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FOREWORD

The work contained in this thesis consists of the research outcomes accomplished during

my doctoral degree under the supervision of Prof. Georges Kaddoum and Prof. Divanilson

Campelo. This work was financially supported by the Fonds de recherche du Québec (FRQNT)

B2X Scholarship, Mitacs Accelerate Fellowship, Microsoft Research Ph.D. Fellowship, and

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

The main topic of this thesis is the security of connected things against cyber-attacks and

adversarial attacks. During my Ph.D. studies, I composed two published journal papers and two

journal papers currently under review. Additionally, I was a co-author on three journal papers

and two conference papers.

The first two chapters of the thesis include the introduction and the required background and

literature review on intrusion detection systems, neural networks, and adversarial attacks. The

following four chapters are based on the research journal papers I authored during my doctorate.

Finally, Chapter six presents the conclusions of the thesis and future research directions.
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Vers des Mécanismes de Sécurité Intelligents pour les Objets Connectés

Paulo FREITAS DE ARAUJO FILHO

RÉSUMÉ
La nature de diffusion des communications sans fil et l’adoption généralisée des objets connectés

augmentent les surfaces d’attaque et permettent aux attaquants de lancer plusieurs cyber-attaques.

En outre, l’adoption croissante de l’apprentissage automatique (en anglais machine learning

ou ML) dans de nombreuses applications, y compris les communications sans fil, introduit de

nouveaux risques et vulnérabilités. Les attaques adverses conçoivent et introduisent de petites

perturbations qui trompent les modèles de ML et les amènent à prendre de mauvaises décisions.

Elles peuvent donc compromettre les tâches de communication sans fil basées sur l’apprentissage

automatique et mettre en péril la disponibilité des communications et la sécurité des objets

connectés. Par conséquent, les cyber-attaques et les attaques adverses peuvent compromettre les

objectifs de sécurité, causer de graves dommages et pertes financières et même mettre la vie des

gens en danger.

Dans cette thèse, nous faisons avancer l’état de l’art dans le domaine de la sécurité en considérant

à la fois les problèmes de cyber-attaques et d’attaques adverses. Nous améliorons la sécurité

des objets connectés en détectant de manière efficace et efficiente les cyber-attaques tout en

défendant les systèmes qui reposent sur l’apprentissage automatique contre les attaques adverses.

Dans le chapitre 2, nous vérifions que, tandis que les systèmes de détection d’intrusion (en

anglais intrusion detection systems ou IDS) basés sur l’e ML supervisé ne peuvent pas détecter

les attaques inconnues et nécessitent des données d’entraînement étiquetées, ce qui est long,

difficile et parfois impossible à obtenir, les approches non supervisées présentent généralement

des taux élevés de faux positifs qui provoquent des interruptions de service et font dérailler les

centres d’opérations de sécurité (en anglais security operation centers ou SOCs). De plus, nous

vérifions que la plupart des IDS non supervisés ont du mal à gérer le temps nécessaire à la

modélisation de systèmes très complexes et hétérogènes, de sorte qu’ils ne peuvent pas détecter

les cyber-attaques assez rapidement pour les arrêter avant que des dommages ne soient causés.

Nous proposons donc un nouvel IDS non supervisé qui détecte les attaques connues et inconnues

à l’aide de réseaux adverses génératifs (en anglais generative adversarial networks ou GANs).

Notre approche combine la sortie du discriminateur GAN avec une perte de reconstruction qui

évalue si les échantillons de données sont conformes aux échantillons d’entraînement. Elle

entraîne un réseau neuronal encodeur qui accélère le calcul de la perte de reconstruction, ce qui

réduit considérablement les temps de détection par rapport au état de l’art.

Étant donné que de nombreuses attaques comportent plusieurs étapes et sont lancées à partir de

différentes applications et de différents dispositifs, le chapitre 3 traite des différentes stratégies

qui permettent de prendre en compte les dépendances temporelles des données dans la détection

des cyber-attaques. Nous vérifions que si la plupart des IDS existants reposent sur des réseaux à

mémoire à long et à court terme (en anglais long short-term memory ou LSTM), des études

récentes montrent qu’ils présentent plusieurs inconvénients qui augmentent les temps de détection,
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comme une capacité limitée à paralléliser les calculs. Ainsi, nous proposons un nouvel IDS

non supervisé basé sur un réseau GAN qui utilise des réseaux convolutifs temporels (en anglais

temporal convolutional networks ou TCNs) et l’auto-attention pour remplacer les réseaux LSTM

afin de prendre en compte les dépendances temporelles des données. L’approche proposée

remplace avec succès les réseaux LSTM pour la détection des attaques et obtient de meilleurs

résultats de détection. En outre, elle permet différentes configurations des couches TCN et

d’auto-attention pour obtenir différents compromis entre les taux et les temps de détection et

satisfaire différentes exigences.

Contrairement aux chapitres 2 et 3, le chapitre 4 concerne les attaques adverses qui compromettent

les classificateurs de modulation dans les récepteurs sans fil, mettant ainsi en péril la disponibilité

des communications sans fil. Nous vérifions que les techniques d’attaque adverses existantes

nécessitent une connaissance complète du modèle du classificateur, ce qui est une hypothèse

irréaliste, ou prennent trop de temps pour créer des perturbations adverses, de sorte qu’elles ne

peuvent pas altérer les signaux modulés reçus. Nous proposons donc une nouvelle technique

d’attaque adverse de type boîte noire qui réduit la précision des classificateurs de modulation plus

que les autres attaques adverses du même type et qui crée des perturbations adverses beaucoup

plus rapidement qu’eux. La technique proposée est essentielle pour évaluer les risques liés à

l’utilisation de classificateurs de modulation basés sur le ML dans les communications sans fil.

Enfin, étant donné les risques et les dommages que peuvent causer les attaques adverses, le

chapitre 5 se concentre sur l’étude des techniques de défense contre ces menaces sophistiquées.

Nous vérifions que seules quelques techniques de défense existent pour protéger les classificateurs

de modulation contre ces attaques, la plupart d’entre elles ne réduisant que marginalement

leur impact sur la précision du classificateur. Par conséquent, nous proposons une technique

de défense pour protéger les classificateurs de modulation des attaques adverses afin que ces

attaques ne nuisent pas à la disponibilité des communications sans fil. L’approche que nous

proposons détecte et supprime les perturbations adverses tout en réduisant la sensibilité des

classificateurs basés sur le ML. Par conséquent, elle diminue avec succès la réduction de la

précision causée par différentes techniques d’attaques adverses.

Mots-clés: Internet des objets, 5G, 6G, Sécurité, Sécurité des réseaux, Systèmes de détec-

tion d’intrusion, Apprentissage automatique, Apprentissage profonde, Réseaux adversariaux

génératifs, Classification de la modulation, Attaques adverses.
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ABSTRACT
The broadcast nature of wireless communications and the widespread adoption of connected

things increase attack surfaces and enable attackers to launch several cyber-attacks. Moreover,

the increasing adoption of machine learning (ML) in many applications, including wireless

communications, introduces new risks and vulnerabilities. Adversarial attacks craft and

introduce small perturbations that fool ML models into making wrong decisions. Hence, they

may compromise wireless communications tasks based on ML and jeopardize communication

availability and connected objects’ security. Therefore, cyber-attacks and adversarial attacks

may compromise security goals, causing severe damage and financial losses and even putting

people’s lives at risk.

In this thesis, we advance the state-of-the-art in the security field by considering both the

cyber-attacks and adversarial attacks problems. We enhance the security of connected objects by

effectively and efficiently detecting cyber-attacks while defending systems that rely on machine

learning from adversarial attacks.

In Chapter 2, we verify that while supervised ML-based intrusion detection system (IDS)

cannot detect unknown attacks and require labeled training data, which is time-consuming,

challenging, and sometimes impossible to obtain, unsupervised approaches usually present high

false positive rates that cause service disruptions and derail security operation centers (SOCs).

Moreover, we verify that most unsupervised IDSs struggle with the time required to model

highly complex and heterogeneous systems so that they cannot detect cyber-attacks quickly

enough to stop them before damage is caused. Thus, we propose a novel unsupervised IDS

that detects known and unknown attacks using generative adversarial networks (GANs). Our

approach combines the GAN discriminator’s output with a reconstruction loss that evaluates

whether data samples comply with the training samples. It trains an encoder neural network that

accelerates the reconstruction loss computation, significantly reducing detection times compared

to state-of-the-art approaches.

Since many attacks have multiple steps and are launched from different applications and devices,

Chapter 3 concerns different strategies for considering time dependencies among data in the

detection of cyber-attacks. We verify that while most of the existing IDSs rely on long short-term

memory (LSTM) networks, recent studies show that they present several drawbacks that increase

detection times, such as a limited capacity to parallelize computations. Thus, we propose a

novel unsupervised GAN-Based IDS that uses temporal convolutional networks (TCNs) and

self-attention to replace LSTM networks for considering time dependencies among data. Our

proposed approach successfully replaces LSTM networks for attack detection and achieves better

detection results. Moreover, it allows different configurations of TCN and self-attention layers

to achieve different trade-offs between detection rates and detection times and satisfy different

requirements.
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In contrast to Chapters 2 and 3, Chapter 4 concerns adversarial attacks that compromise modula-

tion classifiers in wireless receivers, jeopardizing the availability of wireless communications.

We verify that the existing adversarial attack techniques either require complete knowledge about

the classifier’s model, which is an unrealistic assumption, or take too long to craft adversarial

perturbations, such that they cannot tamper with the received modulated signals. Thus, we

propose a novel black-box adversarial attack technique that reduces the accuracy of modulation

classifiers more than other black-box adversarial attacks and crafts adversarial perturbations

significantly faster than them. Our proposed technique is essential for assessing the risks of

using machine learning-based modulation classifiers in wireless communications.

Finally, given the risks and damage that adversarial attacks may cause, Chapter 5 focuses on

studying defense techniques against such sophisticated threats. We verify that only a few defense

techniques exist for protecting modulation classifiers from them, most of which only marginally

reduce their impact on the classifier’s accuracy. Therefore, we propose a defense technique

for protecting modulation classifiers from adversarial attacks so that those attacks do not harm

the availability of wireless communications. Our proposed approach detects and removes

adversarial perturbations while reducing the sensitivity of machine learning-based classifiers to

them. Hence, it successfully diminishes the accuracy reduction caused by different adversarial

attack techniques.

Keywords: Internet of Things, 5G, 6G, Security, Network Security, Intrusion Detection

Systems, Machine Learning, Deep Learning, Generative Adversarial Networks, Modulation

Classification, Adversarial Attacks.



TABLE OF CONTENTS

Page

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

0.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

0.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

0.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.4 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.5 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

0.6 Related Grants and Awards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER 1 BACKGROUND AND LITERATURE REVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Intrusion Detection Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Monitoring Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 Placement Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.3 Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.4 Detection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Recurrent Neural Networks / Long Short-Term Memory . . . . . . . . . . . . . . . . . . . 15

1.2.3 Temporal Convolutional Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.4 Self-Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.1 Adversarial Attacks Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CHAPTER 2 INTRUSION DETECTION FOR CYBER-PHYSICAL SYSTEMS

USING GENERATIVE ADVERSARIAL NETWORKS IN FOG

ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Proposed FID-GAN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 GAN with LSTM-RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 System Architecture and Fast Mapping Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.3 Attack Detection Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.4 Fog Architecture and System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Methodology and Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Datasets Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.2 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



XIV

2.5.1 Detection Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.2 Detection Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

CHAPTER 3 UNSUPERVISED GAN-BASED INTRUSION DETECTION SYS-

TEM USING TEMPORAL CONVOLUTIONAL NETWORKS

AND SELF-ATTENTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 DDoS Threat Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Proposed IDS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 GAN-based IDSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 TCNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.3 Self-Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.4 Proposed Detection Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.5 Proposed Deployment Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Methodology and Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Dataset Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.2 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.1 Detection Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.2 Detection Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.4 Combining Protection Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.5 Strengths and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

CHAPTER 4 MULTI-OBJECTIVE GAN-BASED ADVERSARIAL ATTACK

TECHNIQUE FOR MODULATION CLASSIFIERS . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Adversarial Attacks Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Proposed Adversarial Attack Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Methodology and Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

CHAPTER 5 DEFENDING WIRELESS RECEIVERS AGAINST ADVERSAR-

IAL ATTACKS ON MODULATION CLASSIFIERS . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



XV

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Adversarial Attack Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Proposed Wireless Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.1 Adversarial Perturbation Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

5.5.2 Enhanced Modulation Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5.3 Adversarial Samples for Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

5.6 Methodology and Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

5.6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

5.6.2 DAE Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

5.6.3 EMC Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

5.6.4 Adversarial Attacks Considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

5.7 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

CONCLUSION AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

6.2.1 Diffusion-Based Intrusion Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

6.2.2 Minimization of the Number of Training Data Required by Attack

Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

6.2.3 Security and Privacy of Digital Twins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

6.2.4 Adversarial Attacks and Defenses on Regression-Based Applica-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

APPENDIX I APPENDIX OF CHAPTER 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129





LIST OF TABLES

Page

Table 2.1 Equal error rate (EER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 3.1 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 3.2 Training, validation, and testing sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 3.3 Malicious network flows per DDoS attack type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 3.4 Tukey’s HSD pairwise group comparisons (95.0% confidence interval) . . . . . 69

Table 3.5 Accuracy, precision, recall, and F1-scores of our IDS, ALAD, and

FID-GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 3.6 Detection rates by DDoS attack type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 3.7 Computational complexity of each configuration of our IDS . . . . . . . . . . . . . . . . . 72

Table 3.8 Number of parameters of each configuration of our IDS . . . . . . . . . . . . . . . . . . . . . . 73

Table 4.1 Hyper-parameters values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Table 4.2 Mean execution time for crafting adversarial samples . . . . . . . . . . . . . . . . . . . . . . . . . 89

Table 5.1 Hyper-parameter values of the DAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Table 5.2 Hyper-parameter values of the EMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106





LIST OF FIGURES

Page

Figure 0.1 Summary of the thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 1.1 Neural network and convolutional neural network architectures

(obtained from [Stanford]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 1.2 Different layers of a CNN (obtained from [Amidi & Amidi]) . . . . . . . . . . . . . . . 16

Figure 1.3 Recurrent neural network and LSTM architectures (obtained from

[Mittal]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 1.4 General diagram of GANs (obtained from [Silva]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 1.5 Adversarial sample crossing decision boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.1 Autoencoder used to train the proposed Encoder (adapted from

[Flores]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.2 Encoder and Decoder mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.3 Proposed FID-GAN system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 2.4 ROC curves of the proposed FID-GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 2.5 ROC curves of the IDS in MAD-GAN [Li et al. (2019)] . . . . . . . . . . . . . . . . . . . . 43

Figure 2.6 ROC curves of the IDS in ALAD [Zenati, Romain, Foo,

Lecouat & Chandrasekhar (2018b)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 2.7 Mean detection latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.1 The WGAN training framework used in our proposed IDS . . . . . . . . . . . . . . . . . . 58

Figure 3.2 The GAN generator and discriminator architectures . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 3.3 The TCN block architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 3.4 The self-attention block architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 3.5 Our proposed IDS’s ROC curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 3.6 ALAD’s ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 3.7 FID-GAN’s ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



XX

Figure 3.8 Detection times of our IDS, ALAD, and FID-GAN . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 4.1 Our attack model considers the adversarial attacker as malicious

software on the wireless receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 4.2 Our proposed training model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 4.3 VT-CNN2 neural network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 4.4 GAN generator architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 4.5 GAN discriminator architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 4.6 Modulation classifier’s accuracy versus PNR with and without our

proposed adversarial attack technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.7 Waveform comparison of a 8PSK signal with SNR=10 dB

before (clean sample) and after (adversarial sample) our proposed

adversarial attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 4.8 Modulation classifier’s accuracy versus PNR without and subject to

different adversarial attack techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 5.1 Adversarial sample crossing decision boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 5.2 Adversary attack model as a perturbation transmitted over the air . . . . . . . . . . . 99

Figure 5.3 Proposed wireless receiver architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 5.4 DAE neural network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

Figure 5.5 EMC neural network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Figure 5.6 VT-CNN2 modulation classifier’s accuracy versus PNR . . . . . . . . . . . . . . . . . . . .109

Figure 5.7 Cosine distance between clean and adversarial samples and their

reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Figure 5.8 Contribution of our proposed APP and EMC to the modulation

classifier’s accuracy against the FGSM adversarial attack for a SNR

of 10 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 5.9 Contribution of our proposed APP and EMC to the modulation

classifier’s accuracy against the PGD adversarial attack for a SNR

of 10 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



XXI

Figure 5.10 Contribution of our proposed APP and EMC to the modulation

classifier’s accuracy against the MIM adversarial attack for a SNR

of 10 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Figure 5.11 Modulation classifier’s accuracy versus PNR against the FGSM

adversarial attack for a SNR of 10 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

Figure 5.12 Modulation classifier’s accuracy versus PNR against the PGD

adversarial attack for a SNR of 10 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

Figure 5.13 Modulation classifier’s accuracy versus PNR against the MIM

adversarial attack for a SNR of 10 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114





LIST OF ALGORITHMS

Page

Algorithm 2.1 Novel attack detection system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Algorithm 4.1 Proposed adversarial attack technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Algorithm 5.1 Proposed defense technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101





LIST OF ABBREVIATIONS

5G Fifth-Generation

6G Sixth-Generation

ADC Analog-to-Digital Converter

AMC Automatic Modulation Classification

APP Adversarial Perturbation Preprocessor

AUC Area Under The Curve

AUCROC Area Under The Receiver Operating Characteristic Curve

AWGN Additive White Gaussian Noise

BIM Basic Iterative Method

BO-GP Bayesian Optimization-Based Gaussian Process

CAT Customized Adversarial Training

CD Cosine Distance

CE Cross Entropy

CIC Canadian Institute for Cybersecurity

CNN Convolutional Neural Networks

CPS Cyber-Physical Systems

DAE Denoising Autoencoder

DDoS Distributed Denial of Service

DNS Domain Name System



XXVI

DoS Denial of Service

DT Decision Tree

EER Equal Error Rate

EMC Enhanced Modulation Classifier

FGSM Fast Gradient Sign Method

GAN Generative Adversarial Network

GNA Gaussian Noise Augmentation

HIDS Host-Based Intrusion Detection System

HTRD Hybrid Training-Time and Run-Time Defense

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IoT Internet of Things

LAN Local-Area Network

LS Label Smoothing

LSTM Long Short-Term Memory

ML Machine Learning

MGAN Mixture Generative Adversarial Networks

MHA Multi-Head Attention

MI-FGSM Momentum Iterative Fast Gradient Sign Method



XXVII

MIM Momentum Iterative Method

MSE Mean Squared Error

NIDS Network-Based Intrusion Detection System

NR Neural Rejection

PGD Projected Gradient Descent

PNR Perturbation-to-Noise Ratio

QoS Quality of Service

R2L Remote to Local

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SNR Signal-to-Noise Ratio

SOC Security Operation Center

SVM Support Vector Machine

SWaT Secure Water Treatment

TCN Temporal Convolutional Network

TCP Transmission Control Protocol

U2R User to Root

UAP Universal Adversarial Perturbation

UDP User Datagram Protocol



XXVIII

UNB University of New Brunswick

VAE Variational Autoencoder

VoIP Voice-Over-IP

VQA Visual Question Answering

WADI Water Distribution

WAF Web Application Firewall

WGAN Wasserstein GAN

WGAN-GP WGAN Gradient Penalty



INTRODUCTION

0.1 Motivation

The increasing growth of connected devices, such as sensors, actuators, home appliances,

vehicles, and many others, is changing the way we interact with our surroundings. This is

reducing the gap between the physical and digital worlds and integrating devices into large-scale

platforms that acquire and process data to produce automated decisions while also generating

knowledge and information [Rodriguez (2015); Santos, Leroux, Wauters, Volckaert & De Turck

(2018)]. This plethora of smart and connected devices compose smart-cities, industry 4.0,

and, in general, the Internet of things (IoT). It creates a whole new world of possibilities and

services, such as intelligent traffic lights, automated water treatment plants, and personal health

monitoring applications [Li, Da Xu & Zhao (2018c); Osseiran, Monserrat & Marsch (2016)].

Moreover, this connected environment is expected to even further increase with the deployment

of the fifth-generation (5G) and the development of the sixth-generation (6G) of wireless/mobile

communications, which are expected to provide connectivity to a massive number of devices

with highly diverse requirements [Illy, Kaddoum, Miranda Moreira, Kaur & Garg (2019);

Sharma, Kalbarczyk, Barlow & Iyer (2011); Saad, Bennis & Chen (2020)].

On the other hand, the broadcast nature of wireless communications enables attackers to

eavesdrop and inject malicious data into the network and launch several cyber-attacks to

compromise the cyber-security goals, i.e., confidentiality, integrity, and availability [Finney

(2014); Hachimi, Kaddoum, Gagnon & Illy (2020); Pourranjbar, Kaddoum & Saad (2022b)].

Confidentiality aims to protect information such that it can only be understood by the receiver

and sender, i.e., third parties must not be able to understand the data even if they have access to

it. Integrity, on the other hand, aims to ensure that data is not changed without authorization,

i.e., that data is not tampered. Finally, availability aims to guarantee that data is available and

accessible whenever it is needed, i.e., that systems are always fully functional and reliable.
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Therefore, the widespread adoption of IoT introduces several security threats that may cause

inaccurate sensing and control of systems [Alguliyev, Imamverdiyev & Sukhostat (2018); Han,

Xie, Chen & Ling (2014)].

Among those threats, cyber-attacks targeting availability may completely interrupt the operation

of systems, causing financial losses and putting at risk people’s lives [Ali et al. (2020); Jia,

Zhong, Alrawais, Gong & Cheng (2020); Ibitoye, Abou-Khamis, Matrawy & Shafiq (2019);

Meftah, Kaddoum, Do & Talhi (2022); Pourranjbar, Kaddoum & Aghababaiyan (2022a)].

Denial of service (DoS) and distributed DoS (DDoS) attacks, for example, attempt to exhaust

a system’s or network’s resources by forcing compromised devices to unnecessarily request

resources until there is no resource left for legitimate users [Jia et al. (2020)]. Recently, a

DDoS attack on a large domain name system (DNS) provider caused disruptions to many

services, such as Airbnb, Netflix, PayPal, Visa, Amazon, The New York Times, and GitHub

[Cloudfare; Nicholson]. Similarly, cyber-criminals have disrupted Internet service providers and

voice-over-IP (VoIP) operations worldwide and threatened several organizations with DDoS

incursions unless extortion demands are met [R. Dobbins and S. Bjarnason; Roland Dobbins

and Steinthor Bjarnason]. Consequences can be even worse on critical systems. Autonomous

vehicles cannot afford to lose access to their obstacle recognition or breaking systems [Baza et al.

(2021)]; otherwise, accidents could occur. Likewise, one cannot afford their implantable medical

devices, such as pacemakers and insulin pumps, to run out of battery due to the multiple message

transmissions of DoS attacks, as such failures could be fatal [Vakhter, Soysal, Schaumont & Guler

(2022)].

Moreover, while machine learning (ML) is being largely adopted in many applications and

domains due to its powerful classification capabilities, it also introduces new risks and vulnera-

bilities. Adversarial attacks craft and introduce small perturbations that fool machine learning

models into making wrong decisions, which then may significantly impact the security of
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applications [Chakraborty, Alam, Dey, Chattopadhyay & Mukhopadhyay (2018); Yuan, He,

Zhu & Li (2019)]. Hence, just as cyber-attacks do, adversarial attacks may compromise the

security of systems and networks, impacting their confidentiality, integrity, and availability.

For instance, while deep learning models have been increasingly adopted for several wireless

communication tasks [Gingras, Pourranjbar & Kaddoum (2020); Nguyen, Kaddoum, Selim,

Srinivas & Freitas de Araujo-Filho (2022)], such as channel encoding and decoding [Liang,

Shen & Wu (2018)], resource allocation [Sanguinetti, Zappone & Debbah (2018); Sun et al.

(2017)], and automatic modulation classification (AMC) [O’Shea, Corgan & Clancy (2016);

O’Shea, Roy & Clancy (2018)], adversarial attacks may compromise them and jeopardize the

wireless communication’s availability. The works in [Freitas de Araujo-Filho, Kaddoum, Naili,

Fapi & Zhu (2022); Lin, Zhao, Ma, Tu & Wang (2021)] show, for example, that adversarial

attacks compromise ML-based modulation classifiers used in wireless receivers to identify

which scheme has been used to modulate signals in wireless transmitters. As a result, wireless

receivers cannot correctly demodulate signals, and communication is interrupted [Freitas de

Araujo-Filho et al. (2022); Lin et al. (2021)].

Despite numerous security solutions available on the traditional Internet, the IoT’s physical

constraints, highly heterogeneous environment, and the use of ML impose new security challenges

[Miranda, Kaddoum, Boukhtouta, Madi & Alameddine (2022); Naeem, Ali & Kaddoum

(2023); Illy, Kaddoum, Freitas de Araujo-Filho, Kaur & Garg (2022); Garg et al. (2020);

Pourranjbar, Elleuch, Landry-pellerin & Kaddoum (2023)]. For instance, the heterogeneity

brought by different access technologies, applications, and requirements significantly increases

the attacks surfaces and the threat from new types of attacks [Abeshu & Chilamkurti (Feb, 2018);

Papamartzivanos, Gómez Mármol & Kambourakis (2019); Midi, Rullo, Mudgerikar & Bertino

(2017)]. On the other hand, the limited battery and computing power of most IoT devices

thwart the deployment of most security mechanisms based on cryptography and authentication

[Abeshu & Chilamkurti (Feb, 2018); Yang, Wu, Yin, Li & Zhao (2017)]. Finally, since
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adversarial attacks have yet to be exploited in many fields, it is still not clear the extent to which

they can compromise the availability of systems and how to make ML-based systems resistant to

them.

To overcome these challenges, intrusion detection systems (IDSs), which detect attacks when

other security mechanisms fail, have emerged as a fundamental component to protect and

secure systems and networks [Chaabouni, Mosbah, Zemmari, Sauvignac & Faruki (2019); Li

et al. (2019); Jia et al. (2020)]. In contrast to other approaches, anomaly-based IDSs detect

attacks by measuring deviations between data patterns and what is considered to be a normal

behavior [Nisioti, Mylonas, Yoo & Katos (2018)]. Unsupervised anomaly-based IDSs go one

step further by not requiring any knowledge or previous occurrences of attacks. Thus, they

can detect both known and unknown attacks, which is an essential feature as new types of

attacks are launched daily [Nisioti et al. (2018)]. Although existing ML-based IDSs have been

showing promising results at detecting attacks [Abeshu & Chilamkurti (Feb, 2018); Vigneswaran,

Vinayakumar, Soman & Poornachandran (2018); Shone, Ngoc, Phai & Shi (Feb, 2018)], there are

still several challenges and open issues that limit their efficiency and effectiveness. Furthermore,

detecting adversarial attacks that jeopardize wireless communication tasks, such as the correct

demodulation of signals, might not be enough, as their availability would still be compromised

despite our awareness. Therefore, in addition to effectively and efficiently detecting cyber-attacks,

it is also urgently necessary to protect ML-based systems from adversarial attacks.

0.2 Problem Statement

Since new cyber-attacks are constantly launched, IDSs must be able to detect both known

and zero-day attacks. In addition, since obtaining labeled attack data is very challenging and

time-consuming, if not impossible, e.g., for zero-day attacks, IDSs need to consider unlabeled

data [Choi, Kim, Lee & Kim (Sep, 2019); Schlegl, Seeböck, Waldstein, Langs & Schmidt-Erfurth

(May, 2019); Ozgumus (2019)]. Thus, unsupervised learning techniques are deemed best for
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detecting cyber-attacks [Mitchell & Chen (Apr, 2014); Zarpelao, Miani, Kawakani & de Al-

varenga (Apr, 2017); Nisioti et al. (2018)]. However, most existing unsupervised techniques

are not able to deal with the non-linearity and inherent correlations in multivariate time series,

which is the case of a considerable amount of real-world data, including data streams generated

by sensors in IoT and cyber-physical systems (CPSs) [Li et al. (2019); Li & Wen (Jan, 2014);

Goh, Adepu, Tan & Lee (2017)]. Moreover, even when using state-of-the-art deep learning

algorithms, most existing unsupervised IDSs present high false positive rates, which can make

the operation of security operation centers (SOCs) unfeasible as security analysts would have to

analyze many false alarms [Prabavathy, Sundarakantham & Shalinie (2018)]. Therefore, it is

necessary to investigate and propose novel unsupervised IDSs that simultaneously achieve low

false positive and negative rates.

Moreover, since cyber-attacks need to be detected and stopped before causing damage, the

detection time, i.e., the time between the start and the detection of an attack, needs to be as

short as possible. However, most state-of-the-art IDSs have long detection times [Li et al.

(2019)] because they rely on complex neural networks that have many layers, and on long

short-term memory (LSTM) neural networks. Although LSTM networks improve detection

results by considering time dependencies among data, their limited capacity to parallelize

computations increases the detection time [Hollis, Viscardi & Yi (2018); Bai, Kolter & Koltun

(2018); Vaswani et al. (2017); Huang et al. (2020)]. In addition, recent studies show that

LSTM’s sequential processing of data significantly increases the computational complexity and

challenges LSTM’s performance on devices with limited computational power and memory [Duc,

Minh, Xuan & Kamioka (2020)]. Therefore, it is necessary to optimize detection algorithms

and investigate other neural network architectures that consider time dependencies among data

while allowing the fast detection of intrusions such that cyber-attacks are stopped before causing

damage.
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Finally, it has been shown that ML-based systems are vulnerable to adversarial attacks, which can

cause severe security issues by putting at risk the availability of systems that rely on ML [Ibitoye

et al. (2019)]. Adversaries can, for example, craft perturbations and manipulate legitimate inputs

to force ML-based modulation classifiers to produce incorrect outputs and interrupt wireless

communications [Chakraborty et al. (2018); Freitas de Araujo-Filho et al. (2022)]. Despite such

risks, most studies on adversarial attacks are focused on image classifiers [Usama, Asim, Latif,

Qadir et al. (2019); Samangouei, Kabkab & Chellappa (2018)]. Moreover, only a few works

have proposed techniques to defend connected objects from such attacks, most of which only

marginally reduce the impact of the attacks [Zhang et al. (2022); Zhang, Lambotharan, Zheng,

AsSadhan & Roli (2021a)]. Therefore, further investigations are required to ensure the security

of systems against adversarial attacks.

Despite the existing security solutions and the different approaches that have been presented to

detect cyber-attacks and protect systems from adversarial attacks, there are still a variety of issues

to be tackled. After conducting an extensive literature review, we reached a few concluding

remarks and identified the following open challenges that our thesis aims to solve:

• While IDSs should not rely on labelled data, most of them present high false positive rates

and struggle with the time required to detect intrusions. Thus, it is necessary to propose new

detection solutions that reduce the detection time and achieve low false positive and false

negative rates.

• While LSTM networks are heavily used by state-of-the-art intrusion detection systems, they

present several drawbacks that put in doubt their status as the standard architecture for

sequence modeling tasks. Thus, it is necessary to investigate novel strategies for considering

time-dependencies among data.

• Although adversarial attacks may significantly compromise the security of systems that rely

on ML, their study is still in its early stages. Thus, it is necessary to investigate the impact
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of adversarial attacks on different application domains and propose techniques to enhance

systems’ security against them.

0.3 Research Objectives

Although cyber-attacks and adversarial attacks represent different techniques for compromising

security, their effects are the same, as they can severely compromise confidentiality, integrity,

and availability. Hence, given their potential impact, the hypothesis that guides our research is

whether artificial intelligence enhances security by effectively and efficiently detecting attacks or

harms security due to the vulnerabilities it adds. Therefore, in our research, we aim to advance

the state-of-the-art in the security field by addressing the aforementioned identified challenges.

Our main goal is to enhance the security of systems by effectively and efficiently detecting

cyber-attacks while also defending systems that rely on ML from adversarial attacks. To achieve

our goal, we define the following four specific objectives:

1. Propose an unsupervised IDS that reduces the detection time of the current state-of-the-art

solutions, making it more suitable for latency-constrained applications.

2. Propose an unsupervised IDS that considers time-dependencies among data without relying

on LSTM networks, such that their drawbacks are avoided.

3. Propose an adversarial attack technique and investigate the extent to which it may jeopardize

security by compromising the availability of systems.

4. Investigate and propose a defense technique that protects ML-based systems from adversarial

attacks.

0.4 Contributions and Outline

Our thesis is structured as shown in Fig. 0.1, and detailed as follows.
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Figure 0.1 Summary of the thesis structure

Chapter 1 presents the technical background and literature review necessary for our work. We

first introduce intrusion detection systems and their taxonomy. Then, we discuss neural network

architectures and frameworks used in our work, such as convolutional neural networks (CNNs),

LSTMs, temporal convolutional networks (TCNs), self-attention, and generative adversarial

networks (GANs). Finally, we formulate adversarial attacks and introduce their taxonomy.

In Chapter 2, we evaluate the unsupervised detection of cyber-attacks problem using LSTM

networks and GANs, which is a promising deep learning framework that simultaneously trains

two neural networks: a generator and a discriminator. We show that we can combine the

generator and discriminator networks to compute an anomaly detection score that indicates

whether samples are malicious with higher detection rates than when only one of those networks

is used. Moreover, we show that relying on an additional third neural network can accelerate the

anomaly detection score computation, thus significantly reducing the detection time.

In Chapter 3, we focus on detecting DDoS attacks, which significantly impact the availability

of systems, and investigating different neural network architectures that could replace LSTM

networks for considering time dependencies among data in GAN-based IDSs. We show that
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IDSs can combine TCN and self-attention layers to achieve different trade-offs between detection

rates and detection times while outperforming IDSs that rely on LSTM networks.

In Chapter 4, we formulate adversarial attacks and show how they pose a serious security problem

by significantly compromising the availability of wireless communications. We show that

powerful adversarial perturbations can be crafted by modifying GANs and combining them to

the multi-task loss [Kendall, Gal & Cipolla (2018)] so that they significantly reduce the accuracy

of modulation classifiers in wireless receivers, consequently interrupting communication.

In Chapter 5, we review the existing techniques for defending modulation classifiers from

adversarial attacks. Then, we show that it is possible to significantly diminish the impact of

adversarial attacks by estimating and removing large adversarial samples with a specially trained

denoising autoencoder (DAE).

Finally, we conclude our thesis by summarizing the conclusions from the main chapters and

presenting recommendations for future works in Chapter 6.
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CHAPTER 1

BACKGROUND AND LITERATURE REVIEW

In this chapter, we present the technical background and literature review necessary for the

development and understanding of our thesis.

1.1 Intrusion Detection Systems

Intrusion Detection Systems are reactive systems that monitor the network traffic and system-level

applications to detect and report malicious activities carried out by internal or external intruders.

Internal intruders are users that already have some degree of legitimate access to a system or

network and that are attempting to raise that access privilege and misuse it. On the other hand,

external intruders do not have any access authorization to a system or network and attempt to

gain and misuse it.

Despite the different security mechanisms used, systems and networks might still be subject to

cyber-attacks. Therefore, intrusion detection systems have a fundamental role as a second line of

defense and are the last resource when other security solutions fail. In order to be effective, IDSs

need to meet several requirements. For instance, they need to allow dynamic reconfiguration,

run continually with minimal human supervision, produce minimal overhead and degradation of

service, and be scalable to serve a large number of users.

Typical IDSs are usually composed of three components: agents, directors, and notifier. Agents,

or sensors, are responsible for collecting and sending data to the directors, which then analyze

all data received and reach a decision of whether an intrusion is occurring or not. Finally, the

notifier system receives the directors’ decisions and generates an alert when an intrusion is

detected. Depending on the number, distribution, and working mode of agents and directors,

IDSs can be classified according to their monitoring environment, placement strategy, operation

mode, and detection method.
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1.1.1 Monitoring Environment

IDSs can have different monitoring environments, and then be classified as host-based IDSs

(HIDSs) or as network-based IDSs (NIDSs). HIDSs monitor and analyze activities related to

a single host machine. They detect intrusions by monitoring running processes, file-system

changes, inter-process communications, application logs, and operating system logs. HIDSs are

preferred for insider intrusions detection and benefit from lower volumes of traffic, overheads,

and detection times. However, they only detect intrusions on a specific host, they become

vulnerable when the host operating system is compromised, and they are more expensive and

challenging to implement.

On the other hand, instead of monitoring and analyzing information from a single host, NIDSs

detect intrusions by monitoring and analyzing the traffic that passes through a network. They

are preferred against external intrusions and network-based attacks, such as the DoS attacks.

In addition, they can protect the whole network and are less expensive and less complex to

implement. However, NIDSs generate large amounts of data, large overheads, and cannot deal

with encrypted network traffic.

1.1.2 Placement Strategy

Intrusion detection systems may have different placement strategies, depending on where they

are deployed. In the centralized approach, IDSs are placed in a central location, such as a

router or a dedicated host, to which all data is sent for analysis. In this context, a single node

may offer more computing and battery resources for deploying the IDS; however, the IDS may

be completely jeopardized is the node is compromised. On the other hand, in the distributed

approach, IDSs are placed in different nodes to which all data or part of the data is sent for

analysis. Since most of the nodes usually have constrained resources, e.g., computing power and

battery, such IDSs must be very optimized. Finally, the hybrid strategy combines concepts of

centralized and distributed placements to take advantage of their strengths and overcome their

drawbacks. One possible hybrid approach is to organize a network in clusters, where the IDSs
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placed in each cluster are responsible for monitoring the nodes within the cluster. Such strategy

requires only a few nodes to have more resources for deploying the detection solutions.

1.1.3 Operation Mode

Regarding the operation, IDSs can work in an offline or a real-time manner. In the former,

the detection of intrusions does not need to respect a deadline, i.e., intrusions can be detected

whenever possible, regardless of possible damages. On the other hand, real-time IDSs are

required to detect intrusions promptly, such that an alert is emitted while the intrusion is

still occurring. Here, although more challenging, real-time detection is essential for stopping

intrusions and preventing damages.

1.1.4 Detection Method

Depending on their detection method, IDSs can be classified into signature-based IDS, anomaly-

based IDS, specification-based IDS, and hybrid IDS. Signature-based IDSs, also known as

misuse IDSs, detect intrusions by comparing events and data patterns that correspond to the

system or network behavior to signatures of known attacks stored in the IDS. If there is a match

with a stored signature, an intrusion represented by that signature is detected. This approach is

usually very accurate and effective for detecting known threats, and achieves low false positive

rates. However, it has two major drawbacks, where it may require a large memory for storing

signatures and can only detect known attacks, i.e., zero-day attacks for which there is no signature

available cannot be detected.

On the other hand, instead of comparing events to signatures looking for a match, Anomaly-based

IDSs compare events to a normal behavior profile, such that large deviations from this profile

indicate attacks. The normal behavior profile, which corresponds to the system’s or network’s

normal functioning, can be built through thresholds or ML algorithms that identify patterns

corresponding to the normal behavior. Although anomaly-based IDSs usually present higher

false positive rates, they are capable of detecting unknown attacks.
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Specification-based IDSs also detect intrusions by comparing observed events to what is

considered to be a normal system or network behavior. However, in addition to that, the input

data is also compared to the specifications of the system. For instance, a vehicle manufacturer

knows that the engine oil temperature of their car ranges between two values. Thus, in addition

to the normal behavior profile, an IDS can also use that range to detect intrusions. The

specification-based approach usually achieves lower false positive rates than the anomaly-based

approach, at the expense of requiring knowledge of the system. Finally, hybrid-approaches

combine the previous methods to take advantage of their strengths and overcome their limitations.

1.2 Neural Networks

Neural networks are composed of neurons that perform a dot product and apply an optional

non-linear function to a received input. These neurons are organized and divided into one input

layer, one or more hidden layers, and one output layer. Each neuron is fully connected to all

neurons in the previous layer and is entirely independent of the other neurons in its own layer.

Although useful for many problems, this architecture does not consider dependencies among

data and does not scale well for high dimensional inputs, such as images, due to the large number

of connections and parameters required. For instance, a single fully-connected neuron in the

first hidden layer of a neural network would have 3072 (32*32*3) weights for input images of

size 32x32x3 (32 wide, 32 high, 3 color channels), or 120,000 (200*200*3) weights for input

images of size 200x200x3.

1.2.1 Convolutional Neural Networks

Just as regular neural networks, CNNs are composed of layers of neurons with learnable weights

and biases. The whole network expresses a single differentiable score function, such that

class scores are obtained from the input patterns. However, by encoding some properties into

its architecture, the network may have much fewer parameters, and its forward function also

becomes more efficient. In contrast to regular neural networks, the neurons of a CNN’s layers

are arranged in three dimensions: width, height, and depth. Accordingly, the inputs considered
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for that architecture are also three dimensional volumes, instead of a single dimensional pattern.

Figure 1.1a shows the architecture of a regular neural network with two hidden layers while

Figure 1.1b exhibits the architecture of a CNN.

a) Neural network architecture b) CNN architecture

Figure 1.1 Neural network and convolutional neural network architectures

(obtained from [Stanford])

Convolutional neural networks may include sequences of different layers, such as fully-connected

layer, convolutional layer, and pooling layer. The neurons of fully-connected layers are connected

to all neurons in the previous layers and work just as the layers of regular neural networks. On

the other hand, the neurons of convolutional layers are connected to only small regions of the

previous layer, which significantly reduces the network’s number of parameters. These layers

use filters and perform convolution operations, which reduces the network’s size. Pooling layers

perform a downsampling operation, by for example taking the maximum or average value along

the network’s width and height dimensions, consequently reducing the network’s size. Finally,

the output layer reduces the inputs into a single vector of class scores in the depth dimension.

Figures 1.2a, 1.2b, and 1.2c show a fully-connected, convolutional, and max pooling layers,

respectively.

1.2.2 Recurrent Neural Networks / Long Short-Term Memory

Traditional neural networks consider that all input patterns are independent of each other

and cannot deal with dependencies among data. However, some applications have inherent

dependencies among their data and need to consider sequences of data and how one pattern
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a) Fully-connected layer b) Convolutional layer c) Max pooling layer

Figure 1.2 Different layers of a CNN (obtained from [Amidi & Amidi])

relates and affects the other. For instance, in natural language processing or speech recognition

tasks, neural networks are required to process sequences of words and sounds to recognize

meaningful information. Similarly, data streams generated by sensors in cyber-physical systems

have time dependencies between them that could contribute to classification tasks if considered.

In order to deal with sequences of data, recurrent neural networks (RNNs) allow the previous

outputs to be used, and computations are performed for every element of a sequence such that

the computation outputs for one element of the sequence serves as input for the computation of

the following element in that sequence.

Besides considering dependencies among data, RNNs have the advantages of not increasing

the model size with the input size and the possibility of processing inputs with any length.

On the other hand, RNNs usually present longer computation times, difficulties in connecting

previous information to the present task when there is a large gap between them, and vanishing

and exploding gradient problems. Since the derivatives of the hidden layers are multiplied by

each other, if they are too large, the gradient exponentially increases through the network and

eventually explodes, making the model unstable. However, if the derivatives are too small, the

gradient exponentially decreases through the model until it vanishes, and thus the model is

unable to learn by not having its weights sufficiently updated.

In this context, LSTM units have been proposed to deal with the vanishing gradient problem, and

with significant gaps between past and current data, i.e., they are capable of learning long-term

dependencies. LSTM networks are a modified version of RNNs that have, for its repeating
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module, a different structure composed of an input gate, a forget gate, and an output gate. The

input gate decides what new information should be stored in the cell state. The forget gate

decides what information should be discarded from the cell state. Finally, the output gate filters

the cell state and decides what information should be outputted. Figures 1.3a and 1.3b depict

the RNN and LSTM architectures, respectively.

a) RNN Architecture b) LSTM Architecture

Figure 1.3 Recurrent neural network and LSTM architectures

(obtained from [Mittal])

1.2.3 Temporal Convolutional Networks

TCNs refer to modified convolutional architectures for sequence prediction tasks. They map input

sequences to output sequences of the same length and use causal convolutions, i.e., convolutions

that use only information from the past. Thus, an output at time 𝑡 is convolved only with elements

from times earlier than 𝑡 in the previous layer. In addition, TCNs also use dilated convolutions

to enable the architecture to look far into the past. Thus, for an input sequence 𝑥 ∈ R𝑛 and a

filter 𝑓 : {0, ..., 𝑘 − 1} → R, the dilated convolution on element 𝑠 of the sequence is defined as

𝐹 (𝑠) = (𝑥 ∗𝑑 𝑓 ) (𝑠) =
𝑘−1∑
𝑖=0

𝑓 (𝑖)𝑥𝑠−𝑑𝑖, (1.1)

where 𝑘 is the filter size and 𝑑 is the dilation factor. Finally, TCN networks allow a residual

connection so the architecture learns what modifications are imposed on the data rather than

only modifying it. This connection contributes to avoiding the gradient vanishing problem and
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consists of adding the input 𝑥 to the output of a series of transformations 𝑇 . It is given by

𝑂 (𝑥) = Φ(𝑥 + 𝑇 (𝑥)), (1.2)

where Φ is an activation function.

TCNs provide a powerful way to extract temporal dependencies from data and have been

shown to have several advantages over LSTM networks for modeling sequences. For instanve,

computations can be performed in parallel since the same filter can be used in all layers, and

input sequences can be processed as a whole. This means TCNs do not need to store the partial

results of computations and thus consume less memory during training. Finally, TCNs have

been shown to have more stable gradients, which avoids the gradient vanishing and exploding

problems [Bai et al. (2018); Duc et al. (2020)].

1.2.4 Self-Attention

Attention functions are defined as the mapping of a matrix of queries 𝑄, a matrix of keys 𝐾 , and

a matrix of values 𝑉 to an output. Scaled dot product attention is one type of attention function,

which computes a context matrix 𝐶 as

𝐶 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾,𝑉) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉, (1.3)

where 𝑑𝑘 is the dimension of Values. Matrices 𝐾 and 𝑉 usually correspond to input sequences

𝑥, whereas matrix 𝑄 is composed of randomly initialized trainable parameters. The dot product

of 𝑄 and 𝐾𝑇 gives a measure of the pairwise similarity between the query and key matrices,

which results in an attention score. Thus, the matrix 𝐶 represents the intrinsic dependencies

between representations of a sequence.

Moreover, it has been shown that using linearly projected queries, keys, and values ℎ times

with learned linear projections contributes to extracting relationships between data [Li, Zhang,

Lv & Wang (2021); Vaswani et al. (2017)]. Thus, multi-head attention (MHA) modules perform
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attention functions in parallel on each of the projected versions of queries, keys, and values, and

then concatenate their outputs as

𝑀𝐻𝐴(𝑄, 𝐾,𝑉) = 𝑊0𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ), (1.4)

where 𝑊0 is a parameter matrix for the concatenation operation and ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄
𝑖 ,

𝐾𝑊𝐾
𝑖 ,𝑉𝑊

𝑉
𝑖 ). 𝑊𝑄

𝑖 , 𝑊𝐾
𝑖 , and 𝑊𝑉

𝑖 are parameter matrices that project queries, keys, and values,

respectively. Finally, self-attention considers that all the keys, values, and queries come from the

same place, such as the output of the previous layer in a neural network. This allows modules to

capture in-depth contextual information and relationships between data.

Similarly to TCNs, attention mechanisms make it possible to extract dependencies among data

and have been shown to outperform LSTM networks in several sequence modeling tasks. They

are more capable of extracting features than LSTM networks, which produces more accurate

models [Li et al. (2021)]. In addition, they can process sequences as a whole and they enable

more computation parallelization as MHA heads can run in parallel. Furthermore, while LSTM

networks require 𝑂 (𝑛) sequential operations, TCN, self-attention, and MHA layers have a

constant number of sequentially executed operations.

1.3 Generative Adversarial Networks

Generative Models are a powerful method for learning the probabilistic distribution of a training

set, such that it is possible to generate new samples of that same distribution. One of the most

efficient generative models are GANs, which provide a powerful modeling framework able to

cope with high-dimensional data.

GANs estimate generative models through an adversarial process by simultaneously training two

competing networks: a generator 𝐺 and a discriminator 𝐷. The generator network is trained

to produce synthetic data examples that are similar to real data patterns by taking a random

vector 𝑧, drawn from an input distribution 𝑃𝑧 (𝑧) in a latent 𝑍-Space. Thus, it captures the

hidden distribution of the training samples and can be seen as an implicit model of the system.



20

On the other hand, the discriminator network is trained to distinguish and classify synthetic

examples produced by the generator and real data samples from the training set. The two models

are trained together in a zero-sum adversarial minimax game, in which the generator tries to

maximize the probability of producing outputs recognized as real, and the discriminator tries

to minimize that same probability [Goodfellow, Bengio & Courville (2016); Goodfellow et al.

(2014); Schlegl et al. (May, 2019)]. Thus, they can be regarded as two agents playing a minimax

game with value function 𝑉 (𝐺, 𝐷) as in

min
G

max
D
𝑉 (𝐷,𝐺) = E𝑥∼𝑃data (𝑥) [log𝐷 (𝑥)] + E𝑧∼𝑃𝑧 (𝑧) [1 − log𝐷 (𝐺 (𝑥))] . (1.5)

Since GANs might be challenging to train and suffer from the gradient vanishing problem

[Arjovsky, Chintala & Bottou (2017); Creswell et al. (2018)], researchers have proposed

variations of the original GAN formulation to solve such drawbacks. Thus, the Wasserstein

GAN (WGAN) trains a GAN by relying on the Wasserstein distance between two probability

distributions [Creswell et al. (2018)]. Its discriminator estimates the Wasserstein distance

by maximizing the difference between average critic score on real and fake samples, i.e., by

minimizing the discriminator loss given by 𝐿𝐷 = 𝐷 (𝐺 (𝑧)) − 𝐷 (𝑥). On the other hand, the

WGAN generator has the opposite goal of maximizing the average critic score on fake samples

by minimizing the generator loss given by 𝐿𝐺 = −𝐷 (𝐺 (𝑧)) [Arjovsky et al. (2017); Creswell

et al. (2018)]. Furthermore, as generative artificial intelligence is an active research field, other

GAN formulations, such as WGAN Gradient Penalty (WGAN-GP) [Gulrajani, Ahmed, Arjovsky,

Dumoulin & Courville (2017)] and Instance-Conditioned GAN [Casanova, Careil, Verbeek,

Drozdzal & Romero Soriano (2021)], are being proposed to further advance the remarkable

results that GANs have been achieving.

Regardless of the GAN formulation, since no labels are required, GANs are used in unsupervised

problems to find an implicit probability distribution and model of the system, while also providing

a model 𝐷 to detect generated or fake samples. Thus, they present a promising approach to tackle

the challenge of developing effective unsupervised anomaly detection methods for cyber-attacks
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with probability distributions difficult to estimate. Figure 1.4 exhibits a general diagram of

GANs.

Figure 1.4 General diagram of GANs

(obtained from [Silva])

1.4 Adversarial Attacks

Although deep learning models may be trained with large amounts of data, it is impractical to

train them to cover all possible input feature vectors. As a result, the decision boundary found by

a trained model may differ from the real one. Such discrepancy creates room for a trained model

to make mistakes [Lin et al. (2021)]. Thus, adversarial attacks craft perturbations to adulterate

data samples so that they fall within that discrepancy area and are misclassified by a trained

model, as shown in Figure 1.5. However, this is not a trivial task as those perturbations must

be large enough to cause misclassifications but small enough not to be perceptible. Therefore,

given a sample 𝑥, the goal of an adversarial attacker is to find a perturbation 𝛿 and construct an

adversarial sample 𝑥𝑎𝑑𝑣 = 𝑥 + 𝛿 while satisfying

min | |𝑥𝑎𝑑𝑣 − 𝑥 | | < 𝜌 (1.6)

and

𝑓 (𝑥𝑎𝑑𝑣) ≠ 𝑓 (𝑥), (1.7)
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where | | · | | represents a chosen distance metric, 𝜌 is the maximum imperceptible perturbation

according to that metric, and f is the already trained classifier target of the attack.

x xadv

Figure 1.5 Adversarial

sample crossing

decision boundary

1.4.1 Adversarial Attacks Taxonomy

Adversarial attacks can be classified according to different criteria, such as knowledge, specificity,

purpose, and impact. Moreover, based on the knowledge that they require about their target model

𝑓 , adversarial attacks can be classified as white and black-box attacks. White-box attacks require

complete knowledge of the classifier’s model, such as training data, neural network architecture,

learning algorithm, hyper-parameters, and learned model [Yuan et al. (2019)]. On the other

hand, black-box attacks assume a more realistic and feasible scenario, in which the attacker has

access to only the model’s output [Yuan et al. (2019)]. Furthermore, in real-world systems, threat

models might be even more restrictive. The work in [Ilyas, Engstrom, Athalye & Lin (2018)]

defines three more realistic threat models: query-limited, partial-information, and label-only.

The query-limited scenario considers that attackers have access to only a limited number of

queries to the classifier, i.e., only a limited number of model’s outputs may be accessed. The

partial-information scenario considers that attackers have access to only the probabilities of some

of the model’s classes or scores that do not sum to one. Finally, the label-only or decision-based
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scenario refers to when the attacker has access only to the model’s decision, i.e., the class to

which it assigns a given data sample.

According to their specificity, adversarial attacks can be classified as targeted or untargeted.

The former refers to attacks that aim to induce ML models to make specific mistakes. In a

classification problem, for example, targeted adversarial attacks want classifiers to assign data

samples to a particular wrong class. On the other hand, untargeted attacks are only concerned

with inducing wrong results, e.g., they do not care to what class classifiers assign data samples

as long as it is not the correct one.

According to their purpose, the two main categories in which adversarial attacks can be classified

are evasion and poisoning. Evasion attacks craft and introduce perturbations to data samples

during inference time, i.e., the target of the attack is to tamper with data that is being sent to the ML

model. On the other hand, poisoning attacks aim to craft and introduce adversarial perturbations

to data samples that are used for training the ML model. Their goal is to compromise the model

during training so that it produces wrong results once in operation.

Finally, as adversarial attacks create security issues, they can also be classified according

to their impact on the confidentiality, integrity, and availability of data. Thus, adversarial

attacks compromise the confidentiality of the data when the perturbations they introduce reveal

confidential information by, for example, granting unauthorized access to a system. They

compromise the integrity of the data when the adversarial perturbations introduced tamper with

a data sample, such as a sensor measurement or the contents of a message transmitted through a

wireless network. Adversarial attacks compromise the availability of the data when they interrupt

the functioning of a system, such as when adversarial perturbations cause wrong classification

results on modulation classifiers, causing an interruption of wireless communications.
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2.1 Abstract

Cyber-attacks on CPSs can lead to sensing and actuation misbehavior, severe damages to

physical objects, and safety risks. Machine learning algorithms have been proposed for hindering

cyber-attacks on CPSs, but the absence of labeled data from novel attacks makes their detection

quite challenging. In this context, GANs are a promising unsupervised approach to detect

cyber-attacks by implicitly modeling the system. However, the detection of cyber-attacks on

CPSs has strict latency requirements, since the attacks need to be stopped before the system

is compromised. In this paper, we propose FID-GAN, a novel fog-based, unsupervised IDS

for CPSs using GANs. The IDS is proposed for a fog architecture, which brings computation

resources closer to the end nodes and thus contributes to meeting low-latency requirements. In

order to achieve higher detection rates, the proposed architecture computes a reconstruction

loss based on the reconstruction of data samples mapped to the latent space. Other works that

follow a similar approach struggle with the time required to compute the reconstruction loss,

which renders them impractical for latency constrained applications. We address this problem

by training an Encoder that accelerates the reconstruction loss computation. Experiments show

that the proposed solution achieves higher detection rates and is at least 5.5 times faster than a

baseline approach in the three studied datasets.
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2.2 Introduction

Cyber-physical systems integrate computing and physical processes, such that effective control is

performed through computation, efficient communication, and connected sensors and actuators

[Ding, Han, Xiang, Ge & Zhang (2018)]. CPSs enable remote access and control of systems,

devices, and machines, and thus are essential in industrial environments, especially for Industry

4.0 [Ding et al. (2018); Alguliyev et al. (2018)]. However, the widespread adoption of CPSs

introduces several security threats that may cause inaccurate sensing and actuation. Such

misbehavior can lead to severe damages to the controlled physical objects and harm the people

that rely on them [Alguliyev et al. (2018); Han et al. (2014)].

Intrusion detection systems, which detect intrusions that other security mechanisms were not able

to prevent, work as a second line of defense and have a significant role in securing cyber-physical

systems [Li et al. (2019)]. IDSs based on anomaly detection build a normal behavior profile

and classify behaviors that do not match this normal profile as attacks [Mitchell & Chen (Apr,

2014); Zarpelao et al. (Apr, 2017)]. In contrast to other approaches, anomaly-detection IDSs

can detect unknown attacks, which is an essential feature for CPSs. CPSs connect a wide

range of devices with different computation resources, communication technologies, battery

capacity, software, and operating systems. Such heterogeneity challenges the deployment of

security solutions and increases the attack surfaces, making CPSs more vulnerable to new and

unknown attacks [Abeshu & Chilamkurti (Feb, 2018); Papamartzivanos et al. (2019); Midi

et al. (2017)]. Traditional ML algorithms were shown to identify data patterns and detect

cyber-attacks successfully in IDSs. However, they were also shown to not scale effectively with

large datasets and to achieve low accuracy for the detection of cyber-attacks when network nodes

are significantly distributed [Abeshu & Chilamkurti (Feb, 2018); Zenati et al. (2018b)]. On the

other hand, advances in deep learning foment new IDS mechanisms capable of handling the

current’s cyber-attacks, level of sophistication and complexity [Abeshu & Chilamkurti (Feb,

2018); Vigneswaran et al. (2018); Shone et al. (Feb, 2018)].
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Obtaining labels for attacks can be very time consuming, challenging, and sometimes even

impossible. Therefore, unsupervised learning techniques, capable of detecting cyber-attacks

without a need for labels, are deemed best for this task [Choi et al. (Sep, 2019); Schlegl et al.

(May, 2019); Ozgumus (2019)]. However, most existing unsupervised techniques are not able to

deal with the non-linearity and inherent correlations of multivariate time series, which represent

a considerable amount of real-world data, including data streams generated by sensors in CPSs

[Li et al. (2019); Li & Wen (Jan, 2014); Goh et al. (2017)]. Therefore, a new unsupervised

technique independent from any prior knowledge of cyber-attacks is needed to detect intrusions

in CPSs.

Moreover, the detection latency, i.e., the time interval between the start or penetration of an attack

and its detection, is a critical challenge in the detection of attacks [Mitchell & Chen (Apr, 2014)],

as they need to be detected quickly enough to be prevented. On the one hand, many devices

and sensors within CPSs have limited battery and processing resources, which complicate the

deployment of sophisticated security solutions [Papamartzivanos et al. (2019); Midi et al. (2017);

Mourad, Laverdiere & Debbabi (2007); Mourad, Laverdière & Debbabi (2008)]. On the other

hand, if an IDS is deployed in the cloud, the network transmission load, bandwidth requirement,

and latency will significantly increase, and thus intrusions might not be detected in real-time

[Aazam, Zeadally & Harras (2018); Yousefpour, Ishigaki, Gour & Jue (2018)]. However, a

fog-based IDS architecture is well suited to meet low-latency detection requirements, as it

provides computation, storage, and networking services to end users along the thing-to-cloud

continuum for a better quality of service (QoS) [An, Zhou, Lü, Lin & Yang (2018); Moati, Otrok,

Mourad & Robert (2014); Hu et al. (2017)]. In addition, through virtualization, fog nodes could

use virtual machines to achieve higher efficiency and flexibility [Li, Jin, Yuan & Zhang (2017);

Wahab, Bentahar, Otrok & Mourad (2020)]. Thus, a new unsupervised cyber-attack detection

system could take advantage of the fog-computing paradigm and be deployed in the fog as a

virtual function.

Generative adversarial networks estimate generative models through an adversarial process

simultaneously training a generative model 𝐺 and a discriminative model 𝐷. While the latter
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estimates the probability that a sample came from the training rather than 𝐺, the former captures

the data distribution without using labels. GANs are then used for unsupervised problems to

find an implicit probability distribution and model of the system, while also providing a model

𝐷 to detect generated or fake samples [Goodfellow et al. (2014); Salimans et al. (2016)]. Thus,

they present a promising approach to tackle the challenge of developing effective unsupervised

anomaly detection methods for multivariate time series, such as network attacks with probability

distributions that are challenging to estimate.

2.2.1 Related Works

Recent artificial intelligence methods have a fundamental role in many domains. The work in

[Peng et al. (2020)] proposed a novel Visual Question Answering (VQA) model to generate

candidate answers and explore their semantics to facilitate the final answer prediction. In [Lu,

Zhang, Xu, Li & Shen (2020)], a novel hashing method is suggested to overcome existing deep

hashing approaches challenges. The work in [Xu, Lin, Lu, Gao & Shen (2020)] proposed to

integrate multimodal feature synthesis, common space learning, and knowledge transfer for

zero-shot cross-modal retrieval by using Wasserstein GANs. Finally, the limitations of artificial

intelligence techniques and the promising potential of unsupervised learning are presented in

[Lu, Li, Chen, Kim & Serikawa (2018)].

The work in [Li, Chen, Goh & Ng (2018a)] proposed a GAN-based anomaly detection (GAN-AD)

method to detect deviant behaviors as possible attacks in complex networked CPSs. LSTM-RNN

are used to capture the distribution of multivariate time series of the CPSs’ sensors and actuators

under normal working conditions. Anomalies are detected by combining the discriminator

outputs to a reconstruction loss given by the residual between the actual data and its reconstruction

through the generator. Experimental results demonstrated the high detection and low false-

positive rates of this scheme compared to other existing methods. The GAN-AD approach was

extended in [Li et al. (2019)], which proposed a Multivariate Anomaly Detection with GAN

(MAD-GAN) framework to detect attacks using a novel anomaly score called DR-Score. This

score exploits both the discriminator and generator networks, which are LSTM-RNN networks,
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by computing and combining a reconstruction loss to the discrimination loss. In contrast to the

LSTM-RNN approach, the work in [Schlegl, Seeböck, Waldstein, Schmidt-Erfurth & Langs

(2017)] proposed AnoGAN, a deep convolutional GAN, and a scoring scheme that also combines

the discrimination and reconstruction loss to detect anomalies in medical images.

Although GAN-AD [Li et al. (2018a)], MAD-GAN [Li et al. (2019)], and AnoGAN [Schlegl

et al. (2017)] showed satisfactory performances in detecting anomalies, they all rely on an

iterative approach to find a latent 𝑧 by solving an optimization problem that minimizes the

difference between the generated sample and the actual data. Since this optimization problem

is solved for each data sample during the detection of intrusions, this strategy might take too

long and not be feasible for latency constrained applications. In the face of this challenge, a

few other works proposed alternative approaches to find latent representations of data samples.

The works Efficient GAN (EGAN) [Zenati, Foo, Lecouat, Manek & Chandrasekhar (2018a)]

and Adversarially Learned Anomaly Detection (ALAD) [Zenati et al. (2018b)] use a class of

GANs that simultaneously learn a third network, which maps data samples to the latent space

during training. However, they cannot be used to pre-trained GAN models as that third network

is limited to be trained along with the GAN. The work fast AnoGAN (f-AnoGAN) [Schlegl

et al. (May, 2019)] proposed three different architectures for mapping images to the latent space.

However, it lacked an evaluation on the time efficiency of these architectures. In addition, the

works in [Zenati et al. (2018a,b); Schlegl et al. (May, 2019)] are mainly focused on images and

haven’t been explored for multivariate time series, such as the data streams generated by CPSs,

which present significant particularities and complexity. Thus, the literature still lacks a fast

method to invert the GAN generator and find latent representations of multivariate time series

data samples.

A few works explore fog computing and virtualization for IoT and Industry applications. The

work in [Aazam et al. (2018)] presented an architectural overview of Industrial IoT and Industry

4.0, and discussed how the fog can provide local processing support with acceptable latency to

actuators and robots. The work in [Zhang et al. (2019b)] presented a novel fog-based encryption-

as-a-service architecture, which was shown to significantly improve security performance and
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real-time communication of substation networks. The work in [An et al. (2018)] presented a new

lightweight IDS called sample selected extreme learning machine (SS-ELM). This IDS showed,

through experimental simulations, good performance in terms of accuracy and receiver operating

characteristic (ROC). However, it followed a supervised approach and required labels. In [Li

et al. (2017)], virtualization is investigated to overcome resource constraints on sensory-level

nodes and network service provisioning. A case verification and quantitative analysis showed

the mitigation of delay and jitter, as well as the achievement of low-latency and high scalability.

2.2.2 Contributions

In this paper, we propose FID-GAN, a novel low-latency unsupervised intrusion detection

system for cyber-physical systems that uses a GAN and is deployed in the fog. The proposed

architecture models data as multivariate time series and the GAN discriminator and generator

as LSTM-RNN networks to acknowledge and deal with temporal dependencies among data.

While the GAN discriminator already evaluates whether a data sample is an intrusion or not,

the generator is used to compute a reconstruction loss and an intrusion score. In order to

improve detection rates, we investigate the individual contributions of the discrimination and

reconstruction losses and take advantage of both in the detection of cyber-attacks. Moreover, we

improve the architecture of [Li et al. (2019)] by replacing their iterative GAN generator inversion

technique, required for computing the reconstruction loss, for a trained Encoder. The Encoder

accelerates the reconstruction loss computation and significantly reduces the detection latency

by eliminating the need for solving an optimization problem during the detection of intrusions.

Besides, the architecture proposed for training the Encoder allows pre-trained GAN models,

since the Encoder is trained independently and after the GAN training, and also enhances the

generator by updating its parameters. Furthermore, in order to achieve an even lower detection

latency, our IDS architecture takes advantage of the fog-computing paradigm. Although the

cloud, being more resourceful, is used to train the neural networks of our detection solution, the

IDS itself is deployed in the fog as a virtual function.

In a nutshell, the main contributions of our work are:
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1. An unsupervised anomaly-based IDS for CPSs using GAN, which is capable of detecting

unknown attacks and overcomes the challenge of obtaining labels.

2. Evaluation of the individual contribution of the GAN discrimination and reconstruction

losses in the detection of cyber-attacks to improve the detection rates.

3. Proposal of a novel and faster method for inverting the GAN generator, which is useful for

latency constrained classification and retrieval tasks.

4. Proposal of a fog-based architecture for our IDS, which enables our security solution to

take advantage of the low-latency of fog nodes-based applications.

2.2.3 Organization

The remainder of this paper is organized as follows. Section 2.3 introduces our proposed

architecture by describing the system model, the GAN and Encoder training procedure, and the

anomaly score strategy used to detect attacks. Section 2.4 explains the conducted experiments.

In Section 2.5, we present and discuss the achieved results. Finally, Section 2.6 concludes the

paper and proposes possible future extensions to this work.

2.3 Proposed FID-GAN Architecture

In this section, we briefly explain how GANs work and how they can be leveraged with

LSTM-RNN networks to consider temporal dependencies among data. Moreover, we describe

our system architecture and the trained Encoder, which accelerates the reconstruction loss

computation and makes our system suitable for latency constrained applications. Finally, we

define the attack detection score used to distinguish intrusions, and present the fog architecture

proposed to deploy our IDS.

2.3.1 GAN with LSTM-RNN

Generative Adversarial Networks are powerful modeling frameworks for high-dimensional data

that build two competing networks: a generator 𝐺 and a discriminator 𝐷. The generator network

is trained to produce synthetic data examples that are similar to real data patterns by taking a
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random vector 𝑧, drawn from an input distribution 𝑃𝑧 (𝑧) in a latent 𝑍-Space. If trained only

with normal data patterns, the generator captures the hidden multivariate distribution of the

training sequences and can be seen as an implicit model of the system at normal status. On the

other hand, the discriminator network is trained to distinguish between the generated synthetic

examples and real data patterns, and then classify data patterns in one of these two classes. The

two models are trained together in a zero-sum adversarial minimax game, in which the generator

tries to maximize the probability of producing outputs recognized as real, and the discriminator

tries to minimize that same probability [Goodfellow et al. (2016); Schlegl et al. (May, 2019)].

Thus, they can be regarded as two agents playing a minimax game with value function 𝑉 (𝐺, 𝐷)
as in

min
G

max
D
𝑉 (𝐷,𝐺) = E𝑥∼𝑃data (𝑥) [log𝐷 (𝑥)] + E𝑧∼𝑃𝑧 (𝑧) [1 − log𝐷 (𝐺 (𝑥))] . (2.1)

The continuous measurements of CPSs’ sensors and actuators produce multivariate time series

data streams, which are used to monitor the system working conditions. In order to deal with these

intrinsically multivariate time series data, the discriminator and the generator are constructed

as LSTM-RNN networks. Such networks assume that data samples are not independent of

each other and that there is a temporal dependency among them. Thus, instead of dealing with

isolated data samples, sequences of data are considered and stored in memory units. In this

context, computations are performed for every element of a sequence such that the computation

outputs for one element of the sequence serve as input for the computation of the following

element in that sequence.

2.3.2 System Architecture and Fast Mapping Encoder

The discriminator 𝐷 has its weights initialized with the Xavier approach, and is trained with the

Gradient Descent Optimizer to minimize the mean negative cross-entropy between its predictions

and sequence labels. Its loss is thus given by
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𝐿D =
1

𝑚

𝑚∑
𝑖=1

[log𝐷 (𝑥𝑖) + log(1 − 𝐷 (𝐺 (𝑧𝑖)))], (2.2)

where 𝑚 is the number of samples, 𝑥𝑖 ∀𝑖 ∈ {1, ..., 𝑚} are the training samples, which should be

recognized as real and identified as normal by our IDS, and 𝑧𝑖 ∀𝑖 ∈ {1, ..., 𝑚} are samples from

the latent 𝑍-Space, such that 𝐺 (𝑧𝑖) should be recognized as false and detected as intrusions

by our IDS. On the other hand, the generator’s weights are initialized with a truncated normal

distribution, and it is trained with the Adam Optimizer to fool the discriminator into recognizing

as many generated samples as possible as real. Its loss is given by

𝐿G =
𝑚∑
𝑖=1

(1 − log𝐷 (𝑥𝑖)). (2.3)

Although the GAN discriminator network learns to distinguish between real and synthetic data,

the literature has shown that the generator can also play a fundamental role in classification tasks

[Li et al. (2018a, 2019); Schlegl et al. (2017)]. Thus, our proposed architecture consists of a

novel strategy to detect time series attacks with a GAN by computing an attack detection score

through the combination of a discrimination loss 𝐿𝐷 and a reconstruction loss 𝐿𝑅. The former

corresponds to the discriminator’s output, as it already indicates whether an evaluated data 𝑥𝑡 is

the result of an attack, while the latter corresponds to the residual difference between 𝑥𝑡 and

its reconstruction, i.e., the difference between an evaluated pattern and the generator’s output

when that pattern representation in the latent space is passed through the generator. Since the

generator learns an implicit model of the system, patterns that lie far away from the patterns

produced by the generator are likely the result of attacks. Thus, the reconstruction loss measures

how much an evaluated pattern seems to be the result of an attack.

In order to compute 𝐿𝑅, it is first necessary to find the representation of a pattern 𝑥 being

evaluated in the latent 𝑍-Space, i.e., the vector 𝑧 ∈ 𝑍 that, passed through the generator, provides

the most similar pattern to 𝑥. Even though the GAN generator provides a mapping from the latent

𝑍-Space to the data pattern space, it does not provide a direct mapping from the data pattern
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space to the latent space. Such mapping is not trivial to achieve, as it requires the inversion of

the generator, which is often a non-linear model with many layers [Creswell & Bharath (Jul,

2018)]. For this purpose, our architecture builds and trains an Encoder that maps data patterns to

the latent space. In contrast to other approaches that find 𝑧 by solving an optimization problem

for every data pattern [Li et al. (2018a, 2019); Schlegl et al. (2017); Creswell & Bharath (Jul,

2018)], the mapping performed by our Encoder is fast and suitable for latency constrained

applications, such as the detection of cyber-attacks.

Therefore, in our architecture, in addition to the GAN’s discriminator and generator, we also

train an Encoder 𝐸 that maps data patterns 𝑥, from the data pattern space 𝑋 , to representations 𝑧

of those patterns in the latent space 𝑍 . Thus, 𝐸 is designed to do the mapping: 𝐸 (𝑥) : 𝑋 ↦−→ 𝑍 .

The proposed Encoder, depicted in Figure 2.1, follows an autoencoder configuration and is

obtained from the training of an autoencoder. The Encoder part of the autoencoder maps

input data into the latent space. The Decoder part, on the other hand, corresponds to the GAN

generator, which reconstructs the data from its representation in the latent space by performing

the mapping: 𝐺 (𝑧) : 𝑍 ↦−→ 𝑋 . Figure 2.2 shows the Encoder and Decoder space mappings.

The purpose of the autoencoder is to ensure that 𝑥 and 𝐺 (𝐸 (𝑥)), described in Figure 2.2, are as

similar as possible. Thus, it is trained by minimizing the mean squared error (MSE) residual

loss between the input data 𝑥 and reconstructed data 𝑥′ = 𝐺 (𝐸 (𝑥)) as

𝐿autoencoder =

√√
(1

𝑛
)

𝑛∑
𝑖=1

[𝑥𝑖 − 𝐺 (𝐸 (𝑥𝑖))]2, (2.4)

where 𝑛 is the data pattern dimension.

2.3.3 Attack Detection Score

Since both the discrimination and reconstruction losses, 𝐿𝐷 and 𝐿𝑅, respectively, measure how

much a data pattern seems to be the result of an attack, we define an Attack Detection Score

𝐴𝐷Score as a combination of these two values as
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𝐴𝐷Score = 𝜏𝐿𝐷 + (1 − 𝜏)𝐿𝑅, (2.5)

where 𝜏 is a parameter that varies between 0 and 1 and balances the contributions of 𝐿𝐷 and 𝐿𝑅

in the attack detection score. Note that if 𝜏 is one, only the discrimination loss is considered for

computing the anomaly detection score. In the same way, if 𝜏 is zero, only the reconstruction

loss is considered. In a nutshell, the novel unsupervised strategy that we propose to detect time

series attacks is described in Algorithm 2.1.
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Algorithm 2.1 Novel attack detection system

1: Train the GAN 𝐷 and 𝐺 according to equations (2.1), (2.2), and (2.3)

2: Train the Encoder within the autoencoder using 𝐺 as the Decoder and minimizing

the loss function (2.4)

3: for Each evaluated data pattern 𝑥𝑡 do
4: Compute 𝐿𝐷 (𝑥𝑡)
5: Obtain the latent representation of 𝑥𝑡 by computing 𝐸 (𝑥𝑡)
6: Compute 𝐿𝑅 (𝑥𝑡) =

√
( 1
𝑛 )

∑𝑛
𝑖=1 [𝑥𝑖 − 𝐺 (𝐸 (𝑥𝑖))]2

7: Compute 𝐴𝐷Score = 𝜏𝐿𝐷 + (1 − 𝜏)𝐿𝑅, 𝜏 ∈ [0, 1]
8: Decide whether 𝑥𝑡 is an intrusion using 𝐴𝐷Score

9: end for

2.3.4 Fog Architecture and System Model

The architecture of our proposed IDS is based on the fog-computing paradigm and deployed

in three layers: End Point layer, Fog layer and Cloud layer. The End Point layer is where the

cyber-physical systems are located. It is from this layer that the normal data patterns used to

train the GAN and the Encoder come from. The unknown data patterns that are evaluated by our

IDS also come from the CPSs in this layer. The Cloud layer is endowed with more computing

resources and it is where the training of the GAN and the Encoder takes place. This layer tends

to be distant from the CPS nodes, thus resulting in a higher latency. However, since there is no

real-time requirement for the training, this is not an issue. Finally, the Fog layer is where the

proposed detection system is deployed as a virtual function. Since it is closer to the CPSs in the

End Point layer, a lower latency is achieved, which is suitable for the real-time requirements of

attacks detection.

Figure 2.3a exhibits the architecture of the proposed IDS training model. The CPSs in the End

Point layer send normal data to the cloud layer, as only normal data patterns are used for training.

The GAN generator and discriminator are trained and then the Encoder is trained within the

autoencoder architecture by using the trained generator as the Decoder. The architecture of

the proposed IDS detection model is shown in Figure 2.3b. The CPSs in the End Point layer

send unknown data patterns to be evaluated by the IDS in the Fog layer. To decide whether the
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Figure 2.3 Proposed FID-GAN system model

evaluated pattern is an intrusion or not, the IDS computes the discrimination and reconstruction

losses, and the attack detection score, as described in Algorithm 2.1. The total latency for this

architecture is given by

𝑇Total = 𝑇Comm + 𝑇Net + 𝑇Comp, (2.6)



38

where 𝑇Comm is the communication latency, 𝑇Net is the network latency, and 𝑇Comp is the

computing latency. The communication latency corresponds to the propagation and transmission

time of a packet, which depends on the physical medium and distance between nodes. The

network latency corresponds to the network’s delays, such as queuing delays caused by network

congestion. These depend on the communication medium and network infrastructure. Thus,

although they might impact the overall latency of the system, the communication and network

latency do not affect the IDS accuracy and are therefore out of the scope of our work. On the

other hand, the computing latency corresponds to the detection latency, i.e., the time taken to

detect whether a data pattern is an intrusion. The Encoder trained in our architecture allows the

latent representation of a data pattern to be quickly obtained, and thus the reconstruction loss

computation is fast. This is an essential feature for our IDS to achieve low detection latency.

2.4 Methodology and Performance Evaluation

In this section, we briefly present the datasets used in our experiments, which contain both

normal and attack data. Then, we explain the conducted experiments and metrics used for

performance evaluation. Information on the platform and environment used as well as the github

link for the reproduction of our experiments are given.

2.4.1 Datasets Presentation

We evaluated the proposed IDS, FID-GAN, using the Secure Water Treatment (SWaT) and

the Water Distribution (WADI) datasets for CPSs, and the NSL-KDD dataset for network

cyber-attacks. The SWaT dataset, built in the Singapore University of Technology and Design,

represents a test-bed for a modern water treatment plant in which the water goes through a

six-stage process equipped with several sensors and actuators. It contains 946,722 records, with

51 attributes of sensor and actuator data, of either normal or attack data, recorded over seven

days of normal operation and four days in which 36 different attacks were conducted [iTrust

Singapore University of Technology and Design (SUTD) (a)]. The WADI dataset is built by the

same authors of the SWaT dataset and represents an extension of that system by considering a
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complete and realistic water treatment, storage, and distribution network. It contains 1,209,610

data patterns with 126 features [iTrust Singapore University of Technology and Design (SUTD)

(b)]. On the other hand, the NSL-KDD dataset is a refined version of the KDDCUP99 dataset

setup by Lincoln Labs, which represents nine weeks of raw transmission control protocol (TCP)

dump data for a local-area network (LAN) simulating a typical U.S. Air Force LAN. The LAN

was operated as a true Air Force environment, affected by (1) DoS attacks, (2) unauthorized

access from a remote machine (R2L) attacks, unauthorized access to local superuser with root

privileges (U2R) attacks, and surveillance and other probing attacks [Canadian Institute for

Cybersecurity]. For each dataset, we constructed a training, a validation, and a testing set. The

former with only normal data and the other two with both normal and attack data. The training

and validation sets are used to train the models and to find the optimal hyper-parameters of the

algorithms, respectively. On the other hand, the testing set is used to evaluate the performance

of our system in the detection of intrusions.

2.4.2 Simulation Experiments

The attack detection problem is for multivariate time series, where the temporal dependency

between the data examples is considered. For this purpose, following [Li et al. (2019)], we

assume a sliding window of size 30 across the raw data streams with shift length 10. We use

LSTM networks with depth 3 and 100 hidden layers for the discriminator, Generator/Decoder,

and Encoder. In addition, since [Li et al. (2019)] evaluated different dimensions for the latent

space and found 15 to generate better samples, we also consider a latent space dimension of 15 in

our study. We improve the work in [Li et al. (2019)] by introducing an Encoder that maps data to

the latent space, and then we compare our results to that work. For a fair comparison, we follow

many project decisions taken by [Li et al. (2019)], such as the number of hidden layers and the

dimension of the latent space. However, by introducing an Encoder, our proposal is expected to

improve both the detection rates and the detection latency 𝑇Comp. Furthermore, we also compare

our results to the work in [Zenati et al. (2018b)], which detects intrusions using a GAN and

a third network that reconstructs data samples. The architecture in [Zenati et al. (2018b)] is

much simpler than ours, and therefore might achieve a lower detection latency. On the other
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hand, this simplicity might cause difficulties in the detection of intrusions on more complex

datasets. Thus, our IDS is expected to achieve better detection rates. The detection rates are

evaluated using the area under the curve (AUC) of the ROC. The detection latency is evaluated

by measuring the mean computing time to detect whether a data sample is an intrusion.

Since it increases the detection latency, the reconstruction loss computation only makes sense

if it improves the detection performance. Thus, we evaluate the individual contribution of the

discrimination and reconstruction losses in the detection of attacks. This is done by varying the

parameter 𝜏 in (2.5) from 0 to 1. If 𝜏 = 1, 𝐴𝐷Score contains only the discrimination loss 𝐿𝐷 .

However, if 𝜏 = 0, 𝐴𝐷Score only represents the reconstruction loss 𝐿𝑅. Finally, if 0 < 𝜏 < 1,

𝐴𝐷Score contains a combination of both the reconstruction and discrimination losses. We

expect that a better detection rate can be achieved when considering a combination of both

discrimination and reconstruction losses, such that the reconstruction loss computation enhances

the detection results.

In our experiments, for each dataset, we trained the GAN for 100 epochs and saved the models

for each epoch. Then, we consider 𝜏 = 1 and compute the 𝐴𝐷Score(𝜏=1) = 𝐿𝐷 for the samples

within the validation set considering the 100 trained models saved. We save the model that

achieves the highest AUC, considering only the discrimination loss. The generator’s parameters

of this model are then used to initialize the decoder part of the autoencoder. Following this, the

autoencoder is trained for 300 epochs with the training set. Each trained model is saved and then

used to compute the AUC for the validation set, considering only the reconstruction loss, i.e.,

with 𝜏 = 0 and 𝐴𝐷Score = 𝐿𝑅. The autoencoder model that achieves the highest AUC is then

saved. The discriminator of the first saved model and the encoder and generator of the second

saved model are then used on the testing set to obtain the detection results considering only the

discrimination loss, only the reconstruction loss, and a combination of both. All experiments

were conducted on an AMD Ryzen Threadripper 1920X 12-Core Processor 2.2GHz with 64GB

of RAM and an NVIDIA GeForce RTX 2080 under the Tensorflow 2.1 environment. The code

to reproduce the experiments is available at https://github.com/pfreitasaf/FIDGAN.
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2.5 Results and Discussions

In our experiments, we evaluated both the detection rate and latency using equation (2.5) for

models with different contributions of discrimination and reconstruction losses. Specifically, we

consider

1. 𝐴𝐷𝑠𝑐𝑜𝑟𝑒(𝜏=1) = 𝐿𝐷 , which uses only the discrimination loss;

2. 𝐴𝐷𝑠𝑐𝑜𝑟𝑒(𝜏=0) = 𝐿𝑅, which uses only the reconstruction loss;

3. 𝐴𝐷𝑆𝑐𝑜𝑟𝑒(0<𝜏<1) = 𝜏𝐿𝐷 + (1 − 𝜏)𝐿𝑅, which uses a combination of the discrimination and

reconstruction losses.

The obtained results are compared to the results of the works in MAD-GAN [Li et al. (2019)]

and ALAD [Zenati et al. (2018b)], which also compute discrimination and reconstruction losses

to detect intrusions using a GAN.

2.5.1 Detection Rates

We use the AUC as the performance metric to evaluate the detection of intrusions and compare

our results with [Li et al. (2019)] and [Zenati et al. (2018b)]. Thus, we obtain the ROC curves

for the detection results of the data samples in the testing sets of the three considered datasets.

Different contributions for the discriminant and reconstruction losses are investigated, and the

model that achieves the highest AUC is considered the best one. Figures 2.4a, 2.4b, and 2.4c

show the ROC curves obtained by our IDS for the SWaT, WADI, and NSL-KDD datasets,

respectively. In the same way, Figures 2.5a, 2.5b, and 2.5c depict the ROC curves of the IDS

proposed by MAD-GAN, and Figures 2.6a, 2.6b, and 2.6c exhibit the ROC curves of the IDS

proposed by ALAD. In contrast to our IDS and MAD-GAN’s IDS, ALAD’s IDS explores

anomaly detection scores that considers only 𝐿𝐷 , only 𝐿𝑅 and a combination of 𝐿𝐷 and 𝐿𝑅

without relying on a parameter 𝜏.

These ROC plots demonstrate that the proposed FID-GAN achieves higher AUCs when combining

both the discrimination and reconstruction losses. Moreover, the use of only the reconstruction

loss achieves better detection results than the use of only the discrimination loss for the SWaT and



42

a) SWaT dataset

b) WADI dataset c) NSL-KDD dataset

Figure 2.4 ROC curves of the proposed FID-GAN

WADI datasets. Therefore, the reconstruction loss computation is shown to enhance the detection

performance of FID-GAN. In addition, the AUC results of FID-GAN are higher than the AUC

results of MAD-GAN [Li et al. (2019)] for all considered models and datasets. Therefore, our

IDS is shown to achieve better detection results than the IDS proposed by MAD-GAN. On the

other hand, FID-GAN and ALAD essentially achieve the same AUCs for the SWaT dataset.

However, FID-GAN achieves significantly better detection results than ALAD for the WADI

and the NSL-KDD datasets, which are more complex and more challenging to detect intrusions

from, since their AUCs are, in general, lower than the AUCs of the SWaT dataset. In addition, in

contrast to our proposal, ALAD also does not support pre-trained GAN models, i.e., previously
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a) SWaT dataset

b) WADI dataset c) NSL-KDD dataset

Figure 2.5 ROC curves of the IDS in MAD-GAN [Li et al. (2019)]

trained GANs. Precisely, the Encoder proposed by our architecture is trained independently from

the GAN, and can thus be easily applied to enhance existing GAN based IDSs. On the other

hand, ALAD requires their third network, which is responsible for reconstructing data samples,

to be trained along with the GAN, such that previously trained GANs have to be re-trained.

Since training GANs is not always an easy task due to mode collapse and stabilization issues

[Arjovsky & Bottou (2017); Srivastava, Valkov, Russell, Gutmann & Sutton (2017); Salimans

et al. (2016)], this is a disadvantage in the use of ALAD for improving existing GAN based

IDSs.
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a) SWaT dataset

b) WADI dataset c) NSL-KDD dataset

Figure 2.6 ROC curves of the IDS in ALAD [Zenati et al. (2018b)]

Furthermore, we also evaluate the equal error rate (EER), a performance metric derived from

the ROC that represents the point where the false positive rate and the false negative rate are

equal. Table 2.1 exhibits the EER values for the model that combines 𝐿𝐷 and 𝐿𝑅. According

to the AUCs, FID-GAN achieves lower EER than MAD-GAN for all considered datasets, and

lower EER than ALAD for the two more complex datasets.
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Table 2.1 Equal error rate (EER)

SWaT WADI NSL-KDD
FID-GAN 0.1861 0.2049 0.2844

MAD-GAN 0.2416 0.2280 0.2921

ALAD 0.1768 0.2295 0.3485

2.5.2 Detection Latency

Since the detection of intrusions is a latency constrained application, the anomaly detection

score needs to be computed in a short time. This time mainly depends on the computation time

of the discrimination and reconstruction losses. Therefore, we compare the detection latency of

our proposed IDS to that of the IDS in [Li et al. (2019)] and in [Zenati et al. (2018b)] when

considering only the discrimination loss, only the reconstruction loss and a combination of

both losses. Figures 2.7a, 2.7b, and 2.7c show the latency obtained for the SWaT, WADI, and

NSL-KDD datasets, respectively.

For the three considered datasets, our IDS and the IDS in MAD-GAN achieved the same

detection latency when considering only the discrimination loss. On the other hand, the latency

increased when the reconstruction loss was also considered. This is because finding the latent

representation of a sample and computing its reconstruction loss demands time. Although

the detection latency has increased for these two IDSs, our IDS shows a much lower latency

compared to that of MAD-GAN. While other works solve optimization problems during the

detection of intrusions, the Encoder in our architecture enables a major reduction in the time

taken to detect intrusions because it obtains the latent representation of patterns through a

direct mapping. Our IDS is shown to achieve a detection latency at least 5.5 times lower than

MAD-GAN’s IDS when only the reconstruction loss is used. Therefore, it is much more suitable

for latency constrained applications, such as the detection of intrusions in CPSs. On the other

hand, the IDS proposed by ALAD achieves the shortest detection latency for the three considered

datasets. In contrast to our proposed architecture, ALAD does not model data as time series or

use RNN-LSTM networks to consider dependencies among data. In fact, ALAD uses neural

networks with only fully-connected and convolutional layers, and therefore does not suffer
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a) SWaT dataset

b) WADI dataset c) NSL-KDD dataset

Figure 2.7 Mean detection latency

from the limited parallelization allowed by RNN-LSTM networks. Thus, it requires a lower

computing time, and consequently a shorter detection latency than our solution. However, as

already presented, ALAD’s IDS is also the one that achieves the poorest AUCs for the WADI

and NSL-KDD datasets, which indicates that it may not work well for more complex datasets

and more sophisticated attacks. Thus, our IDS is more suitable than ALAD’s IDS to detect

intrusions in cyber-physical systems.
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2.6 Conclusions

In this paper, we proposed FID-GAN, a novel unsupervised strategy to detect cyber-attacks

in CPSs using a GAN. The detection is based on a combination of the discrimination and

reconstruction losses, which requires the mapping of data samples to the latent space. In

contrast to other works, that mapping is performed by a Encoder, such that the reconstruction

loss computation is accelerated. Furthermore, to address the strict latency requirements that

challenge the detection of cyber-attacks, our system is proposed within a fog architecture to

benefit from the low-latency provided by fog nodes.

In our experiments, we evaluated both the detection performance and detection latency when

the attack detection relied on (i) only the discrimination loss, (ii) only the reconstruction loss,

and (iii) a combination of the discrimination and reconstruction losses. Three datasets were

used: the SWaT and the WADI for CPSs, and the NSL-KDD for network cyber-attacks. We

evaluated and compared the detection rates and latency of FID-GAN to the IDSs proposed in [Li

et al. (2019)] and [Zenati et al. (2018b)]. Our proposed FID-GAN achieves significantly higher

detection rates than [Zenati et al. (2018b)] for the WADI and NSL-KDD datasets. Moreover,

our proposed solution is also shown to achieve higher detection rates and to be at least 5.5 times

faster than the IDS proposed in [Li et al. (2019)] when considering only the reconstruction loss.

Therefore, it is much more suitable for latency constrained applications, such as the detection of

cyber-attacks in CPSs. In future works, we will investigate the use of Variational Autoencoders

in the unsupervised detection of cyber-attacks and approaches to further reduce the detection

latency of our IDS.
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3.1 Abstract

Fifth-generation networks provide connectivity to a massive number of devices and boost a

plethora of applications in several different domains. However, the large adoption of connected

devices increases attack surfaces and introduces several security threats that can severely damage

physical objects and risk people’s lives. Despite existing IDSs, there are still several challenges to

be addressed in the detection of cyber-attacks. For instance, while unsupervised IDSs are required

to detect zero-day attacks, they usually present high false positive rates. Moreover, most existing

IDSs rely on LSTM networks to consider time-dependencies among data. However, LSTM

networks have recently been shown to present several drawbacks and limitations, which put into

question their performance on sequence modeling tasks. Thus, in this paper, we investigate

GANs, a promising unsupervised approach to detecting attacks by implicitly modeling systems,

and alternatives to LSTM networks to consider temporal dependencies among data. We propose

a novel unsupervised GAN-based IDS that uses TCNs and self-attention to detect cyber-attacks.

The proposed IDS leverages edge computing and is proposed for edge servers, which bring

computation resources closer to end nodes. Experiment results show that our proposed IDS
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can be configured to satisfy different detection rate and detection time requirements. Moreover,

they show that our IDS is more accurate and at least 3.8 times faster than two state-of-the-art

GAN-based IDSs that are used as baselines.

3.2 Introduction

The increasing growth of connected devices, such as sensors, actuators, home appliances and

vehicles is changing how we interact with our surroundings. It is reducing the gap between the

physical and digital worlds and integrating devices into large-scale platforms that acquire and

process data to produce automated decisions while also generating knowledge and information

[Rodriguez (2015); Santos et al. (2018)]. Smart and connected devices compose smart cities,

Industry 4.0, and, in general, the IoT. They create a whole new world of services and applications,

such as intelligent traffic lights, automated water treatment plants, and personal health monitoring

applications [Li et al. (2018c); Osseiran et al. (2016)]. Moreover, they are expected to grow

even further with the adoption of the 5G, since it can provide connectivity to a massive number

of devices with highly diverse requirements [Illy et al. (2019); Sharma et al. (2011)].

On the other hand, the broadcast nature of wireless communications enables attackers to

eavesdrop on the network, inject malicious data into it, and launch cyber-attacks [Ghafir et al.

(2018)]. Therefore, the widespread adoption of IoT introduces several security threats that

may impair network integrity and cause inaccurate sensing and control of systems. Such

vulnerabilities could severely damage physical objects and risk people’s lives [Alguliyev et al.

(2018); Han et al. (2014)]. Despite numerous security solutions being available for the traditional

Internet, the IoT’s physical constraints and highly heterogeneous environment impose new

security challenges. For instance, the heterogeneity brought by different access technologies,

applications, and requirements significantly increases the attack surfaces and the threat from

new types of attacks [Abeshu & Chilamkurti (Feb, 2018); Papamartzivanos et al. (2019); Midi

et al. (2017)]. On the other hand, the limited battery and computing power of most IoT devices

thwart the deployment of most cryptography- and authentication-based security mechanisms

[Abeshu & Chilamkurti (Feb, 2018); Yang et al. (2017)].
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To overcome these challenges, IDSs have emerged as a fundamental component to protect and

secure networks and systems. They detect cyber-attacks when other security mechanisms fail

[Chaabouni et al. (2019); Li et al. (2019); Jia et al. (2020)]. In contrast to other detection

approaches, anomaly-based IDSs detect cyber-attacks by measuring deviations between data

patterns and what is considered normal behavior. Although recent advances in ML foment new

IDS mechanisms to detect cyber-attacks [Abeshu & Chilamkurti (Feb, 2018); Vigneswaran et al.

(2018); Shone et al. (Feb, 2018)], there are still several challenges to be addressed.

First, sophisticated distributed cyber-attacks, such as modern DDoS attacks, significantly

challenge current IDSs, as they might have multiple steps and be launched on different

applications and devices. DDoS attacks attempt to exhaust a system’s or network’s resources

by, for example, forcing multiple compromised devices to unnecessarily request resources so

that there are no resources left for legitimate users. Google, Amazon Web Services, DNS

providers, and many others have been the target of DDoS attacks. For instance, recently, a DDoS

attack on a large DNS provider caused disruptions to many services, such as Airbnb, Netflix,

PayPal, Visa, Amazon, The New York Times, and GitHub [Cloudfare; Nicholson]. In addition,

cyber-criminals have threatened several organizations with DDoS incursions unless extortion

demands are met. In 2021, such attacks disrupted internet service providers and VoIP operations

worldwide [R. Dobbins and S. Bjarnason; Roland Dobbins and Steinthor Bjarnason].

Moreover, since new attacks are constantly being launched, IDSs must be able to detect zero-

day attacks, for which there is no data available. Even for known attacks, it is challenging,

time-consuming, and sometimes impossible to obtain labeled data. Therefore, unsupervised

IDSs, which detect both known and zero-day attacks without relying on labeled attack data,

are deemed the best to use [Choi et al. (Sep, 2019); Nisioti et al. (2018); Zarpelao et al. (Apr,

2017); Mitchell & Chen (Apr, 2014)]. However, most existing state-of-the-art unsupervised

IDSs usually have high false positive rates and long detection times [Li et al. (2019); Nisioti

et al. (2018); Freitas de Araujo-Filho et al. (2021)], which make them unsuitable for latency

constrained applications.



52

Furthermore, most existing IDSs rely on LSTM networks to consider time dependencies among

data, which are present in a considerable amount of real-world data, including network traffic.

However, recent studies show that LSTM networks present several drawbacks, which put in

doubt their status as the standard architecture for sequence modeling tasks [Hollis et al. (2018);

Bai et al. (2018); Vaswani et al. (2017); Huang et al. (2020)]. For instance, they process data

sequentially, which significantly increases their computational complexity and challenges their

performance on devices with limited computational power [Duc et al. (2020)]. Moreover, LSTM

networks can easily consume a lot of memory just to store the partial results of multiple cell

gates during training [Bai et al. (2018)]. Therefore, it is urgently necessary to propose novel

unsupervised IDSs that are capable of tackling the aforementioned challenges while avoiding

the drawbacks of LSTM networks.

3.2.1 Related Works

The work in [Sayad Haghighi, Farivar & Jolfaei (2020)] proposes a learning firewall that

automatically updates itself with new rules to minimize false negatives and eliminate false

positives. The authors of [Jia et al. (2020)] propose FlowGuard, an intelligent defense

mechanism that protects IoT networks against DDoS attacks. It identifies, classifies, and

mitigates cyber-attacks by leveraging an edge-IoT architecture to meet the real-time requirements

of IoT applications. The work in [Injadat, Moubayed & Shami (2020)] combines the Bayesian

optimization-based Gaussian process (BO-GP) and the decision tree (DT) classification algorithm

to detect botnet attacks on IoT devices. Similarly, the authors of [Moubayed, Injadat & Shami

(2020)] rely on a genetic algorithm to optimize a random forest model that detects botnet attacks

based on their DNS queries. However, the approaches proposed in [Jia et al. (2020)] and

[Sayad Haghighi et al. (2020); Injadat et al. (2020); Moubayed et al. (2020)] follow a supervised

learning approach so they cannot detect unknown attacks and require labeled attack data to

detect known attacks.

Several other works propose unsupervised IDSs that leverage GANs to detect both known and

unknown attacks without requiring labeled attack data. The works on generative adversarial
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networks-based anomaly detection (GAN-AD) [Li et al. (2018a)] and multivariate anomaly

detection with GAN (MAD-GAN) [Li et al. (2019)] propose GAN-based anomaly detection

systems to find deviant behaviors resulting from cyber-attacks in CPSs. They detect anomalies

by combining GAN discrimination and reconstruction losses. However, they detect attacks by

solving an optimization problem for every data pattern under evaluation, which significantly

increases detection time and makes them unsuitable for low-latency constrained applications.

On the other hand, the work in [Freitas de Araujo-Filho et al. (2021)] proposes a low-latency

unsupervised IDS for CPSs, called FID-GAN, that also uses GANs. It enhances MAD-GAN’s

architecture by training an encoder such that no optimization problem is solved at detection

time and attacks are detected much faster than with MAD-GAN. However, it still presents

considerable false positive rates.

Despite their interesting proposals, the works on FlowGuard [Jia et al. (2020)], GAN-AD [Li

et al. (2018a)], MAD-GAN [Li et al. (2019)], and FID-GAN [Freitas de Araujo-Filho et al.

(2021)] rely on LSTM networks to consider time dependencies among data. LSTM networks are

heavily used by existing IDS solutions, which then result in several drawbacks [Duc et al. (2020);

Bai et al. (2018); Vaswani et al. (2017)]. In contrast, the work on adversarially learned anomaly

detection (ALAD) [Zenati et al. (2018b)] proposes a GAN-based anomaly detection system that

uses only fully-connected and convolutional neural networks. However, it is significantly worse

than FID-GAN at detecting attacks [Freitas de Araujo-Filho et al. (2021)].

To avoid LSTM’s drawbacks, recent works have been proposing alternative architectures for

considering time dependencies among data. The work in [Bai et al. (2018)] proposes TCNs

by leveraging causal and dilated convolutions, and shows that TCNs can outperform LSTM

networks in several sequence modeling tasks. The work in [Vaswani et al. (2017)] proposes

transformers by replacing recurrent networks for attention mechanisms in sequence transduction

models. The authors of [Huang et al. (2020)] propose an anomaly detection system for logs

that uses transformers and show that transformers outperform LSTM networks in log sequences

modeling. Finally, the work in [Tan, Iacovazzi, Cheung & Elovici (2019)] proposes an IDS that

uses attention mechanisms adapted from the transformer’s architecture and is more accurate
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than an LSTM-based model. However, it follows a supervised learning strategy and cannot

detect zero-day attacks.

3.2.2 Contributions

In this paper, we propose a novel unsupervised IDS that uses a GAN to detect both known

and zero-day attacks. GANs simultaneously train two competing neural networks, namely, a

generator and a discriminator. The generator learns the probabilistic distribution of a training

set so that it can produce data similar to the training data. The discriminator, on the other hand,

learns how to distinguish between real data and data produced by the generator. Thus, if the

training set contains only normal data, the discriminator learns how to distinguish between

normal data and anomalies regardless of whether they represent known or unknown attacks.

Moreover, in contrast to most state-of-the-art unsupervised IDSs, which have high false positive

rates and long detection times [Freitas de Araujo-Filho et al. (2021); Li et al. (2018a, 2019)], our

proposed IDS does not rely on LSTM networks. Instead, it uses TCNs and self-attention in the

GAN generator and discriminator networks. TCNs and self-attention enable more computation

parallelization, have a constant number of sequentially executed operations, and have been shown

to yield more accurate results than LSTM networks in specific sequence modeling tasks [Bai et al.

(2018); Duc et al. (2020); Vaswani et al. (2017); Li et al. (2021)]. We conduct a comparative

evaluation of different TCN and self-attention GAN architectures so that different trade-offs

between detection rates and detection times are achieved and our IDS can be configured to

satisfy different requirements. Furthermore, to achieve efficient service delivery with reduced

end-to-end latency, our proposed system leverages edge computing by being deployed on edge

servers closer to the network nodes under surveillance. In summary, the main contributions of

our proposed TCN/self-attention GAN-based IDS are:

1. An unsupervised GAN-based IDS that is capable of detecting both known and zero-day

attacks without relying on labeled attack data, which is difficult and sometimes impossible

to obtain.
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2. Experiments using TCNs and self-attention in a GAN to detect cyber-attacks with better

detection results than existing GAN-based IDSs.

3. An evaluation of the trade-off between detection rates and detection times for different TCN

and self-attention GAN architectures so that our proposed IDS can be configured to satisfy

different requirements.

3.2.3 Organization

The remainder of this paper is organized as follows. Section 3.3 describes the DDoS threat

scenario considered in our work. Section 3.4 presents our proposed architecture by describing

the system model and the TCN and self-attention GAN architectures. Section 3.5 explains the

experiments that were conducted. In Section 3.6, we present and discuss the results. Finally,

Section 3.7 concludes the paper and proposes possible future extensions to this work.

3.3 DDoS Threat Scenario

While the goal of denial of service attacks is to prevent legitimate users from accessing specific

network services and resources, they can achieve their goal by following different strategies:

protocol exploration, network flooding, reflection amplification, and slow request/response. In

our work, we consider DDoS attack types of all aforementioned strategies so that the adversaries’

capabilities are described as follows.

Protocol exploration attacks rely on protocol features and implementation bugs, such as the

three-way handshake mechanism of the TCP. An adversary can leverage this mechanism and send

a large number of SYN messages to a server without transmitting ACK messages to acknowledge

the server’s responses. Thus, since the server persistently waits for the non-transmitted ACK

messages, its limited buffer queue is exhausted and new connections cannot be processed. On

the other hand, in network flooding attacks, the adversary sends many repetitive communication

requests to fill the victim’s buffer until the victim cannot accept new messages and legitimate

requests are disrupted. Several network protocols may be used for flooding. For instance, the
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adversary can send a large number of user datagram protocol (UDP) packets to random ports on

the victim’s host so that the victim is forced to send Internet control message protocol (ICMP)

packets persistently and eventually reaches a resource-exhausted condition.

Similarly, reflection amplification attacks flood the victim by leveraging third-party servers,

called reflectors, that respond to requests by transmitting large responses that significantly

increase network traffic. Hence, the adversary sends many requests to reflectors by spoofing

their source IP with the victim’s IP so that reflectors send a large amount of traffic to the victim.

Finally, slow request/response attacks exhaust a victim’s resources by holding the communication

channel for a long time. The adversary establishes multiple valid hypertext transfer protocol

(HTTP) connections with a victim and segments legitimate HTTP packets into tiny fragments

sent in each connection as slowly as possible within the maximum allowed communication

time. Thus, as all victim’s sockets are taken up, the victim becomes unavailable for legitimate

connections.

In addition to the different strategies they can adopt, denial of service attacks become extra

powerful and difficult to detect and trace back when they are launched from distributed sources

with spoofed IPs. Moreover, adversaries usually take advantage of botnets, i.e., networks of

computers infected by malware that can carry out commands under the attacker’s control, to

generate a significant amount of traffic from systems spread across the Internet. When large

botnets are used, each system may only need to send out a small amount of traffic to produce

enough volume to saturate the target network, making it extremely difficult to distinguish between

DDoS and legitimate traffic. Therefore, DDoS attacks significantly impact network service and

management while being very challenging to detect.

3.4 Proposed IDS Architecture

In this section, we briefly explain how GANs work and how they can leverage TCNs and

self-attention to consider dependencies among data. Moreover, we describe the architecture of

our proposed IDS and the different configurations it can adopt to achieve different trade-offs
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between detection rates and detection times. Finally, we present our system’s deployment

architecture.

3.4.1 GAN-based IDSs

GANs are powerful frameworks for training generator and discriminator neural networks. When

trained with only normal data, the generator implicitly models the system and learns how to

produce data patterns similar to those of normal data. It learns to map random vectors 𝑧, drawn

from a distribution 𝑃(𝑧) in a latent 𝑍-space, to data patterns similar to those of normal data

so that 𝑥 𝑓 𝑎𝑘𝑒 = 𝐺 (𝑧). On the other hand, the discriminator learns to distinguish between real

normal data patterns, 𝑥𝑟𝑒𝑎𝑙 , and data patterns produced by the generator, 𝑥 𝑓 𝑎𝑘𝑒. Thus, the

discriminator’s output, 𝐷 (𝑥), indicates whether a data sample 𝑥 is real or produced by the GAN

generator, i.e., it measures deviations from normal behavior and hence detects cyber-attacks

regardless of whether they are known or unknown.

The generator and discriminator neural networks are trained together in an adversarial process

so that the generator tries to maximize the probability of producing outputs that are recognized

as real and the discriminator tries to minimize that same probability. In our proposed system,

we train a GAN according to the WGAN framework, in which the generator maximizes

𝐺𝐿𝑜𝑠𝑠 = 𝐷 (𝐺 (𝑧)) and the discriminator minimizes 𝐷𝐿𝑜𝑠𝑠 = 𝐷 (𝐺 (𝑧)) − 𝐷 (𝑥). In contrast to

the original GAN formulation, the WGAN is easier to train and does not suffer from the gradient

vanishing problem [Arjovsky et al. (2017); Creswell et al. (2018)]. Figure 3.1 shows the adopted

WGAN’s training mechanism.

Existing GAN-based IDS solutions rely heavily on LSTM networks to consider temporal

dependencies among data. However, since LSTM’s sequential data processing significantly

increases computational complexity and memory consumption during training, recent studies

have been investigating alternative approaches for sequence modeling tasks. In our work, we

investigate and propose replacing LSTM networks by TCNs and self-attention in both the GAN

generator and discriminator for cyber-attack detection.
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Figure 3.1 The WGAN training framework used in our proposed IDS

3.4.2 TCNs

TCNs refer to modified convolutional architectures for sequence prediction tasks. They map input

sequences to output sequences of the same length and use causal convolutions, i.e., convolutions

that use only information from the past. Thus, an output at time 𝑡 is convolved only with elements

from times earlier than 𝑡 in the previous layer. In addition, since sequence modeling tasks may

require more history, TCNs also use dilated convolutions to enable the architecture to look far

into the past. Thus, for an input sequence 𝑥 ∈ R𝑛 and a filter 𝑓 : {0, ..., 𝑘 − 1} → R, the dilated

convolution on element 𝑠 of the sequence is defined as

𝐹 (𝑠) = (𝑥 ∗𝑑 𝑓 ) (𝑠) =
𝑘−1∑
𝑖=0

𝑓 (𝑖)𝑥𝑠−𝑑𝑖, (3.1)

where 𝑘 is the filter size, 𝑑 is the dilation factor, and ∗𝑑 is the dilated convolution operation. The

dilation factor indicates how far into the past convolution operation ∗𝑑 looks. Hence, while

𝑑 = 1 reduces Equation (3.1) to a regular convolution operation, the larger the dilation factor,

the further back ∗𝑑 looks. Finally, TCN networks allow a residual connection so the architecture

learns what modifications are imposed on the data rather than only modifying it. This connection

contributes to avoiding the gradient vanishing problem and consists of adding the input 𝑥 to the

output of a series of transformations 𝑇 . It is given by

𝑂 (𝑥) = Φ(𝑥 + 𝑇 (𝑥)), (3.2)
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where Φ is an activation function.

TCNs provide a powerful way to extract temporal dependencies from data and have been shown

to have several advantages over LSTM networks for modeling sequences. More specifically,

when our proposed solution uses TCNs, the filter 𝑓 convolves across a sequence of incoming

network flows by considering features only from network flows that have already occurred

(causal convolution). A dilation factor is also considered (dilated convolution) so that network

flows that occurred a long time ago are also taken into account. Computations can be performed

in parallel since the same filter can be used in all layers, and input sequences can be processed

as a whole. This means TCNs do not need to store the partial results of computations and

thus consume less memory during training. Finally, TCNs have been shown to have stabler

gradients, which avoids the gradient vanishing and exploding problems [Bai et al. (2018); Duc

et al. (2020)].

3.4.3 Self-Attention

Attention functions are defined as the mapping of a matrix of queries 𝑄, a matrix of keys 𝐾 , and

a matrix of values 𝑉 to an output. Scaled dot product attention is one type of attention function,

which computes a context matrix 𝐶 as

𝐶 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾,𝑉) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉, (3.3)

where 𝑑𝑘 is the dimension of values. Matrices 𝐾 and 𝑉 usually correspond to input sequences 𝑥,

whereas matrix 𝑄 is composed of randomly initialized trainable parameters. The dot product of

𝑄 and 𝐾𝑇 gives a measure of the pairwise similarity between the query and key matrices, which

results in an attention score. Thus, the 𝐶 matrix represents the intrinsic dependencies between

representations of a sequence.

Moreover, it has been shown that using linearly projected queries, keys, and values ℎ times with

learned linear projections contributes to extracting relationships between data [Li et al. (2021);

Vaswani et al. (2017)]. Thus, MHA modules perform attention functions in parallel on each of
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the projected versions of queries, keys, and values, and then concatenate their outputs as

𝑀𝐻𝐴(𝑄, 𝐾,𝑉) = 𝑊0𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ), (3.4)

where 𝑊0 is a parameter matrix for the concatenation operation and ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄
𝑖 ,

𝐾𝑊𝐾
𝑖 ,𝑉𝑊

𝑉
𝑖 ). 𝑊𝑄

𝑖 , 𝑊𝐾
𝑖 , and 𝑊𝑉

𝑖 are parameter matrices that project queries, keys, and values,

respectively. Finally, self-attention considers that all the keys, values, and queries come from the

same place, such as the output of the previous layer in a neural network. This allows modules to

capture in-depth contextual information and relationships between data.

Similarly to TCNs, attention mechanisms make it possible to extract dependencies among

data and have been shown to outperform LSTM networks in several sequence modeling tasks.

They are more capable of extracting features than LSTM networks, which contributes to more

accurate models [Li et al. (2021)]. In addition, they can process sequences as a whole and they

enable more computation parallelization as MHA heads can run in parallel. Furthermore, while

LSTM networks require 𝑂 (𝑛) sequential operations, TCN, self-attention, and MHA layers have

a constant number of sequentially executed operations. Table 3.1 summarizes the computational

complexity of LSTM, TCN, self-attention, and MHA layers, where 𝑛 is the sequence length, 𝑑 is

its depth, and 𝑘 is the kernel size of convolutions [Vaswani et al. (2017); Kaiser (2017)].

Table 3.1 Computational complexity

Layer Type Complexity per Layer Sequential Operations
LSTM 𝑂 (𝑛𝑑2) 𝑂 (𝑛)
TCN 𝑂 (𝑘𝑛𝑑2) 𝑂 (1)

Self-Attention 𝑂 (𝑛2𝑑) 𝑂 (1)
MHA 𝑂 (𝑛2𝑑 + 𝑛𝑑2) 𝑂 (1)

3.4.4 Proposed Detection Architecture

Our proposed architecture consists of a GAN that relies on TCNs and self-attention to consider

time dependencies among data. Since different applications may have different requirements and

constraints, we propose different architectures for the GAN generator and discriminator neural
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networks so that different trade-offs are achieved between detection rates and detection times.

More specifically, we design generator and discriminator networks with one fully connected input

layer, one fully connected output layer, and hidden layers of one or more TCN or self-attention

blocks. Figure 3.2 shows the proposed high-level architectures of the GAN generator and

discriminator.

Fully-connected 
Input Layer

TCN/Self-Attention 
Layers

Fully-connected 
Output Layer

GAN Generator/Discriminator

Figure 3.2 The GAN generator and discriminator architectures

The proposed TCN block allows the architecture to learn from experience and consists of a single

dilated causal convolution and a rectified linear unit (ReLU) activation function. In addition,

to avoid overfitting, it has a normalization layer and a dropout layer for regularization. This

block can be replicated 𝑁 times such that a single convolution layer is responsible for the TCN

residual connection. The number of dilated causal convolutions, i.e., the value of 𝑁 , directly

impacts the detection rates and detection times. While higher values of 𝑁 may increase our

IDS’s ability to learn and detect attacks, it also increases detection times, as the more layers

there are, the longer the detection times. Figure 3.3 shows the TCN block architecture.

On the other hand, the proposed self-attention block consists of an MHA module that uses

self-attention. Similarly to the TCN block, normalization and dropout layers are used to avoid

overfitting. Moreover, a residual connection is included to help with the network’s training, as it

allows gradients to flow through the network. Finally, 𝑁 self-attention blocks can be cascaded to

increase our IDS’s ability to learn and detect attacks, at the expense of also increasing detection

time. Figure 3.4 shows the self-attention block architecture.
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Figure 3.3 The TCN block architecture

Multi-Head Attention
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Figure 3.4 The self-attention

block architecture

3.4.5 Proposed Deployment Architecture

Edge computing provides cloud computing capabilities closer to consumers and the data

generated by applications. It is one of the main pillars for meeting low latency and bandwidth

efficiency requirements [Kekki et al. (2018); Yousefpour et al. (2019)]. More specifically, edge

computing architectures introduce edge servers, to which devices can offload computational
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tasks and receive back their results in real time [Shi, Pallis & Xu (2019); Jia et al. (2020)]. Thus,

our proposed IDS is deployed as an application on edge servers so that IoT devices can send their

network flows for analysis and receive back attack detection alerts. Depending on their criticality

and sensitivity, IoT devices may be configured to adopt different actions upon receiving alerts,

such as dropping packets, resetting connections, or blocking the traffic from suspicious nodes.

We suggest using the open-source Kafka-ML [Martín, Langendoerfer, Zarrin, Díaz & Rubio

(2022)] framework to deploy our IDS’s ML models and transfer data between IoT devices and

edge nodes. It uses data streams to manage ML pipelines and the Apache Kafka distributed

publish/subscribe messaging system [Apache Kafka] to transfer large amounts of data with low

latency. In addition, using the framework in all edge nodes and the cloud significantly reduces

the ML models’ response time [Carnero et al. (2021); Torres, Martín, Rubio & Díaz (2021)].

Finally, Kafka-ML relies on containerization and container orchestration platforms to ensure

portability, easy distribution, and high availability.

Moreover, we propose that instances of our IDS that are deployed on edge servers in different

regions interact with each other to exchange attack detection reports so that they become aware of

attacks occurring in neighboring regions. In addition, they also send attack detection reports to

a cloud service, which has a large-scale view and becomes aware of attacks that simultaneously

target different locations. This awareness is essential for evaluating the potential risks and

impacts of sophisticated distributed cyber-attacks to take appropriate countermeasures. Figure

Figure-A I-1 in Appendix I shows the deployment of our proposed IDS on multiple edge servers.

3.5 Methodology and Performance Evaluation

In this section, we briefly present the dataset used in our experiments, which contains both

normal and attack data. Then, we explain the models implemented and experiments conducted.
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3.5.1 Dataset Presentation

In order to evaluate our proposed IDS, we use the CICDDoS2019 dataset provided by the

Canadian Institute for Cybersecurity (CIC) and the University of New Brunswick (UNB) [for

Cybersecurity; Sharafaldin, Lashkari, Hakak & Ghorbani (2019)]. This dataset contains benign

traffic data and the most modern and common DDoS attacks, such as Syn, UDP, UDPLag,

MSSQL, NetBIOS, LDAP, and Portmap, covering the four DDoS attack strategies presented in

Section 3.3. The dataset provides 83 network flow features extracted from raw traffic data using

the CICFlowMeter-V3 tool [Ahlashkari]. While many traditional network-based IDSs rely on

deep packet inspection, this approach is computationally costly and challenging to implement

when network traffic is encrypted [Umer, Sher & Bi (2017)]. Thus, like most state-of-the-art

IDSs [Jia et al. (2020); Freitas de Araujo-Filho et al. (2021); Ozgumus (2019)], in our work,

we rely on network flow features to detect malicious activities. We use the 35 most relevant

network flow features from those defined in [Jia et al. (2020)], such as flow duration and the total

number of packets in the forward and backward directions, as well as five features that identify

network flows: source IP, destination IP, source port, destination port, and protocol. Table-A I-1

in Appendix 2 lists all the features used in our work.

To train and evaluate our IDS, we constructed a training, a validation, and a testing set. The

training set, which is used to train the GAN, was constructed by sampling 80% of the normal

network flows of a training day defined by the dataset. The validation set, which is used to

optimize our models’ hyper-parameters, was formed by the remaining 20% of the normal network

flows of the training day in question and DDoS attacks sampled from the training day. Finally,

the testing set, which is used to evaluate our IDS’s performance, was constructed by sampling

50,000 normal network flows and 50,000 malicious network flows from a testing day defined by

the dataset. Since our testing set contains samples collected from a different day and is only

used after the training of all models has been completed, it provides unbiased results. Moreover,

although the testing set’s malicious network flows result from various types of DDoS attacks,

our IDS relies on a binary classifier that distinguishes between normal and malicious network

flows rather than classifying by attack type. Hence, the testing set is considered balanced. Table
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3.2 depicts the number of normal and DDoS network flows in the constructed sets. Table 3.3

indicates the number of malicious network flows per DDoS attack type.

As shown in Tables 3.2 and 3.3, our proposed IDS relies only on normal network flows to train

its neural networks. Although malicious network flows of the Syn, UDP, UDPLag, MSSQL,

NetBIOS, and LDAP attacks are present in the validation set, they are used only to tune the

models’ hyper-parameters. Moreover, since the Portmap type of DDoS attack is present only in

the testing set, it represents a zero-day attack for which no information is available.

Table 3.2 Training, validation, and testing sets

Normal
Network Flows

DDoS Attacks
Network Flows

Training Set 45,408 0

Validation Set 11,342 68,052

Testing Set 50,000 50,000

Table 3.3 Malicious network flows per DDoS attack type

DDoS Attack Type Training Set Validation Set Testing Set
Syn 0 11,342 8,021

UDP 0 11,342 8,021

UDPLag 0 11,342 1,873

MSSQL 0 11,342 8,021

NetBIOS 0 11,342 8,021

LDAP 0 11,342 8,021

Portmap 0 0 8,022

3.5.2 Simulation Experiments

We conducted multiple experiments by training and evaluating the GAN depicted in Figure 3.2

using different numbers of TCN and self-attention blocks, which are depicted in Figures 3.3

and 3.4, respectively. In addition, we trained the GAN using LSTM networks instead of the

proposed blocks as hidden layers to have a baseline for comparing our IDS’s performance. All

models were optimized using the Optuna framework [Akiba, Sano, Yanase, Ohta & Koyama

(2019)], which automatically searches for optimal hyper-parameter values by trial and error, and
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employed the early stopping mechanism to avoid overfitting. Several hyper-parameters were

tuned, such as learning rate, optimizer, batch size, kernel and dilation of convolutions, number

of hidden units, and latent dimension. Moreover, we experimented with concatenating several

layers of the TCN and self-attention blocks by varying the parameter 𝑁 defined in Figures 3.3

and 3.4. Finally, we replicated our training experiments twenty times to reduce bias from the

stochastic training. Table-A I-2 in Appendix 2 lists the hyper-parameter values used in our work.

3.6 Results and Discussions

In our experiments, we evaluated the detection rate, detection time, and complexity of our

proposed IDS when using one or more TCN and self-attention blocks as hidden layers. The goal

was to identify a trade-off between detection rates and detection times so that our IDS can employ

different configurations and satisfy different requirements. In addition, we evaluated whether

TCN and self-attention blocks outperform LSTM networks in our proposed GAN-based IDS.

Finally, we compared our IDS to two state-of-the-art GAN-based IDSs: FID-GAN [Freitas de

Araujo-Filho et al. (2021)] and ALAD [Zenati et al. (2018b)]. FID-GAN considers temporal

dependencies among data by using LSTM networks in both the GAN generator and discriminator.

ALAD, on the other hand, does not use LSTM networks or consider time dependencies among

data. It relies only on fully connected and regular convolutional networks.

3.6.1 Detection Rates

We used the AUC of the ROC curve (collectively, AUCROC) as the metric to evaluate our

proposed IDS’s cyber-attack detection performance on the testing set samples. Each point on the

curves represents both the true positive and false positive rates achieved for a threshold. Hence,

the AUCROC metric allows us to evaluate our solution for many different thresholds at once

rather than for only one at a time. Moreover, it shows which threshold yields the best results in

terms of maximizing the true positive rate or minimizing the false positive rate.
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Figure 3.5 shows the ROC curves obtained when using LSTM networks, one TCN block, two

TCN blocks, and one self-attention block as the hidden layers in our proposed architecture.

Other TCN and self-attention block configurations did not improve the AUCROC results but

increased the detection times, as the IDS takes longer to detect attacks the more layers it has.

The plots verify that our IDS achieves the highest AUCROCs results when using two TCN

blocks or one self-attention block. Moreover, since the AUCROC values achieved are close to 1,

our IDS ensures low false positive and false negative rates simultaneously. While minimizing

false positives is essential for keeping the network operational, minimizing false negatives is

essential for ensuring security.

Figure 3.5 Our proposed IDS’s ROC curves

Moreover, we compared the AUCROC results of our proposed IDS to those of ALAD [Zenati

et al. (2018b)] and FID-GAN [Freitas de Araujo-Filho et al. (2021)]. Our proposed IDS

outperformed ALAD in all its configurations, as ALAD uses only fully connected and regular

convolutional layers, and does not consider dependencies among data. It also outperforms

FID-GAN, which relies on LSTM networks, when it is configured with two TCN blocks or a
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single self-attention block. ALAD’s and FID-GAN’s ROC curves are shown in Figures 3.6 and

3.7, respectively.

Figure 3.6 ALAD’s ROC curve

Figure 3.7 FID-GAN’s ROC curve
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Furthermore, we also conducted hypothesis tests to verify whether there were statistical

differences between the AUCROCs of our proposed IDS, ALAD, and FID-GAN. Hence, we

first conducted D’Agostino and Pearson’s hypothesis test to verify whether a normal distribution

could approximate the AUCROC values obtained for each model. This verification allowed

us to conduct the one-way ANOVA hypothesis test to verify whether there was a significant

difference between at least two of the models evaluated. The ANOVA test confirmed that at

least one of the models differed from the others, such that there was a statistically significant

difference among them. Since ANOVA cannot determine which model differed from the others,

we conducted Tukey’s honestly significant difference (HSD) post hoc test, which evaluates the

models two-by-two. Table 3.4 shows the p-values of the models’ comparison obtained from the

post hoc test. We reject the null hypothesis that there is no significant difference between the

model’s AUCROCs whenever the post hoc test p-value does not exceed 0.05. Thus, our results

show that when it uses self-attention or two TCN layers, our IDS is statistically different from its

LSTM-based version. Therefore, self-attention and two TCN blocks successfully replace LSTM

networks for attack detection and achieve better detection results.

Table 3.4 Tukey’s HSD

pairwise group comparisons

(95.0% confidence interval)

Comparison p-value
Self-Attention TCN (N=2) 0.989

Self-Attention TCN (N=1) 0.017

Self-Attention LSTM 0.011

Self-Attention FID-GAN 0.212

Self-Attention ALAD 0.000

TCN (N=2) TCN (N=1) 0.024

TCN (N=2) LSTM 0.012

TCN (N=2) FID-GAN 0.349

TCN (N=2) ALAD 0.000

TCN (N=1) LSTM 0.999

TCN (N=1) FID-GAN 0.920

TCN (N=1) ALAD 0.299

LSTM FID-GAN 0.973

LSTM ALAD 0.065

FID-GAN ALAD 0.029



70

Finally, we evaluated our proposed IDS, ALAD, and FID-GAN at the EER, which corresponds

to the threshold at which the false positive and false negative rates are equal. Table 3.5 shows the

accuracy, precision, recall, and F1-scores of our IDS in four different configurations, ALAD, and

FID-GAN. While our IDS outperforms ALAD and FID-GAN in all its configurations according

to all the metrics used, it achieves the best results when it is configured with two TCN blocks.

Finally, although our goal is not to identify different types of attacks, we provide in Table 3.6

the overall normal and attack (recall) detection rates as well as the detection rates for each type

of DDoS attack in the testing set. Our IDS can detect the Portmap attack, which represents a

zero-day attack, with a detection rate as high as 0.9993, which is higher than it can achieve

for the other attack types. Therefore, our proposed IDS is considered able to detect unknown

attacks.

Table 3.5 Accuracy, precision, recall, and F1-scores

of our IDS, ALAD, and FID-GAN

Accuracy Precision Recall F-1
LSTM 0.9405 0.9405 0.9405 0.9405

TCN Block (N=1) 0.9588 0.9588 0.9588 0.9588

TCN Block (N=2) 0.9707 0.9705 0.9710 0.9707
Self-Attention Block (N=1) 0.9682 0.9682 0.9682 0.9682

FID-GAN 0.9203 0.9203 0.9203 0.9203

ALAD 0.8860 0.8860 0.8860 0.8860

Table 3.6 Detection rates by DDoS attack type

Normal Attack Syn UDP UDPLag MSSQL NetBIOS LDAP Portmap
LSTM 0.9405 0.9405 0.7290 0.9994 0.9215 0.9999 0.9479 0.9996 0.9718

TCN Block (N=1) 0.9588 0.9588 0.9728 0.9946 0.6610 0.9868 0.935544 0.9994 0.9333

TCN Block (N=2) 0.9704 0.9710 0.8242 1.0000 0.9856 1.000 0.9990 1.000 0.9993
Self-Attention Block (N=1) 0.9682 0.9682 0.8897 1.0000 0.9770 1.000 0.9439 0.9998 0.9739

FID-GAN 0.9203 0.9203 0.6052 0.9516 0.8655 0.9898 0.9925 0.9998 0.9960

ALAD 0.8860 0.8860 0.5726 0.8193 0.8831 0.9662 0.9736 0.9999 0.9848

3.6.2 Detection Times

To evaluate how long our IDS takes to detect attacks, we measured its mean detection time when

using LSTM networks, TCN blocks, and self-attention blocks. The configuration with a single
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TCN block had the shortest detection time, hence it is the preferred configuration for latency

constrained applications. Moreover, we compared the detection times our solution achieved to

those of ALAD and FID-GAN, which took longer than our proposed solution to detect attacks.

Particularly, FID-GAN has a much longer detection time than our IDS because it relies on a

more complex GAN architecture and computes a reconstruction loss using an encoder neural

network. Similarly, such complexity and the need for training an encoder neural network in

addition to the GAN make the training time of FID-GAN much longer than that of our IDS.

Therefore, our IDS is considered the best IDS of the three. Figure 3.8 shows the detection times

of our proposed IDS, ALAD, and FID-GAN.

Figure 3.8 Detection times of our IDS, ALAD, and FID-GAN

Furthermore, the results in Figures 3.5 and 3.8 verify a trade-off between detection rates and

detection times. For instance, our IDS achieves the highest AUCROC value and the longest

detection time when configured with a single self-attention block. On the other hand, it achieves

the lowest AUCROC value and the shortest detection time when configured with a single TCN

block. Therefore, depending on the application’s requirements and whether it is more important

to achieve higher detection rates or shorter detection times, our IDS can be configured with

different blocks as hidden layers and satisfy different constraints.
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3.6.3 Complexity Analysis

To evaluate the complexity of our IDS, we present in Table 3.7 the number of epochs trained, the

mean training time per epoch, the total convergence time, and the number of parameters in the

GAN discriminator and generator. In addition, we detail in Table 3.8 the number of parameters

of each model’s input layer, hidden layers, and output layer. The models are trained for different

numbers of epochs due to the early stopping mechanism, the LSTM model trains for the fewest

number of epochs and converges fastest. However, the model with a single TCN block has the

lowest number of parameters and the shortest training time per epoch, which is reflected in the

detection time results in Figure 3.8, as it has the shortest detection times. Finally, even though

the self-attention model converges slowest, it achieves the best detection rates.

Table 3.7 Computational complexity

of each configuration of our IDS

LSTM TCN
(N=1)

TCN
(N=2)

Self-Attention
(N=1)

Number
of Epochs 33 50 45 42

Training
Time (s/epoch) 12.03 10.07 13.64 19.42

Convergence
Time (s) 397.00 503.29 613.80 815.80

Number of
Parameters on
Discriminator

4,234 3,101 4,961 5,921

Number of
Parameters on

Generator
3,618 2,330 8,180 5,520

Usually, the more parameters a neural network has, the longer it takes to converge. However,

although a few works have proposed a correlation between the number of parameters of a

neural network and its convergence time, they are not too accurate and depend on many other

variables, such as the optimizer and the number and complexity of training samples [Ronen,

Jacobs, Kasten & Kritchman (2019); Bach & Chizat (2021)]. For that reason, dynamic learning

techniques and the early stopping mechanism have been developed and largely adopted to let the
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Table 3.8 Number of parameters

of each configuration of our IDS

LSTM TCN
(N=1)

TCN
(N=2)

Self-Attention
(N=1)

Number of
Parameters on
Discriminator

Input
Layer 1,640 1,640 1,640 1,640

Hidden
Layers 2,568 1,450 3,300 3,440

Output
Layer 26 11 21 841

Number of
Parameters on

Generator

Input
Layer 840 440 4,040 440

Hidden
Layers 2,568 1,450 3,300 3,440

Output
Layer 210 440 840 1,640

models decide when they have learned enough and must stop training to reduce the training

time and avoid overfitting [Prechelt (1998); Caruana, Lawrence & Giles (2000)]. Therefore,

although all models evaluated were given the same computational resources and training time,

so they had the same computational budget, they were allowed to stop training earlier, i.e., after

different numbers of epochs using the early stopping mechanism as it is commonly done in

machine learning. Precisely, all the models had a maximum time of 15 minutes (900 seconds) to

train on an AMD Ryzen Threadripper 1920X 12-core processor 2.2GHz with 64GB of RAM

and an NVIDIA GeForce RTX 2080 in a Pytorch environment. On the other hand, providing

less time than what is required for training the models, i.e., forcing them to stop training before

convergence, would unnecessarily compromise their detection results as we adopt an offline

training procedure that deploys models only after they have been trained. Moreover, even though

we consider 15 minutes a very reasonable maximum training time, since the models will only

work and detect malicious network flows after they have been trained, our primary concern is

not the training time but the detection time.
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3.6.4 Combining Protection Techniques

Despite our solution’s results, security is usually constructed in layers to enhance protection

against cyber-attacks. Thus, our proposed IDS may be combined with other techniques to protect

against DDoS attacks. For instance, we can limit attack surface areas by not exposing applications

and resources to ports and protocols from which they do not expect to receive any communication

[Amazon Web Services]. Moreover, we can rely on firewalls, web application firewalls (WAFs),

and traditional signature-based IDSs, which are rule-based, to reduce the burden on our proposed

IDS [Praseed & Thilagam (2022)]. Finally, we can rely on scalable architectures that quickly

adjust their resources to accommodate high traffic volumes and maintain availability in critical

systems [Amazon Web Services].

Furthermore, since DDoS attacks create large volumes of traffic, they are usually launched from

botnets, i.e., networks of computers infected by malware that can carry out commands under

the attacker’s control. Therefore, a fundamental aspect of protecting against DDoS attacks

is thwarting botnet recruitment, which requires protection techniques, such as limiting attack

surfaces, and using firewalls and botnet detection systems [Garcia, Grill, Stiborek & Zunino

(2014); Sriram, Vinayakumar, Alazab & KP (2020)]. In future works, we will combine our

proposed IDS with botnet detection techniques.

3.6.5 Strengths and Limitations

One of the main strengths of our proposed IDS is its ability to be more accurate and at least 3.8

times faster than the two state-of-the-art GAN-based IDSs we used as baselines. Moreover, it

can use different hidden layers to satisfy different requirements depending on whether it is more

important to have higher detection rates or shorter detection times. Finally, our solution follows

an unsupervised approach so that it does not require labeled attack data and can detect unknown

attacks, such as Portmap attacks.

On the other hand, our IDS is limited to detecting attacks, as mitigating them is outside of the

scope of our work. In addition, it has not been combined with other protection mechanisms,
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such botnet detection techniques, which we will investigate in future works. Finally, our IDS

uses only the discriminator’s output. However, the reconstruction loss, which is computed using

the GAN generator, could improve detection rates at the expense of increasing the detection

time as is noted in [Li et al. (2019); Freitas de Araujo-Filho et al. (2021)].

Furthermore, another limitation of our proposed IDS is its offline training procedure. Since

the normal behavior of systems and networks under surveillance may change with time, our

IDS needs to be retrained from time to time so that it keeps up to date. However, since large

environments usually have a massive amount of network data, which may reach several gigabytes

per hour, constantly retraining our IDS might be operationally challenging. In addition, acquiring

training data from multiple nodes may raise privacy issues as such data may contain sensitive

information that must not be shared. In the face of those limitations, in future works, we

will investigate and propose an online federated training procedure for our IDS that leverages

federated learning to preserve privacy while always being up to date.

3.7 Conclusion

In this paper, we propose a novel unsupervised GAN-based IDS that is capable of detecting both

known and zero-day attacks without relying on labeled attack data. In contrast to most existing

IDSs, which rely on LSTM networks, our proposed architecture considers dependencies among

data by relying on TCNs and self-attention. In our experiments, we verify the trade-off between

detection rates and detection times for different configurations of our IDS. Our solution can

be configured to satisfy different requirements depending on whether it is more important to

achieve higher accuracies or shorter detection times. Moreover, our simulation experiments show

that our proposed IDS achieves higher AUCROC values and shorter detection times than two

state-of-the-art GAN-based IDSs. Therefore, not only does our IDS achieve better detection rates

than LSTM-based IDSs, it is also more suitable than them for latency constrained applications.

Finally, although variational autoencoders (VAEs) are conceptually different than GANs, they

have also yielded promising results in terms of learning data representations and detecting
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malicious activities [Zavrak & İskefiyeli (2020); Xu, Li, Yang & Shen (2021)]. Thus, in

future works, we will investigate the use of VAEs and combinations of VAEs and GANs for

unsupervised attack detection, and combine them with botnet detection techniques. Moreover,

we will propose an online federated training procedure so that our IDS is constantly retrained

and kept up to date while preserving privacy by sharing only the weights of neural networks in

different nodes instead of sensitive data. Furthermore, we will construct a new DDoS dataset

with more DDoS attack types compared to the existing datasets to better evaluate our IDS’s

generalization and performance. For instance, we will consider the detection of DoS attacks

caused by adversarial attacks that compromise the functionality of machine learning models,

such as the one proposed in Freitas de Araujo-Filho et al. (2022), which interrupts wireless

communications by compromising machine learning-based modulation classifiers on wireless

receivers.
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4.1 Abstract

Deep learning is increasingly being used for many tasks in wireless communications, such as

modulation classification. However, it has been shown to be vulnerable to adversarial attacks,

which introduce specially crafted imperceptible perturbations, inducing models to make mistakes.

This letter proposes an input-agnostic adversarial attack technique that is based on GANs and

multi-task loss. Our results show that our technique reduces the accuracy of a modulation

classifier more than a jamming attack and other adversarial attack techniques. Furthermore,

it generates adversarial samples at least 335 times faster than the other techniques evaluated,

which raises serious concerns about using deep learning-based modulation classifiers.

4.2 Introduction

Due to its success in the most diverse fields, deep learning has been increasingly investigated and

adopted in wireless communications. It has been recently used for channel encoding and decoding

[Liang et al. (2018)], resource allocation [Sanguinetti et al. (2018); Sun et al. (2017)], and AMC

[O’Shea et al. (2016, 2018)]. More specifically, deep learning-based modulation classifiers

have been replacing traditional AMC techniques because they achieve better classification
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performance without requiring manual feature engineering [Flowers, Buehrer & Headley (2020);

Lin et al. (2021); Sahay, Brinton & Love (2022)].

However, deep learning models have been shown to be vulnerable to adversarial attacks, which

puts into question the security and reliability of wireless communication systems that rely

on such models [Lin, Zhao, Tu, Mao & Dou (2020); Manoj, Sadeghi & Larsson (2021);

Sadeghi & Larsson (2019); Ibitoye et al. (2019); Flowers et al. (2020)]. Adversarial attacks

introduce specially crafted imperceptible perturbations that cause wrong classification results.

Thus, they can force a deep learning-based modulation classifier on a receiver to misidentify the

modulation mode used so that a signal is not correctly demodulated and the communication

compromised.

Adversarial attacks can be classified as white or black-box attacks, depending on the knowledge

they require from their target models. White-box attacks require a complete knowledge of the

classifier’s model, such as training data, architecture, learning algorithms, and hyper-parameters

[Yuan et al. (2019)]. Black-box attacks, on the other hand, assume a more feasible scenario in

which the attacker has access to only the model’s output [Yuan et al. (2019)]. Furthermore,

the authors of [Ilyas et al. (2018)] define three more restrictive and realistic black-box threat

models: query-limited, partial-information, and decision-based. The query-limited scenario

considers that attackers have access to only a limited number of the model’s outputs. The

partial-information scenario considers that attackers have access to only the probabilities of

some of the model’s classes. Finally, the decision-based scenario considers that attackers have

access to only the model’s decision, i.e., the class to which it assigns a given data sample.

Although existing adversarial attacks pose risks to the use of deep learning in wireless communi-

cations, they require a complete knowledge about the target model [Lin et al. (2021); Zhao, Lin,

Gao & Yu (2020)] or take too long to craft adversarial perturbations [Brendel, Rauber & Bethge

(2017); Moosavi-Dezfooli, Fawzi, Fawzi & Frossard (2017); Sadeghi & Larsson (2019)]. In this

letter, we propose a novel input-agnostic decision-based adversarial attack technique that reduces

the accuracy of modulation classifiers more and crafts perturbations significantly faster than
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existing techniques. Our technique is necessary for assessing the risks of using deep learning-

based AMC in the more realistic scenario of decision-based black-box attacks. Moreover, it

can significantly contribute to developing classifiers that are robust against adversarial attacks.

The main contributions of our work are as follows: First, we combine GANs [Goodfellow

et al. (2014)] and multi-task loss [Kendall et al. (2018)] to generate adversarial samples, by

simultaneously optimizing their ability to cause wrong classifications and not being perceived.

Second, we reduce the accuracy of modulation classifiers more and craft adversarial samples in

a shorter time than existing techniques while following the decision-based black-box scenario.

Third, we propose an input-agnostic adversarial attack technique that does not depend on the

original samples to craft perturbations. It allows adversarial perturbations to be prepared in

advance, further reducing the time for executing the adversarial attack. Finally, our work verifies

that modulation classifiers are at an increased risk and urgently need to be enhanced against

adversarial attacks.

4.3 Related Works

Although adversarial attacks were initially explored in computer vision applications, they

have recently been investigated for wireless communication applications, such as AMC. The

authors of [Lin et al. (2021)] and [Zhao et al. (2020)] evaluate the robustness of a modulation

classifier against four white-box adversarial attack techniques: fast gradient sign method (FGSM),

projected gradient descent (PGD), basic iterative method (BIM), and momentum iterative method

(MIM). The works show that the classifier’s accuracy is significantly compromised. However,

they do not measure the extent of the perturbation or the time it takes to craft adversarial samples.

The work in [Manoj et al. (2021)] extends the white-box techniques FGSM, momentum iterative

fast gradient sign method (MI-FGSM), and PGD to a power allocation application. It shows that

adversarial attacks also pose a significant risk to regression-based applications, such as power

allocation.

Several other works focus on black-box attacks, as they are more realistic for not requiring

complete knowledge about the model [Yuan et al. (2019)]. The authors of [Brendel et al. (2017)]
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propose a boundary attack technique that requires access to only the classifier’s decision. It

relies on a probabilistic distribution to iteratively craft adversarial samples and reduce their

distance to the original sample. Although it compromises the accuracy of classifiers, it takes

more than a minute to craft a single adversarial sample. The authors of [Moosavi-Dezfooli

et al. (2017)] propose an iterative algorithm to produce universal perturbations and show that

state-of-the-art image classification neural networks are highly vulnerable. However, it takes

more than 20 seconds to craft each adversarial sample. The authors of [Sadeghi & Larsson

(2019)] propose an algorithm to craft adversarial attacks that is shown to require significantly

less power than conventional jamming attacks to compromise the performance of a modulation

classifier. Although the algorithm reduces the craft time of adversarial perturbations, it still

requires hundreds of milliseconds to craft each adversarial sample.

4.4 Adversarial Attacks Formulation

Although deep learning models may be trained with a large amount of data, it is impractical

to train them to cover all possible input feature vectors. As a result, the decision boundary

found by a trained model may differ from the real one. The discrepancy creates room for a

trained model to make mistakes [Lin et al. (2021)]. Adversarial attacks craft perturbations to

corrupt data samples so that they fall within that discrepancy area and are misclassified by a

trained model. However, this is not a trivial task as the perturbations must be large enough to

cause misclassifications but small enough to not be perceived. Therefore, given a sample 𝑥, the

goal of an adversarial attacker is to find a perturbation 𝛿 and construct an adversarial sample

𝑥𝑎𝑑𝑣 = 𝑥 + 𝛿 while satisfying

min | |𝑥𝑎𝑑𝑣 − 𝑥 | | < 𝜌 (4.1)

and

𝑓 (𝑥𝑎𝑑𝑣) ≠ 𝑓 (𝑥), (4.2)

where | | · | | represents a chosen distance metric, 𝜌 is the maximum imperceptible perturbation

according to that metric, and 𝑓 is the trained classifier target of the attack.
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4.5 Proposed Adversarial Attack Technique

In our work, we consider that our proposed adversarial attack technique is deployed as a

malicious software on software-defined wireless receivers, an essential piece of modern wireless

communication and 5G/6G. Although injecting such malicious software is out of the scope of

our work, it may be done by infecting software-defined radios with malware [Li et al. (2018b)].

The malware can send samples to the receiver’s modulation classifier and has access to its

decisions. It intercepts incoming signals, craft perturbations 𝛿, add the perturbations to original

samples to form adversarial samples 𝑥𝑎𝑑𝑣 = 𝑥 + 𝛿, and forward adversarial samples 𝑥𝑎𝑑𝑣 to the

modulation classifier. Thus, the receiver’s modulation classifier 𝑓 identifies the modulation

mode of 𝑥 as 𝑓 (𝑥𝑎𝑑𝑣). Since 𝑓 (𝑥𝑎𝑑𝑣) ≠ 𝑓 (𝑥), the signal is not correctly demodulated, and the

communication is compromised. Figure 4.1 shows our attack model. The analog-to-digital

converter (ADC) forwards clean samples to the modulation classifier, but they are tampered by

the adversarial attacker.

Wireless

Transmitter

Wireless Receiver

xadv = x + δ f(xadv)Modulation 
Classifier

Adversarial

Attacker

Malware

DemodulatorADC x

Figure 4.1 Our attack model considers the adversarial attacker as malicious

software on the wireless receiver

We propose a novel multi-objective adversarial attack technique by combining a GAN and

multi-task loss. GANs estimate generative models by simultaneously training two competing

neural networks: generator and discriminator [Freitas de Araujo-Filho et al. (2021)]. The

generator learns the probabilistic distribution of training data, and the discriminator learns

how to distinguish between real data and data produced by the generator. We train a GAN so

that its generator produces adversarial perturbations 𝛿 = 𝐺 (𝑧) from random latent vectors 𝑧

and its discriminator learns to distinguish between clean samples 𝑥 and adversarial samples

𝑥𝑎𝑑𝑣 = 𝑥 + 𝐺 (𝑧). We adopt the WGAN, which minimizes the Wasserstein distance between two

probability distributions. It is easier to train than the original GAN, and does not suffer from the
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gradient vanishing problem [Arjovsky et al. (2017); Creswell et al. (2018)]. Although other GAN

formulations, such as WGAN-GP [Gulrajani et al. (2017)[, try to overcome WGAN’s difficulty

in enforcing the Lipschitz constant, the work in [Lucic, Kurach, Michalski, Gelly & Bousquet

(2017)] shows that WGAN-GP does not necessarily outperform WGAN. In future work, we will

evaluate our technique with other GAN formulations, such as WGAN-GP.

The WGAN discriminator estimates the Wasserstein distance by maximizing the difference

between average critic score on real and fake samples. Besides, since we want the generator to

produce perturbations rather than adversarial samples, fake samples are designated as 𝑥 + 𝐺 (𝑧)
instead of 𝐺 (𝑧). Thus, we minimize the discriminator loss given by 𝐿𝐷 = 𝐷 (𝑥 + 𝐺 (𝑧)) − 𝐷 (𝑥).
On the other hand, the WGAN generator has the opposite goal of maximizing the average critic

score on fake samples. Hence, we minimize the generator loss given by 𝐿𝐺 = −𝐷 (𝑥 + 𝐺 (𝑧)).
However, such a 𝐿𝐺 only accounts for minimizing the difference between 𝑥 and 𝑥𝑎𝑑𝑣, which

corresponds to the condition of equation (4.1). It does not consider the condition of equation

(4.2), which is to ensure that 𝑥 and 𝑥𝑎𝑑𝑣 are assigned to different classes.

To ensure that our GAN considers the conditions of both equation (4.1) and equation (4.2), we

modify the generator’s loss to simultaneously optimize two objective functions that are given

by 𝐿𝐺1 and 𝐿𝐺2. 𝐿𝐺1 represents the task of minimizing the difference between 𝑥 and 𝑥𝑎𝑑𝑣 and

is given by the original generator loss, hence 𝐿𝐺1 = −𝐷 (𝑥 + 𝐺 (𝑧)). 𝐿𝐺2 represents the task

of ensuring that 𝑥 and 𝑥𝑎𝑑𝑣 are assigned to different classes. It is given by the cross entropy

loss between the class 𝑓 assigns to 𝑥𝑎𝑑𝑣 and the label of 𝑥, hence 𝐿𝐺2 = 𝐶𝐸 ( 𝑓 (𝑥 + 𝐺 (𝑧)), 𝑦),
where 𝐶𝐸 stands for the cross entropy loss largely adopted in classification problems and 𝑦 is

the label of 𝑥. During training, our technique leverages its access to the classifier’s decisions to

simultaneously optimize its ability to cause wrong classifications and not being perceived.

While most works that simultaneously learn multiple tasks manually tune a weighted sum

of losses, we leverage the multi-task loss proposed in [Kendall et al. (2018)]. That work

uses aleatoric uncertainty, which is a quantity that stays constant for all input data and varies

between different tasks, to simultaneously optimize any two losses by optimally balancing their
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contributions as

𝐿 =
1

2𝜎2
1

𝐿1 + 1

2𝜎2
2

𝐿2 + log𝜎1𝜎2, (4.3)

where 𝐿1 and 𝐿2 are any two losses, and 𝜎1 and 𝜎2 are learnable weights automatically tuned

when training a neural network. Thus, while we train the GAN discriminator with

𝐿𝐷 = 𝐷 (𝑥 + 𝐺 (𝑧)) − 𝐷 (𝑥), (4.4)

we combine 𝐿𝐺1 and 𝐿𝐺2 with equation (4.3), where 𝐿1 = 𝐿𝐺1 and 𝐿2 = 𝐿𝐺2, so that our

generator loss becomes

𝐿𝐺 =
−𝐷 (𝑥 + 𝐺 (𝑧))

2𝜎2
1

+ 𝐶𝐸 ( 𝑓 (𝑥 + 𝐺 (𝑧)), 𝑦)
2𝜎2

2

+ log𝜎1𝜎2. (4.5)

Figure 4.2 shows the training model, and Algorithm 4.1 shows the execution steps of our

proposed adversarial attack technique.
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D(x + G(z))

f (x + G(z))

Figure 4.2 Our proposed training model

Algorithm 4.1 Proposed adversarial attack technique

1: Train a GAN according to equations (4.4) and (4.5)

2: for Each incoming sample 𝑥 do
3: Compute 𝐺 (𝑧)
4: Construct the adversarial sample 𝑥𝑎𝑑𝑣 = 𝑥 + 𝐺 (𝑧)
5: end for
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4.6 Methodology and Experimental Evaluation

We use the RADIOML 2016.10A dataset and VT-CNN2 modulation classifier designed by

DeepSiG and publicly available in [O’Shea et al. (2016); O’Shea & West (2016)] to evaluate our

proposed adversarial attack technique. The dataset is constructed by modulating and exposing

signals to an additive white Gaussian noise (AWGN) channel that includes sampling rate offset,

random process of center frequency offset, multipath, and fading effects, as described in [O’Shea

et al. (2016); O’Shea & West (2016)]. Since our technique crafts adversarial samples on

receivers, it is not subject to channel effects. In future work, we will consider them to enhance

our proposed technique so that it sends adversarial samples over the air.

After modulation and channel modeling, the signals are normalized and packaged into 220,000

samples of in-phase and quadrature components with length 128, each associated with a

modulation scheme and a signal-to-noise ratio (SNR). SNR is a measure of a signal’s strength.

It is the ratio between the power of the signal and of the background noise, i.e., 𝑆𝑁𝑅[𝑑𝐵] =

10 log( 𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
), where 𝑃 is the signal power. Eleven different modulation schemes (eight digital

and three analog) are possible: 8PSK, BPSK, QPSK, QAM16, QAM64, CPFSK, GFSK, PAM4,

WBFM, AM-DSB, and AM-SSB. Twenty different SNRs, ranging from -20 dB to 18 dB in steps

of 2 dB, are possible. Twenty percent of the samples are reserved as a testing set to measure the

VT-CNN2 modulation classifier’s accuracy on clean and adversarial samples.

The VT-CNN2 modulation classifier relies on deep convolutional neural networks and classifies

samples among the eleven modulation schemes in the dataset. Figure 4.3 shows VT-CNN2’s

architecture. Although the softmax layer gives the probability of membership for each class, we

consider the classifier’s output to be only its final decision, i.e., the modulation class that has the

highest probability. Thus, 𝑓 (𝑥 + 𝐺 (𝑧)) is the predicted label of one of the modulation schemes

considered.

Finally, Figures 4.4 and 4.5 show the GAN’s generator and discriminator architectures. They were

optimized using the Optuna framework [Akiba et al. (2019)], which automatically searches for

the optimal hyper-parameters, and the early stopping mechanism to avoid overfitting. Table 4.1
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Figure 4.3 VT-CNN2 neural network architecture

shows the hyper-parameter values used in the GAN after tuning. All experiments were conducted

using an AMD Ryzen Threadripper 1920X 12-core 2.2GHz processor with 64GB of RAM and

an NVIDIA GeForce RTX 2080 in a Pytorch environment.
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Table 4.1 Hyper-parameters values

Hyper-Parameter Value
Optimizer Adam

Generator Learning Rate 0.00049

Discriminator Learning Rate 0.00055

Batch Size 128

Latent Dimension 100

Dropout Rate 0.10

4.7 Results and Discussion

As previously mentioned, the goal of adversarial attacks is to introduce imperceptible pertur-

bations capable of reducing the accuracy of a modulation classifier. Therefore, we evaluated

our proposed attack technique by measuring the VT-CNN2’s accuracy on clean and adversarial

samples, and the perturbation-to-noise ratio (PNR). PNR measures the ratio between the per-

turbation and noise power levels so that 𝑃𝑁𝑅[𝑑𝐵] = 10 log( 𝑃𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛

𝑃𝑛𝑜𝑖𝑠𝑒
), where 𝑃 is the signal

power. The larger the PNR, the larger the perturbation is in comparison to the noise, becoming

more distinguishable and more likely to be detected. Perturbations are considered imperceptible

when they are in the same order as or below the noise level, i.e., PNR < 0 dB.

Figure 4.6 shows the VT-CNN2’s accuracy versus PNR for SNRs of 10, 0, and -10 dB. Without

attacks, the classifier achieves different accuracy depending on the SNR because larger noises

make it harder for the classifier to achieve correct results. Under our proposed adversarial

attack, the classifier’s accuracy is significantly reduced in all cases. At 0 dB PNR, our technique

reduces the accuracy by 37% for 10 dB SNR, 56% for 0 dB SNR, and 7% for -10 dB SNR. Our

technique reduces the accuracy more for 0 dB than for 10 dB SNR because, for signals with the

same strength, larger SNRs mean lower noise levels so that it is more challenging to produce

imperceptible perturbations that still significantly compromise the accuracy. However, although

the noise at -10 dB SNR is the highest, allowing our technique to produce larger perturbations,

the accuracy reduction is not as significant as at 0 dB SNR or 10 dB SNR. If 𝑓 (𝑥 + 𝐺 (𝑧)) in

equation (5) gives too many wrong results regardless of the adversarial perturbation 𝐺 (𝑧), it is

harder for our technique to find what perturbation would reduce the classifier’s accuracy the
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most. Thus, the fact that our technique relies on the classifier’s decisions to train the GAN

diminishes its capacity to produce wrong classifications when the classifier’s accuracy is low.

Since the classifier’s accuracy is around only 22% at -10 dB SNR, the adversarial perturbations

that our proposed technique crafts are less effective. Nevertheless, our proposed adversarial

attack technique still significantly reduces the classifier’s accuracy.

Figure 4.6 Modulation classifier’s accuracy versus PNR

with and without our proposed adversarial attack technique

We further examine the influence of perturbations on signal waveforms. We verify that the

signal waveform after perturbation (adversarial sample) is consistent with the original waveform

(clean sample), i.e., amplitude, frequency, and phase do not significantly change. Thus, while

our technique’s perturbations mislead the classifier, they are not easily recognized by human

eyes. Figure 4.7 illustrates the time domain waveform of an 8PSK signal before and after the

perturbation is introduced. Similar results were achieved for the other modulation schemes

considered, such that clean and adversarial samples always have very similar waveforms without

significant changes in their amplitude, frequency, and phase.
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Figure 4.7 Waveform comparison of a 8PSK signal with

SNR=10 dB before (clean sample) and after

(adversarial sample) our proposed adversarial attack

Moreover, we compare our results to those of a jamming attack, which adds Gaussian noise

to signals, and two other adversarial attack techniques: those proposed in [Moosavi-Dezfooli

et al. (2017)] and [Sadeghi & Larsson (2019)]. Figure 4.8 shows the VT-CNN2’s accuracy on

clean samples and adversarial samples produced by the jamming attack and the three adversarial

attack techniques evaluated for SNR=10 dB. Perturbations introduced by adversarial attacks are

specially crafted to reduce the classifier’s accuracy the most while not being perceived. Thus,

our technique and the techniques from [Moosavi-Dezfooli et al. (2017)] and [Sadeghi & Larsson

(2019)] are significantly more harmful than attacks that introduce random noises, such as the

jamming attack. Moreover, our proposed attack technique is the one that reduces the accuracy

the most.

Finally, we evaluate how long it takes for each technique to craft adversarial samples. Table 4.2

shows the mean execution time for crafting adversarial samples. Our proposed technique

achieves significantly shorter times than the other two techniques by crafting adversarial samples

in less than 0.7 𝑚𝑠. Thus, it is more than 335 times faster than the second-fastest attack technique.
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Figure 4.8 Modulation classifier’s accuracy versus PNR

without and subject to different adversarial attack techniques

Techniques that take too long to craft perturbations might be too late so that the signals they aim

to perturb have already been correctly demodulated. Thus, such a time reduction is essential to

compromise fast modulation classifiers and is a great advantage of our technique. Moreover,

since our technique is input-agnostic, it can prepare perturbations in advance and just add them

to incoming signals. Therefore, our proposed technique represents a severe risk to using deep

learning-based modulation classifiers.

Table 4.2 Mean execution time

for crafting adversarial samples

Adversarial Attack Technique Mean Execution
Time per Sample

Technique from [Moosavi-Dezfooli et al. (2017)] 20189 𝑚𝑠
Technique from [Sadeghi & Larsson (2019)] 234 𝑚𝑠

Our Proposed Technique 0.6980 𝑚𝑠
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4.8 Conclusion

In this letter, we verified that deep learning is exposed to security risks that must be considered

despite its advantages. Our results showed that it is possible to quickly craft small imperceptible

perturbations that completely compromise modulation classifiers’ accuracy and hence wireless

receivers’ performance. Therefore, it is urgently necessary to enhance deep learning-based

modulation classifiers’ robustness against adversarial attacks. As future work, we will evaluate

the use of other GAN formulations, such as WGAN-GP, modify our attack model to consider

adversarial attacks transmitted over the air, and investigate adversarial attack defense strategies.
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5.1 Abstract

Deep learning has been adopted for a wide range of wireless communication tasks, including

modulation classification, because of its great classification capability. However, deep learning

models have been shown to also introduce risks and vulnerabilities. For instance, adversarial

attacks craft and introduce imperceptible perturbations that compromise the accuracy of deep

learning-based modulation classifiers on wireless receivers. Therefore, in this paper, we propose

a novel wireless receiver architecture that enhances deep learning-based modulation classifiers

to defend them against adversarial attacks. Our experimental results show that our defense

technique significantly diminishes the accuracy reduction that is caused by adversarial attacks

by protecting modulation classifiers at least 18% more than existing defense techniques.

5.2 Introduction

The recent increase in connected devices and wireless communication traffic, which has been

boosted by 5G/6G technology, has made the radio spectrum overcrowded and inefficient [Sahay

et al. (2022); Lin et al. (2021)]. To mitigate this issue, modern wireless transmitters dynamically

change how the radio spectrum is shared by automatically switching between different modulation
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schemes. As a result, wireless receivers must automatically recognize what modulation schemes

are being used; otherwise, signals will not be demodulated correctly and communication will be

compromised. Automatic modulation classification, which is an essential piece of cognitive and

software-defined radio, has therefore become crucial to wireless communications [Flowers et al.

(2020); Sahay et al. (2022); Sahay, Love & Brinton (2021)].

Deep learning has been increasingly investigated for many tasks in wireless communications,

such as channel encoding and decoding [Liang et al. (2018)], resource allocation [Sanguinetti

et al. (2018); Sun et al. (2017)], and AMC [O’Shea et al. (2016, 2018)]. Deep learning-based

modulation classifiers, for example, have been found to perform better than traditional techniques

that usually rely on statistical approaches [Sahay et al. (2022)]. Moreover, they do not require

manual feature engineering, which significantly reduces the cost of involving an expert [Flowers

et al. (2020); Lin et al. (2021); Sahay et al. (2022)]. Hence, deep learning has been gaining

ground and is being widely adopted for AMC [O’Shea et al. (2016, 2018); Lin et al. (2021);

Sahay et al. (2022)].

However, deep learning models have recently been shown to introduce vulnerabilities and

security risks. While wireless communications’ shared and broadcast nature allows attackers to

tamper with signals transmitted over the air, adversarial attacks introduce small imperceptible

perturbations that fool ML models into making wrong decisions. Unlike jamming attacks,

which tamper signals by adding Gaussian noise, adversarial attacks craft precisely the right

perturbation to compromise a classifier’s accuracy the most. Hence, they are much more harmful

than jamming attacks and present a severe risk to modulation classifiers that could significantly

compromise wireless communications [Freitas de Araujo-Filho et al. (2022); Lin et al. (2020);

Manoj et al. (2021); Sadeghi & Larsson (2019); Ibitoye et al. (2019); Flowers et al. (2020)].

Adversarial attacks can be classified as white- or black-box attacks depending on what knowledge

they require from the target models. White-box attacks represent the worst-case scenario in which

the attacker has complete knowledge about the target model, such as training data, architecture,

learning algorithm, and hyper-parameters [Yuan et al. (2019)]. Black-box attacks, on the other



93

hand, are more feasible and realistic as they assume that the attacker has access to only the

model’s output or decision [Yuan et al. (2019)]. Both types of attacks have been shown to

severely compromise the accuracy of modulation classifiers.

The works in [Lin et al. (2021)] and [Zhao et al. (2020)] show that four white-box adversarial

attack techniques significantly compromised the accuracy of modulation classifiers: the FGSM,

the PGD, the BIM, and the MIM. The work in [Sadeghi & Larsson (2019)], on the other hand,

proposes a black-box adversarial attack technique that requires significantly less power than

other attacks techniques to compromise the performance of a modulation classifier. Finally, the

work in [Freitas de Araujo-Filho et al. (2022)] combines GANs and multi-task loss to generate

adversarial samples that can simultaneously optimize their ability to cause wrong classifications

and not be perceived. That technique reduces the accuracy of a modulation classifier more and

crafts adversarial samples much faster than other adversarial attack techniques. It is therefore

urgently necessary to enhance the resistance of deep learning-based classifiers to adversarial

attacks.

In this paper, we propose a novel wireless receiver architecture that enhances the resistance

of the receiver’s modulation classifier to adversarial attacks. Our proposed defense technique

is threefold. First, the amount of adversarial perturbation in a modulated signal is estimated

by relying on a DAE that has been specially trained to remove Gaussian noise and adversarial

perturbations. Then, signals with considerable perturbations are preprocessed using the DAE

to remove those undesirable attributes. Signals with small amounts of noise and adversarial

perturbations, on the other hand, are not preprocessed as the DAE could introduce errors that

are more significant than the perturbations. Finally, the signal’s modulation scheme is identified

with an enhanced classifier that has been trained using noisy and adversarial samples to make it

resistant to sample variation.

In contrast, most existing defense techniques do not effectively remove adversarial perturbations

as they focus only on detecting adversarial samples and improving the classifier. Thus, compared

to existing defense schemes, our proposed solution’s first major technical improvement is our
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technique for estimating and removing adversarial perturbations, which significantly alleviates

the burden on the classifier. Moreover, while most existing defense schemes enhance the

classifier’s resistance to adversarial attacks by including adversarial samples in training, they

are effective only against the adversarial attacks whose samples were considered. On the other

hand, our proposed defense technique relies on our previous work in [Freitas de Araujo-Filho

et al. (2022)] to quickly craft and include in training adversarial samples that generalize other

adversarial attacks. Therefore, our proposed solution’s second major technical improvement is

its ability to enhance modulation classifiers’ resistance to various adversarial attack techniques

while requiring only adversarial samples crafted using a single fast attack technique [Freitas de

Araujo-Filho et al. (2022)]. These improvements enable our technique to diminish the accuracy

reduction that is caused by adversarial attacks by at least 18% more than existing defense

techniques. In a nutshell, the main contributions of our work are as follows:

• We propose a DAE that has been specially trained to estimate and remove noise and adversarial

perturbations from modulated signals.

• We propose an enhanced modulation classifier (EMC) that is resistant to a variety of

adversarial attack techniques.

• We propose a novel wireless receiver architecture that is resistant to adversarial attacks by

combining our proposed DAE and EMC to remove adversarial perturbations and make the

classifier less affected by them.

The remainder of this article is organized as follows. Section 5.3 reviews the existing techniques

to defend against adversarial attacks on modulation classifiers. In Section 5.4, we formulate

adversarial attacks and describe the threat model and assumptions considered in our work. In

Section 5.5, we present our proposed wireless receiver architecture by describing our proposed

DAE and EMC. Section 5.6 describes the dataset used, the experiments conducted, and the

adversarial attacks considered in our evaluation. In Section 5.7, we present and discuss our

solution’s results and compare them to the results of state-of-the-art defense techniques. Finally,

Section 5.8 concludes our paper and proposes future extensions to our work.



95

5.3 Related Works

Despite the severe risks adversarial attacks on deep learning-based modulation classifiers pose

to wireless communications, only a few techniques have been proposed to defend modulation

classifiers against them. The work in [Sahay et al. (2022)] proposes a wireless transmission

receiver architecture that reduces the risks of a modulation classifier experiencing adversarial

attacks. The defense technique consists of using an ensemble of eight classifiers to recognize

modulation schemes as it is more challenging for an attacker to simultaneously fool several

classifiers than just one. However, considering many classifiers significantly increases the

computational resources required and the time it takes to recognize a signal’s modulation scheme.

The work in [Shtaiwi et al. (2022)] proposes a defense technique that discards adversarial samples

before they are sent to the modulation classifier. It relies on mixture generative adversarial

networks (MGAN) and trains a GAN for each modulation scheme considered. However, the

technique proposed in [Shtaiwi et al. (2022)] also significantly increases the computational

resources required as one GAN is trained for each modulation scheme. Moreover, the authors of

[Shtaiwi et al. (2022)] evaluate their proposal against only adversarial samples that are crafted

using the FGSM technique and do not indicate the size of adversarial perturbations or if they are

imperceptible.

The authors of [Sahay et al. (2021)] propose a defense technique for modulation classifiers that

detects large adversarial perturbations by computing a reconstruction loss with an autoencoder.

Moreover, it includes adversarial samples that have been crafted using the FGSM technique

when training the classifier so that the classifier learns how to classify them correctly. However,

while large perturbations are detected but not correctly classified, small perturbations are

correctly classified only if they were crafted using the FGSM technique, as only those types

of perturbations are considered when training the classifier. Similarly, the work in [Kim,

Sagduyu, Davaslioglu, Erpek & Ulukus (2021)] enhances a modulation classifier’s resistance by

augmenting its training data with Gaussian noise. However, it does not significantly prevent
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adversarial attacks from reducing the classifier’s accuracy as they optimally find perturbations

that compromise classifiers.

The authors of [Manoj, Santos, Sadeghi & Larsson (2022)] evaluate the performance of

modulation classifiers enhanced using three defense techniques: randomized smoothing, hybrid

PGD adversarial training, and fast adversarial training. Randomized smoothing augments the

classifier’s training data with Gaussian noise as it is also done by the work in [Kim et al. (2021)].

The hybrid PGD adversarial training and fast adversarial training techniques, on the other

hand, augment the classifier’s training data with adversarial samples crafted using the PGD

and universal adversarial perturbation (UAP) techniques, respectively. However, the results in

[Manoj et al. (2022)] show that none of those three techniques is effective as they do not prevent

white-box attacks from reducing the classifier’s accuracy to less than 20%.

The work in [Zhang, Lambotharan, Zheng & Roli (2021b)] proposes a neural rejection (NR)

system that detects adversarial attacks on modulation classifiers. It trains a support vector

machine (SVM) model for each modulation scheme considered so that they detect samples

that differ from the clean samples used in training and consider them to contain adversarial

perturbations. The authors of [Zhang et al. (2022)] propose a hybrid training-time and run-time

defense (HTRD) technique that combines the customized adversarial training (CAT) technique

with the NR system developed in [Zhang et al. (2021b)]. The CAT technique enhances classifiers

by augmenting their training samples with adversarial samples crafted using a modified PGD

attack. Since adversarial samples are used in training, the classifier learns how to classify them

correctly. However, the authors of [Zhang et al. (2021b)] and [Zhang et al. (2022)] evaluate their

defense techniques against only one adversarial attack technique. Moreover, their NR system

significantly increases the computational resources needed as one SVM model is required for

each modulation class.

Finally, the authors of [Zhang et al. (2021a)] propose a defense mechanism that combines

the NR mechanism proposed in [Zhang et al. (2021b)] with two techniques that enhance the

classifier’s resistance to adversarial attacks: Gaussian noise augmentation (GNA) and label
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smoothing (LS). The GNA technique adds Gaussian noise to training samples. The LS technique

converts labels that were encoded using the one-hot encoding technique, such as (1, 0, 0, 0), into

smoothed vectors that reduce the classification confidence, such as (0.91, 0.03, 0.03, 0.03). These

techniques help the neural network classifier to better generalize by not being overconfident.

Although the work in [Zhang et al. (2021a)] diminishes the degree to which FGSM adversarial

samples reduce the classifier’s accuracy, it does not consider other types of adversarial attacks.

In addition, as in [Zhang et al. (2021b)] and [Zhang et al. (2022)], it also significantly increases

the computational resources needed since it employs the NR mechanism.

5.4 Adversarial Attack Threat Model

Deep learning-based classifiers are trained to find decision boundaries between the decision

regions of each class. However, as shown in Figure 5.1, adversarial attacks craft and introduce

perturbations that modify data samples and force them to cross decision boundaries and lie in

other decision regions. However, these perturbations must be small enough to not be perceived.

Thus, adversarial attacks aim to find a perturbation 𝛿 that, when added to a sample 𝑥, modifies it

just enough so that the adversarial sample 𝑥𝑎𝑑𝑣 = 𝑥 + 𝛿 satisfies

min | |𝑥𝑎𝑑𝑣 − 𝑥 | | < 𝜌 (5.1)

and

𝑓 (𝑥𝑎𝑑𝑣) ≠ 𝑓 (𝑥), (5.2)

where | | · | | represents a chosen distance metric, 𝜌 is the maximum imperceptible perturbation

according to that metric, and 𝑓 is the trained classifier that is the target of the attack.

In our work, we consider the worst-case scenario in which the attacker has complete knowledge

about the classifier. That is, we evaluate our proposed defense technique against white-box

adversarial attacks. Furthermore, we consider that adversarial attacks can be launched directly

on wireless receivers, from wireless transmitters, or from separate malicious emitters. When

launched on receivers, attackers need to infect the receiver with malware or a malicious piece
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of hardware that tampers with incoming signals to add adversarial perturbations. Similarly,

when launched from transmitters, attackers need to infect the transmitter so that it can tamper

with outgoing signals and add adversarial perturbations to them. Attackers must also consider

channel effects as the adversarial perturbations are transmitted over the air. Finally, when

launched from separate malicious emitters, as shown in Figure 5.2, attackers must eavesdrop on

the transmitter’s signals and consider the perfect synchronization of perturbations and signals,

as they are transmitted from different nodes. Since our focus is on defending against adversarial

attacks, we assume that attackers are successful in crafting, transmitting, and synchronizing

perturbation signals. We therefore consider those tasks to be outside the scope of our work.

5.5 Proposed Wireless Receiver Architecture

In our work, we propose a novel wireless receiver architecture that protects against adversarial

attacks on deep learning-based modulation classifiers. Our proposed system has two goals.

The first is to remove adversarial perturbations from samples so that they are not forced across

decision boundaries. The second is to make the modulation classifier less sensitive to the

changes caused by adversarial perturbations so that it is more difficult to force samples across

decision boundaries.
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To achieve those goals, our proposed system consists of two modules, namely, an adversarial

perturbation preprocessor (APP) and an enhanced modulation classifier (EMC). Figure 5.3

shows our proposed architecture. The ADC forwards the received samples to our proposed

APP module, which processes and forwards them to the EMC module. Finally, the EMC

module classifies the samples and indicates the recognized modulation scheme to the receiver’s

demodulator.

x
Enhanced 
Modulation 
Classifier


(EMC)

Proposed Defense Technique

Adversarial 
Perturbation 
Preprocessor 

(APP)

Proposed Wireless Receiver Architecture

f(x)
DemodulatorADC

Figure 5.3 Proposed wireless receiver architecture
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5.5.1 Adversarial Perturbation Preprocessor

The APP module trains a DAE using Gaussian and adversarial samples so that it learns how to

remove noise and adversarial perturbations from samples. During training, the DAE learns how

to map samples that have been corrupted with Gaussian noises and adversarial perturbations to

clean samples. It is trained to minimize the loss function

𝐿DAE =
1

𝑁

𝑁∑
𝑗=1

(𝑥𝑜 𝑗 − 𝑥𝑖 𝑗 )2, (5.3)

where 𝑥𝑖 = 𝑥clean + 𝜂 + 𝛿 is the input sample that may or may not have been corrupted by noise 𝜂

and adversarial perturbations 𝛿, 𝑥𝑜 is the DAE’s output after noise and adversarial perturbations

have been removed, and 𝑁 is the length of samples 𝑥𝑖 and 𝑥𝑜.

The cosine distance between 𝑥𝑖 and 𝑥𝑜 measures the dissimilarity between them, which represents

the correction 𝑐 that is applied by the DAE to remove noise and adversarial perturbations. Small

cosine distances correspond to null or small corrections that happen when input samples have

not been tampered with or when they have been altered by small perturbations. Large cosine

distances, on the other hand, correspond to large corrections that are applied as a result of large

perturbations. Thus, this cosine distance allows us to estimate the amount of perturbation in a

sample.

However, since it is impractical to train the DAE (or any other deep learning model) to cover all

possible input feature vectors, the DAE may also introduce small errors. Thus, the DAE’s output

is given by 𝑥𝑜 = 𝑥𝑖 + 𝑐 + 𝑒, where 𝑐 is the correction that the DAE applies to input samples

and 𝑒 is the error that it introduces. As a result, our proposed defense technique must use the

DAE to preprocess data samples only when the perturbations removed are larger than the errors

introduced. Otherwise, the DAE may harm classification more than it helps. Therefore, our APP

module first estimates the amount of perturbation in a sample by computing the cosine distance

between 𝑥𝑖 and 𝑥𝑜, and then forwards to the EMC module either 𝑥𝑖 when the perturbation is

small or 𝑥𝑜 when the perturbation is large.
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5.5.2 Enhanced Modulation Classifier

The EMC trains deep convolutional neural networks to classify samples of modulated signals

by their modulation scheme. Similarly to the DAE, the modulation classifier is trained using

samples that have been corrupted with Gaussian noise and adversarial samples in addition

to clean samples. Augmenting the training set with Gaussian noise increases the classifier’s

resistance to multiple directions, i.e., samples that have been slightly dislocated in random

directions are still assigned to the same class of 𝑥. Similarly, augmenting the training set

with adversarial perturbations increases the classifier’s resistance to the direction that makes a

sample optimally cross the decision boundary according to an adversarial attack technique. As

a result, our proposed EMC makes the classifier’s prediction of a sample 𝑥 constant within a

small neighborhood around 𝑥. Therefore, the decision boundaries become less sensitive, and

the classifier becomes more resistant to changes caused by noise and adversarial perturbations.

Algorithm 5.1 summarizes how our proposed defense technique works.

Algorithm 5.1 Proposed defense technique

1: Train a DAE with samples tampered with Gaussian noise and adversarial

perturbations

2: Train a EMC with samples tampered with Gaussian noise and adversarial

perturbations

3: for Each incoming sample 𝑥𝑖 do
4: Compute 𝑥𝑜 = 𝐷𝐴𝐸 (𝑥𝑖)
5: Compute 𝛽 = 𝐶𝐷 (𝑥𝑖, 𝑥𝑜)
6: if 𝛽 ≥ 𝑡 then
7: Preprocess data sample 𝑥 = 𝑥𝑜
8: else
9: Do not preprocess data sample 𝑥 = 𝑥𝑖

10: end if
11: Classify data sample 𝑦 = 𝑓 (𝑥)
12: end for
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5.5.3 Adversarial Samples for Training

Our proposed architecture relies on adversarial samples to train both the DAE and the EMC. The

DAE leverages adversarial samples to learn how to remove adversarial perturbations. The EMC

uses them to enhance its resistance to them. Thus, the choice of adversarial samples considered

has a significant impact on the resistance our technique provides. For instance, if our proposed

DAE and EMC are trained with adversarial samples crafted using only the FGSM technique,

our defense will be effective against only FGSM adversarial samples. Similarly, if we consider

adversarial samples crafted using only the FGSM and PGD techniques, our defense technique

will protect wireless receivers from only those two specific adversarial attacks. However, it is not

feasible to consider many different adversarial attack techniques as doing so would significantly

increase our defense technique’s computational requirements and training time.

Therefore, a crucial part of our proposed defense technique is to consider an adversarial attack

technique that generalizes other types of adversarial attacks. We want our defense technique to

protect against different types of adversarial attacks while being trained with adversarial samples

crafted using a single attack technique. For this purpose, we leverage our previous work in

[Freitas de Araujo-Filho et al. (2022)], in which we proposed an input-agnostic adversarial attack

technique. This type of attack combines GANs [Goodfellow et al. (2014)] and multi-task loss

[Kendall et al. (2018)] to generate adversarial samples by simultaneously optimizing their ability

to cause wrong classifications and not be perceived. Furthermore, it crafts adversarial samples

much faster than other adversarial attack techniques. Thus, by using the adversarial attack

technique proposed in [Freitas de Araujo-Filho et al. (2022)], our proposed defense technique

enhances modulation classifiers’ resistance to different types of adversarial attacks while also

significantly reducing the time it takes to craft the adversarial samples used to train the DAE and

EMC.
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5.6 Methodology and Experimental Evaluation

In this section, we present the dataset that we used in our experiments to validate our proposed

defense technique and then explain the experiments we conducted and the neural network

architectures of our proposed DAE and EMC modules.

5.6.1 Dataset

To evaluate our proposed defense architecture, we used DeepSig’s publicly available RADIOML

2016.10A dataset [O’Shea et al. (2016); O’Shea & West (2016)]. The dataset contains signals

that have been modulated using one of eleven modulation schemes (eight digital and three

analog): 8PSK, BPSK, QPSK, QAM16, QAM64, CPFSK, GFSK, PAM4, WBFM, AM-DSB,

and AM-SSB. The signals are then exposed to an AWGN channel that includes sampling rate

offset, random process of center frequency offset, multipath, and fading effects, as described in

[O’Shea et al. (2016); O’Shea & West (2016)]. Since our goal is to defend against adversarial

attacks, we consider an AWGN channel rather than other channel models that could negatively

impact the attacks’ performance [Flowers et al. (2020); Kim et al. (2021)]. Moreover, we

assume adversarial attacks successfully account for channel and transmission effects without

compromising their harmfulness. Finally, the signals are normalized and packaged into 220,000

samples of in-phase and quadrature components of length 128 that are each associated with one of

the eleven modulation schemes and a SNR. The SNR indicates the signal’s strength. It is the ratio

between the power 𝑃 of the signal and of the background noise, i.e., 𝑆𝑁𝑅[𝑑𝐵] = 10 log( 𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
).

The dataset covers twenty SNRs ranging from -20 dB to 18 dB in steps of 2 dB. Sixty four

percent of the samples were used for training our proposed DAE and EMC, 16% were used as a

validation set, and 20% were reserved as a testing set to measure and evaluate our proposed

architecture’s performance.
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5.6.2 DAE Experiments

Our proposed DAE relies on fully connected neural networks to encode and decode samples of

modulated signals. It encodes clean, noisy, and adversarial samples into a lower-dimensional

space, and reconstructs them as clean samples that are free of noise and adversarial perturbations.

Noisy samples are produced by adding to clean samples Gaussian noise generated with zero

mean and standard deviation 𝜎. Adversarial samples, on the other hand, are produced by crafting

and adding to clean samples adversarial perturbations generated using the technique proposed in

[Freitas de Araujo-Filho et al. (2022)]. Figure 5.4 shows our proposed DAE’s architecture.
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Figure 5.4 DAE neural

network architecture

While large standard deviations allow the DAE to remove more considerable noises, they may also

induce the DAE to produce more significant errors. Moreover, the more noisy and adversarial

samples that are considered in training, the better the DAE gets at removing noise and adversarial

perturbations. However, considering too many noisy and adversarial samples may significantly

increase the DAE’s training time. Thus, we balance these trade-offs by experimenting with

several different standard deviations and proportions of noisy and adversarial samples to each

clean sample. Furthermore, we optimize the DAE’s hyper-parameters, such as learning rate and

batch size, using the Optuna framework [Akiba et al. (2019)], which automatically searches

for the optimal hyper-parameters and the early stopping mechanism. Table 5.1 shows the

hyper-parameter values used in the DAE after tuning.
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Table 5.1 Hyper-parameter values of the DAE

Hyper-Parameter Value
Optimizer Adam

Learning Rate 0.001

Batch Size 128

Maximum Number of Epochs 100

Early Stopping Patience 5

Standard deviation of Gaussian samples 0.0025

Number of Gaussian samples per clean sample 5

Number of adversarial samples per clean sample 5

Finally, we define the threshold 𝑡 to which the cosine distance is compared in Algorithm

5.1 as 𝑡 = 𝛾𝜏, where 𝛾 is a hyper-parameter and 𝜏 represents the average error introduced by

the DAE. Since the DAE is supposed to not change input samples when they do not contain

noise or adversarial perturbations, the cosine distance between clean training samples and

their reconstructions corresponds to the error introduced by the DAE. Thus, we compute 𝜏 by

averaging the cosine distances of clean training samples.

5.6.3 EMC Experiments

Rather than improving modulation classifier’s accuracy, the main goal of our work is to make

them resistant to adversarial attacks, i.e., diminish the degree to which adversarial attacks

reduce their accuracy. Thus, instead of proposing a novel neural network architecture, our

EMC module relies on deep convolutional neural networks and uses the same architecture

as the VT-CNN2 modulation classifier proposed in [O’Shea et al. (2016); O’Shea & West

(2016)]. This classifier has been largely adopted by most of the works that investigate adversarial

attack defense techniques for modulation classifiers. Similarly to the DAE, we optimize the

EMC’s hyper-parameters using the Optuna framework [Akiba et al. (2019)] and the early

stopping mechanism. Figure 5.5 shows our proposed EMC’s architecture. Table 5.2 shows the

hyper-parameter values used in the EMC after tuning. All experiments were conducted using

an AMD Ryzen Threadripper 1920X 12-core 2.2GHz processor with 64GB of RAM and an

NVIDIA GeForce RTX 2080 in a Pytorch environment.
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Figure 5.5 EMC neural network architecture

Table 5.2 Hyper-parameter values of the EMC

Hyper-Parameter Value
Optimizer Adam

Learning Rate 0.001

Batch Size 1024

Dropout Rate 0.25

Maximum Number of Epochs 100

Early Stopping Patience 5

Standard deviation of Gaussian samples 0.0025

Number of Gaussian samples per clean sample 10

Number of adversarial samples per clean sample 10

5.6.4 Adversarial Attacks Considered

As discussed, we evaluated our proposed defense technique against the worst-case scenario of

white-box attacks. We selected the FGSM, PGD, and MIM adversarial attacks, which have been

shown to significantly compromise the accuracy of deep learning-based modulation classifiers

[Lin et al. (2021, 2020)].

The FGSM adversarial attack modifies input features by increasing and decreasing them according

to the sign of the loss function’s gradient. Hence, it is formulated as

𝑥𝑎𝑑𝑣 = 𝑥 + 𝜀sign(∇𝑥𝐽 (𝜃, 𝑥, 𝑦)), (5.4)
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where 𝑥𝑎𝑑𝑣 is the adversarial sample, 𝑥 is the input sample, 𝐽 (𝜃, 𝑥, 𝑦) is the classifier’s loss

function, and 𝜀 is a control variable that scales the adversarial perturbation. While the FGSM

technique crafts adversarial samples quickly, it may modify all input features so that adversarial

samples are more likely to be perceived [Liu, Nogueira, Fernandes & Kantarci (2022); Manoj

et al. (2021)].

While the FGSM attack technique crafts adversarial samples in a single step, the PGD technique

follows an iterative process. It starts with a randomly initialized adversarial sample within the

clean sample’s 𝐿∞ proximity. Then, it takes gradient steps in the direction of the greatest loss

until convergence is achieved. The PGD technique is formulated as

⎧⎪⎪⎨⎪⎪⎩
𝑥 (𝑡+1)
𝑎𝑑𝑣 =

∏
𝑥+Ψ (𝑥 (𝑡)𝑎𝑑𝑣 + 𝜀sign(∇𝑥𝐽 (𝜃, 𝑥, 𝑦)))

𝑥 (0)𝑎𝑑𝑣 = 𝑥
, (5.5)

where 𝑥 (𝑡+1)
𝑎𝑑𝑣 is the adversarial sample at iteration 𝑡 + 1, 𝐽 (𝜃, 𝑥, 𝑦) is the classifier’s loss function,

𝜀 is a control variable that scales the adversarial perturbation, and Ψ is the set of allowed

perturbations so that 𝑥𝑎𝑑𝑣 remains within the 𝐿∞ neighborhood of the clean sample 𝑥. Although

the PGD technique’s iterations result in a longer training time, it produces adversarial samples

that are more harmful than those produced by the FGSM technique [Liu et al. (2022); Manoj

et al. (2021)].

Finally, while the MIM technique also follows an iterative process, it introduces momentum,

which adds a fraction of the previous weight update to the current one. Momentum speeds up

convergence and helps avoid local minima, better approximating the optimal attack direction.

The MIM technique is formulated as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥 (𝑡+1)
𝑎𝑑𝑣 = 𝑥 (𝑡)𝑎𝑑𝑣 + 𝜀

𝑇max
sign(𝑔(𝑡+1))

𝑔(𝑡+1) = 𝜇𝑔(𝑡) + ∇𝑥𝐽 (𝜃,𝑥 (𝑡 )𝑎𝑑𝑣
,𝑦)

| |∇𝑥𝐽 (𝜃,𝑥 (𝑡 )𝑎𝑑𝑣
,𝑦) | |

𝑥 (0)𝑎𝑑𝑣 = 𝑥

𝑔(0) = ∇𝑥𝐽 (𝜃,𝑥,𝑦)
| |∇𝑥𝐽 (𝜃,𝑥,𝑦) | |

, (5.6)
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where 𝑥 (𝑡+1)
𝑎𝑑𝑣 is the adversarial sample at iteration 𝑡 + 1, 𝐽 (𝜃, 𝑥, 𝑦) is the classifier’s loss function,

𝜀 is a control variable that scales the adversarial perturbation, 𝑇max is the number of iterations,

and 𝜇 is a decay factor. The momentum improves stability so that the MIM technique provides

stronger generalization and MIM adversarial attacks usually outperforms PGD adversarial attacks

[Lin et al. (2020, 2021)].

5.7 Results and Discussion

Adversarial attacks on modulation classifiers aim to tamper with signals and reduce a classifier’s

accuracy while ensuring that perturbations are not perceived. While more significant adversarial

perturbations compromise the classifier’s accuracy more, they are more distinguishable and

likely to be detected. Adversarial perturbations are considered imperceptible when they cannot

be distinguished from the noise, i.e., they are in the same order as or below the noise level.

Hence, we measure the PNR, i.e., the ratio between the power levels of the perturbation and

noise 𝑃𝑁𝑅[𝑑𝐵] = 10 log( 𝑃𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛

𝑃𝑛𝑜𝑖𝑠𝑒
), where 𝑃𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 is the power level of the perturbation

power and 𝑃𝑛𝑜𝑖𝑠𝑒 is the power level of the noise, so that adversarial perturbations are considered

imperceptible when PNR < 0 dB.

We first evaluate how much adversarial attacks compromise the VT-CNN2 modulation classifier’s

accuracy. Figure 5.6 shows the VT-CNN2’s accuracy versus PNR for an SNR of 10 dB. While

the classifier’s accuracy is around 75% without attacks, it is significantly compromised by the

FGSM, PGD, and MIM attacks. They reduce the classifier’s accuracy by 10 percentage points

with adversarial perturbations as low as -16 dB PNR. Moreover, at 0 dB PNR, the FGSM attack

reduces the classifier’s accuracy to only 30%, and the PGD and MIM attacks reduce it to only

26%. Although the VT-CNN2’s accuracy is not very high, we use that classifier because it is

largely adopted by most of our related works. Moreover, our goal is not to increase the classifier’s

accuracy, but to prevent it from being reduced. In addition, our proposed defense architecture

does not depend on the classifier’s architecture so it can easily be replicated with any other deep

learning-based modulation classifier.
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Figure 5.6 VT-CNN2 modulation classifier’s

accuracy versus PNR

Our proposed APP module estimates the amount of adversarial perturbation in samples by

measuring the cosine distance between them and their reconstructed versions obtained from

the DAE. Figure 5.7 shows the cosine distance for clean and adversarial samples with PNRs of

-20 dB to 0 dB. Small cosine distances indicate that samples are clean or that they have been

altered by small perturbations. Thus, the cosine distances of clean samples and adversarial

samples with PNRs below -7 dB are small. On the other hand, large cosine distances indicate

that samples have been altered by more substantial perturbations. Thus, the cosine distance of

adversarial samples with PNRs above -7 dB significantly increases with the PNR.

Furthermore, Figure 5.7 shows that the cosine distance of clean samples is small but not

zero because the DAE introduces a small error. As a result, our proposed defense technique

preprocesses samples only when the DAE removes more adversarial perturbations than the error

it adds, i.e., when the cosine distance measured between incoming sample and its reconstruction

is above the threshold set by the cosine distance of clean training samples as described in

Algorithm 5.1.
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Figure 5.7 Cosine distance between clean and

adversarial samples and their reconstructions

We evaluate our proposed defense technique’s performance against FGSM, PGD, and MIM

adversarial attacks while also assessing our proposed EMC and APP modules’ individual

contributions to the final defense result. Figures 5.8, 5.9, and 5.10 show the modulation

classifier’s accuracy against FGSM, PGD, and MIM attacks, respectively, for a SNR of 10 dB

without any defense technique, with our proposed defense technique, with only our proposed

EMC, and with only our proposed APP. Enhancing the modulation classifier using our EMC

diminishes the accuracy reduction that is caused by the three types of adversarial attacks

considered because the classifier becomes less sensitive to perturbations. However, the larger

the adversarial perturbation, the worse the EMC performs. On the other hand, although

our APP cannot improve the classifier’s accuracy as much as the EMC does for low PNRs,

it ensures less accuracy reduction than the EMC does for higher PNRs because it removes

large perturbations. Therefore, by combining the EMC and APP modules, our proposed

defense technique significantly diminishes the degree to which the three adversarial attack types

considered reduce the classifier’s accuracy.
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Figure 5.8 Contribution of our proposed APP and EMC

to the modulation classifier’s accuracy against the

FGSM adversarial attack for a SNR of 10 dB

Figure 5.9 Contribution of our proposed APP and EMC

to the modulation classifier’s accuracy against the

PGD adversarial attack for a SNR of 10 dB
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Figure 5.10 Contribution of our proposed APP and EMC

to the modulation classifier’s accuracy against the

MIM adversarial attack for a SNR of 10 dB

Finally, we compare the performance of our proposed defense technique to that of the defense

techniques proposed in [Zhang et al. (2022)] and [Zhang et al. (2021a)]. Figures 5.11, 5.12,

and 5.13 show the modulation classifier’s accuracy against FGSM, PGD, and MIM attacks,

respectively, for a SNR of 10 dB without any defense technique, with our proposed defense

technique, and with the defense techniques proposed in [Zhang et al. (2022)] and [Zhang et al.

(2021a)]. While the techniques proposed in [Zhang et al. (2022)] and [Zhang et al. (2021a)]

reduce the classifier’s sensitivity to adversarial samples using NR, CAT, GNA, and LS, our

solution removes large perturbations using the APP in addition to reducing the classifier’s

sensitivity to adversarial samples using the EMC.

Although the defense techniques proposed in [Zhang et al. (2022)] and [Zhang et al. (2021a)]

diminish the degree to which small adversarial perturbations reduce the classifier’s accuracy,

they are ineffective against larger adversarial perturbations. For instance, at 0 dB PNR, the

classifier’s accuracy when the techniques from [Zhang et al. (2022)] and [Zhang et al. (2021a)]

are employed is less than 10% greater than when no defense technique is used. While our
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Figure 5.11 Modulation classifier’s accuracy versus PNR

against the FGSM adversarial attack for a SNR of 10 dB

Figure 5.12 Modulation classifier’s accuracy versus PNR

against the PGD adversarial attack for a SNR of 10 dB
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Figure 5.13 Modulation classifier’s accuracy versus PNR

against the MIM adversarial attack for a SNR of 10 dB

proposed technique performs similarly to the techniques proposed in [Zhang et al. (2022)] and

[Zhang et al. (2021a)] against small perturbations, it significantly outperforms them against

larger perturbations. Our technique diminishes the degree to which accuracy is reduced by at

least 18 percentage points more than [Zhang et al. (2022)] does and 20 percentage points more

than [Zhang et al. (2021a)] does at 0 dB PNR. This improvement is a result of our proposed

APP module, which preprocesses samples that have large adversarial perturbations using our

proposed DAE. By removing noise and adversarial perturbations, our DAE makes it much easier

for the EMC to classify samples, hence the improvement achieved.

5.8 Conclusion

In this paper, we verified that adversarial attacks significantly compromise deep learning-based

modulation classifiers. Then, we proposed a novel wireless receiver architecture that protects

modulation classifiers from adversarial attacks by combining two modules: an APP and an

EMC. The APP estimates adversarial perturbations in incoming samples and removes them

by preprocessing samples with a specially designed DAE. The samples are then forwarded to
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be classified in the EMC, which has been specially trained to be less sensitive to adversarial

perturbations.

In terms of our proposed EMC, our results show that it successfully diminishes the accuracy

reduction that is caused by the three adversarial attack types considered. However, they also

show that it degrades when it comes to large adversarial perturbations. In terms of our proposed

APP, our results show that it successfully removes large perturbations and therefore ensures

less accuracy reduction than the EMC does for higher PNRs. Finally, our results show that, by

combining both the EMC and APP modules, our proposed defense technique diminishes the

degree to which the three adversarial attacks considered reduce the classifier’s accuracy by at

least 18% more than existing defense techniques. Therefore, we verified that better defense

results are achieved by simultaneously removing adversarial perturbations and making classifiers

less sensitive to them.

In future work, we will evaluate our proposed technique against other adversarial attack

techniques and investigate how to improve it to make the modulation classifier’s accuracy even

closer to when there is no adversarial attack. Furthermore, we will also investigate how our

proposed defense technique can be adapted to protect other deep learning-dependent wireless

communication tasks, such as resource allocation, from adversarial attacks.





CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

As the increasing number of connected devices and the use of ML introduce new security

challenges, it is necessary to enhance the security of connected things against cyber-attacks and

adversarial attacks that can compromise confidentiality, integrity, and availability. Therefore,

this thesis studies new strategies and techniques to protect connected things against cyber-attacks

and adversarial attacks. We focus on developing novel intrusion detection systems that effectively

and efficiently detect cyber-attacks. Moreover, we also investigate the impact that adversarial

attacks and the development of defense techniques that mitigate their effects.

Chapter 2 proposed FID-GAN, a GAN-based IDS for detecting cyber-attacks on cyber-physical

systems. We combined the discrimination and reconstruction losses of the GAN to compute

an anomaly detection score that indicates the probability that the data samples correspond to

anomalies. Our experiments verified that combining both losses made it possible to achieve

higher AUCROC values, allowing our proposed IDS to achieve lower false positive and negative

rates simultaneously. Furthermore, our proposed IDS presented an innovative approach to

train an encoder neural network that accelerates the reconstruction loss computation, hence

significantly reducing the detection time. Finally, to further minimize the detection time, we

proposed a deployment architecture in which the GAN and encoder were trained in the cloud

but deployed for inference at a fog-layer closer to the nodes under surveillance.

Chapter 3 considered the detection of known and unknown DDoS attacks that could severely

compromise the availability of networks and systems. We evaluated different neural network

architectures that consider time dependencies among data by relying on a GAN-based IDS. Our

experimental results showed that LSTM networks, which were until recently considered the

architecture to go for sequence modeling tasks, were outperformed by other neural network
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architectures. Precisely, using self-attention networks granted higher detection rates than LSTM

networks, while using TCNs provided shorter detection times. Therefore, this investigation

proved that self-attention and TCNs could replace LSTM networks in detecting cyber-attacks.

Chapter 4 investigated how adversarial attacks could compromise the availability of wireless

communications. We formulated adversarial attacks as an optimization problem that aims to

craft adversarial perturbations that induce ML-based classifiers to make mistakes while not

being perceived. Then, we proposed a technique that leverages the multi-task loss for training a

GAN that produces adversarial perturbations simultaneously optimizing those two conditions.

Moreover, our proposed technique only required access to the target model decisions and was

proved to be input-agnostic. Our experiments showed that our technique was able to cause more

damage to the accuracy of a modulation classifier that other adversarial attack techniques while

being 335 times faster than them. The study in this chapter verified that adversarial attacks could

significantly impact the security of systems that rely on ML. Furthermore, it served as the basis

for proposing defense techniques against adversarial attacks, as demonstrated in Chapter 5.

Finally, Chapter 5 investigated techniques for enhancing the security of machine-based systems

by reducing the extent to which adversarial attacks compromise them. We proposed a defense

technique that estimates and removes large adversarial perturbations so that samples of modulated

signals received at a wireless receiver are not forced across the decision boundaries of modulation

classifiers using a specially trained DAE. Moreover, our proposed technique relies on an EMC

that has been specially trained to reduce the sensitivity of its decision boundaries, further

reducing the effects of adversarial attacks. The DAE and the enhanced classifier are specially

trained using samples tampered with Gaussian noise and adversarial perturbations crafted

with the technique we proposed in Chapter 4. Experimental results showed that our proposed

technique significantly diminishes the accuracy reduction caused by adversarial attacks on

modulation classifiers, and outperforms other protection techniques by at least 18 percentage
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points. Therefore, this study outlines an exciting direction for developing effective defense

techniques that protect and secure the reliability of ML-based systems.

6.2 Future Work

This section presents future research paths that we consider worth pursuing, drawing from the

results obtained in this thesis.

6.2.1 Diffusion-Based Intrusion Detection

In recent years, generative models have been shown to implicitly model systems in various

application domains very successfully [Freitas de Araujo-Filho et al. (2021)]. For instance, we

showed in Chapters 2 and 3 that GANs can successfully model sensor measurements and network

flows to detect cyber-attacks. On the other hand, more recently, diffusion models have been

gaining interest due to their training stability, which is usually challenging for GANs, and their

ability to produce image samples with higher quality than other generative models [Ho, Jonathan

and Saharia, Chitwan; Kong, Ping, Huang, Zhao & Catanzaro (2020)]. Diffusion models

progressively corrupt training data by adding Gaussian noise, slowly removing data samples’

details until there is only noise left. Then, they train a neural network to reverse the corruption

process as if it were denoising a pure noise sample until a meaningful data sample is produced

[Ho, Jonathan and Saharia, Chitwan; Sohl-Dickstein, Weiss, Maheswaranathan & Ganguli

(2015)]. Therefore, since diffusion models have been shown to model systems better and

with higher stability than GANs, a future research path is to explore diffusion models for the

detection of intrusions. Furthermore, since they are designed to reconstruct samples by removing

noise from them, another exciting research path to explore is whether diffusion models can

remove adversarial perturbations and thus increase the resistance of ML-based systems against

adversarial attacks.
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6.2.2 Minimization of the Number of Training Data Required by Attack Classifiers

Since different cyber-attacks might be mitigated in different ways and intrusions detected by

anomaly-based IDSs might represent systems malfunctioning rather than attacks, it is necessary

to classify intrusions once they are detected. However, due to the lack of labeled data, which

is challenging and expensive to obtain, the lack of occurrences of newly identified attacks,

and the need to retrain attack classifiers every time a new type of attack is identified, it is

necessary to investigate techniques for minimizing the number of required training data. Recent

studies propose using transfer learning and few-shot learning to achieve such a goal [Singla,

Bertino & Verma (2019); Ren et al. (2018)].

Transfer learning can reduce the number of required training data by leveraging previously

trained models. Thus, models trained on domains with more data available, e.g., Wi-Fi networks,

can be used to minimize the need for data in domains with fewer data available, such as 5G

networks [Singla et al. (2019)]. Few-shot learning, on the other hand, can recognize new

classes given only a few examples from each of those classes. This may significantly reduce

the retraining burden when new types of attacks are discovered and must be included in attack

classifiers [Ren et al. (2018)]. However, such works on transfer learning and few-shot learning

are still preliminary studies, and more investigation is required.

6.2.3 Security and Privacy of Digital Twins

Digital twins is an emerging concept based on creating virtual replicas of physical objects, such

as jet engines, wind farms, autonomous vehicles, and even whole smart cities. Its goal is to use

real-world data to simulate and predict the behavior of systems, thus preventing costly failures in

physical objects [Wu, Zhang & Zhang (2021)]. Such technology brings great opportunities in

several domains. In 6G, for example, digital twins are being explored to improve spectral and

energy efficiency while enabling innovative applications, such as autonomous driving [Wu et al.
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(2021)]. On the other hand, data transmission between physical objects and their replicas raises

severe security and privacy issues, as tampering with data and data leaks might cause significant

and undesirable damage and financial losses. Although recent works have been exploring

federated learning for securing digital twins while preserving data privacy [Lu, Huang, Zhang,

Maharjan & Zhang (2021)], those are still preliminary studies. Therefore, further investigation

is necessary to ensure the security and privacy of digital twins.

6.2.4 Adversarial Attacks and Defenses on Regression-Based Applications

While adversarial attacks are being recently exploited in classification-based wireless communi-

cation tasks, such as modulation classification [Freitas de Araujo-Filho et al. (2022); Sahay et al.

(2022)], only very few works currently exist on regression-based wireless communication tasks.

Thus, the impact that adversarial attacks can cause on applications that rely on regression-based

ML models, such as resource allocation, is yet to be further evaluated. Moreover, since adversar-

ial perturbations for regression-based applications may be crafted very differently from those of

classification-based applications, the question of whether defense techniques of classification

problems can be effectively applied to regression tasks needs to be addressed. Therefore, it is

necessary to conduct such an investigation and propose defense techniques specifically designed

for regression tasks.





APPENDIX I

APPENDIX OF CHAPTER 2

1. Deployment Architecture

Figure-A I-1 shows the deployment of our proposed IDS on multiple edge servers.
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Edge Server

Proposed IDS

Cloud

Figure-A I-1 Proposed deployment architecture

2. Features Used

Table-A I-1 lists the features used in our work.

Table-A I-1 Features used

Feature Description

Source IP Flow source IP

Source Port Flow source port
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Destination IP Flow destination IP

Destination Port Flow destination port

Protocol Flow protocol

Flow duration Flow duration in microseconds

Total Fwd Packet Total packets in the forward direction

Total Bwd packets Total packets in the backward direction

Total Length of Fwd Packet Total size of packet in the forward direction

Total Length of Bwd Packet Total size of packet in the backward direction

Fwd Packet Length Max Maximum size of packet in the forward direction

Fwd Packet Length Min Minimum size of packet in the forward direction

Fwd Packet Length Mean Mean size of packet in the forward direction

Fwd Packet Length Std Standard deviation size of packet in the forward direction

Bwd Packet Length Max Maximum size of packet in the backward direction

Bwd Packet Length Min Minimum size of packet in the backward direction

Bwd Packet Length Mean Mean size of packet in the backward direction

Bwd Packet Length Std Standard deviation size of packet in the backward direction

Flow Byte/s Number of flow bytes per second

Flow Packets/s Number of flow packets per second

Fwd Packets/s Number of forward packets per second

Bwd Packets/s Number of backward packets per second

Flow IAT Max Maximum time between two packets sent in the flow

Flow IAT Min Minimum time between two packets sent in the flow

Flow IAT Mean Mean time between two packets sent in the flow

Flow IAT Std Standard deviation time between two packets sent in the flow

Fwd IAT Max Maximum time between two packets sent in the forward direction

Fwd IAT Min Minimum time between two packets sent in the forward direction

Fwd IAT Mean Mean time between two packets sent in the forward direction
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Fwd IAT Std Standard deviation time between two packets sent in the forward

direction

Fwd IAT Total Total time between two packets sent in the forward direction

Bwd IAT Max Maximum time between two packets sent in the backward direction

Bwd IAT Min Minimum time between two packets sent in the backward direction

Bwd IAT Mean Mean time between two packets sent in the backward direction

Bwd IAT Std Standard deviation time between two packets sent in the backward

direction

Bwd IAT Total Total time between two packets sent in the backward direction

Fwd PSH flag Number of times the PSH flag was set in packets travelling in the

forward direction (0 for UDP)

Bwd PSH Flag Number of times the PSH flag was set in packets travelling in the

backward direction (0 for UDP)

Fwd Header Length Total bytes used for headers in the forward direction

Bwd Header Length Total bytes used for headers in the backward direction

3. Hyper-Parameter Values

Table-A I-2 lists the hyper-parameter values used in our work.
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Table-A I-2 Hyper-parameter values

LSTM TCN (N=1) TCN (N=2) Self-Attention (N=1)
Maximum number of epochs 50 50 50 50

Early Stopping Patience 15 15 15 15

Optimizer Adam Adam Adam Adam

Discriminator’s Learning Rate 0.00284252 0.00485687 0.00753606 0.01156386

Generator’s Learning Rate 0.00004508 0.00015387 0.00000151 0.00003940

Dropout 0.25 0.25 0.25 0.20

Batch Size 64 64 64 64

Latent Dimension 20 10 100 10

LSTM Hidden Dimension 20 - - -

TCN Number of Levels - 1 1 -

TCN Kernel Size - 2 2 -

Attention Heads - - - 40

N - 1 2 1
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