
Performance and Survivability of Service Function Chains

in Virtualized Environments

by

Zakaria ALOMARI

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
IN PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
Ph.D.

MONTREAL, AUGUST 22, 2022

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Zakaria Alomari, 2022

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Professor. Mohamed Faten Zhani, Thesis supervisor

Department of Software and Information Technology Engineering, École de technologie

supérieure

Professor. Kim Khoa Nguyen, Chair, Board of Examiners

Department of Electrical Engineering, École de technologie supérieure

Professor. Abdelouahed Gherbi, Member of the Jury

Department of Software and Information Technology Engineering, École de technologie

supérieure

Professor. Nadjib Aitsaadi, External Independent Examiner

Department of Computer Science, Université Paris-Saclay

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON "AUGUST 17, 2022"

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

I would like to convey my deep appreciation and sincere gratitude to those who have assisted me,

in one way or another, through my passionate journey pursuing and realizing my PhD dream.

First of all, I would like to express my sincere and heartfelt gratitude to my advisor Professor

Mohamed Faten Zhani, for having faith and trust in me, and for giving me this incredible

opportunity to work under his supervision. His guidance, encouragement, and patience during

the course of my study have enabled me to fulfill my PhD dream. Dear Faten, working with you

has been the most rewarding experience of my life and without your support, this dissertation

would not have been possible.

I would like to express my deep gratitude to the committee, Professor Kim Khoa Nguyen,

Abdelouahed Gherbi, and Nadjib Aitsaadi for their efforts reviewing my thesis and providing

insightful feedback.

I am deeply indebted to my beloved parents, Aysheh and Mousa, my brothers and sisters for

their sincere prayers and wishes. In spite of the distance, they were an incessant source of

encouragement and unconditional support during these years.

I remain indebted to my beloved wife (Ala’). Your comprehension, dedication, encouragement,

endless support, and ceaseless love during the past years of my PhD journey have sustained me

through the challenges and filled my life with joys and tenderness. A special thanks filled with

love to my precious children (Tala, Yahya, and Bana) for cheering me up and bringing joy and

happiness to my life.

Finally, I would like to give special thanks to all my friends. The time we spent together and the

unconditional support will be always remembered.

Performance et survivabilité des chaînes de fonctions de service
dans les environnements virtualisés

Zakaria ALOMARI

RÉSUMÉ

La virtualisation des fonctions réseau est une technologie émergente permettant le déploiement

de services réseau de manière efficace et flexible sous la forme de chaînes de fonctions

de service. Une chaîne de service est composée de fonctions réseau virtuel qui pourraient

implémenter différentes fonctions (par exemple, IDS, pare-feu ou autres). Malgré leurs avantages,

de nombreux défis sont à relever pour approvisionner ces chaînes, gérer leurs ressources et

assurer leur continuité de service.

Dans cette thèse, nous abordons deux défis clés relatifs à la gestion des chaînes de fonctions

de service, à savoir, 1) la synchronisation entre les fonctions réseau virtuels composant la chaîne,

2) la survivabilité de ces chaînes de service en cas de défaillance.

Le premier défi abordé dans cette thèse est de savoir comment assurer la synchronisation entre

plusieurs instances d’une même fonction réseau avec des coûts minimaux et un délai acceptable.

Ainsi, nous proposons une technique qui identifie le modèle de communication optimal entre

les instances afin de minimiser les coûts et les délais de synchronisation. Nous proposons

également une nouvelle fonction réseau de synchornisation capable d’effectuer la collecte de

données et de minimiser davantage ces coûts. Nous formulons le problème de trouver le modèle

de communication optimal, le nombre optimal et le placement des fonctions de synchronisation

sous forme d’un programme linéaire entier visant à minimiser les coûts de synchronisation.

Nous proposons aussi trois algorithmes gloutons pour faire face à des scénarios à grande

échelle et nous exploîtons la migration des fonctions réseau pour réduire davantage les coûts.

Les simulations montrent que les solutions proposées trouvent des solutions quasi-optimales.

Le deuxième défi que nous avons relevé est de savoir comment assurer la survivabilité des chaînes

de fonctions de service en cas de pannes multiples et simultanées. Nous introduisons un cadre

de gestion de la capacité de survivabilité pour gérer efficacement les sauvegardes des fonctions

réseau. Nous modélisons mathématiquement le problème de survivabilité des chaîne de services

sous la forme d’un programme linéaire entier qui détermine le nombre minimal de sauvegardes

partagées et leurs emplacements optimaux dans l’infrastructure physique tout en garantissant

un coût opérationnel minimal. Enfin, nous proposons deux algorithmes gloutons pour traiter

les scénarios à grande échelle du problème et nous étudions l’utilisation de la prévsion du trafic

pour réduire davantage les coûts. Les simulations démontrent comment les algorithmes proposés

sont capables de fournir des solutions performantes.

Mots-clés: Chaîne de fonctions de service, Virtualisation des fonctions réseau, Synchronisation,

Migration de VNFs, Survivabilité, Sauvegarde partagée.

Performance and Survivability of Service Function Chains
in Virtualized Environments

Zakaria ALOMARI

ABSTRACT

Network Function Virtualization is an emergent technology enabling the deployment of network

services in the form of service function chains in an efficient and flexible manner. A service chain

is composed of virtual network function that could implement different functions (e.g., IDS,

Firewall or others). Despite their benefits, many challenges are faced in order to provisioning

such chains, manage their resources and ensure their service continuity.

In this thesis, we address tow key challenges pertaining to the management of service function

chains, namely 1) the synchronization among virtual network functions composing the chain,

2) how to ensure the survivability of such service chains in case failures.

The first challenge addressed by this thesis is how to ensure the synchronization between multiple

instances of the same network function with minimal costs and acceptable delay. Specifically,

we propose a technique that identifies the optimal communication pattern between the instances

in order to minimize the synchronization costs and delay. We also propose a novel network

function named Synchronization Function able to carry out data collection and further minimize

these costs. We then formulate the problem of finding the optimal communication pattern,

the optimal number and placement of synchronization functions as an Integer Linear Program

aiming at minimizing the synchronization costs. We also put forward three greedy algorithms to

cope with large-scale scenarios of the problem and explore the use of network function migration

to further reduce costs. Extensive simulations show that the proposed algorithms efficiently find

near-optimal solutions with minimal computation time and provide better results compared to

existing solutions.

The second challenge that we have addressed is how to ensure the survivability of service function

chains in case of multiple and simultaneous failures. We introduce a survivability management

framework to efficiently manage backups for network functions. We mathematically model

the problem of service chain survivability as an Integer Linear Program that determines the

minimal number of shared backups and their optimal location in the physical infrastructure while

ensuring a minimal operational cost. Finally, we propose two greedy algorithms to deal with the

problem’s large-scale scenarios and we investigated the use of traffic prediction to further reduce

costs. Simulations demonstrate how the proposed algorithms provide near-to-optimal solutions.

Keywords: Network Function Virtualization, Synchronization, VNF Migration, Shared Backup,

Survivability.

TABLE OF CONTENTS

Page

INTRODUCTION .1

0.1 Problem Statement . 3

0.2 Objectives and Contributions . 4

0.3 Methodology . 5

0.4 Publications . 7

0.5 Thesis Organization . 7

CHAPTER 1 BACKGROUND MATERIAL AND LITERATURE REVIEW 9

1.1 Background Material . 9

1.1.1 Cloud Computing . 9

1.1.1.1 Definition . 9

1.1.1.2 Cloud Essential Characteristics: . 10

1.1.1.3 Cloud Computing Layered Model . 10

1.1.1.4 Cloud Service Models . 11

1.1.1.5 Cloud Deployment Models . 12

1.1.2 Virtualization . 13

1.1.2.1 Definition . 13

1.1.2.2 Server Virtualization . 13

1.1.2.3 Network Virtualization . 16

1.1.2.4 Network Function Virtualization . 17

1.1.3 Data Synchronization . 19

1.1.3.1 Definition . 19

1.1.3.2 Data Synchronization Techniques . 20

1.2 Literature Review . 20

1.2.1 State Synchronization . 21

1.2.2 VNF Migration . 22

1.2.3 Service Function Chain Survivability . 23

CHAPTER 2 TOWARDS OPTIMAL SYNCHRONIZATION IN NFV-BASED

ENVIRONMENTS . 29

2.1 Introduction . 29

2.2 Motivational Examples . 31

2.3 Problem Description . 32

2.4 Problem Formulation . 37

2.5 Proposed Heuristic . 41

2.5.1 Solution 1: Algorithm SPT . 42

2.5.2 Solution 2: Algorithm SSF . 43

2.5.3 Solution 3: Algorithm MSF . 44

2.5.4 Solution 4: Migration-based optimization . 46

2.6 Simulation and Results . 48

XII

2.6.1 Simulation setup . 48

2.6.2 Synchronization cost . 49

2.6.3 Synchronization delay . 50

2.6.4 Execution Time . 52

2.6.5 Discussion . 52

2.7 Conclusion . 53

CHAPTER 3 ON ENSURING COST-EFFICIENT SURVIVABILITY OF

SERVICE FUNCTION CHAINS IN NFV ENVIRONMENTS 55

3.1 Introduction . 55

3.2 Problem Description . 58

3.3 Survivability Management Framework . 61

3.4 Traffic Prediction . 63

3.5 Problem Formulation . 64

3.6 Proposed Heuristic . 69

3.6.1 Solution 1: Algorithm 1-1B . 70

3.6.2 Solution 2: Algorithm ASB . 71

3.7 Simulation and Results . 74

3.7.1 Simulation Setup . 75

3.7.2 Simulation Results . 77

3.8 Conclusion . 86

CONCLUSION AND RECOMMENDATIONS . 89

BIBLIOGRAPHY . 91

LIST OF TABLES

Page

Table 1.1 Our solution versus existing solutions . 23

Table 2.1 Symbols and their definitions . 39

Table 3.1 Symbols and their definitions . 66

Table 3.2 Configurations of the different considered scenarios . 76

LIST OF FIGURES

Page

Figure 1.1 Cloud Computing Architecture . 11

Figure 1.2 Server Models . 14

Figure 1.3 Difference between type 1 and type 2 hypervisors . 16

Figure 1.4 Network Virtualization Model . 17

Figure 1.5 Service Function Chain . 18

Figure 1.6 Network Function Virtualization Architecture . 19

Figure 2.1 State synchronization between two IDS instances . 32

Figure 2.2 Different possible communication patterns to synchronize NF1

instances . 34

Figure 2.3 Example showing how VNF instances migration could allow to

further reduce the synchronization costs and delay . 36

Figure 2.4 Average synchronization cost . 49

Figure 2.5 Average synchronization cost with and without migration 50

Figure 2.6 Average synchronization delay . 51

Figure 2.7 Average synchronization delay with and without migration 52

Figure 2.8 Execution time . 53

Figure 3.1 Deployment of service function chains and shared backups 60

Figure 3.2 Adjusting shared backup . 61

Figure 3.3 Survivability Management Framework . 62

Figure 3.4 Service chain demand over time - Scenario S0 . 79

Figure 3.5 Number of backups over time - Scenario S0 . 80

Figure 3.6 Backup ratio over time - Scenario S0 . 80

Figure 3.7 Cost breakdown - Scenario S0 . 81

XVI

Figure 3.8 Average costs per time interval (Scenarios S0 to S5). 82

Figure 3.9 Average number of backups and backup ratio (Scenarios (S0-S5)). 83

Figure 3.10 Cost breakdown when prediction is used - Scenario S0 . 84

Figure 3.11 Operational costs when prediction is used - Scenarios S0 to S5 85

LIST OF ALGORITHMS

Page

Algorithm 2.1 SPT . 43

Algorithm 2.2 SSF . 45

Algorithm 2.3 MSF . 46

Algorithm 2.4 Migration-based optimization . 47

Algorithm 3.1 Algorithm 1-1B . 70

Algorithm 3.2 Function 𝑀𝑖𝑛𝑂𝑝𝐶𝑜𝑠𝑡 (𝑘, 𝑑𝑚𝑎𝑥) . 71

Algorithm 3.3 Adjusting & Sharing Backups Algorithm - ASB . 73

Algorithm 3.4 Function Provision Backups . 74

Algorithm 3.5 Function Optimization through VNF migration . 74

LIST OF ABBREVIATIONS

CAPEX Capital Expenditure

OPEX Operational Expenditure

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

NFV MANO Network Functions Virtualization Management and Orchestration

SDN Software Defined Network

NF Network Function

VNF Virtual Network Function

VM Virtual Machine

SFC Service Function Chain

IDS Intrusion Detection System

NAT Network Address Translation

SyncFn Synchronization Function

NIST National Institute of Standards and Technology

AWS Amazon Web Services

SaaS Software as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

API Application Programming Interface

XX

VMM Virtual Machine Manager

ISP Internet Service Providers

KVM Kernel-based Virtual Machine

InP Infrastructure Provider

SP Service Provider

NV Network Virtualization

VN Virtual Network

ETSI European Telecommunications Standards Institute

VNF-FG Virtual Network Function-Forwarding Graph

CDN Content Delivery Network

ILP Integer Linear Program

SPT Shortest Path Tree

SSF Single Synchronization Function

MSF Multiple Synchronization Functions

ARIMA AutoRegressive Integrated Moving Average

LIST OF SYMBOLS AND UNITS OF MEASUREMENTS

𝑚𝑠 Millisecond

𝑀𝐵 Megabyte

𝐺𝐵 Gigabyte

𝑚𝑖𝑛 Minute

INTRODUCTION

Until recently, the Internet successfully delivered and managed a variety of distributed services

and applications. However, the Internet’s enormous popularity has proven to be its greatest

impediment to evolution and innovation. Indeed, with the rise of cloud computing services

and the proliferation of new network applications, the amount of data is growing exponentially.

However, the Internet architecture’s rigidity prevents it from following this growth, resulting in

what is known as the ossification problem. Furthermore, because of the multi-vendor nature

of the architecture, adopting a new architecture or updating the existing one is a complicated

undertaking that necessitates consensus among various stakeholders. As a result, updates to

the current Internet are restricted to incremental solutions, i.e. investment in powerful enough

equipment to handle this data, resulting an increase operational expenses (OPEX) and capital

expenses (CAPEX).

The emergence of Network Function Virtualization (NFV) and Software Defined Networks

(SDN) technologies is transforming the design and management of computer networks. These

technologies give cloud providers more flexibility to provision network services and configure

the network dynamically. This overcomes the limitations of traditional networks.

NFV technology adds a whole new dimension to the telecommunications industry market land-

scape through the ability to reduce capital investment and power consumption by consolidating

Network Functions (NF) and delivering customised services as needed. Indeed, this technology

revolutionizes networks by allowing to dynamically instantiate network functions in the form of

software and hence there is no need for any specialised hardware. These software instances,

known as Virtual Network Functions (VNFs), are instantiated and run on standard commercial

servers without the need for new hardware.

Additionally, NFV simplifies service deployment by leveraging the concept of service chaining.

To deliver a specific Internet service (e.g., VoIP, Web Service), providers design their services

2

as a concatenation of Virtual Network Functions (VNFs), such as routers, intrusion detection

systems (IDS), and network address translations (NAT), that run on virtual machines, process

incoming traffic and direct it to its destination. This chain of virtual network functions is thus

referred to as a service chain (Service Function Chain - SFC).

In recent years, many efforts have been dedicated to the problem of resource provisioning and

management of these SFCs (Bari et al. (2012)), (Herrera & Botero (2016)), (Luizelli, Bays,

Buriol, Barcellos & Gaspary (2015)), (Mijumbi et al. (2015)), (Qu, Assi & Shaban (2016)),

(Racheg, Ghrada & Zhani (2017)). This problem entails determining the best placing for the

service chain components while meeting resource requirements (CPU, memory and disk). Due

to processing capacity limitation, the infrastructure provider may need to instantiate one or

more instances of a particular network function when the amount of traffic increases (Gember

et al. (2013)), (Ghrada, Zhani & Elkhatib (2018)), (Chua, Ward, Zhang, Sharma & Huberman

(2016)), (Zhani & ElBakoury (2020)), (ETSI (2015)), (Salameh et al. (2019)). Most of network

functions are stateful, which means that they keep a state that may be frequently read or updated

(e.g., statistics like number of packets or bytes per flow). As a result, the instances of the same

virtual network function should constantly share the same state to prevent incorrect operation

(Khalid & Akella (2019)), (Khalid, Gember-Jacobson, Michael, Abhashkumar & Akella (2016)),

(Gember-Jacobson et al. (2014)). Most of the existing studies consider data synchronization

among network functions, but no one aims at minimizing the synchronization costs between the

instances and ensuring that the synchronization delay does not exceed a certain bound to ensure

normal operation of the function (Khalid & Akella (2019)), (Satapathy, Dave, Naik & Vutukuru

(2017)), (Ma, Le, Russo & Lobo (2015)), (Peng, Leckie & Ramamohanarao (2007)).

Furthermore, another major challenges pertaining to service function chains is how to ensure

their survivability in face of potential multiple and simultaneous failures that are popular in

large-scale infrasctures (Zhani & Boutaba (2015)). The majority of existing research makes

3

the assumption that the physical infrastructure is always available, which is unrealistic given

the prevalence of failures in cloud network infrastructures (Lee, Ko, Suh, Jang & Pack (2017)),

(ETSI (2015)), (Zhang, Zhani, Jabri & Boutaba (2014)). Due to the dependency between

virtual network functions in the service chain, a failure of a single or multiple physical node

in the network could easily bring down many VNFs and consequently break multiple SFCs

and making their associated services unavailable. Any downtime, even for a brief period,

could damage the service provider’s reputation, and depending on the type of supplied service,

could result in significant revenue losses (e.g., downtime could cost up to $5,600 per minute

and up to $300,000 per hour according to (Cohen)).

0.1 Problem Statement

In this context, this thesis focuses in two the following two problems:

• Running the same network function in a distributed manner over multiple instances is

particularly challenging. Indeed, when the network function is stateful, all instances should

maintain the same state (e.g., statistics like number of packets or bytes per flow, list of

available ports, per-connection port mapping). Ideally, all these instances should work like a

single one, regardless of their number and location. Hence, they should regularly synchronize

data among them. In this context, there is a compelling need to put forward synchronization

schemes allowing to share data (maintain it consistent) while minimizing costs in terms

of bandwidth consumed by the synchronization data and allowing to ensure an acceptable

synchronization delay in order to guarantee normal operation of the network function.

• Once SFCs have been embedded into the physical infrastructure, the network operator is

faced with the challenge of ensuring that these SFCs are survivable to failures. In other

words, in order to avoid service interruption, they must be able to survive unexpected network

failures. However, as previously stated, failures are common in physical infrastructure, and

a single or multiple node failures could bring down a large number of VNFs, resulting in

4

the loss of several service chains. In this context, a key challenge for network operators is

how many backup VNFs should be provisioned and where they should be placed so that they

can take over in case of failure. Of course, the operational costs of instantiating and running

these backups should be minimized.

0.2 Objectives and Contributions

To address the aforementioned challenges, this thesis focuses on the following two objectives:

• Minimizing VNF sychronization costs: the first objective is to ensure data synchronization

among multiple instances of the same network function while minimizing the synchronization

costs and ensuring that the synchronization delay does not exceed a certain bound. We

achieve this objective by proposing a technique to identify the optimal communication

pattern between the instances in order to minimize the synchronization cost and to ensure a

bounded synchronization delay. We also introduce the use a new function called Synchro-

nization Function that ensures consistency among a set of instances and allows to further

reduce the synchronization costs. We then mathematically model the problem of finding the

optimal synchronization pattern and the optimal placement and number of synchronization

functions as an integer linear program that minimizes the synchronization cost and ensures a

bounded synchronization delay. We leverage VNF migration, where an instance of a VNF

deployed on an NFV infrastructure can be migrated from one physical node to another in

order to further reduce the synchronization cost, and to ensure a bounded synchronization

delay. Last, we put forward four algorithms that are able to efficiently explore the solution

space for large-scale scenarios within a reasonable timescale. These algorithms are based on

finding the optimal communication pattern between the instances, but differ in how patterns

are ultimately define.

• Ensuring total yet cost-efficient survivability for service function chains: our second objective

aims at ensuring the survivability of service chains embedded into the physical infrastructure

5

by provisioning in advance enough backups before failure occurs (single or multiple node

failures). We achieve this objective by proactively providing the minimum number of

shared backups to reduce wasted resources and determining where those backup instances

should be placed in the physical infrastructure, while ensuring a minimal operational cost

(running, management, and synchronization costs). Thus, we introduce a Survivability

Management Framework with survivability module to capture traffic fluctuations in the

SFCs and use the acquired data to reduce the number of shared backups in infrastructure.

We next mathematically model the problem of service chain survival as an integer linear

program that determines the minimal number of shared backups required for each VNF type

and their optimal location in the physical infrastructure. Additionally, we design a traffic

prediction model based on ARIMA to forecast demand traffic rates in the future, which

aims to minimize the operational cost. Finally, we propose two algorithms to deal with the

problem’s large-scale scenarios. These algorithms differ from each other in the way they

provision backup instances.

0.3 Methodology

This Section describes the methodology adopted to reach each of the aforementioned objectives.

• Minimizing VNF sychronization costs: to achieve this first objective, our methodology

consisted in the following steps:

− We started by studying background concepts related to cloud computing and network

function virtualization. We also investigated prior solutions that tackled the considered

challenges in order to better understand the state of the art of state synchronization

in the cloud.

− We focused on the problem of finding the optimal synchronization pattern to be used

to ensure data exchange between the VNF instances and would minimize synchronization

costs. We mathematically modeled the problem as an Integer Linear program (ILP).

6

As the problem is NP-hard, we also proposed three heuristic algorithms to deal with

the large-scale instances of the problem.

− We run several simulations considering different configuration scenarios to compare

the performance of the proposed heuristics compared to proposed ILP solved by CPLEX.

− We explored the possibility to migrate network function instances to further reduce costs.

Hence, we put forward an algorithm to migrate virtual function in order to minimize costs

while ensuring a minimal migration costs.

− We run extensive simulations to show how migration further improves the performance

of the proposed backup provisioning solutions.

• Ensuring cost-efficient survivability for service function chains: we achieved this second

objective by performing the following steps:

− We began by investigating the relevant literature pertaining to the survivability problem

of service function chains and virtual networks to overcome single and multiple node

failures.

− We mathematically modeled the problem as an Integer Linear Program and also proposed

two heuristic algorithms that allow to determine the minimal number of shared backups

required for each VNF type and their location in the infrastructure while maintaining

minimal operational costs incurred by running, managing, and synchronizing the backups.

− Through several simulations, we compared the performance of the solutions provided by

the proposed heuristics compared to the optimal solution found with the proposed ILP

solved by CPLEX.

− Finally, we investigated the use of traffic prediction models to forecast traffic rates and

showed how such prediction could support the proposed heuristics to further minimize

operational costs.

7

0.4 Publications

The main outcome of this thesis in terms of scientific publications are as follows: one published

conference and two submitted journal papers (the first one is under the second-round revision

and the second is submitted and is under review). These publications are reported in following:

• Zakaria Alomari, Mohamed Faten Zhani, Moayad Aloqaily and Ouns Bouachir. "On min-

imizing synchronization cost in NFV-based environments," In IEEE/ACM International

Conference on Network and Service Management (CNSM), 2020.

• Zakaria Alomari, Mohamed Faten Zhani, Moayad Aloqaily and Ouns Bouachir. "Towards

Optimal Synchronization in NFV-based Environments," In International Journal of Network

Management (Wiley). Under review (Second Round). Revised manuscript submitted

in July 2022.

• Zakaria Alomari, Mohamed Faten Zhani, Moayad Aloqaily and Ouns Bouachir. "On Ensuring

Cost-Efficient Survivability of Service Function Chains in NFV Environments," In Journal

of Network and Systems Management (Springer). Submitted in August 2022.

0.5 Thesis Organization

The remainder of this thesis is structured as follows. In Chapter 1, we present the background

needed to understand the different concepts, technologies and techniques that we are using

in this work, we then survey the literature pertaining to service function chaining, VNF syn-

chronization and survivability, and we highlight about the originality of our contributions.

Chapter 2 presents our solutions to minimize synchronization costs among network functions in

NFV-based environments. Next, we present, in Chapter 3, our solutions to ensure a complete yet

cost-effective survivability for service chains. Finally, we make some concluding remarks and

highlight key research directions and future extensions of this thesis.

CHAPTER 1

BACKGROUND MATERIAL AND LITERATURE REVIEW

This chapter begins by introducing the fundamental principles that will help us grasp the problem

under consideration in this research effort. Then, we analyse the key literature on the research

difficulties at hand, emphasising the limitations of present solutions.

1.1 Background Material

We will introduce in this section the main concepts that will lead us to understand the problem

studied in this research project. We will therefore present the concepts related to our field of

research, i.e. cloud computing, virtualization, and data synchronization.

1.1.1 Cloud Computing

This section introduces the concept of cloud computing, its various characteristics, layers, service

models, and deployment models.

1.1.1.1 Definition

As stated in NIST (Mell & Grance (2011)), Cloud Computing be defined as follows "Cloud

computing is a model for enabling ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management effort

or service provider interaction. This cloud model is composed of five essential characteristics,

three service models, and four deployment models".

10

1.1.1.2 Cloud Essential Characteristics:

The following are the five essential characteristics of a cloud computing environment (Mell & Grance

(2011)):

• On-demand self-service: This demonstrate that the cloud services could be requested and

provisioned rapidly as required by users, without requiring for manual configuration.

• Broad network access: Cloud services are available over accessible network anytime,

anywhere access by various user platforms such as mobile phones, laptops, tablets, and

workstations.

• Shared resource pooling: Cloud computing resources are intended to support a multi-tenant

model. This means that a several users can share the same physical infrastructure although

keeping privacy and security over their information. Further, cloud provider’s resource pool

suppose to be huge and flexible adequate to service several user requirements and to offer for

economy of scale.

• Rapid elasticity: Cloud platforms are elastic. This means that organizations can quickly

provision and de-provision any of the resources for the purpose of to scale in and out to

satisfy the demand and utilize resources most effectively.

• Measured service: This implies that cloud resource usage gets be carefully monitored,

measured, and reported by the cloud provider. The cost model is according to pay-as-you-

go model, where the payment is changeable according to the actual consumption by the

organization.

1.1.1.3 Cloud Computing Layered Model

In general, the architecture of a cloud computing environment could be categorised into four

layers, as shown in Figure 1.1 (Zhang, Cheng & Boutaba (2010)). Each of the layers carry out

several particular tasks, and they are as following:

• The Application Layer: This layer is at the top level of the hierarchy, and includes of the

actual cloud applications. This cloud applications able to advantage the automatic-scaling

11

features to fulfil greater availability as well as performance, in addition to that they also

decrease operating cost.

• The Platform Layer: This layer is constructed on top of the infrastructure layer and includes

of operating systems and application frameworks. The main goal of this layer is to reduce

the difficulty of deploying applications directly into virtual machines containers.

• The Infrastructure Layer: This layer is also noted as the virtualization layer. In this layer,

the infrastructure constructs a pool of computing resources by dividing the physical resources

using virtualization technologies such as Vmware ESXi, XEN, KVM, and Hyper-V to deploy

and manage cloud’s virtual resources.

• The Hardware Layer: This layer is accountable for managing the physical resources of the

cloud, containing servers, switches, power, cooling systems, and routers. Practically, the

hardware equipment is generally implemented in data centers.

Figure 1.1 Cloud Computing Architecture

Zhang et al. (2010)

1.1.1.4 Cloud Service Models

The cloud service model essentially depends on the architectural layer, nevertheless, it has been

divided into three types of services (Mell & Grance (2011)), as following:

12

• Software as a Service (SaaS): The end-user accesses a particular software application

deployed in cloud infrastructure and managed by a standard web browser, therefore, this

decreasing the require for on-device software downloads and updates. Further, the end-user

able to access only without having any control the underlying infrastructure.

• Platform as a Service (PaaS): The end-user accesses a predetermined environment for

software development, which used to build, test, and run applications. Usually this needed

for application development. Thus, PaaS frees end-users from having to install hardware and

software in their premises to develop or run anew applications.

• Infrastructure as a Service (IaaS): The end-user accesses via an Application Programming

Interface (API), and basically rents the infrastructure (i.e. CPU, memory, storage). These

resources are available to the end-users over virtualization technologies. However, the

end-user is responsible to manage things like the operating system, apps, and storage while

the cloud provider been responsible to manage and control cloud infrastructure.

1.1.1.5 Cloud Deployment Models

In this section, we will present different types of deployment models that user can subscribe to

based on its needs (Mell & Grance (2011)), which incorporate the following:

• Public Cloud: The infrastructure of this type is generally established from information

technology infrastructure not owned by the end user. This type can be owned and managed by

some of the largest public cloud providers such as Microsoft Azure, Amazon Web Services

(AWS), and Google Cloud. Further, a public cloud allows any subscriber to access it using

an internet connection and access to the cloud space.

• Private Cloud: The infrastructure of this type is established for one organization comprising

group end-users and restricted access to just that group. It can be operated on servers owned

and maintained by the organization and available on the internet or over a private internal

network.

13

• Community Cloud: The infrastructure of this type is shared and jointly accessed among

several organizations that have similar cloud objectives. The infrastructure can be governed

by any of the participating organizations or by a third-party managed service provider.

• Hybrid Cloud: The infrastructure of this type often contains a mixture of two or more

different clouds, where the clouds incorporated are a combination of public, private, or

community.

1.1.2 Virtualization

In this section, we will discuss the concept of virtualization, server virtualization, network

virtualization as well as the network function virtualization.

1.1.2.1 Definition

Virtualization is a technology of creating a virtual version, representation of true underlying

hardware or software, such as an operating system, computer program, servers, storage device,

and networks. Therefore, virtualization improves IT resource utilization by dividing of physical

resources into one or more execution environments, which means users, applications, and devices

are able to cooperate with the virtual resource as if it were an actual single logical resource

(IBM (2007)) (Landström, Bergström, Westerberg & Hammarwall (2016)).

Using virtualization in any environment provides several benefits such as optimization of

workload, faster server provisioning and deployment, improved disaster recovery, and reduce

hardware cost. The concept of virtualization is more generic word for many different types of

computing, including the following: hardware virtualization, software virtualization, desktop

virtualization, and storage virtualization (COUTINHO, SCHAAPMAN & TEMIN (2014)).

1.1.2.2 Server Virtualization

As stated in IBM Corporation (IBM (2007)), Server Virtualization be defined as follows: a

virtualization technique that implies dividing a physical server to run several secure virtual

14

servers through the use of virtualization software. This leads a possibility to merge physical

servers, therefore server virtualization allows reducing the hardware purchase and also decreases

management costs by eliminating infrastructure expansion at the server level. In other words,

server virtualization allows a physical server to share computer resources with other virtual

servers, by dividing of a physical server into smaller virtual servers to maximize the server

resources as illustrated in Figure 1.2.

Figure 1.2 Server Models

IBM (2007)

Each virtual machine acts like it owned the whole physical machine, including a virtual CPU,

virtual memory, virtual storage and so on. Further, each virtual machine has an operating system

also called "guest operating system", those operating systems communicate with hardware by

Virtual Machine Manager (VMM). Each guest operating system handles its own applications as

it normally does in a non-virtual environment, exclude that it has been isolated in the physical

machine by the VMM (IBM (2007)) (Tulloch (2010)). For instance, a virtual hard disk in VM

is kept in a file located on the hard drive. Moreover, several VMs be able to exist within a

single host at one time, therefore, they may be shared the same physical machine’s resources. In

15

addition to that, each VM is totally isolated from the host machine and other VMs. Thus, if a

VM collapses, all remaining VMs are unaffected (IBM (2007)).

Generally, there exist several advantages by the use a server virtualization strategy. For example,

it enables to deploy, manage, and operate several operating system instances at once on that

single physical server, which means cost-effective way in IT. In addition to that, it saves space by

decreasing the number of physical servers a user should have on its premises, as well as decrease

energy expenditure because there exist fewer physical servers consuming power. If the resource

needs of one of the applications running in a virtual server increases, so this VM shifts from

one server to another with more available resources to balance workload. For instance, one

common usage of this technology is in Web servers, Internet Service Providers (ISP) or website

administrators may have different domain names, IP addresses, email administration, security

systems, passwords and so on. Using virtual Web servers, these services are maintained as if

they were in a dedicated server environment rather than requiring a separate computer for each

Web server.

Moreover, VMs are managed by a Hypervisor and also can be called VMM. The Hypervisor is

a firmware that controls several guest operating systems on a single computer. In reality, the

guest operating system shares the hardware of the host computer and the Hypervisor manages

the CPU, memory, storage, and other resources. As well as, the Hypervisor allocates what

each operating system needs, and destruction guest operating system when they are no longer

needed. Further, Hypervisors can be categorized to two various types as is revealed in Figure

1.3. The first type is Type-1 Hypervisor, this type is directly runs on the host’s hardware to

manage the hardware and control the guest VMs such as RTS Hypervisor, and Oracle VM. The

second type is Type-2 Hypervisor, this type is a software interface that mimic the devices with

which a system usually interacts. In that case, a guest operating system runs as an operation on

the host, whereas the Hypervisor separates the guest operating system from the host operating

system such as VMware Workstation and Kernel-based Virtual Machine (KVM) (Lowe (2012))

(Sridharan (2012)) (Mounika & Chinnaswamy (2016)).

16

Figure 1.3 Difference between type 1 and type 2 hypervisors

Lowe (2012)

1.1.2.3 Network Virtualization

Network Virtualization (NV) is mainly defined as the capability to establish logical networks

which are decoupled from the physical network, this means making a physical network show

as several logical ones (Han, Gopalakrishnan, Ji & Lee (2015)) (Bays, Oliveira, Barcellos,

Gaspary & Madeira (2015)). In this context, the roles of the traditional Internet Service Provider

(ISP) is decoupled into two separate entities: Infrastructure Providers (InPs), who is accountable

to manage the physical infrastructure, and Service Providers (SPs), who buy slices of resources

(e.g., CPU, memory, bandwidth) from InP and then build a customized virtual network (VN) to

offer service to end-users in Figure 1.4.

As shown in Figure 1.4, network virtualization enables to establish a logical network of the

hardware and software networking resources. The physical network devices are in charge of the

forwarding of packets. While, VN offers an abstraction to deploy and manage network services

and underlying network resources. Therefore, a virtual node can be allocated on any physical

node and virtual link can be mapped onto physical path (Carapinha & Jiménez (2009)).

17

Figure 1.4 Network Virtualization Model

Bays et al. (2015)

1.1.2.4 Network Function Virtualization

According to the European Telecommunications Standards Institute (ETSI (2012)), Network

Functions Virtualization (NFV) is an emerging technology that provides a new approach to

design, deploy, and manage networking services. NFV is considered as a way to reduce cost

and expedite service deployment for network operators. This is carried out by decoupling

the network functions (NFs), such as IDSs, Firewalls, NATs, DNSs from the hardware of the

traditional middle-boxes and packaged as virtual machines (VMs) on commodity hardware so

they can run in software.

Individual Virtual Network Functions (VNFs) are an essential element of NFV architecture.

They are handling specific NFs that run in one or more VMs on top of the hardware networking

infrastructure. The network service chain consists of a set of VNFs that can process incoming

traffic in a specific order. This sequence is called a service function chain (SFC) or VNF

Forwarding Graph (VNF-FG) as depicted in Figure 1.5 (Beck & Botero (2015)).

Separating NFs from hardware yields numerous benefits for the network operator including:

decreasing network power consumption, decreasing operator capital and operational cost,

18

Figure 1.5 Service Function Chain

Beck & Botero (2015)

decreasing maintenance and hardware costs, greater flexibility to scale up, scale down or evolve

services (ETSI (2012)).

In brief, network function virtualization has transformed the way service providers design,

deploy, and operate their services. Indeed, NFV promises service providers greater flexibility

to deploy network services more rapidly and at a lesser cost, hence improving service agility

through a variety of variations in how network service provision is conducted compared to

existing practise (Mijumbi et al. (2015)):

− Decouple software from hardware: separating network functions from the devices that run

them allows the two to evolve independently of each other;

− Flexible deployment of network function: Detaching software from hardware allows

infrastructure resources to be reallocated and shared. Therefore, components can be

instantiated on any network device and their connections can be flexibly configured. This

helps network operators deploy new network services faster on the same physical platform;

− Dynamic scaling: Decoupling network function functionality into instantiable software

components provides greater flexibility to dynamically adapt VNF performance to operator

needs.

Figure 1.6 presents the network function virtualization architecture which according to (ETSI

(2020)) consists of three components: the network function virtualization infrastructure (NFVI),

the virtual network functions (VNFs) and NFV management and network orchestration (NFV

MANO).

19

Figure 1.6 Network Function Virtualization Architecture

Mijumbi et al. (2015)

− Network Function Virtualization Infrastructure (NFVI): NFVI is a combination of

hardware (computing hardware) and software (abstractions of computing, storage, and

network resources) that creates the environment in which VNFs run.

− Virtual Network Functions (VNFs): A VNF is a network function implementation that is

deployed on virtual resources such as a virtual machine or a container.

− NFV MANO: NFV MANO provides the management and orchestration features required

for VNF provisioning.

1.1.3 Data Synchronization

In this section the concept of data synchronization and data synchronization techniques between

multiple devices has been introduced.

1.1.3.1 Definition

Data synchronization is a technique of establishing consistency among each source of data

with its different endpoints and vice versa, as well as harmonization of data over time (Shodiq,

Wongso, Pratama, Rhenardo et al. (2015)) (Faiz & Shanker (2016)). In other words, it points to

20

the idea of keeping several copies of data-set (i.e., state) in coherence with one another, or to

maintain data integrity.

1.1.3.2 Data Synchronization Techniques

The distributed systems raise the needs to synchronize data between several devices and data

store locations. Thus, data synchronization processes contains a source and destination entity,

and according to data appearance, is classified into two models of synchronization (Endo,

Miyamoto, Kumagai & Fujii (2004)) (Hassani, Haghighi, Burstein & Davey (2017)):

1. Client-Server Model: The server synchronizes the data and distributes the copies to

each client device. However, the data synchronization can be done in two ways: in a

single direction or in both directions. Once data is changed on client device and forward

to server, this is named upload-only synchronization. Once data changes only happen

on the server, then client device has to retrieve changes from the server, this is named

download-only synchronization. Whenever the above activities are carried out together,

then it commonly referred as bi-directional data transfer, this is named bi directional

synchronization (Malhotra & Chaudhary (2014)) (Faiz & Shanker (2016)).

2. Peer-to-Peer Model: The system does not rely onto any single centralized server. However,

if a peer connects with other peers, it can synchronize data and collaborate directly. In

other words, each peer acts as the server for the data stored on it. Thus, each peer is able of

pushing data to other peers as well as getting the data by sending pull requests (Endo et al.

(2004)) (Kubler, Främling & Derigent (2015)).

1.2 Literature Review

This section provides an overview of the existing literature focusing on the problems addressed

in this work. Hence, in the first Section of this chapter, we review research work addressing

issues related to state synchronization. We also present relevant work on VNF instance

migration as our proposed solutions highly relies on migration. In the second section of this

chapter, we provide an overview of representative work on the fault management and addressing

21

the survivability problem in face of single or multiple failures. We also identify the key

limitations of all the covered research efforts and highlight the originality of our solutions

compared to the state of the art.

1.2.1 State Synchronization

Satapathy et al. (2017) propose a network state management system that introduces two different

solutions to ensure state synchronization. In the first solution, an instance synchronizes the state

at the receipt of each single packet, whereas in the second solution, the state is synchronized after

receiving multiple packets. However, the first solution obviously has a high synchronization

overhead whereas the second may incur additional delay to wait for multiple packets.

Peuster & Karl (2016) propose E-State management framework to synchronize the state of all

instances of the same network function. They use a publish/subscribe communication pattern

to share the state. Subscribers are the Instances who subscribe to a same state, and Publishers

are the instances who publish the state. However, this solution does not take into account the

synchronization costs and delay.

Rajagopalan, Williams, Jamjoom & Warfield (2013) propose a state management system, which

classifies state inside network function into internal and external. Internal state is required for a

given instance to run. External state is the state that is shared across all instances of the same

type. This external state needs to be maintained consistently between instances of the same

function. This system leverages a shared library used by instances to share the external state

among them. This shared library supports a callback function, where each instance registers a

callback function that is invoked automatically by the library when another instance updates its

external state. This work also does not consider the synchronization costs and delay.

Khalid & Akella (2019) propose a NFV framework to support state synchronization among

stateful network functions. They leverage a data store to ensure the state consistency among

multiple instances of network function. Each instance records a callback function with the data

22

store. This function is used by the data store to update the state of the instance on behalf of the

others. This work does not consider synchronization costs and delay.

Xie et al. (2019) propose a framework named Dual to address the synchronization problem

between instances of the same network function. An approximation algorithm is designed to

minimize the synchronization traffic between the instances by placing the instances close to each

other in the physical infrastructure. However, this work does not take into consideration the

synchronization delay.

Ma et al. (2015) propose an algorithm for intrusion detection systems that can operate across

multiple instances. In this algorithm, each instance directly shares state with the others and

waits on other instances to complete processing. However, this work does not define a specific

communication pattern for data synchronization and does not consider synchronization delay.

1.2.2 VNF Migration

Nobach, Rimac, Hilt & Hausheer (2016) propose Slim, a statelet-based framework for seamless

instance migration in NFV infrastructure that is based on a novel interface added to the VNF.

Slim sends a snapshot of the current state of the source VNF instance over the corresponding

stream to the destination instance. The results show that SliM performs around three times

better than full duplication in terms of link utilization. However, this solution does not take into

account the distance between the source and destination instances and the communication costs

raised due to congested links.

Cho, Taheri, Zomaya & Bouvry (2017) propose a VNF real-time migration algorithm. This

algorithm aims at minimizing the delay among VNFs by migrating VNFs to different virtual

machines in order to reduce the end-to-end delay of SFCs. The algorithm rearranges VNFs to

reduce bidirectional network delay. However, this work does not take into account that a single

VNF may be implemented by multiple instances, and hence does not consider synchronization

among instances of the same type.

23

A recent study in Gember-Jacobson et al. (2014) hints that some types of VNFs, such as

intrusion detection systems (IDSs), are sensitive to packet loss as they may miss-detect some

attacks if the metadata for earlier packets in the flow is missed. For such types of VNFs, new

approaches in Gember-Jacobson et al. (2014); Gember-Jacobson & Akella (2015); Nobach,

Rimac, Hilt & Hausheer (2017) have been proposed for seamless migration of VNFs with strict

requirements. The main goal is to conduct VNF migration loss-free while packet orders are

also preserved. For example, in Gember-Jacobson et al. (2014), the SDN controller is used to

buffer packets during the downtime incurred by migration and transfer them to the new instance

once the VNF is up and running. However, this work did not consider the distance between the

source and destination instances.

Table 1.1 provides a comparison between existing solutions addressing the state synchronization

problem and the current work. Unlike previous work that looked only on the way synchronization

can be carried out, the novelty of our solution lies in the idea of considering how to minimize

the costs of this synchronization while ensuring that the synchronization delay does not exceed

a certain bound. This ensures that any network function implemented in multiple instances

operates normally and is not impacted by synchronization delays.

Table 1.1 Our solution versus existing solutions

References State
synch.

Synch.
delay

Synch.
cost

Synch.
pattern

VNF instance
migration

Satapathy et al. (2017)
√ × × × ×

Peuster & Karl (2016)
√ × × √ ×

Rajagopalan et al. (2013)
√ × × × ×

Khalid & Akella (2019)
√ × × × ×

Xie et al. (2019)
√ × × √ ×

Ma et al. (2015)
√ × × × ×

Our approach
√ √ √ √ √

1.2.3 Service Function Chain Survivability

This section provides an overview of recent studies that have addressed the survivability

problem. The literature can be divided into two categories: reactive and proactive strategies

24

Zhani & Boutaba (2015). The proactive strategy allocate backup resources before the failure,

whereas the reactive strategy allocates the resource after the failure.

A common proactive strategy was adopted in the literature to improve service survivability and

consists in using redundant resources, wherein a portion of the SFC (or the virtual network)

is duplicated to ensure redundancy Beck, Botero & Samelin (2016), Chowdhury et al. (2016),

Ding, Yu & Luo (2017), Huang, Liang, Shen, Ma & Kan (2019), Yin et al. (2018), Xiao, Wang,

Meng, Qiu & Li (2014). These redundant resources ensure service continuity in the event of a

failure. While such a strategy is successful in guaranteeing the continuity of important services,

the backup resources are costly and should remain operational even if they are not used. This is

why minimizing the amount of backup resources was the purpose of a large body of existing

works.

For instance, Beck et al. (2016) investigated both node and link failures and proposed a heuristic

for provisioning backup VNFs and links in tandem with the VNF. This heuristic works by

provisioning two chains for the same SFC, a primary one that should operate and a secondary

one as a backup. Primary and secondary SFC’s nodes and links should be distinct and disjoint,

respectively. Backup links are provisioned to connect an SFC’s secondary and primary nodes,

ensuring that traffic is routed to the secondary SFC if a node in the primary SFC fails.

Chowdhury et al. (2016) presented a solution called Dedicated Protection for Virtual Network

Embedding (DRONE) to ensure the survivability of virtual networks by deploying a dedicated

backup to secure multiple primary nodes. Accordingly, each node and link in a virtual network

request is associated with a dedicated backup resource in the physical network, ensuring that the

virtual network can survive a single physical node failure.

Ding et al. (2017) suggested an effective strategy for selecting which VNFs require backup

in order to increase SFC’s overall reliability. The strategy selects which VNF(s) should have

backup based on a measure called the Cost-aware Importance Measure, which is the ratio of SFC

availability improvement to the cost to pay when providing backup for a VNF. The primary goal

25

of this placement method is to maximize backup VNF(s) reliability while minimizing backup

costs.

Yin et al. (2018) used path splitting to tackle the problem of survivable virtual network embedding

against multi-failures with minimal resource consumption. In their solution, the number of

backup paths and backup nodes is selected based on the desired level of protection and the

shared risk group constraint. Xiao et al. Xiao et al. (2014) offered a topology-aware approach

for virtual network resource allocation and fail-over remapping based on a set of pre-computed

detour-paths.

To reduce backup costs, the majority of existing works choose an intermediate strategy, providing

backup resources for only a portion of VNFs, sharing backup resources among numerous VNFs,

or reactively allocating restoration resources only when a failure is detected. The solutions in

Ding et al. (2017), Qing, Weifei & Julong (2017), Dinh & Kim (2019) are based on identifying

a subset of critical VNFs to which backup resources should be given, in order to reduce the

resources required to meet a specific degree of service reliability. For instance, Qing et al. (2017)

proposed a protection optimization strategy to discover the set of nodes that, if protected, will

maintain the majority of the SFC operational. These nodes are known as critical nodes, and they

have to be backed up.

To reduce the likelihood of failure, the most crucial VNFs are assigned to dependable physical

nodes Bijwe, Machida, Ishida & Koizumi (2017), Zhang, Wang, Qiu & Guo (2019). For instance,

Bijwe et al. (2017) studied the prospect of reaching the requisite SFC reliability by enhancing

the reliability of each individual VNF (i.e., creating adequate backups corresponding to each of

the chain’s individual VNFs) with the purpose of minimizing overall resource cost. Zhang et al.

(2019) introduced a node-ranking algorithm to create a redundancy mechanism to safeguard the

service from interruptions. The method minimizes backup resource use in response to a higher

acceptance ratio of SFC requests.

The research in Aidi, Zhani & Elkhatib (2018), Fan et al. (2015), Fan et al. (2018), Li, Liang,

Huang & Jia (2019), Yamada & Shinomiya (2019) focuses on finding the minimal number of

26

backup VNF instances needed to ensure a certain level of reliability, as well as where they should

be placed. In Aidi et al. (2018), Fan et al. (2015) sharing backup nodes between several VNF

instances is permitted.

Aidi et al. (2018) suggested a framework for managing the survival of SFCs and backup VNFs

in an efficient manner. They aimed to find the minimum number of needed backups to protect

service function chains and determines their optimal location within the physical infrastructure.

Fan et al. (2015) presented an approach for selecting online backups. VNF chains are first mapped

onto the physical infrastructure. If the mappings performed violate the reliability requirements,

backup VNFs are chosen on the fly. Another relevant work is that of Fan et al. (2018) who

suggested a method for providing SFC availability while taking into account heterogeneous

failure processes; an optimization problem was developed to minimize the required backup

resources while meeting a specified level of availability for an SFC request.

Li et al. (2019) studied reliable virtual network function service delivery in a multiaccess edge

computing system by supplying primary and backup SFC instances in order to meet the reliability

requirements of mobile users. Hmaity, Savi, Musumeci, Tornatore & Pattavina (2017) offered

three strategies for service protection (end-to-end protection, virtual link protection, and virtual

node protection), with the survival problem for each strategy represented and solved as an ILP

problem with the goal of decreasing the number of active VNF instances, which is a measure of

CapEx and OpEx costs.

Casazza, Bouet & Secci (2019) proposed a Variable Neighboring Search (VNS) algorithm with

an elastic VNF protection model for SFC orchestration. The elastic architecture allows for the

provision of VNF protection only when it is required, while also allowing for the transition from

dedicated backup to shared backup protection, leading to effective resource use.

A two-step embedding approach that might survive the failure of a single facility node was

examined by Yu, Anand, Qiao & Sun (2011) and Ayoubi, Chen & Assi (2016b). The first step

is to redesign a virtual network request with redundant virtual nodes; the new virtual network

27

is then integrated into the physical network with backup resource sharing in mind to reduce

network resource expenses.

Finally, Bo, Huang, SUN, Chen & Liu (2014) suggested a greedy strategy for locating replacement

substrate resources for a virtual network’s impacted portion. In the event of insufficient resources,

this strategy necessitates remapping the entire virtual network, resulting in protracted service

outages. Ghaleb, Khalifa, Ayoubi, Shaban & Assi (2016) addressed multiple failures by

introducing a heuristic to select a backup node. The method parses the solution space and speeds

up the backup search process by using filtering strategies. Ayoubi, Assi, Narayanan & Shaban

(2016a) established that the survivability-aware embedding is NP-hard and offered a polynomial

time heuristic approach for restoring failed services while meeting QoS criteria for delays in the

case of single-node failures.

Unlike previous works that looked to provision backups based on the number of original VNFs

(usually they provision as many backups as primary instances or less) to handle single or multiple

node failures, the novelty of our solution lies in the idea of analyzing and predicting the demand

and then provisioning the backups based on the prediction, which further reduces the number of

needed backups. This ensures that there are enough backups before the failure happens and

enough to handle single or multiple simultaneous node failures. Furthermore, the proposed

solution uses backups shared among VNFs of the same type regardless of the chains they belong

to (which further reduces the amount of backup resources).

In addition, to the best of our knowledge, this effort is the first to consider minimizing the

operational costs altogether (running, migration, and synchronization costs) and consider

multiple and simultaneous failures.

CHAPTER 2

TOWARDS OPTIMAL SYNCHRONIZATION IN NFV-BASED ENVIRONMENTS

2.1 Introduction

The emergence of Network Function Virtualization (NFV) technology is currently transforming

the way networks are designed, deployed, and managed as it allows operators to deploy network

services at low cost and high flexibility Clemm, Zhani & Boutaba (2020); Vaquero et al. (2019);

Varghese et al. (2019). The NFV technology allows to create Virtual Network Functions (VNFs)

(e.g., Load balancer, Firewall, IDS, NAT) and connect them to build Service Function Chains

(SFC) that will process the incoming traffic from the source to the destination.

As a matter of fact, the traffic may rise occasionally because of higher demand. In this case,

the infrastructure provider might be required to implement the same VNF in multiple virtual

machines instances due to limited processing capacity, resource costs or location constraints

Gember et al. (2013); Ghrada et al. (2018); Chua et al. (2016); Zhani & ElBakoury (2020); ETSI

(2015); Salameh et al. (2019). However, running the same network function in a distributed

manner over multiple instances is challenging.

Indeed, network functions are either stateless or stateful. On one hand, when a network function

is stateless, it can operate without maintaining any state Kablan, Alsudais, Keller & Le (2017);

Khalid & Akella (2019). Hence, all instances implementing this function can operate indepen-

dently and successfully without sharing any information. In this case, no data synchronization

among them is required. On the other hand, when a network function is stateful, all instances

should maintain the same state (e.g., statistics like number of packets or bytes per flow, list of

available ports, per-connection port mapping) that should be frequently shared among them and

regularly updated in a timely manner. Ideally, all these instances should work like a single one

maintaining a unique state, regardless of their number and location Woo et al. (2018). Thus,

they need to have the same state to operate normally, and, hence, timely and efficient data

synchronization between the instances becomes mandatory Khalid & Akella (2019); Khalid

30

et al. (2016); Gember-Jacobson et al. (2014). In this case, there is a compelling need to ensure a

synchronization among them with minimal costs and acceptable delay.

In this context, synchronization costs could be defined as the number of messages exchanged

between the instances of the same network function. Synchronization delay is the amount of

time needed to exchange these messages among the involved instances in order to reach data

consistency. Of course, if this delay is high, the performance and operation of the network

function may be impacted as it may result in state inconsistency among the instances leading to

late or inaccurate decisions Aloqaily, Kantarci & Mouftah (2014).

Several studies have recently focused on the state synchronization challenge. For instance,

the authors in Khalid & Akella (2019); Satapathy et al. (2017) suggested to set up a common

repository storing and managing state shared among instances. The authors in Ma et al. (2015);

Peng et al. (2007) have considered a different technique where each instance broadcasts its state

to the other instances. Unlike existing literature, our work does not only target to carry out

synchronization but aims at minimizing the synchronization costs between the instances and

ensuring that the synchronization delay does not exceed a certain bound to guarantee normal

operation of the function. To the best of our knowledge, no previous work considered minimizing

the state synchronization costs and delay of VNF instances.

In our work, we propose a technique that identifies the optimal communication pattern between

the instances that minimizes the synchronization costs and ensures a bounded synchronization

delay. We also introduce the use a new function called Synchronization Function that ensures

consistency among a set of instances and allows to further reduce the synchronization costs.

We first formulate the problem of finding the optimal communication pattern, the optimal

placement for the synchronization functions, and number of synchronization functions as an

Integer Linear Program (ILP) aiming at minimizing the synchronization costs. We also devise

three algorithms, namely the Shortest Path Tree Algorithm (SPT), the Single Synchronization

Function Algorithm (SSF), and the Multiple Synchronization Function Algorithm (MSF) that

are able to efficiently explore the solution space for large-scale scenarios within a reasonable

31

timescale. The algorithms are implemented, evaluated for multiple small- and large-scale

scenarios and also compared, for small-scale scenarios, to the ILP, which was implemented in

the CPLEX optimizer IBM (2020).

Further, we propose a new solution that leverages instance migration. Indeed, we explore how

VNF instances could be migrated from one physical node to another in order to further reduce the

synchronization costs, and to ensure that the bound on synchronization delay is respected. We

hence propose a Migration-based optimization Algorithm that could be executed after running

the MSF algorithm (denoted by M-MSF) and CPLEX optimizer (denoted by M-CPLEX) to

further optimize instance placement. Through extensive experiments, we show that, thanks to

migration, the proposed solutions are able to reduce by up to 40% the synchronization costs and

by up to 12% the synchronization delay.

The remainder of this chapter is organized as follows. Section 2.2 presents some motivational

scenarios to better highlight the importance of data synchronization among instances. Section 2.3

provides a detailed description of the problem of finding the optimal communication pattern to

carry out synchronization. Section 3.5 presents the mathematical formulation of the addressed

problem. We then describe the proposed heuristic solutions in Section 2.5. Section 2.6 presents

the experimental results. Finally, in Section 3.8, we provide some concluding remarks.

2.2 Motivational Examples

Ideally, if a stateful network function is implemented in multiple instances, the instances should

share the same state as they need to operate like a single instance regardless of their number and

location. However, the state synchronization may be costly and has to be carried out in a bounded

delay to ensure correct and quick operation. In the following, we provide two examples of VNFs

and show how the synchronization could be costly and how it could impact the performance and

operation of the network function.

Example 1 : Let us consider an Intrusion Detection System (IDS) as an example to demonstrate

the importance of state consistency and synchronization delay among multiple instances

32

implementing the same network function. Figure 2.1 shows an example of an IDS implemented

in two instances. For instance, a Deny-of-Service attack is detected when the number of received

TCP SYN packets reaches a threshold 𝑘 . Each IDS instance maintains a counter for the number

of received packets. The attacker may send the malicious traffic from two sources (𝑘/2 from

first source and 𝑘/2 from the second one), and hence each IDS instance process only half of the

traffic. If the two IDS instances collaborate to synchronize the state (i.e., the number of packets)

in a timely manner, the counters will be updated to 𝑘 , and thus, the attack will be detected by

both instances. Any delay in the synchronization will result in a late decision, which may impact

the operation of the IDS and hence the network and service performance. The problem is even

more challenging when multiple instances are deployed and when they are located in locations

that are geographically distant from each other.

Figure 2.1 State synchronization between two IDS instances

Example 2 : In the context of Content Delivery Networks (CDN), multiple CDN instances

may host large amounts of content. If these instances have to synchronize their content, this

may consume significant amount of bandwidth. It is therefore of utmost importance to find the

best synchronization pattern (e.g., paths for exchanged data) to carry out synchronization with

minimal bandwidth consumption and minimal delay.

2.3 Problem Description

As previously mentioned, a VNF could be implemented in multiple instances. Each instance

corresponds to a virtual machine or a container running on top of the hardware networking

infrastructure ETSI (2015). These instances may be placed in geographically distributed

33

locations (e.g., Figure 2.2) and there are different communication/synchronization patterns that

could be defined to ensure they can exchange data and synchronize their state. A communication

pattern defines the way data is exchanged (i.e., the order at which data is sent) as well as the paths

that should be taken to deliver it to the involved instances. The goal of the following example is

to show how the communication pattern impact the costs and the delay of the synchronization.

Figure 2.2 shows four different communication patterns (i.e., a, b, c, d) that could be used to

carry out synchronization among instances of a function (NF1). We can see that there are three

instances of function NF1 distributed in different physical nodes and synchronizing their state

(see red, blue, and green dotted arrows).

Figure 2.2(a) illustrates how instances of function NF1 synchronize the same state with each other

periodically at the same time. In this communication pattern, the synchronization operations are

achieved in one step. For example, the instance that is located in node 10, NF1(10), synchronizes

the same state with the other instances NF1(8) and NF1(12) by using the paths 10 → 13 → 8

(the sync cost is 2 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 and the delay is 11 𝑚𝑠) and 10 → 7 → 12 (the sync cost is 2

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 and the delay is 7 𝑚𝑠). Similarly, all other instances NF1(8) and NF1(12) will follow

up the same procedure. As a result, the total synchronization cost between instances is the

number of messages exchanged between them which is 12 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 and the delay will be

represented by the path that has the highest delay which is 16 𝑚𝑠.

Figure 2.2(b) shows that each instance synchronize the same state to the next instance sequentially.

In this communication pattern, the synchronization operations are achieved in multiple steps.

This means, the instances take turns sending and receiving the same state. The receiving instance

reads the state addressed to it and then passes the state and any additional update to the next

instance. This continues until the same state reaches the desired receiving instance. For example,

the instance NF1(10) synchronizes the same state with the next instance NF1(8) by using the

path 10 → 11 → 8 (the sync cost is 2 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 and the delay is 16 𝑚𝑠). Similarly, all other

instances will follow the same procedure. The total synchronization cost for the instance NF1(8)

is 4 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 and the delay is 28 𝑚𝑠 by using the paths 8 → 13 → 12 (the sync cost is 2

34

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 and the delay is 10 𝑚𝑠) and 8 → 7 → 10 (the sync cost is 2 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 and the delay

is 18 𝑚𝑠) respectively. The synchronization cost for the instance NF1(12) is 2 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 and

the delay is 17 𝑚𝑠. As a result, the total synchronization costs between instances is the number

of messages exchanged between them which is 8 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 and the delay is the amount of time

needed to exchange these messages which is 61 𝑚𝑠.

a) b)

c) d)

Figure 2.2 Different possible communication patterns to synchronize NF1 instances

Figure 2.2(c) illustrated a communication pattern that benefits from a single synchronization

function. In this communication pattern, the synchronization operations are achieved in two

steps. The first step, the instances synchronize the same state to the synchronization function

periodically at the same time. The second step, the synchronization function consolidates and

distributes the same state to the all instances periodically at the same time. For example, the

instance NF1(10), NF1(8), and NF1(12) synchronize the same state to the synchronization

function that is located in node 13, SyncFn(13). Then, the synchronization function SyncFn(13)

consolidates and distributes the same state to all instances by using the same procedure. The

synchronization cost and the delay for both steps is depicted in Figure 2.2(c). As a result,

the total synchronization cost is the number of messages exchanged between instances and

synchronization function which is 6 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 and the delay is the amount of time needed to

exchange these messages which is 16 𝑚𝑠.

35

Figure 2.2(d) depicts a communication pattern that benefits from multiple synchronization

functions. The synchronization function can work as follows: serve a set of instances, or serve

a set of synchronization functions, or it can do both at the same time. In this communication

pattern, the synchronization operations are achieved in three steps. The first step, the instances

synchronize the same state to the closest synchronization function periodically at the same

time. The second step, the synchronization functions synchronize the same state with each other

periodically at the same time. In the third step, the synchronization functions distribute the

same state to all instances periodically at the same time. For example, NF1(10) and NF1(12)

synchronize the same state to SyncFn(13), also NF1(8) synchronizes the same state to SyncFn(8).

Furthermore, SyncFn(8) and SyncFn(13) synchronize the same state with each other by using the

same procedure. Finally, SyncFn(8) and SyncFn(13) distribute the same state to their instances

by using the same procedure. The synchronization costs and the delay for all steps depicted in

Figure 2.2(d). As a result, the total synchronization cost is the number of messages exchanged

between instances and synchronization functions which is 6 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 and the delay is the

amount of time needed to exchange these messages which is 14 𝑚𝑠.

It is clear from the above-described example that the communication pattern significantly impacts

the synchronization costs and delay and that synchronization functions could further reduce such

costs and delay. In this chapter, we focus on how to find the optimal communication pattern to

synchronize the instances, and the optimal placement for the synchronization functions in a way

that minimizes synchronization costs (i.e., number of exchanged messages) while ensuring that

the synchronization delay does not exceed a certain bound.

Figure 2.3 shows an example of instances of a function NF1 mapped into the physical infrastructure

and it also shows the SyncFns that are provisioned to ensure the consistency among them, to

minimize the synchronization costs and to ensure a bounded synchronization delay. As a practical

example of that, we can see in Figure 2.3(a) that physical node 1 hosts one synchronization

function, SyncFn(1), that is synchronized the state between instances of a function NF1 that

are embedded in physical nodes 0, 5, and 6 (i.e., NF1(0), NF1(5), and NF1(6)). The instances

NF1(0), NF1(5), and NF1(6) synchronize the same state to the synchronization function that is

36

located in node 1, SyncFn(1). Then, the synchronization function SyncFn(1) consolidates and

distributes the same state to all instances.

a) Original mapping of the instances of a function

NF1 and their SyncFns.

b) Mapping after the migration of 5 instances

from node 6 to 4 and 1 instance from 5 to 4.

Figure 2.3 Example showing how VNF instances migration could allow to further

reduce the synchronization costs and delay

Some VNF instances may be far from the synchronization functions due to the lack of resources

in the NFV infrastructure will cause the increase in synchronization costs and delay. For

example, we can see in Figure 2.3(a) that there are instances of function NF1 hosted in node 6,

NF1(6), that far from SyncFn(1). Furthermore, few number of instances hosted in physical node

will cause the increase in synchronization costs and delay. For example, we can see in Figure

2.3(a) that there is one instance of function NF1 hosted in node 5, NF1(5), which increase the

synchronization costs. Figure 2.3(b) shows that VNF instances migration could be leveraged to

relocate the VNF instances that increased the synchronization costs and delay to other physical

nodes, where they can get closer to SyncFns, therefore, can further reduce the synchronization

costs and delay. The Figure 2.3(b) shows that the 5 instances of NF1 hosted in node 6 has been

37

migrated to node 4, and thus, it is now closer to the SyncFn(1). In addition to that, the one

instance of NF1 hosted in node 5 has been migrated to node 4, and thus, we aggregate them with

other instances.

It is also worth noting that migration has a cost such as bandwidth, CPU consumption, and

service interruption Boutaba, Zhang & Zhani (2014). We assume in this work that a migration

could be carried out only if the number of hops between the original placement of VNF instances

and the new one does not exceed a maximal number of hops (i.e., to ensure a minimal migration

cost), and satisfy the delay (i.e., by migrating VNF instances to other physical nodes which can

ensure the lowest synchronization delay and this delay should not exceed the threshold). For

instance, the number of hops is limited to 1 in the example provided in Figure 2.3(b).

It is clear from the above-described example in Figure 2.3(b) that the VNF instances migration

significantly impacts the synchronization costs and delay. To conclude, as illustrated in the

aforementioned example, the main challenges addressed in this chapter is to leverage migration

to further reduce the synchronization costs and to ensure a bounded synchronization delay.

2.4 Problem Formulation

In this section, we formulate the problem of finding the optimal communication pattern as an

Integer Linear Program (ILP) aiming at minimizing the synchronization costs while ensuring

the required synchronization delay does not exceed a certain bound. Furthermore, the ILP

finds the optimal communication pattern to synchronize the instances, the number of the

synchronization functions and their optimal placement of in the infrastructure. All symbols used

in the formulation are summarized in Table 2.1.

The physical infrastructure consists of multiple nodes located in different geographical locations

modeled by a graph 𝐺 = (𝑁, 𝐿) where 𝑁 indicates the set of physical nodes that are connected

via physical links 𝐿. We also define 𝑤𝑢𝑣 is the value of the weight of the link (i.e., cost)

between two physical nodes 𝑢 and 𝑣. We define by 𝑑𝑢𝑣 the value of the synchronization delay of

38

the link between two connected physical nodes 𝑢 and 𝑣. We also denote by 𝛽 the maximum

synchronization delay that can be tolerated between any two VNF instances.

We define 𝐼 = {1, ..., |𝐼 |} as the set of physical nodes hosting the instances of the same network

function that should be synchronized. Each node of the set 𝐼 is considered as a source and a

destination as it has to generate and receive data. Any subgraph that connects the nodes of the

set 𝐼 can be considered as a communication pattern. The weight of a subgraph is defined as the

sum of the weights of the subgraph’s links. This weight corresponds to the total synchronization

costs of the communication pattern associated to that subgraph. As our ultimate objective is to

minimize the total synchronization costs, the goal of the following ILP is to find the subgraph 𝐺̄

extracted from the original graph 𝐺 that necessarily includes all the nodes of 𝐼 and having the

minimum total weight. As such, the subgraph 𝐺̄ corresponds to the optimal communication

pattern.

The subgraph 𝐺̄ can also be seen as a set of paths that connects all nodes of 𝐼 while the weight

of the resulting subgraph is minimal. The proposed ILP finds these paths while minimizing

the weight of the generated subgraph. In the following, we define the decision variables and

constraints of the ILP.

Decision Variables

We define two decision variables as follows:

• 𝑥𝑠𝑡𝑢𝑣 ∈ {0, 1} indicates whether the link 𝑢𝑣 (𝑢 ∈ 𝑁 and 𝑣 ∈ 𝑁) is part of a path between a

source 𝑠 ∈ 𝐼 and a destination 𝑡 ∈ 𝐼.

• 𝑦𝑢𝑣 ∈ {0, 1} indicates whether the link 𝑢𝑣 is used in the path between any source 𝑠 ∈ 𝐼 and

any destination 𝑡 ∈ 𝐼. In other words, 𝑦𝑢𝑣 is equal to 1 only if the link 𝑢𝑣 belongs to the

subgraph 𝐺̄.

39

Table 2.1 Symbols and their definitions

Symbol Definition
𝑁 Set of physical nodes in an infrastructure

𝐿 Set of physical links in an infrastructure

𝑤𝑢𝑣
The value of the weight of the link between two physical nodes

𝑢 and 𝑣

𝑑𝑢𝑣
The value of the synchronization delay of the link between two

connected physical nodes 𝑢 and 𝑣

𝛽
The maximum synchronization delay that can be tolerated between

any two VNF instances

𝐼
The set of physical nodes hosting the instances of the same network

function that should be synchronized

𝐺̄ The optimal communication pattern

𝑥𝑠𝑡𝑢𝑣
Decision variable to indicate whether the link 𝑢𝑣 is part of a path

between a source 𝑠 and a destination 𝑡

𝑦𝑢𝑣
Decision variable to indicate whether the link 𝑢𝑣 is used in the path

between any source 𝑠 and any destination 𝑡

Objective Function

Our main objective is to minimize the synchronization costs among instances while ensuring the

required synchronization delay does not exceed a certain bound. The objective function can be

expressed as follows:

𝑚𝑖𝑛

(∑
𝑢∈𝑁

∑
𝑣∈𝑁

𝑦𝑢𝑣𝑤𝑢𝑣

)
(2.1)

Constraints

While finding the optimal solution, several constraints must be satisfied. For instance, we need

to ensure that there is a link leaving any source 𝑠 ∈ 𝐼:

∑
𝑡∈𝐼

∑
𝑣∈𝑁

𝑥𝑠𝑡𝑠𝑣 −
∑
𝑢∈𝑁

∑
𝑡∈𝐼

𝑥𝑠𝑡𝑢𝑠 = 1 ∀𝑠 ∈ 𝐼 (2.2)

40

where the first term is the number of links leaving 𝑠, and the second one is the number of links

entering to the node 𝑠.

We also need to ensure that there is a link entering any destination 𝑡 ∈ 𝐼:

∑
𝑢∈𝑁

∑
𝑠∈𝐼

𝑥𝑠𝑡𝑢𝑡 −
∑
𝑠∈𝐼

∑
𝑣∈𝑁

𝑥𝑠𝑡𝑡𝑣 = 1 ∀𝑡 ∈ 𝑁 (2.3)

where the first term is the number of links entering 𝑡, and the second term is the number of links

leaving 𝑡.

Furthermore, there must be a path between any source 𝑠 ∈ 𝐼 and destination 𝑡 ∈ 𝐼. In other words,

we must ensure that for any node on the path between 𝑠 and 𝑡, the number of links entering that

node is equal to the number of links leaving it (as it is a path). This can be expressed as follows:

∑
𝑢∈𝑁

𝑥𝑠𝑡𝑢𝑧 −
∑
𝑣∈𝑁

𝑥𝑠𝑡𝑧𝑣 = 0 ∀𝑠, 𝑡 ∈ 𝐼 ∀𝑧 ∈ 𝑁\{𝑠, 𝑡} (2.4)

where the first term is the number of links entering a node 𝑧 ∈ 𝑁\{𝑠, 𝑡} that lies in the path

between the source 𝑠 ∈ 𝐼 and the destination 𝑡 ∈ 𝐼, and the second term is the number of links

leaving 𝑧 ∈ 𝑁\{𝑠, 𝑡} in the same path.

Furthermore, we need to ensure that, if there are common links between the paths, they should

be considered once in the constructed subgraph. In other words, a link 𝑢𝑣 should be counted

only once in the generated subgraph. This can be expressed as follows:

𝑦𝑢𝑣 ≥ 𝑥𝑠𝑡𝑢𝑣 ∀𝑠, 𝑡 ∈ 𝐼 ∀𝑢, 𝑣 ∈ 𝑁 (2.5)

Additionally, the delay of the path between any source 𝑠 ∈ 𝐼 and destination 𝑡 ∈ 𝐼 should not

exceed the maximum synchronization delay 𝛽. This constraint can be written as follows:

41

∑
𝑢∈𝑁

∑
𝑣∈𝑁

𝑥𝑠𝑡𝑢𝑣𝑑𝑢𝑣 ≤ 𝛽 ∀𝑠, 𝑡 ∈ 𝐼 (2.6)

ILP Output

The resulting values of the decision variable 𝑦𝑢𝑣 will define the links of subgraph 𝐺̄ as well as

its nodes. The variable 𝑥𝑠𝑡𝑢𝑣 defines the path that should be used to synchronize data between

nodes 𝑠 ∈ 𝐼 and 𝑡 ∈ 𝐼.

Furthermore, to find the number of the synchronization functions and their optimal placement,

we assume that any physical node in 𝐺̄ being connected to more than two links, called hereafter

a common node, should host a synchronization function. This is because a node connected

to only two links has only to forward the synchronized data from one link to the following.

However, a node connected to more than two links is able to aggregate the data coming from

two links and then forward it to the other ones. As a result, synchronization functions are placed

in common nodes and have the same number as those nodes.

This problem is formally known as the Clustered Shortest-Path Tree Problem (CluSTP), and it

has been demonstrated to be 𝑁𝑃-hard Cosma, Pop & Zelina (2020); Bökler (2017). As a result,

several efforts have been made to find effective heuristics for solving it Binh, Thanh & Thang

(2019); Cosma, Pop & Zelina (2021). Because the problem of finding the communication pattern

between multiple instances is a variant of the CluSTP problem, it is also 𝑁𝑃-hard. To put it

another way, we consider the communication pattern problem, which generalises the classical

single-source shortest-path problem and seeks a spanning tree of a given graph with the property

that each sub-graph induced by a cluster is connected and the total cost of the paths from a given

source node to all other nodes in the sub-graph is minimised.

2.5 Proposed Heuristic

In this section, we describe three heuristics that could find the best communication patterns to

synchronize data among the VNF instances. The first algorithm is called Shortest Path Tree

42

(SPT) as it tries to connect instances through the shortest paths among them and it does not use

synchronization functions. The second algorithm is called Single Synchronization Function

Algorithm (SSF) as it uses only one synchronization function in the physical infrastructure to

serve multiple instances of the same network function. The third algorithm is called Multiple

Synchronization Functions Algorithm (MSF) as it tries to place multiple synchronization

functions, each serving a subset of instances of the same network function.

Furthermore, we put forward a new heuristic algorithm that leverages migration of VNF

instances to move them closer to synchronization functions in order to further reduce the

synchronization costs and ensure the requested synchronization delay. This algorithm, called

Migration-based optimization, should be executed after running the MSF algorithm (denoted

M-MSF) or the CPLEX optimizer (denoted M-CPLEX). In the following, we present the four

proposed algorithms in detail:

2.5.1 Solution 1: Algorithm SPT

This algorithm is a modified version of the shortest path tree algorithm. Each instance

synchronizes its state with the other ones periodically and at the same time using the shortest

path tree that connect it to all the other instances.

We first process the network functions one by one. Assume we consider the first one, we consider

its set of VNF instances. As shown in Algorithm 1, for each instance, we compute the shortest

paths tree towards all the other instances. That is the tree for which the distance between the

considered instance and all the others is minimal. Each of the nodes of the tree is configured

to forward synchronization data originating from the root instance towards the leaves of the

tree. This ensures that all data follow the shortest paths, and thereby synchronization costs is

minimized. The messages coming from the instances are not modified throughout the path to

the destination instances.

We also compute the worst-case synchronization delay, 𝑡𝑙 , which is the delay required to ensure

synchronization messages were exchanged among all the instances. This delay corresponds

43

to the path that has the highest delay in the tree (Line 5). This delay should not exceed the

threshold of the synchronization delay 𝛽. The resulting synchronization costs for the tree and

the total cost can be then easily computed (Line 6).

Finally, the whole process is repeated for the instances of each of the remaining network

functions.

Algorithm 2.1 SPT

Input: 𝑉 : set of VNFs

𝛽: delay constraint

𝑡𝑙 ← 0: worst-case synchronization delay

𝑆𝑦𝑛𝑐ℎ𝐶𝑜𝑠𝑡 ← 0: synchronization delay

Output: The communication pattern

1 for 𝑣 ∈ 𝑉 do
2 for each instance 𝑖𝑣 of type 𝑣 do
3 𝑆𝑃𝑇𝑟𝑒𝑒(𝑖𝑣) ← 𝑔𝑒𝑡_𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ_𝑡𝑟𝑒𝑒(𝑖𝑣)
4 𝐷𝑒𝑙𝑎𝑦(𝑖𝑣) ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑦𝑛𝑐ℎ_𝑑𝑒𝑙𝑎𝑦(𝑆𝑃𝑇𝑟𝑒𝑒(𝑖𝑣))
5 𝑡𝑙 ← 𝑚𝑎𝑥(𝑡𝑙 , 𝐷𝑒𝑙𝑎𝑦(𝑖𝑣))
6 𝑆𝑦𝑛𝑐ℎ𝐶𝑜𝑠𝑡 ← 𝑆𝑦𝑛𝑐ℎ𝐶𝑜𝑠𝑡 + 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑦𝑛𝑐ℎ_𝑐𝑜𝑠𝑡 (𝑆𝑃𝑇𝑟𝑒𝑒(𝑖𝑣))
7 end for
8 end for

2.5.2 Solution 2: Algorithm SSF

Algorithm 2 aims to find the optimal communication pattern to ensure synchronization among

same-type instances but it is allowed to use a single synchronization function to support

synchronization.

Similar to SPT, for each VNF 𝑣, we first compute the shortest path tree originating from each

type-𝑣 instance to the others. Next, we identify the set of common nodes 𝑛𝑐𝑛 among all shortest

path trees of the all the instances. Common nodes are the ones shared among all the shortest

path trees. Each common node has a score 𝐶𝑁𝑜𝑑𝑒𝑆𝑐𝑜𝑟𝑒[𝑛] defined as the number of shortest

path trees using that particular node (Lines 2-7).

44

To minimize the synchronization costs, we choose the common node 𝑛 that has the highest score

𝐶𝑁𝑜𝑑𝑒𝑆𝑐𝑜𝑟𝑒[𝑛] and enough resources 𝑐𝑛 to host the synchronization function (Lines 2-8). The

rationale is that this node receives the highest amount of synchronization messages from all

instances towards all instances. Hence, it is the best location to host a synchronization function

(denoted by 𝑠𝑣) that can process these messages, e.g., merge their content, and then forwards

such messages to the remaining instances.

We also compute 𝑡𝑣 the longest delay between two instances of VNF type 𝑣 going through

the designated synchronization function 𝑠𝑣 (Line 10). The delay 𝑡𝑣 should not exceed the

synchronization delay threshold 𝛽. The synchronization cost is also computed assuming all

synchronization data goes through the synchronization function (Line 11). Finally, the whole

process is repeated for the instances of each of the remaining network functions.

It is worth noting that we assume that all instances send messages to the synchronization function

periodically and at the same time.

2.5.3 Solution 3: Algorithm MSF

In this third algorithm, our goal is to minimize the synchronization costs while it is allowed to

use multiple synchronization functions to ensure data synchronization among instances of the

same network function (as opposite to a single synchronization function for the SSF algorithm).

As shown in Algorithm 3, we consider network functions one by one. For a particular network

function of type 𝑣, we identify first the shortest path tree 𝑆𝑃𝑇𝑟𝑒𝑒(𝑖𝑣) originating from each

instance 𝑖𝑣 towards all the others of the same type.

Similar to SPT, for each VNF 𝑣, we first compute the shortest path tree 𝑆𝑃𝑇𝑟𝑒𝑒(𝑖𝑣) originating

from each type-𝑣 instance 𝑖𝑣 to the others. Next, we identify the set of common nodes among all

shortest path trees of the all the instances. Common nodes are the ones shared among all the

shortest path trees. Each common node has a score 𝐶𝑁𝑜𝑑𝑒𝑆𝑐𝑜𝑟𝑒[𝑛] defined as the number of

shortest path trees using that particular node (Lines 2-7).

45

Algorithm 2.2 SSF

Input: 𝑁: set of physical nodes

𝑉 : set of VNFs

𝑐𝑛: remaining capacity in each physical node 𝑛 ∈ 𝑁
𝛽: delay constraint

𝑆𝑦𝑛𝑐ℎ𝐶𝑜𝑠𝑡 ← 0: synchronization delay

Output: The optimal communication pattern

1 for 𝑣 ∈ 𝑉 do
2 for each instance 𝑖𝑣 of type 𝑣 do
3 𝑆𝑃𝑇𝑟𝑒𝑒(𝑖𝑣) ← 𝑔𝑒𝑡_𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ_𝑡𝑟𝑒𝑒(𝑖𝑣)
4 for 𝑛 ∈ 𝑆𝑃𝑇𝑟𝑒𝑒(𝑖𝑣) do
5 𝐶𝑁𝑜𝑑𝑒𝑆𝑐𝑜𝑟𝑒[𝑛] ← 𝐶𝑁𝑜𝑑𝑒𝑆𝑐𝑜𝑟𝑒[𝑛] + 1

6 end for
7 end for
8 𝑠𝑣 ← {𝑛|𝑚𝑎𝑥𝑛∈𝑁 (𝐶𝑁𝑜𝑑𝑒𝑆𝑐𝑜𝑟𝑒[𝑛]) 𝑎𝑛𝑑 𝑐𝑛 ≥ 1}
9 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑆𝑦𝑛𝑐ℎ𝐹𝑛𝑐𝑡 (𝑠𝑣)

10 𝑡𝑣 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑦𝑛𝑐ℎ_𝑑𝑒𝑙𝑎𝑦(𝑠𝑣)
11 𝑆𝑦𝑛𝑐ℎ𝐶𝑜𝑠𝑡 ← 𝑆𝑦𝑛𝑐ℎ𝐶𝑜𝑠𝑡 + 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑦𝑛𝑐ℎ_𝑐𝑜𝑠𝑡 (𝑠 𝑓𝑣)
12 end for

For each instance 𝑖𝑣 , the algorithm selects the closest common node (denoted by 𝑠𝑖𝑣), i.e., the one

that has the lowest distance to the instance 𝑖𝑣 in terms of number of hops ℎ and delay 𝑡 and

has enough resources 𝑐𝑠𝑖𝑣 (i.e., that is the amount of available resources expressed in terms of

number of VNF instances that could be hosted by the physical node) (Line 9). A synchronization

function is hosted in this closest common node 𝑠𝑖𝑣 to process synchronization data coming to

the considered instance (Line 10).

We also assume that a physical node cannot host more than one synchronization function serving

instances of the same network function in the same physical node. Thus, if the algorithm decides

to place another synchronization function in the same physical node to process synchronization

data for two difference instances, the two functions are merged into a single one.

The synchronization messages originating from instance 𝑖𝑣 are then directed towards the

associated synchronization function 𝑠𝑖𝑣 . The synchronization functions send the consolidated

46

synchronization messages using the shortest path trees towards the destination instances and

eventually through other synchronization functions (if they are in the path). Finally, the highest

synchronization delay 𝑡𝑣 is then computed based on the resulting synchronization pattern and

should not exceed the threshold 𝛽 (Line 12). The synchronization costs is computed (Line 13).

The whole process is repeated for the instances of another network function.

Algorithm 2.3 MSF

Input: 𝑁: set of physical nodes

𝑉 : set of VNFs

𝑐𝑛: remaining capacity in each physical node 𝑛 ∈ 𝑁
𝛽: delay constraint

𝑆𝑦𝑛𝑐ℎ𝐶𝑜𝑠𝑡 ← 0: synchronization delay

Output: The optimal communication pattern

1 for 𝑣 ∈ 𝑉 do
2 for each instance 𝑖𝑣 of type 𝑣 do
3 𝑆𝑃𝑇𝑟𝑒𝑒(𝑖𝑣) ← 𝑔𝑒𝑡_𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ_𝑡𝑟𝑒𝑒(𝑖𝑣)
4 for 𝑛 ∈ 𝑆𝑃𝑇𝑟𝑒𝑒(𝑖𝑣) do
5 𝐶𝑁𝑜𝑑𝑒𝑆𝑐𝑜𝑟𝑒[𝑛] ← 𝐶𝑁𝑜𝑑𝑒𝑆𝑐𝑜𝑟𝑒[𝑛] + 1

6 end for
7 end for
8 for each instance 𝑖𝑣 of type 𝑣 do
9 𝑠𝑖𝑣 ← {𝑛 | 𝐶𝑁𝑜𝑑𝑒𝑆𝑐𝑜𝑟𝑒[𝑛] > 1 and 𝑚𝑖𝑛𝑛∈𝑁 (ℎ𝑜𝑝𝑠(𝑖𝑣, 𝑛)) and 𝑐𝑛 ≥ 1}

10 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑆𝑦𝑛𝑐ℎ𝐹𝑛𝑐𝑡 (𝑠𝑖𝑣)
11 end for
12 𝑡𝑣 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑦𝑛𝑐ℎ_𝑑𝑒𝑙𝑎𝑦()
13 𝑆𝑦𝑛𝑐ℎ𝐶𝑜𝑠𝑡 ← 𝑆𝑦𝑛𝑐ℎ𝐶𝑜𝑠𝑡 + 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑦𝑛𝑐ℎ_𝑐𝑜𝑠𝑡 (𝑣)
14 end for

2.5.4 Solution 4: Migration-based optimization

This algorithm is performed after one of the previously presented solutions in order to further

reduce synchronization costs and delay. The algorithm finds first the VNF instances whose

placement is incurring high synchronization cost and delay. In other words, it identifies the VNF

instances that are far from synchronization functions, and hence they should be migrated to be

47

located closer to these functions. Afterwards, the algorithm finds the candidate physical nodes

able to host the identified instances to be migrated one by one. The candidate physical nodes

should satisfy four constraints: (1) the number of hops between the new and the old location

should not be more than one hop, (2) the overall synchronization cost after the migration should

be the lowest possible and less than it was before the migration, (3) the synchronization delay

should remain less than the threshold 𝛽 and the total end-to-end delay of the service chain is less

than the threshold 𝜎, and (4) the capacity (i.e., free resource) of the candidate physical node

should be enough to host the VNF instance.

Algorithm 2.4 Migration-based optimization

Input: Output of MSF or CPLEX for all VNFs

𝑁 : set of physical nodes

𝑉 : set of VNFs

𝐻𝑜𝑠𝑡 (𝑖𝑣) : physical node hosting instance 𝑖𝑣 of type 𝑣
Output: The optimal communication pattern after migration

1 for 𝑣 ∈ 𝑉 do
2 for each instance 𝑖𝑣 of type 𝑣 do
3 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(ℎ𝑜𝑠𝑡 (𝑖𝑣)) ← 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑦𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(ℎ𝑜𝑠𝑡 (𝑖𝑣))
4 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ← {𝑛 | 𝑚𝑖𝑛𝑛∈𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(ℎ𝑜𝑠𝑡 (𝑖𝑣)) (𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑦𝑛𝑐ℎ_𝑐𝑜𝑠𝑡 (𝑣, 𝑖𝑣, 𝑛))}
5 𝑀𝑖𝑔𝑟𝑎𝑡𝑒(𝑖𝑣, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛)
6 end for
7 𝑡𝑣 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑦𝑛𝑐ℎ_𝑑𝑒𝑙𝑎𝑦()
8 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑦𝑛𝑐ℎ_𝑐𝑜𝑠𝑡 (𝑣)
9 end for

After running the MSF algorithm or CPLEX optimizer, we identify the set𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑛) defined

as the set of candidate physical nodes that have to satisfy the following constraints: 1) they

could be reached from 𝑛 within at most one hop, 2) they are closer than 𝑛 to the synchronization

function serving instance of type 𝑣 hosted in 𝑛, 3) they satisfy the delay threshold 𝜎 if the instance

is moved there, and 4) they have enough resources to host the new instance. The instance is then

migrated to 𝑛 ∈ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑛) such that the synchronization cost is minimized first and then the

synchronization delay is minimized (Line 5). Note that function 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑦𝑛𝑐ℎ_𝑐𝑜𝑠𝑡 (𝑣, 𝑖𝑣, 𝑛)

48

computes the synchronization cost for VNF instances of type 𝑣 assuming 𝑖𝑣 is placed in 𝑛 rather

than its original placement.

Finally, after migrating the VNF instances, the highest synchronization delay 𝑡𝑣 is computed

based on the resulting synchronization pattern and it should not exceed the threshold 𝛽 (Line 7).

The synchronization cost is computed (Line 8).

The whole process is repeated for the instances of the other network functions.

2.6 Simulation and Results

In this section, we evaluate the performance of the proposed algorithms through extensive

simulations. We basically compare the performance of those algorithms (i.e., SPT, SSF, and

MSF) with the optimal solution provided by CPLEX and compare the obtained synchronization

cost, delay, as well as the algorithms’ execution time. We also compare the performance of

MSF with the solution provided by MSF after migration (M-MSF) and the optimal solution

provided by CPLEX with the optimal solution provided by CPLEX after migration (M-CPLEX)

and compared the obtained synchronization cost and delay.

2.6.1 Simulation setup

In order to evaluate the performance of the proposed solutions, we developed a C++ simulator that

simulates the entire environment including the physical infrastructure and the embedded network

functions and we implemented the four proposed algorithms. We considered a topology that was

randomly generated with 24 physical nodes connected through 52 physical links. We assume

that each physical node has different computing capacity randomly generated between 40

and 120 virtual machines. We assume that all virtual machines have the same resource capacities.

We also assume that links have different propagation delays that were randomly generated

between 5 𝑚𝑠 to 20 𝑚𝑠. Other delays like queuing and transmission delays are not taken into

account as they are not significant compared to the propagation delay especially in wide-area

networks Barford, Donoho, Flesia & Yegneswaran (2002); Jurski & Wozniak (2009).

49

Furthermore, in our experiments, we assume that the VNF instances are already embedded.

We considered eight different scenarios where, in each of them, the instances of the same

network functions were randomly distributed in the infrastructure. We also fixed the required

synchronization delay among the instances of the same VNF to be 110 𝑚𝑠.

2.6.2 Synchronization cost

Figure 2.4 shows the average synchronization cost found with the proposed algorithms compared

to the optimal solution generated by CPLEX for each scenario. We can see that, for the eight

scenarios, SSF and MSF outperforms SPT and generate a slightly higher number of messages

compared to the optimal solution provided by CPLEX. This indicates that the communication

patterns provided by SSF and MSF are close to the optimal ones.

Figure 2.4 Average synchronization cost

Indeed, when SPT is used, each instance synchronizes its state with the other instances using the

shortest path tree. In this case, the synchronization messages are duplicated at each node of the

tree. Unlike SPT, SSF and MSF use synchronization functions consolidate received messages

50

and then distribute the generated messages to all instances. As a result, the number of exchanged

messages is further reduced.

Figure 2.5 Average synchronization cost with and without

migration

These costs are further reduced when migration is activated. For instance, Figure 2.5 compares

the average synchronization cost found with MSF, CPLEX, with the ones found with migration

M-MSF and M-CPLEX for all scenarios. We can notice that for all scenarios M-MSF and

M-CPLEX outperform MSF and CPLEX. This indicates that the VNF instance migration

mechanism has succeeded to significantly reduce synchronization costs. Indeed, M-MSF and

M-CPLEX relocate the VNF instances closer to the synchronization functions, and therefore

allow to further reduce the number of hops to reach them and the number of synchronization

messages exchanged between the nodes.

2.6.3 Synchronization delay

Figure 2.6 compares the average synchronization delay found with the proposed algorithms and

the optimal solution generated by CPLEX for each scenario. It clearly shows that SSF and MSF

51

outperform SPT and provide a near optimal results. To explain these results, the synchronization

delay can be controlled by the number of hops between the instances. Therefore, the more we

minimize the number of hops, the more the synchronization delay decreases. Hence, SSF and

MSF succeeded in reducing the synchronization delay by provisioning synchronization functions

that minimize the number of hops between instances. The results show that, for SPT, SSF and

MSF algorithms as well as CPLEX, the synchronization delay is below the total synchronization

delay threshold 𝛽 specified as input to all solutions (𝛽 is equal to 110 𝑚𝑠 in our experiments).

Figure 2.6 Average synchronization delay

We also study the benefit of instance migration. Figure 2.7 compares the average synchronization

delay found with MSF and the optimal solution generated by CPLEX with the M-MSF and the

optimal solution generated by M-CPLEX for each scenario. We can see that, for all scenarios,

M-MSF and M-CPLEX outperform MSF and CPLEX. This is because M-MSF and M-CPLEX

migrate the VNF instances to physical nodes ensuring lower synchronization delay.

52

Figure 2.7 Average synchronization delay with and without

migration

2.6.4 Execution Time

Figure 2.8 depicts the execution time for the proposed algorithms compared to that of CPLEX.

The figure shows that the execution time for CPLEX is between 46 seconds and 29 minutes

depending on the number of instances and the distance between them. The reason is that, when

the number of variables in the ILP increases (e.g., number of network function instances), the

problem becomes harder to solve and it takes more time to explore the solution space. The

figure also shows that the execution time for SPT, SSF, and MSF does not significantly change

for all scenarios and regardless of the number of instances and their placement.

2.6.5 Discussion

The performed simulations show that SSF and MSF are able to find near-optimal solutions

minimizing synchronization cost and delay, while SPT is so far from optimal one. Indeed, the

average synchronization cost and delay for SSF, MSF, CPLEX are up to 80% and 37% less than

53

Figure 2.8 Execution time

the ones found with SPT, respectively. Furthermore, the execution time for the three proposed

algorithms is stable and much lower than CPLEX. We can conclude that SSF and MSF find

the best trade-off between complexity and performance with a slightly better performance for

MSF.

Additionally, the performed simulations also show that instance migration further improves

the results. Indeed, using migration reduces by up to 40% the average synchronization cost and

by up to 12% the synchronization delay compared to SSF, MSF and CPLEX.

2.7 Conclusion

This chapter addresses the problem of finding the optimal communication pattern to synchronize

data among VNF instances implementing the same VNF in a way that minimizes the synchro-

nization costs and ensures that the synchronization delay does not exceed a certain bound. To this

end, the problem was formulated as an Integer Linear Program implemented in CPLEX and three

heuristic algorithms (i.e., SPT, SSF, and MSF) were proposed to deal with large-scale scenarios.

54

Though all the three algorithms show much lower computational time compared to CPLEX,

MSF is the one that provides near optimal solution allowing to minimize synchronization costs

and delay.

In addition to that, we proposed to use instance migration to further reduce the synchronization

costs and delay by migrating the VNF instances closer to the synchronization functions. The

conducted simulations showed that migration further improves the performance of MSF and

CPLEX. Indeed, migration reduces by up to 40% the synchronization costs and by up to 12%

synchronization delay.

In order to adopt the proposed solutions, we plan to study carefully the synchronization costs

of different types of VNFs and to assess their synchronization requirements in terms of delay.

Because a high synchronization delay among the instances of the same type of VNF could impact

the performance of the function itself (e.g., late attack detection in the case of an IDS). This is

why we assume there is a bound on the synchronization delay (i.e., the highest acceptable delay

for the synchronization) that should be specified based on the function type and requirement.

CHAPTER 3

ON ENSURING COST-EFFICIENT SURVIVABILITY OF SERVICE FUNCTION
CHAINS IN NFV ENVIRONMENTS

3.1 Introduction

Network Function Virtualization (NFV) is transforming traditional networks into a platform

allowing to dynamically instantiate virtual network functions (VNFs) implemented in software

regardless of the underlying hardware. Hence, NFV technology allows to provision services

in the form Service Function Chains (SFCs) where an SFC is an end-to-end network services

composed of an ordered collection of VNFs defined based on the service provider’s need and

connected through virtual links Halpern & Pignataro (2015).

In this context, a large body of work has recently addressed resource provisioning and management

of such SFCs Bari et al. (2012), Herrera & Botero (2016), Mijumbi et al. (2015). The majority of

current research make the assumption that the physical infrastructure is always available, which

is unrealistic given the prevalence of failures in cloud network infrastructures Lee et al. (2017),

ISG (2014), Zhang et al. (2014). Indeed, as the VNFs of a chain are deployed on different

servers, probably in different locations, they are easily affected by physical failures which could

be multiple and simultaneous. These failures might easily bring down a large number of VNFs,

breaking a number of SFCs and making their associated services unavailable. A downtime,

even for a very short period, could damage service provider’s reputation, and, depending on the

type of the supplied service, could result in significant revenue losses (e.g., downtime could cost

$5,600 per minute and up to $300,000 per hour according to Cohen).

In the literature, there are two basic strategies for achieving service survivability: proactive

and reactive Zhani & Boutaba (2015). In proactive strategies, we provision and reserve backup

resources for each SFC early on during the mapping process. As a result, this strategy speeds up

recovery; however, the backup resources remain idle until failure occurs Yu et al. (2011), Ayoubi

et al. (2016b), Chowdhury et al. (2016), Fan et al. (2015). This means that resources are booked

56

and paid. The second strategy in the literature is the reactive one, in which we provision backup

resources in the event of a failure Bo et al. (2014), Xiao et al. (2014). As a result, there is an extra

delay to provision resources and set up the new backups before they can take over the service.

The first strategy has a larger backup footprint even if it promises speedy recovery from failures.

Although the second strategy has the smallest backup footprint, it does not necessarily ensure

thorough and speedy service recovery following failures. In light of this, proactive solutions are

increasingly desirable, even if they incur additional operational costs to provision and maintain

the backup VNFs.

In order to address this issue and reduce resource waste, various research efforts recommended

the proactive strategy proactive using shared backup VNFs Ayoubi et al. (2016b),Yu et al. (2011),

Aidi et al. (2018). In this case, several VNFs share the same backup, and hence, if one of them

fails, the backup replaces it and takes over. Unfortunately, this works only when we assume

only a single failure happens at a time, and hence, if multiple VNF failures occur at the same

time, only one or a subset of VNFs could recover. The others will remain non-available and not

replaced.

Unlike previous work, this research looks into potential ways to provision enough backups in a

proactive manner to handle multiple and simultaneous failures. The proposed solutions analyze

and predict the amount of traffic processed by each VNF in order to identify the traffic rate

fluctuation and provision backups based on these fluctuations rather than the current number of

VNF instances. Hence, if a low demand is detected, the resources for the backup is automatically

decreased and vice-versa. As a result, we ensure that there is always enough VNF backups to

handle all the demand of all VNFs to be able to overcome potential multiple failures. By that

means, it is possible to minimize backup resources while at the same time being ready for all

failures.

The solution presented in this work was integrated into a Survivability Management Framework

that ensures the survivability of all embedded SFCs by adjusting the number of VNF backups for

each type of VNF based on the predicted traffic rates over time. It dynamically provisions VNF

57

backup instances for each type of VNF and adjusts their number and location (through VNF

migration when it is needed). In summary, the contributions of this paper can be summarized as

follows:

•We put forward a traffic prediction model based on the ARIMA model Zhani, Elbiaze & Kamoun

(2009) to forecast demand traffic rates for each of SFC.

• We formulate the backup provisioning problem as an Integer Linear Program (ILP) aiming at

minimizing the number and the location of shared backups for each type of VNF and minimizing

the amount of backup resources and operational costs (i.e., costs of running the VNF backup

instances, of management including instantiation and migration, and of data synchronization

between a VNF and its backup).

• We have developed two algorithms more adapted to search the solution space for large-scale

problems. The first one is a baseline algorithm, called the 1-1B Algorithm, where one backup

instance is provisioned for each VNF instance. The second algorithm, called the Adjusting &

Sharing Backups Algorithm (ASB), is more sophisticated and more efficiently manage backups

such that their number and their operational costs are minimized.

• Furthermore, we evaluate the effectiveness of the ASB algorithm compared to the Baseline for

different scenarios. We show that it could also provide near optimal solutions that are close to

the ones obtained with the proposed ILP (computed using the CPLEX optimizer IBM (2020)).

• Finally, we show that using demand prediction could further reduce backup operational costs

incurred by the ASB algorithm by reducing the number of backup VNFs that are needed to

ensure survivability.

The remainder of the chapter is structured as follows. Section 3.2 presents a deeper description of

the survivability problem of service function chains. Section 3.3 provides a general overview of

the proposed survivability management framework. Section 3.4 introduces the traffic prediction

model. Section 3.5 provides the mathematical description of the problem. We then present the

details of the proposed heuristic solutions in Section 3.6. Section 3.7 presents the experimental

58

setup and results. Finally, Section 3.8 concludes the paper and provides some avenues for future

work.

3.2 Problem Description

A service function chain is a collection of chained virtual network functions that should process

incoming traffic from and to a preset source and destination, respectively Mijumbi et al. (2015).

A VNF could be any network function, and hence, we could have different types of VNFs

including a Firewall, a load balancer, an IDS and a NAT. Usually, a VNF is implemented

in software that could be run on a Virtual Machine (VM) or a container hosted in a standard or

dedicated server. The VNFs belonging to the same chain are linked together by logical/virtual

links with enough bandwidth. To deploy SFCs, service providers use an SFC provisioning

schemes that embed the SFCs into the physical infrastructure, that is to allocate the resources

needed to run and deploy the VMs running the VNFs and allocate paths to map the virtual links

connecting the VNFs ISG (2014); Zhani & ElBakoury (2020).

In contrast, service chain 2 is made up of two VNFs of type 1 and type 2 that are embedded in

physical nodes 4 and 6, respectively, and it has incoming traffic from physical node 3 towards

physical node 8. The last service chain is service chain 3, which is made up of two VNFs of

type 1 and type 3 embedded in physical nodes 14 and 15, and which receives incoming traffic

from physical node 13 towards physical node 10.

Once SFCs have been embedded into the physical infrastructure, the network operator face

the challenge of ensuring that they are survivable to potential failures that could be multiple

and could occur simultaneously. In other words, SFCs must be able to survive unexpected

network failures. However, failures are common with physical nodes, and a single or multiple

node failure could bring down a large number of VNFs, resulting in the loss of several service

chains Zhani & Boutaba (2015).

In this chapter, we propose a solution allowing to have enough backups for each type of VNF to

handle the traffic before the failure occurs. We therefore propose to provision backups based on

59

the demand (incoming packet rate) to provision shared backups to ensure the survivability of all

SFCs affected by potential single or multiple node failures.

To do so, for a VNF of type 𝑘 , a backup VNF of the same type should be provisioned as

the backup must contain the exact same software stack as the primary one. Furthermore, the

provisioned backups of VNFs type 𝑘 should have enough processing capacity to handle all the

traffic processed by all primary VNFs of that type.

• Provisioning shared backups: Figure 3.1 depicts three service function chains, SFC1, SFC2

and SFC3, that were mapped into the physical infrastructure (colored in blue). The figure shows

how VNFs of each chain are embedded from the chain’s source to destination. For instance,

service chain SFC1 is made out from two VNFs, the first one of type 1 whereas the second of

type 2, that are embedded in physical nodes 1 and 12, respectively. The chain carries inbound

traffic originating from the source, physical node 2, towards the destination, physical node 9.

Figure 3.1 also shows provisioned shared backups could be located. For instance, physical

node 5 hosts a VNF type 1 backup that is shared between the VNF type 1 of chain SFC1 and

that of SFC2. If physical node 1 fails, VNF1 of chain SFC1 goes down, the backup VNF1 in

node 5 takes over and replaces the failing function. Similarly, if physical node 4 fails, the same

shared backup could take over VNF1 of SFC2. If both VNFs of the two chains fail at the same

time, it is possible for the backup VNF type 1 placed in node 5 to take over the two failures

if it has enough resources to handle the demand received by the two VNFs. In the figure also,

physical node 7 hosts a VNF type 2 backup that is shared between VNF types 2 of chains 1 and

2. In physical node 12 fails, VNF2 of chain SFC1 goes down, the backup VNF2 housed in node

7 takes over and replaces the failing function. If physical node 6 fails, the same shared backup

could take over VNF2 of SFC2. It is obvious to see that the three service chains depicted in the

figure are survivable to simultaneous node failures if enough backup VNFs are provisioned to

handle the demand.

Additionally, to make sure that Backup VNFs are ready to take over the service in the case of

failure, they should be updated regularly with the last state of the primary VNFs Alomari, Zhani,

60

Aloqaily & Bouachir (2020); Boutaba et al. (2014). Figure 3.1 shows the state synchronization

between each primary and backup VNFs (see green dashed arrows). As an illustration, the

backup VNF1 housed in physical node 5 has the states of the primary VNF1 hosted in physical

nodes 1, 4, and 14. When a failure occurs, the backup will utilise the most recent state of the

failed function. A different level of state synchronization can be used. For example, at the

virtual machine level performing the function Boutaba et al. (2014) or by employing customized

synchronization scripts based on the type of network function Gray et al. (2017).

Figure 3.1 Deployment of service function chains and shared

backups

In order to guarantee effective state synchronization, the delay between a VNF and its backup

should not go over a specific threshold that should be defined based on the nature of the VNF

and its requirements Alomari et al. (2020). Furthermore, state synchronization is costly as it

consumes bandwidth in the path separating the primary and the backup VNFs Alomari et al.

(2020), Moufakir, Zhani, Gherbi, Aloqaily & Ghrada (2022). In our work, we try to minimizing

such synchronization costs by minimizing the number of hops between each VNF and its backup

and by taking into consideration the monetary costs of using bandwidth of each link.

• Adjusting shared backups: as traffic demand within service function chains could fluctuate

over time Aben (2014), Sandvine (2015), the number of shared backups could be adjusted

accordingly. Assuming that traffic increases in chain 1 or 2 and the backup VNF type 1 hosted

61

in node 5 is not able to handle the new demand in case of failure, we must increase the number

of shared backups. For instance, Figure 3.2 shows how a second backup VNF type 1 has been

provisioned in physical node 5 in order to be able to handle the total amount of traffic destined

to the three VNFs type 1 belonging to three chains. If the demand decreases over time, we can

go back to the first configuration (i.e., Figure 3.1) to reduce backups costs.

Figure 3.2 Adjusting shared backup

This adjustment process over time of the number of backups and their locations incurs management

costs for the instantiation, migration and the deletion of the VNF backups. These costs have to

be taken into account and minimized.

This chapter focuses on how to find the minimal number of shared VNF backups estimated

based on the demand of the provisioned SFCs and how to determine their optimal placement

in the infrastructure in a way that minimizes operating costs (i.e., running, management, and

synchronization costs).

3.3 Survivability Management Framework

This part introduces a management framework with a survivability module. The framework is

shown in Figure 3.3 and consists of the following modules:

62

Figure 3.3 Survivability Management Framework.

• Demand analysis and prediction module: This module is in charge of keeping track of the

packet arrival rate (demand) of each SFC in order to analyze the inbound and outbound traffic

rates fluctuations for each VNF in the SFC. This module is also in charge of predicting future

traffic rate of each SFC.

• Backup provisioning manager module: This module is in charge of determining the bare

minimum number of shared backups required to cope with the predicted traffic rate in order to

guarantee the survival of the embedded service chains, and determining their locations. This

module also creates backup instances, shared backups, adjusts their number and placement, and

creates the synchronization links needed to keep them up-to-date.

63

• Rerouting module: This module is responsible for redirecting the traffic intended to the

failing VNFs towards the backup VNFs in the event of a failure.

• Monitoring module: This module is responsible for continuously monitoring the physical

nodes and links of the infrastructure and giving real-time information about the state of the

resources to other modules. When a failure is discovered, the monitoring module alerts the

survivability module, and the latter responds by reducing the fault and maintaining service

continuity.

• Service chain provisioning module: This module is in charge of allocating resources to

service function chains and creating the virtual machines or containers required to run network

functions. It also uses the SDN controller to provision the required bandwidth and to program

the appropriate forwarding rules into the switches in order to direct traffic across the VNFs

of each service function chain. The design of this module should be noted as being outside

the purview of this work. Numerous studies have been conducted to design and develop such

module, and any of the existing solutions may be used Luizelli et al. (2015), Herrera & Botero

(2016), Racheg et al. (2017).

In this work, we focus on the design and implementation of the demand analysis and prediction

module and the backup provisioning manager module. We therefore present first the used

prediction model followed by the formulation of the backup provisioning problem and then lay

out proposed heuristic solutions to handle the problem.

3.4 Traffic Prediction

As previously stated, the demand analysis and prediction module is in charge of monitoring the

arrival of demands as well as their traffic rate. Additionally, it is responsible for predicting the

demand (traffic rates) in the next time slots. Currently, we have used the well-known ARIMA

model to develop a time series-based predictor Box, Jenkins, Reinsel & Ljung (2015) Zhani

et al. (2009).

64

Once the predictions are determined, the next step is to determine the number of shared backups

of each type of VNF required in the next time interval. To solve this issue, we determine how

many shared backups are necessary to support the traffic rate for each demand. In Survivability

Management Framework, this is performed by the backup provisioning manager module. The

backup provisioning manager module determines the minimum number of shared backups

per demand such that these backup instances are sufficient to meet the traffic demands. In

other words, based on the traffic rate prediction of the ARIMA model, the backup provisioning

manager module adjust the number of shared backups to minimize the overall cost and to make

sure that there is enough backup instances before the failure happens.

3.5 Problem Formulation

In this section, we formulate the backup provisioning problem as an Integer Linear Program

(ILP) with the goal of minimizing the number of shared backups and placing them in the physical

infrastructure in order to ensure minimal backup operational costs (running, management, and

synchronization costs). All symbols used in the formulation are summarized in Table 3.1.

The physical infrastructure is represented as a graph defined by 𝐺 = (𝑁, 𝐿), where 𝑁 is the

collection of physical nodes connected by a set of physical links 𝐿. The computing capacity of

each physical node 𝑛 ∈ 𝑁 in the network is 𝑐𝑛. The computing capacity 𝑐𝑛 is the maximum

capacity that the physical node 𝑛 ∈ 𝑁 can supply for VNF instances. To make things simple, we

assume that each VNF instance runs on a single standard-sized virtual machine (i.e., all virtual

machines are assumed to have the same resource capacity). We can therefore define 𝑐𝑛 as the

maximum number of virtual machines that can be deployed in physical node 𝑛. The minimum

number of hops between physical nodes 𝑖 and 𝑛 is denoted by 𝑑𝑖𝑛.

We define 𝐾 = {1, ..., |𝐾 |} as the set of different types of VNFs that could be deployed. The

number of VNF instances of type 𝑘 ∈ 𝐾 embedded in physical node 𝑖 is denoted by 𝑞𝑘𝑖 . We

denote by 𝛼𝑘
𝑖 the rate of the traffic received by all VNFs type 𝑘 hosted in physical node 𝑖 (i.e., 𝑞𝑘𝑖).

65

We also denote by 𝑃𝑘 the processing capacity of the considered standard virtual machine instance

when it is running VNF type 𝑘 . It is expressed in terms of number of packets per second.

In addition, we assume that each SFC 𝐼 can be described by the triplet {𝑜𝐼 , 𝑡𝐼 , 𝛾𝐼}, where 𝑜𝐼 ∈ 𝑁

is the source node of the chain, 𝑡𝐼 ∈ 𝑁 is the destination node of the chain, and 𝛾𝐼 represents the

traffic demand that needs to go through the VNF instances of the chain in the right order.

Furthermore, we define only one decision variable denoted by 𝑦𝑘𝑖𝑛 ∈ {0, 1}, which indicates

whether the physical node 𝑛 is hosting the backup instance allocated for the VNF of type 𝑘

embedded in the physical node 𝑖.

In the following, we go over the various costs involved when provisioning backup instances as

well as the objective function and the set of constraints that must be met.

• Running costs: The cost of running a single backup instance of type 𝑘 in physical node 𝑛 is

denoted as 𝜙𝑘
𝑛 and expressed in $ per hour. As a result, the total running costs of all backup

instances can be expressed as the follows:

R =
∑
𝑖,𝑛∈𝑁

∑
𝑘∈𝐾

𝜙𝑘
𝑛 𝑦𝑘𝑖𝑛 (3.1)

• Management costs: Management costs are costs incurred when instantiating new backups.

These include the costs of uploading/migrating an image of a virtual machine, and accommodating

it in the new physical host.

Let 𝜂𝑘𝑛 be the number of new backup instances of type 𝑘 deployed on the physical node 𝑛 at the

current timeslot. It can be computed as follows:

𝜂𝑘𝑛 = 𝑚𝑎𝑥{0,
∑
𝑛∈𝑁

𝑦𝑘𝑖𝑛 −
∑
𝑛∈𝑁

𝑦𝑘𝑖𝑛} ∀𝑖 ∈ 𝑁 ∀𝑘 ∈ 𝐾 (3.2)

66

Table 3.1 Symbols and their definitions

Symbol Definition
𝑁 Set of physical nodes in the physical infrastructure

𝐿 Set of physical links in the physical infrastructure

𝑐𝑛 Computing capacity of physical node 𝑛

𝑑𝑖𝑛 Minimum number of hops between physical nodes 𝑖 and 𝑛

𝐾 Set of different types of VNFs

𝑞𝑘𝑖 Number of VNF instances of type 𝑘 embedded in physical node 𝑖

𝑃𝑘 Processing capacity of the instance (in packets per second)

𝑜𝐼 Source node of SFC 𝐼
𝑡𝐼 Destination node of SFC 𝐼

𝛾𝐼 Traffic demand for SFC 𝐼

𝛼𝑘
𝑖 Traffic rate destined to all VNFs type 𝑘 hosted in physical node 𝑖

𝑦𝑘𝑖𝑛

Decision variable to indicate whether the physical node 𝑛
is hosting the backup instance allocated for the VNF of type 𝑘
embedded in the physical node 𝑖

𝑦𝑘𝑖𝑛

The number of backup instances of type 𝑘 hosted in physical

node 𝑛 to backup all or some primary VNFs placed in node 𝑖
but at the former timeslot

R Total running costs

M Total management costs

S Total synchronization costs

O Total operational costs

𝜙𝑘
𝑛

Cost of running a single backup instance of type 𝑘 in physical

node 𝑛

𝜂𝑘𝑛
Number of new backup instances of type 𝑘 deployed in the

physical node 𝑛 at a point of time interval

𝜑𝑘
𝑛

Cost of managing one backup instance of one VNF type 𝑘
deployed in physical node 𝑛

𝑏𝑘𝑖𝑛

Bandwidth required to perform the synchronization between

the primary VNF of type 𝑘 hosted in physical node 𝑖
and its backup in a physical node 𝑛

𝛿𝑖𝑛
Bandwidth unit cost in a physical link (𝑖, 𝑛) expressed in dollars

per Mbps

where 𝑦𝑘𝑖𝑛 is a decision variable that represents the number of backup instances of type 𝑘 that

should be provisioned in the current timeslot hosted in physical node 𝑛 to backup all or some

primary VNFs hosted in physical node 𝑖. The variable 𝑦𝑘𝑖𝑛 is an input to the ILP and it represents

67

the number of backup instances of type 𝑘 hosted in physical node 𝑛 to backup all or some

primary VNFs placed in node 𝑖 but at the former timeslot.

The cost of creating/migrating one backup instance for VNF type 𝑘 is denoted by 𝜑𝑘
𝑛 and

expressed in $ per hour. Therefore, total costs of management and creation of all backup

instances in the network at the current timeslot can be expressed as follows:

M =
∑
𝑖,𝑛∈𝑁

∑
𝑘∈𝐾

𝜑𝑘
𝑛 𝜂

𝑘
𝑛 (3.3)

• Synchronization costs: It is expressed by the rate at which data is exchanged between the

primary VNF instance in physical node 𝑖 and its backup in physical node 𝑛. This cost is stated

as follows:

S =
∑
𝑖,𝑛∈𝑁

∑
𝑘∈𝐾

𝑦𝑘𝑖𝑛 𝑏
𝑘
𝑖𝑛 𝛿𝑖𝑛 𝑑𝑖𝑛 (3.4)

where 𝑦𝑘𝑖𝑛 indicates whether or not the primary VNF of type 𝑘 embedded in a physical node 𝑖

has backup in a physical node 𝑛. The input 𝑏𝑘𝑖𝑛 represents the bandwidth required to perform the

synchronization between the primary VNF of type 𝑘 hosted in physical node 𝑖 and its backup

in a physical node 𝑛. Furthermore, 𝛿𝑖𝑛 represents the bandwidth unit cost in a physical link

(𝑖, 𝑛) expressed in dollars per Mbps. The value 𝑑𝑖𝑛 represents the number of hops between the

primary VNF hosted in physical node 𝑖 and its backup in physical node 𝑛.

• Objective Function: Our primary goal is to minimize the operational costs incurred by backup

instances while meeting all of the constraints listed below. This is accomplished by reducing

the overall number of shared backups in the physical infrastructure. The objective function can

hence be written as follows:

68

O = 𝑚𝑖𝑛
(𝑦𝑘𝑖𝑛)𝑘∈𝐾,𝑖∈𝑁,𝑛∈𝑁

(R +M + S) (3.5)

• Constraints: A variety of constraints must be considered in order to find feasible solutions.

For instance, we must make sure that the primary VNF and its backup instance are not located

on the same physical node 𝑖. This can be stated in the following way:

𝑦𝑘𝑖𝑖 = 0 ∀𝑖 ∈ 𝑁 ∀𝑘 ∈ 𝐾 (3.6)

We must also ensure that any VNF of type 𝑘 embedded in physical node 𝑖 have its backup

instance in a different physical node. It can be stated as follows:

∑
𝑛∈𝑁

𝑦𝑘𝑖𝑛 ≥ 1 ∀𝑖 ∈ 𝑁 ∀𝑘 ∈ 𝐾 (3.7)

Furthermore, to provision backup instances to process the traffic 𝛼𝑘
𝑖 destined to VNFs type 𝑘

placed in physical node 𝑖 (regardless of the number of VNFs type 𝑘 in node 𝑖 and to which SFC

they belong to), we must provision backup instances that have processing capacity higher than

or equal to 𝛼𝑘
𝑖 . The following equation captures this constraint:

𝛼𝑘
𝑖 ≤ 𝑃𝑘

∑
𝑛∈𝑁

𝑦𝑘𝑖𝑛 ∀𝑖 ∈ 𝑁 ∀𝑘 ∈ 𝐾 (3.8)

Finally, to ensure that each physical node has enough resources to host the backup instances,

each physical node 𝑛 must meet the following capacity constraint:

∑
𝑘∈𝐾

𝑞𝑘𝑛 +
∑
𝑘∈𝐾

𝑦𝑘𝑖𝑛 ≤ 𝑐𝑛 ∀𝑖, 𝑛 ∈ 𝑁 (3.9)

69

The first term denotes the number of VNFs housed in physical node 𝑛, the second term is the

number of backup instances hosted in the same physical node 𝑛, and the third term represents

the amount of capacity that is currently available at physical node 𝑛.

This ILP should be solved as each time slot to regularly update and adjust the number and

location of the backups. Except the variable 𝑦𝑘𝑖𝑛, which is a decision variable, all the others are

input to the ILP.

This problem is formally known as the Virtual Network Embedding problem (VNE), and it has

been demonstrated to be 𝑁𝑃-hard Andersen (2002). As a result, several efforts have been made

to find effective heuristics for solving it Zhani, Zhang, Simona & Boutaba (2013) Chowdhury,

Rahman & Boutaba (2011). Because the Survivable Virtual Network Embedding (SVNE)

problem is a variant of the VNE problem, it is also 𝑁𝑃-hard. To put it another way, SVNE

problem generalizes a minimum knapsack problem Zhani et al. (2013). Thus, we adopt greedy

algorithms to solve it in next Section.

3.6 Proposed Heuristic

In this section, we outline two heuristic algorithms to solve the survivability problem of service

function chains. We refer to the first algorithm as One-to-One Backup (1-1B) as it provision

backups by considering the number of VNF instances (rather than the demand). In other words,

we provision as many backup instances as primary ones to handle all failures (single or multiple

node failure). The second algorithm is called Adjusting & Sharing Backups Algorithm (ASB)

as we are looking into the demand to provision less backups that are shared but have enough

resources to handle all potential failures (single or multiple node failures). In other words, we

use the prediction of the demand to estimate the number of backups and thereby the number of

backups is reduced compared to 1-1B. Furthermore, the ASB Algorithm adjusts dynamically

the number of shared backups for each type of VNF and their placement based on the predicted

demand and takes into account backup management costs (e.g., instantiation, migration). The

details of the two proposed algorithms are provided below.

70

3.6.1 Solution 1: Algorithm 1-1B

The 1-1B algorithm is provided in Algorithm 1. It allocates a backup instance for each VNF

instance. This means that 1-1B provisions as many backups as the number of original VNFs

for each type of VNF. All nodes in the physical infrastructure are assumed to be capable of

hosting backups any type of VNF. The main challenge that remains is to identify the location

of these backups such that the operational costs.

To do so, the Algorithm considers VNFs types one by one. For each of them, it calls the function

𝑀𝑖𝑛𝑂𝑝𝐶𝑜𝑠𝑡 (Function 𝑀𝑖𝑛𝑂𝑝𝐶𝑜𝑠𝑡 in Line 3) that returns physical nodes 𝑛𝑚𝑖𝑛 and 𝑚𝑚𝑖𝑛 such

that the backup instantiation of backups for VNFs type 𝑘 hosted in 𝑚𝑚𝑖𝑛 in physical node 𝑛𝑚𝑖𝑛

would generate the lowest operational costs among. In other words, no lower operational costs

could be incurred from any backup instantiation in any node 𝑛 ∈ 𝑁 to backup VNFs hosted in

any node 𝑚 ∈ 𝑁 .

The Function 𝑀𝑖𝑛𝑂𝑝𝐶𝑜𝑠𝑡 is called until all VNFs type 𝑘 are provisioned (i.e., 𝐿𝑖𝑠𝑡𝐵𝑎𝑐𝑘𝑒𝑑𝑈𝑝𝑉𝑁𝐹 (𝑘),
the set of VNFs that have already backups provisioned, becomes equal to 𝐿𝑖𝑠𝑡𝑉𝑁𝐹 (𝑘), the set

of all VNFs type 𝑘 hosted in the infrastructure), or there is no enough resources to provision

backups (i.e., 𝑎𝑛, the amount of available resources in physical node 𝑛, is equal to zero for all

physical nodes) (Line 2).

Algorithm 3.1 Algorithm 1-1B

Input: 𝑁: set of physical nodes

𝐾: set of VNF Types

𝑎𝑛: available resources in physical node 𝑛

Output: Provisioning backups

1 for each VNF type 𝑘 ∈ {1, 2, 3, ...𝐾} do
2 while (𝐿𝑖𝑠𝑡𝐵𝑎𝑐𝑘𝑒𝑑𝑈𝑝𝑉𝑁𝐹 (𝑘)! = 𝐿𝑖𝑠𝑡𝑉𝑁𝐹 (𝑘)) or (𝑎𝑛 = 0) do
3 𝑛𝑚𝑖𝑛, 𝑚𝑚𝑖𝑛, 𝐿𝑖𝑠𝑡𝑉𝑁𝐹 [𝑚𝑚𝑖𝑛, 𝑛𝑚𝑖𝑛, 𝑘] ← 𝑀𝑖𝑛𝑂𝑝𝐶𝑜𝑠𝑡 (𝑘, 𝑑𝑚𝑎𝑥)
4 AllocateBackups(ListVNF[𝑚𝑚𝑖𝑛,𝑛𝑚𝑖𝑛,𝑘])

5 end while
6 end for

71

Specifically, the function 𝑀𝑖𝑛𝑂𝑝𝐶𝑜𝑠𝑡 operates as follows (Algorithm 3.2). We identify first

the set of neighbors of physical node 𝑛 (i.e., 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑛, 𝑘, 𝑑𝑚𝑎𝑥)) as the collection of

physical nodes that can be accessed from 𝑛 within 𝑑𝑚𝑎𝑥 hops and hosts at least one VNF type 𝑘 .

We then compute the operational cost for the list of VNFs type 𝑘 hosted in 𝑚 than can be backed

up in 𝑛 (if 𝑛 has enough resources) (Line 4). Next, we select the node 𝑛𝑚𝑖𝑛 and 𝑚𝑚𝑖𝑛 such that the

operational costs of backups instantiated in 𝑛 for primary VNFs type 𝑘 hosted in 𝑚 is the lowest

(Line 7). The backup for VNFs type 𝑘 contained in the list of VNFs (i.e., 𝐿𝑖𝑠𝑡𝑉𝑁𝐹 [𝑚, 𝑛, 𝑘]) is

then allocated and update all variables (e.g.,𝑎𝑛, 𝐿𝑖𝑠𝑡𝐵𝑎𝑐𝑘𝑒𝑑𝑈𝑝𝑉𝑁𝐹 (𝑘)) (Line 4).

Having no neighbors for all physical nodes indicates that there are either insufficient resources

to host backup VNFs or that there are no VNFs of type 𝑘 that are left without backups.

Finally, the same procedure is performed for each VNF type (Line 1).

Algorithm 3.2 Function 𝑀𝑖𝑛𝑂𝑝𝐶𝑜𝑠𝑡 (𝑘, 𝑑𝑚𝑎𝑥)

1 function 𝑀𝑖𝑛𝑂𝑝𝐶𝑜𝑠𝑡 (𝑘, 𝑑𝑚𝑎𝑥)
2 for 𝑛 ∈ 𝑁 do
3 for 𝑚 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑛, 𝑘, 𝑑𝑚𝑎𝑥) do
4 𝐶𝑜𝑠𝑡 [𝑚, 𝑛, 𝑘], 𝐿𝑖𝑠𝑡𝑉𝑁𝐹 [𝑚, 𝑛, 𝑘] = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑝𝐶𝑜𝑠𝑡 (𝑚, 𝑛, 𝑘)
5 end for
6 end for
7 𝑛𝑚𝑖𝑛, 𝑚𝑚𝑖𝑛 = min𝑛∈𝑁,𝑚∈𝑁 (𝐶𝑜𝑠𝑡 [𝑚, 𝑛, 𝑘])
8 Return 𝑛𝑚𝑖𝑛, 𝑚𝑚𝑖𝑛, 𝐿𝑖𝑠𝑡𝑉𝑁𝐹 [𝑚𝑚𝑖𝑛, 𝑛𝑚𝑖𝑛, 𝑘]
9 end function

3.6.2 Solution 2: Algorithm ASB

Unlike the 1-1B Algorithm where the number of backups is equal to the number of primary

VNFs, this algorithm, called the Adjusting & Sharing Backups Algorithm (ASB), finds the

optimal number of backups based on the current chain demand, determines their locations and

takes also into account the costs of migrating VNF Backups.

72

Algorithm 3.3 describes a high level description of the ASB Algorithm that encompasses

two phases. The first phase of the Algorithm aims at provisioning, with minimal operational

costs, VNF backups for the new additional demand that has been added at time 𝑡 to the

demand of the service chains at time (𝑡 − 1) (Line 1-14). It starts by considering the VNF

types one by one (Line 2) and then for each physical node (Line 3), it checks whether

the demand 𝛼𝑘
𝑛 (packets per second) of the VNFs type 𝑘 has changed. If the demand has not

changed, no new backups should be provisioned (Line 4). If the demand has decreased, the VNF

backups serving the decreased demand is freed (Line 7). Finally, if the demand has increased,

new backups should be provisioned for the additional backup (Line 10). The second phase of the

algorithm (Line 15-20) aims at further optimizing the location of the VNF backups by leveraging

VNF migration. In the following, we present the main functions that are used in this Algorithm:

• Function 𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝐵𝑎𝑐𝑘𝑢𝑝𝑠(𝑘, 𝑛, 𝑑𝑚𝑎𝑥, 𝛽) (Algorithm 3.4): this function provisions enough

backups for VNF type 𝑘 hosted in 𝑛 to handle 𝛽 packets per second. The locations considered to

host these backups are within a distance of 𝑑𝑚𝑎𝑥 hops to node 𝑛. This distance limitation is used

to limit the search space and running time; however, it could impact the solution quality. Hence,

a trade-off should be realized and the value of 𝑑𝑚𝑎𝑥 could be determined by the network operator.

• Function 𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝐵𝑎𝑐𝑘𝑢𝑝𝑠𝐼𝑛𝑁𝑜𝑑𝑒(𝑚, 𝑛, 𝛽𝑘𝑛): this function provisions backups in physical

node 𝑚 to handle 𝛽𝑘𝑛 packets per second required by VNFs type 𝑘 hosted in 𝑛. If the capacity of

node 𝑚 is not sufficient, backup instances are provisioned using all the remaining capacity and

𝛽𝑘𝑛 is updated to the amount of processing left without backups.

• Function 𝑂𝑝𝐶𝑜𝑠𝑡𝑠(𝑚, 𝑛, 𝛽𝑘𝑛): this function provides the operational costs (including running,

management and synchronization costs) of backups type 𝑘 that should be provisioned in node 𝑚

to back up VNFs type 𝑘 hosted in 𝑛 in order to handle processing of 𝛽𝑘𝑛 packets per second.

• Function 𝐹𝑟𝑒𝑒𝐵𝑎𝑐𝑘𝑢𝑝𝑠(𝑘, 𝑛, 𝛼𝑘
𝑛): this function tears down VNF backups type 𝑘 that are (i)

provisioned for primary VNFs type 𝑘 hosted in node 𝑛, (ii) having a processing capacity of

𝛼𝑘
𝑛 packets per second, (iii) having the highest operational costs among backup VNFs type 𝑘

provisioned to back up VNFs type 𝑘 hosted in 𝑛.

73

Algorithm 3.3 Adjusting & Sharing Backups Algorithm - ASB

Input: 𝑁: set of physical nodes

𝛼𝑘
𝑛, 𝛼

𝑘
𝑛 : demand (packets per second) of VNFs type 𝑘 hosted in physical node 𝑛

at time (𝑡 − 1) and 𝑡, respectively

Output: Provisioning minimum number of backups

1 Provisioning Phase:
2 for each VNF type 𝑘 = {1, 2, 3, ...𝐾} do
3 for 𝑛 ∈ 𝑁 do
4 if 𝛼𝑘

𝑛 = 𝛼𝑘
𝑛 then

5 𝐵𝑎𝑐𝑘𝑢𝑝 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑛𝑜𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
6 end if
7 else if 𝛼𝑘

𝑛 < 𝛼𝑘
𝑛 then

8 𝐹𝑟𝑒𝑒𝐵𝑎𝑐𝑘𝑢𝑝𝑠(𝑘, 𝑛, 𝛼𝑘
𝑛)

9 end if
10 else if 𝛼𝑘

𝑛 > 𝛼𝑘
𝑛 then

11 𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝐵𝑎𝑐𝑘𝑢𝑝𝑠(𝑘, 𝑛, 𝑑𝑚𝑎𝑥, 𝛼
𝑘
𝑛 − 𝛼𝑘

𝑛)
12 end if
13 end for
14 end for
15 Optimization Phase:
16 for each VNF type 𝑘 = {1, 2, 3, ...𝐾} do
17 for 𝑚 ∈ 𝑁 do
18 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑘, 𝑚, 𝑑𝑚𝑎𝑥)
19 end for
20 end for

• 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑘, 𝑚, 𝑑𝑚𝑎𝑥) (Algorithm 3.5): this function optimizes the placement of VNF

backups type 𝑘 hosted in physical node 𝑚. Indeed, for each VNF backup type 𝑘 hosted in 𝑚 (Line

5), it carefully explores free resources available at the distance of 𝑑𝑚𝑎𝑥 hops from its associated

primary VNFs (Line 6) and then migrates the considered VNF backup if operational costs are less

and minimized in the new location (migration costs are considered within these costs) (Line 6-13).

74

Algorithm 3.4 Function Provision Backups

1 function 𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝐵𝑎𝑐𝑘𝑢𝑝𝑠(𝑘, 𝑛, 𝑑𝑚𝑎𝑥, 𝛽
𝑘
𝑛)

2 𝑎𝑚: 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑖𝑛 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑛𝑜𝑑𝑒 𝑚
3 Repeat
4 𝐹𝑖𝑛𝑑 𝑛𝑜𝑑𝑒 𝑚 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑛, 𝑑𝑚𝑎𝑥)
5 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎𝑚 ≠ 0 𝑎𝑛𝑑 𝑂𝑝𝐶𝑜𝑠𝑡𝑠(𝑚, 𝑛, 𝛽𝑘𝑛) 𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑎𝑙

6 𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝐵𝑎𝑐𝑘𝑢𝑝𝑠𝐼𝑛𝑁𝑜𝑑𝑒(𝑚, 𝑛, 𝛽𝑘𝑛)

7 Until 𝑏𝑎𝑐𝑘𝑢𝑝𝑠 𝑡𝑜 ℎ𝑎𝑛𝑑𝑙𝑒 𝛽𝑘𝑛 𝑎𝑟𝑒 𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑 𝑜𝑟 𝑛𝑜 𝑓 𝑟𝑒𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑟𝑒 𝑙𝑒 𝑓 𝑡
8 end function

Algorithm 3.5 Function Optimization through VNF migration

1 function 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑘, 𝑚, 𝑑𝑚𝑎𝑥)
2 𝐵𝑎𝑐𝑘𝑢𝑝𝑠(𝑘, 𝑚, 𝑛): set of VNF backups type 𝑘 hosted in 𝑚
3 𝑎𝑛𝑑 𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑉𝑁𝐹𝑠 𝑡𝑦𝑝𝑒 𝑘 𝑖𝑛 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑛𝑜𝑑𝑒 𝑛
4 for 𝑛 ∈ 𝑁 do
5 for each VNF backup 𝑣 ∈ 𝐵𝑎𝑐𝑘𝑢𝑝𝑠(𝑘, 𝑚, 𝑛) do
6 𝐹𝑖𝑛𝑑 𝑜 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑛, 𝑑𝑚𝑎𝑥)
7 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛 𝑜 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑖𝑛 𝑚
8 if 𝑜 exists then
9 𝑀𝑖𝑔𝑟𝑎𝑡𝑒 𝑉𝑁𝐹 𝑣 𝑓 𝑟𝑜𝑚 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑛𝑜𝑑𝑒 𝑚 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑜

10 end if
11 else
12 𝑁𝑜 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑
13 end if
14 end for
15 end for
16 end function

3.7 Simulation and Results

In this section, we report the results obtained through extensive simulations performed to

assess the performance of the proposed algorithms (1-1B and ASB). We mainly evaluate

their performance and compare it to the optimal one supplied by the ILP (implemented

using CPLEX). We considered several metrics including backup running costs, management

costs, synchronization costs, operational costs, the total number of backups, and the backup

75

ratio (defined as the number of backup instances divided by the total number of instances).

Furthermore, we predict the future data rate of all the SFC demands by using the ARIMA model

and the obtained prediction are used as inputs to the proposed backup provisioning solutions

(ILP, 1-1B and ASB).

3.7.1 Simulation Setup

In order to assess the proposed solutions, we have implemented a C/C++ simulator that mimics

the whole environment, including the physical infrastructure, embedded service chains, and the

two proposed algorithms. In the following, we provide more details about the simulated physical

infrastructure, the different costs, and the considered configuration scenarios.

• Physical infrastructure and service function chains: we randomly generated a physical

infrastructure made out from 24 physical nodes with 52 physically links connecting and ensure

the connectivity (not through different multi-hop paths) among any pair of nodes. Computing

capacities of physical nodes were generated randomly between 40 and 120 virtual machines. All

virtual machines assumed to host the VNFs are assumed to have the same resource capacity

(t2.micro instance Ghrada et al. (2018)). A single virtual machine could host only one VNF.

The generated links have distinct bandwidth capacities that were randomly generated between

50MB and 1000MB and have propagation delays generated between 10ms and 20ms.

We assume that embedding of service chains has been already performed using an existing an

SFC placement and chaining algorithm. In particular, we used the SFC provisioning scheme

proposed by Racheg et al. (2017) to allocate resources for the service chains while satisfying

their resource and end-to-end delay requirements.

• Operational costs: as electricity prices vary from a region to another Jiang (2011), the

running and management costs for each backup instance were randomly varied, ranging from

$0.0116 per hour to $0.0186 per hour. Similarly, running costs of a backup instance range from

$0.0577 per hour to $0.4687 per hour as suggested by the VM pricing of Amazon EC2 AWS

76

(2022). The cost of synchronizing bandwidth between the primary VNF and its backup instance

is set to $0.01 per GB per hour.

• Configuration scenarios: in order to evaluate the proposed algorithms, we considered six

different scenarios (S0–S5), where, in each, the number of SFCs as well as their mapping

configuration are different from the others.

Table 3.2 summarizes the configuration of each of the considered scenarios. For instance, for

Scenario S0, there are 4 SFCs. The number of VNFs per SFC is 3. We consider that there

are three different VNF types. The packet processing capacity of the standard virtual machine

considered to host the VNFs varies depending on the type of the instance Ghrada et al. (2018).

Hence, the processing capacity used in scenario S0 is 11000 pps for Type 1 VNFs, 18000 pps

for Type 2, and 9000 pps for Type 3. The synchronization bandwidth required to perform the

synchronization between each VNF and its backup instance are as following 2MB for Type 1

VNFs, 4MB for Type 2 VNFs, and 6MB for Type 3 VNFs.

Table 3.2 Configurations of the different considered scenarios

Scenarios S0 S1 S2 S3 S4 S5
Number
of SFCs 4 20 40 60 80 100

Number of
VNFs per SFC 3

Random number

between 1 and 6

Number of
VNF Types 3 6

Processing
Capacity

Type 1: 11000pps

Type 2: 18000pps

Type 3: 9000pps

Type 1: 5000pps

Type 2: 7000pps

Type 3: 9000pps

Type 4: 11000pps

Type 5: 13000pps

Type 6 18000pps

Synchronization
Bandwidth

Type 1: 2Mbps

Type 2: 4Mbps

Type 3: 6Mbps

Type 1: 3Mbps

Type 2: 5Mbps

Type 3: 2Mbps

Type 4: 6Mbps

Type 5: 7Mbps

Type 6: 8Mbps

77

Regarding the demand of the SFCs, we used packet traffic rates considered and analyzed in

Zhani et al. (2009) (see Figure 3.4). The packet rate is between 10000 and 25000 packets per

second (pps) and is measured each timeslot of 15 𝑚𝑖𝑛𝑢𝑡𝑒𝑠.

We run simulations for each scenario for 24 ℎ𝑜𝑢𝑟𝑠. As it can be noticed, the Scenario S0 is

a small-scale deployment with a small number of SFC (and hence VNFs). As a result, it is

possible to obtain the optimal solution using CPLEX and compare it to the ones obtained 1-1B

and ASB. However, Scenarios S1 to S5 are large-scale deployments, and, thus, the CPLEX

Solver is unable to determine the optimal solution because of the high number of SFCs and

VNFs that are embedded into the infrastructure. For these scenarios, we only report the results

comparing the performance of ASB Algorithm compared to that of the 1-1B Algorithm.

3.7.2 Simulation Results

To further assess how well the two proposed algorithms perform in the various considered

scenarios, we computed the following metrics:

− Running costs: they correspond to the costs of running the backup instances in physical nodes.

As backups are spread over different locations, their running cost is different as it depends on its

location.

− Management costs: these are the costs incurred by deployment and migration of a virtual

machine image from one location inside the infrastructure to another.

− Synchronization costs: these are the costs of data exchange between primary VNFs and their

associated backup instances. The synchronization is performed to ensure that backup instances

keep the last state of the VNF instances. These costs depend on the used links to exchange data

as well as the synchronization rate, which depends on the type of the VNF.

− Operational costs: these are the overall costs which are the sum of the running costs,

management costs and synchronization costs.

78

− Number of backups: it corresponds to the total number of backups that have been provisioned

in the infrastructure.

− Backup ratio: it is the ratio of the total number of backup instances to the total number of

VNFs. The lower is this ratio, the better the backup provisioning scheme is. In other words, if

this ratio is low, it indicates that the system is using a number of backup VNFs that is much

lower than the primary VNFs.

In the following, we present first aim at comparing the performance of the 1-1B Algorithm

and the ASB Algorithm compared to the ILP. Hence, in the first sets of experiments, we do

not use prediction. We first report simulation results for the small-scale deployment Scenario

(S0) using the ILP, the 1-1B Algorithm and the ASB Algorithm. Afterwards, we report results

for large-scale deployments (Scenario S1 to S5) but only for the 1-1B Algorithm and the ASB

Algorithm. Finally, we show the benefits of demand prediction by conducting several simulations

on the ASB Algorithm but using the predicted demand rather than the current one.

• Small-Scale deployment (Scenario S0) - ILP vs. 1-1B vs. ASB:

We first report the detailed results obtained for Scenario S0 showing all measured metrics for

the three proposed solutions including the ILP (using the CPLEX Solver), the 1-1B Algorithm

and the ASB algorithm. As previously mentioned, this scenario is a small-scale one, and hence,

CPLEX is able to compute the optimal solution.

Figure 3.4 shows the demand over time of each service function chain in scenario S0. As there

are many fluctuations, it is natural that the number of backups needed to handle the demand in

case of failure should be dynamically adjusted over time.

Figure 3.5 shows a comparison between the number of backups over time obtained using the

proposed algorithms and the optimal result produced by CPLEX. We can see that ASB gives a

slightly higher number of backups compared to CPLEX’s optimal solution, indicating that its

solution is not far from optimal. Furthermore, we note that ASB provides much less backups

than 1-1B. Furthermore, Figure 3.6 shows a comparison between the backup ratio obtained

79

using the three solutions. It shows a significant difference between ASB and 1-1B. The backup

ratio for CPLEX is slightly lower than ASB, showing an average ratio of 40% and 60% for both

algorithms, respectively, compared to 100% for the 1-1B Algorithm.

Figure 3.4 Service chain demand over time - Scenario S0.

To explain these results, 1-1B and ASB provide service chain survivability against single or

multiple physical node failures by guaranteeing that enough backups are available before the

failure occurs. However, 1-1B provisions backups based on the number of original VNFs.

Therefore, the cost of management will be high compared to the ASB as the total number of

provisioned backups will be high as shown in Figure 3.5. Unlike 1-1B, ASB looks into the

demand to provision backup instances rather than the original VNFs. Therefore, ASB evaluates

the demand and reduce the number of backups based on the demand (provision less backups).

To do so, ASB adjusts the number of backups as necessary by creating new backups, sharing

existing backups, and migrating existed backups if needed. In this case, the cost of management

will be low compared to the 1-1B as the total number of provisioned backups will be reduce in

the infrastructure as shown in Figure 3.5.

80

Figure 3.5 Number of backups over time - Scenario S0.

Figure 3.6 Backup ratio over time - Scenario S0.

81

Furthermore, Figure 3.7 shows the different types of costs throughout the simulation for scenario

S0. It shows that the ASB Algorithm succeeds to reduce by up to 25% operational costs

compared to 1-1B Algorithms as it provisions much less VNF backups as it can be deduced from

the difference in running costs of the backup instances. It also incurs less backup instantiation

and migration over time as it results in less managements costs. The synchronization costs are

also much lower, demonstrating a better choice of the locations of the VNF backups.

Figure 3.7 Cost breakdown - Scenario S0.

We can also see in the figure that the ASB Algorithm leads to total operational costs that are

closer to the one of the optimal solution supplied by CPLEX. This indicates that the ASB

approach succeeds to parse the solution space and provide a solution close to the optimal.

• Large-Scale deployment (Scenario S0 to S5) - ASB vs. 1-1B:

We now report the results obtained for all scenarios but only for the 1-1B Algorithm and the

ASB algorithm as these scenarios are large-scale involving a large number of SFCs and VNFs,

and hence, it is not possible to compute the optimal solution with the CPLEX Solver.

82

Figure 3.8 compares the average costs (all types of costs) found with the ASB algorithm with

the 1-1B algorithm for each of the six scenarios. We can see that for all scenarios, ASB provides

lower costs compared to 1-1B for all types of costs.

a) Average running costs. b) Average management costs.

c) Average synchronization costs. d) Average operational costs.

Figure 3.8 Average costs per time interval (Scenarios S0 to S5).

Figure 3.8a depicts the average running costs incurred by the two algorithms for all scenarios.

The costs of the ASB algorithm are lower than the costs incurred by 1-1B in all different

scenarios. We can see that the difference in running costs between the two algorithms grows

as the number of SFCs and VNFs expands and can reach up to 50% lower (see scenario S5).

This can be explained by the fact that, when there is a large number of VNFs, there are more

possibilities for many VNFs to share the same backups.

83

a) Average number of backups. b) Average backup ratio.

Figure 3.9 Average number of backups and backup ratio (Scenarios (S0-S5)).

As shown in Figure 3.8b, we can notice that the management costs (instantiation and migration)

with ASB are much lower than those of 1-1B. This means that the number of backup instances

with ASB is less than the one found with 1-1B. We also notice that the costs incurred by ASB

grow much slower than 1-1B. Finally, Figure 3.8c shows that synchronization costs obtained

with ASB is lower than 1-1B as the ASB allows to place VNF backups closer to primary VNFs.

Unlike ASB, 1-1B uses a high number of backup instances and places them far from their

associated primary VNFs. As a result, the incurred operational costs (i.e., the sum of all the

previously mentioned costs) incurred by the ASB Algorithms is up to 40% lower compared to

the 1-1B Algorithm (Figure 3.8d).

Figure 3.9a shows a comparison between the average number of backups obtained when using

ASB and 1-1B. We can see that the number of backups grows as the number of SFCs and VNFs

grows. However, compared to the ASB, 1-1B offers more backups for the small-scale scenario

(S0). For larger-scale scenarios (S1-S5), the ASB Algorithm more than 50% less backups

than the 1-1B Algorithm.

Figure 3.9b shows a comparison between the average backup ratio obtained using ASB and 1-1B.

The Algorithm 1-1B has a backup ratio of 100% as it provision one backup per VNF. However,

84

for the ASB Algorithm, in the small-scale scenario S0, the backup ratio for ASB is around 70%

and it could reach 45% for larger-scale scenarios where there are higher opportunities to share

VNF backups and minimize their number.

• ASB Algorithm with Demand Prediction:

In this set of simulations, we evaluate the benefits of demand prediction in minimizing the

management costs by avoiding useless backup creation and migration.

Figure 3.10 Cost breakdown when prediction is used - Scenario

S0.

To this end, we start by predicting the future demand rate for each SFC using the ARIMA(𝑝 = 10,

𝑞 = 1, 𝑑 = 10) model where 𝑝 is the number of lag observations used as input to the model, 𝑑 is

the number of times data is differentiated, and 𝑞 is the size of the moving average window Zhani

et al. (2009). We used the ARIMA model to predict the future demand at time 𝑡 + 1, 𝑡 + 2, 𝑡 + 3

(assuming current timeslot is 𝑡) thanks to the multi-step prediction procedure described in Zhani

et al. (2009).

85

Afterwards, we run the ASB algorithm for all the studied scenarios. We denote by ASB(t), the

ASB algorithm using as input the demand at the current timeslot 𝑡 (i.e., no prediction), and by

ASB(𝑡 + 𝑖), the ASB algorithm using as input the average predicted demand at timeslots 𝑡 + 1,

𝑡 + 2, ..., 𝑡 + 𝑖.

Figure 3.10 reports the detailed breakdown of the operational costs, i.e., running, management,

and synchronization costs found using ASB(𝑡), ASB(𝑡+1), ASB(𝑡+2), ASB(𝑡+3) for scenario S0.

We can see in the figure that when the backup provisioning scheme uses prediction, all costs

are reduced. This is because, thanks to prediction, ASB takes into consideration the predicted

fluctuation of the traffic rate in each time slot. For instance, to take a decision at time slot 𝑡,

ASB considers the prediction at 𝑡 + 𝑖.

Figure 3.11 Operational costs when prediction is used - Scenarios

S0 to S5.

Hence, if the predicted traffic rate at 𝑡 + 𝑖 is less than the one at timeslot 𝑡, there is no need to

create backups at timeslot 𝑡 even if the traffic rate at timeslot 𝑡 is high. As a result, the running

and synchronization costs are significantly reduced. On the other hand, if the traffic rate at 𝑡 + 1

is larger than the rate at timeslot 𝑡, this indicates that the 𝑡 + 1 requires more backups. As a result,

86

we must adjust the number of backups as necessary by creating or migrating in advance backups.

We also notice that the more prediction horizon increases, the all costs are reduced.

Figure 3.11 reports the operational costs found using ASB(𝑡), ASB(𝑡 + 1), ASB(𝑡 + 2), ASB(𝑡 + 3)

for all scenarios. We can see in the figure that when the backup provisioning scheme uses

prediction, the operational costs are reduced as there less backup instantiations and migrations

over time. It also shows that the more visibility we have in the future, the less operational

costs are incurred. This is because, thanks to prediction, the creation or the migration of many

backups are avoided, and thereby the operation costs are reduced.

3.8 Conclusion

In this paper, we tackled one of the key challenges confronting infrastructure providers to deploy

and manage service function chains. In particular, we looked at the survivability of service

chains aiming at ensure service continuity in face of single or multiple simultaneous node

failures. We hence proposed a new survivability management module able to dynamically adjust

the number of shared backups based on the predicted traffic rates. The module is in charge of

creating backup instances, migrating them if needed in order to share backup instances while

minimizing backup operational costs (including the costs of running and managing the instances

and the costs of synchronization among primary and backup instances).

The problem was formulated as an Integer Linear Program that was implemented in the CPLEX

Solver, and two heuristic algorithms (ASB Algorithm and 1-1B Algorithm) were proposed to

deal with large-scale scenarios of the problem. We show through extensive simulations how

effectively the ASB algorithm compared to 1-1B and how it is able to find near-optimal solutions

close to the one provided by the ILP solved using CPLEX.

As a future work, we plan to better optimize the two algorithms in order to further reduce their

complexity and better parse the solution space to further approach the optimal solution. Another

interesting avenue for this work is to design solutions addressing survivability but taking into

account the availability of physical nodes and failure probabilities computed based on the history

87

of the failures occurred in the infrastructure. In this case, it would be interesting to avoid backup

deployment for instances hosted in physical location with low failure probability, which may

significantly reduce backup operational costs.

CONCLUSION AND RECOMMENDATIONS

Emerging technologies like Network Function Virtualization is currently changing network

management and operation. Indeed, network services are provided in the form of service function

chains composed of an order series of virtual network functions. These service function chains

process incoming traffic and route it towards its destination. Despite all benefits brought by this

new concept, the deployment and management of service function chains is still a challenging

tasks as it bring several challenges including the allocation of the requested resources, the

implementation of distributed virtual network functions and the management of failures and

survivability assurance.

In this thesis, we addressed two challenges pertaining to the deployment of SFCs. Particularly,

we aimed at 1) designing solutions to perform synchronization among multiple instances of the

same network function while minimizing synchronization costs between them and ensuring

that the synchronization delay does not exceed a certain bound to ensure normal operation

of the function and, 2) designing solutions able to ensure the survivability of service chains

embedded into the physical infrastructure to guarantee their resilience even in case of multiple

and simultaneous failures.

We hence proposed a technique that identifies the optimal communication pattern to perform

synchronization between the VNF instances and able to that minimizes the synchronization cost

and ensures a bounded synchronization delay. We also introduced the use a new function called

Synchronization Function that ensures consistency among a set of instances and allows to further

reduce the synchronization cost. The problem was formulated as an integer linear program

implemented in CPLEX and three heuristic algorithms (SPT, SSF, and MSF) were proposed

to deal with large-scale scenarios. Last, we proposed another algorithm that benefit from the

migration of network function instances to further reduce costs. Extensive simulations show

90

that the proposed algorithms efficiently find near-optimal solutions with minimal computation

time and provide better results compared to existing solutions.

Furthermore, we proposed different solutions to ensure service chain survivability by provisioning

backup with minimal operational costs. We then formulated the backup provisioning problem as

an integer linear program and two heuristic algorithms (ASB and 1-1B) were proposed to solve

the problem in large-scale scenarios. Finally, we demonstrated through a set of experiments

with various scenarios that our algorithms offer solutions that are close to the optimal solution

supplied by CPLEX. We also leveraged a traffic prediction model to forecast demand traffic rates

in order to further improve the proposed backup provisioning solutions and allow them to avoid

unnecessary backup provisioning, and thereby further reduce operational costs.

Future Research Directions

In order to stir the adoption of the aforementioned solutions, there are many considerable and

interesting objectives that we plan to track in the future. For instance, we plan to carefully study

the synchronization costs of different types of VNFs as well as the synchronization requirements

in terms of delay as these parameters could impact the performance of the function itself (e.g.,

late attack detection in the case of an IDS). We also plan to develop and further extend the idea

of Synchronization Function that could be integrated within the network to be customized based

on the type of the function. Indeed, the nature of the network function could significantly impact

the design the synchronization function. Furthermore, we plan to further optimize the proposed

heuristic algorithms in order to reduce their complexity and improve their performance to parse

the solution space and better approach optimal solutions.

BIBLIOGRAPHY

Aben, E. [https://labs.ripe.net/author/emileaben/internet-traffic-during-the-world-cup-2014/.

Accessed 28 Aug. 2022]. (2014). Internet Traffic During the World Cup 2014.

Aidi, S., Zhani, M. F. & Elkhatib, Y. (2018). On improving service chains survivability

through efficient backup provisioning. International Conference on Network and Service
Management (CNSM), pp. 108–115.

Al-Roomi, M., Al-Ebrahim, S., Buqrais, S. & Ahmad, I. (2013). Cloud computing pricing

models: a survey. International Journal of Grid and Distributed Computing, 6(5),

93–106.

Alomari, Z., Zhani, M. F., Aloqaily, M. & Bouachir, O. (2020). On minimizing synchronization

cost in NFV-based environments. IEEE/ACM International Conference on Network and
Service Management (CNSM), pp. 1–9.

Aloqaily, M., Kantarci, B. & Mouftah, H. T. (2014). Provisioning delay effect of partaking a

trusted third party in a vehicular cloud. IEEE Global Information Infrastructure and
Networking Symposium (GIIS), pp. 1–3.

Andersen, D. G. (2002). Theoretical approaches to node assignment. https://kilthub.cmu.edu/

ndownloader/files/12103001. Accessed 10 Jan. 2022.

Aqil, A., Khalil, K., Atya, A. O., Papalexakis, E. E., Krishnamurthy, S. V., Jaeger, T.,

Ramakrishnan, K., Yu, P. & Swami, A. (2017). Jaal: Towards network intrusion

detection at isp scale. Proceedings of the 13th international conference on emerging
networking experiments and technologies, pp. 134–146.

AWS. (2022). Amazon Web Services Inc., Amazon EC2 Instance Types. https://aws.amazon.

com/ec2/instance-types/?nc1=h_ls. Accessed 15 Feb. 2022.

Ayoubi, S., Assi, C., Narayanan, L. & Shaban, K. (2016a). Optimal polynomial time algorithm

for restoring multicast cloud services. IEEE Communications Letters, 20(8), 1543–1546.

Ayoubi, S., Chen, Y. & Assi, C. (2016b). Towards promoting backup-sharing in survivable

virtual network design. IEEE/ACM Transactions on Networking, 24(5), 3218–3231.

Barford, P., Donoho, D., Flesia, A. & Yegneswaran, V. (2002). Characteristics of network delays

in wide area file transfers. https://minds.wisconsin.edu/bitstream/handle/1793/60288/

TR1443.pdf?sequence=1. Accessed 15 Apr. 2022.

92

Bari, M. F., Boutaba, R., Esteves, R., Granville, L. Z., Podlesny, M., Rabbani, M. G., Zhang,

Q. & Zhani, M. F. (2012). Data center network virtualization: A survey. IEEE
communications surveys & tutorials, 15(2), 909–928.

Bays, L. R., Oliveira, R. R., Barcellos, M. P., Gaspary, L. P. & Madeira, E. R. M. (2015). Virtual

network security: threats, countermeasures, and challenges. Journal of Internet Services
and Applications, 6(1), 1–19.

Beck, M. T. & Botero, J. F. (2015). Coordinated allocation of service function chains. 2015
IEEE global communications conference (GLOBECOM), pp. 1–6.

Beck, M. T., Botero, J. F. & Samelin, K. (2016). Resilient allocation of service function chains.

IEEE Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN), pp. 128–133.

Bijwe, S., Machida, F., Ishida, S. & Koizumi, S. (2017). End-to-end reliability assurance

of service chain embedding for network function virtualization. IEEE conference on
network function virtualization and software defined networks (NFV-SDN), pp. 1–4.

Binh, H. T. T., Thanh, P. D. & Thang, T. B. (2019). New approach to solving the clustered

shortest-path tree problem based on reducing the search space of evolutionary algorithm.

Knowledge-Based Systems, 180, 12–25.

Bo, L., Huang, T., SUN, X.-c., Chen, J.-y. & Liu, Y.-j. (2014). Dynamic recovery for

survivable virtual network embedding. Journal of China Universities of Posts and
Telecommunications, 21(3), 77–84.

Bökler, F. (2017). The Multiobjective Shortest Path Problem is NP-hard, or is it? International
Conference on Evolutionary Multi-Criterion Optimization, pp. 77–87.

Boutaba, R., Zhang, Q. & Zhani, M. F. (2014). Virtual machine migration in cloud computing

environments: Benefits, challenges, and approaches. In Communication Infrastructures
for Cloud Computing (pp. 383–408). IGI Global.

Box, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. (2015). Time series analysis:
forecasting and control. John Wiley & Sons.

Carapinha, J. & Jiménez, J. (2009). Network virtualization: a view from the bottom. Proceedings
of the 1st ACM workshop on Virtualized infrastructure systems and architectures, pp. 73–

80.

Casazza, M., Bouet, M. & Secci, S. (2019). Availability-driven NFV orchestration. Computer
Networks, 155, 47–61.

93

Cho, D., Taheri, J., Zomaya, A. Y. & Bouvry, P. (2017). Real-time virtual network function

(VNF) migration toward low network latency in cloud environments. 2017 IEEE 10th
International Conference on Cloud Computing (CLOUD), pp. 798–801.

Chowdhury, M., Rahman, M. R. & Boutaba, R. (2011). Vineyard: Virtual network embedding

algorithms with coordinated node and link mapping. IEEE/ACM Transactions on
networking, 20(1), 206–219.

Chowdhury, S. R., Ahmed, R., Khan, M. M. A., Shahriar, N., Boutaba, R., Mitra, J. & Zeng,

F. (2016). Dedicated protection for survivable virtual network embedding. IEEE
Transactions on Network and Service Management, 13(4), 913–926.

Chua, F. C., Ward, J., Zhang, Y., Sharma, P. & Huberman, B. A. (2016). Stringer: Balancing

latency and resource usage in service function chain provisioning. IEEE Internet
Computing, 20(6), 22–31.

Clemm, A., Zhani, M. F. & Boutaba, R. (2020). Network management 2030: Operations and

control of network 2030 services. Journal of Network and Systems Management, 1–30.

Cohen, G. Downtime, Outages and Failures-Understanding Their True Costs.

https://www.evolven.com/blog/downtime-outages-and-failures-understanding-

their-true-costs.html. Accessed 10 May 2022.

Cosma, O., Pop, P. C. & Zelina, I. (2020). A novel genetic algorithm for solving the clustered

shortest-path tree problem. Carpathian Journal of Mathematics, 36(3), 401–414.

Cosma, O., Pop, P. C. & Zelina, I. (2021). An effective genetic algorithm for solving the

clustered shortest-path tree problem. IEEE Access, 9, 15570–15591.

Cotroneo, D., De Simone, L., Iannillo, A. K., Lanzaro, A., Natella, R., Fan, J. & Ping, W. (2014).

Network function virtualization: Challenges and directions for reliability assurance.

IEEE international symposium on software reliability engineering workshops, pp. 37–42.

COUTINHO, N., SCHAAPMAN, P. & TEMIN, T. [https://edtechmagazine.com/higher/sites/

default/files/rg_virtualization_011811.pdf. Accessed 11 July. 2021]. (2014). Virtualiza-

tion and Infrastructure Optimization reference guide.

Ding, W., Yu, H. & Luo, S. (2017). Enhancing the reliability of services in NFV with the

cost-efficient redundancy scheme. IEEE international conference on communications
(ICC), pp. 1–6.

Dinh, N.-T. & Kim, Y. (2019). An efficient reliability guaranteed deployment scheme for service

function chains. IEEE Access, 7, 46491–46505.

94

Endo, S., Miyamoto, T., Kumagai, S. & Fujii, T. (2004). A data synchronization method for

peer-to-peer collaboration systems. IEEE International Symposium on Communications
and Information Technology (ISCIT), 1, 368–373.

ETSI. (2015). ETSI GS NFV-REL 001 V1.1.1 (2015-01), Network Functions Virtualisation

(NFV) Resiliency Requirements. https://www.etsi.org/deliver/etsi_gs/NFV-REL/001_

099/001/01.01.01_60/gs_nfv-rel001v010101p.pdf. Accessed 28 Jan. 2022.

ETSI. (2020). Network Functions Virtualisation (NFV); Terminology for Main Con-

cepts in NFV. https://www.etsi.org/deliver/etsi_gr/NFV/001_099/003/01.05.01_60/

gr_NFV003v010501p.pdf. Accessed 20 Feb. 2022.

ETSI, N. F. V. (2012). Introductory white paper. https://portal.etsi.org/nfv/nfv_white_paper.pdf.

Accessed 23 Apr. 2019.

Faiz, M. & Shanker, U. (2016). Data synchronization in distributed client-server applications.

IEEE International Conference on Engineering and Technology (ICETECH), pp. 611–

616.

Fan, J., Ye, Z., Guan, C., Gao, X., Ren, K. & Qiao, C. (2015). GREP: Guaranteeing reliability with

enhanced protection in NFV. ACM SIGCOMM Workshop on Hot Topics in Middleboxes
and Network Function Virtualization, pp. 13–18.

Fan, J., Jiang, M., Rottenstreich, O., Zhao, Y., Guan, T., Ramesh, R., Das, S. & Qiao, C. (2018).

A framework for provisioning availability of NFV in data center networks. IEEE Journal
on Selected Areas in Communications, 36(10), 2246–2259.

Gember, A., Krishnamurthy, A., John, S. S., Grandl, R., Gao, X., Anand, A., Benson, T., Akella,

A. & Sekar, V. (2013). Stratos: A network-aware orchestration layer for middleboxes

in the cloud. http://robotics.duke.edu/courses/compsci514/spring14/Papers/Stratos.pdf.

Accessed 12 Sept. 2021.

Gember-Jacobson, A. & Akella, A. (2015). Improving the safety, scalability, and efficiency of

network function state transfers. Proceedings of the ACM SIGCOMM Workshop on Hot
Topics in Middleboxes and Network Function Virtualization, pp. 43–48.

Gember-Jacobson, A., Viswanathan, R., Prakash, C., Grandl, R., Khalid, J., Das, S. & Akella, A.

(2014). OpenNF: Enabling innovation in network function control. ACM SIGCOMM
Computer Communication Review, 44(4), 163–174.

Ghaleb, A. M., Khalifa, T., Ayoubi, S., Shaban, K. B. & Assi, C. (2016). Surviving multiple

failures in multicast virtual networks with virtual machines migration. IEEE Transactions
on Network and Service Management, 13(4), 899–912.

95

Ghrada, N., Zhani, M. F. & Elkhatib, Y. (2018). Price and performance of cloud-hosted virtual

network functions: Analysis and future challenges. 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft), pp. 482–487.

Gray, N., Lorenz, C., Müssig, A., Gebert, S., Zinner, T. & Tran-Gia, P. (2017). A priori state

synchronization for fast failover of stateful firewall VNFs. International Conference on
Networked Systems (NetSys), pp. 1–6.

Halpern, J. & Pignataro, C. (2015). Service function chaining (SFC) architecture. https:

//www.rfc-editor.org/rfc/rfc7665.txt. Accessed 26 Apr. 2018.

Han, B., Gopalakrishnan, V., Ji, L. & Lee, S. (2015). Network function virtualization: Challenges

and opportunities for innovations. IEEE Communications Magazine, 53(2), 90–97.

Hassani, A., Haghighi, P. D., Burstein, F. & Davey, S. (2017). Context aware data synchronisation

during emergencies. International and Interdisciplinary Conference on Modeling and
Using Context, pp. 406–417.

Herrera, J. G. & Botero, J. F. (2016). Resource allocation in NFV: A comprehensive survey.

IEEE Transactions on Network and Service Management, 13(3), 518–532.

Hmaity, A., Savi, M., Musumeci, F., Tornatore, M. & Pattavina, A. (2017). Protection strategies

for virtual network functions placement and service chains provisioning. Networks,
70(4), 373–387.

Huang, M., Liang, W., Shen, X., Ma, Y. & Kan, H. (2019). Reliability-aware virtualized network

function services provisioning in mobile edge computing. IEEE Transactions on Mobile
Computing, 19(11), 2699–2713.

IBM. (2007). IBM Global Education White Paper. Virtualization in Education. https://docplayer.

net/235160-Ibm-global-education-white-paper-virtualization-in-education.html. Ac-

cessed 19 July. 2020.

IBM. (2020). IBM ILOG CPLEX Optimizer. https://www.ibm.com/analytics/cplex-optimizer.

Accessed 19 July. 2022.

ISG, N. (2014). Network Function Virtualisation NFV-Resiliency Requirements. ETSI GS
NFV-REL, 1, v1.

Jiang, J. [https://www.npr.org/sections/money/2011/10/27/141766341/the-price-of-electricity-

in-your-state. Accessed 5 Mar. 2022]. (2011). The Price Of Electricity In Your State.

96

Jurski, J. & Wozniak, J. (2009). Routing decisions independent of queuing delays in broadband

LEO networks. IEEE Global Telecommunications Conference(GLOBECOM), pp. 1–6.

Kablan, M., Alsudais, A., Keller, E. & Le, F. (2017). Stateless network functions: Breaking

the tight coupling of state and processing. USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pp. 97–112.

Khalid, J. & Akella, A. (2019). Correctness and performance for stateful chained network

functions. 16th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 19), pp. 501–516.

Khalid, J., Gember-Jacobson, A., Michael, R., Abhashkumar, A. & Akella, A. (2016). Paving the

way for {NFV}: Simplifying middlebox modifications using statealyzr. 13th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 16), pp. 239–253.

Kubler, S., Främling, K. & Derigent, W. (2015). P2P Data synchronization for product lifecycle

management. Computers in Industry, 66, 82–98.

Landström, S., Bergström, J., Westerberg, E. & Hammarwall, D. (2016). NB-IoT: A sustainable

technology for connecting billions of devices. Ericsson Technology Review, 4, 2–11.

Lee, J., Ko, H., Suh, D., Jang, S. & Pack, S. (2017). Overload and failure management in service

function chaining. IEEE Conference on Network Softwarization (NetSoft), pp. 1–5.

Li, J., Liang, W., Huang, M. & Jia, X. (2019). Providing reliability-aware virtualized network

function services for mobile edge computing. International Conference on Distributed
Computing Systems (ICDCS), pp. 732–741.

Lowe, S. (2012). Hyper-V™ vs. vSphere™: Understanding the differences. Solarwinds.
Retrieved February, 2, 2014.

Luizelli, M. C., Bays, L. R., Buriol, L. S., Barcellos, M. P. & Gaspary, L. P. (2015). Piecing

together the NFV provisioning puzzle: Efficient placement and chaining of virtual network

functions. IFIP/IEEE International Symposium on Integrated Network Management
(IM), pp. 98–106.

Luong, N. C., Wang, P., Niyato, D., Wen, Y. & Han, Z. (2017). Resource management

in cloud networking using economic analysis and pricing models: A survey. IEEE
Communications Surveys & Tutorials, 19(2), 954–1001.

Ma, J., Le, F., Russo, A. & Lobo, J. (2015). Detecting distributed signature-based intrusion:

The case of multi-path routing attacks. IEEE Conference on Computer Communications
(INFOCOM), pp. 558–566.

97

Malhotra, N. & Chaudhary, A. (2014). Implementation of Database Synchronization Technique

between Client and Server. International Journal of Engineering Science and Innovative
Technology (IJESIT), 3(4), 460–465.

McAfee, R. P. & McMillan, J. (1987). Auctions and bidding. Journal of economic literature,

25(2), 699–738.

Mell, P. & Grance, T. (2011). The NIST Definition of Cloud Computing (Draft). NIST Special
Publication, 800, 145.

Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., De Turck, F. & Boutaba, R. (2015). Network

function virtualization: State-of-the-art and research challenges. IEEE Communications
surveys & tutorials, 18(1), 236–262.

Milgrom, P. R. & Weber, R. J. (1982). A theory of auctions and competitive bidding.

Econometrica: Journal of the Econometric Society, 1089–1122.

Moufakir, T., Zhani, M. F., Gherbi, A., Aloqaily, M. & Ghrada, N. (2022). SFCaaS: Service

Function Chains as a Service in NFV Environments. arXiv preprint arXiv:2203.01098.

Mounika, M. & Chinnaswamy, C. (2016). A comprehensive review on embedded hypervisors.

computing, 5(5).

Nobach, L., Rimac, I., Hilt, V. & Hausheer, D. (2016). SliM: Enabling efficient, seamless

NFV state migration. IEEE 24th International Conference on Network Protocols (ICNP),
pp. 1–2.

Nobach, L., Rimac, I., Hilt, V. & Hausheer, D. (2017). Statelet-based efficient and seamless

NFV state transfer. IEEE Transactions on Network and Service Management, 14(4),

964–977.

Peng, T., Leckie, C. & Ramamohanarao, K. (2007). Information sharing for distributed intrusion

detection systems. Journal of Network and Computer Applications, 30(3), 877–899.

Peuster, M. & Karl, H. (2016). E-state: Distributed state management in elastic network function

deployments. IEEE NetSoft Conference and Workshops (NetSoft), pp. 6–10.

Qing, H., Weifei, Z. & Julong, L. (2017). Virtual network protection strategy to ensure

the reliability of SFC in NFV. Proceedings of the 6th International Conference on
Information Engineering, pp. 1–5.

98

Qu, L., Assi, C. & Shaban, K. (2016). Network function virtualization scheduling with

transmission delay optimization. NOMS 2016-2016 IEEE/IFIP Network Operations and
Management Symposium, pp. 638–644.

Racheg, W., Ghrada, N. & Zhani, M. F. (2017). Profit-driven resource provisioning in NFV-based

environments. 2017 IEEE International Conference on Communications (ICC), pp. 1–7.

Rajagopalan, S., Williams, D., Jamjoom, H. & Warfield, A. (2013). Split/merge: System support

for elastic execution in virtual middleboxes. USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pp. 227–240.

Salameh, H. B., Musa, A., Outoom, R., Halloush, R., Aloqaily, M. & Jararweh, Y. (2019).

Batch-based Power-controlled Channel Assignment for Improved Throughput in Software-

defined Networks. IEEE International Multi-Conference on Systems, Signals & Devices
(SSD), pp. 398–403.

Sandvine. [Publisher at Sandvine Waterloo, Ontario]. (2015). Global Internet Phenomena:

Latin America & North America.

Satapathy, P., Dave, J., Naik, P. & Vutukuru, M. (2017). Performance comparison of state

synchronization techniques in a distributed LTE EPC. IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN), pp. 1–7.

Shodiq, M., Wongso, R., Pratama, R. S., Rhenardo, E. et al. (2015). Implementation Of

Data Synchronization With Data Marker Using Web Service Data. Procedia Computer
Science, 59, 366–372.

Sridharan, S. (2012). A performance comparison of hypervisors for cloud computing. https:

//digitalcommons.unf.edu/cgi/viewcontent.cgi?article=1275&context=etd. Accessed 25

Dec. 2018.

Truong-Huu, T. & Tham, C.-K. (2014). A novel model for competition and cooperation among

cloud providers. IEEE Transactions on Cloud Computing, 2(3), 251–265.

Tulloch, M. (2010). Understanding Microsoft Virtualization Solutions from the desktop to the
Datacenter [2]. Microsoft Press.

Vaquero, L. M., Cuadrado, F., Elkhatib, Y., Bernal-Bernabe, J., Srirama, S. N. & Zhani,

M. F. (2019). Research challenges in nextgen service orchestration. Future Generation
Computer Systems, 90, 20–38.

Varghese, B., Leitner, P., Ray, S., Chard, K., Barker, A., Elkhatib, Y., Herry, H., Hong, C.-H.,

Singer, J., Tso, F. P. et al. (2019). Cloud futurology. Computer, 52(9), 68–77.

99

Wang, L., Park, K., Pang, R., Pai, V. S. & Peterson, L. L. (2004). Reliability and Security in the

CoDeeN Content Distribution Network. USENIX Annual Technical Conference, General
Track, pp. 171–184.

Woo, S., Sherry, J., Han, S., Moon, S., Ratnasamy, S. & Shenker, S. (2018). Elastic scaling of

stateful network functions. 15th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 18), pp. 299–312.

Xiao, A., Wang, Y., Meng, L., Qiu, X. & Li, W. (2014). Topology-aware virtual network

embedding to survive multiple node failures. IEEE Global Communications Conference
(GLOBECOM), pp. 1823–1828.

Xie, A., Huang, H., Wang, X., Guo, S., Qian, Z. & Lu, S. (2019). Dual: Deploy stateful virtual

network function chains by jointly allocating data-control traffic. Computer Networks,
162, 106868.

Yamada, D. & Shinomiya, N. (2019). Computing and Network Resource Minimization

Problem for Service Function Chaining against Multiple VNF Failures. IEEE Region 10
Conference (TENCON), pp. 1478–1482.

Yin, S., Huang, S., Liu, H., Guo, B., Gao, T. & Li, W. (2018). Survivable multipath

virtual network embedding against multiple failures for SDN/NFV. IEEE Access, 6,

76909–76923.

Yu, H., Anand, V., Qiao, C. & Sun, G. (2011). Cost-efficient design of survivable virtual

infrastructure to recover from facility node failures. IEEE international conference on
communications (ICC), pp. 1–6.

Zhang, L., Wang, Y., Qiu, X. & Guo, H. (2019). Redundancy mechanism of service function

chain with node-ranking algorithm. IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), pp. 586–589.

Zhang, Q., Cheng, L. & Boutaba, R. (2010). Cloud computing: state-of-the-art and research

challenges. Journal of internet services and applications, 1(1), 7–18.

Zhang, Q., Zhani, M. F., Jabri, M. & Boutaba, R. (2014). Venice: Reliable virtual data

center embedding in clouds. IEEE INFOCOM 2014-IEEE Conference on Computer
Communications, pp. 289–297.

Zhani, M. F. & Boutaba, R. (2015). Survivability and fault tolerance in the cloud. Cloud
Services, Networking, and Management, 295–308.

100

Zhani, M. F. & ElBakoury, H. (2020). FlexNGIA: A flexible Internet architecture for the

next-generation tactile Internet. Journal of Network and Systems Management, 28(4),

751–795.

Zhani, M. F., Elbiaze, H. & Kamoun, F. (2009). Analysis and Prediction of Real Network Traffic.

Journal of Networks, 4(9), 855-865.

Zhani, M. F., Zhang, Q., Simona, G. & Boutaba, R. (2013). VDC planner: Dynamic migration-

aware virtual data center embedding for clouds. IFIP/IEEE International Symposium on
Integrated Network Management (IM 2013), pp. 18–25.

