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Optimisation de contrôle prédictif orienté données en temps réel pour une consommation
d’énergie et une empreinte carbone efficaces dans les bâtiments intelligents

Fatma MTIBAA

RÉSUMÉ

Le Modèle de contrôle prédictif (MPC) a reçu beaucoup d’attention ces dernières années,

principalement dans le domaine du contrôle du chauffage, ventilation et climatisation (CVC)

dans les bâtiments intelligents. Le MPC est un contrôle optimal qui améliore l’efficacité

énergétique des systèmes CVC. Ceci est réalisé par l’utilisation d’une approche de contrôle

orientée modèle qui intègre une représentation mathématique avec les facteurs les plus importants

qui affectent la dynamique du bâtiment. Cependant, la conception d’un modèle précis qui

modélise la dynamique du système physique est une tâche difficile dans les applications pratiques,

en particulier pour les bâtiments multizone qui possèdent différents types de systèmes CVC.

En outre, la non-linéarité de la dynamique thermique des bâtiments rend la prédiction de la

température de l’air intérieur (IAT) plus difficile car elle est affectée par des facteurs complexes

tels que les paramètres contrôlés et non contrôlés, les conditions météorologiques et l’occupation,

entre autres. Les bâtiments intelligents modernes sont équipés de multiples capteurs qui collectent

des données, lesquelles sont ensuite utilisées par des techniques de contrôle pour améliorer

l’efficacité énergétique tout en maintenant un niveau de confort optimal. La disponibilité de

données historiques offre la possibilité de développer des solutions de contrôle orienté données

et basées sur des algorithmes d’intelligence artificielle. Le contrôle orienté données réduit

les coûts et le temps de calcul du MPC, qui nécessite un processus de modélisation précis et

complexe. Ainsi, l’objectif de cette thèse est de fournir un cadre de contrôle CVC efficace et

évolutif qui minimise la consommation d’énergie, l’émission de carbone, la demande de pointe

et l’inconfort pendant les heures d’occupation sous des contraintes d’auto-ajustement du point

de consigne, de la rampe de température et du cycle des équipements, en intègrant un modèle de

prédiction de température multi-étapes qui prend en compte la sensibilité des paramètres de

contrôle.

Afin d’atteindre cet objectif, quatre questions clés doivent être adressées dans notre cadre, qui

sont résumés comme suit : i) comment modéliser l’IAT dans un bâtiment intelligent multizone et

pour différents types de systèmes CVC sans diminuer la précision de la prédiction ? ii) comment

prédire avec précision l’IAT à plusieurs étapes dans un cadre MPC orienté données sans biaiser

la décision d’optimisation? iii) comment concevoir et déployer un problème d’optimisation

MPC orienté données, efficace adapté à une application de système CVC en temps réel ? iv)

comment modéliser un système de contrôle oriente données plus évolutif pour le système CVC

tout en réduisant la consommation d’énergie et l’empreinte carbone ?

Dans le cadre de nos contributions pour résoudre le premier problème souligné ci-dessus afin

de modéliser avec précision un modèle de prédiction de l’IAT pour un bâtiment multizone

possédant plusieurs types de systèmes CVC, nous proposons un nouveau modèle de prédiction

de l’IAT basé sur des réseaux récurrents à mémoire court et long terme (LSTM). Deux modèles
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ont été conçus, LSTM-MISO et LSTM-MIMO, soit une approche à entrées multiples et sortie

unique et une approche à entrées multiples et sortie multiple, respectivement. Ces approches

sont basées sur une prédiction directe séquence-à-séquence (S2S) pour prédire plusieurs étapes

à la fois. En outre, une analyse de sélection des caractéristiques a été effectuée pour obtenir

une structure de modèle appropriée pour les systèmes de volume d’air variable (VAV) et de

volume d’air constant (CAV). Puisque le comportement de la température dépend des variables

de contrôle du système CVC, on constate que la prise en compte de ces variables de contrôle

par le modèle augmente la précision de la prédiction de l’IAT. La performance des différentes

stratégies a été évaluée sur la base de deux études de cas sur des données opérationnelles de

bâtiments intelligents réels utilisant des systèmes VAV et CAV. Pour les deux bâtiments, les

résultats expérimentaux ont montré que les modèles proposés sont plus performants que les

modèles de perceptrons multicouches en réduisant le pourcentage d’erreur absolu moyen de

50%.

Pour répondre au second problème, nous étendons le premier objectif de recherche et proposons

un nouveau modèle de prédiction de l’IAT à plusieurs étapes basées sur un LSTM multivariable

sensible au contexte (CAM-LSTM). Celui-ci est utilisé dans un cadre MPC orienté données

sans biaiser la décision d’optimisation. Le CAM-LSTM est basé sur une interaction de haut

niveau et de bas niveau entre les caractéristiques des paramètres d’entrée et qui tient compte de

la relation sensible entre la température et les paramètres de contrôle. De plus, le CAM-LSTM

utilise un réseau de neurones à double flux basé sur des séries temporelles multivariables de

paramètres contrôlés et non contrôlés. En outre, un mécanisme d’attention est appliqué aux

paramètres contrôlés pour leur attribuer le poids optimal afin d’améliorer la prédiction de la

température de chaque zone.

Pour aborder le troisième problème, nous proposons un cadre de contrôle en temps réel efficace,

basé sur un MPC orienté données utilisant l’algorithme génétique (MPC-GA). Il permet un

fonctionnement optimal du système CVC validé expérimentalement dans un bâtiment commercial

multizone. Le MPC-GA utilise le modèle CAM-LSTM dans le cadre MPC et il minimise : la

consommation d’énergie, la demande de pointe et l’inconfort pendant les heures d’occupation

sous des contraintes d’auto-ajustement du point de consigne, de la rampe de température et

du cycle des équipements. Une heuristique utilisant un algorithme génétique est développée

pour obtenir la combinaison optimale de contrôle du modèles MPC-GA en temps-réel pour

toutes les zones sur un horizon de prédiction. Les résultats d’expérimentation ont montré que le

MPC-GA surpasse les systèmes de contrôle RBC avec plus de 50% et 80% de réduction de la

consommation d’énergie et de l’inconfort, respectivement.

Enfin, nous présentons une approche évolutif distribuée basée sur des multi-agents pour le

contrôle optimisé d’un bâtiment intelligent multizone. L’approche utilise un ensemble d’agents

locaux qui représentent les zones individuelles du bâtiment, coordonnés par un agent central.

Pour chaque horizon de contrôle, le coordinateur minimise les émissions globales de carbone et

attribue un budget d’énergie individuel à chaque agent local. Celui-ci minimise l’inconfort dans

sa zone tout en respectant le budget d’énergie attribué par le coordinateur. Nous proposons une

heuristique basée sur un algorithme génétique pour trouver les séquences de contrôle optimisées
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dans chaque zone, et formulons un modèle de programmation linéaire en nombres entiers (ILP)

pour le problème du coordinateur qui peut être résolu à l’aide d’un solveur ILP. Pour un jour

d’essai hivernal représentatif, la méthodologie proposée a permis de réaliser des économies

d’énergie de 8,8% et de réduire l’empreinte carbone de 23,4%.

Mots-clés: CVC, LSTM, Séquence-à-séquence, Prédictions multi-étapes, VAV, CAV, séries tem-

porelles multivariées, mécanisme d’attention, MPC, algorithme génétique, contrôles optimaux,

bâtiment intelligent, multi-agents, efficacité énergétique, réduction de l’empreinte carbone.





Real-Time Data Driven Model Predictive Control for Efficient Energy Consumption in
Smart Buildings

Fatma MTIBAA

ABSTRACT

Model Predictive Control (MPC) has received a lot of attention in recent years mainly in the

field of Heating, Ventilation, and Air Conditioning (HVAC) control in smart buildings. MPC

is an optimal control that improves the energy efficiency of HVAC systems. This is achieved

by using a model-based control approach that integrates a mathematical representation of the

building with the most important factors that affect the building dynamics. However designing

an appropriate controller that accurately models the dynamics of the physical system is a

challenging task in real applications, especially for multi-zone building and for different HVAC

system types. Moreover, the non linearity of the buildings thermal dynamics makes the Indoor

Air Temperature (IAT) prediction more challenging since it is affected by complex factors such

as controlled and uncontrolled points, outside weather conditions and occupancy schedule.

Modern smart buildings are equipped with multiple sensors that collect data, which is then

used by optimal control techniques to improve energy efficiency while maintaining comfort

levels. The availability of historical data opens the opportunity to develop data-driven control

solutions based on artificial intelligence algorithms. Data-driven control reduces the cost and

time consuming tasks caused by MPC that requires an accurate and complex modeling processes.

Thus, the goal of this dissertation is to provide an efficient and scalable data-driven HVAC

control framework that minimizes energy consumption, carbon emission, peak demand and

discomfort during occupied hours under self-tuned setpoint, temperature ramp and equipment

cycling constraints which integrates a multi-step temperature prediction model that consider

control sensitivities.

In order to meet this goal, four key issues are required to be addressed in our framework and are

summarized as follows: i) how to model IAT in a multi-zone smart building and for different

types of HVAC systems without decreasing the prediction accuracy?, ii) how to accurately model

a multi-step IAT prediction in a data-driven MPC framework without bias on the optimization

decision for the control outputs?, iii) how to design and deploy an efficient real-time data-driven

MPC optimization problem suitable for a real-time HVAC system application?, and iv) how

to model a more scalable data-driven control system for HVAC system while reducing energy

consumption and carbon footprint?

As part of our contributions to address the first issue highlighted above and to accurately model

an IAT prediction model especially for multi-zone building and for different HVAC system types,

we propose a new IAT prediction model based on Long Short Term Memory (LSTM) model.

LSTM-MISO and LSTM-MIMO strategies are built for multi-input single-output and multi-input

multi-output, respectively. A direct prediction with sequence-to-sequence (S2S) approach has

been developed to predict multi-step ahead. Furthermore, a feature selection analysis has been

performed to obtain optimal model structure for both variable air volume (VAV) and constant
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air volume (CAV) systems. Since the temperature behavior depends on the time of the action

taken by control variables in the HVAC system, it is found that the consideration of these control

variables as input increases the prediction accuracy performance. The performance of different

strategies has been evaluated based on two case studies on real smart buildings operational data

using VAV and CAV systems. For both buildings, experimental results showed that the proposed

models outperform Multilayer Perceptrons models by reducing the mean absolute percentage

error by 50%.

To address the second issue, we extend the first research objective and propose a new multi-step

IAT prediction model based on a context-aware multivariate LSTM (CAM-LSTM) to be used

in data-driven MPC framework without bias on the optimization decision for the control

outputs. CAM-LSTM is based on high-level and low-level interaction between input features

and considers the sensitive relationship between temperature and control parameters. Moreover,

CAM-LSTM uses a dual-stream neural networks based on multivariate time series of controlled

and uncontrolled inputs. In addition, an attention mechanism is applied on controlled parameters

to give them more weight to better predict the zone temperature.

To address the third issue, we propose an efficient real-time data-driven control framework named

Model Predictive Control via Genetic algorithm (MPC-GA) allowing the optimal operation

of HVAC system and has been experimentally validated in a multi-zone retail building. The

MPC-GA combines CAM-LSTM model with a MPC framework. The prediction model is

used in the optimization model which minimizes: energy consumption, peak demand and

discomfort during occupied hours under self-tuned setpoint, temperature ramp and equipment

cycling constraints. A heuristic search algorithm using a genetic algorithm is used to solve the

real-time data-driven MPC-GA models and obtain the future optimal combination settings of

all controls for all the zones over a prediction horizon. The benchmark results showed that the

MPC-GA outperforms RBC control systems with more than 50% and 80% reduction in energy

consumption and discomfort respectively.

Finally, we introduce a scalable multi-agent based distributed approach for optimized control of

a multi-zone smart building based on a set of local agents which represent individual zones in

the building, coordinated by a central agent. For each control horizon, the coordinator minimizes

the overall carbon emissions and assigns an individual energy budget to each local agent. Each

local agent minimizes the discomfort in its zone while respecting the energy budget assigned

by the coordinator. We propose a heuristic search based on a genetic algorithm to find the

optimized control sequences in each zone, and formulate an integer linear programming (ILP)

model for the coordinator problem which can be solved using an ILP solver. For a representative

winter test day, the proposed methodology gave an energy savings of 8.8% and reduced the

carbon footprint by 23.4%.

Keywords: HVAC, LSTM, Sequence-to-sequence, Multi-step ahead predictions, VAV, CAV,

multivariate time series, attention mechanism, MPC, genetic algorithm, optimal controls, smart

building, multi-agent, energy efficiency, carbon footprint reduction
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INTRODUCTION

0.1 General context

In recent years, improving energy efficiency and reducing the carbon footprint is the major

concern for commercial buildings which want to make the world more sustainable. The total

energy used in commercial buildings accounts for 40% of the global energy consumption

(Shaikh, Nor, Nallagownden, Elamvazuthi & Ibrahim, 2014) and up to 30% of carbon dioxide

emissions (Costa, Keane, Torrens & Corry, 2013). Within these large energy consumption,

heating, ventilation and air conditioning (HVAC) systems are responsible for more than 50%

of the energy consumption in commercial buildings (DoE et al., 2011) and it is an important

producer of carbon emissions (Péan, Costa-Castelló & Salom, 2019). Moreover, it has been

estimated that improving the HVAC operation can provide a potential reduction in energy

consumption of between 5% and 30% (Chua, Chou, Yang & Yan, 2013).

An advanced HVAC control strategies are required to reduce the high energy consumption

and improve the thermal comfort in large commercial buildings. On today’s advanced HVAC

systems, rule-based controllers (RBC) are generally used. However, RBC cannot generalize their

rules at a building level (Privara, Cigler, Váňa, Oldewurtel, Sagerschnig & Žáčeková, 2013),

due to the high complexity of managing their defined rules and continuously tuning the HVAC

control signals to reduce global energy consumption while simultaneously ensure a thermal

comfort. In addition, RBC are not an anticipatory controller: they operate on the basis of the

current system state rather than projecting into the future and deciding on the next appropriate

action (Afram, Janabi-Sharifi, Fung & Raahemifar, 2017). Model Predictive Control (MPC) has

received a lot of attention in recent years mainly in the field of HVAC control in smart buildings

(Serale, Fiorentini, Capozzoli, Bernardini & Bemporad, 2018). It has been proven efficient

control solution for buildings by providing 17% energy savings more than RBC (Sturzenegger,

Gyalistras, Morari & Smith, 2016; Shaikh et al., 2014). Instead of being a reactive control,
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MPC is a predictive and proactive control based on an optimization control strategy, which uses

mathematical models to predict the future evolution of a dynamic system to optimise the control

signal. At each time step, it solves an open loop constrained optimization problem over a finite

future prediction horizon, then applied the first value of the computed control sequence to the

system. When a new step starts, it gets the system state and repeats the optimization process

(Camacho & Alba, 2013). Fig. 0.1 illustrates the receding horizon strategy of MPC scheme.

There are several practical advantages of applying MPC to achieve energy savings and comfort

in buildings. First, the disturbances affecting HVAC system. For instance, occupancy and

outside weather can be predicted and integrated into the MPC. Second, MPC leads to vary the

indoor temperature between a thermal comfort range by setting up the constrained optimization

problem. Third, by solving the MPC problem in receding horizon, it is possible to shave the

power peaks throughout the prediction horizon, thereby reduce the total electricity bill. However,

MPC represents some challenges. First, it is complicated and time consuming, especially when

implemented in a real case building to accurately model the dynamics of the physical system.

Second, physical model has large number of states and variables. Then, many measurements are

needed to use the physical model to predict the system behavior. This can require the installation

of new sensors which is intrusive and expensive. Moreover, there are some measurements cannot

be available from sensors, which require observers for state estimations. Thus, the user expertise,

time, and associated sensor costs required to develop a model to describe the system dynamics of

a single building is very high (Smarra, Jain, de Rubeis, Ambrosini, D’Innocenzo & Mangharam,

2018).

To ensure a sustainable future, new HVAC optimal control methods are being studied by

researchers especially with the occurrence of data collected from multiple sensors installed in

modern smart buildings. This collected data is used to build an accurate indoor air temperature

(IAT) prediction model. The selection of IAT prediction models is the most important step in the

development of an MPC approach, as it impacts the computation time, accuracy and efficiency
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of the optimal control algorithm.

Figure 0.1 General conceptualization for model predictive

control (MPC)

Taken from Yang et al. (2017)

Recently, data-driven control techniques based on machine learning (ML) algorithms have

been proposed to model IAT and are integrated in the MPC framework to address smart

building control (Chen, Wang & Srebric, 2015; Huang, Chen & Hu, 2015a). Through the

availability of collected data in smart buildings, ML has a great ability to learn complex

non-linear building models without depending on domain knowledge related to building physics

(Kathirgamanathan, De Rosa, Mangina & Finn, 2021), which reduces costs and time associated

to building modelisation caused by MPC (Serale et al., 2018). Once such a prediction model is

available, it will be used in the data-driven MPC to optimize energy efficiency while maintaining

comfort levels. However, there is no fast and robust optimization algorithm to handle data-driven

IAT prediction within the MPC framework. Moreover, the implementation of a data-driven MPC

model in real building use case requires a scalable online optimization with low computation
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time to generate a sequence of control signals for all the zones over a prediction horizon. The

following sections present these challenges in more details.

0.1.1 Challenges of IAT modeling

0.1.1.1 IAT modeling for different types of HVAC systems

The accuracy of the building model has a high impact on the quality of the optimal control

sequence generated by MPC. On the other hand, MPC optimization techniques aimed at

minimizing HVAC energy consumption can influence indoor comfort. IAT is one of the essential

thermal comfort parameters (Baniasadi, Habibi, Bass & Masoum, 2018). It is essential that

IAT variations stay between the upper and lower boundaries of comfort. Therefore, accurately

modeling IAT for HVAC systems is required. However, it is a challenging task, especially

for multi-zone building which may contain different HVAC system types. Moreover, the non

linearity of the buildings thermal dynamics makes the IAT prediction more difficult since it is

affected by complex physical and behavioral phenomena. It is impacted by several parameters,

such as controlled and uncontrolled parameters, outside weather conditions and occupancy

schedule. IAT prediction might be done using physical approach which is based on mathematical

equations based on Fourier’s law of heat conduction which is discretized into the finite difference

method and typically expressed in a resistance–capacitance analogy. However, the physical

approach is a time consuming task since it requires detailed information about the building’s

characteristics, appliances, and occupant behavior. The availability of historical monitoring

data from the panoply of sensors already deployed on smart buildings opens the opportunity to

develop data-driven solutions to model IAT based on machine learning algorithms. Recently, in

data-driven control, Artificial Neural Networks (ANN) and nonlinear autoregressive network

with exogenous inputs (NNARX) have been extensively used to model indoor environments

(Delcroix, Le Ny, Bernier, Azam, Qu & Venne, 2020; Attoue, Shahrour & Younes, 2018;
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Huang, Chen & Hu, 2015b). However, prior work generally adopted a recursive prediction

strategy for predicting multi-step ahead (Delcroix et al., 2020; Zeng, Zhang & Kusiak, 2015;

He, Zhang & Kusiak, 2014). The recursive prediction method accumulates prediction errors at

each time-step, making this solution not suitable for long forecast horizon. Furthermore, the

ANN method considers each input as an independent parameter. It ignores the time dependency

between sequential values. Moreover, it has been shown that in most cases, the same IAT

prediction model cannot be used for two different types of HVAC systems without decreasing

the performance, such as the case for Constant Air Volume (CAV) and for Variable Air Volume

(VAV) system.

0.1.1.2 Context-aware IAT modeling

Developing a context-aware IAT prediction model is a challenging task. The complex and non-

linear inter-dependencies between multivariate time series, including control and uncontrolled

parameters, make the context-aware prediction task more complicated. Moreover, since the IAT

prediction results will be used in the MPC optimization problem to take informed decision for

future control actions, the context-aware prediction model should consider the impact of future

controls inputs on the predicted IAT results. For example, if the future steps of cooling controls

are all OFF during a hot summer day, automatically the model should predict an increasing in

the temperature behavior, which is not the case of models proposed by several related work (Jain,

Smarra, Behl & Mangharam, 2018; Reynolds, Rezgui, Kwan & Piriou, 2018; Garnier, Eynard,

Caussanel & Grieu, 2015). Previous work usually include black box models that do not take

into account the physical aspect. They define a predictive model but ignore the sensitivities of

control on temperature which can bias on the optimization decision for the control outputs.
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0.1.2 Challenges of data-driven MPC approach

A real-time optimization is required to implement data-driven MPC model with low computation

time to take the optimal control decision for all the zones over a prediction horizon. In recent

years, to optimize HVAC control, an optimization procedure combining GA, MPC and artificial

neural network to minimize the energy consumption has been proposed in (Reynolds et al., 2018;

Garnier et al., 2015; Asadi, da Silva, Antunes, Dias & Glicksman, 2014). However, none of the

previously mentioned approaches has been validated in real time with the building’s feedback

states. It is not obvious that a building operator allows to implement a data-driven controller

on a real building because the error of the prediction might disturb the built environment.

Implementation in real buildings can lead to undesirable results such as too hot or too cold

temperatures, thus causing discomfort to the occupants. The data-driven control system should

avoid these undesirable results because there is no turning back during the implementation

phase. Moreover, the optimization models proposed in previous work focus mainly on energy

efficiency and discomfort reduction. Others costs should be considered in the control problem.

The power peak is an important cost to consider in the MPC model in order to avoid a spike in

consumption. Furthermore, in order to enhance premature wear of HVAC devices, data-driven

MPC problem should consider the cycling cost to achieve a more stable control decision and

avoid unnecessarily cycling of equipment. In addition, in order to reduce the error between

predicted temperature using control decision and the current temperature feedback, a self-tuned

cost should be considered in the MPC problem. Moreover, a ramp rate cost should be included in

the MPC problem in order to keep a stable temperature feedback. However, all these additional

constraints make the data-driven MPC approach much more complicated to achieve the optimal

control decision.
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0.1.3 Challenges of centralized data-driven control

In recent years, many centralized control framework have been proposed in the literature

(Tarragona, Fernández & de Gracia, 2020). However, there are many characteristics that make

the centralized data-driven MPC no longer practical. First, the optimization strategies in the

centralized data-driven control system can take a significant amount of time to find the optimal

control variables, which is a challenge for systems with a short period of operation (Thieblemont,

Haghighat, Ooka & Moreau, 2017). Centralized control framework can be computationally

expensive for large scale optimization when applied to building with large number of zones,

equipped by complex distribution system and influenced by various factors. In addition, online

computing time can be a bottleneck for real-time applications, as the optimization problem must

be solved in a short period of time. Moreover, in the centralized scheme the computational time

can become a drawback due to the large amount of data to be treated. Compared with centralized

control-based methods, multi-agent control (MAC) systems are more flexible and scalable

(Wang, Zhang, Li & Zhao, 2021). Therefore, implementing real-time optimal control strategies

for multi-zone HVAC systems using multi-agent based distributed optimization methods is a

challenging research direction. Distributed optimal controls require distributed optimization

methods for which convergence is not always guaranteed. Moreover, the optimization models

proposed in previous work are limited to energy efficiency and discomfort minimization. More

essential costs must be considered in the MAC optimization problem, such as reducing the

carbon footprint.

0.1.4 Research Motivation

In order to offer an advanced control approach for HVAC systems in smart buildings, a

scalable control framework based on data-driven modeling needs to be efficiently designed

and implemented in real time building with low cost. IAT needs to be accurately predicted for
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multi-step ahead with multi-input. Moreover, the IAT prediction model has to be general and

covers both VAV- and CAV-buildings. In addition, a direct-S2S prediction instead of a recursive

one, which increases the accumulation of prediction errors throughout the prediction step ahead,

should be implemented. The data-driven IAT model should be used to design predictive control

approaches. For this reason, the impact of controlled parameters on the prediction results should

be considered. To implement data-driven control approach, an real-time optimization is required

with low computation time to generate a sequence of control parameters for all the zones over

the prediction horizon. The control optimization model should minimize energy, peak power

and discomfort costs. Other costs should be considered in the control problem, such as the

self-tuned setpoint, cycling and temperature ramp constraints in addition to energy, peak power

and discomfort costs. Furthermore, the carbon footprint is an essential factor to consider in the

optimization problem. The data-driven control approach should be scalable and not be limited

by the number of zones in the controlled building.

As a summary, the efficiency and scalability of data-driven HVAC control approach can be

achieved by:

• accurately modeling IAT prediction with multi-step ahead for VAV- and CAV-buildings.

• considering the impact of the control parameters on IAT prediction model.

• implementing an efficient HVAC control model in a real building use case which minimizes:

energy consumption, peak demand and discomfort during occupied hours under self-tuned

setpoints, temperature ramp and equipment cycling constraints.

• designing a scalable HVAC control model which minimizes energy consumption, discomfort

and carbon footprint.
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0.2 Problem statement and research questions

0.2.1 Problem statement

The research problem addressed in our work is stated as follows:

How to model and design an efficient and scalable control framework for HVAC systems in a

multi-zone smart buildings that save energy and reduces carbon footprint without affecting the

householder’s comfort?

In order to address the above problem statement, we further detail it into four research questions

(RQs) as follows:

0.2.2 Research question RQ1

RQ1 (IAT modeling): How to model IAT in a multi-zone smart building and generalize for

different types of HVAC systems without decreasing the prediction accuracy?

The main issues related to RQ1 are:

• How to model IAT in a multi-zone building with multi-step prediction ahead?

• How to model IAT in a multi-zone building with multi-input single-output and multi-output?

• How to select relevant inputs for the IAT prediction model?

• How to model IAT for different HVAC systems to control inside a large-scale building

without decreasing the prediction performance?

0.2.3 Research question RQ2

RQ2 (Context-aware Prediction): How to accurately model a multi-step IAT prediction in a

data-driven MPC framework without bias on the optimization decision for the control outputs?
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The main issues related to RQ2 are:

• How to model the high-level interaction between input features?

• How to model the low-level interaction between input features?

• How to model the sensitive relationship between temperature and control parameters?

0.2.4 Research question RQ3

RQ3 (data-driven Control): How to design and deploy an efficient real-time data-driven MPC

optimization model suitable for HVAC system application?

The main issues related to RQ3 are:

• How to optimise energy, peak power and discomfort costs with considering of self-tuned

setpoint, cycling and temperature ramp?

• How to integrate the multi-step IAT prediction model in the control optimization model?

• How to solve the online data-driven control model over a prediction horizon?

0.2.5 Research question RQ4

RQ4 (multi-agent data-driven control): How to model a more scalable data-driven control

system for HVAC systems while reducing energy consumption and carbon footprint?

The main issues related to RQ4 are:

• How to minimize energy and carbon emission with meeting comfort in smart building?

• How to reduce execution time for the data-driven optimization problem while maintaining

control performance?

• How to solve the multi-agent control model over a prediction horizon?

• How to ensure the scalability of an HVAC control system for a multi-zone building?
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0.3 Outline of the thesis

This chapter describes the general context and presents the problem statement. Chapter 1 reviews

the prior work related to the scope of the research problems. Chapter 2 presents the objectives of

this research framework and defines the proposed methodology to address the various research

questions of the problem. Then, the three next chapters present the three articles published in

response to the specific research questions. The three articles are outlined as follows:

1. Chapter 3: LSTM-based indoor air temperature prediction framework for HVAC systems in

smart buildings.

2. Chapter 4: Context-aware Model Predictive Control framework for multi-zone buildings.

3. Chapter 5: Hierarchical Multi-Agent Control Framework for Energy Efficiency and Carbon

Emission Reduction in Multi-Zone Buildings.

Chapter 6 provides a critical discussion of some concepts of the thesis that highlight the strengths

and weaknesses of the proposed methods. Finally, the general conclusion summarizes the work

presented in this thesis and provides future horizons.





CHAPTER 1

LITERATURE REVIEW

This chapter presents a review of the state-of-the-art methods related to the modeling and

control optimization problems for HVAC system in smart buildings. This chapter is divided

into three sections that are in line with the challenges discussed in the introduction and faced by

prediction modeling and optimization approaches to build and operate future efficient control

system for HVAC in smart building. The first section covers the various prediction models

challenges encountered to predict IAT in control system. The second section presents the

different centralized data-driven control methods. The third section presents several multi-agent

data-driven control approaches.

1.1 Data-driven model approaches

The main advantage of a data-driven approach is to reduce the cost and time-consumed by

traditional physics-based techniques. Moreover, the data-driven approaches can deal with

non-linearity, incomplete, or noisy data Serale et al. (2018). Machine-learning algorithms have

been applied to design dynamic models of the HVAC system. For instance, the multi-step

prediction of IAT can be used in a predictive control approach then leads to improving the thermal

comfort and decreasing the energy consumption of buildings Xu, Chen, Wang, Guo & Yuan

(2019). The key common algorithms applied in data-driven approaches that have been used

extensively in the building sector for IAT modeling are regression trees Jain et al. (2018), random

forests Smarra et al. (2018), nonlinear autoregressive network with exogenous inputs (NARX)

Afroz, Urmee, Shafiullah & Higgins (2018b), NNARX Delcroix et al. (2020), ANN Attoue et al.

(2018) and Recurrent Neural Networks (RNN) Javed, Larijani, Ahmadinia & Emmanuel (2014).

1.1.1 Machine learning algorithms to model IAT

Jain et al. Jain et al. (2018) combine multi-output regression trees to represent the system’s

dynamics. Yet, the modeling accuracy using single trees to constitute multi-step prediction
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for zone temperature is strongly affected by over-fitting and high variance. The authors in

Smarra et al. (2018) model the temperature by a set of linear regression models, which change

after each time step. They model their system with regression trees to predict temperature for

multi-zone using MISO structure and extend them to a random forest model. However, their

model is complicated and time-consuming. Nowadays, the ANN model has been widely applied

for several type of applications in HVAC sector, such as Fault Detection and Diagnostics Du,

Fan, Jin & Chi (2014), thermal comfort approximation Castilla, Álvarez, Ortega & Arahal

(2013) and IAT prediction Attoue et al. (2018); Huang et al. (2015b). Du et al. Du et al.

(2014) developed ANN based tool to detect faults in the supply air temperature control loop in

commercial building with VAV systems. The authors used a combined neural networks model

which includes the basic neural networks and auxiliary neural networks to detect faults, and

then used clustering approach for classification to diagnose the fault sources. The proposed

models diagnose the faults using context information related to the monitoring parameters such

as supply chilled water temperature, return chilled water temperature, chilled water flow rate

and chilled water valve position. The principal component analysis is carried out to analyze

the contributions of these parameters in the supply temperature control loop. The occurrence

of faults is computed according to a combined relative error and its threshold. Castilla et

al. Castilla et al. (2013) proposed a context-aware neural networks model using human and

environmental variables for approximating thermal comfort evaluation for HVAC systems. Their

model avoids the costs involved in calculating the classical predictive mean vote (PMV) index

in terms of the computation time and the extensive sensor network size required to collect the

input data. Moreover, it allows the use of PMV index within real-time model predictive control

framework. Attoue and al. Attoue et al. (2018) developed a simple ANN-MISO model to predict

indoor temperature for different forecasting time-steps. They proposed a methodology based

on the selection of pertinent input parameters from a large set of features. Their experimental

results show that outdoor and facade temperature data provides good forecasting results of

indoor temperatures. Moreover, their results show that predictions were accurate for up to

two hours. However, the predictions have unsatisfactory accuracy for more than four hours

forecast ahead. Huang et al. Huang et al. (2015b) developed an hybrid MPC based on neural
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network feedback-linearization model to predict IAT over six hours ahead. The goal of this

approach is to linearize the system using the neural network through feedback to build nonlinear

functions approximation. The type of HVAC system used in Huang et al. (2015b) is designed

with constant-air volume (CAV).

Prior studies also model IAT for a VAV system Zeng et al. (2015); Afroz et al. (2018b). An

indoor air temperature prediction models of multi-zone using MISO structure are proposed by

He et al. (2014). Zeng et al. Zeng et al. (2015) developed an optimal control of multi-zones VAV

system. They elaborated a data-driven predictive model using MLP to predict the environmental

conditions of each zone and optimize energy consumption. The IAT is predicted with only

one-step ahead. Moreover, multi-step prediction is necessary to lead a real-time implementation

in the control phase. Moreover, only two control parameters were used as inputs in the prediction

model in He et al. (2014); Zeng et al. (2015). Neither specific feature selection methodology nor

model tuning approach were implemented. The context information like weather data, control

parameters and other external factors might improve the future prediction. Liang et al. Liang,

Ouyang, Jing, Ruan, Liu, Zhang, Rosenblum & Zheng (2019) designed a framework named

UrbanFM based on deep neural networks. UrbanFM is composed of two models, an inference

network component and an external factor fusion component. The inference network component

generates a fine-grained flow from coarse-grained inputs by using a novel feature extraction and

distributional upsampling modules. The external factor fusion component handles the context

information (like the day of the week, time of the day, weather, other external factors) to capture

near and distant spatio-temporal dependencies. This component plays an important role in

providing a prior knowledge and improves the inference performance under sparse sampling.

A multi-zone modeling approach using the MLP-MIMO model was proposed by Huang et al.

(2015a) to forecast two hours ahead temperature inside an open space commercial building.

Afroz et al. Afroz et al. (2018b) predict IAT in multi-zone buildings using a different tuned

model based on NARX model. The authors used MISO architecture to predict one step ahead

then MIMO architecture to predict multi-step ahead for the same zone. Delcroix et al. Delcroix

et al. (2020) predicted the behaviors of IAT using NNARX-MISO. They compared their results
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with the gray-box model and the linear autoregressive model with exogenous inputs (ARX).

Their comparisons show the NNARX model achieves the highest performance the alternative

models. However, the authors assume that the future exogenous inputs (control parameters,

outdoor temperature, etc.) are known, which cannot be true in the real case. All Afroz et al.

(2018b), Huang et al. (2015a) and Delcroix et al. (2020), develop a one-step forecasting model,

then use a recursive multi-step forecasting strategy to predict the future steps.

1.1.2 LSTM to model IAT

Generally, prior work employed artificial neural networks (ANN) as black-box models to represent

HVAC building systems and combined it with an MPC optimal control framework as discussed

in Finck, Li & Zeiler (2019); Reynolds et al. (2018). A powerful solution for modeling sequence

dependency is RNN models. LSTM network is a RNN that overcomes the problem of training

a recurrent network with the architecture of learnable gates. LSTM had been found suitable

for electric consumption, prices forecast, and also for emission factor prediction to schedule

appliances use in the smart house domain Riekstin, Langevin, Dandres, Gagnon & Cheriet

(2018); Rahman, Srikumar & Smith (2018). Recently, a LSTM-RNN has been proposed in

Abdel-Nasser & Mahmoud (2019) for predicting the photovoltaic power. Specifically, the authors

compare the prediction accuracy of five different LSTM models. Their results show LSTM for

regression with time steps and LSTM for regression using the window technique achieve the best

performance. However, the authors do not take into account the context-information (such as

wind speed, outside air temperature, time of day and day of week) in their models. A few studies

have investigated the usefulness of LSTM for IAT multi-step predictions in the HVAC system

Xu et al. (2019). An LSTM prediction model with MISO structure was proposed by Xu et al.

(2019) to predict IAT until 30 minutes using a recursive prediction approach. Nevertheless, their

proposed model did not show clear advantages compared to the traditional prediction model like

SVM and decision tree.
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1.1.3 Context-aware IAT prediction

It is obvious that the availability of an accurate multi-step prediction model is extremely

important in a data-driven MPC framework. As discussed in the previous sections, several

deep learning models have been proposed and integrated with MPC to define a data-driven

control methodology Garnier et al. (2015); Jain et al. (2018); Reynolds et al. (2018). However,

they usually include black box models that do not take into account the physical aspect. They

define a predictive model but ignore the sensitivities of control on temperature which can

bias on the optimization decision for the control outputs. For example, if the cooling controls

are all OFF and it is hot outside, automatically the model should predict an increasing in the

temperature behavior, which is not the case of models proposed by several related works. In

general, when modeling temperature which should be used to decide the future control actions,

it is essential to capture the sensitivities of the temperature output with respect to known future

inputs like control commands and outside temperature. In particular, at every time 𝑡, given

the known future inputs and other inputs that are only historically known, the model should

correctly describe the variations of the predicted temperature output, due to variations of the

command input sequence including observed and future know values. Recent deep neural

networks have considered the use of transformer networks with attention-based mechanism for

multi-horizon time series forecasting Lim, Arik, Loeff & Pfister (2019). In Nunez, Langarica,

Diaz, Torres & Salas (2019), they use the basic structure of encoder-decoder with attention

model combined with MPC to control a paste thickener systems. Although attention mechanism

improve long-horizon sequence, it have difficulties handling continuous time-series data which

requires a strong temporal consistency. However, temporal consistency is a requirement for

temperature prediction, as the control variables should remain stable over a short period of

time to avoid unnecessarily cycling equipment. In Liu, Gong, Yang & Chen (2020) and Zheng,

Mukherjee, Dong & Li (2018), the attention mechanism is used to capture the spatio-temporal

relationships between multivariate time series and they will be used as a reference to compare

our proposed prediction model.
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1.1.4 Discussion

In general, most of existing IAT prediction algorithms do not adopt a feature selection method.

A feature selection investigation is required to find the exact number of control parameters

that must be included as input in the predictive model to increase the accuracy. For example,

the CAV system have only basic control parameters like heating stages, cooling stages and fan

stages. On the other hand, the VAV systems have more parameters like supply air temperature,

damper position, etc. In the literature, IAT prediction models have been proposed for either

the CAV or VAV systems, but to the best of our knowledge, no prediction model has been

tested or adapted on both types of systems at the same time. In addition, the development

of multiple models for multi-zones are time-consuming. Yet, the size of the control problem

grows rapidly as the number of air handling units (AHUs) and controlled zones increase.

Furthermore, the majority of proposed models use a recursive prediction. Such recursive

strategy has two major limitations. First, it accumulates prediction errors, because prediction

values are used instead of real observations. This method degrades the performance of the

model as the number of future steps increases. Second, it considers each input parameter as an

independent parameter. Consequently, the temporal dependency among continuous variables

is ignored, while the historical data collected from HVAC systems are generally time series

data. These limitations can be tackled by adopting a technique that takes into account the

temporal relationship among input parameters and using a direct prediction approach to avoid

the problem of error accumulation. Moreover, it is important to consider the impact of controls

on temperature prediction. The complex and non-linear inter-dependencies between multivariate

time series, including control and uncontrolled parameters, make the prediction task more

complicated. All these factors are very important to model an accurate IAT prediction model

and close the control loop.

1.2 Centralized Data-driven control solutions

This section describes relevant literature research on optimization techniques used in data-driven

control models in HVAC systems. To optimize HVAC control, centralized-based model predictive
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control (MPC) approaches which are solved using different optimization algorithms, for instance,

mixed-integer linear programming (MILP), mixed-integer nonlinear programming (MINLP),

nonlinear programming algorithm (NLP) and evolutionary algorithms like genetic algorithms

(GA), have obtained more and more attention in recent years Reynolds et al. (2018); Song, Liu,

Liu, Jiang & Lin (2020).

1.2.1 Control optimization algorithms

Dullinger et al. Dullinger, Struckl & Kozek (2018) developed a centralized predictive HVAC

controller based on a MILP approach. The proposed control system is based on two levels of

operation. On the upper level, the global thermal system performance and the HVAC modes

are controlled using a long prediction horizon to take care of the slow dynamics of the plant.

Then, on the lower level, the system operation is optimized with a shorter horizon that corrected

possible prediction deviations without increasing the computation time. Similarly, Tarragona et

al. Tarragona et al. (2020) presented a two level centralized MPC control strategy to improve the

operation of a space-heating system coupled with renewable resources. The proposed control

approach is formulated as an MINLP. These double levels of control helped the system to find

the optimal solution with less computation time. Raman et al. Raman, Chen & Barooah (2021)

designed an NLP-based centralized control approach incorporating humidity and latent heat

in the MPC optimization problem for energy-efficient HVAC control. A centralized MPC is

developed in Seal, Boulet & Dehkordi (2020) aimed at occupant comfort and energy efficiency

with variable cost rates. They obtained a reduction of 13% in the energy cost with the proposed

control strategy compared to rule-based energy management.

1.2.2 Control optimization based on GA

Evolutionary algorithms has been widely applied to resolve the optimization problem related to

MPC in HVAC systems. An optimization procedure combining GA, MPC and artificial neural

network to minimize the energy consumption and it is proved to guarantee globally-bounded

closed-loop stability Reynolds et al. (2018). They considering two different simulation scenarios
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(flat and time-of-use price tariffs). According to their results, they have achieved a reduction in

energy consumption by around 25% compared to a baseline heating strategy. However, this work

did not consider weather and occupancy forecasting parameters in their prediction model and

they only implement their approach on simulated building rather than real-world trial. Song et al.

Song et al. (2020) proposed a GA-based centralized control method to optimize the configuration

of a cooling, heating and power (CCHP) plant. A low-order ANN based models combined

with MPC was developed to minimize the energy consumption of a multi-zone HVAC system

Garnier et al. (2015). Researchers used GA to minimize the cost function. Also they used the

predicted mean vote (PMV) index as a thermal comfort indicator. This strategy was compared

with basic control techniques and resulted in 5.2% and 14.7% of energy saving during heating

and cooling seasons respectively. However it does not include predicted weather as a model

input failing to adjust control parameters in the future steps. Moreover, it was modeled using a

simulation model generated in the EnergyPlus software and no real-world data was used for

training or model validation. In Asadi et al. (2014), a GA is applied to solve a multi-objective

optimization problem which trade-offs between the retrofit cost, energy consumption and thermal

comfort. The authors demonstrated that GA is well suited for multi-objective problems and

they showed that the simultaneous optimization of all three lead to good results in contrast to

optimizing per an individual objective. However, their model is based on a simulation database

that was generated from a comprehensive building model developed in TRNSYS to train and

validate ANN models which is difficult to extend in real-building. Kampelis et al. Kampelis,

Sifakis, Kolokotsa, Gobakis, Kalaitzakis, Isidori & Cristalli (2019) have also used GA for power

optimization of HVAC systems. They studied the trade-off between minimizing energy costs and

maximizing thermal comfort by integrating PMV to ensure thermal comfort requirements. The

control approach they proposed is not suitable for a real-time energy and comfort management

application, as it is time-consuming to execute. An adjustment of the optimization parameters is

necessary to conduct the deployment in real time. An adaptive supervisory model predictive

on-off control algorithm is presented in Tyukov, Shcherbakov, Sokolov, Brebels & Al-Gunaid

(2017), including the predicted weather factor. The GA is used to optimize the cost function
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which can save up to 20-40% of gas consumption while maintaining comfort. However, this

approach has not been validated in real time with the building’s feedback states.

1.2.3 Discussion

In general, most of the existing centralized control solutions are tested only on simulated

environment such as EnergyPlus rather than real-world building and there are no real data

used for the model validation. The time-consuming to execute existing proposed approaches

requires an adjustement of the optimization parameters to conduct to the deployment in real time.

Moreover, prior work focus only on minimizing energy consumption and discomfort. More

factors need to be considered for instance peak demand self-tuned setpoint, temperature ramp

and equipment cycling costs.

1.3 Multi-agent Data-driven control solutions

1.3.1 Energy efficiency and discomfort minimization

Different centralized control framework have been proposed in the literature Tarragona et al.

(2020). However, there are many characteristics that make the centralized data-driven MPC

less interesting. First, the optimization strategies in the centralized data-driven control system

can take a significant amount of time to find the optimal control variables, which is a challenge

for systems with a short period of operation Thieblemont et al. (2017). Centralized control

framework can be computationally expensive for large scale optimization when applied to

building with large number of zones and equipped by complex distribution system and influenced

by various factors. For instance, in the case of using evolutionary algorithms, as the number of

zones grows as the size of individuals grows, which make the convergence slower. In addition,

online computing time can be a bottleneck for real-time applications, as the optimization problem

must be solved in a short period of time. Moreover, in the centralized scheme the computational

time can become a drawback due to the large amount of data to be treated. Compared with

centralized control-based methods, Multi-agent control (MAC) systems are more flexible and
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scalable Wang et al. (2021). MAC system, has lately caught significant attention for HVAC

control systems. Su and Wang Su & Wang (2020) proposed an agent-based distributed optimal

control strategy for multi-zone HVAC systems. The authors of this paper investigated different

implementation issues including energy efficiency, optimization accuracy, convergence rate,

computation complexities and computation loads. Results showed that the proposed control

had a low computation load and a high convergence rate. Li et al. Li, Jia, Zhou & Li (2020)

developed a three-layered multi-agent system based optimal control method using the chaotic

search particle swarm optimization. The results demonstrated that the proposed control solution

could reduce the operating cost by 1.84%. Pertzborn Pertzborn (2019) adopted an MPC and

distributed optimization by using the distributed agents for optimal operation of a central chilling

system combined with an ice-storage system. The distributed models divided the computational

load between multiple local models and optimizations, providing an effective global control

policy for the entire operating system. Joe et al. Joe, Karava, Hou, Xiao & Hu (2018) studied

a distributed MPC and has demonstrated a high potential of reducing energy consumption

by up to 27% within the cooling season. A real-time optimal control method is developed

in Li, Wang & Koo (2021) to solve the optimization problem in a distributed manner and

find the proper trade-off between maintaining thermal comfort and indoor air quality as well

as minimizing energy use. Li and Wang Li & Wang (2020) designed a multi-agent based

hierarchical distributed approach for the optimal control of multi-zone ventilation systems to

improve indoor air quality by regulating the operation of the primary air-handling units. A

centralized multi-objective optimization scheme was formulated and decomposed into different

simpler distributed sub-schemes. In this way, complex control optimization problems can be

solved collectively by multiple agents.

1.3.2 Carbon footprint minimization

The carbon footprint is an essential factor to consider in the optimization problem. Vogler-Finck et

al. used MPC to control and optimise multi-zone operation Vogler-Finck, Wisniewski & Popovski

(2018). The results show that carbon footprint and energy optimization are relevant objectives
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for predictive control, while price optimization is comparatively less desirable. Carbon emission

reduction is also considered in Pedersen, Hedegaard & Petersen (2017), who proposed an

economic model predictive control (E-MPC) scheme for space heating operation. Simulation

results showed that E-MPC increases cost savings by up to 6% and CO2 emissions by up to

3%. In Siler-Evans, Azevedo & Morgan (2012), the marginal emissions factors (MEFs) is used

instead of the average emissions of the electrical grid. The MEFs also is used in Péan et al.

(2019), which developed an MPC controller and tested within a co-simulation framework which

combines an optimization software with a dynamic building simulation tool and it achieved a

marginal emissions saving in the range of 19%-29%.

1.3.3 Discussion

In general, prior work demonstrate the effectiveness of using distributed optimal control

approaches to improve the scalability and the energy efficiency of HVAC systems. However,

operational issues when these control approaches are implemented on physical environments,

for instance the convergence rate and computation load distribution have not been addressed. In

addition, the scalability and robustness of the proposed distributed control systems should be

improved. Therefore, implementing real-time optimal control strategies for multi-zone HVAC

systems using multi-agent based distributed optimization methods is a challenging research

direction. Moreover, the optimization models proposed in previous work are limited to energy

efficiency and discomfort minimization. The carbon footprint reduction is an essential factor to

consider in the optimization problem.





CHAPTER 2

OBJECTIVES AND METHODOLOGY

In this chapter, we explain in details the research objectives and methodology of the thesis. We

describe the general methodology through four phases to achieve the objectives. Then, we

present the relationship between the phases in a summary diagram to facilitate the reading of

this thesis.

2.1 Research hypothesis

The research hypothesis (RH) of this thesis is defined as follows:

RH: By accurately modeling indoor air temperature, considering sensitivities of control over

the prediction horizon and by optimizing the control decision, we minimize energy and carbon

footprint while maintaining comfort and improve control efficiency and scalability for the HVAC

system in smart buildings.

2.2 Main objective

The main objective (MO) of this thesis is defined as follows:

MO: Design an efficient and scalable data-driven HVAC control framework that minimizes

energy consumption, carbon emission, peak demand and discomfort during occupied hours

under self-tuned setpoint, temperature ramp and equipment cycling constraints, which integrates

a multi-step temperature prediction model considering control sensitivities.

2.3 Specific Objectives

2.3.1 Specific objective SO1

SO1: Accurately model indoor air temperature prediction with multi-step in a multi-zone smart

building and with different types of HVAC control systems.
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In order to reduce the cost and time consuming task caused by MPC to control HVAC systems

inside a large-scale building especially for multi-zone building and for different HVAC system

types, we need a proper indoor air temperature model to deal with the nonlinearity of the

buildings thermal dynamics since IAT is affected by complex factors such as controlled and

uncontrolled points, outside weather conditions and occupancy schedule. Thus our objective is

to model an accurate indoor air temperature prediction with multi-step in a multi-zone smart

building and with different types of HVAC control systems.

2.3.2 Specific objective SO2

SO2: Model a multi-step IAT prediction in a data-driven MPC framework without bias on the

optimization decision for the control outputs.

In order to improve the perdition accuracy and the control decision we need to consider the

impact of controls on temperature in the control decision loop. Thus our objective is to build

an accurate IAT prediction model based on high-level and low-level interaction between input

features and consider the sensitive relationship between temperature and control parameters.

2.3.3 Specific objective SO3

SO3: Model and deploy an efficient online data-driven MPC optimization problem suitable for

a real-time HVAC system application.

In order to optimise HVAC system control in smart building, we need to consider energy

consumption caused by HVAC operation while preserving comfort. Thus our objective is to

design, implement and deploy in real multi-zone retail building an optimized control approach

which considers a self-tuned setpoint, cycling and temperature ramp constraints in addition to

energy, peak power and discomfort costs.
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2.3.4 Specific objective SO4

SO4: Model and deploy a scalable multi-agent online data-driven MPC framework.

In order to minimize the computation time caused by the centralized control approach, a

distributed control is needed to ensure scalability that minimize computation time and support

a large scale building. Thus our objective is to design and implement a multi-agent control

approach that ensures energy efficiency and reduce carbon emission, while ensuring comfort as

well.

2.4 General methodology

We propose four consecutive methodologies M1, M2, M3 and M4 to respectively address the

requirements of the research questions RQ1, RQ2, RQ3 and RQ4 (discussed in Section 0.2)

as well as the specific objective SO1, SO2, SO3 and SO4 (discussed in Section 2.3). The

global framework of the thesis, as depicted in Figure 2.1, incorporates these four methodologies.

The first step involves collecting historical data from HVAC systems and conducting feature

selection analysis. Next, two LSTM-based temperature prediction models, MISO and MIMO,

are proposed to improve the generality of HVAC systems. The CAM-LSTM model is then

introduced to predict temperature while considering the sensitivity of control on the prediction.

These models are discussed in more detail in the first and second methodologies, which aim to

meet objectives one and two of the thesis. The prediction results are then utilized in two optimal

control models, MPC-GA for centralized control, and Multi-Agent Control for distributed control,

in order to achieve an efficient and scalable control model. These control models operate on a

moving horizon, computing optimal solutions for a fixed prediction horizon of two hours. Only

the first control signal is applied to the building, and the optimization process is executed in a

closed loop as time progresses. Methodologies three and four, which address objectives three

and four of the thesis, focus on these two control models.

The four methodologies are defined as follows:
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Figure 2.1 Global framework

2.4.1 Methodology M1

The methodology M1 addresses the research question RQ1 and the specific objective SO1. In

this methodology, we present an accurate IAT prediction model for multi-zone building that uses

LSTM and based on a direct S2S multivariate multi-step time series prediction model, instead

of the recursive model, which is helpful to better control the HVAC system’s operation.

The methodology M1 is summarized as follows:

• Design and implement LSTM-MISO architecture using multi-input single-output to predict

the temperature for each zone based on S2S.

• Design and implement LSTM-MIMO architecture using multi-input multi-output to predict

IAT for all zones simultaneously based on S2S with only one model.

• Relevance selection analysis of pertinent input parameters from a set of input parameters.

• Validate both architectures in two different types of buildings using different HVAC systems

(CAV and VAV) with real industrial data.

2.4.2 Methodology M2

The methodology M2 addresses the research question RQ2 and the specific objective SO2. In

this methodology, we present a new IAT prediction model based on a context-aware multivariate

LSTM (CAM-LSTM) composed by dual-stream neural network with an attention mechanism

which selects not only past but also future multivariate time series including controlled and
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uncontrolled inputs to predict a multi-steps temperature output. This model will be integrated in

the data-driven MPC framework presented in M3.

The methodology M2 is summarized as follows:

• Model the high-level interaction between input features using two dense layers with ReLU

activation to build a hidden representation.

• Model the low-level interaction between input features using two 1-D convolution layers with

ReLU activation functions to introduce non linearity and capture different important signal

patterns.

• Model the sensitive relationship between temperature and control parameters using self-

attention layers to capture the degree of relevance of control with respect to IAT.

• Model a LSTM-bidirectional layers which gives the multi-step IAT prediction of each zone

for the whole prediction horizon.

2.4.3 Methodology M3

The methodology M3 addresses the research question RQ3 and the specific objective SO3. In

this methodology, we design a new efficient data-driven control framework based on MPC

optimization problem in multi-zone smart building.

The methodology M3 is summarized as follows:

• Propose a new optimization control model to minimize energy, peak power and discomfort

costs with considering of self-tuned setpoint, cycling and temperature ramp.

• Integrate CAM-LSTM IAT prediction model in the control objective function of the control

model.

• Define a new algorithm based on genetic algorithm in order to solve the online data-driven

control model over a prediction horizon.
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2.4.4 Methodology M4

The methodology M4 addresses the research question RQ4 and the specific objective SO4. In

this methodology, we present a new scalable multi-agent control framework data-driven MPC

based named MAC allowing the optimal operation of HVAC system.

The methodology M4 is summarized as follows:

• Model a local optimization control problem for the agent that minimizes discomfort during

control horizon while considering a certain power budget defined by the coordinator.

• Model a global optimization problem for the coordinator that minimizes a carbon emission

cost and assigns an individual energy budget to each local agent.

• Propose a new multi-agent control algorithm to solve optimization control models in parallel

over a prediction horizon which ensure scalability to the control system.

• Validate the proposed MAC approach in simulation environment using Modelica.

A summary outline diagram of the thesis is presented in Fig. 2.2.
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Figure 2.2 Diagram outline of the thesis
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Abstract

Accurate Indoor Air Temperature (IAT) predictions for Heating, Ventilation, and Air Conditioning

(HVAC) systems is challenging, especially for multi-zone building and for different HVAC

system types. Moreover, the non-linearity of the building’s thermal dynamics makes the

IAT prediction more difficult since it is affected by complex factors such as, controlled and

uncontrolled points, outside weather conditions and occupancy schedule. This paper presents a

Long Short Term Memory (LSTM) model to predict IAT for multi-zone building based on direct

multi-step prediction with sequence-to-sequence approach. Two strategies, LSTM-MISO and

LSTM-MIMO, are built for multi-input single-output and multi-input multi-output, respectively.

The performance of these two strategies has been evaluated based on two case studies on real

smart buildings using Variable Air Volume (VAV) and Constant Air Volume (CAV) systems.

For both buildings, experimental results showed that the LSTM models outperform Multilayer

Perceptrons models by reducing the prediction error by 50%.

Keywords: HVAC, LSTM, Sequence-to-sequence, Multi-step ahead predictions, VAV, CAV.
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3.1 Introduction

The total energy used in buildings accounts for 40% of the global energy consumption and

up to 30% of carbon dioxide emissions in the world Costa et al. (2013); Yang, Yan & Lam

(2014). In building sectors, heating, cooling, ventilation and air-conditioning (HVAC) system is

responsible for more than half of the energy consumed Pérez-Lombard, Ortiz & Pout (2008).

The reduction of the energy consumption is crucial to enhance energy efficiency. However,

the minimization of the energy consumption may influence on the indoor comfort. Indoor air

temperature (IAT) is one of the essential thermal comfort parameters Baniasadi et al. (2018). It is

necessary that IAT variations stay around the upper and lower boundaries of comfort (67 and 82°F

respectively according to ASHRAE standard 55-2017 Standard (2017)). Therefore, accurately

modeling IAT is required. The IAT prediction contributes to keep IAT within a comfortable

range. Hence, the IAT prediction model helps to offer a future boundary setting and detects any

contradiction between estimated and actual conditions. The IAT prediction can be achieved

using physics-based or data-driven methods. Physics-based models are based on Fourrier’s

Law of heat conduction which is discretized into the finite difference method and typically

expressed in an resistance-capacitance analogy Rojas, Kunusch, Ocampo-Martinez & Puig

(2015). However, the IAT model varies from one zone to the others and is nonlinear since it is

affected by complex factors, for instance, controlled and uncontrolled points, outside weather

conditions, occupancy schedule, etc. These factors make the IAT prediction modeling using

physical approach more challenging and time consuming Afroz et al. (2018b), especially for

multi-zone building and when there are different types of HVAC systems to control Sturzenegger

et al. (2016). Data-driven models is based on the data generated from a large number of sensors

and thermostats already deployed. Data-driven approaches, to model IAT, have been studied

in different previous studies Chen et al. (2015); Huang et al. (2015a). The first advantage

to use data-driven approaches is to eliminate the cost and time-consuming task to build IAT

physics-based models. Besides, IAT model is easy to implement for a multi-zone system using

Artificial Intelligence (AI) techniques since it can deal with non-linearity in the system Serale

et al. (2018).
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Recently, Artificial Neural Networks (ANN) and nonlinear autoregressive network with exoge-

nous inputs (NNARX) have been extensively used to model indoor environments Huang et al.

(2015b); Attoue et al. (2018); Delcroix et al. (2020). However, prior work generally adopted a

recursive prediction strategy for predicting multi-step ahead He et al. (2014); Zeng et al. (2015);

Delcroix et al. (2020). For instance, the model predicts time 𝑡 and uses the predicted value to

predict 𝑡 + 1, and recursively until 𝑡 + 𝑝, where 𝑝 is the time horizon. This method accumulates

prediction errors at each time-step. Furthermore, the ANN method considers each input as

an independent parameter. It ignores the time dependency between sequential values. Unlike

many studies which used ANN with Multilayer Perceptrons (MLP) models or NNARX, this

paper investigates a time series approach for multi-step prediction model using Long Short-Term

Memory (LSTM) which is shown to be an accurate forecasting method for time series data Xu

et al. (2019); Riekstin et al. (2018). In this paper, two prediction structures are used to model

IAT in multi-zone with multi-step prediction: the LSTM-MISO architecture uses multi-input

single-output to predict the temperature for each zone; the LSTM-MIMO architecture uses

multi-input multi-output to predict IAT for all zones simultaneously with only one model. This

strategy shows clear advantages compared to prediction models presented in prior work Huang

et al. (2015b); Liang et al. (2019); Delcroix et al. (2020). The proposed LSTM framework is

based on a direct sequence-to-sequence (S2S) multivariate multi-step time series prediction

model, instead of the recursive model, which is helpful to better control the HVAC system’s

operation.

The key problem to be addressed in this paper is an IAT prediction model used for a CAV system

cannot be applied to a VAV system or vice versa without decreasing the performance. Therefore,

a general modeling process consider different properties of both systems are required to save

time and cost particularly when there are many HVAC systems to control inside a large-scale

building. Our proposed models have been tested in two different types of buildings: the first floor

of a hotel in Montreal with five VAVs systems and a small retail store with three zones supplied

by three CAVs systems. A general framework with specific feature selection approaches which
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can adapt to VAV and CAV types has been defined. Furthermore, we evaluated the effect of

tuning model hyperparameters in both systems to increase the accuracy of the prediction model.

The contributions of this paper are: 1) a data-driven framework for modeling IAT with LSTM-

MISO and LSTM-MIMO models based on the S2S approach; 2) different settings of previous

time-step and input parameters to increase the performance of multi-step prediction models; 3)

the validation of the proposed framework in two real cases with the industrial data;

This paper is structured as follows: Section 2 summarizes the prior work related to our research.

Section 3 describes the two types of buildings used in this study. Section 4 illustrates the detailed

methodology of our proposed data-driven framework for modeling IAT for both MISO, and

MIMO architectures using S2S approach. Section 5 discusses the experimental results and

compares the performance of the proposed models. Finally, we conclude key findings and

present future research directions.

3.2 Related Work

The main advantage of a data-driven approach is to reduce the cost and time-consumed by

traditional physics-based techniques. Moreover, the data-driven approaches can deal with

non-linearity, incomplete, or noisy data Serale et al. (2018). Machine-learning algorithms have

been applied to design dynamic models of the HVAC system. For instance, the multi-step

prediction of IAT can be used in a predictive control approach then leads to improving the

thermal comfort and decreasing the energy consumption of buildings Xu et al. (2019).

The key common algorithms applied in data-driven approaches that have been used extensively

in the building sector for IAT modeling are regression trees Jain et al. (2018), random forests

Smarra et al. (2018), nonlinear autoregressive network with exogenous inputs (NARX) Afroz

et al. (2018b), NNARX Delcroix et al. (2020), ANN Attoue et al. (2018) and Recurrent Neural

Networks (RNN) Javed et al. (2014). Table 3.1 summarizes state-of-the-art of data-driven

approaches. Jain et al. Jain et al. (2018) combine multi-output regression trees to represent

the system’s dynamics. Yet, the modeling accuracy using single trees to constitute multi-step
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prediction for zone temperature is strongly affected by over-fitting and high variance. The

authors in Smarra et al. (2018) model the temperature by a set of linear regression models,

which change after each time step. They model their system with regression trees to predict

temperature for multi-zone using MISO structure and extend them to a random forest model.

However, their model is complicated and time-consuming.

Table 3.1 Comparison of models prediction

References Data-driven model HVAC type Prediction horizon Type of model Tuning Model

Du et al. (2014) ANN - Clustering VAV - MISO Yes

Castilla et al. (2013) ANN - MLP Solar cooling 60 s MISO Yes

Liang et al. (2019) UrbanFM - - - No

Huang et al. (2015a) ANN - MLP CAV 2 hours MISO and MIMO No

Attoue et al. (2018) ANN - MLP CAV 1 to 4 hours MISO Yes

Xu et al. (2019) RNN - LSTM CAV 5 to 30min MISO No

Abdel-Nasser & Mahmoud (2019) RNN - LSTM - 1 hour MISO No

Afroz et al. (2018b) RNN - NARX VAV 28 days MISO and MIMO Yes

Delcroix et al. (2020) RNN - NNARX CAV 1 hour MISO Yes

Huang et al. (2015b) RNN - NNFL CAV 6 hours MISO No

He et al. (2014) ANN - MLP VAV 15 min MISO No

Zeng et al. (2015) ANN - MLP VAV 15 min MISO No

Jain et al. (2018) Regression Trees CAV 6 hours MISO No

Smarra et al. (2018) Random forests CAV 6 hours MISO No

Nowadays, the ANN model has been widely applied for several type of applications in HVAC

sector, such as Fault Detection and Diagnostics (FDD) Du et al. (2014), thermal comfort

approximation Castilla et al. (2013) and IAT prediction Attoue et al. (2018); Huang et al.

(2015b). Du et al. Du et al. (2014) developed ANN based tool to detect faults in the supply

air temperature control loop in commercial building with VAV systems. The authors used

a combined neural networks model which includes the basic neural networks and auxiliary

neural networks to detect faults, and then used clustering approach for classification to diagnose

the fault sources. The proposed models diagnose the faults using context information related

to the monitoring parameters such as supply chilled water temperature, return chilled water

temperature, chilled water flow rate and chilled water valve position. The principal component

analysis is carried out to analyze the contributions of these parameters in the supply temperature

control loop. The occurrence of faults is computed according to a combined relative error and

its threshold. Castilla et al. Castilla et al. (2013) proposed a context-aware neural networks

model using human and environmental variables for approximating thermal comfort evaluation
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for HVAC systems. Their model avoids the costs involved in calculating the classical predictive

mean vote (PMV) index in terms of the computation time and the extensive sensor network size

required to collect the input data. Moreover, it allows the use of PMV index within real-time

model predictive control framework. Attoue and al. Attoue et al. (2018) developed a simple

ANN-MISO model to predict indoor temperature for different forecasting time-steps. They

proposed a methodology based on the selection of pertinent input parameters from a large set of

features. Their experimental results show that outdoor and facade temperature data provides

good forecasting results of indoor temperatures. Moreover, their results show that predictions

were accurate for up to two hours. However, the predictions have unsatisfactory accuracy for

more than four hours forecast ahead. Huang et al. Huang et al. (2015b) develop an hybrid

MPC based on neural network feedback-linearization model to predict IAT over six hours ahead.

The goal of this approach is to linearize the system using the neural network through feedback

to build nonlinear functions approximation. The type of HVAC system used in Huang et al.

(2015b) is designed with constant-air volume (CAV).

Prior studies also model IAT for a VAV system Zeng et al. (2015); Afroz et al. (2018b). An

indoor air temperature prediction models of multi-zone using MISO structure are proposed by

He et al. (2014). Zeng et al. Zeng et al. (2015) developed an optimal control of multi-zones VAV

system. They elaborated a data-driven predictive model using MLP to predict the environmental

conditions of each zone and optimize energy consumption. The IAT is predicted with only

one-step ahead. Moreover, multi-step prediction is necessary to lead a real-time implementation

in the control phase. Moreover, only two control parameters were used as inputs in the prediction

model in He et al. (2014); Zeng et al. (2015). Neither specific feature selection methodology nor

model tuning approach were implemented. The context information like weather data, control

parameters and other external factors might improve the future prediction. Liang et al. Liang

et al. (2019) designed a framework named UrbanFM based on deep neural networks. UrbanFM

is composed of two models, an inference network component and an external factor fusion

component. The inference network component generates a fine-grained flow from coarse-grained

inputs by using a novel feature extraction and distributional upsampling modules. The external
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factor fusion component handles the context information (like the day of the week, time of the day,

weather, other external factors) to capture near and distant spatio-temporal dependencies. This

component plays an important role in providing a prior knowledge and improves the inference

performance under sparse sampling. A feature selection investigation is done to find the exact

number of control parameters that must be included as input in the predictive model to increase

the accuracy. For example, the CAV system have only basic control parameters like heating

stages, cooling stages and fan stages. On the other hand, the VAV systems have more parameters

like supply air temperature, damper position, etc. In the literature, IAT prediction models have

been proposed for either the CAV or VAV systems, but to the best of our knowledge, no prediction

model has been tested or adapted on both types of systems at the same time. In addition, the

development of multiple models for multi-zones are time-consuming. Yet, the size of the control

problem grows rapidly as the number of air handling units (AHUs) and controlled zones increase.

A multi-zone modeling approach using the MLP-MIMO model was proposed by Huang et al.

(2015a) to forecast two hours ahead temperature inside an open space commercial building.

Afroz et al. Afroz et al. (2018b) predict IAT in multi-zone buildings using a different tuned

model based on NARX model. The authors use MISO architecture to predict one step ahead then

MIMO architecture to predict multi-step ahead for the same zone. In this paper we use MIMO

atchitecture to predict multi-zone with multi-steps ahead. Delcroix et al. Delcroix et al. (2020)

predicted the behaviors of IAT using NNARX-MISO. They carried out their experiments with the

same type of CAV building used in this paper, and they compared their results with the gray-box

model and the linear autoregressive model with exogenous inputs (ARX). Their comparisons

show the NNARX model achieves the highest performance the alternative models. However, the

authors assume that the future exogenous inputs (control parameters, outdoor temperature, etc.)

are known, which cannot be true in the real case. All Afroz et al. (2018b), Huang et al. (2015a)

and Delcroix et al. (2020), develop a one-step forecasting model, then use a recursive multi-step

forecasting strategy to predict the future. Such recursive strategy has two major limitations. First,

it accumulates prediction errors, because prediction values are used instead of real observations.

This method degrades the performance of the model as the number of future steps increases.

Second, it considers each input parameter as an independent parameter. Consequently, the
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temporal dependency among continuous variables is ignored, while the historical data collected

from HVAC systems are generally time series data. These limitations can be tackled by adopting

a technique that takes into account the temporal relationship among input parameters and using

a direct prediction approach to avoid the problem of error accumulation. A powerful solution

for modeling sequence dependency is RNN models. LSTM network is a RNN that overcomes

the problem of training a recurrent network with the architecture of learnable gates. LSTM

had been found suitable for electric consumption, prices forecast, and also for emission factor

prediction to schedule appliances use in the smart house domain Riekstin et al. (2018); Rahman

et al. (2018). Recently, a LSTM-RNN has been proposed in Abdel-Nasser & Mahmoud (2019)

for predicting the photovoltaic power. Specifically, the authors compare the prediction accuracy

of five different LSTM models. Their results show LSTM for regression with time steps and

LSTM for regression using the window technique achieve the best performance. However,

the authors do not take into account the context-information (such as wind speed, outside air

temperature, time of day and day of week) in their models. A few studies have investigated the

usefulness of LSTM for IAT multi-step predictions in the HVAC system Xu et al. (2019). An

LSTM prediction model with MISO structure was proposed by Xu et al. (2019) to predict IAT

until 30 minutes using a recursive prediction approach. Nevertheless, their proposed model did

not show clear advantages compared to the traditional prediction model like SVM and decision

tree. Indeed, the use of recursive prediction can decrease the prediction performance. This

paper systematically investigates the performance of direct multi-step prediction approach using

LSTM-MISO and LSTM-MIMO architectures in CAV and VAV HVAC systems.

3.3 Smart Building Models

3.3.1 CAV-building

CAV systems supply air at a constant volume and variable temperature Yan, Luh & Pattipati

(2017). Fig. 3.1 (a) illustrates one of three zones of retail store with a CAV system. The

fresh air entering from outside is mixed with the return air to produce fresher air to the fan
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ventilation. The speed of the fan is fixed, and it is controlled by an (ON/OFF) switch. Thus, even

for part-load conditions, the fans use the maximum energy that leads to wasting energy. The

mixed air is conditioned by the heating/cooling coils, and then distributed to the zones through

different diffusers. There is no controllable terminal damper in the conditioned area zone. The

terminal is set at a fixed opening level and cannot be actively controlled. The air returns from

the zone to the roof top unit then it can be rejected outside or mixed with the fresh air. The

IAT and humidity are monitored by sensors. There is significant thermal coupling between the

three zones and with the neighbor spaces. The CAV system uses five controlled points for each

zone 𝑖, to maintain the IAT at the comfort value, the Fan Ventilation Stage (𝐹𝑉𝑆), two Heating

Stages (𝐻𝑆1 and 𝐻𝑆2) and two Cooling Stages (𝐶𝑆1 and 𝐶𝑆2) as described in Table 3.2, and

enumerated by 1, 2 and 3 respectively in Fig. 3.1 (a). The fan, cooling, and heating stages of the

CAV are controlled by the heating and cooling set-points versus the zone’s temperature. The

total power use of each CAV system in monitoring time Δ𝑡 is calculated according to the stages

of control parameters, and it is stated as:

𝑃𝑖 (𝑡) =
2∑

𝑗=1

Δ𝑡∑
𝑡=0

(𝐶𝑆 𝑗𝑖 (𝑡).𝐶
𝑐 + 𝐻𝑆 𝑗𝑖 (𝑡).𝐶

ℎ) +

Δ𝑡∑
𝑡=0

𝐹𝑉𝑆𝑖 (𝑡).𝐶
𝑓 ,∀𝑖 (3.1)

Where 𝑃𝑖 (𝑡) represent the total amount of power at time 𝑡 for zone 𝑖, 𝐶𝑆 𝑗𝑖 (𝑡) = {0, 1} is the stage

𝑗 of the cooling unit of zone 𝑖 at time 𝑡, 𝐻𝑆 𝑗𝑖 (𝑡) = {0, 1} is the stage 𝑗 of the heating unit of

zone 𝑖 at time 𝑡, 𝐹𝑉𝑆𝑖 (𝑡) = {0, 1} is the stage of the fan unit of zone 𝑖 at time 𝑡, 𝐶𝑐 is the capacity

in kW of the cooling equipment 𝑖, 𝐶ℎ is the capacity in kW of the heating equipment 𝑖 and 𝐶 𝑓 is

the capacity in kW of the fan unit. The total amount of power 𝑃𝑖 (𝑡) have a positive influence on

the prediction model as described in Table 3.5 and will be used as input to the model.

3.3.2 VAV-building

Figure 3.1 (b) shows a VAV system deployed in the ground floor of a hotel. It has one air handling

unit (AHU), AC1 which serves a conditioned area with five zones. The main components of the

AHU are cooling/heating coils and an air supply fan represented by system components number
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12, 6, and 13 in Fig. 3.1 (b), respectively. Each zone has a Variable Air Volume (VAV) box

and a duct heater controlled by the control parameters, heating/cooling stage 1 and 2, defined

by the system components number 8 and 9, respectively. The AHU circulates the air in its

zones by supplying fresh air from outside that is passed by the fresh air damper to control

how much fresh air is needed. The fresh air damper and exhaust air are modulated together to

maintain the fluidity of the pressure of the circulating air in the system ducts. The fresh air is

then conditioned by heating or cooling as per the zone demand by the heating/cooling coils

in the supply duct. Since the system’s fan is controlled by a binary switch, not by a Variable

Frequency Drive (VFD), the pressure in the ducts is regulated by the bypass air damper (BAD).

The BAD manage the change in air pressure that would occur due to the different VAVs damper

discrete opening levels in each zone 𝐷𝑖 (𝑡) (from 0 to 100%). If a specific zone demands more

cooling/heating, the cooling/heating coils in that respective VAV’s zone will operate to meet the

required temperature set-point Yan et al. (2017). The Mixing air damper (MAD) is used as a

form of energy recovery mechanism since the returning air has already been conditioned when it

was in the supply duct. The MAD is modulated if the return temperature is within the desired

range, whether it is cooling or heating season when compared to the fresh air temperature to

precondition the fresh air before it is exposed to the cooling/heating coils so that achieving the

desired temperature will cost less. The VAV system can save more energy compared to CAV

Yao, Lian, Liu, Hou & Wu (2007). However, it is difficult to accurately model the IAT variations

in VAV systems regarding the complex dependencies of the elements in the AHU system and the

high number of control parameters as described in Table 3.2. The action taken by each control

parameter can change the IAT value.

The VAV system is controlled by eleven control points, to ensure the heating/cooling demand and

satisfy the thermal comfort. As described in Table 3.2, six control points in AC1 are represented

by the set of system components numbered from 1 to 6 and the other five control points in each

zone 𝑖 are numbered from 7 to 11. The damper position of each zone 𝑖 has a direct impact

on energy load, calculated by equation 3.2, where 𝐷𝑖 (𝑡) represents the opening level of each

VAV box damper of each zone 𝑖 and 𝜌 is the fan demand in (kW) of the air handling unit AC1.
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In other words, this equation gives the power used by each opening action for each VAV box

damper. This parameter is an uncontrolled variable and will be used as input to the prediction

model as described in Table 3.3.

𝑃𝑖 (𝑡) =

(
𝐷𝑖 (𝑡)∑𝑁

𝑖=1 𝐷𝑖 (𝑡)

)
∗ 𝜌,∀𝑡 (3.2)

Table 3.2 Control points parameters

CAV

building

VAV

building

Control

parameters
Description

Unit

value

X 𝐵𝐴𝐷 Bypass air damper %

X 𝐶𝑆1 Cooling stage 1 for AC1 b

X 𝐶𝑆2 Cooling stage 2 for AC1 b

X 𝑀 𝐴𝐷 Mixing air damper %

X X 𝐹𝑉𝑆 Fan ventilation stage b

X 𝐻𝑂 Heating output %

X 𝐷𝑖 Damper position opening level %

X X 𝐻𝑆1𝑖/𝐶𝑆1𝑖 Heating/Cooling stage 1 for zone 𝑖 b

X X 𝐻𝑆2𝑖/𝐶𝑆2𝑖 Heating/Cooling stage 2 for zone 𝑖 b

Table 3.3 Multivariate inputs variables

VAV-Building CAV-Building

Inputs Description Unit Inputs Description Unit

Controlled variables, 𝑣𝑖 (𝑡) Controlled variables, 𝑣𝑖 (𝑡)
𝑣𝑖 (𝑡) The controlled vector at time 𝑡 of zone 𝑖 - 𝑣𝑖 (𝑡) The controlled vector at time 𝑡 of zone 𝑖 -

Uncontrolled variables, 𝑢𝑖 (𝑡) Uncontrolled variables, 𝑢𝑖 (𝑡)
ℎ Hour of day Integer ℎ Hour of day Integer

𝑑 Day of week Integer 𝑑 Day of week Integer

𝑆𝑖 Supply air temperature of each zone 𝑖 °C 𝐻𝑖 Indoor humidity of the zone 𝑖 %

𝑆𝑎𝑐1 Supply air temperature of AC1 °C 𝑇𝑜𝑢𝑡
𝑖 Outdoor air temperature °C

𝐻𝑑𝑖 Heating demand of zone i CFM 𝑇𝑜𝑢𝑡
𝑖+𝑝 Predicted Outdoor air temperature °C

𝑇𝑜𝑢𝑡
𝑖 Outdoor air temperature °C 𝑃𝑖 Power use of zone 𝑖 kW

𝑇𝑜𝑢𝑡
𝑖+𝑝 Predicted Outdoor air temperature °C
𝑃𝑖 Impact of damper position on temperature value kW

Target Variables, 𝑦𝑖 (𝑡) Target Variables, 𝑦𝑖 (𝑡)
𝑇𝑖𝑛

𝑖 Indoor temperature of zone i °C 𝑇𝑖𝑛
𝑖 Indoor temperature of zone i °C
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(a) CAV system for one zone.

(b) Air handling unit AC1 with VAV type of HVAC system.

Figure 3.1 Schematic diagram of air handling unit in both

buildings with CAV and VAV systems

(a) represent CAV-building, and (b) represent VAV-building
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3.4 Data-driven framework for modeling IAT

3.4.1 Pre-processing methodology

3.4.1.1 Data collection and feature selection

The data was collected from November 1st, 2018, at 12 a.m. to March 31, 2019, at 11:59 p.m.

with 10-minutes sampling intervals. Since not all the sensors are sending the data at the same

time step, we developed pre-processing algorithms to sample and interpolate the data every 10

minutes.

A feature selection process is executed to obtain a set of principal variables using Extra Trees

classifier and correlation techniques. We apply this method to each buiding datasets. Significant

features are selected as input to predict the IAT and they are summarized in Table 3.3. In order

to build predictive models, the selected features include context-information are categorized

into three groups:

• Controlled features: Includes current control actions that impact HVAC system operations.

The set 𝑣𝑖 (𝑡) is the vector of the control variables at time 𝑡 for each zone 𝑖 as depicted in Table

3.2. The set of control variables depends on the type of building as shown in section 3.3.

• Uncontrolled features: The set 𝑢𝑖 (𝑡) is the vector of the measurable input variables at time 𝑡

for each zone 𝑖 (e.g. the supply air temperature, the outdoor air temperature, the impact of

damper position on temperature value, etc.).

• Target features: The set 𝑦𝑖 (𝑡) is the vector 𝑇𝑖𝑛
𝑖 (𝑡) of IAT for each zone 𝑖.

We add the hour of day and day of the week as inputs. The hour input leads to know the

difference between temperature profile during occupancy and unoccupancy time. The day input

leads to distinguish between business and weekend days. All selected features are normalized

between 0 and 1 before they are used for training, to prevent the dominant effect of particular

variables. The equation in (3.3) is used to scale the variables into [0,1].
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𝑥𝑠𝑐𝑎𝑙𝑒 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(3.3)

Where 𝑥𝑠𝑐𝑎𝑙𝑒 represent the scaled variable, 𝑥 define the variable value before scaling, 𝑥𝑚𝑖𝑛 and

𝑥𝑚𝑎𝑥 are the minimum and maximum values of the dataset to be scaled, respectively.

3.4.1.2 Model training organization for multi-step prediction

After data pre-processing steps, the dataset was split into randomly sampled training (60 % of

the data), validation (20 % of the data) and testing (20 % of the data) sets from five months of

data. Models are developed using the training and validation datasets and the prediction results

are from the test dataset. The IAT can be easily predicted in short term with only 10 minutes

ahead prediction since they follow a slow dynamic process. However, a long-term prediction is

needed for optimal operational of the HVAC system. To create the dataset to train the multi-step

prediction model, we test different configurations, with a different number of previous time

steps and future time steps. In this paper, we looked at multivariate inputs for multi-step time

series forecasting model. The multivariate multi-step time series forecasting is a challenging

task, especially in the preparation of time series data and the definition of the shape of multiple

inputs and multi-step outputs for the model. Therefore, the time series data are transformed into

a supervised learning problem. Each dataset of each building was manipulated and re-scaled in

such a way that it can feed the prediction model. The multivariate time series dataset for each

zone 𝑖 is defined as:

𝑋𝑙
𝑖 (𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣𝑖 (𝑡 − 𝑙 + 1) 𝑢𝑖 (𝑡 − 𝑙 + 1) 𝑌𝑖 (𝑡 − 𝑙 + 1)

𝑣𝑖 (𝑡 − 𝑙 + 2) 𝑢𝑖 (𝑡 − 𝑙 + 2) 𝑌𝑖 (𝑡 − 𝑙 + 2)

𝑣𝑖 (𝑡 − 𝑙 + 3) 𝑢𝑖 (𝑡 − 𝑙 + 3) 𝑌𝑖 (𝑡 − 𝑙 + 3)
...

...
...

𝑣𝑖 (𝑡 − 1) 𝑢𝑖 (𝑡 − 1) 𝑌𝑖 (𝑡 − 1)

𝑣𝑖 (𝑡) 𝑢𝑖 (𝑡) 𝑌𝑖 (𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.4)
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Each row of the matrix 𝑋𝑙
𝑖 (𝑡) represents the input vector given to the network at each time step.

The sliding window algorithm is applied to define the shape of training data sets and predicted

vectors. Window method leads to the use of a set of recent last time steps to predict the next time

step. The window length 𝑙 represents the number of past time steps used before the predicted

horizon 𝑝, and it defines the length of the data over which the algorithm train the data. The

window moves as the new data comes in, sample by sample, over the data used for training. In

fact, the algorithm uses the recently measured data samples to replace the previous data frame.

Consequently, the model can be retrained and updated using the newest dataset. For instance, to

predict 𝑝 time-steps, we use a window of 𝑙 size which include 𝑙 prior input vectors. The size of

the window is a parameter that can be tuned according to past and future steps to predict. For

example, if six prior input vectors (𝑙=6=60min) of each of three inputs time series are used, and

there are three-time steps (𝑝=3=30min) of temperature must be predicted, then the input at a

time 𝑡 can be represented as:

𝑋6
𝑖 (𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣𝑖 (𝑡 − 5) 𝑢𝑖 (𝑡 − 5) 𝑇𝑖𝑛
𝑖 (𝑡 − 5)

𝑣𝑖 (𝑡 − 4) 𝑢𝑖 (𝑡 − 4) 𝑇𝑖𝑛
𝑖 (𝑡 − 4)

𝑣𝑖 (𝑡 − 3) 𝑢𝑖 (𝑡 − 3) 𝑇𝑖𝑛
𝑖 (𝑡 − 3)

𝑣𝑖 (𝑡 − 2) 𝑢𝑖 (𝑡 − 2) 𝑇𝑖𝑛
𝑖 (𝑡 − 2)

𝑣𝑖 (𝑡 − 1) 𝑢𝑖 (𝑡 − 1) 𝑇𝑖𝑛
𝑖 (𝑡 − 1)

𝑣𝑖 (𝑡) 𝑢𝑖 (𝑡) 𝑇𝑖𝑛
𝑖 (𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.5)

And the output will be:

𝑌3
𝑖 (𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑇𝑖𝑛

𝑖 (𝑡 + 1)

𝑇𝑖𝑛
𝑖 (𝑡 + 2)

𝑇𝑖𝑛
𝑖 (𝑡 + 3)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.6)

The input data is two-dimensional matrix, with six-time steps of samples including controlled,

uncontrolled and target features. And, the output data is two dimensional matrix. For each

sample of 𝑋6
𝑖 (𝑡), three-time steps 𝑌3

𝑖 (𝑡) will be predicted for each zone 𝑖.
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3.4.2 Data driven LSTM-based framework for multi-step IAT prediction

The predictive model of the IAT of each zone 𝑖 has the form shown in equation 3.7.

𝑇𝑖𝑛
𝑖 (𝑡 + 𝑘) = 𝑓 (𝑇𝑖𝑛

𝑖 (𝑡), 𝑣𝑖 (𝑡), 𝑢𝑖 (𝑡)),∀𝑖 ∈ [1, 𝑁] (3.7)

The historical data collected from buildings have many features such as IAT, relative humidity,

heating demand, damper positions, heating/cooling stages, etc. The interaction between these

features is complicated and nonlinear. Therefore, it might be difficult to build a linear or

polynomial regression, and it can provide a poor prediction accuracy. This is why nonlinear

models like neural network models are used. To construct the predictive models we will use two

types of neural network models, LSTM and MLP, which will be discussed in details in the next

sections. We use direct-S2S forecasting models to predict different horizon for MISO and MIMO

structure. This approach involves a heavier computational load than recursive forecasting used

by Huang et al. (2015b). These models will be used in future work, to construct the optimization

model for control purpose.

3.4.2.1 LSTM Model Definition

Few previous steps data can lead to getting an accurate predictive model; however, in some cases,

older data can lead to recognizing general trends that recent data fail to show. This problem is

called Long-Term Dependencies. The characteristic of MLP and basic RNN cannot solve this

problem. On the one hand, MLP does not consider the dataset as a time series. Moreover, RNN

fails to consider recent with distant past data in the learning phase. To deal with long terms

dependencies in time series data, we use the LSTM model introduced by Schmidhuber et al.

Gers, Schraudolph & Schmidhuber (2002). LSTM is one of many variations of the RNN. The

ability of LSTM to reduce the vanishing and exploding gradient problems efficiently makes such

an approach more appropriate for contexts having a long-term dependency problem. Since the

HVAC data is sequential, and future outputs depend not only on the current values of inputs but
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also on the previous information; hence a model based on LSTM is a good choice to predict IAT

in the HVAC system. The main advantage of LSTM is the use of gates Hochreiter & Schmidhuber

(1997) to manage its own memory by choosing to update or not the information goes through

the cell. In fact, LSTM network is able to learn long-term dependencies from an input sequence

thanks to its internal memory cells. An example of LSTM cell is described in Fig. 3.2.

Figure 3.2 Diagram for LSTM cell

Taken from Alom et al. (2019)

The information will be added or removed according to the cell state defined by three different

gates. The input gate 𝑖𝑡 is responsible for the process of controlling the input activation and

adding new information to the cell state. The forget gate 𝑓𝑡 is responsible for deciding if the

memory cells require to remember or forget its former status. The output gate 𝑜𝑡 controls the

output activation and determines if the information from the current cell states needs to be sent

or not to the next layer. The equations for the input gate 𝑖𝑡 , forget gate 𝑓𝑡 and output gate 𝑜𝑡 can

be expressed by:

𝑖𝑡 = 𝜎 (𝑊𝑖 [ℎ𝑡−1, 𝑥𝑡 + 𝑏𝑖]) (3.8)

𝑓𝑡 = 𝜎
(
𝑊 𝑓

[
ℎ𝑡−1, 𝑥𝑡 + 𝑏 𝑓

] )
(3.9)
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𝑜𝑡 = 𝜎 (𝑊𝑜 [ℎ𝑡−1, 𝑥𝑡 + 𝑏𝑜]) (3.10)

Where 𝑊𝑖, 𝑊 𝑓 and 𝑊𝑜 are the weight matrices, 𝑏𝑖, 𝑏 𝑓 and 𝑏𝑜 are the biases for the input gate,

forget gate and output gate, respectively; ℎ𝑡−1 is the previous hidden state and 𝑥𝑡 is the input at

current time step. The 𝜎 operator is the logistic sigmoid function and it is used as an activation

function in the hidden layer which range from 0 to 1 and it is described by (3.11).

𝜎(𝑥) = (1 + 𝑒−𝑥)−1 (3.11)

3.4.2.2 LSTM-based direct Sequence to Sequence (S2S) prediction architecture

LSTM is useful for different types of applications, which need various architecture according to

the studied problem. In this paper, the problem can be formulated as, given a time series of

observations as input, predict a sequence of observations as output for a range of future time

steps.

… … 

… 

… Single prediction output for the  
whole prediction horizon p  

Past l Input 
 

(t+1) (t+2) (t+p) 

(t-l+1) (t-l+2) (t-1) (t) 

States 

Figure 3.3 LSTM-based direct-S2S for MISO architecture

In order to further improve the flexibility of the temperature forecasting methodology, an LSTM

based direct sequence to sequence (direct-S2S) architecture is investigated to solve the defined

problem. This method was used in the video classification problem, which takes video frames as
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input and tries to label each frame of the video with the consideration of the temporal evolution

of the features for each time-step Lipton, Kale, Elkan & Wetzel (2015).
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Multiple prediction outputs  

for the whole prediction  
horizon p for n zones 

(t+1) (t+2) (t+p) … 

(t+1) (t+2) (t+p) … 

Steps 

Figure 3.4 LSTM-based direct-S2S for MIMO architecture

Two direct-S2S models are developed for MISO and MIMO architectures. The direct-S2S for

LSTM-MISO architecture uses the input matrix 𝑋𝑙
𝑖 (𝑡) with 𝑙 past time steps to predict the output

vectors 𝑦𝑖 (𝑡 + 1), 𝑦𝑖 (𝑡 + 2), ..., 𝑦𝑖 (𝑡 + 𝑝) with 𝑝 time steps ahead, as shown in the Fig. 3.3. For the

MISO architecture, one model is developed for each zone 𝑖. However, in the case of direct-S2S

for the LSTM-MIMO architecture, one model is developed for all the zones, as shown in the

Fig. 3.4. It includes as input all 𝑛 zones feature vectors, 𝑥𝑖, 𝑥𝑖+1, ..., 𝑥𝑛 with all 𝑙 past time steps

of each feature vector. All controlled variables of all 𝑛 zones are included in the input vectors.

Moreover, this architecture has 𝑛 output prediction vectors, 𝑦𝑖, 𝑦𝑖+1, ..., 𝑦𝑛 with 𝑝 future steps
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each. The two time steps, 𝑙 and 𝑝, have a variable length. The main advantage of direct-S2S

architecture is that it allows tuning 𝑙 to have the best prediction performance of 𝑝 steps. As

discussed in section 3.5, we set a time step ahead to 2 hours and we tune 𝑙 to 5, 10 and 12 hours,

then choose the 𝑙 giving the best prediction performance.

3.4.3 Data driven predictive models deployment

3.4.3.1 Baseline models deployment

The proposed models are compared with relevant past studies’ models as baselines and there are

as follows:

• MLP Huang et al. (2015a): MLP is a class of feedforward artificial neural network. MLP

connects multiple layers in a directed graph. In this paper, the MLP model implemented

includes three layers. The first layer is fed by a set of input features presented in Table 3.3.

The second layer is a hidden layer, containing 200 neurons. The third layer is the output layer

with 𝑝 linear neurons. A direct MLP-MISO and MLP-MIMO models are implemented for

VAV and CAV system cases.

• NNARX Delcroix et al. (2020): this network is implemented using a recursive prediction

method. The exogenous inputs contain the controlled variables 𝑣𝑖 (𝑡) and uncontrolled

variables 𝑢𝑖 (𝑡). We used the forecasted weather data available online, and the real observations

for 𝑣𝑖 (𝑡). The number of hidden layers and neurons are set to 2 and 200 respectively. The

activation function is ReLU and the solver is Adam. The NNARX-MISO architecture is

implemented for VAV and CAV system use cases.

• CANN Liang et al. (2019): The context-aware neural network model (CANN) is based on

the model proposed in Liang et al. (2019), named UrbanFM. CANN uses two components:

1) the external factor fusion component to integrate context information and 2) the inference

network component to include the IAT target feature. The inputs of the first components

are the controlled variables 𝑣𝑖 (𝑡) and uncontrolled variables 𝑢𝑖 (𝑡). The embedding external

factors vector concatenate the continuous features like outdoor temperature 𝑇𝑜𝑢𝑡
𝑖 (𝑡) and



53

categorical features include the hour of day ℎ, the day of the week 𝑑, the on/off controlled

variables 𝑣𝑖 (𝑡). This vector is fed into the feature extraction module of the first component to

design the complicated interaction. The inputs of the second components concatenates the

context features extracted from the first component and the target information (IAT). Then

the output of the first and second component are concatenated to fit a convolution layer and

predict the future steps of IAT.

3.4.3.2 LSTM models deployment

To consider a direct-S2S architecture, LSTM model might transform the input sequence into the

correct output sequence representation in the learning phase. Therefore, we design the LSTM

model with four fully connected layers used repeat vector and time distributed layers to form

the LSTM model for MISO and MIMO architectures. For the case of LSTM-MISO model, the

vector-matrix 𝑥(𝑡) represents the input for the first LSTM layer, which consists of 200 LSTM

cells. The repeat vector, repeats one time for each time step 𝑝 the incoming 1D inputs vector

from the previous LSTM layer to create 2D matrix output in order to include multiple future

time steps in the model. For instance, if the shape of the input was (32), and we want to predict

three times ahead, so the output shape of the repeat-vector layer would be (3, 32). The output 2D

matrix from the repeat vector layer, passes as the input to the LSTM layer. At each moment, the

output of the LSTM layer is connected to the fully connected Dense layer. Then, time distributed

layer applies a specific layer such as Dense layer to every sample it receives as an input to get the

final output 𝑦𝑡+1 with 𝑝 time steps ahead. The exact architecture for direct-S2S LSTM-MISO

model is as follows:

1. Input (𝑥𝑖 (𝑡 − 𝑙), 𝑥𝑖 (𝑡 − 𝑙 + 1), ..., 𝑥𝑖 (𝑡))

2. LSTM layer (N=200, activation function=ReLU)

3. Repeat vector layer (N=1)

4. LSTM layer (N=200, activation function=ReLU)

5. Time distributed layer (N=100, activation function=ReLU)

6. Fully connected (N=1, activation function=linear)
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7. Output (𝑦𝑖 (𝑡 + 1), 𝑦𝑖 (𝑡 + 2), ..., 𝑦𝑖 (𝑡 + 𝑝))

The main differences between MISO and MIMO deployment architecture are the input and

output data. The exact architecture for direct-S2S LSTM-MIMO model is as follows:

1. Input (𝑥𝑖, 𝑥𝑖+1, ..., 𝑥𝑛 with all 𝑙 past time steps of each vector)

2. LSTM layer (N=200, activation function=ReLU)

3. Repeat vector layer (N=𝑝)

4. LSTM layer (N=200, activation function=ReLU)

5. Time distributed layer (N=100, activation function=ReLU)

6. Fully connected (N=𝑝, activation function=linear)

7. Output (𝑦𝑖, 𝑦𝑖+1, ..., 𝑦𝑛 with 𝑝 future steps each)

3.4.3.3 Modeling Error

To evaluate the performance of proposed predictive models, three metrics in 3.12, 3.13 and 3.14

are used to evaluate the models: the mean absolute percentage error (MAPE), the root mean

square error (RMSE) and the mean absolute error (MAE). The MAPE measures the size of the

error in percentage terms, and a lower result indicates better performance. A high MAPE score

indicates a high error range. The RMSE penalizes more larger error values, and can be bigger

than MAE for outliers. MAE is a commonly used metric to evaluate forecast accuracy, and

corresponds to the mean value of the sum of absolute differences between actual and forecast

values.

𝑀 𝐴𝑃𝐸 =
100

𝑛
×

𝑛∑
𝑖=1

���� 𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

���� (3.12)

𝑅𝑀𝑆𝐸 =

√√
1

𝑛

𝑛∑
𝑘=1

(𝑦𝑘 − 𝑦𝑘 )
2 (3.13)

𝑀 𝐴𝐸 =
1

𝑛

𝑛∑
𝑘=1

|𝑦𝑘 − 𝑦𝑘 | (3.14)
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Where 𝑦 and 𝑦̂ define the real and predicted outputs respectively, and 𝑛 is the total observation

number.

3.5 Results and discussion

The performance of multi-step IAT prediction models is evaluated on LSTM, NNARX and MLP

models applied on real data collected from hotel and retail store in Montreal with VAV and

CAV system respectively. Five zones are investigated for a VAV-building and three zones for a

CAV-building. Only winter season data is considered in this study, but the same models can be

applied to other seasons in further studies. The choice of the number of previous steps for the

training model is not obvious and it can affect the performance of the prediction. An example of

the effect of using a different number of previous time steps to predict two hours in zone 1-2

in VAV-building is showed in TABLE 3.4. It is observed that the use of ten hours to predict

two hours gives the best performance. More experiments have been executed on different zones

to find the optimal number of previous steps for different number of prediction steps ahead.

Finally, we used last 1 hour and 5 hours to predict 30 minutes and 1 hour ahead, respectively.

Furthermore, we consider ten previous hours to predict 2 hours, 4 hours, and 6 hours ahead. In

the following, we present the feature selection procedure and then we evaluate the performance

of multi-step prediction models for MISO and MIMO architectures.

Table 3.4 Effect of the number of previous steps

to predict two hours in zone 1-2 in VAV building

Model
Previous

steps (h)

Future

steps (h)

MAPE

(%)

RMSE

(°C)

MAE

(°C)

1 5 2 0.4880 0.0225 0.1077

2 10 2 0.4264 0.0173 0.0941
3 12 2 1.0651 0.1187 0.2354
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Table 3.5 Datasets and feature selection

Datasets Feature selection MAPE (%) RMSE (°C) MAE (°C)

VAV-Building MLP NNARX LSTM MLP NNARX LSTM MLP NNARX LSTM

VF1 𝑇𝑖𝑛
𝑖 , 𝑃𝑖,𝐻𝑑𝑖, 𝑇𝑜𝑢𝑡

𝑖 , ℎ, 𝑑 0.8346 0.5145 0.7502 0.0851 0.0865 0.0615 0.1842 0.1142 0.1666

VF2 𝑇𝑖𝑛
𝑖 , 𝑆𝑖,𝑃𝑖,𝐻𝑑𝑖, 𝑇𝑜𝑢𝑡

𝑖 , ℎ, 𝑑 , 𝐷𝑖, 𝐻𝑆1𝑖, 𝐻𝑆2𝑖 0.8775 0.5385 0.6708 0.0868 0.0911 0.0527 0.1939 0.1193 0.1487

VF3 𝑇𝑖𝑛
𝑖 , 𝑆𝑖,𝑃𝑖, 𝐻𝑑𝑖,𝑇

𝑜𝑢𝑡
𝑖 , ℎ, 𝑑 , 𝐷𝑖, 𝑀𝐷𝑎,𝑆𝐹𝑎, 𝐻𝑎 0.8465 0.5165 0.8633 0.0807 0.0821 0.0796 0.1871 0.1146 0.1921

VF4 𝑇𝑖𝑛
𝑖 , 𝑆𝑖,𝑃𝑖, 𝐻𝑑𝑖,𝑇

𝑜𝑢𝑡
𝑖 , ℎ, 𝑑 , 𝐷𝑖, 𝐻𝑆1𝑖, 𝐻𝑆2𝑖,𝑀𝐷𝑎,𝑆𝐹𝑎, 𝐻𝑎 0.8431 0.4989 0.5694 0.0853 0.0803 0.0380 0.1861 0.1108 0.1262
CAV-Building MLP NNARX LSTM MLP NNARX LSTM MLP NNARX LSTM

CF1 𝑇𝑖𝑛
𝑖 , 𝐻𝑖𝑛

𝑖 , 𝑇𝑜𝑢𝑡
𝑖 , ℎ, 𝑑 0.7857 0.5819 0.5740 0.0565 0.0608 0.0293 0.1617 0.1198 0.1181

CF2 𝑇𝑖𝑛
𝑖 , 𝐻𝑖𝑛

𝑖 , 𝑇𝑜𝑢𝑡
𝑖 , ℎ, 𝑑, 𝑃𝑖 0.7743 0.5737 0.5606 0.0545 0.0595 0.0285 0.1593 0.1181 0.1155

CF3 𝑇𝑖𝑛
𝑖 , 𝐻𝑖𝑛

𝑖 , 𝑇𝑜𝑢𝑡
𝑖 , ℎ, 𝑑, 𝑃𝑖, 𝐻𝑆1𝑖, 𝐻𝑆2𝑖 0.7585 0.5335 0.5505 0.0493 0.0525 0.0245 0.1561 0.1099 0.1140

CF4 𝑇𝑖𝑛
𝑖 , 𝐻𝑖𝑛

𝑖 , 𝑇𝑜𝑢𝑡
𝑖 , ℎ, 𝑑, 𝑃𝑖, 𝐻𝑆1𝑖, 𝐻𝑆2𝑖, 𝐹𝑖 0.7375 0.4822 0.5043 0.0479 0.0476 0.0208 0.1519 0.1042 0.1
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Figure 3.5 MISO-Model prediction error for two buildings

(a) (b) (c) represent zone 2 in CAV-building , and (d) (e) (f) represent zone 1-2 in

VAV-building

3.5.1 Feature selection experiments

Since we predict from 30 minutes to 6 hours, we assume that two hours of future time steps

prediction can give a good understanding of what features must be used to improve the prediction

performance. Experiments have been done with three datasets having no HVAC control

parameters (VF1, CF1 and CF2), and five datasets having controls (VF2, VF3, VF4, CF3, and

CF4). These datasets are built from existing VAV and CAV datasets by adding or removing some

features. With each dataset, we evaluate the performance of LSTM and two baseline (MLP and

NNARX) models using different metrics.
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TABLE 3.5 shows, in the case of zone 1-2 in VAV-building, some features have positive impacts

on the LSTM and NNARX models, but no impact on the MLP model. We notice that adding

input features of control parameters for the VAV (VF2) and for the AC1 (VF3) separately, have

negative impacts on MLP, NNARX and LSTM. Furthermore, models using dataset including

input features of control parameters for both AC1 and VAV (VF4) provides the best prediction

performance for LSTM and NNARX. However, MLP gives the best performance when control

parameters are not included in the dataset (VF1), but it achieves the lowest performance

comparing to VF4. We notice that the missing of control features in the dataset CF1 in the case

of CAV-building, decreases the prediction. Moreover, adding control variables to the model

CF4 for CAV buildings increases the prediction performance of LSTM and NNARX models.

The temperature behavior depends on the time of the action taken by the control parameters.

Unlike MLP, the LSTM model takes into account the sequence of time behavior, so including

the control variables as inputs in the LSTM model increases the performance of the long-term

prediction accuracy. Similarly, NNARX includes the future control parameters to predict future

steps, so the consideration of these data makes the prediction more accurate. Therefore, 13

features used in VF4 and the 9 features used in CF4 have a significant impact on the multi-step

prediction model of IAT for both single-zone in VAV and CAV buildings.

3.5.2 Performance evaluation of multi-step prediction models

3.5.2.1 Single-zone prediction results

This section discusses the prediction performance of LSTM-MISO model. We used MLP,

CANN, NNARX with MISO stucture as a baseline models. The prediction accuracy of the all

models is evaluated by comparing three metrics, MAPE, RMSE and MAE. The numerical results

of LSTM-MISO and baseline models and the different steps used are shown in details in Fig. 3.5.

The Fig. 3.5 (a), (b) and (c) represent the MAPE, the MAE and the RMSE results respectively,

to predict 30 minutes, 1 hour , 2 hours, 4 hours and 6 hours for the zone 1-2 in CAV-building.

Fig. 3.5 (d), (e) and (f) represent the MAPE, the MAE, and the RMSE results, respectively,
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to predict 30 minutes, 1 hour, 2 hours, 4 hours and 6 hours for the zone 2 in VAV-building.

We notice that, in the two cases of building, for a short period the improvement by applying

LSTM is not noticeable compared to baselines, but as soon as we go further in time (2, 4 and

6 hours) the improvement by LSTM gets more and more important. The MAPE and MAE

scores of NNARX and LSTM models are quite similar, especially for 6 hours prediction. In the

case of CAV buildings, the NNARX for 6h prediction model gives the best MAPE and MAE

scores, as shown in Figures 3.5 (a) and (b). It is because NNARX uses the measured/real values

of exogenous inputs (control parameters and outdoor temperature) to predict multi-step ahead

Delcroix et al. (2020). NNARX performs the multi-step prediction by feeding back the IAT

prediction output and the future exogenous input information as the input for the next prediction.

Indeed, we observe that RMSE of the NNARX model is higher than RMSE of LSTM and CANN

models because of the error propagation over time caused by the recursive prediction method

used, since RMSE penalizes large error values. The Figures 3.5 (a), (b) and (c), indicate that the

error of LSTM-MISO model increase according to the time prediction steps in the CAV-building.

However, it is not the case for VAV-building, as shown in Figures 3.5 (d), (e) and (f) where the

largest error occurs when the LSTM-MISO model tries to predict 4 hours ahead in VAV-building.

The performance of MISO-LSTM to predict 6 hours ahead is better than to predict 4 hours ahead

in VAV-building. Fig. 3.6 presents the results of 6-hour ahead prediction of indoor temperature

for zone 2 and zone 1-2 in CAV and VAV building respectively, using the LSTM-MISO and

baseline approaches. It can be seen that LSTM-MISO and NNARX models work reasonably

well for both types of buildings and they are close to real measurements. However, for MLP and

CANN models, the prediction variability follows the real measures, but the predicted values

move around the real values. The high prediction error is due to the neglect of time sequence

dependencies. Although CANN model tries to capture the sequential relationship among inputs

by using the external factor fusion component, it is less powerful than the gates mechanism used

in LSTM model. Due to the proximate results of NNARX and LSTM models, we study further

the standard deviation of error and prediction efficiency of both models.

Standard deviation of error

Figures 3.7 (a), (b), (c) and (d) show the mean error in terms of temperature for each time step
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predicted on the 20% of testing data and the standard deviation of this error for LSTM-MISO

and NNARX-MISO models in CAV and VAV building. We notice the error of LSTM-MISO

in under 0.35 °C for both types of buildings. In the same time, the error of NNARX is over

0.45 °C. In reality, the precision of temperature sensors is often ±0.5 °C, this value is considered

as an appropriate benchmark for the accuracy of models ASHRAE (2002). Although the error

of NNARX is within the error benchmark, it is less accurate than LSTM. An important remark

is the performance of NNARX-MISO deteriorates along with an increasing prediction horizon

compared to LSTM-MISO. In other words, the estimated values of NNARX-MISO generally

deviate from measured values for long-term prediction due to error accumulation overtime. On

the other hand, Figures 3.7 (c) and (d) clearly show LSTM model performance over a 6-hour

period is very similar to that of 30-minute period. Consequently, the increasing number of

advanced time steps does not deteriorate the prediction performance of LSTM-MISO model due

to the direct prediction method.

a) Zone 2 in CAV-building b) Zone 1-2 in VAV-building

Figure 3.6 Results for 6 hours ahead for indoor temperature prediction in

(a) zone 2 in a CAV-building, and (b) zone 1-2 in a VAV-building

Prediction efficiency

We compare the prediction efficiency of LSTM and NNARX in terms of execution time. As

depicted in Table 3.6, the execution time of NNARX is significantly higher than LSTM for both

types of buildings.
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a) NNARX-MISO zone 2 CAV-building b) NNARX-MISO zone 1-2 VAV-building

c) LSTM-MISO zone 2 CAV-building d) LSTM-MISO zone 1-2 VAV-building

e) LSTM-MIMO CAV-building f) LSTM-MIMO VAV-building

Figure 3.7 The standard deviation of Error for MISO and MIMO models for CAV and

VAV buildings for 6 hours prediction ahead

(a) (c) (e) CAV-building, and (b) (d) (f) VAV-building

In a predictive control system, if the control horizon is 5 minutes and the prediction horizon

is 4 hours, the execution time of IAT prediction could not exceed the control horizon to be
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included in the predictive control system. As shown in Table 3.6, for 4 hours prediction, the

execution time of NNARX is higher than 5 minutes. In this case, NNARX is not appropriate

for a predictive control system against LSTM should be used because its execution time is 15

seconds only.

Table 3.6 Execution time (in seconds) of NNARX and LSTM models

for CAV-building and VAV-building

CAV-Building VAV-Building

NNARX-MSIO LSTM-MSIO NNARX-MSIO LSTM-MSIO

30 min 80,71 4,97 83,59 4,83

1 h 182,13 10,20 186,06 8,84

2 h 203,19 15,25 287,31 14,45

4 h 472,29 14,88 379,22 16,79

6 h 550,21 17,54 565,80 17,41

3.5.2.2 Multi-zone prediction results

In this section, we implement a multi-zone model which predicts the IAT for all the zones in

the building using all control parameters vectors as input. Fig. 3.8 shows a comparison of

experimental results between LSTM-MISO models and LSTM-MIMO models. It describes the

mean errors of all investigated zones of each building for single-zone and multi-zone prediction

models. It shows that in the case of CAV-building, the MAPE for LSTM-MIMO model is better

than LSTM-MISO model. Furthermore, the MAPE, MAE and RMSE errors for all three zones

decreased after the LSTM-MIMO model is used for 30 minutes and 6 hours prediction. For

instance, it can be observed that, the MAPE reduces with more than 0.3% on average to 6 hours

prediction ahead. We notice that in Fig. 3.7 (e), the mean error with its standard deviation in

terms of temperature for each time step predicted for LSTM-MIMO in the case of CAV-building

is better than for LSTM-MISO model (Fig. 3.7 (c)) and it does not exceed 0.2 °C which is less

than the accuracy value of temperature sensor (±0.5 °C) ASHRAE (2002). However, the error

in LSTM-MIMO model for VAV-building case is worse than LSTM-MISO and NNARX-MISO.

As the CAV-building is an open space, and it is a light-weight structure, the thermal interaction

among all adjacent zones influences the temperature prediction results. So, the consideration of
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all parameters as inputs in the model, and the exchanged information among zones increases the

accuracy of the LSTM-MIMO model.
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Figure 3.8 Comparison between MIMO and MISO Model prediction error for two

buildings

(a) (b) (c) represent CAV-building, and (d) (e) (f) represent VAV-building

0

0,5

1

1,5

2

2,5

3

3,5

0,5 1 2 4 6

Ti
m

e 
(m

s/
sa

m
pl

e)

Prediction steps (h)

MISO MIMO

Figure 3.9 Prediction time execution for CAV-building

On the other hand, in the VAV-building with heavy-weight building structure, the interaction

among adjacent zones does not influence the prediction performance. The size of VAV-Building
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zones is not all uniform, and there is no significant heat transfer from zone to zone. For these

reasons, LSTM-MISO model performs better for the VAV-building use case. Predicting a

MIMO model is more expensive in terms of time compared to a MISO model, as expected. For

example, as shown in Fig. 3.9, it takes 1.33 ms/sample using a MIMO model while only 0.4

ms/sample using a MISO model to predict 30 minutes, which can be explained by the large

amount of input in the MIMO model. However, in Fig. 3.9 we notice that the execution time for

predicting two hours and six hours using LSTM-MIMO model is comparable to the time using

LSTM-MISO models. Moreover, as shown in Fig. 3.8, the prediction error for MIMO models is

lower than MISO models for two and six hours ahead. As a result, executing LSTM-MIMO

model for online prediction, for two and six hours-ahead is more computationally efficient than

LSTM-MISO models.

3.6 Conclusion

This paper presents an LSTM-MISO and LSTM-MIMO framework based on direct-S2S

architecture to predict multi-step ahead of IAT for two real-world cases on different buildings.

While most of prior work only investigate a specific type of HVAC system, the modeling

framework proposed in this study covers both VAV and CAV buildings. The consideration

of control variables as the input increases the prediction accuracy of the LSTM models. The

proposed framework considers a direct-S2S prediction instead of a recursive one, which increases

the accumulation of prediction error throughout the prediction step ahead. This study showed

that LSTM-MISO model is efficient for VAV buildings. However, since there is an effect of

thermal coupling between adjacent zones in CAV building because of its open space area, it is

found that the overall prediction accuracy increases using the MIMO model. We can conclude

that LSTM-MIMO is a valuable method for modeling IAT in a light-weight building with CAV

type of HVAC system. In future work, the proposed LSTM-based data-driven framework for

multi-step prediction ahead of IAT will be used to design predictive control approaches in order

to decrease energy consumption, e.g. load shifting control, demand-limiting control or optimal

start-stop time control.
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Abstract

Today, Model predictive control (MPC) has largely been used to optimize energy consumption

and maintain thermal comfort in buildings. However, to build an online MPC model in building,

the dynamics of the physical system must be accurately modeled, which is a time-consuming

and costly task. Neural network models help to overcome the modeling problems especially

with the availability of historical data. This research presents a novel online data-driven

control framework named Model Predictive Control via Genetic algorithm (MPC-GA) allowing

the optimal operation of the heating, ventilation, and air conditioning system and has been

experimentally validated in a multi-zone retail building. The MPC-GA combines an attention-

based neural network time series multivariate prediction model with a MPC framework. The

prediction model used a dual-stream neural networks based on multivariate time series of

controlled and uncontrolled inputs. The attention mechanism is applied on controlled parameters

to give them more weight to better predict the zone temperature. The prediction model is used as

input for the optimization framework which minimizes: energy consumption, peak demand and

discomfort during occupied hours under self-tuned setpoint, temperature ramp and equipment

cycling constraints. A heuristic search algorithm using a genetic algorithm is used to solve the
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online data-driven MPC-GA models and obtain the future optimal combination settings of all

controls for all the zones over a prediction horizon. The benchmark results showed that the

MPC-GA outperforms RBC control systems with more than 50% and 80% reduction in energy

consumption and discomfort respectively.

Keywords: HVAC, multivariate time series, neural network, attention mechanism, MPC, genetic

algorithm, optimal controls.

4.1 Introduction

The total energy used in commercial buildings accounts for 40% of the global energy consumption

Shaikh et al. (2014) and up to 30% of carbon dioxide emissions Costa et al. (2013). A survey

conducted in the United States has shown that in buildings, more than 50% of the energy

consumed is related to heating, cooling, ventilation and air conditioning (HVAC) systems, while

lighting accounts for about 9% DoE et al. (2011). The main question that should be addressed

is, what are the best approaches to cool or heat buildings in order to save energy and reduce

carbon footprint without affecting the householder’s comfort? On today’s advanced HVAC

systems, rule-based controllers (RBC) are generally used. However, RBC cannot generalize

their rules at a building level Privara et al. (2013), due to the high complexity of managing

their defined rules and continuously monitoring and tuning the HVAC control signals to reduce

global energy consumption while simultaneously ensure a thermal comfort. In addition, RBC

are not anticipatory controller: they operate on the basis of the current state of the system rather

than projecting into the future and deciding on the next appropriate action Afram et al. (2017).

Model predictive control (MPC) is an optimal control that can improve energy efficiency in

HVAC systems. It has been proven efficient control solution for buildings by providing 17%

energy savings more than RBC Shaikh et al. (2014); Sturzenegger et al. (2016). Instead of

being a reactive control, MPC is a predictive control that uses weather forecast and occupancy

data over a prediction horizon and executes the appropriate control signals at the present time.

The major challenge with MPC is to accurately model the dynamics of the physical system,

which requires tuning of the system controller parameters and deploying new sensors in the
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building Sturzenegger et al. (2016). This task is complicated, requires expertise to use and

time-consuming especially when there are many types of buildings to control. Modern smart

buildings are equipped with a variety of sensors, such as temperatures and humidity probes,

power meters, air-pressure transducers, and so on. The availability of historical monitoring data

from this panoply of sensors already deployed opens the opportunity to develop data-driven

solutions based on Artificial Intelligence (AI) algorithms Chen et al. (2015); Huang et al. (2015a).

The main advantage to use data-driven control is to reduce the cost and time consuming task

caused by MPC that requires an accurate and complex modeling processes Serale et al. (2018).

To implement MPC model, real-time optimization is needed with low computation time to

generate a sequence of control signals for all the zones over prediction horizon.

Evolutionary algorithms like genetic algorithms (GA) have been widely applied to resolve the

optimization problem related to MPC in HVAC systems. An optimization procedure combining

GA, MPC and artificial neural network to minimize the energy consumption has been proposed

in Reynolds et al. (2018), Garnier et al. (2015) and Asadi et al. (2014). However, none of the

previously mentioned approaches has been validated in real time with the building’s feedback

states. It is not obvious that a building operator allows to implement a data-driven controller

on a real building because the error of the prediction might disturb the built environment.

Implementation in real buildings can lead to undesirable results such as temperatures that are

too cold or too hot and drop the security of the controls. The data-driven control system should

avoid these undesirable results because there is no turning back during the implementation phase.

Moreover, the optimization models proposed in previous work focus mainly on energy efficiency

and discomfort reduction. In this paper, the control problem considers a self-tuned setpoint,

cycling and temperature ramp constraints in addition to energy, peak power and discomfort costs,

and it has been implemented online in real building use case.

Unlike some prior work Reynolds et al. (2018); Garnier et al. (2015) that do not consider

weather and occupancy forecasting parameters, past and future weather conditions, occupancy

and controlled values are all included in our prediction model to improve the perdition accuracy

and the control decision. The main challenge is developing a prediction model to consider the
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impact of controls on temperature and close the control loop. The complex and non-linear inter-

dependencies between multivariate time series, including control and uncontrolled parameters,

make the prediction task more complicated. The typical LSTM models with an attention

mechanism Lim et al. (2019); Nunez et al. (2019) failed to capture temporal patterns across

multiple time steps. In this paper, we propose a context-aware multivariate LSTM (CAM-LSTM)

based on dual-stream neural network with an attention mechanism which selects not only past

but also future multivariate time series including controlled and uncontrolled inputs to predict a

multi-steps temperature output. Firstly, the control and uncontrolled multivariate time series are

fed independently into two parallel streams. The first stream includes one high-level and one

low-level feature extraction components to model the complex mixtures of temporal patterns.

The second stream includes the same components as the first one, in addition to an attention

component which learns the dependencies among various controls and target features. To the

best of our knowledge, this is the first work that uses attention with dual stream network in

predictive control mechanism.

The proposed MPC-GA control system combines CAM-LSTM models based on an attention

mechanism learned in offline mode and GA to generate the control sequence for the whole

prediction horizon. The GA leads to find the optimal sequence combination of control signals,

which minimize the cost function. The CAM-LSTM model uses this optimal combination as

input to predict the future indoor air temperature (IAT). Experiments on real-world demonstrate

the accuracy and robustness of the proposed MPC-GA control method.

The contributions of this paper are: 1) a CAM-LSTM models based on dual-stream neural

network including attention mechanism which include past and future controlled and uncontrolled

inputs; 2) an optimization model to minimize energy, power peak and discomfort that considers

a self-tuned setpoint, cycling and temperature ramp as constraints; 3) The validation of the

closed-loop MPC-GA control framework in a real multi-zone retail building.

This paper is structured as follows: Section 2 summarizes the prior work related to our research.

Section 3 describes the use case used in this study and the global methodology of our proposed
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data-driven optimization framework. Section 4 illustrates in details the CAM-LSTM model.

The control design of MPC-GA framework is introduced in Section 5. Section 6 discusses

the experimental results and compares the performance of the proposed models. Finally, we

conclude key findings and present future research directions.

4.2 Related Work

This section describes relevant literature research on machine learning and optimization

techniques used in data-driven control models in HVAC systems.

4.2.1 Machine learning approaches

Generally, prior work employed artificial neural networks (ANN) as black-box models to

represent HVAC building systems and combined it with an MPC optimal control framework as

discussed in Finck et al. (2019); Reynolds et al. (2018). Nevertheless, LSTM has been shown to

outperform ANN in HVAC systems by as much as 50% of accuracy especially for time series

data Mtibaa, Nguyen, Azam, Papachristou, Venne & Cheriet (2020). LSTM uses historical

data and future instances, taking into account the inertia of the system. A preliminary work

has been reported in Mtibaa et al. (2020), wherein we have modeled a multi-step temperature

prediction in HVAC systems using an LSTM model and compared the performance of multi-input

single-output (MISO) and multi-input multi-output (MIMO) architectures. However, only past

controlled and uncontrolled parameters are used for the prediction. Additionally, a Neural

Network Autoregressive with Exogenous Input (NNARX) model is proposed by Delcroix

et al. (2020) which predicts the behaviors of the indoor air temperature. The experiments are

performed with the same type of use-case building used in this paper. The accuracy results are

very close to the LSTM-MISO used in Mtibaa et al. (2020). However, the authors in Delcroix

et al. (2020) develop a one-step forecasting model, then use a recursive multi-step forecasting

strategy to predict the future steps. Such recursive strategy degrades the performance of the

model as the number of future steps increases, because prediction values are used instead of

real observations and the error is compounded. In addition, the temporal dependency among
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continuous variables is ignored, while the historical data collected from HVAC systems are

generally time series data.

In this paper, we add context-aware attention component to the LSTM model to consider the

sensitive relationship between temperature and control parameters. Liang et al. Liang et al.

(2019) designed a framework named UrbanFM based on deep neural networks. An external

factor fusion component is added to handle the context information (like the day of the week,

time of the day, weather, other external factors) and capture near and distant spatio-temporal

dependencies. This component plays an important role in providing a prior knowledge and

improves the inference performance under sparse sampling. This module is integrated in the

high-level feature extraction used in this paper to model the complex high-level interaction

between input features. A data-driven control model was proposed in Jain et al. (2018) which

combine multi-output regression trees with MPC. The proposed approach was applied to

trade-off peak power reduction against thermal comfort in buildings. Yet, the modeling accuracy

using single trees to represent multi-step prediction is strongly affected by overfitting and high

variance. The authors in Smarra et al. (2018) replace the model dynamic in MPC by a set of

linear regression model which changes from time step to time step. A regression model was

used then extended to a random forest model. The proposed control model was applied to design

the optimal ON/OFF scheduling for the heating system in order to save energy.

It is obvious that the availability of an accurate multi-step prediction model is extremely

important in a data-driven MPC framework. As discussed in the previous paragraph, several

deep learning models have been proposed and integrated with MPC to define a data-driven

control methodology Garnier et al. (2015); Jain et al. (2018); Reynolds et al. (2018). However,

they usually include black box models that do not take into account the physical aspect. They

define a predictive model but ignore the sensitivities of control on temperature which can bias

the optimization decision for the control outputs. For example, if the cooling controls are all OFF

and it is hot outside, automatically the model should predict an increasing in the temperature

behavior, which is not the case of models proposed by several related works. In general, when

modeling temperature which should be used to decide the future control actions, it is essential
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to capture the sensitivities of the temperature output with respect to known future inputs like

control commands and outside temperature. In particular, at every time 𝑡, given the known

future inputs and other inputs that are only historically known, the model should correctly

describe the variations of the predicted temperature output, due to variations of the command

input sequence including observed and future know values. Recent deep neural networks have

considered the use of transformer networks with attention-based mechanism for multi-horizon

time series forecasting Lim et al. (2019). In Nunez et al. (2019), they use the basic structure

of encoder-decoder with attention model combined with MPC to control a paste thickener

systems. Although attention mechanism improve long-horizon sequence, it have difficulties

handling continuous time-series data which requires a strong temporal consistency. However,

temporal consistency is a requirement for temperature prediction, as the control variables should

remain stable over a short period of time to avoid unnecessarily cycling equipment. In Liu et al.

(2020) and Zheng et al. (2018), the attention mechanism is used to capture the spatio-temporal

relationships between multivariate time series and they will be used as a reference to compare

our proposed prediction model. The use case demonstrated in this paper includes historical

target parameters, historical and future known control and uncontrolled parameters. To model

an appropriate data-driven control model, we propose a CAM-LSTM prediction model based on

attention mechanism that considers the contribution of both control and uncontrolled parameters

to dynamically model temperature behavior in the future. This prediction model is used in the

core of the MPC process in the optimization problem.

4.2.2 Optimization approaches

Evolutionary algorithms has been widely applied to resolve the optimization problem related to

MPC in HVAC systems. An optimization procedure combining GA, MPC and artificial neural

network to minimize the energy consumption and it is proved to guarantee globally-bounded

closed-loop stability Reynolds et al. (2018). They considering two different simulation scenarios

(flat and time-of-use price tariffs). According to their results, they have achieved a reduction

in energy consumption by around 25% compared to a baseline heating strategy. However, this
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work did not consider weather and occupancy forecasting parameters in their prediction model

and they only implement their approach on simulated building rather than real-world trial. A

low-order ANN based models combined with MPC was developed to minimize the energy

consumption of a multi-zone HVAC system Garnier et al. (2015). Researchers used GA to

minimize the cost function. Also they used the predicted mean vote (PMV) index as a thermal

comfort indicator. This strategy was compared with basic control techniques and resulted in 5.2%

and 14.7% of energy saving during heating and cooling seasons respectively. However it does

not include predicted weather as a model input failing to adjust control parameters in the future

steps. Moreover, it was modeled using a simulation model generated in the EnergyPlus software

and no real-world data was used for training or model validation. In Asadi et al. (2014), a GA is

applied to solve a multi-objective optimization problem which trade-offs between the retrofit cost,

energy consumption and thermal comfort. The authors demonstrated that GA is well suited for

multi-objective problems and they showed that the simultaneous optimization of all three lead to

good results in contrast to optimizing per an individual objective. However, their model is based

on a simulation database that was generated from a comprehensive building model developed

in TRNSYS to train and validate ANN models which is difficult to extend in real-building.

Kampelis et al. Kampelis et al. (2019) have also used GA for power optimization of HVAC

systems. They studied the trade-off between minimizing energy costs and maximizing thermal

comfort by integrating PMV to ensure thermal comfort requirements. The control approach

they proposed is not suitable for a real-time energy and comfort management application, as it

is time-consuming to execute. An adjustment of the optimization parameters is necessary to

conduct the deployment in real time. An adaptive supervisory model predictive on-off control

algorithm is presented in Tyukov et al. (2017), including the predicted weather factor. The

GA is used to optimize the cost function which can save up to 20-40% of gas consumption

while maintaining comfort. However, this approach has not been validated in real time with the

building’s feedback states. In this research, we use GA strategy with low computation time to

solve the online MPC optimization problem which minimize energy, peak power and discomfort

costs and consider a self-tuned setpoint, cycling and temperature ramp constraints.
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4.3 Smart Building Model

4.3.1 System description

The proposed control solution can be applied to any HVAC system with a rooftop unit (RTU).

Consider an example of a retail building with an open space of around 1000 𝑚2 located in

Montreal, QC, Canada. The building has three zones equipped with a RTU each and controlled

by a separate thermostat per zone. Each RTU contains a fan with two heating and two cooling

coils stages as described in Fig. 4.1. We assume that the speed of the fan is fixed and it is

controlled by an ON/OFF switch. We assume that there is significant thermal coupling between

the three zones since there are no walls between them. Given a zone 𝑖, it is controlled by a vector

𝑢̂ including five control parameters 𝑢̂𝑐1𝑖, 𝑢̂𝑐2𝑖, 𝑢̂ 𝑓 𝑖, 𝑢̂ℎ1𝑖 and 𝑢̂ℎ2𝑖 which represent cooling stage 1,

cooling stage 2, fan ventilation stage, heating stage 1 and heating stage 2. The control signal

is binary: 0 signifying OFF and 1, ON. The set of valid operation combinations contain six

possibilities: 𝑢̂𝑖 = {{0, 0, 0, 0, 0}, {0, 0, 1, 0, 0}, {1, 0, 1, 0, 0}, {1, 1, 1, 0, 0},

{0, 0, 1, 1, 0}, {0, 0, 1, 1, 1}} = {0, 1, 2, 3, 4, 5}, which indicate: that all control parameters are

OFF, only fan is ON, cooling stage 1 and fan are ON, all cooling control parameters with fan

are ON, heating stage 1 and fan are ON and all heating control parameters with fan are ON,

respectively. The system is operated with a capacity of 𝑃𝑐,𝑠1 = 18.5 kW for the first cooling

stage, 𝑃𝑐,𝑠2 = 37 kW for the second cooling stage, 𝑃ℎ,𝑠1 = 39.8 kW for first heating stage and

𝑃ℎ,𝑠2 = 59.8 kW for second heating stage and 𝑃 𝑓 = 1.5 kW for fan stage. The heating/cooling

stage 1 can operate alone, however the stage 2 always works with the stage 1. The fan can

activate alone, or whenever the heating/cooling system is ON. We assume that at least one fan is

ON during occupancy time to avoid that one fan is over used and another is never used. We

assume that the same fan is always ON during one day then next one the following day and so on.

The energy efficiency of a building can be achieved by tuning the sequence of switch ON/OFF

control signals across the prediction horizon while respecting the constraint operation of the

system. The system operates following a tiered utility rate. Energy is charged at 0.05303 $/kWh

if the energy consumption is less than the maximum energy supplied per month 𝐸𝑚𝑎𝑥 = 210000
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kWh/month and 0.0373 $/kWh otherwise. The power-peak rate is 14.58 $/kW and charged on

the maximum power demand during the month.
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Figure 4.1 Schematic diagram of RTU for one zone

4.3.2 Data-driven control framework

In this paper we propose a new data-driven control framework allowing the HVAC operation

in retail building to be optimized by determining an optimal control (on/off) operation status

of the subsystems. The data-driven control framework is composed by three modules; data

extraction module, prediction module and optimization module. The extraction module gets

time dependent input features at each time step from the database. These data will feed the

prediction module which will be described in detail in the section 4.4. This module contains the

prediction model for each zone in order to predict the temperature over a control horizon. The

prediction data will feed the optimization module (section 4.5) in order to compute the optimal
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control sequence using MPC-GA. The MPC-GA operates on a receding horizon by solving for

a fixed prediction horizon (2 hours in our case) from the current timestep 𝑡. The first control

signal 𝑢∗𝑧1,2,3(𝑡 + 1) is applied to the building. All this process is executed as a closed-loop over

the time progress.
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Figure 4.2 Data-driven control design

4.4 Context-aware multivariate LSTM framework for modeling IAT

4.4.1 Data organization

The data was collected from August 1st, 2019 to August 31, 2020. with 5-minute sampling

intervals. TABLE 4.1 summarizes all features used in this work. In order to build predictive

models, the selected features include observed and known inputs are categorized into three

groups:

• Controlled features: Includes past observed and future known control actions that impact

HVAC system operations. The set 𝑢𝑖,𝑡−𝑙:𝑡 are the vectors of the past observed control variables

for each zone 𝑖. The set 𝑢𝑖,𝑡+1:𝑡+𝑝 is the future known controlled variables which represent

the outputs of MPC-GA model discussed in section 4.5.2.
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• Uncontrolled features: The set 𝑣𝑖,𝑡−𝑙:𝑡 are the vectors of the past observed measured variables

for each zone 𝑖 (e.g. the outdoor air temperature, the day of the week and the hour of the

day). The set 𝑣𝑖,𝑡+1:𝑡+𝑝 are the vectors of the future known measured variables.

• Target features: The set 𝑦𝑖,𝑡−𝑙:𝑡 is the vector 𝑇𝑖𝑛
𝑖 of IAT for each zone 𝑖.

We add the hour of day and day of the week as inputs. The hour input helps differentiate

temperature profiles during occupied and unoccupied times. The day input helps identify

business days and weekends. All selected features are normalized between 0 and 1 before they

are used for training, to prevent the dominant effect of particular variables. The equation (4.1) is

used to scale the variables into [0,1].

𝑥𝑠𝑐𝑎𝑙𝑒 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(4.1)

Where 𝑥𝑠𝑐𝑎𝑙𝑒 represents the scaled variable, 𝑥 defines the variable value before scaling, 𝑥𝑚𝑖𝑛 and

𝑥𝑚𝑎𝑥 are the minimum and maximum values of the dataset to be scaled, respectively.

Table 4.1 Feature description

Feature Description Unit

Controlled variables, 𝑢𝑖

𝑢𝑐1𝑖 cooling stage 1 of zone i Binary

𝑢𝑐2𝑖 cooling stage 2 of zone i Binary

𝑢 𝑓 𝑖 Fan stage of zone i Binary

𝑢ℎ1𝑖 heating stage 1 of zone i Binary

𝑢ℎ2𝑖 heating stage 2 of zone i Binary

Uncontrolled variables, 𝑣𝑖

ℎ Hour of day Integer

𝑑 Day of week Integer

𝑇𝑜𝑢𝑡 Outdoor air temperature °C
Target Variables, 𝑦𝑖

𝑇𝑖𝑛
𝑖 Indoor air temperature of zone i °C

After data pre-processing steps, the dataset was divided into randomly sampled training (60 % of

the data), validation (20 % of the data) and testing (20 % of the data) sets from one year of data.
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The dataset has been randomly sampled for training instead of using k-folds cross validation

because the dataset is large enough (i.e., one year of data with 5-minute sampling intervals) and

time-dependent. The historical data is used to train a predictive model for the future behavior.

Models are developed using the training and validation datasets and the prediction results are

derived from the test dataset. The operation of HVAC controls leads to maintain the comfort in

the building. So it is important to learn/capture the effect of the HVAC system on the evolution

of the indoor temperature. The prediction model will be used in an optimal control framework

where HVAC controls minimizing operation costs while maintaining thermal comfort need to be

determined. Consequently, the prediction model must be sensitive to HVAC control profile.

Forecast multi-horizon
outputs

Observed inputs Known inputs

࢚ − ࢒ ࢚+ ࢚࢖

Multivariate 
time series

…

Figure 4.3 Multi-horizon forecasting with multi-variate time

series composed by past observed and known future inputs



78

For example, if the heating control inputs of the model are OFF during a cold winter days, the

IAT prediction must decrease. In this paper, the main prediction problem can be formulated

as, given a past time series of observations of temperature, past and future uncontrolled and

controlled data as input, predict a sequence of temperature as output which can be influenced by

control parameters as illustrated in Figure 4.3. The Figure 4.4 defines the detailed structure of a

data sample for one zone 𝑖 to predict a horizon of 𝑝 future steps with 𝑙 previous steps. The input

of the model includes the future known variables of uncontrolled and controlled parameters.

The future controlled parameters over control horizon from time 𝑡 + 1 to 𝑡 + 𝑝 represents the

output of MPC-GA model. The prediction model of the temperature of each zone 𝑖 has the form

shown in 3.1.

t d

… … … …… … …… … …… … …

… … … …… … …… … …… … …

matrix generated from GA algorithm

Control features
Temperature

zone i hour weekDay

Predictions
over control 
horizon from 

time t+1 to t+p

…… …… … …… … …

Outdoor
temperature

Extracted data

Figure 4.4 Input data sample description

4.4.2 CAM-LSTM model

The control signals have a complicated influence on temperature behavior. The proposed

CAM-LSTM model leads to capture the complex impact of control signals on prediction. The

CAM-LSTM model is composed by three main component: the high-level feature extraction

component, the low-level feature extraction component and the attention networks component as

shown in Figure 4.5. The multivariate time series data are separated into three groups, uncontrol,
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control and target features. The model follow dual-stream network. The first branch treats

uncontrol parameters and the second one is dedicated to control parameters. The control and

uncontrol parameters are fed as input into a first feature extraction component separately. The

outputs of these two modules are concatenated with the target feature and fed as input into a

second feature extraction using convolution layers separately. In the second branch, the attention

networks takes as inputs the extracted features from control parameters. The self-attention

layers capture the degree of relevance of control with respect to IAT. The outputs of first branch

and attention networks is concatenated and fed into LSTM-bidirectional layers which gives the

multi-step IAT prediction of each zone for the whole prediction horizon 𝑝 as output. In this

section, we describe the key components of the main three components.
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Figure 4.5 Schematic diagram of dual-stream neural

networks model for temperature prediction

4.4.2.1 High-level feature extraction

This component is structured with two dense layers with ReLU activation. The dense layers leads

to combine the several external impacts to build a hidden representation, that models the complex

high-level interaction between features Liang et al. (2019). The first feature extraction is applied

for control 𝑢𝑖 and uncontrol 𝑣𝑖 parameters separately. This module provides one output for each

branch 𝐻𝑢𝑖 and 𝐻𝑣𝑖 . These two outputs carries the uncontrol and control information until the

end of network and thus prevents the information from disappearing into the deep network. 𝐻𝑢𝑖
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and 𝐻𝑣𝑖 are then concatenated with the target feature 𝑦𝑖 to construct two augmented features

𝐻𝑦,𝑢𝑖 and 𝐻𝑦,𝑣𝑖 . These two augmented features are fed into the low-level feature extraction.

4.4.2.2 Low-level feature extraction

We use two 1-D convolution layers with ReLU activation functions to introduce non linearity.

The convolution filters are applied on both controlled feature fused 𝐻𝑦,𝑢𝑖 and uncontrolled feature

fused 𝐻𝑦,𝑣𝑖 . The first convolution layer take the fused high level features as input and construct

a low-level view 𝐻
′

𝑦,𝑢𝑖 and 𝐻
′

𝑦,𝑣𝑖 for control and uncontrol branch separately. The convolution

layers are the ability to capture different important signal patterns. It is important to note that

the 1-D convolution is applied to create a multi-dimensional representation of each time step.

Therefore, if the initial time series contains 𝑛 steps, it will always contain 𝑛 steps.

4.4.2.3 Attention networks

The attention networks focus on certain parts of the control input when predicting temperature.

The prediction of the next 𝑝 hours of temperature should be based on the action taken by controls

in the past and in the future. There are two scenarios. In the first scenario, we assume that the

cooling controls 𝑢𝑖,𝑡+1:𝑡+𝑝 are ON and outside is warm. In the second scenario, we assume that

cooling 𝑢𝑖,𝑡+1:𝑡+𝑝 are OFF and the outside is warm. If we want to predict the indoor temperature

from 𝑡 +1 to 𝑡 + 𝑝, for the first scenario the prediction should be between setpoints range, however

for the second scenario the prediction should exceeds the higher setpoint. The model should

be given more weights on control status which will help to better predict the temperature. The

attention mechanism in our model play an essential role to simply looking for the good features

of control parameters 𝑢𝑖 that help a best prediction of 𝑇𝑡+𝑘 |𝑡
𝑖 . The rest of the features will simply

be ignored. This mechanism was applied horizontally across the feature time-series instead

of expand the dimensions of the attention mechanism. The LSTM-Bi layer take as input the

augmented features extracted from controlled parameters 𝐻
′

𝑦,𝑢𝑖 . The output of the LSTM-Bi

layer is represented as follows,
{
ℎ1,𝑡

′ , ℎ2,𝑡
′ , ..., ℎ𝑛,𝑡

′

}
where ℎ𝑡,𝑡

′ =
[−−→
ℎ𝑡,𝑡

′ ,
←−−
ℎ𝑡,𝑡

′

]
. The

−−→
ℎ𝑡,𝑡

′ ,
←−−
ℎ𝑡,𝑡

′ are

subsequently concatenated and fed into an attention layer, where self-attention weights {𝛼𝑡}
𝑛
𝑡=1
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are computed. The attention weights indicates the importance of the input time series sample

at time-step 𝑡 to predict the output value at time-step 𝑡 + 1. In general the self-attention use a

softmax function to normalize the vector 𝑒𝑖 over the input time series sequence. However this

method leads to pick one single input variable and ignore other multivariate inputs. In this paper

we use a sigmoid function to compute the weights, as we work with multivariate inputs and we

assume that more than one input variable are used for prediction.

𝑒𝑡 = 𝜎
(
ℎ𝑡,𝑡

′𝑊𝑡 + 𝑏𝑡

)
(4.2)

𝑎𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑒𝑡) (4.3)

Where 𝜎(.) represents the sigmoid activation function and 𝑊𝑡 are the weights specific to the

input feature representation ℎ𝑡,𝑡
′ =

[−−→
ℎ𝑡,𝑡

′ ,
←−−
ℎ𝑡,𝑡

′

]
.

Each self-attention weight represents the relevance of one or more control parameters within all

controls. Indeed, relevant parameters should be assigned the most higher weight values. The

output of the attention networks component is computed by performing a weighted aggregation

of the LSTM-Bi output and the self-attention weights as follows,

𝑙𝑡 ′ =
∑

𝑡

𝑎𝑡 ℎ𝑡,𝑡
′ (4.4)

This output is augmented by the first uncontrolled stream network. The concatenation of both

outputs is then fed into LSTM-Bi layer. At the end, a dense layer generates a prediction of a

single temperature for the whole prediction horizon 𝑝.

4.5 Control design

4.5.1 Formulation of optimization problem for the MPC

Based on CAM-LSTM models described in section 4.4.2 and the HVAC operational constraints,

a general optimization problem with the three objectives, minimization of the total energy
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consumption, the peak power and the discomfort during occupancy time is formulated in (4.5).

Energy, power and discomfort are normalized to [0, 1] using minimum and maximum values

that are calculated from existing data in the database. The predictive controller solves at each

time step the problem defined in (4.5) according to the constraints defined in (4.6) to (4.19).

min
𝑢̂

𝛼 · 𝐸𝑛𝑒𝑟𝑔𝑦(𝑢̂) + 𝛽 · 𝑃𝑜𝑤𝑒𝑟 (𝑢̂) + 𝛾 · 𝐷𝑖𝑠𝑐𝑜𝑚 𝑓 𝑜𝑟𝑡 (𝑢̂) (4.5)

𝑠.𝑡.

𝐸𝑛𝑒𝑟𝑔𝑦(𝑢̂) =
𝑁𝑝∑
𝑡=1

𝑁𝑧∑
𝑖=1

𝐸𝑡+𝑘 |𝑡
𝑖 (𝑢̂) · 𝑝𝑡+𝑘 |𝑡

𝑒𝑛𝑒𝑟𝑔𝑦 (4.6)

𝑃𝑜𝑤𝑒𝑟 (𝑢̂) =
𝑁𝑝∑
𝑡=1

𝑁𝑧∑
𝑖=1

max 𝑝𝑡+𝑘 |𝑡
𝑖 (𝑢̂) · 𝑝𝑡+𝑘 |𝑡

𝑝𝑜𝑤𝑒𝑟 (4.7)

𝐷𝑖𝑠𝑐𝑜𝑚 𝑓 𝑜𝑟𝑡 (𝑢̂) =
𝑁𝑝∑
𝑡=1

𝑁𝑧∑
𝑖=1

max
{
0, 𝑇 𝑡+𝑘 |𝑡

𝑖 (𝑢̂) − 𝑇𝑠𝑝

}
+max

{
0, 𝑇 𝑠𝑝 − 𝑇𝑡+𝑘 |𝑡

𝑖 (𝑢̂)
}
·Δ𝑡/60 (4.8)

𝐸𝑡+𝑘 |𝑡
𝑖 (𝑢̂) = 𝑝𝑡+𝑘 |𝑡

𝑖 (𝑢̂) · Δ𝑡/60 (4.9)

𝑝𝑡+𝑘 |𝑡
𝑖 (𝑢̂) = 𝑢̂𝑡+𝑘 |𝑡

𝑐1𝑖 · 𝑃𝑐,𝑠1 + 𝑢̂𝑡+𝑘 |𝑡
𝑐2𝑖 · 𝑃𝑐,𝑠2 + 𝑢̂𝑡+𝑘 |𝑡

𝑓 𝑖 · 𝑃 𝑓 + 𝑢̂𝑡+𝑘 |𝑡
ℎ1𝑖 · 𝑃ℎ,𝑠1 + 𝑢̂𝑡+𝑘 |𝑡

ℎ2𝑖 · 𝑃ℎ,𝑠2,∀𝑖,∀𝑘 (4.10)

𝑇𝑡+𝑘 |𝑡
𝑖 (𝑢̂) = 𝑓𝐶𝐴𝑀−𝐿𝑆𝑇 𝑀 (𝑧𝑖) (𝑇𝑖,𝑡−𝑙:𝑡 , 𝑢𝑖,𝑡−𝑙:𝑡 , 𝑢̂𝑖,𝑡+1:𝑡+𝑘 , 𝑣𝑖,𝑡−𝑙:𝑡 , 𝑣̂𝑖,𝑡+1:𝑡+𝑘 )∀𝑖 (4.11)

0 ≤ 𝐸𝑡+𝑘 |𝑡
𝑖 (𝑢̂) ≤ 𝐸𝑚𝑎𝑥 (4.12)

𝑇𝑠𝑝 ≤ 𝑇𝑡+𝑘 |𝑡
𝑖 (𝑢̂) ≤ 𝑇𝑠𝑝 (4.13)

𝑇
𝑡+1

𝑠𝑝 = 𝑇𝑠𝑝 +

∑𝑁𝑧

𝑖

(
𝑇𝑡

𝑖 − 𝑇𝑡
)

𝑁𝑧
(4.14)
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∑𝑙+𝑝−𝜏𝜂
𝑡=𝜏𝜂

���𝑇𝑡+𝜏𝜂
𝑖 (𝑢̂) − 𝑇𝑡

𝑖 (𝑢̂)
���(

𝑙 + 𝑝 − 𝜏𝜂
) ≤ 𝑇𝑅𝜂,∀𝜂 ∈ [0, 4] ,∀𝑖 ∈ 𝑁𝑧 (4.15)

𝑁𝑧∑
𝑖

���
����� 𝑙∑
𝜄=1

𝑢𝑡−𝑙+𝜄
𝑖 − 𝑢𝑡−𝑙+𝜄−1

𝑖

����� +
������

𝑝∑
𝜌=1

𝑢
𝑡+𝑝−𝜌+1
𝑖 − 𝑢

𝑡+𝑝−𝜌
𝑖

�������� /(𝑙 + 𝑝 − 1) · 𝑁𝑧 ≤ 𝜆 (4.16)

𝛼 + 𝛽 + 𝛾 = 1 (4.17)

𝑢̂ =
{
𝑢̂𝑡+𝑘 |𝑡

𝑐1
, 𝑢̂𝑡+𝑘 |𝑡

𝑐2
, 𝑢̂𝑡+𝑘 |𝑡

𝑓 , 𝑢̂𝑡+𝑘 |𝑡
ℎ1

, 𝑢̂𝑡+𝑘 |𝑡
ℎ2

}
(4.18)

𝑢̂ ∈ [0, 5] (4.19)

Table 4.2 Limits on Temperature Drifts and Ramps Standard (2010)

Time Period, h 0.25 0.5 1 2 4

Time Steps 𝜏𝜂 3 6 12 24 48

Maximum Operative Tempera-

ture Change Allowed 𝑇𝑅𝜂, °C (°F) 1.1 (2.0) 1.7 (3.0) 2.2 (4.0) 2.8 (5.0) 3.3 (6.0)

𝑁𝑝 represents the prediction horizon, 𝑡 + 𝑘 |𝑡 indicates the predicted value of a certain variable

at time step 𝑡 + 𝑘 starting from time step 𝑡. 𝑝𝑡+𝑘 |𝑡
𝑝𝑜𝑤𝑒𝑟 and 𝑝𝑡+𝑘 |𝑡

𝑒𝑛𝑒𝑟𝑔𝑦 are the time varying power and

electricity price in dollars per kWh. The total energy consumption, the power peak and the

discomfort are calculated using (4.6), (4.7) and (4.8) respectively. The discomfort is calculated

according to the positive deviation ($/°𝐶) between temperature setpoint in occupancy and

unoccupancy time and the predicted temperature as defined in (4.8). The 𝑇𝑡+𝑘 |𝑡
𝑠𝑝 and 𝑇𝑡+𝑘 |𝑡

𝑠𝑝 are

the lower and upper temperature setpoint respectively, and they are depending on the occupancy

and unoccupancy time. The energy consumption 𝐸𝑡+𝑘 |𝑡
𝑖 (𝑢̂) is calculated according to (4.9). The

operation system power 𝑝𝑡+𝑘 |𝑡
𝑖 (𝑢̂) of each zone 𝑖 is calculated by multiplying the control signals

𝑢̂𝑖 by the power of the cooling stage 1 (𝑃𝑐,𝑠1 = 18.5 kW), the cooling stage 2 (𝑃𝑐,𝑠2 = 37 kW),

the heating stage 1 (𝑃ℎ,𝑠1 = 39.8 kW), heating stage 2 (𝑃ℎ,𝑠2 = 59.8 kW) and the supply fan

(𝑃 𝑓 = 1.5 kW) as defined in (4.10). An optimal controller should be aware of the maximum peak

power demand since the beginning of the month to not cause a new peak. 𝑇𝑡+𝑘 |𝑡
𝑖 is the predicted

temperature for the whole prediction horizon (4.11). The constraint in (4.12) indicates that the
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energy generated by the cooling/heating should not exceed the maximum energy supplied per

month 𝐸𝑚𝑎𝑥 . The constraint in (4.13) indicates that the predicted temperature should be between

the upper and lower temperature setpoint.

The upper occupancy setpoint in each future step 𝑇
𝑡+1

𝑠𝑝 is self-tuned according to the prediction

value at each time 𝑡 as described in (4.14). This tuned upper setpoint is computed by adding

the mean error between the prediction values of temperature at time 𝑡 and the feedback/current

temperature values for all the zones 𝑁𝑧 to the setpoint at time 𝑡.

Moreover, the indoor temperature ramp (TR) is considered in the proposed MPC model as

described in (4.15). TR expresses the change over a different time interval as explained in

Table 4.2 based on ASHRAE standard Standard (2010). The minimization of energy consumption

leads to significant fluctuations of the temperature. In this paper, we compute the average TR for

past and predicted temperature data from 𝑡 − 𝑙 to 𝑡 + 𝑝 for each time step 𝜏𝜂. The consideration

of TR results in a smoother control signal and energy savings.

In the proposed MPC model, the cyclic variation is considered as defined in (4.16) which

represents the repeatedly rises and falls of control parameters. This constraint represents the

variation mean of controls from 𝑡 − 𝑙 to 𝑡 + 𝑝 period that should be less than 𝜆, a predefined

maximum cyclic factor.

Each zone 𝑖 is controlled by a vector 𝑢̂ including five control parameters as described in 4.3.1.

The optimization problem is solved using a genetic algorithm, which generates an optimized

control vector 𝑢̂𝑡+1:𝑡+𝑝 for each zone. Only the first control signal 𝑢̂𝑡+1 is applied to the building.

As the time step 𝑡 progress, the optimization problem MPC-GA is solved again as closed-loop

with the updated initial condition and shifted the constraints.

4.5.2 Proposed genetic algorithm

In this paper, GA is developed to solve the online optimization problem defined in section 4.5.1

to search the optimal values of control parameters 𝑢̂𝑡+1:𝑡+𝑝 for all the zones, that minimize the

overall cost within the prediction horizon 𝑁𝑝. Since the MPC-GA is deployed in real time,
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the computation time to solve the optimization problem is very crucial and should not exceed

the control horizon period (5-minute). GA is used because it uses a low computation time to

solve our problem. GA starts with a random population including 𝑁𝑠 initial individuals and this

number is left constant for every generation. Each individual has 𝑀 chromosomes, and includes

the control parameters 𝑢̂𝑡+1:𝑡+𝑝 for the whole prediction horizon. For the sake of simplicity, each

individual represents one solution for 𝑁𝑝 time ahead and 𝑁𝑧 zones. At the computation of each

generation, each individual is given to the prediction model to predict the temperature 𝑇𝑖,𝑡+1:𝑡+𝑝,

which is used by the optimizer MPC-GA to compute the combined cost. Figure 4.6 depicts the

proposed GA, which includes the following steps:

Algorithm 4.1 Multi-point crossover

Input: parents 𝑝1 and 𝑝2

Output: parents 𝑝3 and 𝑝4

Data: Selected parents

1 𝜌 = random(2, (𝑀/𝑁𝑧)) // 𝜌 is the random number of crossover points
2 cutindex = random(𝑖1, 𝑖2, .., 𝑖𝜌) // 𝑐𝑢𝑡𝑖𝑛𝑑𝑒𝑥 are the random index in each

parent
3 𝑝3 and 𝑝4 = recombination(cutindex, 𝑝1, 𝑝2)

• Tournament selection: The selection of individuals for the next generation is evaluated by

their fitness, which is computed by MPC-GA optimization function. We use a tournament

selection as a selection strategy. Tournament selection selects a number of individuals from

the current generation and hold a tournament amongst them. As explained in sub-section

4.5.5, according to our sensitivity analysis, 20% of the population size is selected. We

compare each pair of individuals. If both are feasible, the individual with the better fitness

will be chosen. If an individual is infeasible and the other is feasible, the feasible one will be

chosen. If both individuals are infeasible, the individual with the lowest cost will be selected.

• Multi-point crossover: We created an offspring from the list of selected parents resulting

from the tournament selection. In this list, two parents are selected randomly (𝑝1 and 𝑝2)

to be recombined and returns two new parents (𝑝3 and 𝑝4). A random number of points
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𝜌 are selected where 𝜌 ∈
[
2, 𝑀

𝑁𝑧

]
. 𝜌 starts from 2 because it is a multi-point crossover

and we assume that the minimum can be two points. Then, a set of 𝜌 random cut indexes

𝑐𝑢𝑡𝑖𝑛𝑑𝑒𝑥 =
{
𝑖1, 𝑖2, .., 𝑖𝜌

}
are selected where 𝑐𝑢𝑡𝑖𝑛𝑑𝑒𝑥%𝑁𝑧 = 0 which means that all cut indexes

should be divisible by zones 𝑁𝑧 to exchange the chromosomes between the same zones. The

recombination of chromosomes is performed as follow: the chromosomes of the first parent

are passed to the child until the first cut index, then the chromosomes of the second parent

are passed to the second part of the child until the second cut index and so on until the end of

𝑛𝑖𝑛𝑑𝑒𝑥 . Algorithm 3 summarizes our implementation of the multi-point crossover method.

• Offspring mutation: Our mutation strategy consists in randomly changing the genes of each

offspring by a random control value 𝑢 ∈ [0, 5] with a certain probability (i.e., a mutation rate

equal to 0.002). Only the gene of heating or cooling controls will be replaced in the offspring

in the winter or summer season, respectively, in order to avoid heating during summer season

and cooling during winter season.

This whole process is executed in a loop until we reach the terminal condition which corresponds

to the number of generations (i.e., 60 generations), according to our sensitivity analysis in

sub-section 4.5.5.

4.5.3 Results-I: Time series prediction

CAM-LSTM is compared against five baseline methods. Among them, there are two classic

methods to address time series prediction e.g., NNARX Delcroix et al. (2020) and LSTM-MISO

Mtibaa et al. (2020). The additional methods, DSTP-RNN Liu et al. (2020) and SA-LSTM Zheng

et al. (2018), which use attention-based encode-decoder network, are also used as baselines.
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Figure 4.7 CAM-LSTM Model temperature prediction for the three zones with three

case studies: (a) (b) (c) represent 3 case studies for the 3 zones in the winter season, and

(d) (e) (f) represent 3 case studies for the 3 zones in the summer season

Finally, the context-aware neural network model (CANN) is based on the model proposed in

Liang et al. (2019), named UrbanFM which uses a fusion network with a feature extraction

module. All baselines are tested on the real data as described in the section 4.4.1. CAM-LSTM

is evaluated on the test dataset and three metrics are used: the mean absolute percentage error

(MAPE) in 4.20, the root mean square error (RMSE) in 4.21 and the mean absolute error (MAE)

in 4.22. The MAPE measures the size of the error in percentage terms, a lower result indicates

better performance. The RMSE penalizes more larger error values. The MAE corresponds to
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the mean value of the sum of absolute differences between actual and forecast values, and it

evaluates forecast accuracy.

𝑀 𝐴𝑃𝐸 =
100

𝑛
×

𝑛∑
𝑖=1

���� 𝑦𝑖 − 𝑦̂𝑖
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���� (4.20)
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𝑀 𝐴𝐸 =
1

𝑛
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Where 𝑦 and 𝑦̂ define the real and predicted outputs respectively, and 𝑛 is the total observation

number.

In Table 4.3, we observe that the RMSE of the NNARX model is higher than all other methods.

This is due to the error propagation over time caused by the recursive prediction strategy used to

predict the two hours, since the RMSE penalizes large error values. In addition, we observe

that LSTM-MISO outperform CANN and DSTP-RNN even with its simple architecture. The

CANN model captures the sequential relationship between inputs using the external factor fusion

component. However, it is less powerful than the gate mechanism used in the LSTM-MISO.

Models using attention mechanism are generally more efficient than other models because

they are able to select the relevant hidden states across all time steps. DSTP-RNN, SA-LSTM

and CAM-LSTM use an attention mechanism, but in a different way. For each of them,

the performance of SA-LSTM and CAM-LSTM are the closest. In addition to the attention

mechanism, CAM-LSTM uses two-level feature extraction modules to model the complex

mixtures of temporal patterns resulting the best MAPE, RMSE and MAE compared to baselines.

CAM-LSTM is used with MPC-GA in a real deployment use case with never before seen data as

it will be described in the section 4.5.6. The prediction behavior is very close to the real values

as described in Figures 4.8 (a) and 4.9 (a) which leads to a better control decision, as will be

further described in the following sections.
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Table 4.3 Performance comparison of different

prediction method with past time steps equal to

3 hours and future time steps equal to 2 hours

Models MAPE (%) RMSE (° C) MAE (° C)

NNARX 0.4699 1.9431 1.449

LSTM-MISO 0.6487 0.1937 0.1373

CANN 1.0139 0.3103 0.2139

DSTP-RNN 0.7105 0.353 0.1682

SA-LSTM 0.2269 0.0039 0.048

CAM-LSTM 0.0872 0.0005 0.0181

4.5.4 Results-II: The impact of control signals on the prediction

Table 4.4 GA sensitivity analysis

(A) Best fitness, Fix: Pop size 400
Elite

Generation 20 40 80 100

25 90.96 71.55 88.97 88.64

40 70.25 61.55 59.56 53.85

60 48.38 47.88 37.44 43.48

(B) Fix: Generation 60, Elite 80 (C) Fix: Pop 400, Generation 60, Elite 80 (D) Fix: Pop 400, Generation 60, Elite 80,
Nb_mutation=1

Population size Best fitness Nb_Mutation Best fitness Nb_crossover Best fitness
100 108.96 1 37.44 3 40.44

200 38.66 3 47.33 6 47.35

300 45.52 10 84.77 12 37.44
400 37.44 18 51.11

500 47.16 24 51.58

In the control concept, CAM-LSTM is designed to capture the sensitivities of the temperature

prediction with respect to the control commands. Failing to get these sensitivities with sufficient

precision may result in a model that responds poorly to control commands. To evaluate the

effectiveness of the input attention mechanism in CAM-LSTM, and since attention is only used

on control signals, we studied the impact of these exogenous inputs on the prediction results.

Three case studies were performed to study the influence of observed (𝑙=3 hours) and known

(𝑝=2 hours) control signals on the temperature prediction output. For the first case study, the

real control signals are used to predict the temperature. The second case study is performed



90

using random and noisy control signals instead of real ones. The third case study sets all real

control signals (heating or cooling) to be off when are supposed to be on. Figure 4.7 shows an

example of the effect of control with the three case studies described before. Figures 4.7 (a),

(b) and (c) show that the temperature prediction decreases very fast when the heating controls

are OFF when it is supposed to be ON in winter season. Figures 4.7 (d), (e) and (f) show that

the temperature prediction increases very fast when the cooling controls are OFF when it is

supposed to be ON in summer season. We notice also that the prediction of the temperature is

generally off with a random control setting. In addition, the prediction values variability follows

the real values using the test data without any modification. This indicates that CAM-LSTM can

capture long and short dependencies by selecting relevant hidden states across all controls time

steps. Consequently, CAM-LSTM is sensitive to control signals, therefore it is eligible to be

used in a control closed-loop system.

4.5.5 Results-III: GA Sensitivity Analysis

We perform a sensitivity analysis to determine the best values of the population size, the

generation number, the elite, and the number of mutation and crossover points as depicted in

Table 4.4. This analysis is important in order to interpret the results of the GA as well as to

avoid choosing obsolete solutions as optimal solutions. As the generations pass, the fitness value

decreases in all five population size test cases. However, the test case with minimum fitness is

used for the MPC-GA deployment. From the sensitivity analysis, the adopted parameters are

marked in Table 4.4. We start by examining the elite and generation numbers as described in

Table 4.4 (A). The elite and generation number of 80 and 60 respectively gives the best fitness

value (i.e., 37.44). Then, we fixed these two parameters to obtain the best population size (i.e.,

400 Table 4.4 (B)). Similarly, we tuned the number of mutations and the number of crossover

points to 1 and 12 respectively (see Table 4.4 (C) and Table 4.4 (D)).
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Table 4.5 Control results

Deploy test day 1 (T1) Deploy test day 2 (T2)

Control method MPC-GA

simulation

MPC-GA

real-time

RBC

baseline

MPC-GA

simulation

MPC-GA

real-time

RBC

baseline

Datetime Test 9/8/2020

12:25 to 17:15

9/8/2020

12:25 to 17:15

8/15/2019

12:25 to 17:15

9/18/2020

11:05 to 17:00

9/18/2020

11:05 to 17:00

10/30/2019

11:05 to 17:00

Day of week Tuesday Tuesday Thursday Friday Friday Wednesday

Min(OAT) ° C 20.13 20.13 19.52 11.97 11.97 12.12

Max(OAT) ° C 23.58 23.58 23.43 14.08 14.08 14.2

Mean(OAT) ° C 21.855 21.855 21.475 13.025 13.025 13.16

Energy zone 1 (kWh) 98.98 111.7 280.25 63.5 37.08 9

Energy zone 2 (kWh) 108.75 105.66 280.25 57.95 49.91 119.99

Energy zone 3 (kWh) 116.2 105.66 141.5 63.24 34.37 72.54

Total Energy (kWh) 323.93 323.02 702 184.69 121.36 201.53

Max Power (kW) 11.16 14.25 14.25 8.08 8.08 3.4
Discomfort (° C/h) 0.008 0 11.19 0 0.04 0.22

4.5.6 Results-IV: MPC-GA results

To demonstrate the potential for discomfort, power minimization and energy savings, MPC-GA

has been tested under a simulation mode before applied it in a real on-line experiments. The

simulation tests are used to examine the closed-loop performance of the MPC and test its stability

by setting its parameters offline. For instance, the execution time of the MPC-GA process must

not exceed the control horizon period, which is in our case 5-minute. Therefore, the related

parameters in GA was tuned to not exceed the 5-minute control horizon as described in Table

4.4. The population size is set to 400, and the maximum number of iteration is set to 60 to

find the near optimal solution. The proposed algorithm accommodates the preferences of the

building administrator when assigning energy/temperature for a comfort level by changing the

weight of each cost in the objective function. For example, if the administrator wants a higher

energy efficiency, he can increase the weights of energy cost in (4.5). The weighting coefficients

of the cost function were tuned experimentally to 𝛼 = 0.2, 𝛽 = 0.3 and 𝛾 = 0.4. We transformed

the constrained problem into unconstrained problem by using a penalty method. We converted

all the constraints into penalty functions, then add them to the objective function. To control

the violation severity of the penalty, we multiply the penalty function of each constraint by a

positive constant which has been tuned experimentally. The tournament selection step of the

GA will select the candidates with the lowest cost as explained in section 4.5.2. For simulation
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purposes, the feedback resulting from the optimal controls are predicted using CAM-LSTM

model. The advantage of this method is that the model output is very similar to the real output,

so the optimal control decision will not be too much affected. However, this method can still

lead to errors in the simulation test and this depends on the prediction accuracy errors. In the

case of the real-time deployment mode, the controls resulting from the optimization model

are executed and the system receives the feedback to improve the trajectory in the next steps.

Table 4.5 presents the results of the two deployment tests which were conducted on two different

days. All MPC-GA tests were executed with an occupancy setpoint between 19°C and 22.5°C.

The first and second day tests were executed on Tuesday 08/09/2020 from 12:25pm to 5:15pm

and Friday 18/09/2020 from 11:05am to 5pm, respectively.

We compared also the efficiency of MPC-GA with an advanced RBC model which was in

operation in the building from August 2019 to September 2020. So all past controls data in the

database are resulting from RBC model. The basic idea of the advanced RBC baseline control

is that cooling is activated when the measured temperature exceeds a higher cooling setpoint.

The cooling control is disabled when the measured temperature falls below a lower cooling

setpoint. The control baseline check the outside air temperature’s condition and the building

status. It uses a recurrent neural network and a convolutional neural network model to predict

the temperature which helps to decide when is the good moment to start or stop the systems.

To compare the two control approaches, we had to find days where the outdoor temperature

profile was similar to the days when the MPC-GA was deployed. Thus, MAE and RMSE were

used to compare the outdoor temperature measurements of the MPC-GA days with all other

days available in the database. The day with the minimum error was used for the comparison.

Figure 4.11 shows the outdoor air temperature for the two reference days compared to the real

deployment test days and it can be seen that the outdoor trajectories are very similar. It is

important to mention that the comparison days selected for test 1 and test 2 are also close in

terms of month and day of the week. The results shown in the Table 4.5 clearly indicate that there

is a significant reduction in energy and discomfort for MPC-GA simulation and real-time mode

compared to RBC baseline controller. The results of the MPC-GA simulation and real-time
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(a) Test 1 MPC-GA

(b) Test 1 RBC

Figure 4.8 Comparison between MPC-GA in real time mode

and RBC for the deployment test 1

modes are very close. Which shows that even without the real feedback and with only the

accurate prediction of the state of the system, the model was able to give near-real results. A more

predictive aware building controller leads to improvements over the traditional RBC controller.

However, RBC slightly outperforms the MPC-GA for the maximum power consumption of test 2.

To understand these savings and the behavior of the maximum power consumption, Figures 4.8

and 4.9 show the indoor temperature and the corresponding control resulting from the real-time

deployment of the MPC-GA and RBC for tests 1 and 2 respectively. The upper graphs of the

figures 4.8 and 4.9 (a) represent the real and the prediction of temperature using CAM-LSTM

with the optimization model. The temperature prediction is stable and very close to the real

(observed) values, which indicates an efficient accuracy of CAM-LSTM. This leads the system

to know the future trajectory and to make the right control decision that minimizes the total costs.

In addition, it can be observed that the MPC-GA more strictly maintains the indoor temperature

within the setpoint range than RBC. The lower graphs of Figures 4.8 (b), 4.9 (b) and 4.8 (a), 4.9

(a) indicate the state of controls for each zone before and after optimization respectively. All
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control status are described in detail in section 4.3.1. It is noticeable that after the optimization,

the three control systems are not switched on at the same time for the three zones, in order to

minimize the the maximum power consumption. However, before the optimization, RBC keeps

(a) Test 2 MPC-GA

(b) Test 2 RBC

Figure 4.9 Comparison between MPC-GA in real time mode

and RBC for the deployment test 2

on the controls for a long period of time. For example, in test 1, RBC keeps on the fan, cooling

stage 1 and 2 for both zones 1 and 2 for the entire test period. This results in higher total energy

consumption (702 kWh), as shown in Table 4.5. This high energy consumption did not allow

the system to ensure comfort in the building. Figure 4.12 shows the percentage of time when the

indoor temperature is outside of the setpoint range. The percentage of discomfort is 100% for

zone 1 and 2 using RBC for test 1. Similarly for zone 3, the percentage of discomfort using

RBC exceeds the percentage of discomfort using MPC-GA for both tests. This is due to the

non-operation of the cooling stages for a long period of time, which also explains the lower

maximum power consumption of the RBC compared to the MPC-GA. To investigate further

the reason of the total of energy consumption of each zone described in Table 4.5, Figure 4.10
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presents the fan, cooling stage 1 and 2 run time for deployment test 1 and 2 before and after

optimization. Only cooling stages were activated since the two-day experiment was conducted

in the cooling season. More importantly, MPC-GA was able to reduce the operation of the

cooling stage 2 over the long term. The run time of cooling stage 1 with MPC-GA for both tests

is much lower than RBC. The main source of the energy savings comes from the minimization

of the operation of the cooling stage 2 for all zones, since it is the one with the highest capacity

𝑃𝑐,𝑠2
. In addition, it can be noted that the run time of the fan, cooling stage 1 and cooling stage 2

is balanced between three zones for MPC-GA to avoid giving a lot of load to a single control

system and preventing maintenance.

Table 4.6 shows the savings in energy, peak power and discomfort for both tests. The results

conclude that the MPC-GA reduces energy by more than 50% and discomfort by more than 80

% for both tests. However, there was no reduction in power peak for either test. The lack of

peak savings with MPC-GA is not necessarily an optimization failure. Since the power peak

rate is applied on the maximum power demand during the month. The MPC-GA should be

aware of the maximum power peak demand since the beginning of the month to not cause a new

peak. The model keeps the power below the power consumed since the beginning of the month.

The maximum of power consumption indicated in Table 4.5, still less than the maximum power

consumed from the beginning of the month for the two tests. So there are no additional cost

related to power peak.
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a) Test 1 b) Test 2

Figure 4.11 Outdoor air temperature for test 1 and 2
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Figure 4.12 The percentage of time the temperature is

outside of the dead band of the setpoint

Table 4.6 Savings for test 1 and test 2

Tests
Saving of

energy consumption (%)

Saving of

power peak (%)

Saving of

discomfort (%)

Test 1 62.29 0 100

Test 2 58.40 0 81.81
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4.6 Conclusion

In this paper a data-driven MPC model controller was described, implemented and evaluated in

a real commercial building. A neural network attention based model named CAM-LSTM is

proposed to predict the IAT. This model is used in the MPC process control and its accuracy has

been proven. An online optimization with low computation time is developed to minimize the

energy, power peak and discomfort that considers a self-tuned setpoint, cycling and temperature

ramp as constraints. A genetic algorithm was used to solve the control optimization problem and

to find the optimal combination of control parameters during two hours for all the zones. The

MPC-GA controller ran an optimization in a receding horizon window with updated information.

Results of the real deployment of the MPC-GA controller were very promising: the energy

consumption and the discomfort was minimized by more than 50% and 80% respectively. Further

work will include more tests on other type of HVAC system and building with more zones.
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Abstract

Centralized optimization approaches to trade-off between comfort, energy and carbon emissions

are widely adopted in the control of building heating, ventilation, and air-conditioning (HVAC)

systems. However, the high computational complexity in each control horizon, single point

of failure risks, and the limited number of zones to control make the centralized approach

unattractive. Unlike centralized controls, multi-agent control (MAC) systems are flexible and

modular. This paper proposes a scalable multi-agent based distributed approach for optimized

control of a multi-zone smart building based on a set of local agents which represent individual

zones in the building, coordinated by a central agent. For each control horizon, the coordinator

minimizes the overall carbon emissions and assigns an individual energy budget to each local

agent. Each local agent minimizes the discomfort in its zone while respecting the energy budget

assigned by the coordinator. We propose a heuristic search based on a genetic algorithm to find

the optimized control sequences in each zone, and formulate an integer linear programming (ILP)

model for the coordinator problem which can be solved using an ILP solver. For a representative
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winter test day, the proposed methodology gave an energy savings of 8.8% and reduced the

carbon footprint by 23.4%.

keywords: HVAC, smart building, multi-agent, MPC, optimal controls, energy efficiency,

carbon footprint reduction.

5.1 Introduction

The building sector in the United States consumes about 41% of the primary energy and

contributes 39% of the carbon emissions Agency (2009). From which, the heating, cooling,

ventilation and air conditioning (HVAC) systems are responsible for more than 50% of the energy

consumed in commercial buildings DoE et al. (2011) and is an important producer of CO2

emissions Péan et al. (2019). Improving the HVAC operation contributes to a sustainable future

while reducing the carbon footprint of the building and is a strategy requiring very little capital

expenditure. In general, centralized control methods achieve the best performance when control

decisions are made using all available information Masero, Francisco, Maestre, Revollar & Vega

(2021). However, many limitations make a centralized control no longer practical. First, the

optimization strategies in the centralized control system can take very long time to find the optimal

control decisions, which is a challenge for systems with a short period of operation (Thieblemont

et al., 2017). A centralized control framework can be computationally expensive for large scale

optimization when applied to buildings with a large number of zones, equipped by complex

distribution system and influenced by various factors. Compared to a centralized method,

a multi-agent control (MAC) approach can potentially be more flexible and scalable (Wang

et al., 2021). However, implementing real-time optimal control strategies for multi-zone HVAC

systems using multi-agent based distributed optimization methods can be challenging Wang,

Nguyen, Xu, Tran & Caire (2020); Wang, Hong, Wang, Xu, Tang, Han & Kurths (2022).

Distributed optimal controls require distributed optimization methods for which convergence is

not always guaranteed Shaikh et al. (2014). Moreover, the optimization models proposed in

previous work are limited to energy efficiency and discomfort minimization Mansy & Kwon

(2020). More essential costs must be considered in the MAC optimization problem, such as
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reducing the carbon footprint. In this paper, we propose a model predictive control (MPC) based

multi-agent control framework allowing the optimal operation of HVAC system. The MAC

framework is composed of a number of agents and one coordinator. Each agent is responsible

for a specific zone which may have a different size and different power requirement. Each agent

is formulated as MPC-based optimization problems and solves a local optimal control problem

that minimizes discomfort during the control horizon 𝑁𝑝. The coordinator’s role is to entrust an

individual power budget to each agent while minimizing carbon emissions.

This paper extends our prior work in Mtibaa, Nguyen, Dermardiros & Cheriet (2021a) where a

centralized-based control approach has been proposed to optimally control the HVAC system in

smart buildings with subject to minimal energy consumption. Unlike our prior work, in this

paper, we propose a distributed control approach that considers carbon emission reduction in

addition to energy and discomfort. Additionally, in this paper, we present more scalable case

studies implemented using the Modelica simulator Wetter, Zuo, Nouidui & Pang (2014). A

comparison between the centralized approach proposed in Mtibaa et al. (2021a) and the proposed

distributed approaches is also provided in this paper.

The contributions of this paper are: (1) modeling a scalable multi-agent control system formulated

as MPC-based optimization problems for multi-zone buildings; (2) modeling carbon emission

cost by considering the marginal emissions factor (MEF) rate that categorizes the footprint of

the power grid and minimizing it in the coordinator optimization model; and, (3) carrying out

extensive simulations using Modelica to validate the proposed MAC approach.

This paper is structured as follows: Section 2 summarizes the prior work related to our research.

Section 3 describes the use case and the description of the multi-agent framework. Section 4

details the proposed multi-agent model and describes the control algorithm. Section 5 presents

the validation methodology and baselines. Section 6 discusses the experimental results and

compares the performance of the proposed models. Finally, we conclude key findings and

present future research directions.
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5.2 Related work

To optimize HVAC control, centralized MPC-based approaches which are solved using different

optimization algorithms, for instance, mixed-integer linear programming (MILP), mixed-integer

nonlinear programming (MINLP), nonlinear programming algorithm (NLP) and evolutionary

algorithms like genetic algorithms (GA), have obtained more attention in recent years Reynolds

et al. (2018); Song et al. (2020). Dullinger et al. Dullinger et al. (2018) developed a centralized

predictive HVAC controller based on a MILP approach. The proposed control system is based

on two levels of operation. On the upper level, the global thermal system performance and the

HVAC modes are controlled using a long prediction horizon to take care of the slow dynamics

of the plant. Then, on the lower level, the system operation is optimized with a shorter horizon

that corrected possible prediction deviations without increasing the computation time. Similarly,

Tarragona et al. Tarragona et al. (2020) presented a two level centralized MPC control strategy

to improve the operation of a space-heating system coupled with renewable resources. The

proposed control approach is formulated as an MINLP. These double levels of control helped the

system to find the optimal solution with less computation time. Raman et al. Raman et al. (2021)

designed an NLP-based centralized control approach incorporating humidity and latent heat in

the MPC optimization problem for energy-efficient HVAC control. Song et al. Song et al. (2020)

proposed a GA-based centralized control method to optimize the configuration of a combined

cooling, heating and power (CCHP) plant. Mtibaa et al. Mtibaa et al. (2021a) proposed an

online centralized data-driven control framework based on a GA allowing the optimal operation

of the HVAC system and has been experimentally validated in a multi-zone retail building.

A centralized MPC is developed in Seal et al. (2020) aimed at occupant comfort and energy

efficiency with variable cost rates. The authors obtained a reduction of 13% in the energy cost

with the proposed control strategy compared to a rule-based approach. Different centralized

control frameworks have been proposed in the literature Mtibaa et al. (2021a); Tarragona et al.

(2020). However, for large-scale buildings, it is not practical to calculate control actions in

this manner due to time limitations, a single point of failure risks, and the limited number of

zones to control. Compared with centralized control-based methods, MAC systems are more
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flexible and scalable Wang et al. (2021). MAC system, has lately caught significant attention for

HVAC control systems. Su and Wang Su & Wang (2020) designed an agent-based distributed

optimal control approach for multi-zone building. The authors studied different implementation

challenges including convergence rate, computation complexities and computation loads. Results

showed that the proposed control had a low computation load and a high convergence rate.

Li et al. Li et al. (2020) developed a three-layered multi-agent system based optimal control

method using the chaotic search particle swarm optimization. The results demonstrated that the

proposed control solution could reduce the operating cost by 1.84%. MPC has become a common

choice for distributed implementation Masero et al. (2021). Pertzborn Pertzborn (2019) adopted

an MPC and distributed optimization by using the distributed agents for optimal operation

of a central chilling system combined with an ice-storage system. The distributed models

divided the computational load between multiple local models and optimizations, providing

an effective global control policy for the entire operating system. Joe et al. Joe et al. (2018)

studied a distributed MPC scheme and has demonstrated a high potential of reducing energy

consumption by up to 27% within the cooling season. A real-time optimal control method is

developed in Li et al. (2021) to solve the optimization problem in a distributed manner and

find the proper trade-off between maintaining thermal comfort and indoor air quality as well

as minimizing energy use. Li and Wang Li & Wang (2020) designed a multi-agent based

hierarchical distributed approach for the optimal control of multi-zone ventilation systems to

improve indoor air quality by regulating the operation of the primary air-handling units. A

centralized multi-objective optimization scheme was formulated and decomposed into different

simpler distributed sub-schemes. In this way, complex control optimization problems can

be solved collectively by multiple agents. Such studies Pertzborn (2019); Li & Wang (2020)

demonstrate the effectiveness of using distributed optimal control approaches to improve the

energy efficiency of HVAC systems. However, operational issues when these control approaches

are implemented on physical environments, for instance the convergence rate and computation

load distribution have not been addressed. In addition, the scalability of the proposed distributed

control systems can be improved. Furthermore, the implementation of optimal control strategies

for multi-zone HVAC systems using multi-agent based distributed optimization approaches
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is a challenging research direction. Moreover, the optimization models proposed in previous

work are limited to energy efficiency and discomfort minimization. The carbon footprint is

an essential factor to consider in the optimization problem. Vogler-Finck et al. used MPC to

control and optimize multi-zone operation Vogler-Finck et al. (2018). The results show that

carbon footprint and energy optimization are relevant objectives for predictive control, while

price optimization is secondary. Carbon emission reduction is also considered in Pedersen et al.

(2017), in which the authors proposed an economic model predictive control (E-MPC) scheme

for space heating operation. Simulation results showed that E-MPC increases cost savings by up

to 6% and CO2 emissions by up to 3%. In Siler-Evans et al. (2012), MEF is used instead of the

average emissions of the electrical grid. The MEF is also used in Péan et al. (2019), in which

an MPC controller has been developed and tested within a co-simulation framework which

combines an optimization approach with a dynamic building simulation tool. Their proposed

solution achieves a marginal emissions saving in the range of 19%-29%. The aforementioned

approaches have successfully reduced carbon emissions, however they do not use a multi-agent

data-driven MPC approach. In this paper, a multi-agent control framework named MAC is

proposed to optimize operations of HVAC system. Our approach relies on data-driven MPC

control.

5.3 System description

5.3.1 Building description

Table 5.1 Control stages

𝑢𝑖 𝑢̂𝑐1𝑖 𝑢̂𝑐2𝑖 𝑢̂ℎ1𝑖 𝑢̂ℎ2𝑖 𝑢̂ 𝑓 𝑖 𝑃𝑢𝑖 (kW)
0 0 0 0 0 0 0

1 0 0 0 0 1 0.7

2 1 0 0 0 1 2.95

3 1 1 0 0 1 5.2

4 0 0 1 0 1 2.95

5 0 0 1 1 1 5.2
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Figure 5.1 Schematic diagram of RTU for one zone

In this paper, we consider a multi-zone retail building equipped with a rooftop unit (RTU). The

building has five zones equipped each with a RTU and controlled by a separate thermostat.

Each RTU contains a fan with two heating and two cooling stages as described in Fig. 5.1. We

assume a constant fan flow-rate and it is actuated either ON or OFF. There is significant thermal

coupling between all zones since there are no walls between them. Given a zone 𝑖, it is controlled

by a vector 𝑢𝑖 including five control parameters 𝑢̂𝑐1𝑖, 𝑢̂𝑐2𝑖, 𝑢̂ 𝑓 𝑖, 𝑢̂ℎ1𝑖 and 𝑢̂ℎ2𝑖 which represent

cooling stage 1, cooling stage 2, fan ventilation stage, heating stage 1 and heating stage 2. The

control signal is binary: 0 signifying OFF and 1, ON. The set of valid operation combinations

contain six possibilities as shown in Table 5.1. The first stage of either heating or cooling modes

can be activated alone, however the second stage requires the first to be ON. The fan can run

independently but needs to be ON whenever the heating or cooling system is ON. The energy

efficiency of a building can be achieved by orchestrating the sequence of control signals across

the different units over a time horizon while respecting system and comfort constraints. The

building operates following a tiered utility rate. In this case study, the energy is charged at
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0.05303 $/kWh if the energy consumption is less than the maximum energy supplied per month

E𝑚𝑎𝑥 = 210′000𝑘𝑊ℎ and 0.0373 $/kWh otherwise. The power demand rate is 14.58 $/kW and

charged on the maximum demand during the month. This rate structure can be updated given

another building’s local utility rates.

5.3.2 Multi-agent control system description

The multi-agent control system is described in Fig. 5.2, and is a distributed control decision

process based on two main entities:

• Local agent: each local agent is an independent control decision maker who represents

each RTU or separated zone in the building. There are as many agents as RTUs. An agent

is in charge of its own local control parameters decision and responsible for generating

a local optimal decision regarding some constraints. Moreover, the agents compete for

global optimality at each time cycle and then modify their local control decision dynamically

according to the coordination message received from the coordinator. The prediction model

proposed in Mtibaa et al. (2021a) is used to predict the temperature over a control horizon

for each agent. Each agent entity uses the temperature prediction data in its optimization

model (section 5.4) to compute the optimal control sequence. An agent is ignorant to other

agent’s control decisions.

• Coordinator: the coordinator minimizes the carbon emission in order to assign a power

budget for each agent while respecting a maximum power budget during each control horizon.

The local agent operates on a receding horizon by solving for a fixed prediction horizon (2 hours

in our case) from the current time step 𝑡. The first control signal 𝑢∗𝑧𝑖 (𝑡 + 1) is applied to the

building. All this process is executed as a closed-loop behavior.

5.4 Multi-agent control model

We consider 𝑁 zones operating with local agents each controlling a rooftop unit (RTU), and one

coordinator. The zones have different sizes with different power requirements. We minimize the
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discomfort level in each zone within an interval of time 𝑁𝑝. The power consumed in each zone

should be bound to a power budget determined by the coordinator. The coordinator minimizes

the carbon emissions and assign an optimal power budget for each zone with a condition that the

sum does not exceed a maximum power budget during 𝑁𝑝.

Figure 5.2 The overall structure of Multi-agent framework

5.4.1 Local agent model

Each agent solves a local optimal control problem to minimize discomfort during a prediction

horizon 𝑁𝑝. The discomfort is calculated according to the positive deviation ($/°𝐶) between

temperature setpoint in occupied and unoccupied times and the predicted temperature as

formulated in (5.2). 𝑡 + 𝑘 |𝑡 indicates the predicted value of a certain variable at time step

𝑡 + 𝑘 starting from time step 𝑡. 𝑇𝑡+𝑘 |𝑡
𝑖 is the predicted temperature for the whole prediction

horizon (5.3). The 𝑇𝑠𝑝 and 𝑇𝑠𝑝 are the lower and upper temperature setpoint respectively, and

they vary based on occupied and unoccupied times. The 𝑇𝑠𝑝 is between 15° C and 26° C in

unoccupied period and between 21° C and 23° C in occupied period. The power consumption

𝑃𝑡+𝑘 |𝑡
𝑖 (𝑢̂) of each zone 𝑖 is calculated by multiplying the control signals 𝑢̂𝑖 by the power of the
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cooling stage 1 (𝑃𝑐,𝑠1), the cooling stage 2 (𝑃𝑐,𝑠2), the heating stage 1 (𝑃ℎ,𝑠1), heating stage 2

(𝑃ℎ,𝑠2) and the supply fan (𝑃 𝑓 ) as defined in (5.4). The constraint in (5.5) indicates that the power

consumed by each agent at each time step 𝑡 must not exceed a power budget pre-computed by the

coordinator in section 5.4.2. Table 5.2 summarizes the various symbols and related meanings.

Table 5.2 Table of notations for agent model

Symbol Explanation

Input parameters

𝑣𝑖
the uncontrolled variables includes outdoor temperature,

hour of day and day of week

𝑇𝑖 Indoor air temperature of agent i

𝑇𝑠𝑝 upper temperature setpoint

𝑇𝑠𝑝 lower temperature setpoint

𝑃𝑐,𝑠1 power of the cooling stage 1

𝑃𝑐,𝑠2 power of the cooling stage 2

𝑃 𝑓 power of the fan

𝑃ℎ,𝑠1 power of the heating stage 1

𝑃ℎ,𝑠2 power of the heating stage 2

𝑃budget𝑖 power budget for agent 𝑖
𝑃𝑡

𝑏𝑢𝑑𝑔𝑒𝑡−𝑚𝑎𝑥 power consumption limit of the HVAC system

Δ𝑡 sampling rate of 5 minutes

𝑁𝑧 number of agents

𝑁𝑝 prediction horizon

Auxiliary variables

Discomfort(𝑢𝑖) discomfort cost of agent i

𝑃𝑖 operation system power of agent i

Decision Variables

𝑢𝑖 control parameter of agent i,

The optimization problem of each local agent, name P1𝑖 is defined as follows.

P1𝑖 = min
𝑢𝑖

Discomfort(𝑢𝑖) (5.1)

𝑠.𝑡.
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Discomfort(𝑢𝑖) =
𝑁𝑝∑
𝑘=0

max
{
0, 𝑇 𝑡+𝑘 |𝑡

𝑖 (𝑢𝑖) − 𝑇𝑠𝑝

}
+max

{
0, 𝑇 𝑠𝑝 − 𝑇𝑡+𝑘 |𝑡

𝑖 (𝑢𝑖)
}
· Δ𝑡/60 (5.2)

𝑇𝑡+𝑘 |𝑡
𝑖 (𝑢𝑖) = 𝑓CAM-LSTM(𝑧𝑖) (𝑇𝑖,𝑡−𝑙:𝑡 , 𝑢𝑖,𝑡−𝑙:𝑡 , 𝑢̂𝑖,𝑡+1:𝑡+𝑘 , 𝑣𝑖,𝑡−𝑙:𝑡 , 𝑣̂𝑖,𝑡+1:𝑡+𝑘 ) ∀𝑖, 𝑘 (5.3)

𝑃𝑡+𝑘 |𝑡
𝑖 (𝑢𝑖) = 𝑢̂𝑡+𝑘 |𝑡

𝑐1𝑖 · 𝑃𝑐,𝑠1 + 𝑢̂𝑡+𝑘 |𝑡
𝑐2𝑖 · 𝑃𝑐,𝑠2 + 𝑢̂𝑡+𝑘 |𝑡

𝑓 𝑖 · 𝑃 𝑓 + 𝑢̂𝑡+𝑘 |𝑡
ℎ1𝑖 · 𝑃ℎ,𝑠1 + 𝑢̂𝑡+𝑘 |𝑡

ℎ2𝑖 · 𝑃ℎ,𝑠2 ∀𝑖, 𝑘 (5.4)

𝑃𝑡+𝑘/𝑡
𝑖 (𝑢𝑖) ≤ 𝑃𝑡+𝑘/𝑡

budget𝑖
∀𝑘 (5.5)

𝐴𝑢𝑡𝑖 ,𝑢
𝑡+1
𝑖

= 1 (5.6)

𝑢𝑖 ∈ [0, 5] (5.7)

The state transition constraint is presented in (5.6), which reduces the wear-and-tear of HVAC

equipment. All the possible state transitions from a control state 𝑢𝑡
𝑖 to a possible state 𝑢𝑡+1

𝑖 are

defined in matrix 𝐴𝑢𝑡𝑖 ,𝑢
𝑡+1
𝑖

. For instance, state 0 can only change to state 1 or remain at state 0, as

follows.
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Aut
i ,u

t+1
i

=

0 1 2 3 4 5

0 1 1 0 0 0 0

1 1 1 1 0 1 0

2 0 1 1 1 0 0

3 0 0 1 1 0 0

4 0 1 0 0 1 1

5 0 0 0 0 1 1

5.4.2 Coordinator model

In the coordinator model the MEF is considered and it indicates how the emission factor changes

if an additional unit of energy is produced or consumed Huber, Lohmann, Schmidt & Weinhardt

(2021). MEF is calculated using the linear regression approach described in Siler-Evans

et al. (2012) and originally demonstrated by Hawkes Hawkes (2010) and used to calculate

marginal CO2 rates for the United Kingdom. As described in (5.8), (5.9) and (5.10), the

regression expresses the change in fossil generation Δ𝐺𝑡 [𝑘𝑊ℎ/ℎ] and the change in emissions

ΔΓ𝑡 [𝑔𝐶𝑂2/ℎ], across a set of intervals (𝑡 ∈ 𝑇) Huber et al. (2021). The regression coefficient

𝛽 represents the MEF, typically expressed in [𝑔𝐶𝑂2/𝑘𝑊ℎ].

ΔΓ𝑡 = 𝛽.Δ𝐺𝑡 (5.8)

ΔΓ𝑡 = Γ𝑡 − Γ𝑡−1 (5.9)

Δ𝐺𝑡 = 𝐺𝑡 − 𝐺𝑡−1 (5.10)
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In this paper the coordinator solves a global optimal control problem to minimize the carbon

emission price (𝑐𝑡
𝑐𝑎𝑟𝑏𝑜𝑛 (𝑢𝑖)) which is computed by multiplying the MEF by a fixed carbon

related cost 𝜋𝑐𝑎𝑟𝑏𝑜𝑛 which presents the market price of the gram of CO2 and by the power budget

of each agent 𝑖 at each time step 𝑡 ∈ 𝑁𝑝. The constraint in (5.12) indicates that the parallel

operation of several agents at each time step must meet the power consumption limit 𝑃𝑡
𝑏𝑢𝑑𝑔𝑒𝑡−𝑚𝑎𝑥

of the HVAC system. For a scenario with 5 zones, we assume that:

• During the unoccupied period, only the fan can be turned ON, so the control 𝑢𝑖 takes the

state 0 or 1. We assume that only two zones will be set to state 0 and a maximum of three

zones will be set to state 1 at the same time on each control horizon. In this case 𝑃budget−𝑚𝑎𝑥

will be equal to 2.1 kW.

• During the occupied period, we assume that from 7 AM to 9 AM, heating stage 2 cannot

be activated. The control 𝑢𝑖 takes state 4 as the maximum for all 5 zones. In this case

𝑃budget−𝑚𝑎𝑥 will be equal to 14.75 kW at each control horizon from 7 AM to 9 AM. The rest

of the occupancy period, we assume that 𝑢𝑖 takes state 5 for up to 3 zones at the same time

on each control horizon and state 4 for the other 2 zones. In this case, 𝑃budget−𝑚𝑎𝑥 will be

equal to 21.5 kW at each control horizon from 9 AM to 6 PM.

The constraint in (5.14) describes the state transition constraint.

P2 = min
𝑢𝑖

𝑁𝑝∑
𝑘=0

𝑁𝑧∑
𝑖=1

𝛽.𝜋𝑐𝑎𝑟𝑏𝑜𝑛.𝑃𝑡+𝑘 |𝑡
budget𝑖

(𝑢𝑖) (5.11)

𝑠.𝑡.

𝑁𝑝∑
𝑘=0

𝑁𝑧∑
𝑖=1

𝑃𝑡+𝑘 |𝑡
budget𝑖

(𝑢𝑖) ≤ 𝑃𝑡+𝑘 |𝑡
budget−𝑚𝑎𝑥

∀𝑘 (5.12)

𝑃𝑡+𝑘 |𝑡
budget𝑖

(𝑢𝑖) = 𝑢𝑡+𝑘 |𝑡
𝑐1𝑖 · 𝑃𝑐,𝑠1 + 𝑢𝑡+𝑘 |𝑡

𝑐2𝑖 · 𝑃𝑐,𝑠2 + 𝑢𝑡+𝑘 |𝑡
𝑓 𝑖 · 𝑃 𝑓 + 𝑢𝑡+𝑘 |𝑡

ℎ1𝑖 · 𝑃ℎ,𝑠1 + 𝑢𝑡+𝑘 |𝑡
ℎ2𝑖 · 𝑃ℎ,𝑠2 ∀𝑖, 𝑘 (5.13)
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𝐴𝑢𝑡𝑖 ,𝑢
𝑡+1
𝑖

= 1 (5.14)

𝑢𝑖 ∈ [0, 5] (5.15)

Table 5.3 Table of notations for coordinator model

Symbol Explanation

Input parameters

𝑃𝑐,𝑠1 power of the cooling stage 1

𝑃𝑐,𝑠2 power of the cooling stage 2

𝑃 𝑓 power of the fan

𝑃ℎ,𝑠2 power of the heating stage 1

𝑃ℎ,𝑠2 power of the heating stage 1

𝑃𝑡
𝑏𝑢𝑑𝑔𝑒𝑡−𝑚𝑎𝑥 power consumption limit of the HVAC system

𝛽 marginal emission factor

𝜋𝑐𝑎𝑟𝑏𝑜𝑛 fixed carbon related cost

𝛼
the weight vector associated to power budget during

prediction horizon 𝑁𝑝

𝑁𝑧 number of agents

𝑁𝑝 prediction horizon

Auxiliary variables

𝑐𝑡
𝑐𝑎𝑟𝑏𝑜𝑛 carbon emission price

𝑃budget𝑖 power budget for agent 𝑖
𝑃𝑖 operation system power

Decision Variables

𝑢𝑖 control parameter of agent i

5.4.3 Multi-agent control algorithm

The details of the proposed multi-agent control framework in a multi-zone building are shown in

Algorithm 5.1. The applied multi-agent control algorithm is further explained as follows:

At first, the CAM-LSTM model Mtibaa et al. (2021a) is trained for each zone, as shown in

lines 1–4. Starting from line 5, the power budget is initialized as follows: if the experiment

starts at the unoccupied time, we assume that the control of each zone is set to state 1, which

means that only the fan is turned ON. In this case, the power budget of each zone is equal to 0.7

kW. On the other hand, if the experiment starts at occupancy time, we assume that the control
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of each zone goes to state 5, which means that the fan and heating stages 1 and 2 are on. In

this case, the power budget of each zone is equal to 5.2 kW. For each simulation step, data is

acquired from simulation environment. The data includes past and future steps of uncontrolled

variables (e.g. outdoor air temperature, day of the week and hour of the day), past controlled

data, and past indoor temperature data for each zone 𝑖. As shown by line 8, the coordinator solve

(P2) using ILP to compute 𝑃𝑡
𝑏𝑢𝑑𝑔𝑒𝑡𝑖

(𝑢𝑖) for all agents. Next, in lines 9–10, the algorithm 5.2

is executed in parallel for all local agents. Each agent computes its optimal control sequence

𝑢𝑖
𝑡+𝑘 |𝑡 . A heuristic search algorithm based on genetic algorithm defined in Mtibaa et al. (2021a),

is used to find the possible optimal solutions of agent problem described in (5.1), as shown in

the algorithm 5.2. Each agent optimal control sequence 𝑢𝑖
𝑡+𝑘 |𝑡 is then passed to the simulator

environment.

Algorithm 5.1 Multi-agent Control Framework

Input: dataframe

Output: optimal agent controls

1 for agent in 𝑧𝑜𝑛𝑒𝑠𝑁𝑧 do
2 Collect data

3 Preprocess data

4 Train zone model using CAM-LSTM Mtibaa et al. (2021a)

5 end for
// Retrain the model monthly

6 𝑃𝑡+𝑘 |𝑡
𝑏𝑢𝑑𝑔𝑒𝑡𝑖

initialization

7 for simulation step do
8 Get data with past and future data

// including previous feedback

9 Solve (P2) to compute 𝑃𝑡+𝑘 |𝑡
𝑏𝑢𝑑𝑔𝑒𝑡𝑖

for all zones using ILP

// execute coordinator model
10 do in parallel for each agent
11 Execute Agent Algorithm 5.2

// execute agent model

12 end
13 Get output from agents

14 end for
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5.5 Validation and baselines

To validate the proposed MAC approach, a Modelica-Python co-simulation testbed has been

established, as shown in Fig. 5.3. The testbed is built on the foundation of two tools: the

Modelica Buildings Library Wetter et al. (2014) used to create the RTU-based building model,

and ModelicaGym Lukianykhin & Bogodorova (2019) used to integrate the control algorithms

described in section 5.4.3, written in Python, with the time evolution of the Modelica model.

A five-zone RTU building model is developed using base models inspired from Wetter et al.

(2014) using the commercial Modelica software, Dymola.

Details of the model and its control points are provided in section 5.3.1. The model has

been exported out of Dymola as a Functional Mockup Unit (FMU), a model that follows the

Functional Mockup Interface (FMI) standard for exporting and exchanging models amongst

a variety of simulation software. Once the FMU is outside of the modeling software, there

is a communication layer between the control algorithm and simulation, implemented via

ModelicaGym Lukianykhin & Bogodorova (2019). The ModelicaGym software is an open-

source project designed to allow OpenAI Gym style simulation of FMUs in a Python environment.

Specifically, this tool simulates the FMU by successively passing controls to the FMU, taking

a single user-defined time step, and retrieving updated data from the FMU regarding the state

of the simulation. This process is iterated for the duration of the simulation. ModelicaGym

was adapted and utilized as a communication layer between the control algorithm and the FMU

model.

In Modelica, five zones are simulated and equipped with a RTU as discussed in section 5.3.1. In

the other hand, in Python, a real-time optimal multi-agent controller model is programmed, as

shown in Fig. 5.3. The outputs of the controller 𝑢∗𝑧𝑖 (𝑡 + 1) are sent to Modelica which applies

these controllers and returns the temperature feedback. Both the simulation time step and

optimal control horizon are 5 minutes.
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Algorithm 5.2 Local Agent Algorithm

Input: dataframe, 𝑃𝑡+𝑘 |𝑡
𝑏𝑢𝑑𝑔𝑒𝑡𝑖

(𝑢𝑖)

Output: optimal agent control

1 Load CAM-LSTM Mtibaa et al. (2021a) prediction models for each agent

2 for generation do
3 Predict temperature

4 Compute fitness using model defined in (5.1)

5 Select individual by tournament

6 Crossover

7 Mutation

8 Get 𝑎𝑟𝑔𝑚𝑖𝑛 of scores

9 end for
10 Get optimal control 𝑢̂
11 Save outputs in 𝑐𝑠𝑣 file

12 Create new population

13 Add best chromosomes to new population

Figure 5.3 Co-simulation testbed

Figure 5.4 Outside temperature profile
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Outdoor weather, hour of the day, day of the week and controllers parameters are exogenous

inputs to the prediction models used in each agent. Fig. 5.4 shows the outdoor temperature for

the conducted simulation day. In this study, the proposed multi-agent method which minimizes

carbon-emissions for optimal control is compared with MAC approach which only minimizes

power budget, centralized control method defined in a previous study Mtibaa et al. (2021a) and

the bang-bang controller Chen & Li (2021).

• Baseline control approach: The bang-bang controller (ON-OFF controller) is a commonly

used control approach for HVAC systems Chen & Li (2021). It is a feedback controller

that switches ON or OFF when a desired setpoint has been reached. There is typically a

small deadband to reduce excessive cycling. No optimization model is implemented in this

baseline. The control operation follow a fixed schedule, and the occupancy time is from

7 AM to 6 PM.

• Optimal centralized control approach: The controller collects all required information

from all the zones. An online optimization model using GA is used to find the possible

optimal solutions of the control optimization problem in centralized manner, as defined

in Mtibaa et al. (2021a). The output of the centralized controller is considered as the

"near-optimal", and is be used as benchmark to evaluate the performance of the proposed

approach in this paper.

• Optimal MAC approach: We implement MAC approach and in this case the coordinator

minimizes only power budget without considering carbon emissions as follows:

P2a = min
𝑢̂

𝑁𝑝∑
𝑘=0

𝑁𝑧∑
𝑖=1

𝑃𝑡+𝑘 |𝑡
budget𝑖

(𝑢𝑖) (5.16)

with the constraints (5.13)-(5.15). The agents are optimized and controlled in a distributed

manner. Each agent minimizes discomfort according the power budget computed by the

coordinator as described in P1𝑖.
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• Optimal MAC_CO2 approach: We implement MAC approach and in this case the

coordinator minimizes the carbon emissions, as described in P2, and assign an optimal

power budget for each agent with a condition that the sum does not exceed a maximum

power budget. In the other hand, agents minimize discomfort according the power budgets

computed by the coordinator.

5.6 Results and discussion

5.6.1 Results-I: MAC without considering carbon emission cost

In the first experiment, we implement the MAC approach with P2a for the coordinator and P1 for

the agent. Fig. 5.5 represents the three simulation results for bang-bang, centralized approach

and MAC approach. In the first row, the orange line identifies the temperature feedback of

bang-bang control. The green line represents the temperature results from centralized control

approach. The blue line and the pink line represent the true temperature value and predicted

temperature value of MAC approach respectively. We notice that the prediction is accurate

compared to the real value. The temperature remains between the set points most of the time

(21° C in occupied period and 15° C in unoccupied period). The temperature for the MAC

approach remains consistent during occupied periods due to discomfort constraints. However,

with a bang-bang controller, there are no discomfort restrictions and temperature fluctuations

may be greater. The three bottom graphs of Fig. 5.5 indicate the state of controls for each zone

for MAC, centralized and bang-bang control approaches respectively. All control states are

described in detail in Table 5.1.

The centralized control method, as indicated in Mtibaa et al. (2021a), calculates the optimal

control by considering all zones’ control parameters. One of its objectives is to prevent

simultaneous activation of all zones, particularly at the starting time, to avoid power peak. Due
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to this, the rise in temperature in zones 1, 4, and 5 was delayed, as observed in Fig. 5.5. In the

morning of this winter time, as shown in Fig. 4.11, the outside temperature is very low, i.e.,

between -12° C and -10° C. The control in the bang-bang method fluctuates between all controls

OFF and heating stages 1 and 2. Therefore, the temperature in some zones fails to reach the

setpoint because the control is not stable. On the other hand, the centralized method does not

activate the heating stage 2 to minimize energy and respect power peak constraints.

As a result, the temperature responses in the bang-bang and centralized method are different in

the morning. It is noticeable that multi-agent control keeps the heating stage 1 (𝑢ℎ1) ON and

avoids turning ON the heating stage 2 (𝑢ℎ2), thus reducing energy consumption. Overall the

control is stable and there are not many fluctuations. However, bang-bang turns ON heating

stage 2 more frequently, and the control values fluctuate a lot between the fan and the heating

stage 2. MAC shifts the morning ramp on zone 1, 2 and 5 to be earlier and delays zone 3 and 4

in order to avoid a power peak caused by ramping all zones at once.

Figure 5.5 Comparison between MAC, centralized and bang-bang control results
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5.6.2 Results-II: MAC with considering carbon emission cost

In the second experiment, we minimizes carbon emissions cost as described in P2. Fig. 5.6

presents the results of MAC without and with considering CO2.

The temperature prediction is close to the ground truth values. However it is around 20° C in

most of the time, which makes discomfort cost higher than the discomfort cost in the MAC

approach as described in Table 5.4. The aim of MAC_CO2 is to minimize carbon emissions

while also limiting energy consumption. To achieve this, the coordinator will allocate a lower

power budget to each agent. This can prevent turning ON heating stage 2 (𝑢ℎ2) more frequently,

however it may result in an increase in discomfort. Fig. 5.7 shows the difference in terms of the

cumulative carbon emission between two experiments. The blue line represents MAC without

considering the cost of CO2 and the orange line represents MAC considering the cost of CO2.

We notice that the emission of MAC_CO2 is less than for MAC. At the beginning of the day,

both operate almost the same way, then MAC_CO2 consumes less at the end of the day. In

general, there is a reduction of 23.4%. Table 5.5 provides more details on these results. We

have calculated the electrical emission and the gas emission separately. We can see that there

is a reduction of 0.02 tons of CO2 equivalent for electrical emissions and 1.42 tons of CO2

equivalent for gas emissions for one experiment day.

Table 5.4 Cost results

MAC Centralized bang-bang MAC_CO2

Energy (kWh) 351.2 278.13 415.18 320.09

Discomfort(°C/day) 47.95 122.94 82.17 93.16

Table 5.5 CO2 electric and gas consumption

CO2 electrical

[ton CO2eq]

CO2 gas

[ton CO2eq]

CO2 global

[ton CO2eq]

MAC 0.14 5.99 6.13

MAC_CO2 0.12 4.57 4.69
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Figure 5.6 MAC with CO2 cost results

5.6.3 Algorithm performance

5.6.3.1 Algorithm convergence

In the MAC approach, the local agents run in parallel to resolve the control optimization problem.

Each zone is controlled by its own local agent, so the search space is relatively small for their GA

algorithm. The centralized approach requires more time than MAC as described in Table 5.6.

Moreover, in the centralized approach, we are limited with the number of zones. When the

number of zones increases, the convergence time also increases. Whereas in the MAC approach,

the number of zones has no impact on the execution time as shown in Table 5.6. We observe

that the execution time of a cycle does not exceed the control horizon which is 5 minutes. Thus,

the centralized approach supports no more than 10 zones, otherwise it will exceed the control

horizon. However, in the MAC approach, since the agents run in parallel with a multiprocessor

approach, the number of zones may be scalable according to the number of CPU cores contained

in the computing machine.
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Figure 5.7 Comparison of cumulative building emissions

5.6.3.2 Algorithm scalability

The centralized algorithm has a linear time complexity. In other words, its execution time

increases linearly with the size of zones. However, the proposed MAC approach is more

scalable. If more zones are involved in the system, more local agents can be added without

increasing the computation complexity. Therefore, one or more local agents can be easily

updated or added/removed without significantly increasing the computation time since the agents

are executing in parallel as described in Table 5.6. On the other hand, the centralized approach

requires the entire formulation of the optimization problem to be updated when a zones changes.

Table 5.6 Scalability test

5 zones 10 zones 20 zones 30 zones

Computation time (s/5min)

MAC 9.31 9.58 12.04 14.57

Computation time (s/5min)

Centralized 50.66 252.09 475.63 898.5
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5.6.3.3 MAC algorithm reconfigurability

The enhanced reconfigurability of the MAC approach is an additional significant advantage

for the optimal control of multi-zone HVAC system. It allows to manage flexibility by scaling

up/down the control system and adding/removing terms in the optimization problem regarding

user concerns in a specific agent. It also improves the robustness of the control decision under

constantly changing indoor and outdoor conditions. When the outside climate changes or if a

client wants to customize the control goals, the objective function of an optimization problem

must be adapted. The MAC approach adopts different methods than the centralized approach.

For the centralized optimal control approach, the optimization function is deployed in the central

station. Reconfiguring this function must be done in the central station. Therefore, there is a

risk of interrupting the overall control system. On the other hand, in the MAC approach, only a

control agent needs to be reconfigured with no need to modify the entire control system when

the dynamics of an agent component change. Moreover, any local failures do not interrupt

the operation of the whole control system. For instance, if zones are offline in real buildings,

the MAC approach may still be functional. This improves the resilience and robustness of the

control system.

5.7 Conclusion

In this paper, a multi-agent based on MPC model controller has been described, implemented

and evaluated in a simulation environment using Python and Modelica. A multi-agent and

coordinator optimization framework with low computation time is developed to minimize the

discomfort, energy consumption and carbon emissions in the same time. A MAC approach based

on genetic algorithm is proposed to solve the local agents optimization problems in parallel

and its convergence, scalability and reconfigurability have been discussed. MAC is compared

with centralized and bang-bang control baselines. MAC performs better than bang-bang in
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terms of energy consumption and discomfort. From the optimal controls, the centralized control

approach performs the best in terms of energy consumption, but its computation time is the least

suitable for real-time implementation. The efficiency of MAC is very close to the centralized

approach, while taking less execution time. A scalability study shows that the centralized control

approach supports up to 10 zones while the MAC approach is much more scalable. Our proposed

approach improves the energy savings of 8.8% and a carbon footprint reduction of 23.4%. In

future work, we will focus on: (1) deploying and validating the MAC approach in real building

case study and, (2) extending our MAC system to optimize simultaneously building-level and

grid-level objectives.





CONCLUSION AND RECOMMENDATIONS

6.1 General conclusion

The general objective of this thesis was to design an efficient and scalable control solution

for HVAC systems that minimizes energy consumption, carbon emissions, peak demand, and

discomfort during occupancy hours. Our work is based on the hypothesis of accurate indoor air

temperature modeling, consideration of control sensitivities over the prediction horizon, and

optimization of the control decision, we minimize energy and carbon footprint while maintaining

comfort and improving control efficiency and scalability for the HVAC system in smart buildings.

The proposed research work consists of three themes. We first introduced an accurate model

that uses LSTM and based on a direct S2S multivariate multi-step model to predict the indoor

air temperature with multi-step in a multi-zone smart building and with different types of HVAC

control systems. We then presented an MPC based online data-driven control framework, called

MPC-GA, which combines a context-aware multivariate LSTM (CAM-LSTM) model to predict

a multi-step IAT with an MPC framework. The CAM-LSTM is an improvement of the previous

methodology. It considers the impact of controls on temperature prediction in the control

decision loop, leading to a robust optimization decision for the control outputs. Finally, we

proposed a scalable multi-agent based distributed approach for optimized control of a multi-zone

smart building based on a set of local agents which represent individual zones in the building,

coordinated by a central agent. The scalability and reconfigurability of the proposed solution are

demonstrated. Each theme is the subject of a separate published journal article to disseminate as

widely as possible. Below, we highlight the strengths and weaknesses of the proposed methods

as reflected in each theme.
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6.1.1 LSTM-based framework for accurately IAT prediction

The first theme covers the issue of accurate modeling of IAT in multi-zone HVAC systems. In

chapter 3, we defined an accurate prediction model LSTM-based to predict IAT for multi-zone

building based on direct multi-step prediction with sequence-to-sequence approach. In addition,

we designed and implemented two architecture types, LSTM-MISO and LSTM-MIMO. While

most of prior work only investigate a specific type of HVAC system, the modeling framework

proposed in this study covers both VAV and CAV HVAC systems. The consideration of control

variables as the input increases the prediction accuracy of the LSTM models. This study showed

that LSTM-MISO model is efficient for VAV buildings. However, since there is an effect of

thermal coupling between adjacent zones in CAV building because of its open space area,

it is found that the overall prediction accuracy increases using the MIMO model. We can

conclude that LSTM-MIMO is a valuable method for modeling IAT in a light-weight building

with CAV type of HVAC system. This method has been described in an article published by

Neural computing and applications journal. The performance of the proposed models has been

evaluated and tested in two different types of buildings: the first floor of a hotel in Montreal with

five VAVs systems and a small retail store with three zones supplied by three CAVs systems.

For both buildings, experimental results showed that the LSTM models outperform Multilayer

Perceptrons models by reducing the prediction error by 50%.

6.2 Context-aware MPC framework for efficiently multi-zone HVAC control

The second theme covers two issues; the accurate modeling of IAT in multi-zone HVAC

systems with considering the impact of controlled parameters on the prediction results, and the

real-time control efficiency of HVAC system in multi-zone building. In Chapter 4, we modeled

a CAM-LSTM model to predict a multi-step IAT composed by dual-stream neural network

with an attention mechanism that selects not only past but also future multivariate time series,
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including controlled and uncontrolled inputs to predict a multi-steps temperature output. This

model is integrated in the online data-driven MPC framework. This control optimization model

minimizes energy, peak power and discomfort costs with considering of self-tuned setpoint,

cycling and temperature ramp. In addition, we defined a new heuristic based on genetic algorithm

to find the possible optimal solutions of the online data-driven control model over a prediction

horizon. This study has been published in building engineering journal. The benchmark results

showed that the MPC-GA outperforms baseline control systems with more than 50% and 80%

reduction in energy consumption and discomfort, respectively.

6.3 Hierarchical multi-agent control framework for energy efficiency and carbon
reduction

The third theme covers the issue of designing a more scalable data-driven control system for

the HVAC system while reducing energy consumption and carbon footprint. In Chapter 5, we

presented a new scalable multi-agent based distributed approach for optimized control of a

multi-zone smart building based on a set of local agents that represent individual zones in the

building, coordinated by a central agent. For each control horizon, the coordinator minimizes

the overall carbon emissions and assigns an individual energy budget to each local agent. Each

local agent minimizes the discomfort in its zone while respecting the energy budget assigned

by the coordinator. We proposed a heuristic search based on a genetic algorithm to find the

optimized control sequences in each zone, and formulated an ILP model for the coordinator

problem which can be solved using an ILP solver. This paper has been submitted to journal of

building engineering. For a representative winter test day, the proposed methodology gave an

energy savings of 8.8% and reduced the carbon footprint by 23.4%.

In future work, we will focus on: i) improving the CAM-LSTM model by making it a hybrid

modeling scheme by combining physics with machine learning. ii) including more tests for

MPC-GA control framework on other type of HVAC system and building with more zones.
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iii) considering of more inputs into the control model, especially due to the growth in energy

demand associated with the electrification of transportation. iv) improving MAC approach by

considering information sharing between different agent or set of agent. v) deploying the MAC

approach in real building use case. vi) extending our MAC system to optimize simultaneously

building-level and grid-level objectives.

6.4 Major contributions

The major contributions of this thesis are:

1. Data-driven IAT modeling: We propose a data-driven framework for modeling IAT with

LSTM-MISO and LSTM-MIMO models based on the S2S approach.

2. CAM-LSTM prediction model: We propose a CAM-LSTM models based on dual-stream

neural network including attention mechanism which include past and future controlled and

uncontrolled inputs.

3. Model an efficient MPC-GA control framework: We model an optimization model to

minimize energy, power peak and discomfort that considers a self-tuned setpoint, cycling

and temperature ramp as constraints.

4. GA control algorithm: We develop an heuristic search algorithm using a genetic algorithm

to solve the online data-driven MPC-GA models and obtain the future optimal combination

settings of all controls for all the zones over a prediction horizon.

5. Deployment in a real multi-zone building use case: We conduct a real deployment in

order to validate the closed-loop MPC-GA control framework in a real multi-zone retail

building.

6. Model a scalable multi-agent control approach: We model a scalable multi-agent control

system formulated as MPC-based optimization problems for multi-zone buildings
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7. Model carbon cost for MAC system: We model carbon cost by considering the MEF rate

that categorizes the dirtiness of the footprint of the power grid. We include this carbon cost

in the coordinator optimization model.

8. Create a MAC simulation environment: We validate the proposed MAC approach in

simulation environment using Modelica.
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