
Applications of Deep Learning in Visual Recognition

by

Mirmohammad SAADATI

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
IN PARTIAL FULFILLMENT FOR A MASTER’S DEGREE

WITH THESIS IN INFORMATION TECHNOLOGY ENGINEERING
M.A.Sc.

MONTREAL, MARCH 22, 2023

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Mirmohammad Saadati, 2023

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Patrick Cardinal, Thesis supervisor

Department of Software and Information Technology, École de technologie supérieure

Mr. Marco Pedersoli, Thesis Co-Supervisor

Department of Systems Engineering, École de technologie supérieure

Ms. Elsa Vasseur, Thesis Co-Supervisor

Department of Animal Science, McGill University

Ms. Sylvie Ratté, Chair, Board of Examiners

Department of Software and Information Technology, École de technologie supérieure

Mr. Matthew Toews, Member of the Jury

Department of Systems Engineering, École de technologie supérieure

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON MARCH 10, 2023

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

First, I would like to acknowledge the work of P. Stecko (McGill University) for developing

manual tracking (2.2.2) in the second chapter, A. Zambelis and V. Boyer (both from McGill

University) for drafting the manuscript, and G.M. Dallago (McGill University) and V. Naghashi

(UQAM) for further data analytics leading to the published version of the manuscript (Zambelis

et al., 2021).

Second, I am grateful for the support and guidance of my supervisors, Dr. Marco Pedersoli,

Dr. Patrick Cardinal, and Dr. Elsa Vasseur. This work would have not been possible without

their tremendous counsel and patience. They worked tirelessly to provide me with astounding

opportunities to learn and improve. In the moments when I was stressed and disappointed with

my performance, Dr. Pedersoli supported me profoundly and heartily and motivated me to

pursue my work and enabled me to succeed.

I would also like to extend my gratitude to the rest of my thesis committee: Dr. Sylvie Ratté and

Dr. Matthew Toews for their judicious comments and questions.

Also, I would like to thank my colleagues and friends at LIVIA who supported me and made

me feel welcomed, specially Masih Aminbeidokhti who always helped me to learn and grow,

Marie-Philippe Gill who set an example of hard-work and dedication, Sajjad Abdoli who always

dispensed insightful advises, Behnaz Nasiri, and Saypraseuth Mounsaveng.

Applications de l’apprentissage en profondeur dans la reconnaissance visuelle

Mirmohammad SAADATI

RÉSUMÉ

La recherche sur le bien-être animal a soulevé des inquiétudes concernant l’intensification du

logement des animaux de ferme des systèmes qui offrent des possibilités de mouvement limitées.

Cependant, aucun système automatisé actuellement disponible le logiciel de suivi est capable

de suivre efficacement et avec précision les mouvements des vaches laitières dans les stalles

les systèmes de logement. L’application de modèles d’apprentissage en profondeur au suivi de

localisation offre une opportunité pour une mesure précise et opportune du mouvement des

vaches dans l’environnement du logement. La L’objectif de cette étude était de développer et de

valider un outil de géolocalisation pour surveiller la mouvement des vaches laitières dans leurs

stabulations entravées à l’aide d’une approche d’apprentissage en profondeur. Vingt-quatre en

lactation Les vaches Holstein ont été enregistrées sur vidéo pendant une période continue de 24

heures les semaines 1, 2, 3, 6, 8 et 10. Des images individuelles montrant la position en stalle de

chaque vache ont été extraites de chaque 24-h enregistrement à raison d’une image par minute.

Trois coordonnées sur chaque vache ont été manuellement annoté sur les séquences d’images

pour suivre l’emplacement de la hanche gauche, de la hanche droite et du cou. L’ensemble de

données final utilisé pour valider l’approche d’apprentissage en profondeur consistait en 199 100

Images rouge-vert-bleu avec annotations manuelles des coordonnées. Le jeu de données a été

séparé en ensembles de formation et de validation. Des variantes des modèles d’apprentissage

en profondeur suivants ont été testées : VGG Net, Resnet, GoogLeNet et DenseNet. Les

performances du modèle ont été exprimées en termes de pixels erreur pour chaque coordonnée

annotée à partir de l’ensemble d’images de validation. L’erreur de pixel a été convertie en

mesure standard en cm en utilisant le rapport pix/cm moyen pour chaque vache chaque semaine.

ResNet18 avec des étiquettes augmentées ont nettement surpassé tous les autres modèles testés.

Pour la validation ensemble d’images, l’erreur moyenne des 3 coordonnées équivalait à une erreur

de 0,74 cm dans la valeur réelle placement physique des coordonnées dans l’environnement

de décrochage. Sur la base de ce haut degré de précision, le modèle peut être utilisé pour

analyser les modèles d’activité de vaches individuelles pour optimisation des espaces de stalle et

amélioration de la facilité de circulation.

L’imagerie radar à synthèse d’ouverture (SAR) capture les propriétés physiques de la Terre en

transmettre des signaux micro-ondes à sa surface et analyser le signal rétrodiffusé. Cela fait ne

dépend pas de la lumière du soleil et peut donc être obtenu dans n’importe quelle condition,

comme la nuit et temps nuageux. Cependant, les images SAR sont plus bruyantes que les images

lumineuses et jusqu’à présent, il n’est pas clair que niveau de performance qu’un système de

reconnaissance moderne pourrait atteindre. Ce travail présente une analyse des performances des

modèles d’apprentissage en profondeur pour la tâche de segmentation des terres à l’aide de SAR

images. Nous présentons des résultats de segmentation sur la tâche de classer quatre catégories

de terres différentes (urbain, eau, végétation et ferme) sur six sites canadiens (Montréal, Ottawa,

Québec, Saskatoon, Toronto et Vancouver), avec trois modèles de segmentation d’apprentissage

VIII

en profondeur à la fine pointe de la technologie. Résultats montrent que lorsque suffisamment de

données et de variété sur l’apparence du terrain sont disponibles, l’apprentissage en profondeur

Les modèles peuvent atteindre d’excellentes performances malgré le bruit d’entrée élevé.

Mots-clés: Automatisation, Vache laitière, Pistage, Comportement animal, Imagerie RSO

RADARSAT-2, Réseau de neurones à convolution profonde, Classification de l’occupation du

sol, Segmentation sémantique

Applications of Deep Learning in Visual Recognition

Mirmohammad SAADATI

ABSTRACT

Animal welfare research has raised concerns regarding the intensification of farm animal housing

systems that offer limited opportunity for movement. However, no currently available automated

tracking software is able to efficiently and accurately track dairy cow movement across stall-based

housing systems. Applying deep learning models to location tracking provides an opportunity

for accurate and timely measurement of cow movement within the housing environment. The

objective of this study was to develop and validate a location tracking tool to monitor the

movement of dairy cows in their tie-stalls using a deep learning approach. Twenty-four lactating

Holstein cows were video recorded for a continuous 24-h period on weeks 1, 2, 3, 6, 8, and

10. Individual images showing the in-stall position of each cow were extracted from each 24-h

recording at a rate of one image per minute. Three coordinates on each cow were manually

annotated on the image sequences to track the location of the left hip, the right hip, and the

neck. The final dataset used to validate the deep learning approach consisted of 199,100

Red-Green-Blue images with manual coordinate annotations. The dataset was separated into

training and validation sets. Variants of the following deep learning models were tested: VGG

Net, Resnet, GoogLeNet, and DenseNet. Model performance was expressed in terms of pixel

error for each coordinate annotated from the validation image set. Pixel error was converted to a

standard measure in cm using the average pix/cm ratio for each cow in each week. ResNet18

with augmented labels significantly outperformed all other models tested. For the validation

image set, the average error from all 3 coordinates was equivalent to a 0.74 cm error in actual

physical placement of the coordinates within the stall environment. Based on this high degree

of accuracy, the model may be used to analyze the activity patterns of individual cows for

optimization of stall spaces and improved ease of movement.

Synthetic Aperture Radar (SAR) imagery captures the physical properties of the Earth by

transmitting microwave signals to its surface and analyzing the backscattered signal. It does

not depends on sunlight and therefore can be obtained in any condition, such as nighttime and

cloudy weather. However, SAR images are noisier than light images and so far it is not clear the

level of performance that a modern recognition system could achieve. This work presents an

analysis of the performance of deep learning models for the task of land segmentation using SAR

images. We present segmentation results on the task of classifying four different land categories

(urban, water, vegetation and farm) on six Canadian sites (Montreal, Ottawa, Quebec, Saskatoon,

Toronto and Vancouver), with three state-of-the-art deep learning segmentation models. Results

show that when enough data and variety on the land appearance are available, deep learning

models can achieve an excellent performance despite the high input noise.

Keywords: Automation, Dairy cow, Tracking, Animal behavior, RADARSAT-2 SAR imagery,

Deep convolutional neural network, Land cover classification, Semantic segmentation

TABLE OF CONTENTS

Page

INTRODUCTION .1

CHAPTER 1 BACKGROUND . 7

1.1 Machine Learning . 7

1.1.1 Types of learning methods . 7

1.1.2 Machine learning tasks . 10

1.1.3 Challenges in machine learning . 11

1.2 Image Recognition . 13

1.2.1 Classification . 15

1.2.2 Detection . 15

1.2.3 Segmentation . 16

1.2.4 Benchmark datasets . 18

1.3 Convolutional Neural Networks . 19

1.3.1 AlexNet . 22

1.3.2 VGG networks . 24

1.3.3 Inception . 26

1.3.4 Residual networks . 26

1.4 Related Work . 29

1.4.1 Localization . 29

1.4.1.1 Animal Localization . 32

1.4.2 Land Cover Segmentation . 32

1.4.3 Discussion . 33

CHAPTER 2 AUTOMATION OF VIDEO-BASED LOCATION TRACKING

TOOL FOR DAIRY COWS IN THEIR HOUSING STALLS US-

ING DEEP LEARNING . 35

2.1 Introduction . 35

2.2 Materials and Methods . 36

2.2.1 Sample and Recordings . 36

2.2.2 Manual Tracking . 37

2.2.3 Automated Tracking . 40

2.3 Results and Discussion . 42

2.4 Conclusion . 44

CHAPTER 3 RADARSAT-2 SYNTHETIC-APERTURE RADAR LAND

COVER SEGMENTATION USING DEEP CONVOLUTIONAL

NEURAL NETWORKS . 47

3.1 Introduction . 47

3.2 Proposed Method . 48

3.2.1 Overview . 48

XII

3.2.2 Encoder-Decoder . 49

3.2.2.1 Deconvnet . 50

3.2.2.2 Segnet . 51

3.2.3 Pyramid Pooling . 51

3.2.3.1 PSPNet . 52

3.3 Experimental Results . 53

3.3.1 Dataset . 53

3.3.1.1 Land cover classes . 54

3.3.1.2 Sampling method . 55

3.3.1.3 Training and validation sets . 56

3.3.2 Final Results . 58

3.4 Conclusion . 59

CONCLUSION AND RECOMMENDATIONS . 61

LIST OF REFERENCES . 65

LIST OF TABLES

Page

Table 1.1 AlexNet vs VGG vs ResNet . 29

Table 2.1 Average degree of error presented in pixels and cm of the ResNet18

with distance/angle label augmentation for coordinate annotation of

the training and validation datasets, where P1 is the location of the

left hip bone, P2 is the right hip bone, and P3 is the base of the neck 44

Table 3.1 Land cover classes. Vegetation class includes natural parks and

forests, while Farm class labels include agricultural lands . 55

Table 3.2 Sampling modes. Larger stride size reduces the number of samples

and the amount of overlap per sample . 56

Table 3.3 Initial results. Summary of validation performance using pairs of

SAR stacks for training and validation sets. These results are obtained

using SegNet model . 57

Table 3.4 Evaluation of segmentation results using different sampling modes.

These results are obtained using SegNet model . 59

Table 3.5 Final results. Summary of land cover segmentation performance of

our trained deep CNN models on the validation set using LCSAR

dataset. These results are obtained by Small sampling mode 59

LIST OF FIGURES

Page

Figure 0.1 An example of the cattle localization problem. Three points of

interest are localized by deep learning model. Red dots show the

ground-truth location of the hips and the neck of the cow while blue

dots are model predictions . 3

Figure 0.2 An example of the land cover segmentation problem. The SAR image

is shown on the left and its corresponding semantic segmentation

annotation on the right . 4

Figure 1.1 Types of machine learning and their tasks . 10

Figure 1.2 Difference between linear classification and linear regression 12

Figure 1.3 Early stopping . 13

Figure 1.4 Overfitting . 13

Figure 1.5 Deep learning breakthrough . 14

Figure 1.6 MNIST dataset . 15

Figure 1.7 Classification VS Detection VS Segmentation (Semantic vs Instance) 17

Figure 1.8 Sparse connectivity: The number of connections reduces

significantly in sparsely connected layers compared to fully

connected layers. This results in a smaller receptive field meaning

that each output depends on fewer inputs . 21

Figure 1.9 Typical CNN Architecture . 22

Figure 1.10 AlexNet Architecture . 24

Figure 1.11 VGG Networks. More than 80% of parameters are in fully connected

layers. VGG-11 with LRN and VGG-16 with Conv 1 × 1 are omitted 25

Figure 1.12 ResNet Architecture . 28

Figure 1.13 Human body modeling . 31

Figure 2.1 An overhead video camera image of a tie-stall cow with the three

manually tracked body coordinates . 38

XVI

Figure 2.2 A Cartesian coordinate system with the 𝑋 and 𝑌 axes showing the

dimensions of a single 1280 × 720 pixel image . 40

Figure 3.1 Overview of our method. The illustrated CNN model is based on

the Encoder-Decoder approach for semantic segmentation 48

Figure 3.2 Illustration of unpooling operation . 50

Figure 3.3 Illustration of Segnet architecture. Switch variables are saved during

downsampling and used to unpool the activations during upsampling 52

Figure 3.4 Spatial pyramid pooling layer . 53

Figure 3.5 Illustration of PSPNet architecture. Pyramid pooling is applied at

four different resolutions to preserve global context information as

well as finer details . 54

Figure 3.6 Illustration of the sampling method. A crop of the SAR image on

Montreal is shown on left with its corresponding land cover label

on the right . 56

LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

RCNN Recurrent Convolutional Neural Network

DNN Deep Neural Network

MSE Mean Squared Error

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

LRN Local Response Normalization

SAR Synthetic Aperture Radar

ETS École de Technologie Supérieure

SPP Spatial Pyramid Pooling

INTRODUCTION

Motivation

In recent years, deep learning in visual recognition has advanced exceedingly fast thanks to

widely accessible data and faster GPUs. Training very deep convolutional neural networks

(CNN) efficiently requires not only large-scale datasets but also substantial GPU time and

memory. Many of the successful and commonly used CNN models are originally developed

from and evaluated on standard benchmark datasets (e.g., ImageNet) to allow for practical

and accurate comparison between model variations or against the state-of-the-art (SOTA). On

the downside, this approach does not guarantee similar levels of performance on any data. In

reality, data preparation contributes greatly to the time required for running machine learning

end-to-end. Newer applications have shorter access to data, while deep learning requires even

more data to compensate for automatic feature engineering (Roh, Heo & Whang, 2021). In

practice, techniques like Transfer Learning and/or Domain Adaptation can mitigate scarce data

(AlShehhi, Damiani & Wang, 2021). Although it is not feasible to evaluate a model on every

available data, exploring the applications of said models in real-world data and evaluating their

efficiency on non-standard datasets strikes as a compelling research area to explore.

Finding the right data is a challenging task. Data collection can often be efficient and atomized,

specifically the type of data that is available on the internet (on demand). Raw data is useful

for unsupervised learning (e.g. clustering, density estimation, etc.). However, for supervised

learning, we need labeled data and acquiring ground-truth requires human experts and can be

both expensive and noisy. While companies that generate revenue from learning models can

afford annotating large datasets (mostly thanks to outsourcing), in academia we adopt a different

perspective towards selecting the right data. We are motivated by the nature of the problem,

how its solution can have positive impacts, and the potential of future work. In this work we

are motivated by two different data and according tasks, 1) optical images of tie-stall cattle, 2)

synthetic aperture radar (SAR) images of Canada’s earth surface.

2

We evaluate the performance of deep convolutional neural networks on two different private

datasets. The first part of this work aims to solve a localization task given a dataset of cow

images annotated at image level with three coordinates of the hips and the back of the neck.

The second part of this work aims to solve a segmentation task given a dataset of SAR images

annotated at pixel level with the land cover classes. Here we introduce each work separately.

Problem Statement

In this work, we evaluate the accuracy of deep convolutional neural networks on real-world

datasets. To start, we solve an object localization problem using regression. Then, we address a

segmentation problem. Both of these tasks are a subset of visual recognition. In both of these

tasks we aim to develop deep convolutional models that automatically discover regularities in

image data. We can describe the visual recognition system by breaking down the process into

three steps, namely, pre-processing, feature extraction, and prediction. In pre-processing, we

perform operations to transform the raw input data (images) into normalized (size and value)

samples ready for feature extraction. We also remove invalid or unnecessary information in

pre-processing to avoid confusing the model. Extra operations such as data augmentation is

performed at this step to improve the generalization of the system. In the next step, features are

extracted from samples that are later used to make a decision by the model. These features are

extracted automatically at different levels by convolutional layers. At first low level features

such as edges are extracted and then high level features such as shapes or complex geometric

patterns. At the last step, extracted features are mapped into the output space. In the task of

object localization, the output space is a vector of six real numbers where each pair delimits a

point of interest on the Cartesian plane. In the task of segmentation, the output space is a matrix

of integers with the same width and height dimensions of the input sample where each value

classifies the corresponding pixel (vector of 3 RGB values) in the input sample.

3

Figure 0.1 An example of the cattle localization problem. Three points of

interest are localized by deep learning model. Red dots show the ground-truth

location of the hips and the neck of the cow while blue dots are model predictions

Animal welfare research has raised concerns regarding the intensification of farm animal housing

systems that offer limited opportunity for movement. However, no currently available automated

tracking software is able to efficiently and accurately track dairy cow movement across stall-based

housing systems. Applying deep learning models to location tracking provides an opportunity

for accurate and timely measurement of cow movement within the housing environment. The

objective of this study was to develop and validate a location tracking tool to monitor the

movement of dairy cows in their tie-stalls using a deep learning approach. Figure 0.1 illustrates

an example of the outcome of automatic localization compared to the ground-truth. Twenty-four

lactating Holstein cows were video recorded for a continuous 24-h period on weeks 1, 2, 3, 6,

8, and 10. Individual images showing the in-stall position of each cow were extracted from

each 24-h recording at a rate of one image per minute. Three coordinates on each cow were

manually annotated on the image sequences to track the location of the left hip, the right hip,

and the neck. The final dataset used to validate the deep learning approach consisted of 199,100

Red-Green-Blue images with manual coordinate annotations. The dataset was separated into

4

Figure 0.2 An example of the land cover segmentation problem. The

SAR image is shown on the left and its corresponding semantic

segmentation annotation on the right

training and validation sets. Variants of the following deep learning models were tested: VGG

Net, Resnet, GoogLeNet, and DenseNet. Model performance was expressed in terms of pixel

error for each coordinate annotated from the validation image set. Pixel error was converted to a

standard measure in cm using the average pix/cm ratio for each cow in each week. ResNet18

with augmented labels significantly outperformed all other models tested. For the validation

image set, the average error from all 3 coordinates was equivalent to a 0.74 cm error in actual

physical placement of the coordinates within the stall environment. Based on this high degree

of accuracy, the model may be used to analyze the activity patterns of individual cows for

optimization of stall spaces and improved ease of movement.

Synthetic Aperture Radar (SAR) imagery captures the physical properties of the Earth by

transmitting microwave signals to its surface and analyzing the backscattered signal. It does not

depends on sunlight and therefore can be obtained in any condition, such as nighttime and cloudy

weather. However, SAR images are noisier than light images and so far it is not clear the level of

performance that a modern recognition system could achieve. This work presents an analysis of

the performance of deep learning models for the task of land segmentation using SAR images.

5

Figure 0.2 illustrates the land cover segmentation problem. We present segmentation results

on the task of classifying four different land categories (urban, water, vegetation and farm) on

six Canadian sites (Montreal, Ottawa, Quebec, Saskatoon, Toronto and Vancouver), with three

state-of-the-art deep learning segmentation models. Results show that when enough data and

variety on the land appearance are available, deep learning models can achieve an excellent

performance despite the high input noise.

In this thesis, we contributed by:

1. Developing an automatic video-based location tracking tool for dairy cattle in their tie stalls

with high accuracy. This tool is useful for measuring the efficacy of different interventions

aiming at improving comfort and welfare of dairy cows.

2. Experimenting and analyzing the results of high performance deep segmentation models

trained on challenging SAR imagery data. This report is useful for comparing the efficacy

of different deep learning models in land cover segmentation task using non-optical images.

The rest of this manuscript is organized as follows: Chapter 1 introduces the related background

on deep learning and it’s application in visual recognition tasks followed by a summary of modern

convolutional neural network (CNN) architectures and previous work in animal localication

and land cover segmentation. In chapter 2, we develop an automated video-based location

tracking framework for dairy cows in their tie stalls. In chapter 3, we present an study on deep

segmentation models and their application in land cover segmentation with SAR imagery data.

Finally, in chapter 4, we conclude the manuscript and discuss the future work.

CHAPTER 1

BACKGROUND

1.1 Machine Learning

Machine learning is a subset of Artificial Intelligence, an approach to develop programs that

can learn from experience (Domingos, 2012). Most real life experiences can be stored as data

in a computer system (e.g., image, audio, video, graph). Machine learning algorithms extract

meaningful features from training data and learn to identify and reason about unseen test data.

Formally, “A computer program is said to learn from experience 𝐸 with respect to some class

of tasks 𝑇 and performance measure 𝑃 if its performance at tasks in 𝑇 , as measured by 𝑃,

improves with experience 𝐸 .“ (Mitchell, 1997) The ability to learn from data enables us to

develop algorithms that are not pragmatically complex to efficiently solve problems that are

difficult for classical algorithms. The breakthroughs in learning algorithms are expedited by the

availability of increasingly large labeled data and the leap of computational power thanks to

advances in GPUs and TPUs manufacturing process.

1.1.1 Types of learning methods

Machine learning algorithms are classically categorized into three types, namely, supervised

learning, unsupervised learning, and reinforcement learning. More recently, popular methods

include semi-supervised learning, self-supervised learning, transfer learning, and active learning.

Supervised (predictive) learning is the most widely used form of machine learning in practice

(Murphy, 2012). The goal of supervised learning is to learn to predict an associated value

or vector 𝑦 from an input vector 𝑥, where input is labeled by an instructor or human expert.

Supervised algorithms observe features from each labeled example of a dataset and learn

a mapping function 𝑦 = 𝐹 (𝑥) (estimating 𝑝(𝑦 |𝑥)) given a set of pairs 𝐷 = {(𝑥𝑖, 𝑦𝑖)} for

𝑖 = 1, . . . , 𝑁 where 𝐷 is called training set and 𝑁 is the number of training examples (Murphy,

2012). Input data 𝑥 can simply be a 𝐷-dimensional vector of numbers or any complex object

8

(e.g., an image, a set of words, a graph). Depending on the problem being solved, we need to

incorporate a way to represent the input data. For example, to predict a benign or malignant

tumor, interesting variables include (not limited to) the tumor size, total tumor area, the tumor

circularity, irregularity, and rectangularity (Zacharaki et al., 2009). On the other hand, the

output data can also take any form of representation depending on the application. Evidently, the

output value 𝑦𝑖 is usually a nominal variable from a finite set, 𝑦𝑖 ∈ {1, . . . , 𝐶} (such as benign

or malignant) for classification tasks or a real-valued number 𝑦𝑖 ∈ IR (such as the location of

a cow in her stall) for regression tasks. The estimator 𝐹 is classically modeled by algorithms

like Linear/Logistic Regression, Decision Tree, Support Vector Machine (SVM), or Nearest

Neighbours. However, here we are interested in models based on Neural Networks where

algorithms learn by adjusting their inter connection weight combinations with the help of error

values (Sathya & Abraham, 2013). In neural networks, learning is achieved by back propagating

an error value through the network and calculating the local gradients in the following two

passes:

• Forward Pass; where the input vector is passed forward neuron by neuron through the

network and emerges at the output layer of the network as output vector 𝑦. This output is

then compared with desired (ground truth) output and results in an error or loss value. This

comparison is done by some loss function 𝑓𝑙𝑜𝑠𝑠. The synaptic weights of the network are not

changed during this pass (Sathya & Abraham, 2013).

• Backward Pass; where the loss value calculated at forward pass is propagated backward

through the network. The local gradient for each neuron in each layer is calculated and is

used to update the synaptic weights of the network according to the learning rate. Multi-layer

NNs are optimized iteratively using back propagation as a way to implement gradient descent

(Ibrahim, Chen & Lipsitz, 1999).

When the Supervised learning has many applications in real life. Visual recognition tasks like:

self-driving cars, face detection, image classification, cancer prediction, emotion detection,

garbage sorting, etc. are examples where supervised learning is widely used. There are also

9

other examples that supervised learning can be helpful like: spam filtering, price prediction,

content/product recommendation (e.g., Netflix movie suggestion, Facebook relevant ads).

The second major approach to machine learning is unsupervised (descriptive) learning. In

this approach, algorithm is provided with unlabeled inputs and the goal is to find interesting

patterns in dataset 𝐷 = {𝑥𝑖} for 𝑖 = 1, . . . , 𝑁 . This is also known as knowledge discovery

(Murphy, 2012). Formally, unsupervised learning involves observing several examples of a

random vector 𝑥, and trying to learn the probability distribution 𝑝(𝑥) that can be interpreted as

pattern or structure. However, the boundary between supervised and unsupervised learning is

not ultimately clear. Many techniques used in machine learning can address both of these tasks

(Goodfellow, Bengio & Courville, 2016).

Behaviour detection, data clustering, anomaly/fraud detection, targeted marketing, and image

segmentation are examples of applications that can benefit from unsupervised learning. It is also

common to use ensemble models with a combination of supervised and unsupervised learning

to solve problems.

As a combination of supervised and unsupervised learning, semi-supervised learning is used

when only a subset of training data has labels. The goal of semi-supervised learning is to improve

the performance of a supervised model by utilizing both labeled and unlabeled data, where the

unlabeled portion of training data is larger than the labeled part due to the cost of labeling process.

Another related technique is to use weak annotations, known as weakly-supervised learning,

where labels contain noise (incomplete, inexact, inaccurate (Zhou, 2017)). A combination of

weakly and semi supervised learning is also applicable, e.g., (Yan, Liang, Pan, Li & Zhang,

2017). In transfer learning, the goal is to train the model on a different dataset for some source

task and transfer that knowledge by adapting and applying the model on the target task. Learning

types and tasks are summarized in Figure 1.1

10

Figure 1.1 Types of machine learning and their tasks

1.1.2 Machine learning tasks

Machine learning enables us to solve tasks that are too difficult to solve with traditional – fixed –

programs. In machine learning, the process of learning itself is not the task. Learning allows

us to attain the intelligence needed to perform the task. We usually describe a task as how the

algorithm should process an example (Goodfellow et al., 2016). An example is a collection of

features that are measured from an event or object that we are interested in. We represent each

example as a vector 𝑋 ∈ R𝑛 where each entry 𝑥𝑖 of the vector is a specific feature. Here we

discuss three important tasks in machine learning.

• Classification: The goal of classification is to learn a mapping from inputs 𝑥 to output

𝑦, where 𝑦 ∈ {1, . . . , 𝐶}. 𝐶 is the number of classes. We refer to this problem as binary

classification if 𝐶 = 2 (𝑦 ∈ {0, 1}). If 𝐶 > 2, the problem is referred to as multi-class

classification. Sometimes, the class labels are not mutually exclusive (an object may be

classified as expensive and heavy), in this case the problem is multi-label classification

(Murphy, 2012). In this type of task, the computer is asked to specify which of𝐶 classes some

input belongs to (Goodfellow et al., 2016). There are other variants of classification problems

where the algorithm learns a probability distribution over classes. Object recognition

11

problems are classification tasks that are best accomplished with deep learning (Goodfellow

et al., 2016).

• Regression: The goal of regression is to learn a function 𝑓 : R𝑛 → R from inputs 𝑥 to some

numerical value 𝑦. For example, the output value 𝑦 may represent the estimated price of a

house given some if its features like surface area, year built, neighbourhood, etc., in input

vector 𝑥. Regression is similar to classification, except that the format of output is different

(Goodfellow et al., 2016).

• Density estimation: The goal of density estimation is to learn a probability density/mass

function 𝑝(𝑋) (depending on whether the input is continuous or discrete) on the space that

examples were drawn from (Goodfellow et al., 2016). Here the algorithm learns the structure

of the input data.

Figure 1.2 illustrates the difference between classification and regression using a linear example.

Both classification and regression are general tasks that can be tailored to solve specific problems.

For example, in visual recognition, classification can be applied both at image level (to predict

a class label for an entire image or a crop of it) or pixel level (to predict a class label for each

pixel). Combination of classification and regression is also applicable, for example, to locate

and classify one or multiple objects within an image.

1.1.3 Challenges in machine learning

One of the most important challenges in machine learning is the problem of overfitting. An

overfitted model performs very well on the training set, however, it flounders to achieve similar

performance on the test set. Such models procure inadequate generalization, i.e., they lack

the ability to perform well on previously unseen inputs (Goodfellow et al., 2016). Modeling

every minor variation in the training set is more rampant when fitting highly flexible models

(e.g., deep neural networks). This results in an overfitted model that mimics the noise in the

training data rather than learning the true trends (Murphy, 2012). Another factor that contributes

to overfitting is the size (number of examples) of the training set. Statistically, an overfitted

model contains more parameters than can be justified by the data. There are a few techniques to

12

overcome overfitting.

Figure 1.2 Difference between linear classification and linear regression

• Regularization is a technique which makes slight modifications to the learning algorithm

such that the model generalizes better. Regularization penalizes the coefficients, such

that no parameter in the model will get a relatively high value. There are different

regularization techniques such as L1 and L2 regularization, and dropout (Srivastava, Hinton,

Krizhevsky & Salakhutdinov, 2014).

• Cross-validation: In K Fold cross validation, the data is divided into k subsets. Now one of

the k subsets is used as the validation set and the other k-1 subsets are put together to form a

training set. This process is repeated k times. The error estimation is averaged over all k

trials to get total effectiveness of our model. This significantly reduces bias as we are using

most of the data for fitting, and also significantly reduces variance as most of the data is also

being used in validation set.

• Early stopping: Early stopping is a form of regularization used to avoid overfitting when

training a learner with an iterative method, such as gradient descent.

13

Figure 1.3 Early stopping

Figure 1.4 Overfitting

1.2 Image Recognition

Computer vision is the study of the most important functions of our visual system, e.g.,

extracting useful information from images (like identifying objects and people in context), and

reconstructing the three-dimensional structure of an environment (Buhmann, Malik & Perona,

1999). The aim is to design models that learn to reproduce these functions. Vision is hard. Two

images of the same object can be drastically different depending on the lighting, viewpoint,

camera resolution, etc. Moreover, different recognition tasks require extracting information

14

at different levels of spatial and logical resolution. For example, in image classification, a

single label describes an entire image. Where, in object segmentation, all pixels are labeled

individually.

Image recognition is an application of machine learning. Recently, with the deep learning

breakthrough (Tweedale, 2019) and larger yet standard datasets, a promising avenue has been

paved in the most difficult recognition tasks on challenging datasets. Analyzing a scene and

recognizing all of the constituent objects is the most challenging visual task for computers

(Szeliski, 2010). The most challenging version of recognition is general category – class –

recognition, that involves recognizing varied classes such as animals or furniture. In many

instances, recognition depends heavily on the context of surrounding objects and scene elements.

Now, we talk about image recognition tasks.

l

Figure 1.5 Deep learning breakthrough

Taken from Tweedale (2019)

15

1.2.1 Classification

As a fundamental task, image classification (also called category or class recognition) at-

tempts to identify the category (class) to which a whole image belongs. Image classification

is relatively a simple recognition task, since (typically) only one object appears in images.

For example, in the problem of classifying images of single digits to number symbols, the

classifier learns a mapping from the input image represented by a 2-D vector 𝑋 to output

label 𝑦 where 𝑦 ∈ {0, ..., 9} (LeCun & Cortes, 2010). In order to classify a set of images

into different categories, the relationship between the data and the classes must be well under-

stood. Classification techniques were originally developed out of research in Pattern Recognition.

Figure 1.6 MNIST dataset

1.2.2 Detection

Object detection is the combination of two tasks; classification and localization. Detection is a

challenging recognition task since multiple objects can appear in one image. In localization, a

bounding box is drawn around each object of interest in the image. Then, a class label is assigned

to each bounding box. Using brute force to apply an algorithm to every possible sub-window

16

in an image is slow and prone to error. In traditional methods, special purpose detectors are

constructed to find regions where objects are more likely to to be.

Face detection is an example of early successful applications of object detection (Szeliski, 2010).

We can also track objects in videos by applying object detection methods to a sequence of frames

per second. For example, tracking the movement of cars and pedestrians in a street.

Recently, deep learning has dominated detection algorithms (Zou, Shi, Guo & Ye, 2019); (Liu

et al., 2018). Deep detection algorithms are designed to focus on achieving high accuracy or

high efficiency. A highly accurate detection algorithm is robust to both interclass and intraclass

variations. There are two categories of deep detection frameworks.

• Two stage (region based) detection frameworks: separating the preprocessing step for

generating object proposals, e.g., R-CNN (Girshick, Donahue, Darrell & Malik, 2014), Faster

R-CNN (Ren, He, Girshick & Sun, 2015), and Mask R-CNN (He, Gkioxari, Dollár & Girshick,

2017)

• One stage (unified) detection framworks: no region proposal generation, trained end-to-

end, e.g., YOLO (Redmon, Divvala, Girshick & Farhadi, 2016), and YOLOX (Ge, Liu, Wang,

Li & Sun, 2021)

Recent studies shows that with a weak supervision approach, the necessity of a well labeled

datasets can be significantly reduced (Bilen & Vedaldi, 2015).

1.2.3 Segmentation

Image segmentation is a detection task where localization is performed at pixel level rather

than placing a coarse bounding box around the objects. Segmentation helps to identify the

shapes of different objects in images since the models predict a granular pixel-wise mask. In

the simplest formulation – semantic segmentation – the problem is to classify each pixel with

a class (semantic) label where objects are grouped based on a set of categories (e.g., human,

car, tree, sky) as a single entity and different instances of the same object are not distinguished.

In a more refined setup – instance segmentation – multiple objects of the same category

17

are delineated as distinct individual instances and are labeled uniquely. Figure 1.7 compares

semantic segmentation with instance segmentation in the context of classification and detection

using an example of cats and dogs. Some real-world applications of semantic segmentation are

self-driving cars (identifying pedestrians, vehicles, road lanes, etc.), medical imaging (outlining

tumors), satellite imagery (detecting forests, bodies of water, roads, farms, urban communities,

etc.), and augmented reality (Minaee et al., 2020). Deep convolutional models (e.g., DeconvNet

(Noh, Hong & Han, 2015); SegNet (Badrinarayanan, Kendall & Cipolla, 2015); PSPNet (Zhao,

Shi, Qi, Wang & Jia, 2016); DeepLabv3 (Chen, Papandreou, Schroff & Adam, 2017); DANet

(Fu, Liu, Tian, Fang & Lu, 2018)) have made a paradigm change in image segmentation by

achieving remarkable performance improvements over some advanced (yet classical) algorithms

(e.g., graph cuts (Boykov, Veksler & Zabih, 2001), conditional and Markov random fields (Plath,

Toussaint & Nakajima, 2009), and sparsity-based (Minaee & Wang, 2019)). The main challenge

with segmentation relates to the high cost of generating accurate and consistent pixel-level

annotations for large datasets (Rieder & Verbeet, 2019).

Figure 1.7 Classification VS Detection VS Segmentation (Semantic vs Instance)

Taken from Rieder & Verbeet (2019)

18

1.2.4 Benchmark datasets

Deep learning thrives on large training sets. The availability of impeccable training datasets

has capacitated many of the major breakthroughs in AI (Wissner-Gross, 2016). However,

producing high quality labeled datasets for supervised learning is expensive and difficult.

Labeling thousands of data samples by expert annotators is a resource (time, cost, etc.) intensive

process, exacerbated by human errors. In visual recognition, the cost of labeling an image for

segmentation tasks is significantly higher compared to classification and detection. For example,

the pricing of Google Cloud (https://cloud.google.com/ai-platform/data-labeling/pricing) for

labeling 1,000 images is 35 USD for classification, 63 USD for bounding box, and 870 USD for

segmentation. There are several public standard datasets that researchers in the field of visual

recognition use to evaluate their algorithms and compare them to other models. Here we provide

a list benchmark datasets and briefly explain the data and the respective recognition task.

• MNIST dataset (LeCun & Cortes, 2010) of handwritten digits (0 to 9) is a subset of NIST

database. The digits are size-normalized and centered in square gray-scale images with a

size of 28 × 28. MNIST contains a training set of 60,000 samples and a test set of 10,000

samples divided equally per 10 categories for classification.

• CIFAR dataset (Krizhevsky, 2009) of different Wordnet nouns (e.g., airplane, bird, dog,

ship, etc.) has two variants – CIFAR-10 and CIFAR-100 – both of which contain 50,000

training samples and 10,000 test samples of square RGB images with a size of 32 × 32

divided equally per 10 and 100 categories in CIFAR-10 and CIFAR-100 respectively for

classification. This leaves only 500 training samples for each category in CIFAR-100, making

it a more challenging dataset compared to CIFAR-10. However, both of CIFAR datasets are

already solved efficiently. For example, in the state-of-the-art, EffNet-L2 (Foret, Kleiner,

Mobahi & Neyshabur, 2020) achieves 99.7 and 96.08 percent test accuracy on CIFAR-10

and CIFAR-100 respectively.

• ImageNet dataset (Russakovsky et al., 2015) contains images that are organized according

to the Wordnet hierarchy. Wordnet contains approximately 100,000 phrases and ImageNet

has provided around 1000 images on average to illustrate each phrase.

19

1.3 Convolutional Neural Networks

As a specialized type of neural networks, convolutional neural networks (CNN) have been

remarkably successful in practical applications (Krizhevsky, Sutskever & Hinton, 2012; He,

Zhang, Ren & Sun, 2015). Convnetes are most suitable for processing data structures that

have at least one dimension with a grid-like topology, e.g., time-series data (weather records,

economic indicators, etc.), where samples are taken at defined intervals over a period of time

constructing a 1D grid (vector) of real values, and image data (visual recognition) as a 2D grid

(matrix) of pixels, where each pixel is a real value in Grayscale images, or a vector of three real

values in RGB images (RGB images can also be expressed with integer values ranging from 0

to 255). The idea of convnets is to replace the linear transformation (matrix multiplication) in

vanilla neural networks with a convolution operation (Goodfellow et al., 2016).

We start introducing the convolution operation for 1D signals and then extend its definition in

2D spaces. The general form of convolution is defined as an operation on two functions of a

real-valued argument. However, this definition is not practical when working with data on a

computer. Therefore, we discretize this definition by assuming an input function 𝑥(𝑡) and a

kernel (filter) function 𝑤. The convolution of 𝑥 and 𝑤, denoted with an asterisk 𝑥 ∗ 𝑤, and

referred to as the feature map (pre activation), is given by:

𝑠(𝑡) = (𝑥 ∗ 𝑤) (𝑡) =
∑
𝜏

𝑥(𝜏)𝑤(𝑡 − 𝜏) (1.1)

The definition above implies a flip-and-filter operation, where entries of 𝑠(𝑡) are calculated by

flipping the kernel 𝑤, shifting it, and taking the dot product with the input 𝑥. Since convolution

is commutative, it can be equivalently defined as:

𝑠(𝑡) = (𝑤 ∗ 𝑥) (𝑡) =
∑
𝜏

𝑥(𝑡 − 𝜏)𝑤(𝜏) (1.2)

The latter definition suggests a translate-and-scale operation, where multiple copies of the input

𝑥 are translated and scaled by the kernel 𝑤 (Grosse, 2018). The convolution operation can be

20

similarly defined over more than one axis, e.g., using 2D image data 𝑋 and a 2D kernel𝑊 , we

have:

𝑆(𝑖, 𝑗) = (𝑋 ∗𝑊) (𝑖, 𝑗) =
∑
𝑝𝑞

𝑋 (𝑝, 𝑞)𝑊 (𝑖 − 𝑝, 𝑗 − 𝑞) (1.3)

= (𝑊 ∗ 𝑋) (𝑖, 𝑗) =
∑
𝑝𝑞

𝑋 (𝑖 − 𝑝, 𝑗 − 𝑞)𝑊 (𝑝, 𝑞) (1.4)

Flipping of the kernel in convolution results in a nice mathematical property, however, the

commutative property is not important in the implementation of convnets because the kernels

are learned during the training process. Therefore, convnets are implemented using the cross-

correlation function, i.e., convolution without flipping the kernel (Goodfellow et al., 2016),

given by:

𝑆(𝑖, 𝑗) = (𝑋 ∗𝑊) (𝑖, 𝑗) =
∑
𝑝𝑞

𝑋 (𝑖 + 𝑝, 𝑗 + 𝑞)𝑊 (𝑝, 𝑞) (1.5)

Convnets take advantage from the following two important assumptions.

• Sparse connectivity aims to limit the number of interactions between each pair of input

and output units by defining the kernel smaller than the input. This leads to fewer stored

parameters and consequently reduces required memory, improves statistical efficiency, and

allows the network to efficiently describe complex interactions by constructing smaller

building blocks for which their output values depend on a small portion of the input values.

We illustrate the sparse connectivity in Figure 1.8.

• Parameter sharing aims to limit the number of parameters (weights) by sharing them

between multiple functions in a model. In convnets this means that "rather than learning a

separate set of parameters for every location of the input, we learn only one set" because

feature detectors learned at one part of the data is probably useful in other parts.

In CNNs, the two assumptions above makes it possible to work with variable size inputs. A

typical convolutional network layer consists of three sub-layers. The first sub-layer performs

several convolutions in parallel to produce a set of linear activations. In next the sub-layer,

21

Figure 1.8 Sparse connectivity: The number of connections reduces significantly

in sparsely connected layers compared to fully connected layers. This results in a

smaller receptive field meaning that each output depends on fewer inputs

each linear activation in passed through a nonlinear activation function. At the last sub-layer,

a pooling function modify the output of the layer. Pooling helps to make the representation

become approximately invariant to small translations of the input (Goodfellow et al., 2016).

There are two types of popular pooling functions: max pooling and average pooling. Max

pooling simply reduce a set of numbers defined by a windows by replacing them with the

maximum value present at that window. Average pooling does the same using the average value

of numbers present at each window.

22

Finally, after several convolutional and pooling layers, the final step is to generate the output.

This is done by using a fully connected layer at the very end of the network. Neurons in a fully

connected layer have connections to all activations in the previous layer, like regular neural

networks. Figure 1.9 illustrates the architecture of a typical convolutional neural network.

There are many popular CNN architectures mainly designed for image classification and object

localization problems. These models show state-of-the-art performance on benchmark datasets

such as CIFAR-10, CIFAR-100, ImageNet and PASCAL VOC. Here we will discuss some of the

most successful ones.

Conv

G
B

R
B

GG
R

Input Image Pool Conv FC Output

1
2

K

Pool

Figure 1.9 Typical CNN Architecture

1.3.1 AlexNet

Inspired by the architecture of LeNet (Lecun, Bottou, Bengio & Haffner, 1998), AlexNet

(Krizhevsky et al., 2012) is the first deep convnet trained efficiently on large subsets of ImageNet

used in ILSVRC-2010 and ILSVRC-2012. These subsets contain around 1.2 million training

images with 1000 different categories. Using label-preserving transformations to augment small

datasets makes it possible to solve simple recognition tasks (like MNIST digit recognition)

efficiently. However, in a more realistic setting, objects of the same class can have substantial

spatial variability in different images. This calls for larger datasets and models with greater

learning capacity. These models benefit from a strong architectural prior granted by convnets to

make relevant assumptions about the nature of image data, and to adjust the learning capacity

by tuning the depth and breadth of convolutional filters. Although training convnets is easier

than fully connected neural networks of the same size due to sparse connectivity and parameter

23

sharing, applying deeper models in large scale to high-resolution images can get computationally

expensive. Luckily, the continuous growth in GPUs processing power and memory makes it

possible to train significantly deep models on large datasets in practical time by using an highly

optimized implementation of 2D convolution.

The AlexNet model contains eight weighted layers of which the first five are convolutional and the

remaining three are fully connected. Figure 1.10 summarizes the overall architecture of AlexNet.

Every weighted layer is followed by the ReLU (Nair & Hinton, 2010) non-linearity. It is shown

that using a non-saturating activation function (such as 𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥)) accelerates the training

process several times compared to saturating coequals (such as 𝑓 (𝑥) = 𝑡𝑎𝑛ℎ(𝑥)) when optimizing

deep convnets with gradient descent (Krizhevsky et al., 2012). To improve generalization in

AlexNet, the first two convolutional layers are followed by a local response normalization scheme

that entices local weights at different channels to compete for greater values by dividing the

pre-activations by the sum of few adjacent kernel maps squared. The last note in the architecture

of AlexNet is the employment of overlapping max pooling that is reported to slightly improve

the results compared to the equivalent non-overlapping scheme. Similar to other classification

tasks, AlexNet is trained by optimizing the log loss, i.e., maximizing the multinomial logistic

regression objective (also known as cross entropy) after the network predictions are normalized

into a probability distribution using softmax function 𝜎(𝑥𝑖) = 𝑒𝑥𝑖/
∑
𝑖 𝑒
𝑥𝑖 .

In the original architecture of AlexNet, kernels are cut across and stored in two GPUs in a way

that limits the communication necessary between the memories of each GPU. This technique was

employed since each GPU had a limited memory of 3GB at that time; therefore, we do not provide

any further details on how the splitting was performed exactly. AlexNet is very susceptible to

overfitting since it has more than 60 million parameters where most of them belong to the last

three fully connected layers. To reduce overfitting, in addition to data augmentation, dropout

technique is applied in the last two fully connected layers to reduce complex co-adaptations

between the weights of adjacent layers.

24

AlexNet achieved top-1 and top-5 test errors of 37.5% and 17.0% on ILSVRC-2010 and top-5

test error of 15.3% with a pre-trained model on ILSVRC-2012.

Figure 1.10 AlexNet Architecture

Taken from Krizhevsky et al. (2012)

1.3.2 VGG networks

Motivated by large public image repositories and high performance GPUs, VGG (Simonyan & Zis-

serman, 2015) builds upon the idea of smaller kernel size and stride in very first convolutional

layers (Zeiler & Fergus, 2014; Sermanet et al., 2014) and contributes by designing deeper and

more accurate convnets. Training networks with increased depth is viable due to very small

(3 × 3) kernels that are still capable of capturing the notion of left, right, up, down, and center

efficiently. VGG achieved first and second place in ILSVRC-2014 localization and classification

tasks respectively.

Five unique network architectures are introduced by VGG (excluding one architecture that

performs local response normalization (LRN) after the first convolutional layer, a technique

inherited from AlexNet). These five architectures share the same design principles in layer

configurations except for the depth. VGG is trained using RGB input images with fixed spatial

dimensions of 224 × 224, pre-processed by subtracting the mean RGB value from each pixel.

The architecture is designed by stacking five groups of 3 × 3 convolutional filters (excluding

one architecture that also contains 1 × 1 kernels) where each group is followed by a 2 × 2 max

25

pooling with a stride of 2. The architecture is concluded by three fully connected (FC) layers,

where two 4096 channels layers are followed by a 1000 channels layer outputting classification

scores. Naturally, all weighted layers are followed by ReLU non-linearity (Nair & Hinton, 2010).

The stride and padding of convolutions are fixed to 1, preserving spatial resolution. Figure 1.11

shows the increasing depth in different configurations of VGG. In its deepest configuration, with

144 million parameters, VGG-19 only has 8% more than 133 million parameters of VGG-11,

granted that the extra layers are convolutional.

As the best performing configuration, VGG-19 achieved top-1 and top-5 test errors of 25.5%

and 8.0% on ILSVRC-2014 using a single test scale setup. The top-1 and top-5 errors are further

decreased to 24.4% and 7.1% using a combination of multiple crops and dense evaluations

(Simonyan & Zisserman, 2015).

64

Conv 3 × 3 + ReLU

Fully connected + ReLU

Input img 224 × 224

Max pool 2 × 2
Increasing Depth

128
256

512

512

4096

VGG-11 VGG-13 VGG-16 VGG-19

256

512

512

4096
1000

64

128

256

512

512

256

512

512

64

128

64

128

256

512

512

256

512

512

64

128

256

512

512

64

128

256

512

512

256

512

512

64

128

256

512

512

256

512

512

4096
4096
1000

4096
4096
1000

4096
4096
1000

Figure 1.11 VGG Networks. More than 80% of parameters are in fully

connected layers. VGG-11 with LRN and VGG-16 with Conv 1 × 1 are omitted

26

1.3.3 Inception

Inception is the Google’s codename for the computational budget aware deep architecture that

achieved 1st place in ILSVRC-2014 classification task with a particular “incarnation” called

GoogLeNet (Szegedy et al., 2015a).

With the careful design of repeating components called inception module, this architecture

tackles the problem of computational expenses and overfitting while benefit from increasing

depth and width of the network. Inception is motivated not only by the increased processing

power and larger datasets; but mainly from improved algorithms and architectures that were

designed while capping computations at “1.5 billion multiply-adds”. Inception is inspired by

Network in Network to enhance local modeling within the receptive fields, in practice however,

to increase local discriminability, coequal 1×1 convolutions are used in place of MLPs originally

proposed by (Lin, Chen & Yan, 2014).

While increasing the size (depth, width) of convnets can improve their performance, it comes

with two major drawbacks: 1) overfitting, due to the increased number of parameters, and 2)

increased use of computation and memory. Overfitting can be moderated by larger training set

and regularization, however, limiting computation and memory usage can only be achieved by

adopting sparsely connected architectures inside the convolutions. This is inherently different

from convolution’s parameter sharing. Here, the idea is to build non-uniform sparse models

motivated by (Arora, Bhaskara, Ge & Ma, 2013) that constructs the optimal network topology,

layer by layer, from a large, very sparse deep neural network by clustering neurons from the last

layer that present highly correlated activations.

1.3.4 Residual networks

Deep convolutional neural networks achieved remarkable results in Visual Recognition tasks.

Deep networks naturally integrate from low-level details like colors and edges, to more abstract

concepts like eyes and lips. As the importance of network depth revealed itself in modern CNN

architectures (Simonyan & Zisserman, 2015; Zilly, Srivastava, Koutník & Schmidhuber, 2017),

27

residual networks (He et al., 2015) were introduced. CNN models can benefit from increased

depth, however, training deep CNNs is challenging due to vanishing/exploding gradients and

degradation (saturating accuracy). While the former is mitigated by normalized initialization

(Bias𝑖 𝑗 = 0,Weight𝑖 𝑗 = Uniform[−
√

6√
𝑛 𝑗+𝑛 𝑗+1

,
√

6√
𝑛 𝑗+𝑛 𝑗+1

] where 𝑛 is the number of weights in layer

𝑗 (Glorot & Bengio, 2010)) and batch normalization (Ioffe & Szegedy, 2015), the latter is

exposed in deeper models indicating the levels of optimization difficulty. Experiments show that

training deeper models produce higher training error compared to their shallower counterparts.

However, by adding identity mapping layers to a trained model, one can construct a deeper

solution with the very same training error, yet SGD cannot find such solutions.

Deep residual learning framework proposes a network architecture to address degradation

problem by letting each few stacked layers to fit a residual mapping. Let’s assume that the desired

mapping is 𝐻 (𝑋), instead of finding this mapping, the algorithm tries to find residual mapping

𝐹 (𝑋) = 𝐻 (𝑋) − 𝑋 . The author hypothesize that it is easier to optimize a residual mapping than

to optimize the unreferenced mapping. This formulation implies shortcut connections in the

network architecture. We may let shortcut connections simply perform identity mapping. These

deep residual networks are easy to optimize and benefits easily from the accuracy gains with

increased depth. There are five different ResNet architectures that are mainly different in their

depth. The first convolution layer of these networks consists of a 7 × 7 filter with a stride of 2

followed by a max pooling of 3 × 3 with a stride of 2. All of the ResNet architectures benefit

from an average pooling and a single fully-connected layer followed by softmax. Figure 1.12

illustrates the architecture of ResNet-34 comparing it with VGG19. Table 1.1 compares the

accuracy of AlexNet, VGG, and Resnet on ImageNet dataset.

28

Figure 1.12 ResNet Architecture

Taken from He et al. (2015)

29

Table 1.1 AlexNet vs VGG vs ResNet

Model Top-1 error Top-5 Error

AlexNet 36.7 15.4

VGG (v5) 24.4 7.1

ResNet-34 21.53 5.60

ResNet-50 20.74 5.25

ResNet-101 19.87 4.60

ResNet-152 19.38 4.49

1.4 Related Work

In this section, we review the literature of deep learning applications in localization and land

cover segmentation separately.

1.4.1 Localization

In localization, learning algorithms predict a set of real numbers. Deep CNN models can be

trained using multiple loss functions that measure how far the predictions are from the ground

truth. The most basic form of localization loss calculates the mean absolute error (MAE)

between predictions and target. MAE is also known as L1 loss i.e. L1 norm | |𝑊 | |1 of vector

𝑊 = 𝑌 −𝑌 where𝑌 /𝑌 are prediction/target vectors. In a batch training setup, a reduction function

(like sum or mean) is needed to calculate a scalar loss for the entire batch. Assuming both 𝑌 and

𝑌 vectors contain 𝑛 elements, the MAE is calculated as in Equation 1.6 with sum reduction for a

batch size of 𝑁 .

MAE =
𝑁∑ 1

𝑛

𝑛∑
𝑖

|𝑌𝑖 − 𝑌𝑖 | (1.6)

The next common localization loss calculates the mean squared error (MSE) between predictions

and target. MSE is also known as L2 loss i.e. squared L2 norm | |𝑊 | |2
2

of vector𝑊 = 𝑌 − 𝑌 as

shown in Equation 1.7 with mean reduction.

30

MSE =
1

𝑁

𝑁∑ 1

𝑛

𝑛∑
𝑖

(𝑌𝑖 − 𝑌𝑖)2 (1.7)

MSE penalizes extreme errors and makes small (< 1) errors less effective. It can be observed that

MSE exhibits quadratic growth while MSE increases proportionally, therefore it is more sensitive

to outliers. To combines the desirable properties of both the absolute and the quadratic loss,

Huber loss (Mangasarian & Musicant, 2000) introduces a conditional criterion that calculates the

MSE when the absolute element-wise error falls bellow 𝛿 and a 𝛿 scaled MAE term otherwise.

Equation 1.8 defines the Huber loss with a 𝛿 = 1, also known as as the smooth L1 loss.

smooth𝐿1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.5(𝑌 − 𝑌)2, if |𝑌 − 𝑌 | < 1

|𝑌 − 𝑌 | − 0.5, otherwise

(1.8)

Human Pose Estimation

Human pose estimation (HPE) is an example of a localization problem where the classical

computer vision methods were found to be outperformed by deep learning solutions that have

been rapidly developed in recent years. HPE is the problem of building a representation of

human body by locating the body parts from images or videos. We can solve this problem for

2D and 3D pose annotations. Describing such representation requires human body modeling.

Three main models of human body modeling are: kinematic model (2D and 3D), planar model

(2D), volumetric model (3D). N-joints rigid kinematic model is most commonly used in HPE

methods where a human body is defined as an entity with joints and limbs, containing body

kinematic structure and shape information (Zheng et al., 2020). Figure 1.13 illustrates three

main approaches to human body modeling.

Although HPE is not directly related to our work in this thesis, learning representations of pose

annotations modeled by joints and limbs; whether for human or cattle, resembles an analogous

problem with challenges similar to those of HPE. Therefore, the previous work in HPE is

motivating for Animal Localization.

31

Figure 1.13 Human body modeling. From left to right

(1) Kinematic, (2) Planar, (3) Volumetric

Taken from Zheng et al. (2020)

HPE has many applications including human-computer interaction (HCI), action recognition,

motion analysis, video surveillance, medical assistance, animation, gaming, augmented reality

(AR), and virtual reality (VR). Deep learning solutions have achieved high performance in

2D HPE of a single-person, driving the research to the more challenging problem of highly

occluded multi-person HPE in complex scenes. Highly occluded multi-animal scenes, e.g.,

free-stall barns where dozens of cattle can move around freely, are also challenging in Animal

Localization. Other challenges in HPE includes insufficient training data, depth ambiguities, and

strong articulations. Here we summarize a few important deep learning methods in HPE. The

first major work that applied CNN-based regression to HPE is DeepPose (Toshev & Szegedy,

2014). DeepPose reviews the limitations of part-based models and emphasizes on the need for a

holistic view of HPE, i.e., estimating the joint location using a complex nonlinear transformation

of the full image. The employed CNN is an AlexNet (Krizhevsky et al., 2012) with the final FC

layer outputting a pose vector (with a size of 2𝑘) that contains 𝑥 and 𝑦 coordinates for 𝑘 joints.

The model is trained on FLIC (Sapp & Taskar, 2013) and LSP (Johnson & Everingham, 2010,

2011) datasets using L2 loss. Evaluation is performed by Percentage of Correct Parts (PCP) and

Percentage of Correct Joints (PCJ) metrics.

32

1.4.1.1 Animal Localization

Reliable and robust tracking of individual cows is necessary for analyzing the behaviors of

dairy cattle to maintain their health and welfare (Mahmud, Zahid, Das, Muzammil & Khan,

2021). Tracking can be done by either using sensors (e.g., motion, bubble) or using cameras.

Here, we focus on research in tracking using optical cameras. Installing cameras in dairy farms

is constrained by the type of housing environment. Although this work only utilizes cows in

tie-stall, we review previous work in developing automatic tracking systems for cows in free-stall

as well. Mainly because we can easily generalize this approach to develop tracking methods in

different housing environments.

In (Guzhva, Ardö, Nilsson, Herlin & Tufvesson, 2018), a 2-step CNN architecture is used to

develop a robust tracking system to detect cows in a free-stall. First a deep VGG network without

fully connected layers produces a five-channel probability map to detect the landmark class (e.g.,

background, cow center, cow head) that serves as the input for a second shallow CNN to detect

the cows and their orientations (described by 32 different classes) given a top-view input image

containing multiple cows.

1.4.2 Land Cover Segmentation

The research in remote sensing, specifically land cover classification, is mostly motivated by

the lack of large annotated SAR datasets. In (Huang, Dumitru, Pan, Lei & Datcu, 2020), a

very deep pre-trained residual network is fine tuned on natural images for remote sensing and

validated on SAR data using transitive learning. A cost-sensitive top-2 smooth loss function is

used to reduce the effect of imbalanced dataset with mislabeled training samples. In (Wu, Li,

Zhang, Li & Guo, 2018), a new dataset is developed to evaluate the performance of deep residual

CNN models on polarimetric SAR scene classification. Using transfer learning, manifold

polarimetric decompositions are incorporated into the model without losing the spatial features.

In (Seferbekov, Iglovikov, Buslaev & Shvets, 2018), a feature pyramid network (FPN), pretrained

on ImageNet, is utilized to develop a model for multi-class segmentation of land cover on

33

satellite imagery collected by DigitalGlobe’s satellite. To reduce overfitting, a spatial dropout

unit is deployed on the output layer. In (Zhang et al., 2019), the labels of land cover and land

use are utilized jointly to train a deep convolutional neural network for land cover classification.

Most of the research in land cover classification focuses on particular tasks over similar regions.

Optical imagery is usually incorporated for label generation. More importantly, models are

developed for image-level land cover classification. In this work, we train and validate deep

segmentation models using SAR imagery only. Also, rather than image-level, we perform the

classification on pixel-level.

1.4.3 Discussion

Firstly, we discussed the importance of robust tracking of individual dairy cattle for analyzing

their behavior and maintaining their welfare. In view of constraints imposed by the housing

environments, it is challenging to install and maintain optical cameras in dairy farms. The

previous work in cattle localization focuses on detecting landmark classes, the cows, and

their orientation in free-stall. The focus in the first part of this thesis is on developing a

robust localization tool for dairy cattle in tie-stall that can be generalized to different housing

environments.

Secondly, we reviewed the previous work in remote sensing, specifically in the context of land

cover classification. Motivated by the lack of large annotated synthetic aperture radar (SAR)

datasets, several studies focus on utilizing transfer learning to fine tune models mitigating the

lack of data for remote sensing applications. Most of the previous work focuses on land cover

classification task over similar regions with optical imagery. In the second part of this thesis, we

focus on land cover segmentation using deep convolutional neural networks (CNN) on SAR

imagery only.

CHAPTER 2

AUTOMATION OF VIDEO-BASED LOCATION TRACKING TOOL FOR DAIRY
COWS IN THEIR HOUSING STALLS USING DEEP LEARNING

2.1 Introduction

Tracking animal movement is a tool widely used in animal behavior research. Animal movement

can be tracked from a large scale such as further understanding the migratory patterns of birds

(Guilford et al., 2011), to a small scale such as understanding the movements and behaviors

of parasitoid wasps (Abram, Parent, Brodeur & Boivin, 2016). While the scale of behavioral

tracking may vary, the objectives and challenges of developing new tracking software remains

the same, particularly in terms of maximizing accuracy (Shepley, Berthelot & Vasseur, 2017).

Automated tracking of production animal movement within the housing environment is a useful

tool to measure the efficacy of different interventions aiming at improving comfort and welfare.

With the intensification of dairy cow husbandry systems, welfare concerns associated with limited

opportunities for movement have become a major research focus (Vasseur, 2017). Tracking of

cows’ movement within their home stalls could provide, in conjunction with other common

outcome measures (e.g., activity levels, physiological parameters), a greater insight into the level

of comfort provided to cows in different environmental set-ups than with those common measures

alone. This can be used to better support the development of recommendations for animal

welfare housing improvements (Boyer, de Passillé, Adam & Vasseur, 2021a; Boyer et al., 2021b;

McPherson & Vasseur, 2021; St John, Rushen, Adam & Vasseur, 2021). Yet, commercially

available video-based automated tracking software for researchers in animal behavior and welfare

sciences (e.g., Ethovision XT®, iDTracker©, Bio-Tracking©) are expensive and show limitations

in their ability to accurately and efficiently track the movement of dairy cows due to variation

in the housing environment (e.g., different surfaces, colors and lights, people walking through

frame, neighboring cows). As an alternative, manual tracking of farm animals is costly and

time-intensive (i.e., several hours for 1 h of video recording), since observers need to be properly

trained and location coordinates need to be visually marked over subsequent images. Recent

36

research in computer vision have allowed the development of novel methods for tracking animals

in their production environment using algorithm-based ability to detect, identify, and follow

objects in a continuous manner, overtime, and under varying conditions. Deep learning has been

successful in visual tracking applications due to its accuracy in feature learning. Developing a

software that uses deep learning techniques to progressively extract higher level features from

raw image input may be more effective than available software at discriminating environmental

variation. Software that uses convolutional neural networks (CNN) to track the movement of an

object against a diverse background have shown to be more accurate and time efficient, especially

those that are developed with deep features (Li, Wang, Wang & Lu, 2018). As an example of

CNN application, (Guzhva et al., 2018) showed that an individual cow could be successfully

tracked for over 20 min in a mildly crowded free-stall environment. Unfortunately, one model is

not generalizable to all situations and requires validation. The objective of our study was to

validate whether it is feasible to develop an accurate and low-cost alternative to manual cow

tracking of spatial use in their tie-stall using deep learning techniques.

2.2 Materials and Methods

The certified Animal Care Committee of McGill University and affiliated hospitals and research

institutes reviewed and approved the use of animals in this trial and all procedures used

(#2016 − 7794). All aspects of this study met the high standards established by the Canadian

Council on Animal Care to ensure the continued humane and ethical use of animals in research.

2.2.1 Sample and Recordings

Lactating Holstein cows (𝑛 = 24, average 129 days in milk) were randomly selected from a herd

at the Macdonald Campus Dairy Complex (Ste-Anne-de-Bellevue, Québec, Canada). The trial

period extended for 10 consecutive weeks from February 20 to May 1, 2017. The cows were

housed in two opposite rows of tie-stalls, each facing a wall. Stall dimensions were in accordance

with current recommendations following the individual body size of each cow (DFC-NFACC,

2009; Anderson, 2014; Valacta, 2014). The stall base consisted in KKM longline rubber mats

37

(Gummiwerk Kraiburg Elastik GmbH & Co. KG, Tittmoning, Germany) coated with a thin

layer of sawdust bedding (< 2𝑐𝑚). Bedding was added once per day in the morning. Cleaning

of the stalls and the gutters was performed as needed from 5:00 a.m. until 9:00 p.m. Cows

were milked twice per day in stall at 5:00 a.m. and 5:00 p.m. Cows were fed a total mixed

ration (TMR) 4 times daily with feed pushups occurring 6 times per day. Water was available ad

libitum from self-serving water bowls shared between adjacent cows.

To obtain an overhead view of each cow, a network surveillance camera was used (Smart Turret

2.8, Hikvision Digital Technology Co., Ltd., Hangzhou, China; 720p at 60 frames per s; height:

338𝑐𝑚 centered above each stall). Each cow was filmed for a continuous 24-h period on weeks

1, 2, 3, 6, 8, and 10. Video recording was performed on the same day each week with the camera

placed in the same position. Images showing the position of each cow within their stall were

obtained from the overhead video recordings. The network video recorder (NVR; Hikvision

Digital Technology Co. Ltd., Hangzhou, China) automatically saved the 24-h video recordings

into multiple video files of less than 1GB at a resolution of 1280× 720 pixels. Using a computer,

the FFmpeg© software (64-bit Static; ffmpeg.org) was used to concatenate the separate video

files for each 24-h period of each cow into a single file. Following that, the FFmpeg© software

was used to extract individual images from each 24-h video file starting at 00:00:00 (hh:mm:ss)

with a rate of one image per minute of video recording. The resulting image sequence consisted

of 1441 frames per 24-h of video recording for each cow.

2.2.2 Manual Tracking

Cow position within each of the image sequences was then tracked using the Manual Tracking

plugin within the FĲI distribution (https://imagej.net/) of ImageJ (https://fiji.sc/), which is a

software used for image processing and analysis. This was done by manually annotating three

coordinates on each cow to track the location of: 1) the left hip, 2) the right hip, and 3) the neck

(Figure 2.1). While other points such as the cow’s head, shoulder tips, pin bones and tailhead

were considered for tracking, the hips and neck base base were retained as they were consistently

visible on the video recordings, even when the cow was lying down. The two hip bones were

38

chosen to represent the widest point of the body and provide information on the use of the space at

the back of the stall, while the base of the neck was tracked to follow the orientation of each cow

while providing information on the cow’s use of the space at the front of the stall. Each coordinate

was composed of two integer numbers representing one point on a Cartesian coordinate system.

These coordinates were defined as 𝑃1 = (𝑋1, 𝑌1), 𝑃2 = (𝑋2, 𝑌2), 𝑃3 = (𝑋3, 𝑌3). 𝑃1 localized

the tip of the left hip, 𝑃2 the tip of the right hip, and 𝑃3 the base of the neck. Once the image

sequence was imported into ImageJ, the Manual Tracking plugin was opened, and a track of 𝑃1

was created. For the entire image sequence, 𝑃1 was manually selected by an observer while

the Manual Tracking plugin recorded the pixel location (𝑋1, 𝑌1) and then switched to the next

image in the sequence. After completing the annotation of 𝑃1 for the entire image sequence,

the process was repeated for the other body points (𝑃2, 𝑃3). At the end of the manual tracking

process, all 1441 frames of each image sequence were annotated with the pixel location of

coordinates 𝑃1, 𝑃2, and 𝑃3. This was repeated for all 24 cows over each of the 6 weeks considered.

Figure 2.1 An overhead video camera image of a tie-stall cow with the three

manually tracked body coordinates labelled (yellow stars) to show

(1) the tip of the left hip bone, (2) the tip of the right hip bone, and (3) the base of

the neck

39

To confirm the precision of the manual tracking method, a Coefficient of Variation (CV) was

used to measure the variability in the hip-to-hip distance in pixels across an image sequence.

For manual tracking to be carried out properly, the distance between the two tracked hip points

was expected to remain constant for the same cow over a 24-h period. To ensure a consistent

measurement of the hip-to-hip distance, the optical distortion and height of the cow relative to

the camera over distinct stall areas was considered. As such, 4 areas (𝐴1 . . . 𝐴4) of the stall

were defined by pixel coordinates at the boundaries of the stall. The coordinates in (Figure 2.2)

illustrate the manual tracking of a cow over a 24-h period within the tie-stall (red dot = location

of the left hip, blue dot = location of the right hip, and yellow dot = location of the base of the

neck). Four areas (𝐴1 . . . 𝐴4) of the stall are demarked by pixel boundaries (black dotted line)

relative to the confines of the tie-stall (pink lines). 𝐴1 shows the alley behind the stall, where

cows occasionally exit the stall area. 𝐴2 shows the back 25% of the stall. 𝐴3 shows the second

25% from the back of the stall. 𝐴4 shows the remainder of the image. The pixel coordinates

for the confines of the stall were determined using the Manual Tracking plugin, by selecting

the extremes of each corner of the stall, which remained the same throughout a single image

sequence.

For the image sequences of each cow, the 𝐶𝑉 and a pixel to cm (𝑝𝑖𝑥/𝑐𝑚) conversion ratio were

calculated separately for all 4 stall areas. First, the 𝑃1 and 𝑃2 coordinates were categorized for

each image based on which area of the stall the hips were found. The 𝐶𝑉 was then calculated

for each stall area by dividing the standard deviation of the hip-to-hip pixel distances by the

mean hip-to-hip pixel distances for the entire image sequence. The 𝑝𝑖𝑥/𝑐𝑚 ratio was calculated

for each stall area by dividing the hip-to-hip distance in pixels by the hip-to-hip distance in 𝑐𝑚

for the entire image sequence. The 𝐶𝑉 was then used to identify sets of tracking coordinates (𝑃1

and 𝑃2) that were problematic and needed to be reassessed. A 𝐶𝑉 of less than 5% was deemed

acceptable based on the system by (Lin, 1989).

The final dataset used to evaluate deep learning accuracy on regressing tracking coordinates

consists of 199,100 samples. Each sample includes a red-green-blue (RGB) image with three

channels manually annotated with tracking coordinates (𝑃1, 𝑃2, 𝑃3) by human experts. Images

40

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200

X
Co

or
di

na
te

s (
Pi

xe
ls)

Y Coordinates (Pixels)

A1 A2 A3 A4

Figure 2.2 A Cartesian coordinate system with the 𝑋 and 𝑌 axes showing the

dimensions of a single 1280 × 720 pixel image

were taken from 24 cows over 6 weeks with at least 5,600 unique captures per cow (5,683 to

8,683).

2.2.3 Automated Tracking

Deep residual networks (He et al., 2015) have shown excellent generalization performance on

visual recognition tasks by addressing the degradation problem using residual learning with

identity connections. Candidate models used to experiment with were developed using the

architecture of Resnet-18 (He et al., 2015) and other top performing CNN models namely VGG

(Simonyan & Zisserman, 2015), GoogLeNet (Szegedy, Vanhoucke, Ioffe, Shlens & Wojna,

2015b), DenseNet (Huang, Liu & Weinberger, 2016), and U-Net (Ronneberger, Fischer & Brox,

2015). Batch normalization (Ioffe & Szegedy, 2015) was integrated in models under experiment.

Rescaling the sample images by a factor of 0.25 resulted in a spatial dimension of 180 pixels

height and 320 pixels width. This allowed for accommodating deeper models in GPU memory

41

as well as faster training epochs. No data augmentation was applied during experiments, because

image transformations (random flip/crop/rotation) used in data augmentation change the position

of cow, thus invalidating its tracking coordinates.

The optimization objective employed to train models calculates the distance between model

predictions and the ground truth (i.e., the manual tracking coordinates). Leave-one-out cross-

validation was used to train the models. By this method, the number of folds was set to 24 since

there were data from 24 dairy cows. All models were trained 24 times having one cow as the

validation set and the remaining 23 cows as the training set. In addition, the models were trained

using L1, L2, and Huber loss functions. L1 loss calculates the absolute difference between

respective values of model predictions and the ground truth. L2 loss calculates the average of

squared difference between the same values. Huber loss (Mangasarian & Musicant, 2000) is a

combination of Mean Absolute Error (L1) and Mean Squared Error (L2) functions defined with

a value of 𝛿. This criterion calculates the L2 loss when the absolute element-wise error falls

below the 𝛿 = 1, and L1 loss otherwise. Huber loss (also called L1 smooth loss) is more robust to

outliers. Computing the gradient of loss function with respect to model parameters provides the

optimizer with the amount and direction of adjustments for parameters of every layer. Stochastic

gradient descent optimizes model parameters using the computed gradient scaled by a learning

rate of 1 × 10−3, accelerated by a momentum (Sutskever, Martens, Dahl & Hinton, 2013) of 0.9,

and regularized by a weight decay of 5 × 10−4.

Every training epoch started with splitting all samples from the shuffled training set using an

80:20 ratio, which was then used to train and test the model, respectively. In addition, the

training split was further split into mini batches of size 32. Model parameters were updated

through every iteration of batches. Decaying the learning rate every 20 epochs by scaling it by a

gamma of 0.1 helped the model to learn more complex patterns (You, Long, Jordan & Jordan,

2019). At the end of each epoch, the accuracy of the trained model was measured on the testing

split by averaging the respective distances of tracking coordinates between model prediction and

the ground truth in pixels. Elaborately, for tracking coordinates of the 𝑖𝑡ℎ sample in the validation

set, average pixel error (APE) calculates the Euclidean distance between model prediction (𝑥, 𝑦)

42

and the ground truth (𝑥, �̂�) for every point 𝑃𝑖𝑗 = (𝑥𝑖𝑃 𝑗
, 𝑦𝑖𝑃 𝑗

) where 𝑗 ∈ {1, 2, 3}, as shown in

Equation 2.1.

APE =
1

3

3∑
𝑗=1

√
(𝑥𝑖𝑃 𝑗

− 𝑥𝑖𝑃 𝑗
)2 + (𝑦𝑖𝑃 𝑗

− �̂�𝑖𝑃 𝑗
)2 (2.1)

During training, early stopping criterion was adopted to reduce the chance of overfitting and to

reduce training time (Coulibaly, Anctil & Bobée, 2000). Training was allowed until the prediction

accuracy did not improve for 8 consecutive epochs. The pixel error values have been reported for

all 3 points of tracking coordinates (𝑃1, 𝑃2, and 𝑃3). Converting the unit from pixels to a standard

measure (𝑐𝑚) was carried out using the calculated 𝑝𝑖𝑥/𝑐𝑚 conversion ratio. The implementation

of these experiments is available at: https://github.com/CowLifeMcGill/biotracking.

2.3 Results and Discussion

The manual tracking method was validated to precisely annotate the coordinates of 𝑃1, 𝑃2,

and 𝑃3. For this method, a very low 𝐶𝑉 was found with an average of 2.5% variability in the

hip-to-hip distance calculated within each 24-h period across all cows. Based on prior literature,

a 𝐶𝑉 of less than 5% has been deemed acceptable based on the system by (Lin, 1989). The

precision of these annotations was important to ensure proper training of the deep learning

models experimented with. For applications in which the deep learning model cannot be used,

the manual tracking method offers a precise way to track the movement of coordinates through a

series of images. While this method offers low variability, it is not considered the most time

efficient approach to tracking, taking between 3 to 5 hours per set of 1441 images for annotation

depending on observer abilities. As such, deep learning models were developed as a more

feasible alternative.

Of the several models we tested in our experiments, Resnet-18 was the most promising candidate

model. The models based on Resnet architecture achieved the lowest normalized average pixel

error on the validation dataset across all 3 annotation points (Table 2.1). In Resnet models, the

spatial dimensions of the input image are significantly reduces by the first convolutional/pooling

layer, which could potentially reduce the details extracted and needed to train an accurate

43

regressor. However, this was not an issue in the present study, since the Resnet-18 had the best

performance. The training set contained more than 180,000 samples, however, only from 24

cows. Considering the unique skin patterns of cows, the limited number of cows in the training

set could had reduced the generalization ability of the evaluated models.

The pixel error of Resnet-18 models for annotation of the validation image set was lowest for 𝑃1

at 1.20 pixels, intermediate for 𝑃2 at 1.34 pixels, and highest for 𝑃3 at 1.81 pixels (Table 2.1).

Except for the U-Net models, the same trend was observed for all models evaluated (Table 2.1).

The lowest pixel error when annotating the right and left hips compared to the base of the neck

was likely due to the hip coordinates lying at the boundary of the cow where an edge is present

to delineate the cow from the surrounding environment. The base of the neck however exists

within the body of the cow where no edge or delineating point is present. As such, variation in

the physical attributes between cows (for instance, color and skin patterns) may have a larger

impact on the annotation accuracy of the base of the neck relative to the hips.

Using the 𝑝𝑖𝑥/𝑐𝑚 ratio, the overall pixel error for annotation of the validation image set was

equal to an average of 1.44 𝑐𝑚 error for Resnet-18 in actual physical placement of the points

within the stall environment (Table 2.1). In other words, the Resnet-18 models were able to

locate the hips and base of the neck of each cow relative to the stall environment with an average

error of 1.44 𝑐𝑚. Therefore, this model offers a high degree of accuracy to track the movement

of cows in an automated fashion within and around the stall environment. The annotation of the

training image set had a lower pixel error for all coordinates compared to the validation image

set in all models except for the U-Net models (Table 2.1). This difference in pixel error was

associated with a negligible difference in actual physical placement of the coordinates within the

stall environment (average difference ranging from 1.20 to 9.25 𝑐𝑚; Table 2.1). This is expected

given that the images from the training set had been previously present in an annotated form to

each model, while the validation set images had not. For application of the models, the outlined

methodology should be replicated as precisely as possible in terms of camera placement and

type to avoid introducing novel forms of variability to the images. Visual inspection of image

annotation by the models can be used to ensure that a high pixel accuracy is being maintained.

44

Table 2.1 Average degree of error presented in pixels and cm of the ResNet18 with

distance/angle label augmentation for coordinate annotation of the training and

validation datasets, where P1 is the location of the left hip bone, P2 is the right hip

bone, and P3 is the base of the neck

Model Dataset M. P1 E. P2 E. P3 E. Overall E.

Resnet-18

Training
pixel 1.92 (0.70) 2.04 (0.73) 3.16 (0.94) 2.48 (0.90)

cm 0.48 (0.17) 0.51 (0.18) 0.79 (0.23) 0.92 (0.23)

Validation
pixel 4.82 (2.68) 5.35 (2.46) 7.25 (3.23) 5.76 (2.61)

cm 1.20 (0.67) 1.34 (0.61) 1.81 (0.81) 1.44 (0.65)

VGG-11

Training
pixel 4.98 (1.45) 5.38 (1.58) 6.97 (1.88) 5.78 (1.63)

cm 1.25 (0.36) 1.35 (0.39) 1.74 (0.47) 1.44 (0.41)

Validation
pixel 6.08 (3.75) 6.06 (3.63) 8.24 (4.17) 6.79 (3.74)

cm 1.52 (0.94) 1.52 (0.91) 2.06 (1.04) 1.70 (0.94)

GoogLeNet

Training
pixel 3.97 (2.04) 4.23 (2.09) 5.67 (2.86) 4.62 (2.32)

cm 0.99 (0.51) 1.06 (0.52) 1.42 (0.71) 1.15 (0.58)

Validation
pixel 23.9 (3.59) 24.2 (3.23) 25.9 (2.86) 24.7 (2.88)

cm 5.97 (0.90) 6.06 (0.81) 6.47 (0.71) 6.16 (0.72)

DenseNet

Training
pixel 4.07 (2.47) 4.17 (2.48) 5.37 (2.71) 4.53 (2.55)

cm 1.02 (0.62) 1.04 (0.62) 1.34 (0.68) 1.13 (0.64)

Validation
pixel 5.70 (2.45) 5.96 (2.52) 7.61 (2.76) 6.42 (2.39)

cm 1.43 (0.61) 1.49 (0.63) 1.90 (0.69) 1.61 (0.60)

U-Net

Training
pixel 38.2 (0.86) 36.9 (0.31) 38.5 (0.93) 37.3 (2.68)

cm 9.54 (0.22) 9.23 (0.08) 9.63 (0.23) 9.33 (0.67)

Validation
pixel 37.6 (9.34) 35.9 (8.00) 37.8 (7.62) 36.4 (7.55)

cm 9.39 (2.33) 8.99 (2.00) 9.45 (1.91) 9.11 (1.89)

2.4 Conclusion

The results obtained in this study validated the potential of Resnet-18 models to be used in the

development of an accurate and low-cost alternative to manual cow tracking and space use in

their tie-stalls. Future steps in the development of a tool usable for cow comfort and behavior

research purposes will seek to address the limitations of this experiment such as the small

number of images available for annotation. Yet, our results have demonstrated that training an

existing algorithm not developed for the tracking of cow movement in a tie-stall setting can

yield high accuracy, as the models tested and presented proved able to accurately pinpoint the

position of the hips and of the base of the neck. The position of the hips and base of the neck

can be compared with the pixel boundaries of the stall confines to determine the percentage of

45

time and distance with which each cow spends outside the stall, which represents biologically

relevant information usable in a behavior research context, including the assessment of possible

stall design improvements through the evaluation of how cows move within their surrounding

environment. This evaluation is currently done ’manually’ by an observer analyzing video data;

the methodology we worked on will, following further validation steps, allow for this process to

be automatized, substantially reducing the time required to collect this data. Future use of this

methodology includes the analysis of individual movement patterns demonstrated by dairy cows

in their housing environment for comparison with other commonly used outcome measure (for

instance, activity level or animal posture) to assess ease of movement and stall comfort, and

better support the development of recommendations for animal welfare housing improvement.

CHAPTER 3

RADARSAT-2 SYNTHETIC-APERTURE RADAR LAND COVER SEGMENTATION
USING DEEP CONVOLUTIONAL NEURAL NETWORKS

3.1 Introduction

Land use and land cover (LULC) information has many applications in remote sensing (Yu-

mus & Ozkazanc, 2019) both in military and civil fields (Gao et al., 2018). Automatic LULC

classification plays a significant role in urban planning, natural resource management (Liu et al.,

2017), forest monitoring (Lapini et al., 2020), and understanding the rapid changes on the surface

of the Earth (Zhang et al., 2019). Optical images can be obtained from the Earth’s surface using

aerial photography or satellite imagery. Another technique in satellite imagery i.e. Synthetic

Aperture Radar (SAR) imagery, captures physical properties by transmitting electromagnetic

energy (microwave signals), toward the surface of the Earth and measuring the distance between

the sensor and the point on the Earth’s surface where the signal is backscattered. Unlike optical

satellite imagery which depends on natural light, SAR signals can penetrate through clouds

and other obstacles e.g. rain and snow, and can be taken during night. Detecting changes in

the Earth’s surface e.g. changes in habitats, levels of water and moisture, effects of natural or

human disturbance, etc. are some applications of SAR imagery (wha).

Complex scattering characteristics caused by different wavelengths and incidence angles (Huang

et al., 2020) introduce significant levels of noise in SAR images. The lack of large public labeled

SAR datasets along with noisy images and imbalanced land cover categories contribute to the

challenging nature of land cover classification using SAR imagery. In this work, a private dataset

of multiple SAR images obtained by RADARSAT-2 satellite on major Canadian cities (Montreal,

Ottawa, Quebec, Saskatoon, Toronto and Vancouver) is used to train different deep learning

models. We compare the performance for pixel-level classification of four different land cover

classes: Urban, Water, Vegetation and Farm. Multiple SAR samples obtained at different times

over each city are averaged to reduce noise and increase the quality of the SAR image. Using

stacked SAR data, three top performing deep semantic segmentation models are trained and

48

evaluated. The proposed networks are proved to have excellent generalization performance.

The achieved segmentation performance on unseen data, promises a general robust solution for

automatic remote sensing, specifically land cover pixel-level classification.

3.2 Proposed Method

In this section, we present the proposed method. Starting by an overview to the method, and

then presenting the architecture of deep CNNs used for semantic segmentation, we describe the

details of our method.

3.2.1 Overview

We are given a set of data with land cover annotations, 𝐷 = {𝐼𝑛,𝑌𝑛}𝑁𝑛=1
where 𝑁 is the number

of images, 𝐼𝑛 is the nth image, and 𝑌𝑛 is the pixel-level annotations. The land cover annotations

have the same dimensions as the SAR image with only one channel. The value for each pixel

represents the class label of that pixel. The land cover classes are annotated at 30-meter resolution.

We aim to learn a CNN-based model in an end-to-end fashion for land cover segmentation by

using the training data 𝑋 ⊂ 𝐷.

Figure 3.1 Overview of our method. The illustrated CNN model is based on the

Encoder-Decoder approach for semantic segmentation

49

The overview of our method is given in Figure 3.1. Segmentation models that are used in

this work, are designed based on two approaches. 1. Convolutional Encoder-Decoder, and

2. Multi-Scale Pyramid Pooling. In the encoder-decoder approach, first, encoder part of the

network extracts meaningful features from the SAR image by transforming the image to a

multidimensional vector representing features of the image (Noh et al., 2015). The represented

features are input to the decoder part of the network, where the target segmentation map is

reconstructed by predicting pixel-wise class probabilities from extracted patterns (Minaee et al.,

2020). In the multi-scale pyramid pooling approach, a residual network (He et al., 2015)

works as the feature extractor. Using pyramid pooling, the feature maps are downsampled at

multiple scales. Summarized pooled features are upsampled and concatenated with the initial

feature maps to reconstruct the segmentation map by generating pixel-wise predictions (Zhao

et al., 2016). The entire network is trained using cross entropy loss. Working with extremely

large SAR images – over 100 million pixels per image – it is impractical to train deep models

without a proper sampling method where samples are smaller overlapping images preserving

information around the borders, and only containing valid category labels. We use Deconvnet

(Noh et al., 2015), Segnet (Badrinarayanan et al., 2015), and PSPNet (Zhao et al., 2016) for

evaluating the performance of deep convolutional segmentation models with SAR images. Now,

we provide more details about each model’s architecture.

3.2.2 Encoder-Decoder

Most common deep models for image segmentation are based on the convolutional encoder-

decoder architecture. The encoder network takes the input image, e.g. an image of a street full

of cars, and extracts different patterns. The decoder network takes the extracted features and

reconstructs a map of pixel-wise class probabilities, e.g. segmentation masks of cars, pedestrians,

and trees.

50

3.2.2.1 Deconvnet

Based on the architecture of VGG 16-layer net, the encoder of Deconvnet consists of five pooling

layers following five groups of convolutional layers with {64, 128, 256, 512, 512} channels.

Two fully connected layers with 4096 features follow the last pooling layer. The decoder –

deconvolution – network is designed by mirroring the encoder, replacing convolutional layers

with transposed convolution operation and max pooling layers with max unpool operation. Every

weighted layer is followed by batch normalization (Ioffe & Szegedy, 2015) and rectification

(Nair & Hinton, 2010) layers. The encoder network reduces the size of activations through

convolution and pooling layers, and the decoder network enlarges the size of activations through

deconvolution and unpooling layers (Noh et al., 2015). The last layer of Deconvnet is a 1 × 1

convolution producing the score map for segmentation.

Figure 3.2 Illustration of unpooling operation

3.2.2.1.1 Unpooling

This operation is used to reconstruct the spatial structure of input image for segmentation. The

indices of selected activations during pooling are stored in a switch variable. The saved indices

51

are then used for placing each activation back to its original pooled index. This operation is

illustrated in Figure 3.2.

3.2.2.1.2 Deconvolution

This operation is used to associate the sparse enlarged activations obtained by unpooling to a

dense activation map using multiple learned filters. These filters learn to reconstruct the shape

of input image. While the shape of SAR images are captures by the filters in lower layers of

the decoder network, the filters in higher layers tend to learn the details of textures, that is used

subsequently to predict the land cover labels for each pixel.

3.2.2.2 Segnet

The architecture of Segnet is almost identical to Deconvnet. However, Segnet promises better

efficiency by removing the two fully-connected layers. Therefore, the pooled activations obtained

from the last layer of encoder network are immediate inputs to the first layer of decoder network.

One advantage of removing fully connected layers is the significant reduction in number of model

parameters – from 134M to 14.7M. This improves generalization performance and reduces

computational cost. Also, the feature maps at the deepest layer of decoder network retain higher

spatial resolution. This helps the decoder network to reconstruct the segmentation map with

finer details. Similar to Deconvnet, Segnet stores the indices of pooled activations in a switch

variable used by unpooling layers to reconstruct the shape of segmentation map. The architecture

of Segnet is illustrated in Figure 3.3.

3.2.3 Pyramid Pooling

Spatial pyramid pooling (SPP) (He, Zhang, Ren & Sun, 2014) is a pooling mechanism that is

usually applied to the activations of the last convolutional layer. Assuming a fix number of bins,

the feature maps are spatially divided into bins with sizes proportional to the input image. Using

max pooling operation, SSP downsamples feature maps inside each bin individually. This results

52

in an output vector of size 𝑛 × 𝐶, where 𝑛 and 𝐶 are the number of bins and the number of

channels of input activations respectively. Bins are captured at different pyramid scales. Smaller

bins contour fine-grained information; where larger bins include coarse-grained information.

Lastly, the pooled features of bins within each scale are concatenated together forming a single

feature vector. SPP is illustrated in Figure 3.4.

Figure 3.3 Illustration of Segnet architecture. Switch variables are saved during

downsampling and used to unpool the activations during upsampling

3.2.3.1 PSPNet

Pyramid scene parsing network (PSPNet) proposes an effective global context prior for tackling

complex scene parsing problems. Problems related to contextual relationship and global

information e.g. mismatched relationship, confusion categories, and inconspicuous classes are

addressed by pyramid pooling module in PSPNet. The architecture of PSPNet is illustrated in

Figure 3.5.

53

Figure 3.4 Spatial pyramid pooling layer

3.3 Experimental Results

In this section, we evaluate the proposed method. We describe the dataset and evaluation metrics.

We also present our final results.

3.3.1 Dataset

The LCSAR dataset contains 116 high resolution SAR images from regions of Montreal, Ottawa,

Quebec, Saskatoon, Toronto and Vancouver with land cover labels annotated at 30-meter

54

Figure 3.5 Illustration of PSPNet architecture. Pyramid pooling is applied at four

different resolutions to preserve global context information as well as finer details

resolution. The SAR images are taken using different beam modes resulting in more variance

in the dataset. Most of the SAR images are obtained 24 days apart. To reduce the noisy

backscattered data, images from each region are stacked by averaging pixel values resulting in

6 final SAR images to sample from. These stacks include 19 images from Montreal, Ottawa,

Saskatoon and Toronto, 18 images from Quebec and 23 images from Vancouver. The SAR

images were obtained from 2010 to 2015.

3.3.1.1 Land cover classes

The land cover segmentation labels are summarized in 4 classes. Each class is identified with an

integer number as the pixel value in the ground-truth segmentation image. Table 3.1 describes

the four classes used in land cover labels. The land cover images contain two auxiliary classes

that are identified by ID codes -999 and 0 labeled Unknown and Empty respectively. The

unknown class describes that the correct land cover category is not determined; where, the empty

class fills the blank area surrounding originally tilted SAR images – due to the angle offsets.

55

Table 3.1 Land cover classes. Vegetation

class includes natural parks and forests,

while Farm class labels include agricultural

lands

ID Code Class Description Color Code
21 Urban Green

31 Water Water

41 Vegetation Red

51 Farm Yellow

3.3.1.2 Sampling method

Loading very high resolution, single channel, gray-scale SAR images into GPU memory is

not feasible, while experimenting on very deep segmentation models. Therefore, we adapt

a sampling approach to reduce the resolution/size of the input image. A set of overlapping

crops are generated from each SAR image with a kernel size of 𝐾 = (𝐾ℎ, 𝐾𝑤) and a stride

of 𝑆 = (𝑆ℎ, 𝑆𝑤). In our experiments, square crops are sampled with 𝐾ℎ = 𝐾𝑤 and 𝑆ℎ = 𝑆𝑤.

Discarding crops that contain invalid pixel labels (namely Unknown and Empty) helps to keep

the data clean and inhibits outliers. The empty area surrounding tilted SAR images amounts to a

considerable area labeled (Empty), matching pixels where water is present that are captured

almost black in SAR imagery. The number of sample crops, |𝐷 |, generated from an image with

dimensions of (𝐻,𝑊) can be found using Equation 3.1. This method is illustrated in Figure 3.6.

|𝐷 | = �𝐻 − 𝐾ℎ
𝑆ℎ

+ 1� × �𝑊 − 𝐾𝑤
𝑆𝑤

+ 1� (3.1)

We experiment with the variants defined in Table 3.2. The size of training and validation sets

decreases proportionally to the size of sampling stride. Therefore, using a smaller stride, we

expect to gain generalization performance at the cost of longer training time.

56

Figure 3.6 Illustration of the sampling method. A crop of the SAR image on

Montreal is shown on left with its corresponding land cover label on the right

Table 3.2 Sampling modes. Larger stride

size reduces the number of samples and the

amount of overlap per sample

Mode Kernel Size Stride Overlap
(L)arge

224 × 224

112 112

(M)edium 152 72

(S)mall 192 32

3.3.1.3 Training and validation sets

The initial experiments on every SAR image are performed by fixing sampling size, model

architecture, hyperparameters, and random initialization to evaluate the performance of each

SAR image both for training and validation. The results of these experiments are reported in

Table 3.3.

The difference in accuracy of each class is caused by two factors. First, the number of pixels

of that class in training and validation samples. Second, the difficulty of classifying that class.

In order to further investigate the performance of selected segmentation models and evaluate

57

Table 3.3 Initial results. Summary of validation performance using pairs of SAR

stacks for training and validation sets. These results are obtained using SegNet model

Train Validation Urban 21 Water 31 Veg. 41 Farm 51 Avg. Overall

Montreal

Ottawa 83.9 82.9 74.6 89.8 80.4

80.86

Quebec 91.7 91.1 78.2 78.2 87.1

Saskatoon 81.5 0.7 6.3 92.8 75.0

Toronto 92.9 97.5 61.8 83.8 89.6

Vancouver 92.4 96.1 35.1 64.9 72.2

Ottawa

Montreal 87.7 88.7 84.8 74.0 83.7

76.3

Quebec 90.6 89.1 84.4 60.5 84.9

Saskatoon 78.3 2.0 24.9 88.0 73.8

Toronto 92.6 95.9 59.3 79.3 88.0

Vancouver 91.7 91.8 95.4 89.5 51.1

Quebec

Montreal 91.0 81.4 70.4 65.0 79.8

72.44

Ottawa 77.3 71.0 66.9 75.6 71.5

Saskatoon 84.6 0.7 18.7 64.7 61.8

Toronto 92.7 94.4 29.3 70.7 83.9

Vancouver 86.4 92.1 25.1 41.2 65.2

Saskatoon

Montreal 92.6 0.0 0.2 86.4 66.2

52.98

Ottawa 88.3 0.0 0.2 90.2 38.9

Quebec 93.4 0.0 0.2 83.5 63.0

Toronto 93.4 0.0 0.3 81.4 69.2

Vancouver 79.0 13.7 4.5 82.8 27.6

Toronto

Montreal 89.9 83.9 68.8 86.9 85.4

76.42

Ottawa 78.9 70.3 59.3 95.7 71.8

Quebec 91.2 85.1 65.8 81.2 84.2

Saskatoon 82.5 0.1 9.1 91.3 74.8

Vancouver 93.0 95.3 17.3 92.4 65.9

Vancouver

Montreal 84.9 80.5 88.8 0.1 61.8

60.48

Ottawa 71.8 66.9 94.8 0.1 69.3

Quebec 79.1 85.8 88.6 0.1 70.3

Saskatoon 72.7 0.2 94.3 0.5 32.4

Toronto 87.3 95.0 82.1 0.2 68.6

variables such as sampling size, we split the dataset into two fixed training and validation sets.

We define the following split for training and validation:

• Training Set: SAR(Montreal, Quebec, Saskatoon, Vancouver)

• Validation Set: SAR(Ottawa, Toronto)

58

This is used to produce the final results from here on; unless otherwise specified. The first

consideration for splitting the dataset is to make sure every region in a SAR image appears only

in one set (training or validation). The next consideration is to make sure the total number of

pixels per class divides as equally as possible in training and validation sets. Using this split,

pixels with class C21 and C31 are divided almost equally; where, pixels with class C41 are

divided with 9 percent error, and pixels with class C51 are divided with 5 percent error. This is

the optimal combination of SAR images given the dataset 𝐷. Since Quebec, Saskatoon, and

Vancouver SAR images are taken with lower quality beam mode, we select their split as the

training set. This ensures more practical evaluation results assuming cheaper SAR images, and

leaves Ottawa and Toronto stacks for the validation set.

3.3.2 Final Results

We implemented our experiments using PyTorch. Cross entropy loss is deployed for training pixel

level classifier on the task of distinguishing four different land cover classes. The largest possible

mini-batch size with respect to GPU memory constrains is 32 which is used for all experiments.

The segmentation models are optimized using Stochastic Gradient Descent, with learning rate

of 1−3, momentum of 0.9, and weight decay of 5−4 as regularization hyperparameter.

Since all the four categories in sample images are important for segmentation, the Union over

Intersection (UoI) reduces to average pixel accuracy as the evaluation metric. The accuracy is

reported for correctly classified pixels of validation set in percentage, individually per class and

in average.

We compare three sampling modes — Large, Medium, Small — with strides of 112, 152, and

192 respectively. The kernel size 224 is fixed for all experiments, mainly because larger input

images require more GPU memory than available to us without reducing the mini-batch size

considerably. Results using different sampling modes are presented in Table 3.4. Finally, we

compare three deep CNN-based segmentation models using sampling mode S. The final results

are presented in Table 3.5.

59

Table 3.4 Evaluation of segmentation results using different sampling

modes. These results are obtained using SegNet model

Sampling mode Urban 21 Water 31 Vegetation 41 Farm 51 Average
(L)arge 90.4 94.1 82.0 87.7 88.3

(M)edium 90.3 93.4 80.8 87.8 87.8

(S)mall 90.6 91.5 78.7 87.8 87.2

Table 3.5 Final results. Summary of land cover segmentation

performance of our trained deep CNN models on the validation set using

LCSAR dataset. These results are obtained by Small sampling mode

Model Urban 21 Water 31 Vegetation 41 Farm 51 Average
DeconvNet 89.4 84.0 72.4 75.5 82.4

SegNet 90.6 91.5 78.7 87.8 87.2

PSPNet 90.2 93.3 82.3 86.8 88.9

3.4 Conclusion

In this work, we implemented three models to evaluate the performance of deep convolutional

neural networks on land cover pixel-level classification using Synthetic Aperture Radar imagery.

To alleviate the inherited noise in SAR imagery, we stacked several SAR images by averaging

the pixel values. We also developed a sampling method to build training and validation sets

from extremely large SAR images. Achieving near 90% average segmentation accuracy on

validation set, our trained models promise a practical and robust solution for applications in

automatic remote sensing and land cover classification. Future work can include incorporating

image transformations with a smaller dataset to evaluate the efficiency of data augmentation in

SAR imagery, experimenting with more complex networks e.g. Dual attention segmentation

model (Fu et al., 2018), and exploring the applications of automatic land cover segmentation

in challenging tasks of remote sensing where the accuracy of non-deep learning models is not

sufficient.

CONCLUSION AND RECOMMENDATIONS

In this dissertation, we demonstrated that deep convolutional neural networks are highly effective

in achieving prominent accuracy when applied to custom datasets for various recognition

tasks. By experimenting with different network architectures on localization and segmentation

tasks using optical and SAR images respectively, we analyzed the efficacy of CNN models on

non-standard data. Additionally, the performance of these networks surpass that of classical

computer vision methods when applied on the same tasks. Moreover, we investigated the

limitations of such models when working with very high resolution images and introduced a

workaround to mitigate such limitations.

In the first part of this work, we focused on a localization task and validated the potential of

CNN models by developing an accurate and low-cost alternative to manual cow tracking and

space use in their tie-stalls. We trained several standard convolutional networks and proved that

our presented models are able to accurately pinpoint the position of the hips and of the base of

the neck of cows on the test data. Moreover, our results demonstrated that residual networks

outperform other evaluated models by a considerable margin. Our developed models can be

used to track dairy cows accurately and efficiently over long periods of time. Furthermore,

the acquired tracking data can be compared with the pixel boundaries of the stall confines to

determine the percentage of time and distance with which each cow spends outside the stall,

representing biologically relevant information usable in a behavior research context, including

the assessment of possible stall design improvements by evaluating how cows move within their

surrounding environment.

In the second part of this work, we focused on a segmentation task and validated the potential

of deep convnets to develop an accurate and efficient land cover pixel-level classification

method using Synthetic Aperture Radar imagery. We averaged the pixel values of several

stacked SAR images to reduce the inherited noise in SAR imagery and developed a sampling

62

method to efficiently train deep convnets using very high resolution SAR images. Moreover, we

demonstrated that highest accuracy can be achieved by incorporating pyramid pooling module

to capture both global context information and local details. Our developed models promise

a practical and robust solution for applications in automatic remote sensing and land cover

classification.

Overall, this study demonstrates the potential of deep learning in solving practical problems in

various vision domains, from animal behavior research to remote sensing. It also highlights the

importance of carefully selecting appropriate CNN architectures and methods for specific tasks

and datasets. The results obtained can motivate the future work on localization and segmentation

tasks having to deal with challenging data. By providing insights into the training and validation

process of applying various CNN models to different image data, our study can help research

developers by reducing the time and resources required for experimenting and achieving better

results.

Finally, we recommend the following future work based on the conclusions above:

• Applying the presented methods to more challenging data: While the presented methods

achieved high accuracy and performance on custom datasets, future work can explore the

generalization of these models when applied on related but different data. For example,

we evaluated our localization method on Holstein cows in tie-stall setup, however, its

efficacy when applied on images from a different cattle breed with unalike body patterns

(e.g. Jersey cows) hosted in an inconsistent environment (e.g. free-stall farm) is yet to be

evaluated. Further experiments can involve applying different augmentation techniques,

network architectures, and optimizations to ensure such models can handle more diverse

data.

• Exploring the potential of transfer learning: To reduce the computational resources needed

for training CNN models, one can adopt pre training such models. Future work can explore

63

the advantages of using pre-training on similar recognition tasks and fine-tuning the models

on the custom datasets. For example, we trained and validated our segmentation method on

SAR imagery only, however, these models can be pre-trained on optical satellite images and

fine-tuned on SAR data which can potentially lead to faster training and higher accuracy.

• Optimizing the inference of the presented methods: While we promise high accuracy and

performance with deep CNN models, the actual effectiveness of the presented methods when

used inside a real-time tool is yet to be evaluated. Future work can explore techniques to

improve the inference performance while reducing the size of these models. For example,

using quantization and quantization-aware training can potentially reduce the size of trained

CNN models and the inference time in trade-off of a small accuracy loss.

LIST OF REFERENCES

[Accessed: 2020-10-17]. What is SAR. Retrieved from: https://asf.alaska.edu/information/sar-

information/what-is-sar/.

Abram, P. K., Parent, J.-P., Brodeur, J. & Boivin, G. (2016). Size-induced phenotypic reaction

norms in a parasitoid wasp: an examination of life-history and behavioural traits.

Biological Journal of the Linnean Society, 117(3), 620-632. doi: 10.1111/bĳ.12658.

AlShehhi, M., Damiani, E. & Wang, D. (2021). Toward Domain Adaptation for small data sets.

Internet of Things, 16, 100458. doi: https://doi.org/10.1016/j.iot.2021.100458.

Anderson, N. G. (2014). Confort des vaches laitières - Dimensions des stalles de stabulation

entravée. Guelph, Ontario, Canada: Ontario Ministry of Agriculture, Food and Ru-

ral Affairs. Retrieved from: http://www.omafra.gov.on.ca/french/livestock/dairy/facts/

tiestaldim.htm.

Arora, S., Bhaskara, A., Ge, R. & Ma, T. (2013). Provable Bounds for Learning Some Deep

Representations. CoRR, abs/1310.6343. Retrieved from: http://arxiv.org/abs/1310.6343.

Badrinarayanan, V., Kendall, A. & Cipolla, R. (2015). SegNet: A Deep Convolutional

Encoder-Decoder Architecture for Image Segmentation. CoRR, abs/1511.00561. Re-

trieved from: http://arxiv.org/abs/1511.00561.

Bilen, H. & Vedaldi, A. (2015). Weakly Supervised Deep Detection Networks. CoRR,

abs/1511.02853. Retrieved from: http://arxiv.org/abs/1511.02853.

Boyer, V., de Passillé, A., Adam, S. & Vasseur, E. (2021a). Making tiestalls more comfortable:

II. Increasing chain length to improve the ease of movement of dairy cows. Journal of
Dairy Science, 104(3), 3316-3326. doi: https://doi.org/10.3168/jds.2019-17666.

Boyer, V., Edwards, E., Guiso, M., Adam, S., Krawczel, P., de Passillé, A. & Vasseur, E. (2021b).

Making tiestalls more comfortable: III. Providing additional lateral space to improve the

resting capacity and comfort of dairy cows. Journal of Dairy Science, 104(3), 3327-3338.

doi: https://doi.org/10.3168/jds.2019-17667.

Boykov, Y., Veksler, O. & Zabih, R. (2001). Fast approximate energy minimization via graph cuts.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11), 1222-1239.

doi: 10.1109/34.969114.

Buhmann, J. M., Malik, J. & Perona, P. (1999). Image recognition: Visual grouping, recognition,

and learning. Proceedings of the National Academy of Sciences, 96(25), 14203–14204.

doi: 10.1073/pnas.96.25.14203.

66

Chen, L., Papandreou, G., Schroff, F. & Adam, H. (2017). Rethinking Atrous Convolution

for Semantic Image Segmentation. CoRR, abs/1706.05587. Retrieved from: http:

//arxiv.org/abs/1706.05587.

Coulibaly, P., Anctil, F. & Bobée, B. (2000). Daily reservoir inflow forecasting using artificial

neural networks with stopped training approach. Journal of Hydrology, 230(3), 244-257.

doi: https://doi.org/10.1016/S0022-1694(00)00214-6.

DFC-NFACC. (2009). Code of practice for the care and handling of dairy cattle. Ottawa,

Ontario, Canada: Dairy Farmers of Canada and the National Farm Animal Care Council.

Retrieved from: https://www.nfacc.ca/codes-of-practice/dairy-cattle.

Domingos, P. (2012). A Few Useful Things to Know About Machine Learning. Commun. ACM,

55(10), 78–87. doi: 10.1145/2347736.2347755.

Foret, P., Kleiner, A., Mobahi, H. & Neyshabur, B. (2020). Sharpness-Aware Minimization for

Efficiently Improving Generalization. CoRR, abs/2010.01412. Retrieved from: https:

//arxiv.org/abs/2010.01412.

Fu, J., Liu, J., Tian, H., Fang, Z. & Lu, H. (2018). Dual Attention Network for Scene

Segmentation. CoRR, abs/1809.02983. Retrieved from: http://arxiv.org/abs/1809.02983.

Gao, F., Huang, T., Sun, J., Wang, J., Hussain, A. & Yang, E. (2018). A new algorithm of

SAR image target recognition based on improved deep convolutional neural network.

Computation. doi: 10.1007/s12559-018-9563-z.

Ge, Z., Liu, S., Wang, F., Li, Z. & Sun, J. (2021). YOLOX: Exceeding YOLO Series in 2021.

CoRR, abs/2107.08430. Retrieved from: https://arxiv.org/abs/2107.08430.

Girshick, R., Donahue, J., Darrell, T. & Malik, J. (2014). Rich Feature Hierarchies for Accurate

Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 580-587. doi: 10.1109/CVPR.2014.81.

Glorot, X. & Bengio, Y. (2010, 13–15 May). Understanding the difficulty of training deep

feedforward neural networks. Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, 9(Proceedings of Machine Learning Research),

249–256. Retrieved from: https://proceedings.mlr.press/v9/glorot10a.html.

Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning. MIT Press.

Grosse, R. (2018). Lecture 11: Convolutional Networks. University of Toronto. Re-

trieved from: https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/.

67

Guilford, T., Åkesson, S., Gagliardo, A., Holland, R. A., Mouritsen, H., Muheim, R., Wiltschko,

R., Wiltschko, W. & Bingman, V. P. (2011). Migratory navigation in birds: new

opportunities in an era of fast-developing tracking technology. Journal of Experimental
Biology, 214(22), 3705–3712. doi: 10.1242/jeb.051292.

Guzhva, O., Ardö, H., Nilsson, M., Herlin, A. & Tufvesson, L. (2018). Now You See Me:

Convolutional Neural Network Based Tracker for Dairy Cows. Frontiers in Robotics and
AI, 5, 107. doi: 10.3389/frobt.2018.00107.

He, K., Zhang, X., Ren, S. & Sun, J. (2014). Spatial Pyramid Pooling in Deep Convolutional

Networks for Visual Recognition. CoRR, abs/1406.4729. Retrieved from: http://arxiv.

org/abs/1406.4729.

He, K., Zhang, X., Ren, S. & Sun, J. (2015). Deep Residual Learning for Image Recognition.

CoRR, abs/1512.03385. Retrieved from: http://arxiv.org/abs/1512.03385.

He, K., Gkioxari, G., Dollár, P. & Girshick, R. (2017). Mask R-CNN. 2017 IEEE International
Conference on Computer Vision (ICCV), pp. 2980-2988. doi: 10.1109/ICCV.2017.322.

Huang, G., Liu, Z. & Weinberger, K. Q. (2016). Densely Connected Convolutional Networks.

CoRR, abs/1608.06993. Retrieved from: http://arxiv.org/abs/1608.06993.

Huang, Z., Dumitru, C. O., Pan, Z., Lei, B. & Datcu, M. (2020). Classification of Large-Scale

High-Resolution SAR Images With Deep Transfer Learning. IEEE Geoscience and
Remote Sensing Letters, 1–5. doi: 10.1109/lgrs.2020.2965558.

Ibrahim, J. G., Chen, M. H. & Lipsitz, S. R. (1999). Monte carlo EM for missing covariates

in parametric regression models. Biometrics, 55(2), 591–596. doi: 10.1111/j.0006-

341X.1999.00591.x.

Ioffe, S. & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift. CoRR, abs/1502.03167. Retrieved from: http:

//arxiv.org/abs/1502.03167.

Johnson, S. & Everingham, M. (2010). Clustered Pose and Nonlinear Appearance Models for

Human Pose Estimation. Proceedings of the British Machine Vision Conference.

Johnson, S. & Everingham, M. (2011). Learning effective human pose estimation from

inaccurate annotation. CVPR 2011, pp. 1465-1472. doi: 10.1109/CVPR.2011.5995318.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. (Master’s

thesis, Department of Computer Science, University of Toronto).

68

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). ImageNet Classification with Deep

Convolutional Neural Networks. Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 1, (NIPS’12), 1097–1105.

Lapini, A., Pettinato, S., Santi, E., Paloscia, S., Fontanelli, G. & Garzelli, A. (2020). Comparison

of Machine Learning Methods Applied to SAR Images for Forest Classification in

Mediterranean Areas. Remote Sensing, 12(3), 369. doi: 10.3390/rs12030369.

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to docu-

ment recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi: 10.1109/5.726791.

LeCun, Y. & Cortes, C. (2010). MNIST handwritten digit database. Retrieved from: http:

//yann.lecun.com/exdb/mnist/.

Li, P., Wang, D., Wang, L. & Lu, H. (2018). Deep visual tracking: Re-

view and experimental comparison. Pattern Recognition, 76, 323 - 338.

doi: https://doi.org/10.1016/j.patcog.2017.11.007.

Lin, L. I.-K. (1989). A Concordance Correlation Coefficient to Evaluate Reproducibility.

Biometrics, 45(1), 255–268. Retrieved from: http://www.jstor.org/stable/2532051.

Lin, M., Chen, Q. & Yan, S. (2014). Network In Network. CoRR, abs/1312.4400.

Liu, L., Ouyang, W., Wang, X., Fieguth, P. W., Chen, J., Liu, X. & Pietikäinen, M. (2018).

Deep Learning for Generic Object Detection: A Survey. CoRR, abs/1809.02165.

Retrieved from: http://arxiv.org/abs/1809.02165.

Liu, X., He, J., Yao, Y., Zhang, J., Liang, H., Wang, H. & Hong, Y. (2017). Classifying urban land

use by integrating remote sensing and social media data. International Journal of Geo-
graphical Information Science, 31(8), 1675-1696. doi: 10.1080/13658816.2017.1324976.

Mahmud, M. S., Zahid, A., Das, A. K., Muzammil, M. & Khan, M. U. (2021). A systematic litera-

ture review on deep learning applications for precision cattle farming. Computers and Elec-
tronics in Agriculture, 187, 106313. doi: https://doi.org/10.1016/j.compag.2021.106313.

Mangasarian, O. & Musicant, D. (2000). Robust linear and support vector regression.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(9), 950-955.

doi: 10.1109/34.877518.

McPherson, S. & Vasseur, E. (2021). Making tiestalls more comfortable: IV. Increasing stall bed

length and decreasing manger wall height to heal injuries and increase lying time in dairy

cows housed in deep-bedded tiestalls. Journal of Dairy Science, 104(3), 3339-3352.

doi: https://doi.org/10.3168/jds.2019-17668.

69

Minaee, S. & Wang, Y. (2019). An ADMM Approach to Masked Signal Decomposition Using

Subspace Representation. IEEE Transactions on Image Processing, 28(7), 3192-3204.

doi: 10.1109/TIP.2019.2894966.

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N. & Terzopoulos, D. (2020).

Image Segmentation Using Deep Learning: A Survey. CoRR, abs/2001.05566. Re-

trieved from: https://arxiv.org/abs/2001.05566.

Mitchell, T. M. (1997). Machine Learning (ed. 1). New York, NY, USA: McGraw-Hill, Inc.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

Nair, V. & Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines.

Proceedings of the 27th International Conference on International Conference on
Machine Learning, (ICML’10), 807–814.

Noh, H., Hong, S. & Han, B. (2015). Learning Deconvolution Network for Semantic

Segmentation. CoRR, abs/1505.04366. Retrieved from: http://arxiv.org/abs/1505.04366.

Plath, N., Toussaint, M. & Nakajima, S. (2009). Multi-Class Image Segmentation Us-

ing Conditional Random Fields and Global Classification. Proceedings of the
26th Annual International Conference on Machine Learning, (ICML ’09), 817–824.

doi: 10.1145/1553374.1553479.

Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. (2016). You Only Look Once: Unified,

Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 779-788. doi: 10.1109/CVPR.2016.91.

Ren, S., He, K., Girshick, R. & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks. Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1, (NIPS’15), 91–99.

Rieder, M. & Verbeet, R. (2019, 09). Robot-Human-Learning for Robotic Picking Processes.

doi: 10.15480/882.2466.

Roh, Y., Heo, G. & Whang, S. E. (2021). A Survey on Data Collection for Machine Learning:

A Big Data - AI Integration Perspective. IEEE Transactions on Knowledge and Data
Engineering, 33(4), 1328-1347. doi: 10.1109/TKDE.2019.2946162.

Ronneberger, O., Fischer, P. & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical

Image Segmentation. Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2015, pp. 234–241.

70

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,

Khosla, A., Bernstein, M., Berg, A. C. & Fei-Fei, L. (2015). ImageNet Large Scale

Visual Recognition Challenge. International Journal of Computer Vision (ĲCV), 115(3),

211-252. doi: 10.1007/s11263-015-0816-y.

Sapp, B. & Taskar, B. (2013). MODEC: Multimodal Decomposable Models for Human Pose

Estimation. In Proc. CVPR.

Sathya, R. & Abraham, A. (2013). Comparison of Supervised and Unsupervised Learning

Algorithms for Pattern Classification. 2(2). doi: 10.14569/ĲARAI.2013.020206.

Seferbekov, S. S., Iglovikov, V. I., Buslaev, A. V. & Shvets, A. A. (2018). Feature Pyramid Network

for Multi-Class Land Segmentation. CoRR, abs/1806.03510. Retrieved from: http:

//arxiv.org/abs/1806.03510.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R. & LeCun, Y. (2014). OverFeat:

Integrated Recognition, Localization and Detection using Convolutional Networks.

2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings. Retrieved from: http:

//arxiv.org/abs/1312.6229.

Shepley, E., Berthelot, M. & Vasseur, E. (2017). Validation of the Ability of a 3D Pedometer

to Accurately Determine the Number of Steps Taken by Dairy Cows When Housed in

Tie-Stalls. Agriculture, 7(7), 53. doi: 10.3390/agriculture7070053.

Simonyan, K. & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-

Scale Image Recognition. 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
Retrieved from: http://arxiv.org/abs/1409.1556.

Srivastava, N., Hinton, G., Krizhevsky, A. & Salakhutdinov, R. (2014). Dropout: A Simple
Way to Prevent Neural Networks from Overfitting. Retrieved from: http://jmlr.org/papers/

volume15/srivastava14a.old/srivastava14a.pdf.

St John, J., Rushen, J., Adam, S. & Vasseur, E. (2021). Making tiestalls more

comfortable: I. Adjusting tie-rail height and forward position to improve dairy

cows’ ability to rise and lie down. Journal of Dairy Science, 104(3), 3304-3315.

doi: https://doi.org/10.3168/jds.2019-17665.

Sutskever, I., Martens, J., Dahl, G. & Hinton, G. (2013). On the Importance of Initial-

ization and Momentum in Deep Learning. Proceedings of the 30th International
Conference on International Conference on Machine Learning - Volume 28, (ICML’13),

III–1139–III–1147.

71

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-

houcke, V. & Rabinovich, A. (2015a). Going deeper with convolutions. 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1-9.

doi: 10.1109/CVPR.2015.7298594.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. (2015b). Rethinking the Inception

Architecture for Computer Vision. CoRR, abs/1512.00567. Retrieved from: http:

//arxiv.org/abs/1512.00567.

Szeliski, R. (2010). Computer Vision: Algorithms and Applications (ed. 1st). Berlin, Heidelberg:

Springer-Verlag.

Toshev, A. & Szegedy, C. (2014). DeepPose: Human Pose Estimation via Deep Neural Networks.

2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1653-1660.

doi: 10.1109/CVPR.2014.214.

Tweedale, J. (2019). An Application of Transfer Learning for Maritime Vision Processing

Using Machine Learning (pp. 87-97). doi: 10.1007/978-3-319-92028-3_9.

Valacta. (2014). THE BARN; A SOURCE OF COMFORT: Practical guide to evaluat-

ing and improving comfort in the barn. Ste-Anne-de-Bellevue, Quebec, Canada:

Valacta. Retrieved from: https://www.valacta.com/en-ca/library/practical-guide-

evaluating-improving-comfort-in-barn.

Vasseur, E. (2017). ANIMAL BEHAVIOR AND WELL-BEING SYMPOSIUM: Optimizing

outcome measures of welfare in dairy cattle assessment1. Journal of Animal Science,

95(3), 1365-1371. doi: 10.2527/jas.2016.0880.

Wissner-Gross, A. [Accessed: 2021-7-31]. (2016). Datasets Over Algorithms. Re-

trieved from: https://www.edge.org/response-detail/26587.

Wu, W., Li, H., Zhang, L., Li, X. & Guo, H. (2018). High-Resolution PolSAR Scene

Classification With Pretrained Deep Convnets and Manifold Polarimetric Parameters.

IEEE Transactions on Geoscience and Remote Sensing, 56(10), 6159-6168.

Yan, Z., Liang, J., Pan, W., Li, J. & Zhang, C. (2017). Weakly- and Semi-Supervised

Object Detection with Expectation-Maximization Algorithm. CoRR, abs/1702.08740.

Retrieved from: http://arxiv.org/abs/1702.08740.

You, K., Long, M., Jordan, M. I. & Jordan, M. I. (2019). How Does Learning Rate Decay Help

Modern Neural Networks. arXiv: Learning.

72

Yumus, D. & Ozkazanc, Y. (2019). Land Cover Classification for Synthetic Aperture Radar

Imagery by Using Unsupervised Methods. 2019 9th International Conference on Recent
Advances in Space Technologies (RAST), pp. 435-440.

Zacharaki, E. I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E. R. & Davatzikos,

C. (2009). Classification of brain tumor type and grade using MRI texture and shape

in a machine learning scheme. Magnetic Resonance in Medicine, 62(6), 1609-1618.

doi: 10.1002/mrm.22147.

Zambelis, A., Saadati, M., Dallago, G., Stecko, P., Boyer, V., Parent, J.-P., Pedersoli, M. & Vasseur,

E. (2021). Automation of video-based location tracking tool for dairy cows in

their housing stalls using deep learning. Smart Agricultural Technology, 1, 100015.

doi: https://doi.org/10.1016/j.atech.2021.100015.

Zeiler, M. D. & Fergus, R. (2014). Visualizing and Understanding Convolutional Networks.

Computer Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part I, 8689(Lecture Notes in Computer Science),

818–833. doi: 10.1007/978-3-319-10590-1_53.

Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J. & Atkinson, P. M. (2019). Joint

Deep Learning for land cover and land use classification. Remote Sensing of Environment,
221, 173 - 187. doi: https://doi.org/10.1016/j.rse.2018.11.014.

Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. (2016). Pyramid Scene Parsing Network. CoRR,

abs/1612.01105. Retrieved from: http://arxiv.org/abs/1612.01105.

Zheng, C., Wu, W., Yang, T., Zhu, S., Chen, C., Liu, R., Shen, J., Kehtarnavaz, N. & Shah, M.

(2020). Deep Learning-Based Human Pose Estimation: A Survey. CoRR, abs/2012.13392.

Retrieved from: https://arxiv.org/abs/2012.13392.

Zhou, Z.-H. (2017). A brief introduction to weakly supervised learning. National Science
Review, 5(1), 44-53. doi: 10.1093/nsr/nwx106.

Zilly, J. G., Srivastava, R. K., Koutník, J. & Schmidhuber, J. (2017, 06–11 Aug). Re-

current Highway Networks. Proceedings of the 34th International Conference on
Machine Learning, 70(Proceedings of Machine Learning Research), 4189–4198. Re-

trieved from: https://proceedings.mlr.press/v70/zilly17a.html.

Zou, Z., Shi, Z., Guo, Y. & Ye, J. (2019). Object Detection in 20 Years: A Survey. CoRR,

abs/1905.05055. Retrieved from: http://arxiv.org/abs/1905.05055.

