. 2016 ieee international conference on software
maintenance and evolution (icsme), pp. 411–422.

Li, L., Li, D., Bissyandé, T. F., Klein, J., Le Traon, Y., Lo, D. & Cavallaro, L. (2017).
Understanding android app piggybacking: A systematic study of malicious code
grafting. Ieee transactions on information forensics and security, 12(6), 1269–1284.

Li, W., Wang, Z., Cai, J. & Cheng, S. (2018b). An android malware detection approach
using weight-adjusted deep learning. 2018 international conference on computing,
networking and communications (icnc), pp. 437–441.

Li, Y., Wang, G., Nie, L., Wang, Q. & Tan, W. (2018c). Distance metric optimization
driven convolutional neural network for age invariant face recognition. Pattern
recognition, 75, 51–62.

Lin, J., Zhao, X. & Li, H. (2017). Target: Category-based android malware detection
revisited. Proceedings of the australasian computer science week multiconference,
pp. 1–9.

Ma, S., Wang, S., Lo, D., Deng, R. H. & Sun, C. (2015). Active semi-supervised approach
for checking app behavior against its description. 2015 ieee 39th annual computer
software and applications conference, 2, 179–184.

Ma, Z., Ge, H., Liu, Y., Zhao, M. & Ma, J. (2019). A combination method for android
malware detection based on control flow graphs and machine learning algorithms.
Ieee access, 7, 21235–21245.

Mansourov, N. & Campara, D. (2010). System assurance: beyond detecting vulnerabilities.
Elsevier.

144

Martinelli, F., Marulli, F. & Mercaldo, F. (2017). Evaluating convolutional neural network
for effective mobile malware detection. Procedia computer science, 112, 2372–2381.

Mas’ ud, M. Z., Sahib, S., Abdollah, M. F., Selamat, S. R. & Yusof, R. (2014). Analysis of
features selection and machine learning classifier in android malware detection. 2014
international conference on information science & applications (icisa), pp. 1–5.

matters. (2021, January, 27). How many apps are on google play? [Format]. Retrieved
from https://42matters.com/google-play-statistics-and-trends.

Munaiah, N., Klimkowsky, C., McRae, S., Blaine, A., Malachowsky, S. A., Perez,
C. & Krutz, D. E. (2016). Darwin: a static analysis dataset of malicious and benign
android apps. Proceedings of the international workshop on app market analytics,
pp. 26–29.

Murray, M. (2021, February, 03). The spectrum of mobile risk [Format]. Re-
trieved from https://info.lookout.com/rs/051-ESQ-475/images/lookout-spectrum-
of-mobile-risk-report.pdf.

Muttoo, S. K. & Badhani, S. (2017). Android malware detection: state of the art.
International journal of information technology, 9(1), 111–117.

Namrud, Z., Kpodjedo, S. & Talhi, C. (2019a). Androvul: A repository for android
security vulnerabilities. (CASCON ’19), 64–71.

Namrud, Z., Kpodjedo, S. & Talhi, C. (2019b). Androvul: a repository for android
security vulnerabilities. Proceedings of the 29th annual international conference on
computer science and software engineering, pp. 64–71.

Naway, A. & Li, Y. (2018). A review on the use of deep learning in android malware
detection. arxiv preprint arxiv:1812.10360.

Naway, A. & Li, Y. (2019). Using deep neural network for android malware detection.
arxiv preprint arxiv:1904.00736.

O’Dea, S. (2021, February, 3). Smartphone unit shipments worldwide by operating system
from 2016 to 2023 [Format]. Retrieved from https://www.statista.com/statistics/.

Palomba, F., Di Nucci, D., Panichella, A., Zaidman, A. & De Lucia, A. (2017). Lightweight
detection of android-specific code smells: The adoctor project. 2017 ieee 24th
international conference on software analysis, evolution and reengineering (saner),
pp. 487–491.

Perepletchikov, M., Ryan, C. & Frampton, K. (2007). Cohesion metrics for predicting
maintainability of service-oriented software. Seventh international conference on
quality software (qsic 2007), pp. 328–335.

145

Rehman, Z.-U., Khan, S. N., Muhammad, K., Lee, J. W., Lv, Z., Baik, S. W., Shah,
P. A., Awan, K. & Mehmood, I. (2018). Machine learning-assisted signature and
heuristic-based detection of malwares in android devices. Computers & electrical
engineering, 69, 828–841.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20, 53–65.

Sabhadiya, S., Barad, J. & Gheewala, J. (2019). Android malware detection using deep
learning. 2019 3rd international conference on trends in electronics and informatics
(icoei), pp. 1254–1260.

Sachdeva, S., Jolivot, R. & Choensawat, W. (2018). Android malware classification based
on mobile security framework. Iaeng international journal of computer science,
45(4), 514–522.

Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X. & Bringas, P. G. (2012). On the au-
tomatic categorisation of android applications. 2012 ieee consumer communications
and networking conference (ccnc), pp. 149–153.

Saracino, A., Sgandurra, D., Dini, G. & Martinelli, F. (2016). Madam: Effective and
efficient behavior-based android malware detection and prevention. Ieee transactions
on dependable and secure computing, 15(1), 83–97.

Sarma, B. P., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C. & Molloy, I. (2012).
Android permissions: a perspective combining risks and benefits. Proceedings of
the 17th acm symposium on access control models and technologies, pp. 13–22.

Scoccia, G. L., Peruma, A., Pujols, V., Malavolta, I. & Krutz, D. E. (2019). Permission
issues in open-source android apps: An exploratory study. 2019 19th international
working conference on source code analysis and manipulation (scam), pp. 238–249.

Security, C. (2021, February, 03). What is the difference: Viruses, worms, trojans, and
bots? [Format]. Retrieved from https://tools.cisco.com/security/center/resources/
virus_differences.

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C. & Weiss, Y. (2012). “andromaly”: a
behavioral malware detection framework for android devices. Journal of intelligent
information systems, 38(1), 161–190.

Sharma, A. & Sahay, S. K. (2018). An investigation of the classifiers to detect android
malicious apps. In Information and Communication Technology (pp. 207–217).
Springer.

Shen, T., Zhongyang, Y., Xin, Z., Mao, B. & Huang, H. (2014). Detect android malware
variants using component based topology graph. 2014 ieee 13th international
conference on trust, security and privacy in computing and communications, pp. 406–
413.

146

Shezan, F. H., Afroze, S. F. & Iqbal, A. (2017). Vulnerability detection in recent android
apps: an empirical study. 2017 international conference on networking, systems
and security (nsyss), pp. 55–63.

Sirisha, P., Anuradha, T. et al. (2019). Detection of permission driven malware in android
using deep learning techniques. 2019 3rd international conference on electronics,
communication and aerospace technology (iceca), pp. 941–945.

Source.android.com. (2021, February, 1). Android permissions [Format]. Retrieved
from https://source.android.com/devices/tech/config.

Statcounter. (2021, January, 27). Mobile operating system market share worldwide
[Format]. Retrieved from https://gs.statcounter.com/os-market-share/mobile/
worldwide.

Su, M.-Y. & Chang, W.-C. (2014). Permission-based malware detection mechanisms
for smart phones. The international conference on information networking 2014
(icoin2014), pp. 449–452.

Sun, J., Yan, K., Liu, X., Yang, C. & Fu, Y. (2017). Malware detection on android
smartphones using keywords vector and svm. 2017 ieee/acis 16th international
conference on computer and information science (icis), pp. 833–838.

Takahashi, T. & Ban, T. (2019). Android application analysis using machine learning
techniques. In AI in Cybersecurity (pp. 181–205). Springer.

Tchakounté, F. & Hayata, F. (2017). Supervised learning based detection of malware on
android. In Mobile Security and Privacy (pp. 101–154). Elsevier.

Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T. & Rellermeyer, J. S.
(2020). A survey on distributed machine learning. Acm computing surveys (csur),
53(2), 1–33.

Verma, S. & Sharan, A. (2017). Enhancing the performance of svm based document
classifier by selecting good class representative using fuzzy membership criteria.
2017 3rd international conference on computational intelligence & communication
technology (cict), pp. 1–6.

Vinod, P., Zemmari, A. & Conti, M. (2019). A machine learning based approach to
detect malicious android apps using discriminant system calls. Future generation
computer systems, 94, 333–350.

virustotal. (2021, February, 03). virustotal [Format]. Retrieved from https://www.
virustotal.com/gui/.

Vuleta, B. (2021, February, 26). Worrying malware statistics [Format]. Retrieved
from https://legaljobs.io/blog/malware-statistics/.

147

Wang, H., Si, J., Li, H. & Guo, Y. (2019). Rmvdroid: towards a reliable android malware
dataset with app metadata. 2019 ieee/acm 16th international conference on mining
software repositories (msr), pp. 404–408.

Wei, F., Li, Y., Roy, S., Ou, X. & Zhou, W. (2017). Deep ground truth analysis of current
android malware. International conference on detection of intrusions and malware,
and vulnerability assessment, pp. 252–276.

Wei, X., Gomez, L., Neamtiu, I. & Faloutsos, M. (2012). Permission evolution in the
android ecosystem. Proceedings of the 28th annual computer security applications
conference, pp. 31–40.

Wu, W.-C. & Hung, S.-H. (2014). Droiddolphin: a dynamic android malware detection
framework using big data and machine learning. Proceedings of the 2014 conference
on research in adaptive and convergent systems, pp. 247–252.

Wu, Z., Chen, X., Khan, M. U. & Lee, S. U.-J. (2021). Enhancing fidelity of description
in android apps with category-based common permissions. Ieee access, 9, 105493–
105505.

Xiao, J., Chen, S., He, Q., Feng, Z. & Xue, X. (2020). An android application risk
evaluation framework based on minimum permission set identification. Journal of
systems and software, 163, 110533.

Xu, J., Rahmatizadeh, R., Bölöni, L. & Turgut, D. (2017). A sequence learning model with
recurrent neural networks for taxi demand prediction. 2017 ieee 42nd conference
on local computer networks (lcn), pp. 261–268.

Xu, L., Zhang, D., Jayasena, N. & Cavazos, J. (2016). Hadm: Hybrid analysis for
detection of malware. Proceedings of sai intelligent systems conference, pp. 702–724.

Yalew, S. D., Maguire, G. Q., Haridi, S. & Correia, M. (2017). T2droid: A trustzone-
based dynamic analyser for android applications. 2017 ieee trustcom/bigdatase/icess,
pp. 240–247.

Yamaguchi, F., Lindner, F. & Rieck, K. (2011). Vulnerability extrapolation: Assisted
discovery of vulnerabilities using machine learning. Proceedings of the 5th usenix
conference on offensive technologies, pp. 13–13.

Yerima, S. Y., Sezer, S. & Muttik, I. (2014). Android malware detection using parallel
machine learning classifiers. 2014 eighth international conference on next generation
mobile apps, services and technologies, pp. 37–42.

Yousefi-Azar, M., Hamey, L. G., Varadharajan, V. & Chen, S. (2018). Malytics: a
malware detection scheme. Ieee access, 6, 49418–49431.

148

Yu, S., Yang, M., Wei, L., Hu, J.-S., Tseng, H.-W. & Meen, T.-H. (2020). Combination of
self-organizing map and k-means methods of clustering for online games marketing.
Sensors and materials, 32(8), 2697–2707.

Yuan, C., Wei, S., Wang, Y., You, Y. & ZiLiang, S. G. (2016a). Android applications
categorization using bayesian classification. 2016 international conference on cyber-
enabled distributed computing and knowledge discovery (cyberc), pp. 173–176.

Yuan, Z., Lu, Y., Wang, Z. & Xue, Y. (2014). Droid-sec: deep learning in android malware
detection. Proceedings of the 2014 acm conference on sigcomm, pp. 371–372.

Yuan, Z., Lu, Y. & Xue, Y. (2016b). Droiddetector: android malware characterization
and detection using deep learning. Tsinghua science and technology, 21(1), 114–123.

Zarni Aung, W. Z. (2013). Permission-based android malware detection. International
journal of scientific & technology research, 2(3), 228–234.

Zhao, M., Ge, F., Zhang, T. & Yuan, Z. (2011). Antimaldroid: An efficient svm-based
malware detection framework for android. International conference on information
computing and applications, pp. 158–166.

Zheng, M., Lee, P. P. & Lui, J. C. (2012). Adam: an automatic and extensible platform
to stress test android anti-virus systems. International conference on detection of
intrusions and malware, and vulnerability assessment, pp. 82–101.

Zheng, M., Sun, M. & Lui, J. C. (2014). Droidtrace: A ptrace based android dynamic
analysis system with forward execution capability. 2014 international wireless
communications and mobile computing conference (iwcmc), pp. 128–133.

Zhou, Y. & Jiang, X. (2012). Dissecting android malware: Characterization and evolution.
2012 ieee symposium on security and privacy, pp. 95–109.

Zhou, Y., Wang, Z., Zhou, W. & Jiang, X. (2012). Hey, you, get off of my market:
detecting malicious apps in official and alternative android markets. Ndss, 25(4),
50–52.

Zhu, H.-J., Jiang, T.-H., Ma, B., You, Z.-H., Shi, W.-L. & Cheng, L. (2018a). Hemd:
a highly efficient random forest-based malware detection framework for android.
Neural computing and applications, 30(11), 3353–3361.

Zhu, H.-J., You, Z.-H., Zhu, Z.-X., Shi, W.-L., Chen, X. & Cheng, L. (2018b). Droiddet:
effective and robust detection of android malware using static analysis along with
rotation forest model. Neurocomputing, 272, 638–646.

Zink, H. (2021, May, 3). Mobile apps: Are they stealing your information? [Format].
Retrieved from https://safeguarde.com/mobile-apps-stealing-your-information/.

