
Optimization Problems for Deep Neural Networks

by

Jérôme RONY

MANUSCRIPT-BASED THESIS PRESENTED TO ÉCOLE DE
TECHNOLOGIE SUPÉRIEURE IN PARTIAL FULFILLMENT FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY
Ph.D.

MONTREAL, APRIL 24, 2023

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Jérôme Rony, 2023

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Ismail Ben Ayed, Thesis supervisor

Department of System Engineering, École de technologie supérieure

Mr. Eric Granger, Thesis Co-Supervisor

Department of System Engineering, École de technologie supérieure

Mr. Alessandro Lameiras Koerich, Chair, Board of Examiners

Department of Software and Information Technology Engineering, École de technologie

supérieure

Mr. Tony Wong, Member of the Jury

Department of System Engineering, École de technologie supérieure

Mr. Battista Biggio, External Examiner

Department of Electrical and Electronic Engineering, University of Cagliari, Italy

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON APRIL 17, 2023

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

Problèmes d’Optimisation pour les Réseaux de Neurones Profonds

Jérôme RONY

RÉSUMÉ
Les méthodes d’apprentissage profond reposent fortement sur la descente de gradient pour

résoudre de nombreux problèmes de reconnaissance de forme. Étant donné les limitations

connues de cette méthode d’optimisation, il est donc important de soigneusement formuler les

objectifs pour résoudre efficacement et avec précision les tâches d’apprentissage et de vérification

de ce domaine. En particulier, les chercheurs ont principalement utilisé des méthodes de

pénalité pour gérer des contraintes et introduits de nombreux hyperparamètres pour faciliter

l’optimisation.

Dans cette thèse, nous proposons de revisiter certains de ces problèmes, de les analyser à travers

le prisme de l’optimisation et d’utiliser des outils connus de la littérature d’optimisation pour les

résoudre de manière plus précise et efficace.

Notre première contribution est de prendre du recul par rapport à la littérature sur l’apprentissage

profond de métrique et remarquer que la plupart des méthodes proposées ces dernières années et

basées sur les paires ont des objectifs similaires. En effet, elles cherchent toutes à maximiser la

même quantité : l’information mutuelle. En outre, la minimisation de la fonction de coût entropie

croisée peut aussi être interprété comme la maximisation de l’information mutuelle. Cela

suggère que l’utilisation de l’entropie croisée pour apprendre les paramètres d’un modèle profond

d’apprentissage de métrique soit une solution viable. Nous confirmons cela expérimentalement,

où la simplicité de l’entropie croisée permet d’obtenir des résultats de pointe sur tous les jeux de

données habituellement utilisés.

En deuxième contribution, nous étudions plusieurs problèmes liés à la robustesse adverse, et en

particulier, aux attaques adverses. Ces problèmes peuvent être formulés comme la minimisation

d’une mesure de différence, combinée à une (ou plusieurs) contrainte(s) de classification erronée,

avec des contraintes additionnelles sur les images. Nous développons un premier algorithme

simple afin de générer des exemples adverses minimisant la norme ℓ2 pour des modèles de

classification. Comme de nombreuses attaques adverses publiées ultérieurement, cette méthode

est efficace, mais manque de généralité, car elle est conçue spécialement pour une distance. Par

conséquent, nous développons une deuxième attaque adverse pour les modèles de classification,

basée sur une approche de Lagrangien augmenté. Cette attaque bénéficie de la généralité des

méthodes de pénalité, qui peuvent accommoder de nombreuses mesures de différence lisses,

et de l’efficacité des algorithmes spécifiques à une distance. Notre but est de fournir un cadre

générique servant de point de départ aux futurs chercheurs lors de la conception d’attaques

adverses spécifiques à de nouvelles mesures. Enfin, nous étudions les attaques dans le contexte

d’une tâche de prédiction dense : la segmentation sémantique. Dans ce contexte, les attaques

adverses peuvent être formulées comme un problème d’optimisation avec des millions de

contraintes de classification erronée. Ainsi, nous tirons parti de notre méthode basée sur les

Lagrangiens augmentés pour gérer une telle quantité de contraintes, et le combinons avec une

VI

méthode de séparation proximale pour minimiser la norme ℓ∞ non lisse. Cette attaque est, à

notre connaissance, la première à résoudre précisément le problème des perturbations adverses

minimales pour la segmentation sémantique.

Notre troisième contribution concerne l’étalonnage des réseaux de neurones profonds dans

les tâches de classification. À la suite de travaux récents qui ont montré l’avantage d’utiliser

des contraintes sur la sortie d’un modèle pour améliorer l’étalonnage, nous généralisons cette

approche dans le cadre des Lagrangiens augmentés. En particulier, nous abordons les contraintes

avec des pénalités adaptatives par classe. Cela permet d’obtenir une méthode extensible pour la

classification et la segmentation, qui obtient des résultats de pointe en termes de classification et

d’étalonnage.

Mots-clés: apprentissage profond, optimisation, apprentissage de métrique, attaques adverses,

calibration

Optimization Problems for Deep Neural Networks

Jérôme RONY

ABSTRACT
Deep learning methods heavily rely on gradient descent to solve a variety of pattern recognition

problems. Given the known limitations of this optimization method, it is of paramount importance

to carefully craft objectives to accurately and efficiently solve learning and verification tasks

arising in this domain. In particular, researchers have mostly relied on penalty methods to handle

constraints and introduced many hyperparameters to ease the optimization process.

In this thesis, we propose to revisit some of these problems, analyze them through the lens of

optimization, and leverage well-known tools from the optimization literature to more accurately

and efficiently solve them.

Our first contribution is to take a step back from the deep metric learning literature, and notice

that most pairwise methods proposed in recent years have similar objectives. In fact, they all

correspond to maximizing the same quantity: the mutual information. Additionally, minimizing

the well-known cross-entropy loss can also be viewed as maximizing the mutual information.

This suggests that using the cross-entropy to learn the parameters of a deep metric learning model

is a viable solution. This is confirmed experimentally, where the simplicity of the cross-entropy

yields state-of-the-art results on all commonly used datasets.

As a second contribution, we investigate several problems related to adversarial robustness, and

adversarial attacks in particular. These problems can be formulated as the minimization of a

discrepancy measure under one (or several) misclassification constraint(s), with additional input

space constraints. We develop a first simple algorithm to generate minimal ℓ2-norms adversarial

perturbations for classifications models. Like several of the later published adversarial attacks, this

method is efficient, but lacks generality as it is customized to one particular distance. Therefore,

we develop a second adversarial attack for classification models based on the augmented

Lagrangian framework. This attack enjoys the generality of penalty based approaches, as it can

handle many smooth discrepancy measures, and the computational efficiency of distance-specific

algorithms. Our goal is to provide a general framework that can serve as a starting point to future

researchers when designing adversarial attacks for new measures. Finally, we investigate attacks

in the context of a dense prediction task: semantic segmentation. Adversarial attacks in this

context can be formulated as optimization problems with millions of misclassification constraints.

Therefore, we leverage our augmented Lagrangian based method to handle such large numbers

of constraints, and combine it with a proximal splitting to minimize the non-smooth ℓ∞-norm.

This attack is, to the best of our knowledge, the first to accurately solve the minimal adversarial

perturbation problem for semantic segmentation.

Our third contribution focuses on calibration of deep neural networks in classification tasks.

Following recent work that showed the advantage of using constraints on the output of a model

to improve calibration, we generalize the approach in an augmented Lagrangian framework. In

VIII

particular, we tackle the constraints with adaptive class-wise penalties. This results in a scalable

method that can be applied to classification, as well as segmentation, and obtains state-of-the-art

classification and calibration performances.

Keywords: deep learning, optimization, metric learning, adversarial attacks, calibration

TABLE OF CONTENTS

Page

INTRODUCTION .1

CHAPTER 1 LITERATURE REVIEW .. 13

1.1 Deep metric learning . 13

1.1.1 Contrastive loss . 14

1.1.2 Triplet loss . 14

1.1.3 Neighborhood component analysis . 15

1.1.4 Center loss . 15

1.1.5 Evaluation fairness . 16

1.2 Adversarial robustness . 16

1.2.1 Adversarial attacks . 17

1.2.1.1 Fast Gradient Sign Method . 18

1.2.1.2 Basic Iterative Method and Projected Gradient Descent 18

1.2.1.3 Jacobian Saliency Map Attack . 19

1.2.1.4 DeepFool . 20

1.2.1.5 Carlini and Wagner . 21

1.2.1.6 Elastic-Net Attacks . 23

1.2.1.7 Trust Region Attack . 23

1.2.1.8 Wasserstein Attack . 24

1.2.1.9 Perceptual Color Distance Attack . 25

1.2.1.10 Fast Adaptive Boundary Attacks . 26

1.2.1.11 Auto-PGD . 27

1.2.1.12 Fast Minimum Norm . 27

1.2.2 Defenses for deep neural networks . 28

1.2.2.1 Adversarial training . 28

1.2.2.2 Provable defenses and certified adversarial robustness 30

1.3 Calibration for deep learning based classification . 31

1.3.1 Temperature scaling . 31

1.3.2 Maximum mean calibration error . 32

1.3.3 Label smoothing . 33

1.3.4 Explicit confidence penalty . 33

1.3.5 Focal loss . 34

1.3.6 Margin based label smoothing . 34

CHAPTER 2 A UNIFYING MUTUAL INFORMATION VIEW OF METRIC

LEARNING: CROSS-ENTROPY VS. PAIRWISE LOSSES 37

2.1 Introduction . 38

2.2 On the two views of the mutual information . 41

2.3 Pairwise losses and the generative view of the MI . 42

2.3.1 The example of contrastive loss . 42

X

2.3.2 Generalizing to other pairwise losses . 44

2.4 Cross-entropy does it all . 46

2.4.1 The pairwise loss behind unary cross-entropy . 46

2.4.2 A discriminative view of mutual information . 49

2.4.3 Then why would cross-entropy work better? . 50

2.5 Experiments . 50

2.5.1 Metric . 50

2.5.2 Datasets . 51

2.5.3 Training specifics . 51

2.5.3.1 Model architecture and pre-training . 51

2.5.3.2 Sampling . 52

2.5.3.3 Data Augmentation . 52

2.5.3.4 Cross-entropy . 53

2.5.3.5 Optimizer . 53

2.5.3.6 Batch normalization . 53

2.5.4 Results . 54

2.6 Conclusion . 54

CHAPTER 3 DECOUPLING DIRECTION AND NORM FOR EFFICIENT

GRADIENT-BASED ℓ2 ADVERSARIAL ATTACKS AND DE-

FENSES . 57

3.1 Introduction . 58

3.2 Related Work . 59

3.2.1 Problem Formulation . 60

3.2.2 Threat Model . 61

3.2.3 Attacks . 62

3.2.4 Defenses . 63

3.3 Decoupled Direction and Norm Attack . 65

3.4 Attack Evaluation . 68

3.5 Adversarial Training with DDN . 73

3.6 Defense Evaluation . 73

3.7 Conclusion . 77

CHAPTER 4 AUGMENTED LAGRANGIAN ADVERSARIAL ATTACKS 79

4.1 Introduction . 79

4.2 Preliminaries . 82

4.2.1 Problem formulation . 83

4.2.2 Equivalent problem . 83

4.2.3 Distances . 84

4.3 Methodology . 85

4.3.1 General Augmented Lagrangian algorithm . 85

4.3.2 Augmented Lagrangian Attack . 87

4.3.2.1 Penalty parameters adaptation . 88

4.3.2.2 Choice of penalty function . 91

XI

4.3.2.3 Learning rate scheduling . 91

4.3.2.4 Optimization algorithm . 92

4.4 Experiments . 93

4.5 Results . 95

4.6 Conclusion . 99

CHAPTER 5 PROXIMAL SPLITTING ADVERSARIAL ATTACK FOR SE-

MANTIC SEGMENTATION . 101

5.1 Introduction . 101

5.2 Related Works .104

5.3 Preliminaries .106

5.3.1 Problem formulation .106

5.3.2 Equivalent problem . 107

5.3.3 Augmented Lagrangian method . 107

5.4 Proposed Method . 107

5.4.1 Adaptive constraints strategies .108

5.4.1.1 Constraint masking .108

5.4.1.2 Constraint scaling .109

5.4.1.3 Penalty .110

5.4.2 Proximal splitting .110

5.4.2.1 Proximity operator of ℎ1 . 111

5.4.2.2 Variable Metric Forward-Backward .112

5.5 Experiments .114

5.5.1 Ternary Search .114

5.5.2 Datasets and Models .115

5.5.3 Metrics .116

5.5.4 Attack objectives . 117

5.5.5 Attacks .118

5.5.5.1 DAG .119

5.5.5.2 Other baselines .119

5.5.5.3 ALMA prox .119

5.6 Results .120

5.6.1 Perturbation size .120

5.6.2 Attack complexity .122

5.7 Conclusion .122

CHAPTER 6 CLASS ADAPTIVE NETWORK CALIBRATION .125

6.1 Introduction .126

6.2 Related Work .129

6.2.1 Problem Formulation .129

6.2.2 Post-processing methods .130

6.2.3 Learning-based methods .130

6.3 Sample-wise Constrained DNN Optimization .132

6.4 Class Adaptive Network Calibration .133

XII

6.4.1 General ALM .134

6.4.2 ALM for calibration .136

6.5 Experiments .138

6.5.1 Experimental Setup .138

6.5.2 Results . 141

6.6 Limitations and Future Work .144

CONCLUSION AND RECOMMENDATIONS .145

APPENDIX I SUPPLEMENTARY MATERIAL FOR THE PAPER TITLED

A UNIFYING MUTUAL INFORMATION VIEW OF METRIC
LEARNING: CROSS-ENTROPY VS. PAIRWISE LOSSES149

APPENDIX II SUPPLEMENTARY MATERIAL FOR THE PAPER TITLED

DECOUPLING DIRECTION AND NORM FOR EFFICIENT
GRADIENT-BASED ℓ2 ADVERSARIAL ATTACKS AND DE-
FENSES .159

APPENDIX III SUPPLEMENTARY MATERIAL FOR THE PAPER TITLED

AUGMENTED LAGRANGIAN ADVERSARIAL ATTACKS165

APPENDIX IV SUPPLEMENTARY MATERIAL FOR THE PAPER TITLED

PROXIMAL SPLITTING ADVERSARIAL ATTACK FOR SEMAN-
TIC SEGMENTATION .189

APPENDIX V SUPPLEMENTARY MATERIAL FOR THE PAPER TITLED

CLASS ADAPTIVE NETWORK CALIBRATION .205

BIBLIOGRAPHY .213

LIST OF TABLES

Page

Table 1.1 Summary of the main white-box adversarial attacks. Complexity

refers to the number of model forward and backward propagation

needed to perform the attack . 17

Table 2.1 Definition of the random variables and information measures used in

this paper . 41

Table 2.2 Several well-known and/or recent DML losses broken into a

tightness term and a contrastive term. Minimizing the cross-entropy

corresponds to an approximate bound optimization of PCE 45

Table 2.3 Summary of the datasets used for evaluation in metric learning 51

Table 2.4 Performance on CUB200, Cars-196, SOP and In-Shop datasets. 𝑑
refers to the distance used to compute the recall when evaluating 55

Table 3.1 Performance of our DDN attack compared to C&W and DeepFool

attacks on MNIST, CIFAR-10 and ImageNet in the untargeted scenario 69

Table 3.2 Comparison of the DDN attack to the C&W ℓ2 attack on MNIST 69

Table 3.3 Comparison of the DDN attack to the C&W ℓ2 attack on CIFAR-10 70

Table 3.4 Comparison of the DDN attack to the C&W ℓ2 attack on ImageNet.

For C&W 9×10 000, we report the results from Carlini & Wagner

(2017) . 70

Table 3.5 Evaluation of the robustness of our adversarial training on MNIST

against the Madry defense . 74

Table 3.6 Evaluation of the robustness of our adversarial training on CIFAR-10

against the Madry defense . 75

Table 4.1 Performance for attacks on the MNIST dataset. Geometric mean over

the four models. FMN ℓ1 100 and C&W ℓ2 do not reach 50% ASR

on the IBP model, so the median distance is undefined. ‡A binary

search is performed on each sample to get a minimal perturbation

attack (Equation 4.2) . 97

Table 4.2 Performance for attacks on the CIFAR10 and ImageNet datasets.

Geometric mean over the three models for each dataset. †For

XIV

ImageNet, we use the targeted variant of the attack as in (Croce & Hein,

2020a) (see section 4.4). ‡A binary search is performed on each

sample to get a minimal perturbation attack (Equation 4.2) 98

Table 5.1 Median and average norms ‖𝜹‖∞ ×255 for each adversarial attack on

Pascal VOC 2012 and Cityscapes .120

Table 5.2 Median and average norms ‖𝜹‖∞ ×255 for each adversarial attack on

the robust model DeepLabV3 DDC-AT Xu, Zhao & Jia (2021) 121

Table 6.1 Calibration performance for different approaches on three image

classification benchmarks. We report two lower-is-better calibration

metrics, i.e. ECE and AECE. Best method is highlighted in bold,

while the second-best one is underlined .143

Table 6.2 Segmentation results on PASCAL VOC 2012 .144

Table 6.3 Results on the text classification task, 20 Newsgroups .144

LIST OF FIGURES

Page

Figure 0.1 Goal of deep metric learning: extract features from samples that

correlate with samples’ semantic similarity. Images from the

ImageNet validation set . 3

Figure 0.2 Adversarial examples 𝒙̃ on MNIST for a SmallCNN reaching 99.44%

accuracy (see chapter 3). Both clean samples 𝒙 are correctly

classified. Perturbations 𝜹 are non-negative and their ℓ∞-norms are

reported in the lower right corners . 4

Figure 0.3 Reliability diagrams for a WideResNet 28-10 on CIFAR100 with

81.85% accuracy and a ResNet-152 on ImageNet with 78.32%

accuracy. For a perfectly calibrated model, the middle of the bars

would be on the red line . 7

Figure 1.1 Histogram of the best 𝑐 found by the C&W algorithm with 9 search

steps on the MNIST dataset. From (Rony et al., 2019) . 22

Figure 1.2 The focal loss for different values of 𝛾, and the derivative w.r.t. 𝑠𝑦.

When 𝛾 = 0, this corresponds to the cross-entropy loss . 35

Figure 3.1 Example of an adversarial image on the ImageNet dataset. The

sample 𝒙 is recognized as a Curly-coated retriever. Adding a

perturbation 𝜹 we obtain an adversarial image 𝒙̃ that is classified as

a microwave (with ‖𝜹‖2 = 0.7) . 60

Figure 3.2 Histogram of the best 𝐶 found by the C&W algorithm with 9 search

steps on the MNIST dataset . 65

Figure 3.3 Illustration of an untargeted attack. The shaded area denotes the

region of the input space classified as 𝑦true. In (a), 𝒙̃𝑘 is still not

adversarial, and we increase the norm 𝜖𝑘+1 for the next iteration,

otherwise it is reduced in (b). In both cases, we take a step 𝑔 starting

from the current point 𝒙̃, and project back to an 𝜖𝑘+1-sphere centered

at 𝑥 . 67

Figure 3.4 Models robustness on MNIST (left) and CIFAR-10 (right): impact

on accuracy as we increase the maximum perturbation 𝜖 . 75

Figure 3.5 Adversarial examples with varied levels of noise 𝜹 against three

models: baseline, Madry defense and our defense. Text on top-left

of each image indicate ‖𝜹‖2; text on bottom-right indicates the

XVI

predicted class. For CIFAR-10: 1: automobile, 2: bird, 3: cat, 5:

dog, 8: ship, 9: truck . 76

Figure 4.1 Examples of penalty-Lagrangian functions for different values

of 𝜌 and 𝜇. The plotted functions are defined in (Birgin,

Castillo & Martínez, 2005) and given in section 4 . 86

Figure 4.2 Example of the evolution of the penalty multiplier 𝜇 and the ℓ2-norm

of the perturbation during the optimization when attacking a single

MNIST sample for the SmallCNN model. This leads to a ℓ2-norm

of the final adversarial perturbation of 2.13 without EMA and 1.71

with EMA (𝛼 = 0.9). The norm of the perturbation can be lower

without EMA in some iterations, but it is associated with an increase

in 𝜇, meaning that the perturbed sample 𝒙̃ (𝑖) is not adversarial 90

Figure 4.3 Exponential learning rate decay for the attack . 92

Figure 4.4 Robust accuracy curves for the SmallCNN-TRADES and CROWN-

IBP adversarially trained models on MNIST against ℓ1 (top row)

and ℓ2 (bottom row) attacks . 96

Figure 4.5 Robust accuracy curves for regular and ℓ2-adversarial ResNet-50 on

ImageNet against ℓ1 attacks . 96

Figure 5.1 Untargeted adversarial examples for FCN HRNetV2 W48 on Pascal

VOC 2012 and Cityscapes. In both cases, more than 99% of pixels

are incorrectly classified. For each dataset, left is the original image

and its predicted segmentation, middle is the amplified perturbation

and the ground truth segmentation and right is the adversarial image

with its predicted segmentation. For Pascal VOC 2012, the predicted

classes are TV monitor (blue), person (beige) and chair (bright red).102

Figure 5.2 Comparison of average run-time and quality of solution in terms of

optimization objective of DFB, ADFB, DR and Ternary Search for

pseudorandom vectors 𝜹 ∼ N(0, 𝜎2𝐼𝑑) .115

Figure 5.3 Percentage of unsuccessful untargeted attacks for DeepLabV3+

ResNet-50 on Cityscapes. Horizontal axis is linear on [0, 2/255] and

logarithmic on [2/255, 1] .118

Figure 6.1 Many techniques have been proposed for jointly improving accuracy

and calibration during training (Guo, Pleiss, Sun & Weinberger,

2017; Mukhoti et al., 2020), but they fail to consider uneven learning

scenarios like high class imbalance or long-tail distributions. We

show a comparison of the proposed CALS-ALM method and

XVII

different learning approaches in terms of Calibration Error (ECE)

vs Accuracy on the (a) ImageNet and (b) ImageNet-LT (long-tailed

ImageNet) datasets. A lower ECE indicates better calibration: a

better model should attain high ACC and low ECE. Among all

the considered methods, CALS-ALM shows superior performance

when considering both discriminative power and well-balanced

probabilistic predictions, achieving best accuracy and calibration

on ImageNet, and best calibration and second best accuracy on

ImageNet-LT. 127

Figure 6.2 A penalty-Lagrangian function 𝑃 with varying values of 𝜌 and 𝜇.

Higher values of 𝜌 bring 𝑃 closer to an ideal penalty. The multiplier

𝜆 is the derivative of 𝑃 w.r.t. the constraint at 𝑧 = 0 .135

Figure 6.3 Ablation study on ImageNet-LT. (a) Evolution of ECE on
validation and multipliers for CALS: ECE on the validation set for

our method (CALS), CE and MbLS (Liu, Ben Ayed, Galdran & Dolz,

2022a) and values of multipliers 𝝀 for CALS after each training

epoch. (b) Effect of penalty functions and margin: ECE and

accuracy on validation and test set are shown across different choices

of penalty functions and margin values. 141

LIST OF ALGORITHMS

Page

Algorithm 1.1 Jacobian Saliency Map Attack (JSMA) . 19

Algorithm 1.2 DeepFool ℓ2 Attack . 20

Algorithm 1.3 Trust Region ℓ2 Attack . 24

Algorithm 1.4 Perceptual Color Distance Alternating Loss (PerC-AL) Attack 25

Algorithm 1.5 Fast Adaptive Boundary (FAB) Attack . 26

Algorithm 1.6 Fast Minimum Norm (FMN) Attack . 28

Algorithm 3.1 Decoupled Direction and Norm Attack . 66

Algorithm 4.1 Generic Augmented Lagrangian method . 88

Algorithm 4.2 ALMA attack . 89

Algorithm 5.1 Ternary search for 𝒑★ = prox𝜆‖·‖∞+𝜄Λ
(𝜹) .113

Algorithm 6.1 Augmented Lagrangian Multiplier algorithm .136

Algorithm 6.2 CALS-ALM training . 137

LIST OF ABBREVIATIONS

ALM Augmented Lagrangian Multiplier

CE Cross-Entropy

DML Deep Metric Learning

DNN Deep Neural Network

ECE Expected Calibration Error

EMA Exponential Moving Average

KL Kullback-Leibler divergence

LS Label Smoothing

LIST OF SYMBOLS AND UNITS OF MEASUREMENTS

X Input space, usually X = [0, 1]𝑑 , with 𝑑 the dimension

𝒙 Input sample in X

𝑦 Label

𝐾 Number of classes

D Dataset, often composed of sample-label pairs: D = {(𝒙 (𝑖) , 𝑦 (𝑖))}𝑖

𝜃 Learnable parameters in a model

𝑓𝜃 Model parametrized by weights 𝜃, often denoted 𝑓 for brevity

𝒛 Logits produced by a model: 𝒛 = (𝑧𝑖)1≤𝑖≤𝐾 = 𝑓𝜃 (𝒙) ∈ R𝐾

Δ𝐾−1 Probability (𝐾−1)-simplex: Δ𝐾−1 ⊆ [0, 1]𝐾 and ∀𝒔 ∈ Δ𝐾−1, 𝒔	1𝐾 = 1

𝑃(𝑘 |𝒙, 𝜃) Probability of sample 𝒙 to belong to class 𝑘: 𝑃(𝑘 |𝒙, 𝜃) = softmax𝑘 (𝒛)

Λ Space of admissible additive perturbations: Λ = X − 𝒙

𝜹 Perturbation in Λ

𝒙̃ Perturbed sample: 𝒙̃ = 𝒙 + 𝜹 ∈ X

𝐷 Discrepancy measure

L Loss function

𝒈 Gradient of a loss function L w.r.t. the input: 𝒈 = ∇𝒙L = 𝜕L
𝜕𝒙

INTRODUCTION

Over the last decade, deep learning has revolutionized the machine learning field. Deep

neural networks (DNNs) in particular, have proven to be well suited to solve supervised tasks,

when a large amount of annotated data is available. These DNNs usually have ∼106 to ∼109

parameters, which need to be learned. In supervised tasks, the prevailing method to learn

these parameters is to perform a gradient descent over a scalar loss function. Indeed, the sheer

dimensionality of learning problems involving DNNs makes it impractical to use second-order

methods (e.g. Newton’s method), or even computing the Jacobian matrix for non-scalar loss

functions. However, gradient descent is known to be extremely sensitive to ill-conditioned

problems, where it can take an arbitrarily long time to converge to a satisfying solution. Thus,

it becomes of paramount importance to correctly design the objective to solve deep learning

related problems with gradient descent methods.

Deep Metric Learning The representative power of DNNs offers a significant advantage over

hand-crafted features, since they are tailored to the underlying data. Therefore, one difficulty

is to design an effective training method to learn the parameters of a model to extract features

that are discriminative w.r.t. the semantic similarity of samples. This problem is known as deep

metric learning and has attracted significant attention over the last few years (Kaya & Bilge,

2019), with the promise to train domain-specific but task-agnostic models.

Adversarial Attack Despite their successes in reaching unprecedented performance on many

tasks, in particular classification of images, DNNs turned out not to be robust against input

perturbations. These perturbations can be either environmental (e.g. fog, rain, snow) or come

from malicious third parties. Therefore, accurately assessing the robustness of these models

is necessary. In particular, empirical worst-case evaluations aim to provide lower-bounds on

the expected performance of a model against any perturbation. In these evaluations, one needs

to accurately solve a constrained optimization problem, involving a function that is costly to

2

evaluate, has high curvature, and whose derivative needs to be computed. Thus, designing

efficient algorithms to solve these worst-case evaluation problems turns out to be difficult, but

necessary to ensure the robustness of deployed solutions.

Calibration Another shortcoming of DNNs in the context of classification tasks is their poor

calibration. Although they reach high accuracies, their predicted probabilities often do not

offer reliable estimates of their correctness. This longstanding problem has a high impact for

safety-critical applications such as medical diagnostic. As it turns out, this issue can also be

tackled as a constrained optimization problem. However, satisfying constraints on the output of

a model during its training is challenging and remains an open problem, with the most successful

attempts resorting to penalty based methods.

Problems statements and challenges

Deep metric learning In deep metric learning, we consider a model 𝑓𝜃 parametrized by

weights 𝜃, which takes an input 𝒙 ∈ R𝑑 and outputs a feature vector 𝒛 = 𝑓𝜃 (𝒙) ∈ R𝐾 where

𝑑 is the dimension of the input space and 𝐾 is the size of the feature representation. The

objective is to train the model to output similar feature vectors, w.r.t. a discrepancy measure

(e.g. ℓ2-norm, cosine distance), for inputs that are semantically close, e.g. same object or same

identity. However, this results in a trivial solution: the model outputs the same feature vector

for all inputs, i.e. 𝑓𝜃 is constant. Therefore, the second objective is to obtain a model that also

produces dissimilar feature vectors for inputs that are semantically different. In essence, the

aim of deep metric learning is to find a model 𝑓𝜃 that produces output features with pairwise

distances that reflect the semantic dissimilarity between the input samples. This is illustrated in

Figure 0.1.

To train the model, we have access to pairwise labels, which encode the semantic similarity

between samples. Usually, these labels are binary: two semantically close samples 𝒙𝑖 and 𝒙 𝑗

3

𝑓𝜃

𝑓𝜃

𝑓𝜃

𝑓𝜃

𝑓𝜃

𝑓𝜃

𝑓𝜃

𝑓𝜃

Extract

features

Extract

features

Feature space

Figure 0.1 Goal of deep metric learning: extract features from samples that correlate with

samples’ semantic similarity. Images from the ImageNet validation set

have a pairwise label 𝑦𝑖, 𝑗 = 1 and two semantically different samples have a pairwise label

𝑦𝑖, 𝑗 = 0. Using a discrepancy measure 𝐷 : R𝐾 × R𝐾 → R+, this can be formulated as the

following training objective:

minimize
𝜃

∑
𝑖, 𝑗

𝑦𝑖, 𝑗 𝐷 (𝑓 (𝒙𝑖), 𝑓 (𝒙 𝑗))︸�������������������︷︷�������������������︸
Pull similar samples together

− (1 − 𝑦𝑖, 𝑗)𝐷 (𝑓 (𝒙𝑖), 𝑓 (𝒙 𝑗))︸����������������������������︷︷����������������������������︸
Push dissimilar samples apart

. (0.1)

In practice, however, such a training objective does not result in good performance for the task.

Indeed, in most applications, the number of positive pairs (𝑦𝑖, 𝑗 = 1) is much smaller than the

number of negative pairs (𝑦𝑖, 𝑗 = 0). In other words, the pairwise label matrix 𝑌 = (𝑦𝑖, 𝑗) is

sparse. This creates an imbalance between the two terms of the objective. Additionally, some

pairs of samples are more difficult to discriminate than others, and are therefore, more or less

“useful” than other pairs at different stages of training. As such, designing an effective method to

4

train DNNs for deep metric learning requires solving several challenges (Kaya & Bilge, 2019):

handling the imbalance between positive and negative pairs of samples, sampling the best pairs

of samples to use in training, managing the numerical instability that can come from quadratic

terms often used in the training objective.

+

+

=

=

Trained DNN

Trained DNN

4

8

𝒙 𝜹 𝒙̃

0.118

0.114

Figure 0.2 Adversarial examples 𝒙̃ on MNIST for a SmallCNN reaching 99.44% accuracy

(see chapter 3). Both clean samples 𝒙 are correctly classified. Perturbations 𝜹 are

non-negative and their ℓ∞-norms are reported in the lower right corners

Adversarial robustness The most studied task in the context of adversarial examples is

classification. In this task, the model 𝑓 : R𝑑 → R
𝐾 predicts the label 𝑦̂ for a sample 𝒙:

𝑦̂ = arg max
𝑘

𝑓𝑘 (𝒙). While deep learning based models (i.e. deep neural networks) have achieved

impressive performance on several classification tasks, their predictions are highly susceptible

to input perturbations (Biggio & Roli, 2018; Hendrycks & Dietterich, 2019). Figure 0.2 shows

adversarial examples on two MNIST samples for a model that reaches 99.44% accuracy. The

field of adversarial robustness studies the effect of perturbations on the performance of models.

In particular, the white-box scenario is useful to study the worst-case performance of a model

against a certain type of perturbations. The goal of studying the worst-case performance is to

obtain a lower bound on the performance of a model against any adversary: from camera noise

to malicious user. In a white-box scenario, an attacker has access to all the information about the

5

model: its architecture, its weights and any additional secret such as an internal state or the seed

for a pseudorandom number generator. This scenario is also called full knowledge, as opposed to

limited knowledge scenarios, commonly referred to as black-box, or more accurately gray-box1.

In this thesis, we focus on the white-box scenario, used to assess worst-case robustness, and study

the corresponding optimization problems. Algorithms designed to solve these problems are

called adversarial attacks. Their counterparts are called adversarial defenses, whose goal is to

make a model robust against certain types of adversarial perturbations. For a given discrepancy

measure 𝐷 and a budget 𝜖 , we can formulate the optimization problem related to finding a

perturbation that fools a model as:

find 𝜹 subject to arg max
𝑘

𝑓𝑘 (𝒙 + 𝜹) ≠ 𝑦,

𝐷 (𝒙 + 𝜹, 𝒙) ≤ 𝜖,

𝒙 + 𝜹 ∈ X.

(0.2)

This corresponds to an untargeted attack, where the goal is to induce misclassification. In contrast,

one can perform targeted attack by replacing the first constraint with arg max𝑘 𝑓𝑘 (𝒙 + 𝜹) = 𝑡

where 𝑡 is a target label. Problem (0.2) is a feasibility problem and does not reflect well the goal

of a worst-case evaluation. Therefore, a more commonly studied problem is:

maximize
𝜹

L(𝒙 + 𝜹, 𝑦) subject to 𝐷 (𝒙 + 𝜹, 𝒙) ≤ 𝜖,

𝒙 + 𝜹 ∈ X,

(0.3)

where L is a loss function, typically the one minimized during training, e.g. cross-entropy. This

formulation can also be used for targeted attacks with target 𝑡 by minimizing L(𝒙 + 𝜹, 𝑡) subject

to the same constraints.

1 The “black-box” terminology, referring to a zero knowledge scenario in computer security, has been

alienated to refer to a limited knowledge scenario in the adversarial robustness literature. Indeed, most

of the time, an attacker has at least some knowledge of the task that the model is trying to solve.

6

Note that problem (0.3) does not exactly correspond to finding a perturbation that causes

misclassification, and problem (0.2) might not always be feasible for sufficiently small 𝜖 .

However, for any useful model (i.e. that can correctly classify benign samples), there exists

an arbitrarily large perturbation that can induce misclassification. For two correctly classified

samples 𝒙1 and 𝒙2 with different labels, a valid perturbation to fool the model on 𝒙1 is 𝜹 = 𝒙2−𝒙1.

Therefore, a more general problem is to find the minimal perturbation w.r.t. a discrepancy

measure such that the model misclassifies the sample 𝒙. This problem can be formalized as:

minimize
𝜹

𝐷 (𝒙 + 𝜹, 𝒙) subject to arg max
𝑘

𝑓𝑘 (𝒙 + 𝜹) ≠ 𝑦,

𝒙 + 𝜹 ∈ X.

(0.4)

Solving this problem is, in fact, equivalent to solving (0.2) for every 𝜖 . As such, it constitutes

a more general – but also more difficult – problem. Solving it efficiently, accurately and for

different choices of discrepancy measures 𝐷 remains a difficult problem.

Calibration In the context of classification (including segmentation, which is a per-pixel

classification problem), a desirable property for a model is to be calibrated: the probabilities

produced by the model should match the accuracy. For instance, if 100 samples are predicted

with a probability of 0.9, then 90% of these samples should be correctly classified. In

practice, deep neural networks achieve high accuracy on several classification tasks, but

suffer from poor calibration. Their predictions tend to be over-confident, i.e. the probability

𝑃(𝑦̂ |𝒙, 𝜃) = softmax𝑦̂ (𝑓 (𝒙)) for the predicted class 𝑦̂ is often close to 1. This phenomenon

is a well-known issue (Guo et al., 2017), particularly for safety-critical applications such as

medical diagnosis. Figure 0.3 shows reliability diagrams for two models on CIFAR100 and

ImageNet, with their corresponding Expected Calibration Error (ECE). These diagrams depict

the calibration of a model: each bar corresponds to the accuracy for predictions with a confidence

in the bin interval.

7

0 0.2 0.4 0.6 0.8 1
0%

20%

40%

60%

80%

100%

Confidence

A
cc

u
ra

cy
Outputs

Ideal

a) CIFAR100: ECE = 6.4%

0 0.2 0.4 0.6 0.8 1
0%

20%

40%

60%

80%

100%

Confidence

A
cc

u
ra

cy

Outputs

Ideal

b) ImageNet: ECE = 5%

Figure 0.3 Reliability diagrams for a WideResNet 28-10 on CIFAR100 with 81.85%

accuracy and a ResNet-152 on ImageNet with 78.32% accuracy. For a perfectly

calibrated model, the middle of the bars would be on the red line

Formulating this calibration problem as a tractable optimization problem turns out to be difficult.

Indeed, perfect calibration can be defined as:

𝑃(𝑦̂ = 𝑦 |𝑃(𝑦̂ |𝒙, 𝜃) = 𝑝) = 𝑝, ∀𝑝 ∈ [0, 1], (0.5)

where 𝑦̂ = arg max𝑘 𝑓𝑘 (𝒙) is the predicted label. The probability in (0.5) cannot be calculated

with a finite dataset D as it is a continuous random variable (Guo et al., 2017). Therefore,

tackling this problem requires finding a surrogate objective that is compatible with the training

of deep neural networks.

Research Objectives and Contributions

In this thesis, our goal is to understand the properties of several optimization problems related to

deep neural networks, and provide new methods to solve them more accurately and efficiently.

Our contributions are mostly validated on computer vision tasks such as image classification and

8

segmentation, since they are the prevalent application in the corresponding literature. Note that,

theoretically, most of our contributions can be applied, with minimal effort, to other domains

that have continuous inputs2, such as audio signals.

The core contributions of this thesis are:

• Deep Metric Learning In chapter 2, we analyze several previously proposed deep metric

learning losses to better understand their effect on feature learning. Observing that they

perform similarly when fairly evaluated against each other, we uncover an equivalence between

the minimization of the cross-entropy and the maximization of the mutual information, which

is an upper bound on these previous losses. Hence, training a DNN with the cross-entropy

loss turns out to be simpler and achieve better performance on several deep metric learning

tasks.

Related publication:

A unifying mutual information view of metric learning: cross-entropy vs. pairwise losses, M

Boudiaf*, J Rony*, IM Ziko*, E Granger, M Pedersoli, P Piantanida, I Ben Ayed, published

at the European Conference on Computer Vision (ECCV), 2020.

• Adversarial Attacks In chapter 3, we observe that the current literature on adversarial

attacks does not provide an efficient solution to craft adversarial examples with small

ℓ2-norms. Therefore, we design a simple attack algorithm to overcome this shortcoming,

called Decoupling Direction and Norm (DDN). This algorithm was used to win one of the

competitions of the NeurIPS 2018 Adversarial Vision Challenge (Brendel et al., 2020).

Related publication:

Decoupling Direction and Norm for Efficient Gradient-Based ℓ2 Adversarial Attacks and

Defenses, J Rony*, LG Hafemann*, LS Oliveira, I Ben Ayed, R Sabourin, E Granger,

2 Although images are quantized, their domain is usually considered to be [0, 1]𝑑 in the relevant

literature.

9

published at the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2019.

• Adversarial Attacks In chapter 4, we distinguish two families of methods to solve the

minimal problem (0.4) in adversarial attacks: distance customized approaches, which tend

to be efficient but lack generality, and penalty based approaches which are general but lack

efficiency. We propose a general attack algorithm, based on an augmented Lagrangian

method, that is efficient and can accommodate a large family of discrepancy measures

Related publication:

Augmented Lagrangian Adversarial Attacks, J Rony, E Granger, M Pedersoli, I Ben Ayed,

published at the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

• Adversarial Attacks In chapter 5 , we identify a shortcoming of the adversarial robustness

literature: attack algorithms are proposed mostly for classification tasks, and are difficult to

apply to denser predictions tasks such as semantic segmentation. Therefore, we devise an

attack based on the same augmented Lagrangian method, combined with a proximal splitting

to produce minimal ℓ∞-norm perturbations while satisfying millions of constraints.

Related publication:

Proximal Splitting Adversarial Attack for Semantic Segmentation, J Rony, JC Pesquet, I Ben

Ayed, accepted to the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2023.

• Calibration In chapter 6, we build upon the recent work of (Liu et al., 2022a), which

showed that combining the cross-entropy with constraints on the logit distance significantly

improves calibration. In particular, we use an augmented Lagrangian method to learn class-

wise penalty weights during training, which further improves the calibration performance of

DNNs.

Related publication:

10

Class Adaptive Network Calibration, B Liu*, J Rony*, A Galdran, J Dolz, I Ben Ayed,

accepted to the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

2023.

Organization of the thesis

This is a thesis by articles. Chapter 1 presents a broad overview of the literature in deep metric

learning, adversarial robustness and calibration in the context of deep learning.

The second chapter presents a detailed analysis of several deep metric learning losses, and

how they relate to the cross-entropy. In particular, all of these methods can be viewed as a

maximization of the mutual information between the features representing the samples and

their pairwise labels. As such, minimizing the cross-entropy can be viewed as an approximate

bound-optimization algorithm for minimizing the pairwise losses. We confirm these findings

experimentally, by comparing models trained with state-of-the-art deep metric learning losses

and a model trained with cross-entropy directly on the class labels. We achieve similar or

better metric learning performance on all datasets, while having a simpler method with fewer

hyperparameters to tune. This work was presented as a spotlight at the ECCV 2020 conference

(Boudiaf et al., 2020).

The third chapter presents a simple, but efficient and robust algorithm to generate adversarial

perturbations with smaller ℓ2-norms than the state-of-the-art attack at the time: Carlini & Wagner

(2017). This attack, which was created in the context of a competition on adversarial robustness,

requires only ∼102 to ∼103 iterations compared to ∼104 for (Carlini & Wagner, 2017), and is

also used to adversarially train robust models against ℓ2 attacks. This work was presented as an

oral at the CVPR 2019 conference (Rony et al., 2019).

11

In the fourth chapter, we present the adversarial attack literature in a as two algorithmic families.

The first contains attacks that are tailored to a particular distance and takes advantage of

the properties of that distance to efficiently solve the adversarial perturbation problem. The

second contains attacks based on penalties which are general enough to accommodate for many

discrepancy measures – as long as they can be minimized by gradient descent – but lack the

efficiency of the first family. From there, we design a new attack based on an augmented

Lagrangian multiplier, which combines the advantages of the two families: efficiency and

generality. We perform an extensive evaluation of this attack on a large collection of models and

for several measures, and consistently observe state-of-the-art performances. This work was

presented at the ICCV 2021 conference (Rony, Granger, Pedersoli & Ben Ayed, 2021).

In chapter five, we observe that the literature on adversarial attacks for dense predictions tasks,

which are often more useful in practical applications, is scarce compared to the classification

scenario. Indeed, no attack exists to find small ℓ∞-norm perturbations for dense classification

tasks, e.g. segmentation. We build upon the work presented in chapter four, and combine

the augmented Lagrangian approach to a proximal splitting, which allows minimizing the

non-smooth ℓ∞-norm. In particular, we design a fast algorithm to compute the proximity

operator efficiently. This results in an attack that can be used to more accurately evaluate the

robustness of segmentation models, which was largely overestimated until now. This work is

accepted to CVPR 2023.

In the final chapter, we notice that the work of Liu et al. (2022a) opened an avenue for constrained

optimization in the context of calibration. By constraining the logit distance during training,

one can improve the calibration performance of DNNs. However, this needs to be carefully

incorporated in the training procedure, as we wish to keep a high classification accuracy. We

resort to an augmented Lagrangian multiplier scheme to adaptively tune class dependent penalty

multipliers at train time. This results in a scalable method to improve calibration, that can be

12

applied to classification and segmentation, at negligible additional computational cost. The

work is accepted to CVPR 2023.

Appendices I to V correspond to the supplementary materials accompanying chapters two to six.

They include the proofs of propositions, additional technical details, complete algorithms and

detailed results.

CHAPTER 1

LITERATURE REVIEW

In this chapter, we first review the main losses proposed for deep metric learning. We then

describe in details the main developments in the adversarial robustness literature, focusing on

the algorithmic formulations of attacks. Finally, we present the main works on deep models

calibration, which mostly investigated the effects of the training loss on the final calibration

performance.

1.1 Deep metric learning

In this section, we present the main methods proposed to tackle the deep metric learning (DML)

problem laid out in Equation 0.1. In the general context of DML, these methods mostly consist

in finding better suited training objectives. They are often combined with training strategies, e.g.

pre-training, augmentations or batch normalization freezing, which are not specific to DML.

Additionally, in closely related domain-specific applications (e.g. face verification, which can

be formulated as a metric learning problem), several works also investigate mining strategies

to find the best pairs of samples to train the most discriminative model. Our work studied the

impact of the loss used during training, so we focus on these different training losses proposed

for general DML problems.

Most of the losses presented in this section are defined over collections of samples. We denote

a collection of samples (e.g. a mini-batch) as D = {𝒙 (𝑖) }𝑁
𝑖=1

, and the corresponding pairwise

labels as 𝑦𝑖, 𝑗 ∈ {0, 1}, with 𝑦𝑖, 𝑗 = 1 if samples 𝑖 and 𝑗 are semantically similar and 𝑦𝑖, 𝑗 = 0 if

they are dissimilar. Often, these losses also use a discrepancy measure between two embeddings,

e.g. a squared ℓ2-norm. We generically denote such a function as 𝐷 : R𝐾 × R𝐾 → R+, and the

applications of this function to two samples 𝑖 and 𝑗 embeddings as:

𝐷𝑖, 𝑗 = 𝐷
(
𝑓𝜃 (𝒙 (𝑖)), 𝑓𝜃 (𝒙 (𝑗))

)
= 𝐷

(
𝒛(𝑖) , 𝒛(𝑗)

)
. (1.1)

14

1.1.1 Contrastive loss

In DML, the goal is to learn an embedding function 𝑓𝜃 that matches semantic similarity. Early

methods were not designed specifically with DML in mind, but tackled the dimensionality

reduction problem, which generalizes DML. One such method is the contrastive loss (Hadsell,

Chopra & LeCun, 2006). This loss is defined as:

Lcontrastive(D) = 1

𝑁

𝑁∑
𝑖, 𝑗

𝑦𝑖, 𝑗 𝐷
2
𝑖, 𝑗 + (1 − 𝑦𝑖, 𝑗)max{0, 𝐷𝑖, 𝑗 − 𝑚}2 (1.2)

where 𝑚 ∈ R+ is a margin hyperparameter. Here the discrepancy measure is the ℓ2-norm:

𝐷𝑖, 𝑗 =
		𝒛(𝑖) − 𝒛(𝑗)

		
2
. Therefore, the goal of the contrastive loss is to have a zero discrepancy

between similar samples, and a larger than 𝑚 discrepancy for dissimilar samples. A recent

approach revisited the contrastive framework by improving the pair mining and weighting

strategies (Wang, Han, Huang, Dong & Scott, 2019b).

1.1.2 Triplet loss

Another well-known similar approach is the triplet loss (Weinberger & Saul, 2009). Instead

of being defined on pairs of samples, the triplet loss is defined over a triplet: an anchor 𝒙 (a) , a

positive 𝒙 (p) which is semantically similar to the anchor and a negative 𝒙 (n) which is semantically

dissimilar. The loss is defined over each triplet as:

Ltriplet

(
𝒙 (a) , 𝒙 (p) , 𝒙 (n)

)
= max{0, 𝐷2

𝑎,𝑝 − 𝐷2
𝑎,𝑛 + 𝑚}. (1.3)

where 𝑚 is the margin and 𝐷 is the ℓ2-norm of the difference. The goal is slightly different

compared to the contrastive loss: the discrepancy between similar samples does not need

to be 0, but only smaller by a margin 𝑚 than the discrepancy between dissimilar samples.

Several works extended this approach, by adding better triplet mining strategies (Hermans,

Beyer & Leibe, 2017; Sohn, 2016), considering additional triplets in a mini-batch (Song, Xiang,

15

Jegelka & Savarese, 2016), creating hierarchical triplet structures (Ge, 2018) and re-weighting

the triplets w.r.t. their hardness (Zheng, Chen, Lu & Zhou, 2019).

1.1.3 Neighborhood component analysis

In the neighborhood component analysis (NCA) (Goldberger, Hinton, Roweis & Salakhutdinov,

2005), the goal is to directly maximize the cosine similarity between the embeddings of similar

samples, while minimizing it for dissimilar samples. The resulting loss on a whole dataset D is

the following:

LNCA(D) = −
∑

𝑖, 𝑗 :𝑦𝑖, 𝑗=1

log
exp(𝑠𝑖, 𝑗/𝜏)∑

𝑘≠𝑖 exp(𝑠𝑖,𝑘/𝜏)
with 𝑠𝑖, 𝑗 =

𝒛(𝑖)	𝒛(𝑗)		𝒛(𝑖)		 		𝒛(𝑗)		 , (1.4)

where 𝜏 controls the scale of the neighborhood.

The main issue with NCA is that it requires computing a similarity matrix 𝑆 = (𝑠𝑖, 𝑗)1≤𝑖, 𝑗≤𝑁 ∈
R

𝑁×𝑁 on the whole dataset, which can be memory and computationally impractical. A first

solution is to use proxies to reduce the size of 𝑆 by only computing the similarity with a subset

of representative negative samples (Movshovitz-Attias, Toshev, Leung, Ioffe & Singh, 2017).

Wu, Efros & Yu also proposed a scalable alternative by designing a mini-batch strategy: the

embeddings for the whole dataset are kept in memory, and the loss is computed only for the

samples in a mini-batch, which updates the memory for these samples (Wu et al., 2018). Both

methods aimed at reducing the number of entries to compute in 𝑆 to reduce the memory and

computational requirements.

1.1.4 Center loss

Instead of relying on the pairwise distances as in NCA, one can directly learn a prototype for

each class of the problem and minimize the distance of the embedding to its class prototype.

This is what is done with the center loss presented in (Wen, Zhang, Li & Qiao, 2016), where the

author also add a cross-entropy term. The total resulting loss for each sample 𝒙 with label 𝑦 is

16

the following:

LCenter(𝒙, 𝑦) = − log 𝑝𝑦 + 𝜆

2

			𝒛 − 𝒄(𝑦)
			2

2
(1.5)

where 𝑝𝑦 = softmax(𝑊 𝒛 + 𝒃) is the probability of the embedding 𝒛 = 𝑓𝜃 (𝒙) to belong to class

𝑦 using a linear classifier parametrized by 𝑊 and 𝒃, and 𝒄(𝑦) ∈ is the prototype for class 𝑦 in

the embedding space. Note that this loss does not rely on pairwise labels, as opposed to the

previous ones. However, as we will see in chapter 2, the squared norm term is redundant with

the cross-entropy.

1.1.5 Evaluation fairness

As previously mentioned, most DML methods proposed a new loss and / or a mining strategy to

improve the training. Additionally, they often combine it with training tricks, which can greatly

influence the final performance. Therefore, one needs to be careful in correctly evaluating

a new method and comparing with up-to-date baselines. Indeed, if a new trick is proposed,

independently of the loss and mining strategy used, it should also be included in previous

baselines. Such tricks include architectural improvements, improved augmentation schemes,

and more effective implicit regularization techniques (e.g. batch normalization, dropout).

Concurrently to our work (see chapter 2), Musgrave, Belongie & Lim (2020) showed that most of

the developments in the last 15 years of DML research provide, at best, marginal improvements,

when evaluated fairly, i.e. using the same training tricks and hyperparameter tuning budgets.

This confirms the need to fairly evaluate methods w.r.t. to the baselines.

1.2 Adversarial robustness

In this section, we focus on presenting the main adversarial attacks proposed in the literature. We

provide the complete algorithms of several of these attacks with a unified notation and provide

insights on their usage and efficiency. Additionally, we give a brief overview of the main defense

mechanisms: adversarial training, provable defenses and certified defenses using randomized

smoothing.

17

Most of these have been applied to image classification, but they usually do not make any

assumption about the input, except that the input domain is bounded (e.g. 𝒙 ∈ [0, 1]𝑑). Therefore,

except for the PerC-AL attack (subsubsection 1.2.1.9), they can be applied to other domain in a

straightforward manner.

1.2.1 Adversarial attacks

Table 1.1 Summary of the main white-box adversarial attacks. Complexity refers to the

number of model forward and backward propagation needed to perform the attack

Attack Year Objective Distance(s) Complexity

FGSM 2015 max loss ℓ1, ℓ2, ℓ∞ 1

DeepFool 2016 min norm ℓ2, ℓ∞ ∼101

JSMA 2016 min norm ℓ0 ∼101

PGD 2017 max loss ℓ1, ℓ2, ℓ∞ ∼101 to ∼102

C&W 2017 min norm ℓ0, ℓ2, ℓ∞ ∼104

EAD 2018 min norm ℓ1 ∼104

TR 2019 min norm ℓ2, ℓ∞ ∼103

Wasserstein Attack 2019 max loss Wasserstein distance ∼102

PerC-AL 2020 min norm CIEDE2000 ∼104

FAB 2020 min norm ℓ1, ℓ2, ℓ∞ ∼103 to ∼104

APGD 2020 max loss ℓ2, ℓ∞ ∼102 to ∼104

FMN 2021 min norm ℓ0, ℓ1, ℓ2, ℓ∞ ∼102 to ∼103

Here, we present the main white-box gradient-based adversarial attacks for DNNs. It is important

to note that attacks are a combination of both a formulation of the optimization problem and a

strategy to solve it, which usually include heuristics. Table 1.1 presents a summary of the main

attacks proposed in the literature, as well as their objective, distance considered and complexity.

The complexity is measured as the number of forward (i.e. computing the output of a model) and

backward (i.e. computing the derivative of the output w.r.t. to the input of a model) propagation

performed, which is the main computational cost when generating adversarial attacks.

18

1.2.1.1 Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM) is one of the first works on adversarial attacks in the DL

community (Goodfellow, Shlens & Szegedy, 2015). This attack is a one-step method that can

generate adversarial examples and is arguably the most straightforward method. In this attack:

𝒙̃ = 𝒙 + 𝜖 sign[∇𝒙L(𝒙, 𝑦, 𝜃)] (1.6)

where sign is a component-wise function which returns 1 for positive values and −1 for negative

values. This method was originally proposed for ℓ∞ but can be easily adapted to any ℓ𝑝-norm

for 𝑝 ∈ [1,∞[as such:

𝒙̃ = 𝒙 + 𝜖
𝒈

‖𝒈‖ where 𝒈 = ∇𝒙L(𝒙, 𝑦, 𝜃) (1.7)

In this case, it is called the Fast Gradient Method (FGM). For the ℓ0-norm, this attack maximally

modifies the values of the 𝜖 pixels that have the largest absolute gradient, but is rarely used in

that context. Since it is a one-step attack with no verification of misclassification, this attack

aims at solving Equation 0.3.

It can also be adapted to perform targeted attacks by performing a gradient descent instead of a

gradient ascent:

𝒙̃ = 𝒙 − 𝜖
𝒈

‖𝒈‖ where 𝒈 = ∇𝒙L(𝒙, 𝒕, 𝜃) (1.8)

1.2.1.2 Basic Iterative Method and Projected Gradient Descent

In (Kurakin, Goodfellow & Bengio, 2017a), the authors introduce a straightforward extension of

the FSGM attack by performing several iterations of Equation 1.6, and projecting the perturbation

such that it lies in an 𝜖-neighborhood of 𝒙:

𝒙̃ (0) = 𝒙 and 𝒙̃ (𝑖+1) = PΛ∩[−𝜖,𝜖]
(
𝒙̃ (𝑖) + 𝛼 sign[∇𝑥L(𝒙̃ (𝑖) , 𝑦, 𝜃)]

)
(1.9)

19

where 𝛼 is the step-size, and PΛ∩[−𝜖,𝜖] projects on the intersection of the admissible set of

perturbation Λ and the ℓ∞-ball around 𝒙 of radius 𝜖 . Note that this intersection is a hypercube,

making the projection trivial, as it is separable in each component. This attack, originally called

Basic Iterative Method (BIM) (Kurakin et al., 2017a), is now more generally referred to as

Projected Gradient Descent (PGD) (Madry, Makelov, Schmidt, Tsipras & Vladu, 2018) and

is widely used in adversarial examples research. It is also known to be extremely strong (i.e.

being able to find small adversarial perturbations) even against several defense methods for

the ℓ∞-norm in a few steps (e.g. ∼101 to ∼102). In the same way as FGSM, the PGD attack

aims at solving Equation 0.3, and often uses random restarts of the optimization (i.e. setting

𝒙̃0 = 𝒙 + N(0, 𝜎2𝐼) several times) to obtain a better adversarial example (i.e. with larger loss).

While originally proposed for the ℓ∞-norm, this method is also easily extendable to other

ℓ𝑝-norms, but often fails to find adversarial examples with small ℓ1 and ℓ2 norms compared to

other attacks. Similarly to FGM, it can also be adapted to produce targeted adversarial examples.

1.2.1.3 Jacobian Saliency Map Attack

Algorithm 1.1 Jacobian Saliency Map Attack (JSMA)

Input: Classifier 𝑓 , original image 𝒙 and label 𝑦, target label 𝒕
1 Initialize 𝒙̃ ← 𝒙, Γ ← {1, . . . , |𝒙 |} ; // Γ is the set of modifiable pixels
2 while arg max𝑘 𝑓𝑘 (𝒙̃) ≠ 𝒕 do
3 𝒑 ← softmax(𝑓 (𝒙̃))
4 𝒔 ← max(0,∇𝒙 𝒑𝒕) � (−

∑
𝑘≠𝒕

∇𝒙 𝒑𝑘) ; // Computing saliency map

5 𝑗max ← arg max 𝑗∈Γ 𝒔 𝑗

6 𝒙̃ 𝑗max
← 1 ; // Set the 𝑗max-th pixel to max value

7 Γ ← Γ \ 𝑗max ; // Remove 𝑗max from modifiable pixels

8 end while
9 return 𝒙̃

In (Papernot et al., 2016a), Papernot et al. propose a greedy approach, called Jacobian Saliency

Map Attack (JSMA), to generate targeted adversarial examples minimizing the ℓ0-norm. The

algorithm modifies pixels, one at a time, based on the derivative of the target probability w.r.t. to

20

the input (see Algorithm 1.1). To choose which pixel to modify, a saliency map is computed as

the product of the derivative of the target probability w.r.t. the input and the negative sum of the

derivatives of the other classes probabilities w.r.t. to the input. With this saliency map, we can

find which pixel will most heavily increase the target probability while reducing the probabilities

of the other classes. This pixel is modified to its maximum value, which increases the ℓ0-norm

by 1.

This attack is effective to modify only a few pixels in an image to make it adversarial, but the

perturbation becomes visible, as the modified pixels are changed to extremal values.

1.2.1.4 DeepFool

Algorithm 1.2 DeepFool ℓ2 Attack

Input: Classifier 𝑓 , original image 𝒙 and label 𝑦
1 Initialize 𝜹(0) ← 0, 𝒙̃ (0) ← 𝑥, 𝑖 ← 0

2 while arg max𝑘 𝑓𝑘 (𝒙̃ (𝑖)) = 𝑦 do
3 for 𝑘 ← 1 to 𝐾 do
4 Δ𝒈𝑘 ← ∇𝒙 𝑓𝑘 (𝒙̃ (𝑖)) − ∇𝒙 𝑓𝑦 (𝒙̃ (𝑖))
5 Δ 𝑓𝑘 ← 𝑓𝑘 (𝒙̃ (𝑖)) − 𝑓𝑦 (𝒙̃ (𝑖))
6 end for
7 𝑐 ← arg min𝑘≠𝑦

Δ 𝑓𝑘
‖Δ𝒈𝑘 ‖2

; // Find approximately closest class

8 𝜹𝑖 ← Δ 𝑓𝑐
‖Δ𝒈𝑐 ‖2

2

Δ𝒈𝑐 ; // Update 𝜹 to cross decision boundary

9 𝒙̃ (𝑖+1) ← 𝒙̃ (𝑖) + 𝜹(𝑖)

10 𝑖 ← 𝑖 + 1

11 end while
12 return 𝒙̃ (𝑖)

In (Moosavi-Dezfooli, Fawzi & Frossard, 2016), Moosavi-Dezfooli et al. consider a linear

approximation of the model under attack to find the closest untargeted adversarial example

(Equation 0.4). More specifically, they iteratively refine the perturbation using the gradient of

the logits w.r.t. to the input to obtain the point that would cross the decision boundary under

the linear approximation. The exact procedure for the ℓ2-norm is described in Algorithm 1.2,

where steps 7 and 8 use the ℓ1-norm (not squared) when generating adversarial examples for the

21

ℓ∞-norm. The attack is originally formulated for any ℓ𝑝 norm but is only used for ℓ2 and ℓ∞

norms in practice.

While this algorithm allows obtaining adversarial examples in a few steps (∼102), it does not

ensure the box-constraint to produce valid images (i.e. in the original range of possible values).

Modifying the algorithm to add the box constraint strongly degrades the final performance of

the attack (Rauber, Brendel & Bethge, 2017). Also, the DeepFool attack has been reported to be

much less effective against adversarially trained models (Rony et al., 2019).

1.2.1.5 Carlini and Wagner

While the DeepFool attack uses an approximation to find the closest adversarial example, Carlini

and Wagner (C&W) propose to solve Equation 0.4 by transforming the constrained optimization

problem into an unconstrained one using a penalty (Carlini & Wagner, 2017). They also include

the box-constraint by performing a variable change, forcing the perturbations to be within bounds.

The optimization for an untargeted attack is formulated as follows:

minimize
𝜹

‖𝒙̃ − 𝒙‖2
2 + 𝑐 max{max

𝑘≠𝑦
{ 𝑓𝑘 (𝒙̃)} − 𝑓𝑦 (𝒙̃),−𝜅}

where 𝒙̃ =
1

2
(tanh(arctanh(𝒙) + 𝜹) + 1)

(1.10)

Increasing the confidence parameter 𝜅 will produce an adversarial example that is misclassified

with higher probability. In this joint optimization, the trade-off between minimizing the norm of

the perturbation and the misclassification is controlled by 𝑐, which is chosen in an ad-hoc way.

To produce adversarial examples minimizing the ℓ2-norm, gradient descent is used and 𝑐 is

chosen using a line search starting at a low value (e.g. 10−3) and multiplying it by 2 as long

as an adversarial example is not found (𝑐 is further refined using a binary search). For the ℓ0

variant of the algorithm, the ℓ2 attack is used to find which pixels are not modified to obtain an

adversarial example. Then these pixels are removed from the set of possible pixels to modify,

and the ℓ2 attack is run again until it fails to find an adversarial example. For the ℓ∞ variant, the

22

norm of the perturbation ‖𝒙̃ − 𝒙‖2 is replaced by
∑

max(0, |𝒙̃ − 𝒙 | − 𝜏) where 𝜏 is heuristically

decreased during the optimization.

−12 −8 −4 0 4 8
log2(C)

0

50

100

150

200

#
E
x
am

p
le
s

Baseline

Adv trained

Figure 1.1 Histogram of the best 𝑐 found by the C&W

algorithm with 9 search steps on the MNIST dataset. From

(Rony et al., 2019)

In practice, the ℓ2 variant of this attack is the most widely used, since it is able to find adversarial

examples with small ℓ2-norm while ensuring the box-constraint. However, this attack is

particularly inefficient since it requires a line search on 𝑐 (see Table 1.1). Indeed, if 𝑐 is too

small, the example will not be adversarial; but if it is too large, the perturbation will end up

having a large norm. Penalty methods are well known to have slow convergence because of the

choice of the weight for the penalty (Jensen & Bard, 2002; Boyd, Boyd & Vandenberghe, 2004).

Moreover, this weight has to be chosen on a per model and sample basis. Adversarially trained

models tend to be more robust and, therefore, need a larger weight to ensure the misclassification.

Figure 1.1 shows the optimal 𝑐 obtained for the MNIST digits test set on two identical models,

where one was trained adversarially. This means that this attack has a prohibitive cost for

adversarial training that cannot be reduced.

23

1.2.1.6 Elastic-Net Attacks

While several attacks have been proposed to find the closest adversarial example (Equation 0.4)

for the ℓ∞ and ℓ2 norms, little has been done for the ℓ1-norm. In (Chen, Sharma, Zhang,

Yi & Hsieh, 2018b), Chen et al. propose the Elastic-Net Attack for DNNs (EAD) to generate

adversarial examples with minimal ℓ1-norm. They use a similar approach as Carlini and Wagner,

but adding a ℓ1 penalty in the optimization as such:

minimize
𝜹

‖𝒙̃ − 𝒙‖2
2 + 𝑐 · 𝑔(𝒙) + 𝛽 ‖𝒙̃ − 𝒙‖1 (1.11)

where 𝑔 is the second term of Equation 1.10 emphasizing the misclassification. To solve

this optimization problem, they use the iterative shrinkage-thresholding algorithm (ISTA)

(Beck & Teboulle, 2009). This attack is mostly a direct extension of the Carlini and Wagner ℓ2

attack to the ℓ1-norm and has a comparable computational cost.

1.2.1.7 Trust Region Attack

Trust region methods are well known in optimization for solving non-convex problems (Boyd

et al., 2004). Yao et al. propose to use a trust region based method to produce adversarial

example with minimal ℓ2 or ℓ∞ norms (Yao, Gholami, Xu, Keutzer & Mahoney, 2019). The

principle of trust region methods is to estimate the size of the region where an approximation

using first and second order gradients can be trusted. However, computing the Hessian for

DNNs is computationally too expensive to be used in practice. But for DNNs using piece-wise

linear activation functions, such as Rectified Linear Units (ReLU), the Hessian is zero almost

everywhere, meaning that we do not need to compute it. The resulting attack (see Algorithm 1.3)

uses only first-order gradients. For the ℓ∞ variant of the attack, the ℓ2-norms in steps 2 and 6 are

replaced by the ℓ1 (which is the dual of the ℓ∞-norm) and the 𝒈/‖𝒈‖2 term in step 7 is replaced by

sign(𝒈).

24

Algorithm 1.3 Trust Region ℓ2 Attack

Input: Classifier 𝑓 , original image 𝒙 and label 𝑦
Input: Radii 𝜖 (0) , 𝜖min and 𝜖max, thresholds 𝜎low and 𝜎high, radius adjustment rate 𝜂

1 Initialize 𝜹(0) ← 0, 𝒙̃ (0) ← 𝑥, 𝑖 ← 0

2 𝑡 ← arg min𝑘≠𝑦
𝑓𝑦 (𝒙)− 𝑓𝑘 (𝒙)

‖∇𝒙 𝑓𝑦 (𝒙)−∇𝒙 𝑓𝑘 (𝒙)‖2

; // Select the closest class as target

3 Δ 𝑓 (0) ← 𝑓𝑦 (𝒙̃ (0)) − 𝑓𝑡 (𝒙̃ (0))
4 while arg max𝑘 𝑓𝑘 (𝒙̃ (𝑖)) = 𝑦 do
5 𝒈 ← ∇𝒙Δ 𝑓 (𝑖)

6 𝜏 ← 𝑓𝑦 (𝒙̃ (𝑖))− 𝑓𝑡 (𝒙̃ (𝑖))
‖𝒈‖2

7 𝒙̃ (𝑖+1) ← PΛ

(
𝒙̃ (𝑖) +min{𝜖 (𝑖) , 𝜏} 𝒈

‖𝒈‖2

)
; // Project on feasible set

8 Δ 𝑓 (𝑖+1) ← 𝑓𝑦 (𝒙̃ (𝑖+1)) − 𝑓𝑡 (𝒙̃ (𝑖+1))
9 𝜌 ← Δ 𝑓 (𝑖)−Δ 𝑓 (𝑖+1)

𝜖 (𝑖) ; // Estimate ratio for trust region

10 if 𝜌 > 𝜎high then
11 𝜖 (𝑖+1) ← min{𝜂𝜖 (𝑖) , 𝜖max}
12 else if 𝜌 < 𝜎low then
13 𝜖 (𝑖+1) ← max{𝜖 (𝑖)/𝜂, 𝜖max}
14 else
15 𝜖 (𝑖+1) ← 𝜖 (𝑖)

16 𝑖 ← 𝑖 + 1

17 end while
18 return 𝒙̃ (𝑖)

The method is designed to be an untargeted attack, but can be easily extended to produce targeted

adversarial examples. In practice, it requires an order of magnitude less iterations than the C&W

attack with similar performance in terms of ℓ2-norm of the produced adversarial examples.

1.2.1.8 Wasserstein Attack

Moving away from traditional ℓ𝑝-norms attacks, Wong et al. proposed an attack to find

an adversarial perturbation in the Wasserstein ball (Wong, Schmidt & Kolter, 2019). This

corresponds to solving Equation 0.3 for the 1-Wasserstein distance. To solve this problem, they

use a PGD-like algorithm, for which they need the projection onto the feasible set. Therefore,

25

the main contribution of (Wong et al., 2019) is to propose an efficient projection onto the

Wasserstein ball.

1.2.1.9 Perceptual Color Distance Attack

Algorithm 1.4 Perceptual Color Distance Alternating Loss (PerC-AL) Attack

Input: Classifier 𝑓 , original image 𝒙 and true label or target label 𝑦
Input: Number of iterations 𝑁 , classification loss step size 𝛼𝑙 , color difference step size

𝛼𝑐

1 Initialize 𝜹(0) ← 0, 𝒙̃ (0) ← 𝑥, 𝑖 ← 0

2 If targeted attack: 𝑚 ← −1 else 𝑚 ← +1 ; // Gradient descent or ascent
3 for 𝑖 ← 1 to 𝑁 do
4 if 𝒙̃ (𝑖−1) is not adversarial then
5 𝐿 ← 𝐽 (𝒙̃ (𝑖−1) , 𝑦) ; // Classification loss
6 𝒈 ← 𝑚∇𝒙𝐿

7 𝜹 ← 𝜹(𝑖−1) + 𝛼𝑙
𝒈
‖𝒈‖

8 else
9 Δ𝐸00 ← CIEDE2000(𝒙̃ (𝑖−1) , 𝒙) ; // CIEDE2000 color difference

10 𝐶2 ← ‖Δ𝐸00‖
11 𝒈 ← ∇𝒙𝐶2

12 𝜹 ← 𝜹(𝑖−1) − 𝛼𝑐
𝒈
‖𝒈‖

13 𝒙̃ (𝑖) ← PΛ(𝒙 + 𝜹)
14 𝜹(𝑖) ← 𝒙̃ (𝑖) − 𝒙

15 end for
16 return 𝒙̃ (𝑖) that has smallest 𝐶2 and is adversarial

Following the trend of proposing attacks for distances other than the traditional ℓ𝑝-norms,

Zhao et al. focused on the CIEDE2000 color difference in their attack (Zhao, Liu & Larson,

2020). They propose two methods to solve Equation 0.4 for the CIEDE2000 color difference.3

The first is based on a penalty approach similar to C&W (Carlini & Wagner, 2017) while the

second is based on an alternating direction method, which is much more efficient in practice.

Algorithm 1.4 describes the alternating direction attack from (Zhao et al., 2020) for both targeted

3 The CIEDE2000 color difference formula measures the perceptual difference between two colors, and

is therefore defined for one pixel. In (Zhao et al., 2020), the ℓ2-norm of the CIEDE2000 for all pixels

is minimzed.

26

and untargeted attacks. Although this attack presents an improvement over traditional penalty

methods, the design of this attack is flawed. Indeed, the authors worked with an incorrect

implementation of the CIEDE2000 color difference formula. This results in incorrect values for

the CIEDE2000 color difference and incorrect gradients. We contacted the authors of this work,

who confirmed the error.

1.2.1.10 Fast Adaptive Boundary Attacks

Algorithm 1.5 Fast Adaptive Boundary (FAB) Attack

Input: Classifier 𝑓 , original image 𝒙 and true label 𝑦
Input: Norm 𝑝 ∈ {1, 2,∞} to minimize, number of iterations 𝑁 , overshooting

parameter 𝜂, maximum biased step size 𝛼max, backward step size 𝛽
1 𝑞 ← dual of the 𝑝-norm

2 Initialize 𝜹(0) ← 0, 𝒙̃ (0) ← 𝑥, 𝑖 ← 0

3 for 𝑖 ← 1 to 𝑁 do
4 𝒛 ← 𝑓 (𝒙̃ (𝑖−1)) ; // Logits

5 𝑠 ← arg min
𝑘≠𝑦

𝒛𝑘−𝒛𝑦
‖∇𝒙𝒛𝑘−∇𝒙𝒛𝑦‖𝑞 ; // Closest class under linear approximation

6 𝜹(𝑖) ← proj𝑝 (𝒙̃ (𝑖−1) , 𝜋𝑠) ; // Project 𝒙̃ on class 𝑠 decision hyperplane

7 𝜹(𝑖)
orig

← proj𝑝 (𝒙, 𝜋𝑠) ; // Project 𝒙 on class 𝑠 decision hyperplane

8 𝛼 ← min

{
‖𝜹 (𝑖) ‖ 𝑝

‖𝜹 (𝑖) ‖ 𝑝+
			𝜹 (𝑖)orig

			
𝑝

, 𝛼max

}
; // Estimate biased step size

9 𝒙̃∗ ← PΛ [(1 − 𝛼) (𝒙̃ (𝑖−1) + 𝜂𝜹(𝑖)) + 𝛼(𝒙 + 𝜂𝜹(𝑖)
orig
)] ; // Biased step

10 𝒙̃ (𝑖) ← (1 − 𝛽)𝒙 + 𝛽𝒙̃∗ ; // Backward step

11 end for
12 return 𝒙̃ (𝑖) that has smallest 𝑝-norm and is adversarial

Recently, Croce et al. noticed the inefficiency of most attacks solving Equation 0.4 for ℓ𝑝-

norms with 𝑝 ∈ {1, 2,∞}. Indeed, for these three norms, there exists efficient projections (in

O(𝑑 log 𝑑) (Hein & Andriushchenko, 2017)) onto a hyperplane. Using these projections and a

linear approximation of the model to attack, they propose an attack that is more efficient than

previously proposed methods for the ℓ1 and ℓ∞ norms. Algorithm 1.5 presents the Fast Adaptive

Boundary (FAB) attack. Under the linear approximation of the classifier 𝑓 , the algorithm

finds the class 𝑠 with the closest decision hyperplane (step 5) and then projects the current

27

perturbed input 𝒙̃ onto it (step 6) while ensuring the box-constraint. Once the projection is

obtained, it performs a biased step towards 𝒙 to try to find a smaller perturbation. This algorithm

proved to be well suited to find minimally perturbed adversarial examples for the three ℓ𝑝-norms

mentioned above. However, it suffers from a large computational cost, especially on datasets

with large number of classes. Indeed, step 5 requires computing the Jacobian of 𝑓 w.r.t. the

input, representing 𝐾 (i.e. number of classes) backward propagation. This can slightly be

reduced to 𝐾−1 since ∇𝒙 𝑓𝑘 (𝒙) − ∇𝒙 𝑓𝑦 (𝒙) = ∇𝒙 [𝑓𝑘 (𝒙) − 𝑓𝑦 (𝒙)] but this still represents a high

computational cost. Therefore, for datasets with large number of classes such as ImageNet, the

gradient of the 𝑓𝑘 (𝒙̃) is computed only for the 𝐾′ most likely classes, with 𝐾′ typically equal to

10 (Croce & Hein, 2020a).

1.2.1.11 Auto-PGD

The most widely used attack to evaluate the robustness of a deep learning model for a given

perturbation budget is by far the PGD attack (Madry et al., 2018), which solves Equation 0.3.

However, it is often used in a suboptimal manner, yielding unreliable results and leading to

overestimated robustness scores (Croce & Hein, 2020b). Mostly, the performance (success rate

in this case) of the attack is highly dependent on the hyperparameters used, namely the step size

and loss function. Therefore, Croce & Hein proposed a drop-in replacement for PGD: Auto-PGD

(APGD) (Croce & Hein, 2020b). This variant of PGD uses a loss function robust to scaling

and better optimization heuristics (e.g. momentum, step size scheduling) which greatly improve

the success rate, especially for model which obfuscate the gradients. As such, this attack is

becoming the standard for robustness evaluation under the ℓ2 and ℓ∞-norm threat models.

1.2.1.12 Fast Minimum Norm

The DDN attack (see chapter 3) has proven to be reliable to generate adversarial examples

with minimum ℓ2-norms, i.e. solving Equation 0.4. Therefore, Pintor, Roli, Brendel & Biggio

proposed to improve it and extend it to the ℓ0, ℓ1 and ℓ∞ norms, with the FMN attack (Pintor

et al., 2021). The main differences lie in the projection used, the use of a difference of logits as

28

in C&W for the loss instead of the cross-entropy, and a better scheduling of the norm for the

projection. The resulting attack is presented in Algorithm 1.6.

Algorithm 1.6 Fast Minimum Norm (FMN) Attack

Input: Classifier 𝑓 , original image 𝒙 and true (or target) label 𝑦
Input: Norm 𝑝 ∈ {0, 1, 2,∞} to minimize, number of iterations 𝑁
Input: Norm increase rates (𝛾 (𝑖))1≤𝑖≤𝑁 and step-sizes (𝛼(𝑖))1≤𝑖≤𝑁 .

1 Initialize 𝒙̃ (0) ← 𝒙, 𝜹(0) ← 0, 𝜹★ ← ∞
2 𝑞 ← dual of 𝑝, 𝑚 ← −1 if attack is targeted, else 𝑚 ← 1

3 for i=1,. . . ,N do
4 𝒛 = 𝑓 (𝒙 + 𝜹(𝑖−1))
5 L = 𝑚(𝒛𝑦 −max

𝑘≠𝑦
𝒛𝑘)

6 𝒈 = ∇𝜹L
7 if L > 0 then
8 if no adversarial sample has been found yet then
9 𝜖 (𝑖) ←

		𝜹(𝑖−1)		
𝑝
+ L
‖𝒈‖𝑞 ; // Estimate distance to boundary

10 else
11 𝜖 (𝑖) = 𝜖 (𝑖−1) (1 + 𝛾 (𝑖))
12 else
13 if

		𝜹(𝑖−1)		
𝑝
≤

		𝜹★
		

𝑝
then

14 𝜹★ ← 𝜹(𝑖−1) ; // Track best perturbation

15 𝜖 (𝑖) = min{𝜖 (𝑖−1) (1 − 𝛾 (𝑖)),
		𝜹★

		
𝑝
}

16 𝜹 ← 𝜹(𝑖−1) − 𝛼(𝑖) 𝒈
‖𝒈‖2

17 𝜹 ← PB𝑝 (𝒙,𝜖 (𝑖)) (𝒙 + 𝜹) − 𝒙 ; // Projection on the ℓ𝑝-norm ball

18 𝜹(𝑖) ← PΛ(𝒙 + 𝜹) − 𝒙

19 end for
20 return 𝒙 + 𝜹★

1.2.2 Defenses for deep neural networks

1.2.2.1 Adversarial training

Although many defense algorithms have been proposed in the literature, only one of them

still holds as a working defense mechanism against all known adversarial attacks for a chosen

ℓ𝑝-norm (Athalye, Carlini & Wagner, 2018; Tramer, Carlini, Brendel & Madry, 2020). The

29

principle of the adversarial training (Kurakin, Goodfellow & Bengio, 2017b; Madry et al., 2018)

is to train a classifier using adversarial examples crafted at train time instead of clean examples.

The resulting optimization as formulated in (Madry et al., 2018) is a saddle point problem,

optimizing for the worst case:

minimize
𝜃

E(𝒙,𝑦)∼D
[
max
𝜹∈Λ

L(𝒙 + 𝜹, 𝑦, 𝜃)] (1.12)

where D is the training set and S indicates the feasible region for the attacker. Usually, S is

an ℓ𝑝-ball such as S = {𝜹 : ‖𝜹‖𝑝 < 𝜖} where 𝜖 is chosen beforehand. Empirically, increasing

𝜖 beyond a certain point reduces the final performance on clean images (Tsipras, Santurkar,

Engstrom, Turner & Madry, 2019).

In the literature, this defense has been studied mostly for the ℓ∞ and ℓ2 norms. This is due to the

fact that generating adversarial at each training iteration (i.e. the inner maximization in (1.12))

is computationally expensive. For any training iteration (i.e. backward propagation through the

model), we need to find corresponding adversarial examples. This process also back propagates

through the whole model under training several times. For instance, if an attack needs 20

iterations to find an adversarial example, the resulting training time will be ∼20 times longer (not

accounting for any other hyperparameter change that may help adversarial training). The attack

must also be robust to varying properties of the model; most attacks have been developed on

models trained in a conventional fashion (i.e. cross-entropy on clean examples) but training them

for defense modify their gradients, making some attacks fail on adversarially trained models

(Rony et al., 2019). Currently, most works performing adversarial training use PGD as the attack

which is known to be both fast and robust for the ℓ∞-norm and, to some extent, for the ℓ2-norm

as well.

30

1.2.2.2 Provable defenses and certified adversarial robustness

Adversarial training has empirically proven to be a working defense mechanism. However, for

safety-critical applications, we need to obtain a guarantee that the model is robust to some

perturbations, and quantify that robustness.

A first approach has been to extend the simplex method to ReLU activations which are

widely spread in DNNs to provably find the smallest adversarial example (Katz, Barrett, Dill,

Julian & Kochenderfer, 2017). The two main conclusions of Katz et al. are that they were able

to certify only small models and that these combinatorial methods are not scalable to larger

models, which are common in computer vision.

Another line of work is to consider convex relaxation of the ReLU activation over the set of

reachable activations through a norm-bounded perturbation (Wong & Kolter, 2018; Raghunathan,

Steinhardt & Liang, 2018). Once again, these methods lack scalability, which prevents them

from being used on larger models typically used for datasets like ImageNet (and real-world

applications).

More recently, Cohen et al. have proposed the randomized smoothing to certify adversarial

robustness (Cohen, Rosenfeld & Kolter, 2019). The core idea of randomized smoothing is to

construct a smoothed classifier 𝑓 ∗ from a base classifier 𝑓 . The smoothed classifier will return

the average prediction for a sample 𝒙 by the base classifier 𝑓 when adding isotropic Gaussian

noise:

𝑓 ∗(𝒙) = E𝜹∼N(0,𝜎2𝐼) [𝑓 (𝒙 + 𝜹)] (1.13)

Using this formulation, the authors are able to establish robustness guarantees for the ℓ2-norm,

which are naturally induced by the Gaussian smoothing. Extending this work by combining this

approach with adversarial training, Salman et al. obtain state-of-the-art robustness guarantees

for the ℓ2-norm (Salman et al., 2019).

31

1.3 Calibration for deep learning based classification

In this section, we present the main approaches used to improve the calibration of deep neural

networks. These approaches are designed for the classification context in the general sense,

meaning that it can easily be extended to segmentation, which is typically approached as a

per-pixel classification problem.

In a deep learning based classification context, a model 𝑓𝜃 : R𝑑 → R𝐾 parametrized by weights

𝜃 is trained by minimizing a loss L on a dataset D = {(𝒙, 𝑦)}𝑛
𝑖=1

. This can be formulated as the

following optimization problem:

minimize
𝜃

∑
(𝒙,𝑦)∈D

L(𝑓𝜃 (𝒙), 𝑦) (1.14)

The main loss used in this context is the Cross-Entropy (CE). We denote 𝒔 = (𝑠𝑘)1≤𝑘≤𝐾 ∈ Δ𝐾−1

the probability vector predicted by the model for a sample, usually obtained from the logits

using the softmax function: 𝒔 = softmax(𝒛) = softmax(𝑓𝜃 (𝒙)). The cross-entropy is defined as:

LCE(𝒛, 𝑦) = − log 𝑠𝑦 = − log
(
softmax𝑦 (𝒛)

)
. (1.15)

This loss can also be written considering a binary vector label y ∈ {0, 1}𝐾 , with y𝑦 = 1 and

y𝑘≠𝑦 = 0, as:

LCE(𝒛, y) = −
𝐾∑

𝑘=1

y𝑘 log 𝑠𝑘 . (1.16)

Over the years, this has remained, by far, the main training loss for classification problems.

However, as shown in (Guo et al., 2017), training deep neural networks with the cross-entropy

results in poorly calibrated predictions.

1.3.1 Temperature scaling

As a post-hoc solution, temperature scaling was proposed in the seminal work (Guo et al., 2017).

This method does not require modifying any part of the training procedure. It simply applies a

32

scaling 𝜏 ∈ R+ to the logits, after the training is completed. The scaling is chosen to minimize

the expected calibration error on the validation dataset, yielding new probabilities 𝒔 ∈ Δ𝐾−1:

𝒔 = softmax(𝒛/𝜏) = exp(𝒛/𝜏)∑𝐾
𝑘=1 exp(𝑧𝑘/𝜏)

. (1.17)

This scaling does not change the predicted class 𝑦̂ = arg max𝑘 𝑠𝑘 = arg max𝑘 𝑠𝑘 . A 𝜏 > 1 results

in logits closer to 0, and in turn, probabilities closer to 1/𝐾. Conversely, a 𝜏 < 1 pushes the

predicted probabilities to the vertices of the probability simplex. Note that the scaling could also

be multiplicative, but the formulation in Equation 1.17 is more commonly found in the literature.

This method has the advantage of being computationally cheap, since it is done after training,

and only requires computing (and storing) the logits on the validation set once. Additionally,

it can be combined with any training-time method, and can only offer improvements in terms

of calibration, since the worst-case would be to find an optimal temperature 𝜏 = 1, while not

keeping the same performance in terms of accuracy.

1.3.2 Maximum mean calibration error

The main difficulty in improving calibration is the impossibility to directly optimize the objective

that would result in satisfying Equation 0.5. As such, the goal of Kumar, Sarawagi & Jain is to

find a surrogate function for the calibration error, that is compatible with first-order optimization.

Since the training of deep neural networks is usually done with mini-batches, they design a

measure called maximum mean calibration error (MMCE) over the predictions for mini-batch,

that is differentiable. Denoting 𝑐(𝑖) the top predicted probability (i.e. often referred to as

confidence) for sample 𝑖 in a mini-batch of 𝑚 samples, the MMCE2
m loss is defined as:

MMCE2
m =

𝑚∑
𝑖, 𝑗

(
[𝑦̂ (𝑖) = 𝑦] − 𝑐(𝑖)

) (
[𝑦̂ (𝑗) = 𝑦] − 𝑐(𝑗)

)
𝜙
(
𝑐(𝑖) , 𝑐(𝑗)

)
𝑚2

, (1.18)

33

where [·] is the Iverson bracket and 𝜙 is a kernel function. This loss is combined with the

cross-entropy during training to improve the calibration, while still achieving good classification

performance. In practice, a Laplacian kernel 𝜙(𝑐1, 𝑐2) = exp
(
−−|𝑐1−𝑐2 |

0.4

)
is used.

1.3.3 Label smoothing

Initially proposed as a training method to improve classification performance (Szegedy, Van-

houcke, Ioffe, Shlens & Wojna, 2016), label smoothing turned out to also improve calibration

performance. It consists in replacing the one-hot label in the cross-entropy loss (1.16) by a

“smoothed” label ỹ = (ỹ𝑘)1≤𝑘≤𝐾 :

ỹ𝑘 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − 𝜉 if 𝑘 = 𝑦,

𝜉
𝐾−1

otherwise.

(1.19)

When training with the cross-entropy with one-hot labels, the optimal solution for the logit of

the sample’s class is 𝑧★
𝑦 = +∞. With the smoothed labels, the optimal solution for the logits

becomes:

𝑧★
𝑘 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log((𝐾 − 1) (1 − 𝜉)/𝜉) + 𝑐 if 𝑘 = 𝑦,

𝑐 otherwise,

(1.20)

where 𝑐 ∈ R is an arbitrary constant (He et al., 2019). In other words, the probabilities are not

pushed indefinitely towards the vertices of the probability simplex during the training, which

obviously results in better calibration.

1.3.4 Explicit confidence penalty

Another method to avoid over-confident predictions is to directly penalize the negative entropy

of the model’s predictions (Pereyra, Tucker, Chorowski, Kaiser & Hinton, 2017). This biases

the model to produce probabilities that are closer to the uniform distribution. The resulting loss

becomes:

L(𝒛, 𝑦) = − log 𝑠𝑦 − 𝜆H(𝒔) = − log 𝑠𝑦 − 𝜆𝒔	 log(𝒔), (1.21)

34

where H is the entropy and 𝜆 ∈ R+ is the weight of the entropic regularization. This method is

closely related to label smoothing as noted in (Pereyra et al., 2017); the difference being the

direction of the Kullback-Leibler (KL) divergence.

1.3.5 Focal loss

Initially proposed to improve recall in binary classification contexts, the focal loss (Lin, Goyal,

Girshick, He & Dollár, 2017) has been observed to improve calibration (Mukhoti et al., 2020).

The focal loss is defined as:

Lfocal(𝒛, 𝑦) = −(1 − 𝑠𝑦)𝛾 log 𝑠𝑦, (1.22)

where 𝛾 is a hyperparameter of the loss. For 𝛾 = 0, we recover the cross-entropy, while higher

values correspond to a loss with a steeper slope when 𝑠𝑦 is close to 0, as shown in Figure 1.2.

This results in a reduction of the magnitude of the logits because the gradient of the loss w.r.t. 𝑠𝑦

is smaller when 𝑠𝑦 is close to 1. Mukhoti et al. further improve the calibration performance of

the focal loss by using a varying value of 𝛾 as a function of the predicted probability 𝑠𝑦:

𝛾(𝑠𝑦) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

5 if 𝑠𝑦 < 0.2,

3 if 𝑠𝑦 ≥ 0.2.

(1.23)

1.3.6 Margin based label smoothing

Recently, Liu et al. (2022a) showed that the label smoothing and focal losses can be viewed as

an approximation of a linear penalty for an equality constraint on the difference of logits. We

define the non-negative logit distance function 𝒅 : R𝐾 → R𝐾+ as:

𝒅(𝒛) = max
𝑘

𝑧𝑘 − 𝒛. (1.24)

35

0 0.2 0.4 0.6 0.8 1
0

2

4

𝑠𝑦

L f
o
ca

l
𝛾 = 0

𝛾 = 0.5

𝛾 = 1

𝛾 = 3

𝛾 = 5

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

𝑠𝑦

𝜕
𝜕
𝑠 𝑦
L f

o
ca

l

Figure 1.2 The focal loss for different values of 𝛾, and the derivative w.r.t. 𝑠𝑦. When

𝛾 = 0, this corresponds to the cross-entropy loss

The label smoothing and focal loss objectives both correspond to a linear penalty for the

constraint 𝒅(𝒛) = 0 (Liu et al., 2022a). However, imposing 𝒅(𝒛) = 0 obviously leads to poor

performance, since it amounts to have the model be a constant function. Therefore, Liu et al.

propose to introduce a margin 𝑚 ∈ R+ in the constraint on the logit distance, resulting in the

following training objective:

minimize
𝜃

LCE(𝑓𝜃 (𝒙), 𝑦) subject to 𝒅(𝑓𝜃 (𝒙)) � 𝑚1𝐾 . (1.25)

Solving this problem in the context of deep neural training is not an easy task, since it involves

hard constraints. Therefore, Liu et al. approximately solve it with a linear penalty with the

following margin based label smoothing (MbLS) loss:

LMbLS(𝒛, 𝑦) = LCE(𝒛, 𝑦) + 𝜆
𝐾∑

𝑘=1

max{0, 𝒅𝑘 (𝒛) − 𝑚)}, (1.26)

where 𝜆 ∈ R+ is the weight of the penalty.

CHAPTER 2

A UNIFYING MUTUAL INFORMATION VIEW OF METRIC LEARNING:
CROSS-ENTROPY VS. PAIRWISE LOSSES

Malik Boudiaf* 1 , Jérôme Rony* 1 , Imtiaz Masud Ziko* 1 , Eric Granger1 , Marco Pedersoli1 ,

Pablo Piantanida2 , Ismail Ben Ayed1

* Equal contribution

1 Systems Engineering Department, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada

2 Laboratoire des Signaux et Systèmes (L2S),

CentraleSupelec-CNRS-Université Paris-Saclay, France

Paper published at the

European Conference on Computer Vision (ECCV), August 2020

Abstract

Recently, substantial research efforts in Deep Metric Learning (DML) focused on designing

complex pairwise-distance losses, which require convoluted schemes to ease optimization, such

as sample mining or pair weighting. The standard cross-entropy loss for classification has been

largely overlooked in DML. On the surface, the cross-entropy may seem unrelated and irrelevant

to metric learning as it does not explicitly involve pairwise distances. However, we provide a

theoretical analysis that links the cross-entropy to several well-known and recent pairwise losses.

Our connections are drawn from two different perspectives: one based on an explicit optimization

insight; the other on discriminative and generative views of the mutual information between

the labels and the learned features. First, we explicitly demonstrate that the cross-entropy is an

upper bound on a new pairwise loss, which has a structure similar to various pairwise losses: it

minimizes intra-class distances while maximizing inter-class distances. As a result, minimizing

the cross-entropy can be seen as an approximate bound-optimization (or Majorize-Minimize)

algorithm for minimizing this pairwise loss. Second, we show that, more generally, minimizing

the cross-entropy is actually equivalent to maximizing the mutual information, to which we

connect several well-known pairwise losses. Furthermore, we show that various standard

38

pairwise losses can be explicitly related to one another via bound relationships. Our findings

indicate that the cross-entropy represents a proxy for maximizing the mutual information – as

pairwise losses do – without the need for convoluted sample-mining heuristics. Our experiments4

over four standard DML benchmarks strongly support our findings. We obtain state-of-the-art

results, outperforming recent and complex DML methods.

2.1 Introduction

The core task of metric learning consists in learning a metric from high-dimensional data,

such that the distance between two points, as measured by this metric, reflects their semantic

similarity. Applications of metric learning include image retrieval, zero-shot learning or person

re-identification, among others. Initial attempts to tackle this problem tried to learn metrics

directly on the input space (Lowe, 1995). Later, the idea of learning suitable embedding was

introduced, with the goal of learning Mahalanobis distances (Xing, Jordan, Russell & Ng, 2003;

Schultz & Joachims, 2004; Goldberger et al., 2005; Weinberger & Saul, 2009; Davis, Kulis, Jain,

Sra & Dhillon, 2007), which corresponds to learning the best linear projection of the input space

onto a lower-dimensional manifold, and using the Euclidean distance as a metric. Building on

the embedding-learning ideas, several papers proposed to learn more complex mappings, either

by kernelization of already existing linear algorithms (Davis et al., 2007), or by using a more

complex hypothesis such as linear combinations of gradient boosted regressions trees (Kedem,

Tyree, Sha, Lanckriet & Weinberger, 2012).

The recent success of deep neural networks at learning complex, nonlinear mappings of high-

dimensional data aligns with the problem of learning a suitable embedding. Following works

on Mahalanobis distance learning, most Deep Metric Learning (DML) approaches are based

on pairwise distances. Specifically, the current paradigm is to learn a deep encoder that maps

points with high semantic similarity close to each other in the embedded space (w.r.t. pairwise

Euclidean or cosine distances). This paradigm concretely translates into pairwise losses that

encourage small distances for pairs of samples from the same class and large distances for

4 Code available at: https://github.com/jeromerony/dml_cross_entropy

39

pairs of samples from different classes. While such formulations seem intuitive, the practical

implementations and optimization schemes for pairwise losses may become cumbersome, and

randomly assembling pairs of samples typically results in slow convergence or degenerate

solutions (Hermans et al., 2017). Hence, research in DML focused on finding efficient ways

to reformulate, generalize and/or improve sample mining and/or sample weighting strategies

over the existing pairwise losses. Popular pairwise losses include triplet loss and its derivatives

(Hermans et al., 2017; Sohn, 2016; Song et al., 2016; Zheng et al., 2019; Ge, 2018), contrastive

loss and its derivatives (Hadsell et al., 2006; Wang et al., 2019b), Neighborhood Component

Analysis and its derivatives (Goldberger et al., 2005; Movshovitz-Attias et al., 2017; Wu et al.,

2018), among others. However, such modifications are often heuristic-based, and come at the

price of increased complexity and additional hyper-parameters, reducing the potential of these

methods in real-world applications. Furthermore, the recent experimental study in (Musgrave

et al., 2020) showed that the improvement brought by an abundant metric learning literature in

the last 15 years is at best marginal when the methods are compared fairly.

Admittedly, the objective of learning a useful embedding of data points intuitively aligns with the

idea of directly acting on the distances between pairs of points in the embedded space. Therefore,

the standard cross-entropy loss, widely used in classification tasks, has been largely overlooked

by the DML community, most likely due to its apparent irrelevance for Metric Learning (Wen

et al., 2016). As a matter of fact, why would anyone use a point-wise prediction loss to enforce

pairwise-distance properties on the embedding space? Even though the cross-entropy was shown

to be competitive for face recognition applications (Liu et al., 2017; Wang et al., 2018b; Wang,

Cheng, Liu & Liu, 2018a), to the best of our knowledge, only one paper empirically observed

competitive results of a normalized, temperature-weighted version of the cross-entropy in the

context of deep metric learning (Zhai & Wu, 2019). However, the authors did not provide any

theoretical insights for these results.

On the surface, the standard cross-entropy loss may seem unrelated to the pairwise losses used

in DML. Here, we provide theoretical justifications that connect directly the cross-entropy to

several well-known and recent pairwise losses. Our connections are drawn from two different

40

perspectives; one based on an explicit optimization insight and the other on mutual-information

arguments. We show that four of the most prominent pairwise metric-learning losses, as well

as the standard cross-entropy, are maximizing a common underlying objective: the Mutual

Information (MI) between the learned embeddings and the corresponding samples’ labels. As

sketched in section 2.2, this connection can be intuitively understood by writing this MI in

two different, but equivalent ways. Specifically, we establish tight links between pairwise

losses and the generative view of this MI. We study the particular case of contrastive loss

(Hadsell et al., 2006), explicitly showing its relation to this MI. We further generalize this

reasoning to other DML losses by uncovering tight relations with contrastive loss. As for

the cross-entropy, we demonstrate that the cross-entropy is an upper bound on an underlying

pairwise loss – on which the previous reasoning can be applied – which has a structure similar

to various existing pairwise losses. As a result, minimizing the cross-entropy can be seen

as an approximate bound-optimization (or Majorize-Minimize) algorithm for minimizing this

pairwise loss, implicitly minimizing intra-class distances and maximizing inter-class distances.

We also show that, more generally, minimizing the cross-entropy is equivalent to maximizing

the discriminative view of the mutual information. Our findings indicate that the cross-entropy

represents a proxy for maximizing the mutual information, as pairwise losses do, without the

need for complex sample-mining and optimization schemes. Our comprehensive experiments

over four standard DML benchmarks (CUB200, Cars-196, Stanford Online Product and In-Shop)

strongly support our findings. We consistently obtained state-of-the-art results, outperforming

many recent and complex DML methods.

In summary, our contributions are:

1. Establishing relations between several pairwise DML losses and a generative view of the

mutual information between the learned features and labels;

2. Proving explicitly that optimizing the standard cross-entropy corresponds to an approximate

bound-optimizer of an underlying pairwise loss;

3. More generally, showing that minimizing the standard cross-entropy loss is equivalent to

maximizing a discriminative view of the mutual information between the features and labels.

41

4. Demonstrating state-of-the-art results with cross-entropy on several DML benchmark

datasets.

2.2 On the two views of the mutual information

Table 2.1 Definition of the random variables and information measures used in this paper

General

Labeled dataset D = {(𝒙𝑖 , 𝑦𝑖)}𝑛
𝑖=1

Input feature space X
Embedded feature space Z ⊂ R𝑑

Label/Prediction space Y ⊂ R𝐾

Euclidean distance 𝐷𝑖 𝑗 =
		𝒛𝑖 − 𝒛 𝑗

		
2

Cosine distance 𝐷cos
𝑖 𝑗 =

𝒛	𝑖 𝒛 𝑗
‖𝒛𝑖 ‖‖𝒛 𝑗 ‖

Model
Encoder 𝜙W : X → Z
Soft-classifier 𝑓𝜃 : Z → [0, 1]𝐾

Random

variables

(RVs)

Data 𝑋 , 𝑌

Embedding 𝑍 |𝑋 ∼ 𝜙W(𝑋)
Prediction 𝑌 |𝑍 ∼ 𝑓𝜃 (𝑍)

Information

measures

Entropy of 𝑌 H(𝑌) � E𝑝𝑌 [− log 𝑝𝑌 (𝑌)]
Conditional entropy of

𝑌 given 𝑍
H(𝑌 |𝑍) � E𝑝𝑌𝑍

[
− log 𝑝𝑌 |𝑍 (𝑌 |𝑍)

]
Cross entropy (CE)

between 𝑌 and 𝑌
H(𝑌 ;𝑌) � E𝑝𝑌

[− log 𝑝𝑌 (𝑌)
]

Conditional CE given 𝑍 H(𝑌 ;𝑌 |𝑍) � E𝑝𝑍𝑌

[
− log 𝑝𝑌 |𝑍 (𝑌 |𝑍)

]
Mutual information

between 𝑍 and 𝑌
I(𝑍;𝑌) � H(𝑌) − H (𝑌 |𝑍)

The Mutual Information (MI) is a well known-measure designed to quantify the amount of

information shared by two random variables. Its formal definition is presented in Table 2.1.

Throughout this work, we will be particularly interested in I(𝑍;𝑌) which represents the MI

between learned features 𝑍 and labels 𝑌 . Due to its symmetry property, the MI can be written in

two ways, which we will refer to as the discriminative view and generative view of MI:

I(𝑍;𝑌) = H(𝑌) − H (𝑌 |𝑍)︸���������������︷︷���������������︸
discriminative view

= H(𝑍) − H (𝑍 |𝑌)︸����������������︷︷����������������︸
generative view

(2.1)

42

While being analytically equivalent, these two views present two different, complementary

interpretations. In order to maximize I(𝑍;𝑌), the discriminative view conveys that the labels

should be balanced (out of our control) and easily identified from the features. On the other

hand, the generative view conveys that the features learned should spread as much as possible in

the feature space, while keeping samples sharing the same class close to each other. Hence, the

discriminative view is more focused on label identification, while the generative view focuses on

more explicitly shaping the distribution of the features learned by the model. Therefore, the MI

enables us to draw links between classification losses (e.g. cross-entropy) and feature-shaping

losses (including all the well-known pairwise metric learning losses).

2.3 Pairwise losses and the generative view of the MI

In this section, we study four pairwise losses used in the DML community: center loss (Wen et al.,

2016), contrastive loss (Hadsell et al., 2006), Scalable Neighbor Component Analysis (SNCA)

loss (Wu et al., 2018) and Multi-Similarity (MS) loss (Wang et al., 2019b). We show that these

losses can be interpreted as proxies for maximizing the generative view of mutual information

I(𝑍;𝑌). We begin by analyzing the specific example of contrastive loss, establishing its tight

link to the MI, and further generalize our analysis to the other pairwise losses (see Table 2.2).

Furthermore, we show that these pairwise metric-learning losses can be explicitly linked to one

another via bound relationships.

2.3.1 The example of contrastive loss

We start by analyzing the representative example of contrastive loss (Hadsell et al., 2006). For a

given margin 𝑚 ∈ R+, this loss is formulated as:

Lcontrast =
1

𝑛

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗=𝑦𝑖

𝐷2
𝑖 𝑗︸������������︷︷������������︸

𝑇contrast

+ 1

𝑛

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗≠𝑦𝑖

[𝑚 − 𝐷𝑖 𝑗]2+︸����������������������︷︷����������������������︸
𝐶contrast

(2.2)

43

where [𝑥]+ = max(0, 𝑥). This loss naturally breaks down into two terms: a tightness part 𝑇contrast

and a contrastive part 𝐶contrast. The tightness part encourages samples from the same class to

be close to each other and form tight clusters. As for the contrastive part, it forces samples

from different classes to stand far apart from one another in the embedded feature space. Let us

analyze these two terms from a mutual-information perspective.

As shown in the next subsection, the tightness part of contrastive loss is equivalent to the

tightness part of the center loss (Wen et al., 2016): 𝑇contrast
c
= 𝑇center = 1

2

∑𝑛
𝑖=1

		𝒛𝑖 − 𝒄𝑦𝑖

		2
, where

𝒄𝑘 = 1
|Z𝑘 |

∑
𝒛∈Z𝑘

𝒛 denotes the mean of feature points from class 𝑘 in embedding space Z
and symbol

c
= denotes equality up to a multiplicative and/or additive constant. Written in this

way, we can interpret 𝑇contrast as a conditional cross entropy between 𝑍 and another random

variable 𝑍̄ , whose conditional distribution given 𝑌 is a standard Gaussian centered around 𝒄𝑌 :

𝑍̄ |𝑌 ∼ N(𝑐𝑌 , 𝐼):
𝑇contrast

c
= H(𝑍; 𝑍̄ |𝑌) = H(𝑍 |𝑌) + D𝐾𝐿 (𝑍 | |𝑍̄ |𝑌) (2.3)

As such, 𝑇contrast is an upper bound on the conditional entropy that appears in the mutual

information:

𝑇contrast ≥ H(𝑍 |𝑌) (2.4)

This bound is tight when 𝑍 |𝑌 ∼ N(𝒄𝑌 , 𝐼). Hence, minimizing 𝑇contrast can be seen as minimizing

H(𝑍 |𝑌), which exactly encourages the encoder 𝜙W to produce low-entropy (=compact) clusters

in the feature space for each given class. Notice that using this term only will inevitably lead to

a trivial encoder that maps all data points in X to a single point in the embedded space Z, hence

achieving a global optimum.

To prevent such a trivial solution, a second term needs to be added. This second term – that we

refer to as the contrastive term – is designed to push each point away from points that have a

different label. In this term, only pairs such that 𝐷𝑖 𝑗 ≤ 𝑚 produce a cost. Given a pair (𝑖, 𝑗), let us

define 𝑥 = 𝐷𝑖 𝑗/𝑚. Given that 𝑥 ∈ [0, 1], one can show the following: 1− 2𝑥 ≤ (1− 𝑥)2 ≤ 1− 𝑥.

44

Using linear approximation (1 − 𝑥)2 ≈ 1 − 2𝑥 (with error at most 𝑥), we obtain:

𝐶contrast
c≈ −2𝑚

𝑛

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗≠𝑦𝑖

𝐷𝑖 𝑗 = −2𝑚

𝑛

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐷𝑖 𝑗 + 2𝑚

𝑛

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗=𝑦𝑖

𝐷𝑖 𝑗 (2.5)

While the second term in Equation 2.5 is redundant with the tightness objective, the first term is

close to the differential entropy estimator proposed in (Wang & Sha, 2011):

Ĥ (𝑍) = 𝑑

𝑛(𝑛 − 1)
𝑛∑

𝑖=1

𝑛∑
𝑗=1

log 𝐷2
𝑖 𝑗

c
=

𝑛∑
𝑖=1

𝑛∑
𝑗=1

log 𝐷𝑖 𝑗 (2.6)

Both terms measure the spread of 𝑍 , even though they present different gradient dynamics. All

in all, minimizing the whole contrastive loss can be seen as a proxy for maximizing the MI

between the labels 𝑌 and the embedded features 𝑍:

Lcontrast =
1

𝑛

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗=𝑦𝑖

(𝐷2
𝑖 𝑗 + 2𝑚𝐷𝑖 𝑗)︸���������������������������︷︷���������������������������︸

∝H(𝑍 |𝑌)

− 2𝑚

𝑛

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐷𝑖 𝑗︸�������������︷︷�������������︸
∝H(𝑍)

∝ −I(𝑍;𝑌) (2.7)

2.3.2 Generalizing to other pairwise losses

A similar analysis can be carried out on other, more recent metric learning losses. More

specifically, they can also be broken down into two parts: a tightness part that minimizes

intra-class distances to form compact clusters, which is related to the conditional entropy

H(𝑍 |𝑌), and a second contrastive part that prevents trivial solutions by maximizing inter-class

distances, which is related to the entropy of features H(𝑍). Note that, in some pairwise losses,

there might be some redundancy between the two terms, i.e., the tightness term also contains

some contrastive subterm, and vice-versa. For instance, the cross-entropy loss is used as the

contrastive part of the center-loss but, as we show in subsection 2.4.2, the cross-entropy, used

alone, already contains both tightness (conditional entropy) and contrastive (entropy) parts.

Table 2.2 presents the split for four DML losses. The rest of the section is devoted to exhibiting

45

Table 2.2 Several well-known and/or recent DML losses broken into a tightness term and

a contrastive term. Minimizing the cross-entropy corresponds to an approximate bound

optimization of PCE

Loss Tightness part ∝ H(𝑍 |𝑌) Contrastive part ∝ H(𝑍)
Center

(Wen et al., 2016)

1

2

𝑛∑
𝑖=1

		𝒛𝑖 − 𝒄𝑦𝑖
		2 −1

𝑛

𝑛∑
𝑖=1

log 𝑝𝑖𝑦𝑖

Contrastive

(Hadsell et al., 2006)

1

𝑛

𝑛∑
𝑖=1

∑
𝑗:𝑦 𝑗=𝑦𝑖

𝐷2
𝑖 𝑗

1

𝑛

𝑛∑
𝑖=1

∑
𝑗:𝑦 𝑗≠𝑦𝑖

[𝑚 − 𝐷𝑖 𝑗]2+

SNCA

(Wu et al., 2018)
−1

𝑛

𝑛∑
𝑖=1

log

[∑
𝑗:𝑦 𝑗=𝑦𝑖

exp
𝐷cos
𝑖 𝑗

𝜎

]
1

𝑛

𝑛∑
𝑖=1

log

[∑
𝑘≠𝑖

exp
𝐷cos
𝑖𝑘

𝜎

]
Multi-Similarity

(Wang et al., 2019b)

1

𝑛

𝑛∑
𝑖=1

1

𝛼
log

[
1 +

∑
𝑗:𝑦 𝑗=𝑦𝑖

𝑒−𝛼(𝐷
cos
𝑖 𝑗 −𝑚)

]
1

𝑛

𝑛∑
𝑖=1

1

𝛽
log

[
1 +

∑
𝑗:𝑦 𝑗≠𝑦𝑖

𝑒𝛽 (𝐷
cos
𝑖 𝑗 −𝑚)

]

PCE

Proposition 2.1
− 1

2𝜆𝑛2

𝑛∑
𝑖=1

∑
𝑗:𝑦 𝑗=𝑦𝑖

𝒛	𝑖 𝒛 𝑗

1

𝑛

𝑛∑
𝑖=1

log

[
𝐾∑
𝑘=1

exp
[

1
𝜆𝑛

𝑛∑
𝑗=1

𝑝 𝑗𝑘 𝒛
	
𝑖 𝒛 𝑗

]]
− 1

2𝐾2𝜆2

𝐾∑
𝑘=1

		𝒄𝑠𝑘		2

the close relationships between several pairwise losses and the tightness and contrastive terms

(i.e. 𝑇 and 𝐶).

Links between losses: In this section, we show that the tightness and contrastive parts of the

pairwise losses in Table 2.2, even though different at first sight, can actually be related to one

another.

Lemma 2.1. Let 𝑇𝐴 denote the tightness part of the loss from method A. Assuming that features

are ℓ2-normalized, and that classes are balanced, the following relations between Center (Wen

et al., 2016), Contrastive (Hadsell et al., 2006), SNCA (Wu et al., 2018) and MS (Wang et al.,

2019b) losses hold:

𝑇SNCA
c≤ 𝑇Center

c
= 𝑇Contrastive

c≤ 𝑇MS (2.8)

Where
c≤ stands for lower than, up to a multiplicative and an additive constant, and c

= stands for

equal to, up to a multiplicative and an additive constant.

46

The detailed proof of Lemma 2.1 is deferred to the supplemental material. As for the contrastive

parts, we show in the supplemental material that both 𝐶SNCA and 𝐶MS are lower bounded by a

common contrastive term that is directly related to H(𝑍̂). We do not mention the contrastive

term of center-loss, as it represents the cross-entropy loss, which is exhaustively studied in

section 2.4.

2.4 Cross-entropy does it all

We now completely change gear to focus on the widely used unary classification loss: cross-

entropy. On the surface, the cross-entropy may seem unrelated to metric-learning losses as it

does not involve pairwise distances. We show that a close relationship exists between these

pairwise losses widely used in deep metric learning and the cross-entropy classification loss.

This link can be drawn from two different perspectives, one is based on an explicit optimization

insight and the other is based on a discriminative view of the mutual information. First, we

explicitly demonstrate that the cross-entropy is an upper bound on a new pairwise loss, which

has a structure similar to all the metric-learning losses listed in Table 2.2, i.e., it contains a

tightness term and a contrastive term. Hence, minimizing the cross-entropy can be seen as an

approximate bound-optimization (or Majorize-Minimize) algorithm for minimizing this pairwise

loss. Second, we show that, more generally, minimization of the cross-entropy is actually

equivalent to maximization of the mutual information, to which we connected various DML

losses. These findings indicate that the cross-entropy represents a proxy for maximizing I(𝑍,𝑌),
just like pairwise losses, without the need for dealing with the complex sample mining and

optimization schemes associated to the latter.

2.4.1 The pairwise loss behind unary cross-entropy

Bound optimization: Given a function 𝑓 (W) that is either intractable or hard to optimize,

bound optimizers are iterative algorithms that instead optimize auxiliary functions (upper bounds

on 𝑓). These auxiliary functions are usually more tractable than the original function 𝑓 . Let 𝑡

47

be the current iteration index, then 𝑎𝑡 is an auxiliary function if:

𝑓 (W) ≤ 𝑎𝑡 (W) ,∀W
𝑓 (W𝑡) = 𝑎𝑡 (W𝑡)

(2.9)

A bound optimizer follows a two-step procedure: first an auxiliary function 𝑎𝑡 is computed, then

𝑎𝑡 is minimized, such that:

W𝑡+1 = arg min
W

𝑎𝑡 (W) (2.10)

This iterative procedure is guaranteed to decrease the original function 𝑓 :

𝑓 (W𝑡+1) ≤ 𝑎𝑡 (W𝑡+1) ≤ 𝑎𝑡 (W𝑡) = 𝑓 (W𝑡) (2.11)

Note that bound optimizers are widely used in machine learning. Examples of well-known

bound optimizers include the concave-convex procedure (CCCP) (Yuille & Rangarajan, 2001),

expectation maximization (EM) algorithms or submodular-supermodular procedures (SSP)

(Narasimhan & Bilmes, 2005). Such optimizers are particularly used in clustering (Tang,

Marin, Ben Ayed & Boykov, 2019) and, more generally, in problems involving latent-variable

optimization.

Pairwise Cross-Entropy: We now prove that minimizing cross-entropy can be viewed as an

approximate bound optimization of a more complex pairwise loss.

Proposition 2.1. Alternately minimizing the cross-entropy lossLCE with respect to the encoder’s

parametersW and the classifier’s weights 𝜃 can be viewed as an approximate bound-optimization

of a Pairwise Cross-Entropy (PCE) loss, which we define as follows:

LPCE = − 1

2𝜆𝑛2

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗=𝑦𝑖

𝒛	𝑖 𝒛 𝑗︸���������������������︷︷���������������������︸
tightness part

+ 1

𝑛

𝑛∑
𝑖=1

log

𝐾∑
𝑘=1

𝑒
1
𝜆𝑛

𝑛∑
𝑗=1

𝑝 𝑗𝑘 𝒛
	
𝑖 𝒛 𝑗 − 1

2𝜆

𝐾∑
𝑘=1

		𝒄𝑠
𝑘

		2

︸���︷︷���︸
contrastive part

(2.12)

Where 𝒄𝑠
𝑘 = 1

𝑛

∑𝑛
𝑖=1 𝑝𝑖𝑘 𝒛𝑖 represents the soft-mean of class 𝑘 , 𝑝𝑖𝑘 represents the softmax

probability of point 𝒛𝑖 belonging to class k, and 𝜆 ∈ R, 𝜆 > 0 depends on the encoder 𝜙W .

48

The full proof of Proposition 2.1 is provided in the supplemental material. We hereby provide a

quick sketch.

Considering the usual softmax parametrization for our model’s predictions 𝑌 , the idea is to

break the cross-entropy loss in two terms, and artificially add and remove the regularization

term 𝜆
2

∑𝐾
𝑘=1 𝜃	𝑘 𝜃𝑘 :

LCE = −1

𝑛

𝑛∑
𝑖=1

𝜃	𝑦𝑖 𝒛𝑖 + 𝜆

2

∑
𝑘

𝜃	𝑘 𝜃𝑘︸���������������������������︷︷���������������������������︸
𝑓1 (𝜃)

+ 1

𝑛

𝑛∑
𝑖=1

log

𝐾∑
𝑘=1

𝑒𝜃	𝑘 𝒛𝑖 − 𝜆

2

𝐾∑
𝑘=1

𝜃	𝑘 𝜃𝑘︸������������������������������������︷︷������������������������������������︸
𝑓2 (𝜃)

(2.13)

By properly choosing 𝜆 ∈ R in Equation 2.13, both 𝑓1 and 𝑓2 become convex functions of 𝜃.

For any class 𝑘 , we then show that the optimal values of 𝜃𝑘 for 𝑓1 and 𝑓2 are proportional to,

respectively, the hard mean 𝒄𝑘 = 1
|Z𝑘 |

∑
𝑖:𝑦𝑖=𝑘 𝒛𝑖 and the soft mean 𝒄𝑠

𝑘 = 1
𝑛

∑𝑛
𝑖=1 𝑝𝑖𝑘 𝒛𝑖 of class 𝑘 .

By plugging-in those optimal values, we can lower bound 𝑓1 and 𝑓2 individually in Equation 2.13

and get the result.

Proposition 2.1 casts a new light on the cross-entropy loss by explicitly relating it to a new

pairwise loss (PCE), following the intuition that the optimal weights 𝜃∗ of the final layer, i.e.,

the linear classifier, are related to the centroids of each class in the embedded feature space Z.

Specifically, finding the optimal classifier’s weight 𝜃∗ for cross-entropy can be interpreted as

building an auxiliary function 𝑎𝑡 (W) = LCE(W, 𝜃∗) on LPCE(W). Subsequently minimizing

cross-entropy w.r.t. the encoder’s weights W can be interpreted as the second step of bound

optimization on LPCE(W). Similarly to other metric learning losses, PCE contains a tightness

part that encourages samples from the same classes to align with one another. In echo to

Lemma 2.1, this tightness term, noted 𝑇PCE, is equivalent, up to multiplicative and additive

constants, to 𝑇center and 𝑇contrast, when the features are assumed to be normalized:

𝑇PCE
c
= 𝑇center

c
= 𝑇contrast (2.14)

49

PCE also contains a contrastive part, divided into two terms. The first pushes all samples away

from one another, while the second term forces soft means 𝑐𝑠
𝑘 far from the origin. Hence,

minimizing the cross-entropy can be interpreted as implicitly minimizing a pairwise loss whose

structure appears similar to the well-established metric-learning losses in Table 2.2.

Simplified Pairwise Cross-Entropy: While PCE brings interesting theoretical insights, the

computation of the parameter 𝜆 at every iteration requires computating the eigenvalues of

a 𝑑 × 𝑑 matrix at every iteration (cf. full proof in supplemental material), which makes

the implementation of PCE difficult in practice. In order to remove the dependence upon

𝜆, one can plug in the same 𝜃 for both 𝑓1 and 𝑓2 in Equation 2.13. We choose to use

𝜃
∗
1
= arg min

𝜃
𝑓1(𝜃) ∝ [𝒄1, ..., 𝒄𝐾]	. This yields a simplified version of PCE, that we call SPCE:

LSPCE = − 1

𝑛2

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗=𝑦𝑖

𝒛	𝑖 𝒛 𝑗︸�������������������︷︷�������������������︸
tightness

+ 1

𝑛

𝑛∑
𝑖=1

log

𝐾∑
𝑘=1

exp
(1

𝑛

∑
𝑗 :𝑦 𝑗=𝑘

𝒛	𝑖 𝒛 𝑗

)
︸������������������������������������︷︷������������������������������������︸

contrastive

(2.15)

SPCE and PCE are similar (the difference is that PCE was derived after plugging in the soft

means instead of hard means in 𝑓2). Contrary to PCE, however, SPCE is easily computable,

and the preliminary experiments we provide in the supplementary material indicate that CE

and SPCE exhibit similar behaviors at training time. Interestingly, our derived SPCE loss has

a form similar to contrastive learning losses in unsupervised representation learning (Oord,

Li & Vinyals, 2018; Tschannen, Djolonga, Rubenstein, Gelly & Lucic, 2020; Chen, Kornblith,

Norouzi & Hinton, 2020).

2.4.2 A discriminative view of mutual information

Lemma 2.2. Minimizing the conditional cross-entropy loss, denoted byH(𝑌 ;𝑌 |𝑍), is equivalent

to maximizing the mutual information I(𝑍;𝑌).

The proof of Lemma 2.2 is provided in the supplementary material. Such result is compelling.

Using the discriminative view of mutual information allows to show that minimizing cross-

50

entropy loss is equivalent to maximizing the mutual information I(𝑍;𝑌). This information

theoretic argument reinforces our conclusion from Proposition 2.1 that cross-entropy and the

previously described metric learning losses are essentially doing the same job.

2.4.3 Then why would cross-entropy work better?

We showed that cross-entropy essentially optimizes the same underlying mutual information

I(𝑍;𝑌) as other DML losses. This fact alone is not enough to explain why the cross-entropy is

able to consistently achieve better results than DML losses as shown in section 2.5. We argue

that the difference is in the optimization process. On the one hand, pairwise losses require

careful sample mining and weighting strategies to obtain the most informative pairs, especially

when considering mini-batches, in order to achieve convergence in a reasonable amount of

time, using a reasonable amount of memory. On the other hand, optimizing cross-entropy is

substantially easier as it only implies minimization of unary terms. Essentially, cross-entropy

does it all without dealing with the difficulties of pairwise terms. Not only it makes optimization

easier, but also it simplifies the implementation, thus increasing its potential applicability in

real-world problems.

2.5 Experiments

2.5.1 Metric

Most methods, especially recent ones, use the cosine distance to compute the recall for the

evaluation. They include ℓ2 normalization of the features in the model (Oh Song, Jegelka,

Rathod & Murphy, 2017; Movshovitz-Attias et al., 2017; Wang, Zhou, Wen, Liu & Lin, 2017;

Opitz, Waltner, Possegger & Bischof, 2017; Ge, 2018; Yuan, Yang & Zhang, 2017; Xuan,

Stylianou & Pless, 2020; Zhai & Wu, 2019; Wang et al., 2019b; Sanakoyeu, Tschernezki,

Buchler & Ommer, 2019; Xuan, Souvenir & Pless, 2018), which makes cosine and Euclidean

distances equivalent. Computing cosine similarity is also more memory efficient and typically

leads to better results (Schroff, Kalenichenko & Philbin, 2015). For these reasons, the Euclidean

51

distance on non normalized features has rarely been used for both training and evaluation. In

our experiments, ℓ2-normalization of the features during training actually hindered the final

performance, which might be explained by the fact that we add a classification layer on top of

the feature extractor. Thus, we did not ℓ2-normalize the features during training and reported the

recall with both Euclidean and cosine distances.

2.5.2 Datasets

Table 2.3 Summary of the datasets used for evaluation in metric learning

Name Objects Categories Images

Caltech-UCSD Birds-200-2011 (CUB) Birds 200 11 788

Cars Dataset Cars 196 16 185

Stanford Online Products (SOP) House furniture 22 634 120 053

In-shop Clothes Retrieval Clothes 7 982 52 712

Four datasets are commonly used in metric learning to evaluate the performances. These datasets

are summarized in Table 2.3. CUB (Wah, Branson, Welinder, Perona & Belongie, 2011), Cars

(Krause, Stark, Deng & Fei-Fei, 2013) and SOP (Song et al., 2016) datasets are divided into

train and evaluation splits. For the evaluation, the recall is computed between each sample of the

evaluation set and the rest of the set. In-Shop (Liu, Luo, Qiu, Wang & Tang, 2016) is divided

into a query and a gallery set. The recall is computed between each sample of the query set and

the whole gallery set.

2.5.3 Training specifics

2.5.3.1 Model architecture and pre-training

In the metric learning literature, several architectures have been used, which historically

correspond to the state-of-the-art image classification architectures on ImageNet (Deng et al.,

2009), with an additional constraint on model size (i.e., the ability to train on one or two GPUs

in a reasonable time). These include GoogLeNet (Szegedy et al., 2015) as in (Kim, Goyal,

52

Chawla, Lee & Kwon, 2018), BatchNorm-Inception (Szegedy et al., 2016) as in (Wang et al.,

2019b) and ResNet-50 (He, Zhang, Ren & Sun, 2016b) as in (Xuan et al., 2020). They have

large differences in classification performances on ImageNet, but the impact on performances

over DML benchmarks has rarely been studied in controlled experiments. As this is not the

focus of our paper, we use ResNet-50 for our experiments. We concede that one may obtain

better performances by modifying the architecture (e.g., reducing model stride and performing

multi-level fusion of features). Here, we limit our comparison to standard architectures. Our

implementation uses the PyTorch (Paszke et al., 2019) library, and initializes the ResNet-50

model with weights pre-trained on ImageNet.

2.5.3.2 Sampling

To the best of our knowledge, all DML papers – including (Zhai & Wu, 2019) – use a form of

pairwise sampling to ensure that, during training, each mini-batch contains a fixed number of

classes and samples per class (e.g. mini-batch size of 75 with 3 classes and 25 samples per class

in (Zhai & Wu, 2019)). Deviating from that, we use the common random sampling among all

samples (as in most classification training schemes) and set the mini-batch size to 128 in all

experiments (contrary to (Wang et al., 2019b) in which the authors use a mini-batch size of 80

for CUB, 1 000 for SOP and did not report for Cars and In-Shop).

2.5.3.3 Data Augmentation

As is common in training deep learning models, data augmentation improves the final perfor-

mances of the methods. For CUB, the images are first resized so that their smallest side has a

length of 256 (i.e., keeping the aspect ratio) while for Cars, SOP and In-Shop, the images are

resized to 256 × 256. Then a patch is extracted at a random location and size, and resized to

224 × 224. For CUB and Cars, we found that random jittering of the brightness, contrast and

saturation slightly improves the results. All of the implementation details can be found in the

publicly available code.

53

2.5.3.4 Cross-entropy

The focus of our experiments is to show that, with careful tuning, it is possible to obtain similar

or better performance than most recent DML methods, while using only the cross-entropy loss.

To train with the cross-entropy loss, we add a linear classification layer (with bias) on top of the

feature extraction – similar to many classification models – which produces logits for all the

classes present in the training set. Both the weights and biases of this classification layer are

initialized to 0. We also add dropout with a probability of 0.5 before this classification layer. To

further reduce overfitting, we use label smoothing for the target probabilities of the cross-entropy.

We set the probability of the true class to 1 − 𝜖 and the probabilities of the other classes to 𝜖
𝐾−1

with 𝜖 = 0.1 in all our experiments.

2.5.3.5 Optimizer

In most DML papers, the hyper-parameters of the optimizer are the same for Cars, SOP and

In-Shop whereas, for CUB, the methods typically use a smaller learning rate. In our experiments,

we found that the best results were obtained by tuning the learning rate on a per dataset basis.

In all experiments, the models are trained with SGD with Nesterov acceleration and a weight

decay of 0.0005, which is applied to convolution and fully-connected layers’ weights (but not

to biases) as in (Jia et al., 2018). For CUB and Cars, the learning rate is set to 0.02 and 0.05

respectively, with 0 momentum. For both SOP and In-Shop, the learning rate is set to 0.003

with a momentum of 0.99.

2.5.3.6 Batch normalization

Following (Wang et al., 2019b), we freeze all the batch normalization layers in the feature

extractor. For Cars, SOP and In-Shop, we found that adding batch normalization – without

scaling and bias – on top of the feature extractor improves our final performance and reduces the

gap between ℓ2 and cosine distances when computing the recall. On CUB, however, we obtained

the best recall without this batch normalization.

54

2.5.4 Results

Results for the experiments are reported in Table 2.4. We also report the architecture used in the

experiments as well as the distance used in the evaluation to compute the recall. ℓ2 refers to the

Euclidean distance on non normalized features while cos refers to either the cosine distance or

the Euclidean distance on ℓ2-normalized features, both of which are equivalent.

On all datasets, we report state-of-the-art results except on Cars, where the only method achieving

similar recall uses cross-entropy for training. We also notice that, contrary to common beliefs,

using Euclidean distance can actually be competitive as it also achieves near state-of-the-art

results on all four datasets. These results clearly highlight the potential of cross-entropy for

metric learning, and confirm that this loss can achieve the same objective as pairwise losses.

2.6 Conclusion

Throughout this paper, we revealed non-obvious relations between the cross-entropy loss, widely

adopted in classification tasks, and pairwise losses commonly used in DML. These relations were

drawn under two different perspectives. First, cross-entropy minimization was shown equivalent

to an approximate bound-optimization of a pairwise loss, introduced as Pairwise Cross-Entropy

(PCE), which appears similar in structure to already existing DML losses. Second, adopting

a more general information theoretic view of DML, we showed that both pairwise losses and

cross-entropy were, in essence, maximizing a common mutual information I(𝑍̂ , 𝑌) between the

embedded features and the labels. This connection becomes particularly apparent when writing

mutual information in both its generative and discriminative views. Hence, we argue that most of

the differences in performance observed in previous works come from the optimization process

during training. Cross-entropy contains only unary terms, while traditional DML losses are

based on pairwise-term optimization, which requires substantially more tuning (e.g. mini-batch

size, sampling strategy, pair weighting). While we acknowledge that some losses have better

properties than others regarding optimization, we empirically showed that the cross-entropy loss

was also able to achieve state-of-the-art results when fairly tuned, highlighting the fact that most

55

Table 2.4 Performance on CUB200, Cars-196, SOP and In-Shop datasets. 𝑑 refers to the

distance used to compute the recall when evaluating

Method 𝑑 Architecture Recall at

C
al

te
ch

-U
C

S
D

B
ir

d
s-

2
0
0
-2

0
1
1

1 2 4 8 16 32

47.2 58.9 70.2 80.2 89.3 93.2

49.2 61.9 67.9 81.9 - -

57.1 68.8 78.7 86.5 92.5 95.5

60.6 71.5 79.8 87.4 – –

60.7 72.4 81.9 89.2 93.7 96.8

63.9 75.0 83.1 89.7 – –

64.9 75.3 83.5 – – –

65.3 76.7 85.4 91.8 – –

65.7 77.0 86.6 91.2 95.0 97.3

65.9 76.6 84.4 90.6 – –

67.6 78.1 85.6 91.1 94.7 97.2

69.2 79.2 86.9 91.6 95.0 97.3

Lifted Structure (Song et al., 2016) ℓ2 GoogLeNet

Proxy-NCA (Movshovitz-Attias et al., 2017) cos BN-Inception

HTL (Ge, 2018) cos GoogLeNet

ABE (Kim et al., 2018) cos GoogLeNet

HDC (Yuan et al., 2017) cos GoogLeNet

DREML (Xuan et al., 2018) cos ResNet-18

EPSHN (Xuan et al., 2020) cos ResNet-50

NormSoftmax (Zhai & Wu, 2019) cos ResNet-50

Multi-Similarity (Wang et al., 2019b) cos BN-Inception

D&C (Sanakoyeu et al., 2019) cos ResNet-50

Cross-Entropy
ℓ2 ResNet-50
cos

S
ta

n
fo

rd
C

ar
s

1 2 4 8 16 32

49.0 60.3 72.1 81.5 89.2 92.8

73.2 82.4 86.4 88.7 – –

81.4 88.0 92.7 95.7 97.4 99.0

82.7 89.3 93.0 – – –

83.8 89.8 93.6 96.2 97.8 98.9

84.1 90.4 94.0 96.5 98.0 98.9

84.6 90.7 94.1 96.5 – –

85.2 90.5 94.0 96.1 – –

86.0 91.7 95.0 97.2 – –

89.3 94.1 96.4 98.0 – –

89.1 93.7 96.5 98.1 99.0 99.4

89.3 93.9 96.6 98.4 99.3 99.7

Lifted Structure (Song et al., 2016) ℓ2 GoogLeNet

Proxy-NCA (Movshovitz-Attias et al., 2017) cos BN-Inception

HTL (Yuan et al., 2017) cos GoogLeNet

EPSHN (Xuan et al., 2020) cos ResNet-50

HDC (Yuan et al., 2017) cos GoogLeNet

Multi-Similarity (Wang et al., 2019b) cos BN-Inception

D&C (Sanakoyeu et al., 2019) cos ResNet-50

ABE (Kim et al., 2018) cos GoogLeNet

DREML (Xuan et al., 2018) cos ResNet-18

NormSoftmax (Zhai & Wu, 2019) cos ResNet-50

Cross-Entropy
ℓ2 ResNet-50
cos

S
ta

n
fo

rd
O

n
li
n
e

P
ro

d
u
ct

1 10 100 1000

62.1 79.8 91.3 97.4

70.1 84.9 93.2 97.8

74.8 88.3 94.8 98.4

75.9 88.4 94.9 98.1

76.3 88.4 94.8 98.2

78.2 90.5 96.0 98.7

78.3 90.7 96.3 –

79.5 91.5 96.7 –

80.8 91.2 95.7 98.1

81.1 91.7 96.3 98.8

Lifted Structure (Song et al., 2016) ℓ2 GoogLeNet

HDC (Yuan et al., 2017) cos GoogLeNet

HTL (Ge, 2018) cos GoogLeNet

D&C (Sanakoyeu et al., 2019) cos ResNet-50

ABE (Kim et al., 2018) cos GoogLeNet

Multi-Similarity (Wang et al., 2019b) cos BN-Inception

EPSHN (Xuan et al., 2020) cos ResNet-50

NormSoftmax (Zhai & Wu, 2019) cos ResNet-50

Cross-Entropy
ℓ2 ResNet-50
cos

In
-S

h
o
p

C
lo

th
es

R
et

ri
ev

al

1 10 20 30 40 50

62.1 84.9 89.0 91.2 92.3 93.1

78.4 93.7 95.8 96.7 – –

80.9 94.3 95.8 97.2 97.4 97.8

85.7 95.5 96.9 97.5 – 98.0

87.3 96.7 97.9 98.2 98.5 98.7

87.8 95.7 96.8 – – –

89.4 97.8 98.7 99.0 – –

89.7 97.9 98.5 98.8 99.1 99.2

90.6 97.8 98.5 98.8 98.9 99.0

90.6 98.0 98.6 98.9 99.1 99.2

HDC (Yuan et al., 2017) cos GoogLeNet

DREML (Xuan et al., 2018) cos ResNet-18

HTL (Ge, 2018) cos GoogLeNet

D&C (Sanakoyeu et al., 2019) cos ResNet-50

ABE (Kim et al., 2018) cos GoogLeNet

EPSHN (Xuan et al., 2020) cos ResNet-50

NormSoftmax (Zhai & Wu, 2019) cos ResNet-50

Multi-Similarity (Wang et al., 2019b) cos BN-Inception

Cross-Entropy
ℓ2 ResNet-50
cos

56

improvements have come from enhanced training schemes (e.g. data augmentation, learning

rate policies, batch normalization freeze) rather than the intrinsic properties of pairwise losses.

We strongly advocate that cross-entropy should be carefully tuned to be compared against as a

baseline in future works.

CHAPTER 3

DECOUPLING DIRECTION AND NORM FOR EFFICIENT GRADIENT-BASED ℓ2

ADVERSARIAL ATTACKS AND DEFENSES

Jérôme Rony*1 , Luiz G. Hafemann*1 , Luiz S. Oliveira2 , Ismail Ben Ayed1 , Robert Sabourin1

, Eric Granger1

* Equal contribution
1 Systems Engineering Department, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada

2 Department of Informatics, Federal University of Parana,

Curitiba, PR, Brazil

Paper published at the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

Abstract

Research on adversarial examples in computer vision tasks has shown that small, often

imperceptible changes to an image can induce misclassification, which has security implications

for a wide range of image processing systems. Considering ℓ2 norm distortions, the Carlini

and Wagner attack is presently the most effective white-box attack in the literature. However,

this method is slow since it performs a line-search for one of the optimization terms, and often

requires thousands of iterations. In this paper, an efficient approach is proposed to generate

gradient-based attacks that induce misclassifications with low ℓ2 norm, by decoupling the

direction and the norm of the adversarial perturbation that is added to the image. Experiments

conducted on the MNIST, CIFAR-10 and ImageNet datasets indicate that our attack achieves

comparable results to the state-of-the-art (in terms of ℓ2 norm) with considerably fewer iterations

(as few as 100 iterations), which opens the possibility of using these attacks for adversarial

training. Models trained with our attack achieve state-of-the-art robustness against white-box

gradient-based ℓ2 attacks on the MNIST and CIFAR-10 datasets, outperforming the Madry

defense when the attacks are limited to a maximum norm.

58

3.1 Introduction

Deep neural networks have achieved state-of-the-art performances on a wide variety of computer

vision applications, such as image classification, object detection, tracking, and activity

recognition (Gu et al. (2018)). In spite of their success in addressing these challenging tasks,

they are vulnerable to active adversaries. Most notably, they are susceptible to adversarial

examples5, in which adding small perturbations to an image, often imperceptible to a human

observer, causes a misclassification (Biggio & Roli (2018); Szegedy et al. (2014)).

Recent research on adversarial examples developed attacks that allow for evaluating the robustness

of models, as well as defenses against these attacks. Attacks have been proposed to achieve

different objectives, such as minimizing the amount of noise that induces misclassification

(Carlini & Wagner (2017); Szegedy et al. (2014)), or being fast enough to be incorporated into

the training procedure (Goodfellow et al. (2015); Tramèr et al. (2018)). In particular, considering

the case of obtaining adversarial examples with lowest perturbation (measured by its ℓ2 norm),

the state-of-the-art attack has been proposed by Carlini and Wagner (C&W) (Carlini & Wagner

(2017)). While this attack generates adversarial examples with low ℓ2 noise, it also requires

a high number of iterations, which makes it impractical for training a robust model to defend

against such attacks. In contrast, one-step attacks are fast to generate, but using them for training

does not increase model robustness on white-box scenarios, with full knowledge of the model

under attack (Tramèr et al. (2018)). Developing an attack that finds adversarial examples with

low noise in few iterations would enable adversarial training with such examples, which could

potentially increase model robustness against white-box attacks.

Developing attacks that minimize the norm of the adversarial perturbations requires optimizing

two objectives: 1) obtaining a low ℓ2 norm, while 2) inducing a misclassification. With the

current state-of-the-art method, C&W (Carlini & Wagner (2017)), this is addressed by using a

two-term loss function, with the weight balancing the two competing objectives found via an

5 This also affects other machine learning classifiers, but we restrict our analysis to CNNs, that are most

commonly used in computer vision tasks.

59

expensive line search, requiring a large number of iterations. This makes the evaluation of a

system’s robustness very slow and it is unpractical for adversarial training.

In this paper, we propose an efficient gradient-based attack called Decoupled Direction and

Norm6 (DDN) that induces misclassification with a low ℓ2 norm. This attack optimizes the

cross-entropy loss, and instead of penalizing the norm in each iteration, projects the perturbation

onto a ℓ2-sphere centered at the original image. The change in norm is then based on whether

the sample is adversarial or not. Using this approach to decouple the direction and norm of the

adversarial noise leads to an attack that needs significantly fewer iterations, achieving a level of

performance comparable to state-of-the-art, while being amenable to be used for adversarial

training.

A comprehensive set of experiments was conducted using the MNIST, CIFAR-10 and ImageNet

datasets. Our attack obtains comparable results to the state-of-the-art while requiring much

fewer iterations (~100 times less than C&W). For untargeted attacks on the ImageNet dataset,

our attack achieves better performance than the C&W attack, taking less than 10 minutes to

attack 1 000 images, versus over 35 hours to run the C&W attack.

Results for adversarial training on the MNIST and CIFAR-10 datasets indicate that DDN can

achieve state-of-the-art robustness compared to the Madry defense (Madry et al. (2018)). These

models require that attacks use a higher average ℓ2 norm to induce misclassifications. They also

obtain a higher accuracy when the ℓ2 norm of the attacks is bounded. On MNIST, if the attack

norm is restricted to 1.5, the model trained with the Madry defense achieves 67.3% accuracy,

while our model achieves 87.2% accuracy. On CIFAR-10, for attacks restricted to a norm of 0.5,

the Madry model achieves 56.1% accuracy, compared to 67.6% in our model.

3.2 Related Work

In this section, we formalize the problem of adversarial examples, the threat model, and review

the main attack and defense methods proposed in the literature.

6 Code available at https://github.com/jeromerony/fast_adversarial.

60

3.2.1 Problem Formulation

𝒙 𝜹 𝒙̃ = 𝒙 + 𝜹

Figure 3.1 Example of an adversarial image on the ImageNet dataset. The sample 𝒙 is

recognized as a Curly-coated retriever. Adding a perturbation 𝜹 we obtain an adversarial

image 𝒙̃ that is classified as a microwave (with ‖𝜹‖2 = 0.7)

Let 𝒙 be an sample from the input space X, with label 𝑦true from a set of possible labels

Y. Let 𝐷 (𝒙1, 𝒙2) be a distance measure that compares two input samples (ideally capturing

their perceptual similarity). 𝑃(𝑦 |𝒙, 𝜃) = 𝑓 (𝒙; 𝜃)𝑦 is a model (classifier) parameterized by 𝜃.

An example 𝒙̃ ∈ X is called adversarial (for non-targeted attacks) against the classifier if

arg max 𝑗 𝑃(𝑦 𝑗 |𝒙̃, 𝜃) ≠ 𝑦true and 𝐷 (𝒙, 𝒙̃) ≤ 𝜖 , for a given maximum perturbation 𝜖 . A targeted

attack with a given desired class 𝑦target further requires that arg max 𝑗 𝑃(𝑦 𝑗 |𝒙̃, 𝜃) = 𝑦target. We

denote as 𝐽 (𝒙, 𝑦, 𝜃), the cross-entropy between the prediction of the model for an input 𝒙 and a

label 𝑦. Figure 3.1 illustrates a targeted attack on the ImageNet dataset, against an Inception v3

model (Szegedy et al., 2016).

In this paper, attacks are considered to be generated by a gradient-based optimization procedure,

restricting our analysis to differentiable classifiers. These attacks can be formulated either to

obtain a minimum distortion 𝐷 (𝒙, 𝒙̃), or to obtain the worst possible loss in a region 𝐷 (𝒙, 𝒙̃) ≤ 𝜖 .

As an example, consider that the distance function is a norm (e.g. ℓ0, ℓ2 or 𝐿∞), and the inputs

are images (where each pixel’s value is constrained between 0 and 𝑀). In a white-box scenario,

the optimization procedure to obtain an non-targeted attack with minimum distortion 𝜹 can be

61

formulated as:

minimize
𝜹

‖𝜹‖ subject to arg max
𝑗

𝑃(𝑦 𝑗 |𝒙 + 𝜹, 𝜃) ≠ 𝑦true

0 ≤ 𝒙 + 𝜹 ≤ 𝑀

(3.1)

With a similar formulation for targeted attacks, by changing the constraint to be equal to the

target class.

If the objective is to obtain the worst possible loss for a given maximum noise of norm 𝜖 , the

problem can be formulated as:

minimize
𝜹

𝑃(𝑦true |𝒙 + 𝜹, 𝜃) subject to ‖𝜹‖ ≤ 𝜖

0 ≤ 𝒙 + 𝜹 ≤ 𝑀

(3.2)

With a similar formulation for targeted attacks, by maximizing 𝑃(𝑦target |𝒙 + 𝜹, 𝜃).

We focus on gradient-based attacks that optimize the ℓ2 norm of the distortion. While this

distance does not perfectly capture perceptual similarity, it is widely used in computer vision

to measure similarity between images (e.g. comparing image compression algorithms, where

Peak Signal-to-Noise Ratio is used, which is directly related to the ℓ2 measure). A differentiable

distance measure that captures perceptual similarity is still an open research problem.

3.2.2 Threat Model

In this paper, a white-box scenario is considered, also known as a Perfect Knowledge scenario

(Biggio & Roli (2018)). In this scenario, we consider that an attacker has perfect knowledge of

the system, including the neural network architecture and the learned weights 𝜃. This threat

model serves to evaluate system security under the worst case scenario. Other scenarios can

be conceived to evaluate attacks under different assumptions on the attacker’s knowledge, for

instance, no access to the trained model, no access to the same training set, among others. These

scenarios are referred as black-box or Limited-Knowledge (Biggio & Roli (2018)).

62

3.2.3 Attacks

Several attacks were proposed in the literature, either focusing on obtaining adversarial examples

with a small 𝜹 (Equation 3.1) (Carlini & Wagner (2017); Moosavi-Dezfooli et al. (2016); Szegedy

et al. (2014)), or on obtaining adversarial examples in one (or few) steps for adversarial training

(Goodfellow et al. (2015); Kurakin et al. (2017a)).

L-BFGS. Szegedy et al. (2014) proposed an attack for minimally distorted examples (Equa-

tion 3.1), by considering the following approximation:

minimize
𝜹

𝐶 ‖𝜹‖2 + log 𝑃(𝑦true |𝒙 + 𝜹, 𝜃) subject to 0 ≤ 𝒙 + 𝜹 ≤ 𝑀 (3.3)

where the constraint 𝒙 + 𝜹 ∈ [0, 𝑀]𝑛 was addressed by using a box-constrained optimizer

(L-BFGS: Limited memory Broyden–Fletcher–Goldfarb–Shanno), and a line-search to find an

appropriate value of 𝐶.

FGSM. Goodfellow et al. (2015) proposed the Fast Gradient Sign Method, a one-step method

that could generate adversarial examples. The original formulation was developed considering

the 𝐿∞ norm, but it has also been used to generate attacks that focus on the ℓ2 norm as follows:

𝒙̃ = 𝒙 + 𝜖
∇𝒙𝐽 (𝒙, 𝑦, 𝜃)
‖∇𝒙𝐽 (𝒙, 𝑦, 𝜃)‖ (3.4)

where the constraint 𝒙̃ ∈ [0, 𝑀]𝑛 was addressed by simply clipping the resulting adversarial

example.

DeepFool. This method considers a linear approximation of the model, and iteratively refines

an adversary example by choosing the point that would cross the decision boundary under

this approximation. This method was developed for untargeted attacks, and for any 𝐿𝑝 norm

(Moosavi-Dezfooli et al. (2016)).

C&W. Similarly to the L-BFGS method, the C&W ℓ2 attack (Carlini & Wagner (2017))

minimizes two criteria at the same time – the perturbation that makes the sample adversarial

63

(e.g. misclassified by the model), and the ℓ2 norm of the perturbation. Instead of using a

box-constrained optimization method, they propose changing variables using the tanh function,

and instead of optimizing the cross-entropy of the adversarial example, they use a difference

between logits. For a targeted attack aiming to obtain class 𝑡, with 𝑍 denoting the model output

before the softmax activation (logits), it optimizes:

minimize
𝜹

‖𝒙̃ − 𝒙‖2
2 + 𝐶𝑔(𝒙̃)

where 𝑔(𝒙̃) = max(max
𝑖≠𝑡

{ 𝑓 (𝒙̃)𝑖} − 𝑓 (𝒙̃)𝑡 ,−𝜅)

and 𝒙̃ =
1

2
(tanh(arctanh(𝒙) + 𝜹) + 1)

(3.5)

where 𝑓 (𝒙̃)𝑖 denotes the logit corresponding to the 𝑖-th class. By increasing the confidence param-

eter 𝜅, the adversarial sample will be misclassified with higher confidence. To use this attack in the

untargeted setting, the definition of 𝑔 is modified to 𝑔(𝒙̃) = max(𝑓 (𝒙̃)𝑦 −max𝑖≠𝑦{ 𝑓 (𝒙̃)𝑖},−𝜅)
where 𝑦 is the original label.

3.2.4 Defenses

Developing defenses against adversarial examples is an active area of research. To some

extent, there is an arms race on developing defenses and attacks that break them. Goodfellow

et al. proposed a method called adversarial training (Goodfellow et al. (2015)), in which

the training data is augmented with FGSM samples. This was later shown not to be robust

against iterative white-box attacks, nor black-box single-step attacks (Tramèr et al. (2018)).

Papernot, McDaniel, Wu, Jha & Swami (2016b) proposed a distillation procedure to train robust

networks, which was shown to be easily broken by iterative white-box attacks (Carlini & Wagner

(2017)). Other defenses involve obfuscated gradients (Athalye et al. (2018)), where models either

incorporate non-differentiable steps (such that the gradient cannot be computed) (Buckman,

Roy, Raffel & Goodfellow (2018); Guo, Rana, Cisse & van der Maaten (2018)), or randomized

elements (to induce incorrect estimations of the gradient) (Dhillon et al. (2018); Xie, Wang,

Zhang, Ren & Yuille (2018)). These defenses were later shown to be ineffective when attacked

64

with Backward Pass Differentiable Approximation (BPDA) (Athalye et al. (2018)), where

the actual model is used for forward propagation, and the gradient in the backward-pass

is approximated. The Madry defense (Madry et al. (2018)), which considers a worst-case

optimization, is the only defense that has been shown to be somewhat robust (on the MNIST

and CIFAR-10 datasets). Below we provide more detail on the general approach of adversarial

training, and the Madry defense.

Adversarial Training. This defense considers augmenting the training objective with adversarial

examples (Goodfellow et al. (2015)), with the intention of improving robustness. Given a model

with loss function 𝐽 (𝒙, 𝑦, 𝜃), training is augmented as follows:

𝐽 (𝒙, 𝑦, 𝜃) = 𝛼𝐽 (𝒙, 𝑦, 𝜃) + (1 − 𝛼)𝐽 (𝒙̃, 𝑦, 𝜃) (3.6)

where 𝒙̃ is an adversarial sample. In (Goodfellow et al. (2015)), the FGSM is used to generate

the adversarial example in a single step. Tramèr et al. (2018) extended this method, showing

that generating one-step attacks using the model under training introduced an issue. The model

can converge to a degenerate solution where its gradients produce “easy” adversarial samples,

causing the adversarial loss to have a limited influence on the training objective. They proposed

a method in which an ensemble of models is also used to generate the adversarial examples 𝒙̃.

This method displays some robustness against black-box attacks using surrogate models, but

does not increase robustness in white-box scenarios.

Madry Defense. Madry et al. (2018) proposed a saddle point optimization problem, in which

we optimize for the worst case:

minimize
𝜃

𝑝(𝜃)

where 𝑝(𝜃) = E(𝒙,𝑦)∼D
[
max
𝜹∈S

𝐽 (𝒙 + 𝜹, 𝑦, 𝜃)] (3.7)

where D is the training set, and S indicates the feasible region for the attacker (e.g. S = {𝜹 :

‖𝜹‖ < 𝜖}). They show that Equation 3.7 can be optimized by stochastic gradient descent –

during each training iteration, it first finds the adversarial example that maximizes the loss

65

around the current training sample 𝑥 (i.e. maximizing the loss over 𝜹, which is equivalent to

minimizing the probability of the correct class as in Equation 3.2), and then, it minimizes the

loss over 𝜃. Experiments by Athalye et al. (2018) show that it was the only defense not broken

under white-box attacks.

3.3 Decoupled Direction and Norm Attack

−12 −8 −4 0 4 8
log2(C)

0

50

100

150

200

#
E
x
am

p
le
s

Baseline

Adv trained

Figure 3.2 Histogram of the best 𝐶 found by the

C&W algorithm with 9 search steps on the MNIST

dataset

From the problem definition, we see that finding the worst adversary in a fixed region is an

easier task. In Equation 3.2, both constraints can be expressed in terms of 𝜹, and the resulting

equation can be optimized using projected gradient descent. Finding the closest adversarial

example is harder: Equation 3.1 has a constraint on the prediction of the model, which cannot be

addressed by a simple projection. A common approach, which is used by Szegedy et al. (2014)

and Carlini & Wagner (2017) is to approximate the constrained problem in Equation 3.1 by an

unconstrained one, replacing the constraint with a penalty. This amounts to jointly optimizing

both terms, the norm of 𝜹 and a classification term (see Eq. 3.3 and 3.5), with a sufficiently high

parameter 𝐶. In the general context of constrained optimization, such a penalty-based approach

is a well known general principle (Jensen & Bard (2002)). While tackling an unconstrained

66

problem is convenient, penalty methods have well-known difficulties in practice. The main

difficulty is that one has to choose parameter 𝐶 in an ad hoc way. For instance, if 𝐶 is too small

in Equation 3.5, the example will not be adversarial; if it is too large, this term will dominate,

and result in an adversarial example with more noise. This can be particularly problematic when

optimizing with a low number of steps (e.g. to enable its use in adversarial training). Figure 3.2

plots a histogram of the values of 𝐶 that were obtained by running the C&W attack on the

MNIST dataset. We can see that the optimum 𝐶 varies significantly among different examples,

ranging from 2−11 to 25. We also see that the distribution of the best constant 𝐶 changes whether

we attack a model with or without adversarial training (adversarially trained models often require

higher 𝐶). Furthermore, penalty methods typically result in slow convergence (Jensen & Bard

(2002)).

Algorithm 3.1 Decoupled Direction and Norm Attack

Input: 𝑥: original image to be attacked

Input: 𝑦: true label (untargeted) or target label (targeted)

Input: 𝐾: number of iterations

Input: 𝛼: step size

Input: 𝛾: factor to modify the norm in each iteration

1 Initialize 𝜹0 ← 0, 𝒙̃0 ← 𝒙, 𝜖0 ← 1

2 If targeted attack: 𝑚 ← −1 else 𝑚 ← +1

3 for 𝑘 ← 1 to 𝐾 do
4 𝒈 ← 𝑚∇𝒙̃𝑘−1

𝐽 (𝒙̃𝑘−1, 𝑦, 𝜃)
5 𝒈 ← 𝛼 𝒈

‖𝒈‖2
// Step of size 𝛼 in the direction of 𝑔

6 𝜹𝑘 ← 𝜹𝑘−1 + 𝒈
7 if 𝒙̃𝑘−1 is adversarial then
8 𝜖𝑘 ← (1 − 𝛾)𝜖𝑘−1 // Decrease norm
9 else

10 𝜖𝑘 ← (1 + 𝛾)𝜖𝑘−1 // Increase norm

11 𝒙̃𝑘 ← 𝒙 + 𝜖𝑘
𝜹𝑘

‖𝜹𝑘 ‖2
// Project 𝜹𝑘 onto an 𝜖𝑘-sphere around 𝑥

12 𝒙̃𝑘 ← clip(𝒙̃𝑘 , 0, 1) // Ensure 𝒙̃𝑘 ∈ X
13 end for
14 return 𝒙̃𝑘 that has lowest norm ‖𝒙̃𝑘 − 𝒙‖2 and is adversarial

Given the difficulty of finding the appropriate constant 𝐶 for this optimization, we propose

an algorithm that does not impose a penalty on the ℓ2 norm during the optimization. Instead,

67

a) 𝒙̃𝑘 not adversarial b) 𝒙̃𝑘 adversarial

Figure 3.3 Illustration of an untargeted attack. The shaded area denotes the

region of the input space classified as 𝑦true. In (a), 𝒙̃𝑘 is still not adversarial, and

we increase the norm 𝜖𝑘+1 for the next iteration, otherwise it is reduced in (b). In

both cases, we take a step 𝑔 starting from the current point 𝒙̃, and project back to

an 𝜖𝑘+1-sphere centered at 𝑥

the norm is constrained by projecting the adversarial perturbation 𝜹 on an 𝜖-sphere around the

original image 𝑥. Then, the ℓ2 norm is modified through a binary decision. If the sample 𝑥𝑘 is

not adversarial at step 𝑘 , the norm is increased for step 𝑘 + 1, otherwise it is decreased.

We also note that optimizing the cross-entropy may present two other difficulties. First, the

function is not bounded, which can make it dominate in the optimization of Equation 3.3.

Second, when attacking trained models, often the predicted probability of the correct class for

the original image is very close to 1, which causes the cross entropy to start very low and increase

by several orders of magnitude during the search for an adversarial example. This affects the

norm of the gradient, making it hard to find an appropriate learning rate. C&W address these

issues by optimizing the difference between logits instead of the cross-entropy. In this work, the

issue of it being unbounded does not affect the attack procedure, since the decision to update the

68

norm is done on the model’s prediction (not on the cross-entropy). In order to handle the issue

of large changes in gradient norm, we normalize the gradient to have unit norm before taking a

step in its direction.

The full procedure is described in Algorithm 3.1 and illustrated in Figure 3.3. We start from

the original image 𝑥, and iteratively refine the noise 𝜹𝑘 . In iteration 𝑘 , if the current sample

𝒙̃𝑘 = 𝒙 + 𝜹𝑘 is still not adversarial, we consider a larger norm 𝜖𝑘+1 = (1 + 𝛾)𝜖𝑘 . Otherwise, if

the sample is adversarial, we consider a smaller 𝜖𝑘+1 = (1 − 𝛾)𝜖𝑘 . In both cases, we take a step

𝑔 (step 5 of Algorithm 3.1) from the point 𝒙̃𝑘 (red arrow in Figure 3.3), and project it back

onto an 𝜖𝑘+1-sphere centered at 𝑥 (the direction given by the dashed blue line in Figure 3.3),

obtaining 𝒙̃𝑘+1. Lastly, 𝒙̃𝑘+1 is projected onto the feasible region of the input space X. In the

case of images normalized to [0, 1], we simply clip the value of each pixel to be inside this range

(step 13 of Algorithm 3.1). Besides this step, we can also consider quantizing the image in each

iteration, to ensure the attack is a valid image.

It’s worth noting that, when reaching a point where the decision boundary is tangent to the

𝜖𝑘-sphere, 𝑔 will have the same direction as 𝜹𝑘+1. This means that 𝜹𝑘+1 will be projected on

the direction of 𝜹𝑘 . Therefore, the norm will oscillate between the two sides of the decision

boundary in this direction. Multiplying 𝜖 by 1 + 𝛾 and 1 − 𝛾 will result in a global decrease (on

two steps) of the norm by 1 − 𝛾2, leading to a finer search of the best norm.

3.4 Attack Evaluation

Experiments were conducted on the MNIST, CIFAR-10 and ImageNet datasets, comparing

the proposed attack to the state-of-the-art ℓ2 attacks proposed in the literature: DeepFool

(Moosavi-Dezfooli et al. (2016)) and C&W ℓ2 attack (Carlini & Wagner (2017)). We use the

same model architectures with identical hyperparameters for training as in (Carlini & Wagner

(2017)) for MNIST and CIFAR-10 (see the supplementary material for details). Our base

classifiers obtain 99.44% and 85.51% accuracy on the test sets of MNIST and CIFAR-10,

respectively. For the ImageNet experiments, we use a pre-trained Inception V3 (Szegedy et al.

69

Table 3.1 Performance of our DDN attack compared to C&W and DeepFool attacks on

MNIST, CIFAR-10 and ImageNet in the untargeted scenario

Attack Budget Success Mean ℓ2 Median ℓ2 #Grads Run-time (s)

M
N

IS
T

C&W

4×25 100.0 1.7382 1.7400 100 1.7

1×100 99.4 1.5917 1.6405 100 1.7

9×10 000 100.0 1.3961 1.4121 54 007 856.8

DeepFool 100 75.4 1.9685 2.2909 98 -

DDN

100 100.0 1.4563 1.4506 100 1.5

300 100.0 1.4357 1.4386 300 4.5

1 000 100.0 1.4240 1.4342 1 000 14.9

C
IF

A
R

-1
0 C&W

4×25 100.0 0.1924 0.1541 60 3.0

1×100 99.8 0.1728 0.1620 91 4.6

9×10 000 100.0 0.1543 0.1453 36 009 1 793.2

DeepFool 100 99.7 0.1796 0.1497 25 -

DDN

100 100.0 0.1503 0.1333 100 4.7

300 100.0 0.1487 0.1322 300 14.2

1 000 100.0 0.1480 0.1317 1 000 47.6

Im
ag

eN
et

C&W

4×25 100.0 1.5812 1.3382 63 379.3

1×100 100.0 0.9858 0.9587 48 287.1

9×10 000 100.0 0.4692 0.3980 21 309 127 755.6

DeepFool 100 98.5 0.3800 0.2655 41 -

DDN

100 99.6 0.3831 0.3227 100 593.6

300 100.0 0.3749 0.3210 300 1 779.4

1 000 100.0 0.3617 0.3188 1 000 5 933.6

Table 3.2 Comparison of the DDN attack to the C&W ℓ2

attack on MNIST

Average case Least Likely
Attack Success Mean ℓ2 Success Mean ℓ2

C&W 4×25 96.11 2.8254 69.9 5.0090

C&W 1×100 86.89 2.0940 31.7 2.6062

C&W 9×10 000 100.00 1.9481 100.0 2.5370

DDN 100 100.00 1.9763 100.0 2.6008

DDN 300 100.00 1.9577 100.0 2.5503

DDN 1 000 100.00 1.9511 100.0 2.5348

(2016)), that achieves 22.51% top-1 error on the validation set. Inception V3 takes images of

size 299×299 as input, which are cropped from images of size 342×342.

70

Table 3.3 Comparison of the DDN attack to the C&W ℓ2

attack on CIFAR-10

Average case Least Likely
Attack Success Mean ℓ2 Success Mean ℓ2

C&W 4×25 99.78 0.3247 98.7 0.5060

C&W 1×100 99.32 0.3104 95.8 0.4159

C&W 9×10 000 100.00 0.2798 100.0 0.3905

DDN 100 100.00 0.2925 100.0 0.4170

DDN 300 100.00 0.2887 100.0 0.4090

DDN 1 000 100.00 0.2867 100.0 0.4050

Table 3.4 Comparison of the DDN attack to the C&W ℓ2

attack on ImageNet. For C&W 9×10 000, we report the results

from Carlini & Wagner (2017)

Average case Least Likely
Attack Success Mean ℓ2 Success Mean ℓ2

C&W 4×25 99.13 4.2826 80.6 8.7336

C&W 1×100 96.74 1.7718 66.2 2.2997

C&W 9×10 000 100.00 0.96 100.0 2.22

DDN 100 99.98 1.0260 99.5 1.7074

DDN 300 100.00 0.9021 100.0 1.3634

DDN 1 000 100.00 0.8444 100.0 1.2240

For experiments with DeepFool (Moosavi-Dezfooli et al. (2016)), we used the implementation

from Foolbox (Rauber et al. (2017)), with a budget of 100 iterations. For the experiments with

C&W, we ported the attack (originally implemented on TensorFlow) on PyTorch to evaluate the

models in the frameworks in which they were trained. We use the same hyperparameters from

(Carlini & Wagner (2017)): 9 search steps on C with an initial constant of 0.01, with 10 000

iterations for each search step (with early stopping) - we refer to this scenario as C&W 9×10 000

in the tables. As we are interested in obtaining attacks that require few iterations, we also report

experiments in a scenario where the number of iterations is limited to 100. We consider a

scenario of running 100 steps with a fixed 𝐶 (1×100), and a scenario of running 4 search steps

on 𝐶, of 25 iterations each (4×25). Since the hyperparameters proposed in (Carlini & Wagner

(2017)) were tuned for a larger number of iterations and search steps, we performed a grid search

71

for each dataset, using learning rates in the range [0.01, 0.05, 0.1, 0.5, 1], and 𝐶 in the range

[0.001, 0.01, 0.1, 1, 10, 100, 1 000]. We report the results for C&W with the hyperparameters

that achieve best Median ℓ2. Selected parameters are listed in the supplementary material.

For the experiments using DDN, we ran attacks with budgets of 100, 300 and 1 000 iterations,

in all cases, using 𝜖0 = 1 and 𝛾 = 0.05. The initial step size 𝛼 = 1, was reduced with cosine

annealing to 0.01 in the last iteration. The choice of 𝛾 is based on the encoding of images. For

any correctly classified image, the smallest possible perturbation consists in changing one pixel

by 1/255 (for images encoded in 8 bit values), corresponding to a norm of 1/255. Since we

perform quantization, the values are rounded, meaning that the algorithm must be able to achieve

a norm lower than 1.5/255 = 3/510. When using 𝐾 steps, this imposes:

𝜖0(1 − 𝛾)𝐾 <
3

510
⇒ 𝛾 > 1 −

(
3

510 𝜖0

) 1
𝐾

(3.8)

Using 𝜖0 = 1 and 𝐾 = 100 yields 𝛾 � 0.05. Therefore, if there exists an adversarial example

with smallest perturbation, the algorithm may find it in a fixed number of steps.

For the results with DDN, we consider quantized images (to 256 levels). The quantization step

is included in each iteration (see step 13 of Algorithm 3.1). All results reported in the paper

consider images in the [0, 1] range.

Two sets of experiments were conducted: untargeted attacks and targeted attacks. As in

(Carlini & Wagner (2017)), we generated attacks on the first 1 000 images of the test set for

MNIST and CIFAR-10, while for ImageNet we randomly chose 1 000 images from the validation

set that are correctly classified. For the untargeted attacks, we report the success rate of the attack

(percentage of samples for which an attack was found), the mean ℓ2 norm of the adversarial noise

(for successful attacks), and the median ℓ2 norm over all attacks while considering unsuccessful

attacks as worst-case adversarial (distance to a uniform gray image, as introduced by (Brendel

et al. (2020))). We also report the average number (for batch execution) of gradient computations

and the total run-times (in seconds) on a NVIDIA GTX 1080 Ti with 11GB of memory. We did

not report run-times for the DeepFool attack, since the implementation from foolbox generates

72

adversarial examples one-by-one and is executed on CPU, leading to unrepresentative run-times.

Attacks on MNIST and CIFAR-10 have been executed in a single batch of 1 000 samples, whereas

attacks on ImageNet have been executed in 20 batches of 50 samples.

For the targeted attacks, following the protocol from (Carlini & Wagner (2017)), we generate

attacks against all possible classes on MNIST and CIFAR-10 (9 attacks per image), and against

100 randomly chosen classes for ImageNet (10% of the number of classes). Therefore, in each

targeted attack experiment, we run 9 000 attacks on MNIST and CIFAR-10, and 100 000 attacks

on ImageNet. Results are reported for two scenarios: 1) average over all attacks; 2) average

performance when choosing the least likely class (i.e. choosing the worst attack performance

over all target classes, for each image). The reported ℓ2 norms are, as in the untargeted scenario,

the means over successful attacks.

Table 3.1 reports the results of DDN compared to the C&W ℓ2 and DeepFool attacks on the

MNIST, CIFAR-10 and ImageNet datasets. For the MNIST and CIFAR-10 datasets, results with

DDN are comparable to the state-of-the-art. DDN obtains slightly worse ℓ2 norms on the MNIST

dataset (when compared to the C&W 9×10 000), however, our attack is able to get within 5% of

the norm found by C&W in only 100 iterations compared to the 54 007 iterations required for

the C&W ℓ2 attack. When the C&W attack is restricted to use a maximum of 100 iterations, it

always performed worse than DDN with 100 iterations. On the ImageNet dataset, our attack

obtains better Mean ℓ2 norms than both other attacks. The DDN attack needs 300 iterations

to reach 100% success rate. DeepFool obtains close results but fails to reach 100% success

rate. It is also worth noting that DeepFool seems to performs worse against adversarially trained

models (discussed in section 3.6). Supplementary material reports curves of the perturbation

size against accuracy of the models for the three attacks.

Tables 3.2, 3.3 and 3.4 present the results on targeted attacks on the MNIST, CIFAR-10 and

ImageNet datasets, respectively. For the MNIST and CIFAR-10 datasets, DDN yields similar

performance compared to the C&W attack with 9×10 000 iterations, and always perform better

than the C&W attack when it is restricted to 100 iterations (we re-iterate that the hyperparameters

73

for the C&W attack were tuned for each dataset, while the hyperparameters for DDN are fixed

for all experiments). On the ImageNet dataset, DDN run with 100 iterations obtains superior

performance than C&W. For all datasets, with the scenario restricted to 100 iterations, the C&W

algorithm has a noticeable drop in success rate for finding adversarial examples to the least likely

class.

3.5 Adversarial Training with DDN

Since the DDN attack can produce adversarial examples in relatively few iterations, it can be

used for adversarial training. For this, we consider the following loss function:

𝐽 (𝒙, 𝑦, 𝜃) = 𝐽 (𝒙̃, 𝑦, 𝜃) (3.9)

where 𝒙̃ is an adversarial example produced by the DDN algorithm, that is projected to an 𝜖-ball

around 𝑥, such that the classifier is trained with adversarial examples with a maximum norm of 𝜖 .

It is worth making a parallel of this approach with the Madry defense (Madry et al. (2018)) where,

in each iteration, the loss of the worst-case adversarial (see Equation 3.2) in an 𝜖-ball around

the original sample 𝑥 is used for optimization. In our proposed adversarial training procedure,

we optimize the loss of the closest adversarial example (see Equation 3.1). The intuition of

this defense is to push the decision boundary away from 𝑥 in each iteration. We do note that

this method does not have the theoretical guarantees of the Madry defense. However, since in

practice the Madry defense uses approximations (when searching for the global maximum of the

loss around 𝑥), we argue that both methods deserve empirical comparison.

3.6 Defense Evaluation

We trained models using the same architectures as (Carlini & Wagner (2017)) for MNIST, and a

Wide ResNet (WRN) 28-10 (Zagoruyko & Komodakis (2016)) for CIFAR-10 (similar to (Madry

et al. (2018)) where they use a WRN 34-10). As described in section 3.5, we augment the

74

training images with adversarial perturbations. For each training step, we run the DDN attack

with a budget of 100 iterations, and limit the norm of the perturbation to a maximum 𝜖 = 2.4 on

the MNIST experiments, and 𝜖 = 1 for the CIFAR-10 experiments. For MNIST, we train the

model for 30 epochs with a learning rate of 0.01 and then for 20 epochs with a learning rate of

0.001. To reduce the training time with CIFAR-10, we first train the model on original images

for 200 epochs using the hyperparameters from (Zagoruyko & Komodakis (2016)). Then, we

continue training for 30 more epochs using Equation 3.9, keeping the same final learning rate of

0.0008. Our robust MNIST model has a test accuracy of 99.01% on the clean samples, while

the Madry model has an accuracy of 98.53%. On CIFAR-10, our model reaches a test accuracy

of 89.0% while the model by Madry et al. obtains 87.3%.

Table 3.5 Evaluation of the robustness of our adversarial training on MNIST against the

Madry defense

Defense Attack Attack
Success Mean ℓ2 Median ℓ2

Model
Accuracy
at 𝜖 ≤ 1.5

Baseline

C&W 9×10 000 100.0 1.3961 1.4121 42.1

DeepFool 100 75.4 1.9685 2.2909 81.8

DDN 1 000 100.0 1.4240 1.4342 45.2

All 100.0 1.3778 1.3946 40.8

Madry

et al.

C&W 9×10 000 100.0 2.0813 2.1071 73.0

DeepFool 100 91.6 4.9585 5.2946 93.1

DDN 1 000 99.6 1.8436 1.8994 69.9

All 100.0 1.6917 1.8307 67.3

Ours

C&W 9×10 000 100.0 2.5181 2.6146 88.0

DeepFool 100 94.3 3.9449 4.1754 92.7

DDN 1 000 100.0 2.4874 2.5781 87.6

All 100.0 2.4497 2.5538 87.2

We evaluate the adversarial robustness of the models using three untargeted attacks: Carlini

9×10 000, DeepFool 100 and DDN 1 000. For each sample, we consider the smallest adversarial

perturbation produced by the three attacks and report it in the “All” row. Tables 3.5 and 3.6

report the results of this evaluation with a comparison to the defense of Madry et al. (2018)7 and

7 Models taken from https://github.com/MadryLab

75

Table 3.6 Evaluation of the robustness of our adversarial training on CIFAR-10 against the

Madry defense

Defense Attack Attack
Success Mean ℓ2 Median ℓ2

Model
Accuracy
at 𝜖 ≤ 0.5

Baseline

WRN 28-10

C&W 9×10 000 100.0 0.1343 0.1273 0.2

DeepFool 100 99.3 0.5085 0.4241 38.3

DDN 1 000 100.0 0.1430 0.1370 0.1

All 100.0 0.1282 0.1222 0.1

Madry

et al.
WRN 34-10

C&W 9×10 000 100.0 0.6912 0.6050 57.1

DeepFool 100 95.6 1.4856 0.9576 64.7

DDN 1 000 100.0 0.6732 0.5876 56.9

All 100.0 0.6601 0.5804 56.1

Ours

WRN 28-10

C&W 9×10 000 100.0 0.8860 0.8254 67.9

DeepFool 100 99.7 1.5298 1.1163 69.9

DDN 1 000 100.0 0.8688 0.8177 68.0

All 100.0 0.8597 0.8151 67.6

the baseline (without adversarial training) for CIFAR-10. For MNIST, the baseline corresponds

to the model used in section 3.4. We observe that for attacks with unbounded norm, the attacks

can successfully generate adversarial examples almost 100% of the time. However, an increased

ℓ2 norm is required to generate attacks against the model trained with DDN.

0 1 2 3 4
L2 norm of the noise

0

20

40

60

80

100

%
A
cc
u
ra
cy

Baseline

Madry

Ours

0.0 0.5 1.0 1.5 2.0 2.5
L2 norm of the noise

0

20

40

60

80

100
Baseline

Madry

Ours

Figure 3.4 Models robustness on MNIST (left) and CIFAR-10 (right): impact on accuracy

as we increase the maximum perturbation 𝜖

76

Figure 3.4 shows the robustness of the MNIST and CIFAR-10 models respectively for different

attacks with increasing maximum ℓ2 norm. These figures can be interpreted as the expected

accuracy of the systems in a scenario where the adversary is constrained to make changes with

norm ℓ2 ≤ 𝜖 . For instance on MNIST, if the attacker is limited to a maximum norm of 𝜖 = 1.5,

the baseline performance decreases to 40.8%; Madry to 67.3% and our defense to 87.2%. At

𝜖 = 2.0, baseline performance decreases to 9.2%, Madry to 38.6% and our defense to 74.8%. On

CIFAR-10, if the attacker is limited to a maximum norm of 𝜖 = 0.5, the baseline performance

decreases to 0.1%; Madry to 56.1% and our defense to 67.6%. At 𝜖 = 1.0, baseline performance

decreases to 0%, Madry to 24.4% and our defense to 39.9%. For both datasets, the model trained

with DDN outperforms the model trained with the Madry defense for all values of 𝜖 .

Figure 3.5 Adversarial examples with varied levels of noise 𝜹 against three models:

baseline, Madry defense and our defense. Text on top-left of each image indicate ‖𝜹‖2; text

on bottom-right indicates the predicted class. For CIFAR-10: 1: automobile, 2: bird, 3: cat,

5: dog, 8: ship, 9: truck

Figure 3.5 shows adversarial examples produced by the DDN 1 000 attack for different models

on MNIST and CIFAR-10. On MNIST, adversarial examples for the baseline are not meaningful

(the still visually belong to the original class), whereas some adversarial examples obtained

for the adversarially trained model (DDN) actually change classes (bottom right: 0 changes to

6). For all models, there are still some adversarial examples that are very close to the original

images (first column). On CIFAR-10, while the adversarially trained models require higher

77

norms for the attacks, most adversarial examples still perceptually resemble the original images.

In few cases (bottom-right example for CIFAR-10), it could cause a confusion: it can appear as

changing to class 1 - a (cropped) automobile facing right.

3.7 Conclusion

We presented the Decoupled Direction and Norm attack, which obtains comparable results with

the state-of-the-art for ℓ2 norm adversarial perturbations, but in much fewer iterations. Our

attack allows for faster evaluation of the robustness of differentiable models, and enables a

novel adversarial training, where, at each iteration, we train with examples close to the decision

boundary. Our experiments with MNIST and CIFAR-10 show state-of-the-art robustness

against ℓ2-based attacks in a white-box scenario. Future work includes the evaluation of the

transferability of attacks in black-box scenarios.

The methods presented in this paper were used in NIPS 2018 Adversarial Vision Challenge

Brendel et al. (2020), ranking first in untargeted attacks, and third in targeted attacks and

robust models (both attacks and defense in a black-box scenario). These results highlight the

effectiveness of the defense mechanism, and suggest that attacks using adversarially-trained

surrogate models can be effective in black-box scenarios, which is a promising future direction.

CHAPTER 4

AUGMENTED LAGRANGIAN ADVERSARIAL ATTACKS

Jérôme Rony , Eric Granger , Marco Pedersoli , Ismail Ben Ayed

Systems Engineering Department, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada

Paper published at the

IEEE/CVF International Conference on Computer Vision (ICCV), October 2021

Abstract

Adversarial attack algorithms are dominated by penalty methods, which are slow in practice, or

more efficient distance-customized methods, which are heavily tailored to the properties of the

distance considered. We propose a white-box attack algorithm to generate minimally perturbed

adversarial examples based on Augmented Lagrangian principles. We bring several algorithmic

modifications, which have a crucial effect on performance. Our attack enjoys the generality of

penalty methods and the computational efficiency of distance-customized algorithms, and can

be readily used for a wide set of distances. We compare our attack to state-of-the-art methods

on three datasets and several models, and consistently obtain competitive performances with

similar or lower computational complexity.8

4.1 Introduction

The last few years have seen an arms race in adversarial attacks, where several methods have been

proposed to find minimally perturbed adversarial examples. In most cases, adversarial example

generation is stated as a constrained optimization, which seeks the smallest additive perturbation,

according to some distance, to misclassify an input. Existing methods fall within two categories:

attacks using penalty methods for constrained optimization, and distance-customized attacks

leveraging the properties of the distance considered (typically ℓ𝑝-norms).

8 Code: https://github.com/jeromerony/augmented_lagrangian_adversarial_attacks

80

Penalties are a natural choice, as they transform a constrained-optimization problem into

an unconstrained one. Within this category, the most notorious attack is the one from

Carlini & Wagner (2017) known for its ℓ2 variant. Building on the work of Carlini & Wagner,

several other attacks have been proposed, e.g. EAD for ℓ1 (Chen et al., 2018b) and StrAttack

(Xu et al., 2019), which generalizes EAD and introduces sparsity in the perturbations. More

recently, other works have tackled other distances than the standard ℓ𝑝-norms, such as SSIM

(Gragnaniello, Marra, Verdoliva & Poggi, 2021), CIEDE2000 (Zhao et al., 2020) or LPIPS

(Laidlaw, Singla & Feizi, 2021), and followed similar penalty-based strategies. Although

convenient and applicable to a wide class of distances, penalty methods are known to result

in slow convergence in the general field of optimization (Jensen & Bard, 2002). Furthermore,

choosing the weight of the penalty is not a trivial task (Kervadec et al., 2022). In fact, in

adversarial attacks, it has recently been shown that the optimal penalty weight actually varies by

orders of magnitude across samples and models (Rony et al., 2019). Although penalty methods

can achieve competitive performance, they typically require an expensive line-search to find

optimal penalty weights (Carlini & Wagner, 2017), thereby requiring large numbers of iterations.

This may impede their practical deployment for training robust models and efficiently evaluating

robustness.

To accelerate the generation of adversarial examples, and improve performance over penalty

methods, there has been an intensive focus on developing efficient algorithms customized for

specific ℓ𝑝-norms (Brendel, Rauber, Kümmerer, Ustyuzhaninov & Bethge, 2019; Croce & Hein,

2020a; Moosavi-Dezfooli et al., 2016; Pintor et al., 2021; Rony et al., 2019). However, such

distance-customized methods are not generally applicable because they rely heavily on the

geometry/properties of the distance considered (e.g. using projections and dual norms) to find

minimally perturbed adversarial examples. The most notable attacks within this second category

are: DeepFool for the ℓ2 and ℓ∞ norms, which uses a linear approximation of the model at each

iteration (Moosavi-Dezfooli et al., 2016); DDN for the ℓ2-norm, which uses projections on the

ℓ2-ball to decouple the direction and the norm of the perturbation (Rony et al., 2019); and FAB

for the ℓ1, ℓ2 and ℓ∞, which combines a linear approximation of the model and projections w.r.t.

81

the norm considered (Croce & Hein, 2020a). The recently proposed FMN attack (Pintor et al.,

2021) extends the DDN attack to other norms. Beyond ℓ𝑝-norms, Wong et al. proposed an attack

(Wong et al., 2019) to produce adversarial perturbations with minimal Wasserstein distance

using projected Sinkhorn iterations. Finally, one attack that does not strictly fall in either of the

two categories was proposed by Brendel et al., and designed for ℓ𝑝-norms with 𝑝 ∈ {0, 1, 2,∞}
(Brendel et al., 2019). In this attack, the optimization is formulated such that the perturbation

follows the decision boundary of a classifier, while minimizing the considered distance. This

is not limited to ℓ𝑝-norms but, in practice, the implementation leverages a trust-region solver

designed for each ℓ𝑝-norm specifically, which limits applicability to other distances.

Penalty methods are generally applicable, and can be used for distances other than the standard

ℓ𝑝-norms; for instance, CIEDE2000 (Zhao et al., 2020) or LPIPS (Laidlaw et al., 2021; Zhang,

Isola, Efros, Shechtman & Wang, 2018). They replace constrained problems with unconstrained

ones by adding a penalty, which increases when the constraint is violated. A weight of the

penalty is chosen and increased heuristically, while the unconstrained optimization is repeated

several times. Powerful Augmented Lagrangian principles have well-established advantages

over penalties in the general context of optimization (Bertsekas, 2014, 2016; Fletcher, 2013;

Nocedal & Wright, 2006), and completely avoid penalty-weight heuristics by automatically

estimating the multipliers. Furthermore, the multiplier estimates tend to the Lagrange multipliers,

which avoids the ill-conditioning problems often encountered in penalty methods (Bertsekas,

2014; Conn, Gould & Toint, 1997). Finally, Augmented Lagrangian methods avoid the need for

explicitly solving the dual problem, unlike basic Lagrangian-dual optimization, which might be

intractable/unstable for non-convex problems.

Despite their well-established advantages and popularity in the optimization community for

solving non-convex problems, Augmented Lagrangian methods have not been investigated

previously for adversarial attacks. While this seems rather surprising, we found in this work that

the vanilla Augmented Lagrangian methods are not competitive in the context of adversarial

attacks (e.g. in terms of computational efficiency), which might explain why they have been

avoided so far. However, we introduce several algorithmic modifications to design a customized

82

Augmented Lagrangian algorithm for adversarial example generation. Our modifications

are crucial to achieve highly competitive performances in comparisons to state-of-the-art

methods. The modifications include integrating the Augmented Lagrangian inner and outer

iterations with joint updates of the perturbation and the multipliers, relaxing the need for an

inner-convergence criterion, introducing an exponential moving average of the multipliers,

and adapting the learning rates to the distance function. All-in-all, we propose a white-box

Augmented Lagrangian Method for Adversarial (ALMA) attacks, which enjoys both the general

applicability of penalty approaches and computational efficiency of distance-customized methods.

Our attack can be readily used to generate adversarial examples for a large set of distances,

including ℓ1-norm, ℓ2-norm, CIEDE2000, LPIPS and SSIM, and we advocate its use for other

distances that might be investigated in future research in adversarial attacks. We evaluate our

attack on three datasets (MNIST, CIFAR10 and ImageNet) and several models (regularly and

adversarially-trained). For each distance, we compare our method against state-of-the-art attacks

proposed specifically for that distance, and consistently observe competitive performance.

4.2 Preliminaries

Let 𝒙 be a sample from the input space X ⊂ R𝑑 , and 𝑦 ∈ Y its associated label, where Y is a set

of discrete labels of size K. Let 𝑓 : R𝑑 → R𝐾 be a model that outputs logits (i.e. pre-softmax

scores) 𝒛 ∈ R𝐾 given an input 𝒙; 𝑓𝑘 (𝒙) denotes the 𝑘-th component of the vector 𝑓 (𝒙). In

a classification scenario, the probability 𝑝𝑦 = 𝑃(𝑦 |𝑥) is obtained using the softmax function:

𝑝𝑦 = softmax𝑦 (𝒛). In this work, we assume that X is the hypercube X = [0, 1]𝑑 , which is

general enough for computer vision applications.

83

4.2.1 Problem formulation

The problem of adversarial example generation has been mainly formulated in two ways. One

way is to find adversarial examples satisfying a distance constraint:

find 𝜹 subject to arg max
𝑘

𝑓𝑘 (𝒙 + 𝜹) ≠ 𝑦

𝐷 (𝒙 + 𝜹, 𝒙) ≤ 𝜖

𝒙 + 𝜹 ∈ X

(4.1)

Alternatively, the objective is to find adversarial examples that are minimally distorted w.r.t. a

distance function 𝐷:

minimize
𝜹

𝐷 (𝒙 + 𝜹, 𝒙) subject to arg max
𝑘

𝑓𝑘 (𝒙 + 𝜹) ≠ 𝑦

𝒙 + 𝜹 ∈ X
(4.2)

In this work, we are interested in solving Equation 4.2, which is equivalent to solving Equation 4.1

for every 𝜖 . Thus, it is a more general but more difficult problem.

4.2.2 Equivalent problem

In the general case, constraint 𝒙 + 𝜹 ∈ X is not necessarily trivial. However, in our context, this

corresponds to a box constraint: 0 ≤ 𝒙 + 𝜹 ≤ 1. We therefore handle it with a simple projection

P[0,1] . For brevity, we will omit this constraint in the rest of the paper. In the above formulations,

arg max is not differentiable, and therefore not readily amenable to gradient-based optimization.

We replace the arg max constraint with an inequality constraint on the logits, as done in several

works, most notably Carlini & Wagner (2017):

minimize
𝜹

𝐷 (𝒙 + 𝜹, 𝒙) subject to 𝑓𝑦 (𝒙 + 𝜹) −max
𝑘≠𝑦

𝑓𝑘 (𝒙 + 𝜹) < 0 (4.3)

84

While more suited to gradients, this constraint is not scale invariant, as noted in (Croce & Hein,

2020b): extreme scaling of the logits may result in gradient masking. We use a slightly modified

Difference of Logits Ratio (DLR) for this constraint (Croce & Hein, 2020b):

DLR+(𝒛, 𝑦) =
𝒛𝑦 −max

𝑖≠𝑦
𝒛𝑖

𝒛𝜋1
− 𝒛𝜋3

(4.4)

where 𝒛 = 𝑓 (𝒙) and 𝜋 is the ordering of the elements of 𝒛 in decreasing order. This loss is

negative if and only if 𝒙 is not classified as 𝑦, and its maximum is 1. Therefore, we solve the

following optimization problem:

minimize
𝜹

𝐷 (𝒙 + 𝜹, 𝒙) subject to DLR+(𝑓 (𝒙 + 𝜹), 𝑦) < 0 (4.5)

4.2.3 Distances

Most attacks in the literature measure the size of the perturbations in terms of ℓ𝑝-norms. In this

work, we propose an attack that can find minimally perturbed adversarial examples w.r.t. several

distances. We limit this work to four common measures: the ℓ1 and ℓ2 norms, the CIEDE2000

(Sharma, Wu & Dalal, 2005) and the LPIPS distance (Zhang et al., 2018). The CIEDE2000

color difference (Sharma et al., 2005) is a metric designed to assess the perceptual difference

between two colors. It is widely used to evaluate color accuracy of displays and printed materials.

This metric was designed to be aligned with the perception of the human eye. Generally, a value

smaller than 1 means that the color difference is imperceptible, between 1 and 2 is perceptible

through close examination, between 2 and 10 is perceptible at a glance, and above 10 means that

the colors are different. This metric is calculated in the CIELAB color space, so a conversion

is needed (see section 2). The CIEDE2000 is defined between two color pixels, so we use the

image level accumulated version as in (Zhao et al., 2020). The LPIPS distance (Zhang et al.,

2018) is a recently proposed perceptual metric based on the distance between deep features

of two images for a chosen model. Zhang et al. showed that this distance aligns with human

85

perception better than other perceptual similarity metrics such as SSIM. We use the LPIPS with

AlexNet as in (Laidlaw et al., 2021).

4.3 Methodology

4.3.1 General Augmented Lagrangian algorithm

To describe a minimization problem with one inequality constraint, we use the following notation:

minimize 𝑔(𝒙) subject to ℎ(𝒙) < 0 (4.6)

with 𝑔 : R𝑑 → R the objective function and ℎ : R𝑑 → R the inequality-constraint function.

Penalty methods trade a constrained problem (4.6) with an unconstrained one by adding a term

(penalty), which increases when the constraint is violated. A weight of the penalty, 𝜆, is chosen

heuristically, and the unconstrained optimization is repeated several times with increasing values

of 𝜆, until the constraint is satisfied. Augmented Lagrangian methods have well-established

advantages over penalty methods in the general context of optimization (Bertsekas, 2014, 2016;

Fletcher, 2013; Nocedal & Wright, 2006), and avoid completely such heuristics. They estimate

automatically the multipliers, which yields adaptive and optimal weights for the constraints.

Such estimates tend to the Lagrange multiplier, which avoids the ill-conditioning problems often

encountered in penalty methods (Bertsekas, 2014; Conn et al., 1997). Augmented Lagrangian

methods also avoid the need to explicitly solve the dual problem, unlike basic Lagrangian

optimization, which may be intractable/unstable for non-convex problems. From a more

practical standpoint, the efficiency of Augmented Lagrangian methods depends solely on the

ability to solve the inner minimization (which we detail below), making the implementation

simpler and more robust. Despite these advantages and their popularity in the optimization

community, Augmented Lagrangian methods have not (to our knowledge) been investigated for

adversarial attacks. In the following, we customize Augmented Lagrangian principles to solve

adversarial-attack problems of the form (4.2).

86

0

5

10

P
(y
,ρ

,μ
)

ρ = 1 μ = 1

PHR

P1

P2

P3

ρ = 1 μ = 2

PHR

P1

P2

P3

−4 −2 0 2
y

0

5

10

P
(y
,ρ

,μ
)

ρ = 5 μ = 1

PHR

P1

P2

P3

−4 −2 0 2
y

ρ = 5 μ = 0.1

PHR

P1

P2

P3

Figure 4.1 Examples of penalty-Lagrangian functions for different values of

𝜌 and 𝜇. The plotted functions are defined in (Birgin et al., 2005) and given

in section 4

In general, an Augmented Lagrangian algorithm uses a succession of unconstrained optimization

problems, each solved approximately. The algorithm can be broken down in two types of

iterations: outer iterations indexed by 𝑖 and inner iterations. During the inner iterations, the

following Augmented Lagrangian function:

𝐺 (𝒙) = 𝑔(𝒙) + 𝑃(ℎ(𝒙), 𝜌(𝑖) , 𝜇(𝑖)) (4.7)

is approximately minimized w.r.t. to 𝒙, using the previous solution as initialization, up to an

inner convergence criterion. 𝑃 : R × R∗+ × R∗+ → R is a penalty-Lagrangian function such

that 𝑃′(𝑦, 𝜌, 𝜇) = 𝜕
𝜕𝑦 𝑃(𝑦, 𝜌, 𝜇) exists and is continuous for all 𝑦 ∈ R and (𝜌, 𝜇) ∈ (R∗+)2. Any

candidate function 𝑃 should satisfy these four axioms Birgin et al. (2005):

Axiom 1. ∀𝑦 ∈ R,∀(𝜌, 𝜇) ∈ (R∗+)2, 𝜕
𝜕𝑦 𝑃(𝑦, 𝜌, 𝜇) ≥ 0

Axiom 2. ∀(𝜌, 𝜇) ∈ (R∗+)2, 𝜕
𝜕𝑦 𝑃(0, 𝜌, 𝜇) = 𝜇

Axiom 3. If, for all 𝑗 ∈ N, 0 < 𝜇min ≤ 𝜇(𝑗) ≤ 𝜇max < ∞, then: lim
𝑗→∞

𝜌(𝑗) = ∞ and

lim
𝑗→∞

𝑦 (𝑗) = 𝑦 > 0 imply that lim
𝑗→∞

𝜕
𝜕𝑦 𝑃(𝑦 (𝑗) , 𝜌(𝑗) , 𝜇(𝑗)) = ∞

87

Axiom 4. If, for all 𝑗 ∈ N, 0 < 𝜇min ≤ 𝜇(𝑗) ≤ 𝜇max < ∞, then: lim
𝑗→∞

𝜌(𝑗) = ∞ and

lim
𝑗→∞

𝑦 (𝑗) = 𝑦 < 0 imply that lim
𝑗→∞

𝜕
𝜕𝑦 𝑃(𝑦 (𝑗) , 𝜌(𝑗) , 𝜇(𝑗)) = 0

The first and second axioms guarantee that the derivative of the penalty-Lagrangian function

𝑃 is positive and equal to 𝜇 when 𝑦 = 0. The third and fourth axioms guarantee that the

derivative of 𝑃 w.r.t. 𝑦 tends to infinity if the constraint is not satisfied (i.e. ℎ(𝒙) ≥ 0), and

tends to 0 if the constraint is satisfied (i.e. ℎ(𝒙) < 0). Figure 4.1 contains examples of widely

used penalty-Lagrangian functions. Once the inner convergence criterion is satisfied, an outer

iteration is performed, during which the penalty multiplier 𝜇 and the penalty parameter 𝜌 are

modified. The penalty multiplier 𝜇 is updated to the derivative of 𝑃 at the current value w.r.t.

the constraint function:

𝜇(𝑖+1) = 𝑃′(ℎ(𝒙), 𝜌(𝑖) , 𝜇(𝑖)) (4.8)

This means that the penalty multiplier increases when the constraint is not satisfied and, otherwise,

is reduced. This can be seen as an adaptive way of choosing the penalty weight in a penalty

method. The penalty parameter 𝜌 is increased based on the value of the constraint function at the

current outer iteration, compared to the previous one. If the constraint function has not improved

(i.e. reduced) significantly, then 𝜌 is multiplied by a fixed factor, typically between 2 and 100

(Birgin et al., 2005). With higher values of the penalty parameter 𝜌, the penalty-Lagrangian

function tends to an ideal penalty, as can be seen in Figure 4.1. Algorithm 4.1 describes a

generic Augmented Lagrangian method.

4.3.2 Augmented Lagrangian Attack

We propose to use Augmented Lagrangian methods to solve (4.5). However, we found that

a vanilla Augmented Lagrangian algorithm is not well-suited for adversarial attacks. Indeed,

alternating between inner and outer iterations is rather slow compared to the few hundreds

iterations in typical adversarial attacks. Moreover, we wish to obtain an algorithm with a

fixed number of iterations for practical purposes. This is clearly incompatible with the use

of an inner convergence criterion required to stop the approximate minimization of 𝐺 (step 3

88

Algorithm 4.1 Generic Augmented Lagrangian method

Input: Function to minimize 𝑔, constraint function ℎ
Input: Penalty function 𝑃, initial multiplier 𝜇(0) , 𝜌(0)

Input: Initial value 𝒙 (0)

1 for 𝑖 ← 0 to 𝑁 − 1 do
2 Using 𝒙 (𝑖) as initialization, minimize (approximately):

𝐺 (𝒙) = 𝑔(𝒙) + 𝑃(ℎ(𝒙), 𝜌(𝑖) , 𝜇(𝑖))
3 𝒙 (𝑖+1) ← approximate minimizer of 𝐺

4 𝜇(𝑖+1) ← 𝑃′(ℎ(𝒙 (𝑖+1)), 𝜌(𝑖) , 𝜇(𝑖))
5 if the constraint does not improve then
6 Set 𝜌(𝑖+1) > 𝜌(𝑖)

7 else
8 𝜌(𝑖+1) ← 𝜌(𝑖)

9 end for

of Algorithm 4.1). Designing a good inner convergence criterion is not a trivial task either.

Therefore, we propose a modification of the traditional Augmented Lagrangian algorithm. We

combine the inner and outer iterations, resulting in a joint update of the perturbation 𝜹 = 𝒙̃ − 𝒙

and the penalty multiplier 𝜇. This means that we do not need an inner convergence criterion

as we are always adapting 𝜇. This also requires to adapt the increase of 𝜌, which depends on

the value of the inequality-constraint function. Algorithm 4.2 presents our approach and, in the

following sections, we detail several important design choices for the algorithm.

4.3.2.1 Penalty parameters adaptation

The most critical design choices for our attack are the adaptation of the penalty parameters 𝜇

and 𝜌.

Penalty multiplier. 𝜇 is usually modified in each outer iteration (after the inner problem is

approximately solved), and taken as the derivative of the penalty function w.r.t. the constraint

function (see Equation 4.8). In our algorithm, we modify 𝜇 at each iteration. This approach

aims at reducing the budget needed for the optimization by combining inner and outer iterations.

However, this leads to spiking values of 𝜇, which tend to make the optimization unstable.

89

Algorithm 4.2 ALMA attack

Input: Classifier 𝑓 , original image 𝒙, true or target label 𝑦
Input: Number of iterations 𝑁 , initial step size 𝜂(0) , penalty parameter increase rate

𝛾 > 1, constraint improvement rate 𝜏 ∈ [0, 1], 𝑀 number of steps between 𝜌
increase.

Input: 𝐷 distance function

Input: Penalty function 𝑃, initial multiplier 𝜇(0) , initial penalty parameter 𝜌(0)

1 Initialize 𝒙̃ (0) ← 𝒙
2 for 𝑖 ← 0 to 𝑁 − 1 do
3 𝒛 ← 𝑓 (𝒙̃ (𝑖))
4 𝑑 (𝑖) ← DLR+(𝒛, 𝑦) ; // tDLR+ for targeted attack
5 𝜇̂ ← ∇𝑑𝑃(𝑑 (𝑖) , 𝜌(𝑖) , 𝜇(𝑖)) ; // New penalty multiplier

6 𝜇(𝑖+1) ← P[𝜇min,𝜇max] (𝛼𝜇(𝑖) + (1 − 𝛼) 𝜇̂) ; // EMA

7 𝐿 ← 𝐷 (𝒙̃ (𝑖) , 𝒙) + 𝑃(𝑑 (𝑖) , 𝜌(𝑖) , 𝜇(𝑖+1)) ; // Loss
8 𝒈 ← ∇𝒙̃𝐿 ; // Gradient of loss w.r.t. 𝒙̃

9 𝒙̃ (𝑖+1) ← P[0,1] (𝒙̃ (𝑖) − 𝜂(𝑖)𝒈) ; // Step and box-constraint

10 if (𝑖 + 1) mod 𝑀 = 0 and 𝑑 (𝑗) > 0,∀ 𝑗 ∈ {0, . . . , 𝑖} and 𝑑 (𝑖) > 𝜏𝑑 (𝑖−𝑀) then
11 𝜌(𝑖+1) ← 𝛾𝜌(𝑖) // If no adversarial has been

found and 𝑑 does not decrease
significantly, increase 𝜌 by a
factor of 𝛾

12 else
13 𝜌(𝑖+1) ← 𝜌(𝑖)

14 end for
15 return 𝒙̃ (𝑖) that is adversarial and has smallest 𝐷 (𝒙̃ (𝑖) , 𝒙)

Figure 4.2 shows the evolution of 𝜇 during the attack, as well as the ℓ2-norm of the perturbation,

when attacking (with ALMA ℓ2) a single MNIST sample with the SmallCNN model. We can

see that 𝜇 regularly spike to high values when not using EMA, which in turns increases the

ℓ2-norm of the perturbation because the penalty term dominates. To solve this issue, we smooth

the values of 𝜇 using an Exponential Moving Average (EMA) of 𝜇:

𝜇̂ = 𝑃′(𝑔(𝒙), 𝜌(𝑖) , 𝜇(𝑖))
𝜇(𝑖+1) = 𝛼𝜇(𝑖) + (1 − 𝛼) 𝜇̂

(4.9)

where 𝛼 ∈ R is a hyper-parameter. This corresponds to steps 5 and 6 in Algorithm 4.2. When

using an EMA with 𝛼 = 0.9, the evolution of 𝜇 is smoother, with a much smaller spike at

90

0

10

20

30

μ

No EMA

EMA (α = 0.9)

0 200 400 600 800 1000
Iterations

0

10

� 2
-n
o
rm

Figure 4.2 Example of the evolution of the penalty multiplier 𝜇 and the

ℓ2-norm of the perturbation during the optimization when attacking a single

MNIST sample for the SmallCNN model. This leads to a ℓ2-norm of the final

adversarial perturbation of 2.13 without EMA and 1.71 with EMA (𝛼 = 0.9).

The norm of the perturbation can be lower without EMA in some iterations,

but it is associated with an increase in 𝜇, meaning that the perturbed sample

𝒙̃ (𝑖) is not adversarial

the beginning and then stabilizing. As a consequence, the ℓ2-norm of the final perturbation is

smaller when using an EMA at 1.71 for 𝛼 = 0.9, compared to 2.13 when 𝛼 = 0.

For numerical stability, we also need to constrain the value of the penalty multiplier such that it

never becomes too small or too large. Therefore, we also project 𝜇 on the safeguarding interval

[𝜇min, 𝜇max] ⊂ R∗+.

Penalty parameter. 𝜌 is typically increased in each outer iteration if the constraint has not

improved during the inner minimization. Since inner and outer iterations are combined in our

attack, we adopt a simple strategy to adapt 𝜌. Every 𝑀 iterations, we verify if an adversarial

example was found and, if not, if the constraint has improved. If no adversarial example was

found, and the constraint does not improve (e.g. reduced by 5% in the last 𝑀 iterations), we set

𝜌(𝑖+1) = 𝛾𝜌(𝑖) . This corresponds to steps 11 and 13 of Algorithm 4.2.

91

4.3.2.2 Choice of penalty function

Experiments have shown that the choice of the penalty function is of great importance, especially

when considering non-convex problems (Birgin et al., 2005). Many functions have been

proposed in the literature. In our experiment, we use the 𝑃2 penalty function proposed in

(Kort & Bertsekas, 1976), which is defined as followed:

𝑃2(𝑦, 𝜌, 𝜇) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜇𝑦 + 𝜇𝜌𝑦2 + 1
6
𝜌2𝑦3 if 𝑦 ≥ 0

𝜇𝑦
1−𝜌𝑦 if 𝑦 < 0

(4.10)

where 𝑦 represents the value of the constraint: DLR+(𝒛, 𝑦) in our case (or tDLR+(𝒛, 𝑦) in a

targeted scenario). In the numerical comparison of several penalty-Lagrangian functions done

by Birgin et al., 𝑃2 is second to PHRQuad in terms of robustness. However, we found that 𝑃2 is

more suited to our problem. Experimentally, PHRQuad’s derivative is smaller than 𝑃2, resulting

in smaller increase of 𝜇 in each iteration. This, in turn, results in an increase of 𝜌 because no

adversarial example is found (see step 10 of Algorithm 4.2). Generally, increasing 𝜌 helps in

finding a feasible point (i.e. adversarial examples), at the cost of a larger final distance for the

perturbation. The choice of 𝑃2 also depends on the algorithm design. In our attack, we chose

to increase 𝜌 every 𝑀 steps if no adversarial example has been found, regardless of the usual

convergence criterion used in more traditional Augmented Lagrangian methods. Therefore, we

need a penalty function with an “aggressive" derivative such that 𝜇 is modified quickly.

4.3.2.3 Learning rate scheduling

Initial learning rate. Different distance functions can have widely different scales (see

Tables 4.1 and 4.2, median results column). Therefore, the initial learning rate is chosen

adaptively for each sample 𝒙, such that the first gradient step (step 9 in Algorithm 4.2) increases

𝐷 by 𝜖 , or formally, such that: 𝐷 (𝒙̃ (1) , 𝒙) = 𝜖 . To obtain that value, we compute the gradient

𝒈 of DLR+ w.r.t. 𝒙, and find the scalar 𝜂(0) such that 𝐷 (P[0,1] [𝒙 − 𝜂(0)𝒈], 𝒙) = 𝜖 , using a line

search followed by a binary search.

92

0 NIterations

0.01η(0)

η(0)

Learning
rate

Adversarial
example found

E
xp
lo
ra
ti
on

Exploitation

Figure 4.3 Exponential learning rate decay for the attack

Learning rate decay. The optimization process can be partitioned in two phases: exploration

and exploitation. The exploration phase corresponds to finding a feasible point (i.e. an adversarial

example) for Equation 4.2. Then, the exploitation phase consists in refining the feasible point, i.e.

finding a minimally distorted adversarial example. In our algorithm, the learning rate remains

constant during the exploration phase, and decays exponentially during the exploitation phase to

reach a final learning rate of 𝜂 (0)/100. Figure 4.3 illustrates the scheduling of the learning rate

decay.

4.3.2.4 Optimization algorithm

It is well known that gradient descent has a slow convergence rate, especially for ill-conditioned

problem. Several optimization algorithms have been proposed to accelerate first-order methods,

such as the momentum method or Nesterov’s acceleration (Nesterov, 1983). One such algorithm

is RMSProp (Tieleman & Hinton, 2012), in which the learning rate is divided by the square

root of the EMA of the squared gradient. We use RMSProp combined with the momentum

method in our attack, with a slight modification. Originally, the EMA of the squared gradient is

initialized at 0. To avoid dividing by a small value in the first iteration (which would result in a

large increase of the distance during the first iteration), we initialize the EMA of the squared

gradient at 1. For simplicity, Algorithm 4.2 only describes a regular gradient descent update at

step 9.

93

4.4 Experiments

Datasets. To evaluate our attack, we conduct experiments on three datasets: MNIST, CIFAR10

and ImageNet with two different budgets: 100 and 1 000 iterations. On MNIST, we test the

attacks on the whole test set. On CIFAR10 and ImageNet, we test the attacks on 1 000 samples.

These 1 000 samples correspond to the first 1 000 samples of the test set on CIFAR10 and 1 000

randomly chosen samples from the validation set for ImageNet.

Models. It has been observed that some attacks can work well for regularly trained models,

and fail against defended (i.e. adversarially trained) models (Carlini et al., 2019; Croce & Hein,

2020b; Rony et al., 2019). Therefore, for each dataset, we evaluate the attack against a collection

of models. Specifically, for MNIST, we use four models. The first three are the same model as

in (Carlini & Wagner, 2017; Pintor et al., 2021; Rony et al., 2019) with three training schemes:

a regularly trained model we call SmallCNN, a ℓ2-adversarially trained model from (Rony

et al., 2019) we call SmallCNN-DDN and a ℓ∞-adversarially trained model from (Zhang et al.,

2019a) we call SmallCNN-TRADES. To vary architectures, we also test on the ℓ∞-adversarially

trained model from (Zhang et al., 2019b) we call CROWN-IBP. This is the large variant trained

with 𝜖 = 0.4. For CIFAR10, we use three models: a regularly trained Wide ResNet 28-10

(Zagoruyko & Komodakis, 2016), a ℓ∞-adversarially trained Wide ResNet 28-10 from (Carmon,

Raghunathan, Schmidt, Duchi & Liang, 2019) and a ℓ2-adversarially trained ResNet-50 (He,

Zhang, Ren & Sun, 2016a) from (Augustin, Meinke & Hein, 2020). These models are fetched

from the RobustBench library (Croce et al., 2021). On ImageNet, we test the attacks on three

ResNet-50 models: one regularly trained, and two adversarially trained (ℓ2 and ℓ∞), available

through the robustness library (Engstrom, Ilyas, Salman, Santurkar & Tsipras, 2019). All the

models have been selected because they have obtained high robust accuracies in third-party

evaluations (Croce & Hein, 2020b).

Metrics. For each attack, we report the Attack Success Rate (ASR) which is the fraction of

examples for which an adversarial perturbation was found, and the median perturbation size. To

compare the complexities of the attacks, we use the average number of forward and backward

94

model propagations per sample needed to perform each attack. In the deep learning context, the

number of model propagations (forward and backward) is a good proxy for the complexity of an

attack, as these operations generally require orders of magnitude more computations than the

other operations of an attack. We also prefer this measure to the attack run-time since this makes

for comparisons that are independent of both software optimizations and hardware differences.

Hyperparameters. For our attack, we consider two budgets: 100 and 1 000 iterations. The

goal of this work is to propose a framework to generate minimally perturbed adversarial example

w.r.t. any distance. Therefore, we chose one 𝛼 (i.e. the coefficient of the EMA) per budget and

one 𝜖 (i.e. the increase of 𝐷 in the first iteration, see subsubsection 4.3.2.3) per distance. 𝛼

and 𝜖 are shared across all datasets and models. For the 100 iterations budget, we set 𝛼 = 0.5

and for the 1 000 iterations budget, we set 𝛼 = 0.9. For 𝜖 , we chose an initial value in relation

to the usual scale of each distance: typically a tenth of the expected distances between the

adversarial examples and the original inputs works well. Although it requires prior knowledge

on the expected distances, a good 𝜖 can quickly be found when experimenting with a new

distance function. section 6 gives the initial values of 𝜖 used in our experiments for each distance.

The other hyperparameters are fixed. We use 𝜇(0) = 𝜌(0) = 1, 𝜇min = 10−6 and 𝜇max = 1012,

𝛾 = 1.2, 𝜏 = 0.95 and 𝑀 = 10 in all our experiments. These values are not usual for Augmented

Lagrangian algorithms; they reflect our design choice of combining inner and outer iterations.

Since we update our penalty parameters (i.e. 𝜇 and 𝜌) more frequently, 𝛾 can have a smaller

value.

Attacks. We compare our attack with various state-of-the-art attacks from the literature.

Specifically, we evaluate the ℓ1 variant of our attack against the EAD attack (Chen et al., 2018b)

with budgets of 9×100 and 9×1 000, and FAB ℓ1 (Croce & Hein, 2020a) and FMN ℓ1 (Pintor

et al., 2021) attacks with budgets of 100 and 1 000 iterations. For the ℓ2 variant of our attack,

we compare it to the C&W ℓ2 (Carlini & Wagner, 2017) attack with budgets of 9×1 000 and

9×10 000, DDN (Rony et al., 2019), FAB ℓ2 (Croce & Hein, 2020a) and FMN ℓ2 (Pintor et al.,

95

2021) all with budgets of 100 and 1 000 iterations.9 For FAB ℓ1 and ℓ2 on ImageNet, we use the

targeted variant of the attack, as was done in the original work.10 We compare the CIEDE2000

variant of our attack with, to the best of our knowledge, the only attack using this metric: the

PerC-AL attack (Zhao et al., 2020) with budgets of 100 and 1 000 iterations. Lastly, for the

LPIPS variant, we compare our attack to the LPA attack (Laidlaw et al., 2021), which is designed

to solve Equation 4.1 (i.e. find a perturbation within a distance budget). We perform a binary

search on the distance budget to find the minimum budget for which an adversarial example can

be found. We also add the APGDT
DLR

ℓ2 (Croce & Hein, 2020b) to the ℓ2 comparison with a

binary search. For the binary search, we start with a large enough budget (depending on the

dataset) such that the attacks can reach 100% ASR and perform enough binary search steps to

reach a precision of 0.01 for the ℓ2-norm and 0.001 for the LPIPS.

Finally, we perform a C&W type attack as a baseline for the CIEDE2000 and LPIPS distances.

We replace the ℓ2-norm with the corresponding target distance and use a budget of 9×1 000

which is enough to get a good performance while keeping an acceptable budget (compared to

9×10 000).

4.5 Results

To summarize the results, we report the geometric mean of each metric over the models

considered for each dataset, in Table 4.1 for MNIST and Table 4.2 for CIFAR10 and ImageNet.

Tables containing the detailed results for each model can be found in section 8. We also present

robust accuracy curves, which reflect directly the performance in terms of minimum distance of

the adversarial examples, by showing an expected robust accuracy as a function of a perturbation

budget. For all curves, the dotted lines denote the reduced budget attacks of the corresponding

colors. With these curves, we can also find the median distance (see section 8) for each attack by

9 We tried to include the B&B ℓ1 and ℓ2 attacks (Brendel et al., 2019) in our comparison, but their

official implementations kept crashing. In the cases where it did not, we observed median distances

worse than FAB. As such, we omitted the method completely from the experiments.

10 The FAB attack needs to compute the Jacobian of the output of the model w.r.t. to the input. This

increases the complexity by a factor K (i.e. the number of classes), making it impractical for datasets

with large number of classes, such as ImageNet. See Section 4 of (Croce & Hein, 2020a).

96

0 20 40 60 80 100
�1-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

SmallCNN-TRADES

EAD 9×1000

FAB �1 1000

FMN �1 1000

ALMA �1 1000

0 50 100 150 200 250
�1-norm

CROWN-IBP

0 2 4 6 8
�2-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

SmallCNN-TRADES

C&W �2 9×104

DDN 1000

FAB �2 1000

FMN �2 1000

APGDT
DLR �2

ALMA �2 1000

0 2 4 6 8
�2-norm

CROWN-IBP

Figure 4.4 Robust accuracy curves for the SmallCNN-TRADES and CROWN-IBP

adversarially trained models on MNIST against ℓ1 (top row) and ℓ2 (bottom row) attacks

0 50 100 150 200
�1-norm

0

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

ResNet-50

EAD 9×1000

FABT �1 1000

FMN �1 1000

ALMA �1 1000

0 200 400 600 800 1000
�1-norm

ResNet-50 �2 adv. trained (ε = 3.0)

Figure 4.5 Robust accuracy curves for regular and ℓ2-adversarial ResNet-50 on ImageNet

against ℓ1 attacks

97

Table 4.1 Performance for attacks on the MNIST dataset. Geometric mean over the four

models. FMN ℓ1 100 and C&W ℓ2 do not reach 50% ASR on the IBP model, so the median

distance is undefined. ‡A binary search is performed on each sample to get a minimal

perturbation attack (Equation 4.2)

Distance Attack ASR (%)
Median

Distance

Forwards /

Backwards

ℓ1-norm

EAD 9×100 (Chen et al., 2018b) 97.18 21.94 807 / 407

EAD 9×1 000 (Chen et al., 2018b) 97.76 19.19 5 025 / 2 516

FAB ℓ1 100 (Croce & Hein, 2020a) 99.80 27.41 201 / 1 000

FAB ℓ1 1 000 (Croce & Hein, 2020a) 99.83 24.21 2 001 / 10 000

FMN ℓ1 100 (Pintor et al., 2021) 69.87 – 100 / 100

FMN ℓ1 1 000 (Pintor et al., 2021) 95.35 7.34 1 000 / 1 000

ALMA ℓ1 100 (Ours) 99.90 11.45 100 / 100

ALMA ℓ1 1 000 (Ours) 100 7.16 1 000 / 1 000

ℓ2-norm

C&W ℓ2 9×1 000 (Carlini & Wagner, 2017) 40.19 – 8 643 / 8 643

C&W ℓ2 9×10 000 (Carlini & Wagner, 2017) 40.20 – 85 907 / 85 907

DDN 100 (Rony et al., 2019) 98.48 1.86 100 / 100

DDN 1 000 (Rony et al., 2019) 99.83 1.61 1 000 / 1 000

FAB ℓ2 100 (Croce & Hein, 2020a) 83.25 2.10 201 / 1 000

FAB ℓ2 1 000 (Croce & Hein, 2020a) 96.28 1.77 2 001 / 10 000

FMN ℓ2 100 (Pintor et al., 2021) 70.99 3.18 100 / 100

FMN ℓ2 1 000 (Pintor et al., 2021) 96.02 1.77 1 000 / 1 000

APGDT
DLR

ℓ2
‡ (Croce & Hein, 2020b) 99.98 2.52 12 271 / 12 253

ALMA ℓ2 100 (Ours) 99.72 2.38 100 / 100

ALMA ℓ2 1 000 (Ours) 100 1.61 1 000 / 1 000

looking at the distance for which the accuracy is 50%. All the robust accuracy curves can be

found in section 9. Here we display a few for which there are significant differences between

the attacks. For MNIST, we show the curves in Figure 4.4 for the SmallCNN-TRADES and

CROWN-IBP models against ℓ1 and ℓ2 attacks. For ImageNet, we show the curves for ResNet-50

regularly and ℓ2-adversarially trained from (Engstrom et al., 2019) against ℓ1 attacks.

Across all datasets and models, our attack consistently obtains results competitive with attacks

tailored to each distance. On MNIST, ALMA ℓ1 is the only attack to reach an ASR of 100% with

only FAB ℓ1 outperforming it on the SmallCNN model. FMN ℓ1 reaches a lower median ℓ1 at the

cost of a reduced ASR on the CROWN IBP model. ALMA ℓ2 is only marginally outperformed

by APGDT
DLR

ℓ2 on the SmallCNN and SmallCNN-DDN models, but again, ALMA is the only

attack to consistently reach 100% ASR. The results on MNIST get confirmed by the experiments

98

Table 4.2 Performance for attacks on the CIFAR10 and ImageNet datasets. Geometric

mean over the three models for each dataset. †For ImageNet, we use the targeted variant of

the attack as in (Croce & Hein, 2020a) (see section 4.4). ‡A binary search is performed on

each sample to get a minimal perturbation attack (Equation 4.2)

CIFAR10 ImageNet

Distance Attack ASR (%)
Median

Distance

Forwards /

Backwards
ASR (%)

Median

Distance

Forwards /

Backwards

ℓ1-norm

EAD 9×100 100 6.11 572 / 290 100 13.87 488 / 248

EAD 9×1 000 100 5.44 4 284 / 2 146 100 12.83 3 758 / 1 883

FAB† ℓ1 100 96.58 4.26 201 / 1 000 88.82 10.72 1 810 / 900

FAB† ℓ1 1 000 99.00 3.78 2 001 / 10 000 89.07 8.88 18 010 / 9 000

FMN ℓ1 100 99.90 3.64 100 / 100 94.33 8.43 100 / 100

FMN ℓ1 1 000 99.83 3.54 1 000 / 1 000 93.93 7.58 1 000 / 1 000

ALMA ℓ1 100 (Ours) 100 4.31 100 / 100 100 19.79 100 / 100

ALMA ℓ1 1 000 (Ours) 100 3.69 1 000 / 1 000 100 12.10 1 000 / 1 000

ℓ2-norm

C&W ℓ2 9×1 000 100 0.40 7 976 / 7 974 99.83 0.57 7 248 / 7 246

C&W ℓ2 9×10 000 100 0.40 78 081 / 78 079 99.83 0.57 67 479 / 67 476

DDN 100 100 0.43 100 / 100 99.70 0.51 100 / 100

DDN 1 000 100 0.42 1 000 / 1 000 99.87 0.50 1 000 / 1 000

FAB† ℓ2 100 100 0.41 201 / 1 000 99.70 0.35 1 810 / 900

FAB† ℓ2 1 000 100 0.41 2 001 / 10 000 98.90 0.35 18 010 / 9 000

FMN ℓ2 100 99.90 0.43 100 / 100 99.43 0.38 100 / 100

FMN ℓ2 1 000 99.83 0.40 1 000 / 1 000 99.63 0.36 1 000 / 1 000

APGDT
DLR

ℓ2
‡ 100 0.38 5 345 / 5 321 100 0.34 6 096 / 6 068

ALMA ℓ2 100 (Ours) 100 0.40 100 / 100 100 0.38 100 / 100

ALMA ℓ2 1 000 (Ours) 100 0.38 1 000 / 1 000 100 0.35 1 000 / 1 000

CIEDE

2000

C&W CIEDE2000 9×1 000 100 0.93 6 729 / 6 726 100 1.39 5 635 / 5 632

PerC-AL 100 100 2.87 201 / 100 99.90 3.55 201 / 100

PerC-AL 1 000 100 2.72 2 001 / 1 000 99.93 3.42 2 001 / 1 000

ALMA CIEDE2000 100 (Ours) 100 1.09 100 / 100 100 0.75 100 / 100

ALMA CIEDE2000 1 000 (Ours) 100 0.78 1 000 / 1 000 100 0.63 1 000 / 1 000

LPIPS

×10−2

C&W LPIPS 9×1 000 100 0.47 6 658 / 6 655 100 2.07 4 950 / 4 944

LPA‡ 100 5.39 1 118 / 1 108 100 5.79 1 211 / 1 201

ALMA LPIPS 100 (Ours) 99.97 2.47 100 / 100 100 1.59 100 / 100

ALMA LPIPS 1 000 (Ours) 100 0.60 1 000 / 1 000 100 1.13 1 000 / 1 000

on CIFAR10 and ImageNet. All the variants of ALMA consistently obtain 100% success rate

(except for ALMA LPIPS 100). ALMA ℓ1 obtains worse median norms than FAB ℓ1 and FMN

ℓ1, but again, at the cost of a reduced ASR for both attacks. Surprisingly, FMN ℓ1 obtains

lower ASR for the higher budget variant, but with a lower median. For the ℓ2 attacks, several

perform similarly, with only APGDT
DLR

ℓ2 reaching a lower ℓ2 median with a 100% ASR. This

is expected given that this is a distance budget attack, with a much higher overall complexity

when combining it with a binary search. For the CIEDE2000 distance, the PerC-AL attack

(Zhao et al., 2020) obtains significantly larger median distance on both CIFAR10 and ImageNet.

99

Investigating the original code, we found errors in the implementation of the CIEDE2000,

resulting in both wrong values and wrong gradients.11. The LPIPS variant of ALMA performs

much better than LPA combined with a binary search for both datasets. Being a penalty base

approach, our C&W baseline gets performance that is on par or better than ALMA LPIPS on

both datasets, but at a much higher computational cost. However, it does not perform as well for

the CIEDE2000 distance.

Overall, our attack offers a reliable trade-off between speed and performance in terms of ASR

and perturbation size, given that the hyper-parameters are not tuned beyond 𝜖 , which is distance

specific, and 𝛼 which is directly related to the number of steps.

4.6 Conclusion

In this paper, an adversarial attack based on Augmented Lagrangian methods is proposed, which

acts as a general framework for generating minimally perturbed adversarial examples w.r.t.

several distances. In most of our experiments, it offers a good trade-off between performance

and computational complexity in comparison to state-of-the-art methods. We believe that our

general method could serve as a starting point for designing efficient attacks minimizing new

distances.

11 To verify this, we tested both implementations of the CIEDE2000 against the test values provided for

this purpose in (Sharma et al., 2005).

CHAPTER 5

PROXIMAL SPLITTING ADVERSARIAL ATTACK FOR SEMANTIC
SEGMENTATION

Jérôme Rony1 , Jean-Christophe Pesquet2 , Ismail Ben Ayed1

1 Systems Engineering Department, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada

2 Centre de Vision Numérique

Université Paris-Saclay, CentraleSupélec, Inria

Paper accepted for publication at the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023

Abstract

Classification has been the focal point of research on adversarial attacks, but only a few works

investigate methods suited to denser prediction tasks, such as semantic segmentation. The

methods proposed in these works do not accurately solve the adversarial segmentation problem

and, therefore, overestimate the size of the perturbations required to fool models. Here, we

propose a white-box attack for these models based on a proximal splitting to produce adversarial

perturbations with much smaller ℓ∞ norms. Our attack can handle large numbers of constraints

within a nonconvex minimization framework via an Augmented Lagrangian approach, coupled

with adaptive constraint scaling and masking strategies. We demonstrate that our attack

significantly outperforms previously proposed ones, as well as classification attacks that we

adapted for segmentation, providing a first comprehensive benchmark for this dense task.12

5.1 Introduction

Research on white-box adversarial attacks has mostly focused on classification tasks, with

several methods proposed over the years for ℓ𝑝-norms (Kurakin et al., 2017b; Moosavi-Dezfooli

et al., 2016; Dong et al., 2018; Carlini & Wagner, 2017; Rony et al., 2019; Yao et al., 2019;

12 Code: https://github.com/jeromerony/alma_prox_segmentation

102

a) Pascal VOC 2012: ‖𝜹‖∞ = 0.67/255

b) Cityscapes: ‖𝜹‖∞ = 0.53/255

Figure 5.1 Untargeted adversarial examples for FCN HRNetV2 W48 on Pascal VOC 2012

and Cityscapes. In both cases, more than 99% of pixels are incorrectly classified. For each

dataset, left is the original image and its predicted segmentation, middle is the amplified

perturbation and the ground truth segmentation and right is the adversarial image with its

predicted segmentation. For Pascal VOC 2012, the predicted classes are TV monitor (blue),

person (beige) and chair (bright red).

Brendel et al., 2019; Croce & Hein, 2020a,b; Rony et al., 2021; Matyasko & Chau, 2021). In

contrast, the literature on adversarial attacks for segmentation tasks has been much scarcer, with

few works proposing attacks (Xie et al., 2017; Cisse, Adi, Neverova & Keshet, 2017; Ozbulak,

Van Messem & De Neve, 2019). The lack of studies on adversarial attacks in segmentation may

103

appear surprising because of the prominence of this computer vision task in many applications

where a semantic understanding of image contents is needed. In many safety-critical application

areas, it is thus crucial to assess the robustness of the employed segmentation models.

Although segmentation is treated as a per-pixel classification problem, designing adversarial

attacks for semantic segmentation is much more challenging for several reasons. First, from

an optimization perspective, the problem of adversarial example generation is more difficult.

In a classification task, producing minimal adversarial examples is a nonconvex constrained

problem with a single constraint. In a segmentation task, this optimization problem now has

multiple constraints, since at least one constraint must be addressed for each pixel in the image.

For a dataset such as Cityscapes (Cordts et al., 2016), the images have a size of 2 048×1 024,

resulting in more than 2 million constraints. Consequently, most attacks originally designed for

classification cannot be directly extended to segmentation. For instance, penalty methods such

as C&W (Carlini & Wagner, 2017) cannot tackle multiple constraints since they rely on a binary

search of the penalty weight.

Second, the computational and memory cost of generating adversarial examples can be prohibitive.

White-box adversarial attacks usually rely on computing the gradient of a loss w.r.t. the input.

In segmentation tasks, the dense outputs result in high memory usage to perform a backward

propagation of the gradient. For reference, computing the gradients of the logits w.r.t. the input

requires ∼22 GiB of memory for FCN HRNetV2 W48 (Wang et al., 2020) on Cityscapes with a

2 048×1 024 image. Additionally, most recent classification adversarial attacks require between

100 and 1 000 iterations, resulting in a run-time of up to a few seconds per image (Rony et al.,

2019; Pintor et al., 2021) (on GPU) depending on the dataset and model. For segmentation, this

increases to tens or even hundreds of seconds per image with larger models.

In this article, we propose an adversarial attack to produce minimal adversarial perturbations

w.r.t. the ℓ∞-norm, for deep semantic segmentation models. Building on Augmented Lagrangian

principles, we introduce adaptive strategies to handle a large number of constraints (i.e. >106).

Furthermore, we tackle the nonsmooth ℓ∞-norm minimization with a proximal splitting instead

104

of gradient descent. In particular, we show that we can efficiently compute the proximity operator

of the sum of the ℓ∞-norm and the indicator function of the space of possible perturbations. This

results in an adversarial attack that significantly outperforms the DAG attacks (Xie et al., 2017),

in addition to several classification attacks that we were able to adapt for segmentation. We

propose a methodology to evaluate adversarial attacks in segmentation, and compare the different

approaches on the Cityscapes (Cordts et al., 2016) and Pascal VOC 2012 (Everingham, Van Gool,

Williams, Winn & Zisserman, 2012) datasets with a diverse set of architectures, including

well-known DeepLabV3+ models Chen, Zhu, Papandreou, Schroff & Adam (2018a), the recently

proposed transformer-based SegFormer (Xie et al., 2021), and the robust DeepLabV3 DDC-AT

model from (Xu et al., 2021). The proposed approach yields outstanding performances for all

models and datasets considered in our experiments. For instance, our attack finds untargeted

adversarial perturbations with ℓ∞-norms lower than 1/255 on average for all models on Cityscapes.

With this attacker, we provide better means to assess the robustness of deep segmentation models,

which has often been overestimated until now, as the existing attacks could only find adversarial

examples with larger norms.

5.2 Related Works

While the literature on minimal adversarial attacks for classification is vast, the research on

attacks for segmentation is much less developed. The main work on adversarial attacks for

segmentation is done by Xie et al.. It proposes a simple algorithm to generate adversarial

perturbations for dense prediction tasks, including object detection and segmentation, called the

Dense Adversary Generation (DAG) attack. In this attack, the rescaled gradient of the loss w.r.t.

the input is added to the current perturbation, until the stopping criterion is reached, i.e. a given

percentage of pixels is adversarial. In each iteration, the total loss is the sum of the losses over

pixels that are not adversarial. This can be seen as a form of greedy algorithm. See section 1 for

the complete algorithm of the DAG attack and a discussion on the stopping criterion used. In

practice, this attack is quite efficient, however, it simply accumulates gradients until the stopping

criterion is reached. Therefore, it does not minimize the norm considered. Cisse et al. propose

105

the Houdini attack for several tasks (Cisse et al., 2017), including segmentation. The goal of

this approach is to maximize a surrogate loss for a given perturbation budget (i.e. constraint

on the ℓ∞-norm), hence not producing minimal perturbations. More recently, Ozbulak et al.

studied adversarial examples on a medical image segmentation task (Ozbulak et al., 2019). They

propose a targeted attack to minimize the ℓ2-norm, which is a regular penalty method. The

weight of the penalty terms is fixed to 1, however, leading to large perturbations.

Other works study the robustness of segmentation models against adversarial attacks (Fischer,

Kumar, Metzen & Brox, 2017; Arnab, Miksik & Torr, 2018; Kang, Song, Du & Guizani,

2020). In these works, the authors use FGSM (Kurakin et al., 2017b) or an iterative version of

FGSM. However, FGSM is not a minimization attack and is known to provide rough robustness

evaluations. This leads to largely overestimated robustness results on both Pascal VOC 2012

and Cityscapes in (Arnab et al., 2018).

Even though most adversarial attacks were designed for classification, some may be adapted

for segmentation tasks. In particular, ℓ∞ attacks that do not rely on projections onto an

estimated decision boundary can be used for segmentation (as opposed to DeepFool (Moosavi-

Dezfooli et al., 2016) or FAB (Croce & Hein, 2020a)). These attacks are PGD (Madry et al.,

2018), FMN (Pintor et al., 2021) and PDPGD (Matyasko & Chau, 2021). Note that PDPGD

(Matyasko & Chau, 2021) relies on a proximal splitting method, but uses the AdaProx algorithm

(Melchior, Joseph & Moolekamp, 2019); the latter is appealing but, unlike the prox-Newton

algorithm it is inspired from (Becker & Fadili, 2012), introduces a mismatch between the

scaling in the computation of the proximity operator and the step-size of the gradient step. The

convergence study of such an algorithm would be quite challenging in the non-convex case.

It is also known that, even in the convex case, when such a mismatched algorithm converges,

the asymptotic point differs from the solution to the original optimization problem (Savanier,

Chouzenoux, Pesquet & Riddell, 2022).

106

5.3 Preliminaries

Let 𝒙 ∈ X be an input image with its corresponding label map 𝒚 ∈ Y. Usually, in computer

vision problems, X = [0, 1]𝐶×𝐻×𝑊 and Y = {1, . . . , 𝐾}𝐻×𝑊 , where 𝐻 and 𝑊 are the height

and width of the image, 𝐶 is the number of channels (e.g. 3 for RGB images), and 𝐾 is the

number of labeling classes. Our objective is to fool the model 𝑓 : X → R𝐾×𝐻×𝑊 producing

logits 𝒛 = 𝑓 (𝒙) = (
𝑓 (𝒙)𝑘,𝑖, 𝑗

)
𝑘,𝑖, 𝑗 ∈ R𝐾×𝐻×𝑊 . This means that we are looking for a perturbation

vector 𝜹 such that, for every pixel (𝑖, 𝑗) ∈ {1, . . . , 𝐻} × {1, . . . , 𝑊}, the maximum value of

(𝑓 (𝒙 + 𝜹)𝑘,𝑖, 𝑗)1≤𝑘≤𝐾 is reached for a label different from the true one 𝒚𝑖, 𝑗 . In addition, the

perturbation should satisfy the value range constraints: 𝒙 + 𝜹 ∈ X. We denote Λ the set of

admissible perturbations, so here Λ = [0, 1]𝐶×𝐻×𝑊 − 𝒙. For simplicity, with a slight abuse of

notation, we index the pixels with 𝑖 ∈ {1, . . . , 𝑑} where 𝑑 = 𝐻𝑊 is the total number of pixels.

5.3.1 Problem formulation

The minimal adversarial perturbation problem for the ℓ∞-norm can be formulated as follows:

minimize
𝜹

‖𝜹‖∞ subject to arg max
𝑘∈{1,...,𝐾}

𝑓 (𝒙 + 𝜹)𝑘,𝑖 ≠ 𝒚𝑖 , 𝑖 = 1, . . . , 𝑑,

𝒙 + 𝜹 ∈ X.

(5.1)

The 𝑑 arg max constraints correspond to the misclassification of each pixel. The 𝒙 + 𝜹 ∈ X
constraint corresponds to producing a perturbation that results in a valid image, and can be

re-written as 𝜹 ∈ Λ. Note that this constraint can also be encoded in the objective using the

indicator function:

𝜄Λ(𝜹) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if 𝜹 ∈ Λ;

+∞ else,

(5.2)

resulting in the minimization of ‖𝜹‖∞ + 𝜄Λ(𝜹).

107

5.3.2 Equivalent problem

As is common in several attacks (Carlini & Wagner, 2017; Croce & Hein, 2020b; Rony et al.,

2021), we replace the non-differentiable misclassification constraints by differentiable ones, to

make it compatible with first-order optimization methods. Here, the arg max constraints are

replaced by constraints on the Difference of Logits Ratio (DLR) (Croce & Hein, 2020a), or

rather the DLR+ (Rony et al., 2021):

minimize
𝜹

‖𝜹‖∞ subject to DLR+(𝑓 (𝒙 + 𝜹)𝑖 , 𝒚𝑖) + 𝜀 ≤ 0, 𝑖 = 1, . . . , 𝑑,

𝜹 ∈ Λ,

(5.3)

where DLR+(𝒛, 𝑦) =
𝒛𝑦−max

𝑖≠𝑦
𝒛𝑖

𝒛𝜋1
−𝒛𝜋3

, with 𝜋𝑖 the index of the 𝑖-th largest logit and 𝜀 a small positive

constant.

5.3.3 Augmented Lagrangian method

One way to handle the misclassification constraints is to use an Augmented Lagrangian approach

(Rony et al., 2021), which in the classification setting, performs a gradient descent on the

following quantity:

𝐷 (𝒙 + 𝜹, 𝒙) + 𝑃
(
DLR+(𝑔(𝒙 + 𝜹)), 𝜌, 𝜇

)
, (5.4)

where 𝐷 is a discrepancy measure (e.g. ℓ2-norm, LPIPS (Zhang et al., 2018)), 𝑃 is a penalty-

Lagrangian function parametrized by a parameter 𝜌 and a multiplier 𝜇, and 𝑔 : X → R is a

classification model. In (Rony et al., 2021), the penalty multiplier 𝜇 is updated after every

gradient descent iteration to increase or decrease the weight of penalty, and eventually satisfy

the misclassification constraint.

5.4 Proposed Method

Our segmentation attack is built on the general Augmented Lagrangian principle, which has led

to competitive performances in the ALMA classification attack (Rony et al., 2021). It provides

108

an efficient solution to challenging nonconvex problems arising when designing an attacker,

and we will see that it can be extended to cope with multiple constraints. This can be achieved

by introducing one penalty per constraint, with its associated parameter 𝜌 and multiplier 𝜇.

Denoting 𝒅 = DLR+(𝑓 (𝒙 + 𝜹), 𝒚) ∈ R𝑑 , we tackle problem (5.1) by minimizing the following

objective:

‖𝜹‖∞ + 𝜄Λ(𝜹)︸�����������︷︷�����������︸
ℎ1

+ 𝒎	𝑃(𝒅, 𝝆, 𝝁)︸�����������︷︷�����������︸
ℎ2

, (5.5)

where 𝒎 ∈ {0, 1}𝑑 is a binary mask (detailed in the following section), (𝝆, 𝝁) ∈ R𝑑++ × R𝑑++ are

the penalty parameters and multipliers associated with each constraint, and 𝑃 is the penalty

function applied componentwise. This formulation raises many technical challenges in the

context of segmentation, when dealing with millions of constraints. Additionally, gradient based

optimization does not accommodate nonsmooth functions such as the ℓ∞-norm. In this work,

we bring several modifications to make it (i) suitable for segmentation and (ii) applicable to the

ℓ∞-norm.

Our attack, called ALMA prox, consists in minimizing (5.5) using a proximal splitting (Com-

bettes & Pesquet, 2011) to handle the nonsmooth term ℎ1 and an Augmented Lagrangian

method to satisfy the constraints by minimizing ℎ2 using a gradient descent. In subsection 5.4.1,

we introduce the adaptive constraint strategies to handle large numbers of constraints in the

Augmented Lagrangian framework, and in subsection 5.4.2, we detail the proximal splitting

iteration. The complete algorithm of our attack is provided in section 3.

5.4.1 Adaptive constraints strategies

5.4.1.1 Constraint masking

In segmentation tasks, some regions are unlabeled (e.g. object boundaries in Pascal VOC, void

class in Cityscapes), and should be ignored during an attack. We use a binary mask 𝒎 ∈ {0, 1}𝑑

to encode this, effectively reducing the number of constraints from 𝑑 to ‖𝒎‖1. Given the number

of constraints considered in this problem (e.g. ∼106 for Cityscapes), we consider an attack as

109

successful if it satisfies at least a fraction 𝜈 of the constraints. In this paper, we use 𝜈 = 99%. To

consolidate this in our attack, we compute a mask 𝒎̃ (𝑡) ∈ {0, 1}𝑑 at each iteration 𝑡 ∈ {1, . . . , 𝑁}
such that 𝜈 ‖𝒎‖1 ≤ ‖𝒎̃ (𝑡) ‖1 ≤ ‖𝒎‖1. This mask discards the largest constraints, aligning the

optimization objective with the criterion of successful attack. The discarded constraints are less

likely to be satisfied, so this avoids the continuous increase of their associated multipliers, which

may result in larger perturbations. In practice, at each iteration 𝑡, we use a threshold 𝜉 (𝑡) as a

percentile of the constraints 𝒅 (𝑡) to obtain 𝒎̃ (𝑡) , and linearly decay 𝜉 (𝑡) from 100% at the first

iteration to 𝜈 at the last iteration:

𝜉 (𝑡) =
(
1 − (1 − 𝜈) 𝑡 − 1

𝑁 − 1

)
-percentile of 𝒅 (𝑡) ,

𝒎̃ (𝑡) = [𝒅 (𝑡) ≤ 𝜉 (𝑡)],
(5.6)

where [·] is the Iverson bracket applied component-wise.

5.4.1.2 Constraint scaling

When dealing with large numbers of constraints in Augmented Lagrangian methods, it is standard

practice to scale them (see section 12.5 of (Birgin & Martínez, 2014)). However, there is no

principled way of choosing this scale, as it is problem dependent. At iteration 𝑡, we multiply all

the constraints by a scaling factor 𝑤 (𝑡) ∈]0, 1] by computing

ℎ2(𝜹) = (𝒎̃ (𝑡))	𝑃
(
𝑤 (𝑡)𝒅 (𝑡) , 𝝆(𝑡) , 𝝁(𝑡)

)
. (5.7)

This scaling factor is adjusted during the attack with a binary decision: if the pixel success rate

at the current iteration is less than the target pixel success rate 𝜈, the scaling factor is increased,

otherwise it is decreased:

𝑤 (𝑡) = 𝑤 (𝑡−1) ×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
1−𝛾𝑤

if
𝒎	[𝒅 (𝑡) ≤0]

‖𝒎‖1
< 𝜈;

1
1+𝛾𝑤

otherwise.

(5.8)

110

Multiplying by 1
1±𝛾𝑤

instead of 1 ± 𝛾𝑤 biases 𝑤 (𝑡) to increase in case of oscillations, with two

iterations resulting in a multiplication of 1
1−𝛾2

𝑤
instead of 1 − 𝛾2

𝑤. 𝑤 (𝑡) is further projected on a

safeguarding interval [𝑤min, 1]. We use 𝑤min = 0.1 and set the initial scale to 𝑤 (0) = 1.

5.4.1.3 Penalty

For the penalty function, we use a slightly modified version of the 𝑃2 penalty from (Bir-

gin & Martínez, 2014). It corresponds to the following mapping applied component-wise

defined (∀𝑦 ∈ R) (∀(𝜌, 𝜇) ∈ [0, +∞[2):

𝑃(𝑦, 𝜌, 𝜇) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜇𝑦 + 𝜇𝜌𝑦2 + 1
6
𝜌2𝑦3 if 𝑦 ≥ 0;

𝜇𝑦
1−max(1,𝜌)𝑦 otherwise.

(5.9)

This penalty also satisfies the requirements in (Birgin & Martínez, 2014), while allowing the

penalty multipliers to decrease faster for negative values of the constraint with 𝜌 < 1.

5.4.2 Proximal splitting

Proximal methods have been the workhorse of nonsmooth large scale optimization in the last two

decades (Combettes & Pesquet, 2011; Bach, Jenatton, Mairal, Obozinski et al., 2012). Originally

designed for solving convex optimization problems, they have been also successfully employed

in the nonconvex case (Attouch, Bolte & Svaiter, 2013). One of their main advantages is that

they offer the ability to split the cost function in a sum of terms which can be addressed either

by computing their proximity operator, or their gradient when they are smooth. One important

point is that, generally, the limitations on the step-size arising in proximal algorithms are related

to the Lipschitz-regularity of the gradient of the smooth part, whereas the proximity operators

of the other functions do not introduce any restriction.

As a common practice in adversarial attacks, we are interested in minimizing the ℓ∞-norm. To

handle this term, at each iteration of the proposed algorithm, our problem is expressed as the

minimization of a sum of two functions as in (5.5), where ℎ1 is convex and ℎ2 is smooth. With

111

this formulation, we can solve the problem using a forward-backward splitting algorithm where

the update reads

𝜹(𝑡+1) = prox𝜆ℎ1︸��︷︷��︸
backward step

(
𝜹(𝑡) − 𝜆∇𝜹ℎ2

(
𝜹(𝑡)

)︸�����������������︷︷�����������������︸
forward step

)
, (5.10)

𝜆 is a positive step-size, and prox𝜆ℎ1
is the proximity operator of the function 𝜆ℎ1. Global conver-

gence guarantees of the forward-backward algorithm exist in the convex case (Combettes & Wajs,

2005) and local ones in the nonconvex case (Attouch et al., 2013). To carry out our attack, we

thus need to find the proximity operator of ℎ1.

5.4.2.1 Proximity operator of ℎ1

The function ℎ1 is a sum of two functions: ‖·‖∞ and 𝜄Λ. In general, the proximity operator

of a sum of functions is neither the sum of the proximity operators of the functions nor their

composition. One way to solve the sub-problem of finding the prox of ℎ1 = ‖·‖∞ + 𝜄Λ would be

to resort to an iterative proximal splitting algorithm, such as the dual forward-backward splitting

(Combettes & Pesquet, 2011). However, we will propose a more efficient numerical approach by

going back to the definition of the proximity operator (Bauschke, Combettes et al., 2011):

prox𝜆ℎ1
(𝜹) = prox𝜆‖·‖∞+𝜄Λ

(𝜹)

= arg min
𝒑∈R𝐶𝑑

1

2
‖ 𝒑 − 𝜹‖2

2 + 𝜆 ‖ 𝒑‖∞ + 𝜄Λ(𝒑).
(5.11)

As X = [0, 1]𝐶𝑑 , we can reformulate this problem as:

minimize
𝒑,𝛽

1

2
‖ 𝒑 − 𝜹‖2

2 + 𝜆𝛽 subject to −𝛽1𝐶𝑑 ≤ 𝒑 ≤ 𝛽1𝐶𝑑,

−𝒙 ≤ 𝒑 ≤ 1𝐶𝑑 − 𝒙,

(5.12)

where 1𝐶𝑑 = [1, . . . , 1]	 ∈ R𝐶𝑑 . Since Λ = [0, 1]𝐶𝑑 − 𝒙 ⊂ [−1, 1]𝐶𝑑 , the maximum possible

ℓ∞-norm of the solution 𝒑★ is 1, so we need to solve (5.12) for 𝛽 ∈ [0, 1]. For 𝛽 = 0, the

112

solution is trivially 𝒑★ = 0. For 𝛽 = 1, the solution is 𝒑★ = PΛ(𝜹) since the problem reduces to

minimize
𝒑

1

2
‖ 𝒑 − 𝜹‖2

2 subject to −𝒙 ≤ 𝒑 ≤ 1𝐶𝑑 − 𝒙. (5.13)

For a given 𝛽 ∈]0, 1[, (5.12) becomes a projection problem, so we can express the solution for

𝒑 as 𝒑𝛽 = P[−𝛽,𝛽]𝐶𝑑∩Λ(𝜹). The optimal value of 𝛽 has then to be found by solving

minimize
𝛽∈[0,1]

1

2

		 𝒑𝛽 − 𝜹
		2

2
+ 𝜆𝛽. (5.14)

Proposition 5.1. Problem (5.14) is convex and admits a unique optimal solution 𝛽★ ∈ [0, 1],
for which the following inequality holds:

0 ≤ 𝛽★ ≤ ‖PΛ(𝜹)‖∞ . (5.15)

The proof of this result is provided in section 2. Several methods can be used to solve (5.14).

We employ a ternary search since it offers a linear convergence rate, avoids the computation

of the gradient of the objective w.r.t. 𝛽, and is numerically stable. It also yields a number of

iterations depending on the required absolute precision Δ𝛽. Based on inequality (5.15), the

number of iterations for the ternary search is log(Δ𝛽/‖PΛ (𝜹)‖∞)/log(2/3). Since we are performing

adversarial attacks on images, the precision is usually 8-bit, or 1/255 ≈ 3.9 × 10−3, we solve the

problem with Δ𝛽 = 10−5, yielding 29 iterations at worse, when ‖PΛ(𝜹)‖∞ = 1. The procedure

to compute 𝒑★ = prox𝜆‖·‖∞+𝜄Λ
(𝜹) is described in Algorithm 5.1.

5.4.2.2 Variable Metric Forward-Backward

Forward-Backward algorithms can suffer from slow convergence. Therefore, we propose to

use a Variable Metric Forward Backward (VMFB) (Chouzenoux, Pesquet & Repetti, 2014;

Combettes & Vũ, 2014) algorithm as an acceleration.

113

Algorithm 5.1 Ternary search for 𝒑★ = prox𝜆‖·‖∞+𝜄Λ
(𝜹)

Input: Input vector 𝜹 and feasible set Λ.

Input: Absolute precision Δ𝛽 on the solution.

1 𝜹Λ ← PΛ(𝜹)
2 𝑙 ← 0 ; // Lower bound for 𝛽★

3 𝑢 ← ‖𝜹Λ‖∞ ; // Upper bound for 𝛽★

4 𝑛 ← �log(Δ𝛽/𝑢)/log(2/3)� ; // Number of steps
5 for 𝑡 ← 1, . . . , 𝑛 do
6 𝛽𝑙 ← 𝑙 + (𝑢 − 𝑙)/3 ; // Points to evaluate the objective
7 𝛽𝑢 ← 𝑢 − (𝑢 − 𝑙)/3
8 𝒑𝑙 ← P[−𝛽𝑙 ,𝛽𝑙] (𝜹Λ) ; // Projection on interval
9 𝒑𝑢 ← P[−𝛽𝑢 ,𝛽𝑢] (𝜹Λ)

10 𝑓𝑙 ← 1
2
‖ 𝒑𝑙 − 𝜹‖2

2 + 𝜆𝛽𝑙 ; // Value of objective

11 𝑓𝑢 ← 1
2
‖ 𝒑𝑢 − 𝜹‖2

2 + 𝜆𝛽𝑢
12 if 𝑓𝑙 ≥ 𝑓𝑢 then
13 𝑙 ← 𝛽𝑙 ; // Update bounds for search
14 else
15 𝑢 ← 𝛽𝑢
16 end for
17 𝛽★ = (𝑙 + 𝑢)/2 ; // Minimum is in [𝑙, 𝑢]
18 return 𝒑★ = P[−𝛽★,𝛽★] (𝜹Λ) ; // Return prox using 𝜹Λ

Definition 5.1. Let H be a positive definite matrix in R𝐶𝑑×𝐶𝑑 . For all 𝜆 > 0, the proximity

operator of 𝜆ℎ1 in the metric H is defined as

proxH
𝜆ℎ1
(𝜹) = arg min

𝒑∈R𝐶𝑑
1

2
‖ 𝒑 − 𝜹‖2

H + 𝜆ℎ1(𝜹), (5.16)

where ‖ 𝒑‖H =
√
𝒑	H 𝒑 is a weighted norm.

Following the definition, the update in VMFB reads

𝜹(𝑡+1) = proxH
𝜆ℎ1

(
𝜹(𝑡) − 𝜆H−1∇𝜹ℎ2

(
𝜹(𝑡)

))
. (5.17)

This method requires inverting a 𝐶𝑑×𝐶𝑑 square matrix, which may be impractical. Therefore,

we use a diagonal metric H = Diag(𝒔) with 𝒔 ∈]0, +∞[𝐶𝑑 . At iteration 𝑡, the diagonal vector

114

𝒔(𝑡) is estimated from the gradient as

𝒗 (𝑡) = 𝛼𝒗 (𝑡−1) + (1 − 𝛼) (∇𝜹ℎ2(𝜹(𝑡))
)2

𝒔(𝑡) =

√
𝒗 (𝑡)

1 − 𝛼𝑡
+ 𝜀

(5.18)

where the square and square root operations are performed componentwise, 𝛼 ∈ [0, 1[is a

smoothing parameter, and 𝒗 (0) = 0𝐶𝑑 .

Remark. With this choice for the metric, the forward (i.e. gradient) step becomes equivalent to

the one in the Adam algorithm (Kingma & Ba, 2015) with (𝛽1, 𝛽2) = (0, 𝛼).

Note that Proposition 5.1 still holds for a diagonal metric. Indeed, the projection on Λ

w.r.t. a diagonal metric PH
Λ = arg min𝒚∈Λ ‖· − 𝒚‖2

H is equal to the Euclidean projection PΛ =

arg min𝒚∈Λ ‖· − 𝒚‖2
2. This is readily deduced from the fact that both projection problems are

separable in each component, since H is diagonal and the constraint 𝒚 ∈ Λ is separable. Therefore,

since PH
Λ = PΛ, the proof is unchanged. Additionally, the ternary search approach to compute

𝒑★ can still be used: the norms in steps 10 and 11 are replaced by the weighted norm.

5.5 Experiments

5.5.1 Ternary Search

To evaluate the efficiency of our method to compute prox𝜆ℎ1
using a ternary search, we provide

a comparison with several traditional iterative splitting algorithms: Dual Forward-Backward

(DFB) splitting (Combettes, Dũng & Vũ, 2010), an Accelerated variant (ADFB) using Nesterov

acceleration on the dual problem (Chambolle & Dossal, 2015), and a Douglas-Rachford (DR)

splitting algorithm (Lions & Mercier, 1979). We generate pseudorandom samples 𝒙 ∼ U(0𝑑, 1𝑑),
perturbation vectors 𝜹 ∼ N(0, 𝜎2𝐼𝑑), and scale 𝜆 ∼ 10U(−1,3) , with 𝑑 = 218 = 512×512. For all

methods, we use an absolute stopping criterion on the solution
		 𝒑 (𝑡+1) − 𝒑 (𝑡)

		
∞ ≤ 10−5. For

115

0.5
255

1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

σ

0.001

0.01

0.1

1

T
im

e
(s
)

Average time per proxλ‖·‖∞+ιΛ

0.5
255

1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

σ

1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

Objective relative to ternary search

DFB

ADFB

DR

Ternary Search

Figure 5.2 Comparison of average run-time and quality of solution in terms of

optimization objective of DFB, ADFB, DR and Ternary Search for pseudorandom vectors

𝜹 ∼ N(0, 𝜎2𝐼𝑑)

each 𝜎, we repeat the evaluation 100 times, and report the average compute time13 and the value

of the objective from (5.11) relative to the one obtained using the ternary search.

The results are shown in Figure 5.2. Overall, the Ternary Search approach is faster and provides

more accurate solutions to the computation of the proximity operator of interest than DFB,

ADFB and DR. In some occasions, it may happen that ADFB converges faster, but the trade-off

is a worse solution in terms of objective on average.

5.5.2 Datasets and Models

We perform the experiments on the validation set of two well-known segmentation datasets:

Pascal VOC 2012 (Everingham et al., 2012) and Cityscapes (Cordts et al., 2016).

We evaluate the attacks on a collection of models chosen based on several criteria: widespread us-

age, high performance, and architectures diversity. With these criteria, we selected DeepLabV3+

13 Experiments were run on NVIDIA A100 SXM4 40 GB GPUs.

116

ResNet-50, ResNet-101 (Chen et al., 2018a), and FCN HRNetV2 W48 (Wang et al., 2020)

which are CNN based models, and SegFormer MiT-B0 and MiT-B3 (Xie et al., 2021) which are

transformer based models. We also consider the robust model DeepLabV3 ResNet-50 DDC-AT

from (Xu et al., 2021).

For white-box attacks, most attack algorithms compute the gradient of a loss w.r.t. the input. In

the context of adversarial attacks, this quantity is computed for validation images, which can be

larger than the image crops used in training. For Cityscapes specifically, models are evaluated

on 2 048×1 024 images. This leads to high memory usage, and, in particular, DeepLabV3+

ResNet-101 and larger variants of the SegFormer family (i.e. MiT-B4 and MiT-B5) require more

than 40 GB of memory per gradient computation on 2 048×1 024 images. Therefore, we refrain

from doing experiments on models requiring more than 40 GB of GPU memory13 to ease future

comparisons.

For most segmentation models, the evaluation protocol involves resizing the image to a specified

size (e.g. such that the smallest side has a specified length, while keeping the aspect ratio), using

the model to produce a segmentation, and then resizing this segmentation to the original image

size and compute the performance metrics. In our context, we do not perform this resizing

before and after. This slight modification of the evaluation protocol leads to marginal differences

in the typical performance metrics, which we report in section 4. All the models weights are

fetched from the MMSegmentation library (MMSegmentation Contributors, 2020), except for

the robust model DeepLabV3 DDC-AT from (Xu et al., 2021), which was obtained from the

repository associated with the paper.

5.5.3 Metrics

In segmentation, the concept of a successful attack is more ambiguous than in classification,

where success is a binary criterion. From a security perspective in a segmentation task, mostly

making wrong predictions, except for a few pixels, can be considered as a successful attack (or a

model failure), even though all the constraints are not satisfied.

117

Previous works on adversarial examples in a segmentation context (Arnab et al., 2018; Xie

et al., 2017; Xu et al., 2021) measure the model robustness (or equivalently, attack performance)

using the mean Intersection over Union (mIoU) over all classes. However, this metric is biased

towards small regions, and does not indicate how well the adversarial optimization problem

(5.1) is solved. Therefore, to measure the success of an attack, we simply measure the constraint

satisfaction rate over all pixels in the mask 𝒎, irrespective of the original class. For a given

image, we call this constraint satisfaction rate the Attack Pixel Success Rate (APSR). For

untargeted attacks, the APSR is defined as:

APSR =
𝒎	[arg max𝑘 𝑓 (𝒙 + 𝜹)𝑘,𝑖 ≠ 𝒚𝑖]

‖𝒎‖1

∈ [0, 1] (5.19)

Although our approach has been presented in the context of untargeted attacks, it can also be

straightforwardly extended to targeted attacks. In such a case, a target label 𝒕 = (𝒕𝑖)1≤𝑖≤𝑑 is

provided and the statement becomes arg max𝑘 𝑓 (𝒙 + 𝜹)𝑘,𝑖 = 𝒕𝑖.

From there, choosing a specific threshold is arbitrary. In our experiments, we use 𝜈 = 99%

as a threshold for the APSR, meaning that an attack is considered successful if APSR ≥ 99%.

From an optimization perspective, this indicates that we satisfy at least 99% of the constraints

in problem (5.1). A lower threshold could also result in low quality segmentations. However,

given the small ℓ∞-norms of the perturbations observed to satisfy such a high threshold, we

argue that it highlights the effectiveness of our attack.

5.5.4 Attack objectives

The most common scenario for adversarial attacks is the untargeted setting. While it is natural

for classification, this can produce unrealistic segmentations that could easily be filtered or

rejected (see Figure 5.1). Therefore, we need to find a more natural objective for the adversarial

attack depending on the context. For Pascal VOC, there is a background class, which can be

chosen as the target class for the whole image. This means that a successful targeted attack

would produce a segmentation with no object of interest.

118

In contrast, Cityscapes does not consider a background class, so we need a plausible target. A

strategy explored in (Fischer et al., 2017) is to erase a class and select the nearest neighbor that

is not from the same class as the target label. This produces natural segmentation labels given

the context, but it is not clear which class should be erased in general. For our experiments, we

compute a target label based on the majority label for each pixel over the whole training set. This

produces a more natural looking segmentation, but with high spatial frequencies, which differs

from the dataset segmentation labels. Therefore, we draw a smoothed version of this target,

avoiding the high frequencies, while keeping the structure. This target is provided in section 5.

5.5.5 Attacks

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

DeepLabV3+ ResNet-50 - Untargeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

Figure 5.3 Percentage of unsuccessful untargeted attacks for DeepLabV3+ ResNet-50 on

Cityscapes. Horizontal axis is linear on [0, 2/255] and logarithmic on [2/255, 1]

For the minimization attacks, we set a 500 iterations budget, corresponding to a ∼24 hours

run-time to attack the entire validation set of Cityscapes with the largest model.

119

5.5.5.1 DAG

The main baseline in our experiments is DAG (Xie et al., 2017). We report the results with two

step-sizes: 0.003 and 0.001;, such that the larger does not fail to find adversarial perturbations,

while the smaller finds smaller perturbations for some samples, but fails on others.

5.5.5.2 Other baselines

As mentioned in section 5.2, we can adapt some attacks originally designed for classification. We

consider I-FGSM (Kurakin et al., 2017b) and MI-FGSM (Dong et al., 2018) with 20 iterations

and use a 13 steps binary search on the ℓ∞-norm, yielding an error of 2−13 ≈ 10−4, to find the

smallest norm for which the attack succeeds. Similarly, we include four variants of the PGD

attack (Madry et al., 2018) with a binary search. These variants use the Cross-Entropy (CE)

or the DLR loss from (Croce & Hein, 2020b), in combination with 40 steps or 10 steps with 3

random restarts (totaling 40 steps).14 We also adapt the ℓ∞ variant of FMN (Pintor et al., 2021)

by taking the loss as the average over the mask 𝒎 and testing if APSR ≥ 𝜈 as the binary decision

for the projection step. We use 𝛼 = 10 in FMN (see section 3.1 of (Pintor et al., 2021)). Finally,

we modify the PDPGD attack (Matyasko & Chau, 2021) to take into account the constraint

masking strategies. We provide the details of the modifications, as well as an ablation study on

the impact of these strategies in section 6. We could not include the Houdini attack (Cisse et al.,

2017) as no public implementation is available.

5.5.5.3 ALMA prox

For our attack, we use an initial step-size 𝜆(0) = 10−3 and decay it to 𝜆(𝑁) = 10−4. With a budget

of 500 iterations, we set 𝛼 = 0.8, compared to 0.9 for 1 000 iterations in (Rony et al., 2021).

We set the 𝜇(0) = 1𝑑 and 𝜌(0) = 0.01 · 1𝑑 , the penalty parameter increase rate 𝛾 = 2 and the

constraint scale adjustment rate to 𝛾𝑤 = 0.02.

14 Given the poor performance of these attacks on the regularly trained models, we do not evaluate them

on the robust model from (Xu et al., 2021).

120

5.6 Results

5.6.1 Perturbation size

Table 5.1 Median and average norms ‖𝜹‖∞ ×255 for each adversarial attack on Pascal

VOC 2012 and Cityscapes

Pascal VOC 2012 Cityscapes

Attack
DeepLabV3+

ResNet-50

FCN

HRNetV2 W48

DeepLabV3+

ResNet-50

SegFormer

MiT-B3

U
n
ta

rg
et

ed

I-FGSM 13 × 20 146.32 136.55 227.11 145.69 255.00 242.15 255.00 208.97

MI-FGSM 13 × 20 195.35 145.96 255.00 157.63 255.00 244.43 255.00 228.43

PGD CE 13 × 40 80.10 120.93 152.08 136.05 255.00 236.77 255.00 188.15

PGD CE 13 × 4 × 10 24.90 74.15 66.93 118.76 255.00 244.92 255.00 231.51

PGD DLR 13 × 40 7.22 26.42 11.11 23.85 17.75 24.23 84.22 102.80

PGD DLR 13 × 4 × 10 4.42 24.99 10.46 29.75 255.00 227.89 110.82 134.41

DAG 𝜂 = 0.003 5.69 6.63 8.80 10.61 6.30 7.51 8.83 9.02

DAG 𝜂 = 0.001 5.23 8.22 8.49 14.61 5.95 9.39 8.59 53.65

FMN ℓ∞ 0.46 38.34 0.91 46.39 1.97 96.57 1.08 6.42

PDPGD ℓ∞ 0.73 1.77 1.52 2.43 1.06 2.82 1.39 3.05

ALMA prox 0.32 0.34 0.51 0.56 0.24 0.26 0.33 0.33

T
ar

g
et

ed

I-FGSM 13 × 20 0.47 0.50 0.59 0.64 255.00 255.00 51.73 88.24

MI-FGSM 13 × 20 0.59 0.66 0.77 0.85 4.26 55.35 2.54 2.60

PGD CE 13 × 40 0.37 0.43 0.50 0.54 3.49 3.71 1.87 1.92

PGD CE 13 × 4 × 10 0.50 0.51 0.62 0.65 255.00 255.00 255.00 255.00

PGD DLR 13 × 40 0.62 0.68 0.81 0.94 8.37 67.86 3.98 4.09

PGD DLR 13 × 4 × 10 0.87 1.07 1.12 1.28 255.00 255.00 255.00 255.00

DAG 𝜂 = 0.003 4.21 4.50 5.32 5.66 11.34 12.96 9.82 10.06

DAG 𝜂 = 0.001 3.92 4.21 5.07 5.36 10.96 40.28 11.53 119.47

FMN ℓ∞ 0.42 0.45 0.47 0.49 255.00 254.36 255.00 255.00

PDPGD ℓ∞ 0.28 0.36 0.35 0.46 14.51 14.41 19.26 19.20

ALMA prox 0.25 0.26 0.32 0.34 1.15 1.17 0.65 0.66

For each dataset, model, and scenario (untargeted and targeted), we plot the attack failure rate

as a function of the perturbation size. This failure rate corresponds to the fraction of samples

for which an attack has not found an adversarial example with APSR ≥ 99%. This kind of plot

can be interpreted in two ways: model-centric and attack-centric. In a model-centric analysis, a

more robust model will require larger perturbations to be fooled, and therefore, correspond to a

curve towards the upper right. In an attack-centric analysis, a stronger attack will find smaller

perturbations, and have a curve towards the lower left.

121

Table 5.2 Median and average norms ‖𝜹‖∞ ×255 for each

adversarial attack on the robust model DeepLabV3 DDC-AT

Xu et al. (2021)

Attack Pascal VOC 2012 Cityscapes

U
n
ta

rg
et

ed
DAG 𝜂 = 0.003 12.05 25.96 16.99 25.81

DAG 𝜂 = 0.001 11.71 57.93 17.02 81.30

FMN ℓ∞ 1.28 75.66 37.54 128.67

PDPGD ℓ∞ 3.53 11.86 43.61 58.10

ALMA prox 0.78 2.17 0.81 1.01

T
ar

g
et

ed

DAG 𝜂 = 0.003 7.01 7.68 31.60 69.84

DAG 𝜂 = 0.001 6.78 8.78 255.00 230.29

FMN ℓ∞ 1.31 36.10 255.00 255.00

PDPGD ℓ∞ 0.84 1.23 255.00 255.00

ALMA prox 0.52 0.54 3.64 3.92

Figure 5.3 shows this plot for untargeted attacks on Cityscapes with DeepLabV3+ ResNet-50. To

improve readability, we use a linear scale on [0, 2/255] and a logarithmic scale on [2/255, 1]. Here,

DAG needs a norm of 8/255 to successfully fool ∼75% of the samples (with APSR ≥ 99%), and

24/255 to fool 99% of the samples. In contrast, ALMA prox finds adversarial perturbations with

ℓ∞-norms smaller than 0.55/255 for all samples. This contradicts the robustness results in Arnab

et al. (2018), where models have mIoUs of ∼50% at 1/255, as opposed to 2.1% at 0.55/255 here.

Table 5.1 reports the median and average ℓ∞-norm (multiplied by 255 for readability) of the

perturbations produced by the attacks for a subset of the regular models: DeepLabV3+ ResNet-50

and FCN HRNetV2 W46 on Pascal VOC 2012, and DeepLabV3+ ResNet-50 and SegFormer

MiT-B3 on Cityscapes. For unsuccessful attacks (i.e. APSR < 99%), the perturbation size is

considered to be 1 (i.e. 255/255). Overall, the ALMA prox attack outperforms all the attacks

considered in our experiments. On Pascal VOC, most attacks can find small (e.g. ≤ 1/255)

perturbations in the targeted scenario. This is expected because the most frequent class in Pascal

VOC is the background. However, the differences are much larger in the untargeted scenario,

which corresponds to predicting mostly non-background classes. On Cityscapes, the scale of the

problem (∼106 constraints) highlights the difficulty of generating adversarial perturbations for

segmentation models. PDPGD handles the untargeted scenario well, with median ℓ∞-norms

122

of ∼1/255, but produces much larger perturbations in the targeted case. Contrarily, PDG CE

13 × 40 finds small targeted perturbations, but fails in the untargeted scenario. Finally, FMN

has inconsistent performance across samples: on Cityscapes in the untargeted scenario, the low

median and high average indicates that it fails to find for a large portion of the samples. This can

also be seen in Figure 5.3, where FMN finds perturbation with ℓ∞-norms smaller than 2/255 for

∼50% of the samples, but fails for ∼35% of them. The results for all models can be found in

section 8 with similar trends on the other models.

Finally, the median and average perturbation norms for the robust model DeepLabV3 DDC-AT

are reported in Table 5.2. On Pascal VOC, several attacks succeed in finding small perturbations.

However, Cityscapes is, again, more challenging, especially in the targeted scenario.

5.6.2 Attack complexity

The observed average complexities in terms of number of forward and backward propagations

of the model (see Section 4 of Rony et al. (2021)) and run-times are reported in section 7. The

number of propagations is equal to the iteration budget for all attacks except DAG, which uses

an early stopping criterion. Therefore, DAG has lower complexity on average. For smaller

step-sizes, it can reach the limit of 500 iterations for some samples (e.g. for SegFormer models on

Cityscapes, see Figure IV-4) and fails to find adversarial perturbations. The second observation

is that the proximity operator used in ALMA prox does not significantly increase the run-time

compared to the other attacks with similar number of forward and backward propagations.

5.7 Conclusion

We proposed an adversarial attack for deep semantic segmentation models to produce minimal

perturbations w.r.t. the ℓ∞-norm. Our attack is based on an Augmented Lagrangian method,

which allows us to tackle large numbers of misclassification constraints using gradient-based

optimization, coupled with a proximal splitting of the objective to minimize the ℓ∞-norm and

satisfy the input space constraints with a proximity operator. Additionally, we devised an efficient

123

method to compute this proximity operator, which is compatible with a VMFB acceleration

based on a diagonal metric. Our attack offers significant improvements in terms of ℓ∞-norm

minimization for segmentation tasks, even for a robust model. One limitation of our method is

that it does not produce valid digitized images, i.e. encoded with a reduced number of bits, such

as 8. For a discussion on this issue, see (Bonnet, Furon & Bas, 2020). Note that all the attacks

considered in our experiments do not produce valid images as well.

CHAPTER 6

CLASS ADAPTIVE NETWORK CALIBRATION

Bingyuan Liu*1 , Jérôme Rony*1 , Adrian Galdran 2 , Jose Dolz 1 , Ismail Ben Ayed1

* Equal contribution
1 Systems Engineering Department, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada

2 Universitat Pompeu Fabra, Barcelona, Spain

Paper accepted for publication at the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023

Abstract

Recent studies have revealed that, beyond conventional accuracy, calibration should also

be considered for training modern deep neural networks. To address miscalibration during

learning, some methods have explored different penalty functions as part of the learning

objective, alongside a standard classification loss, with a hyper-parameter controlling the relative

contribution of each term. Nevertheless, these methods share two major drawbacks: 1) the

scalar balancing weight is the same for all classes, hindering the ability to address different

intrinsic difficulties or imbalance among classes; and 2) the balancing weight is usually fixed

without an adaptive strategy, which may prevent from reaching the best compromise between

accuracy and calibration, and requires hyper-parameter search for each application. We propose

Class Adaptive Label Smoothing (CALS) for calibrating deep networks, which allows to learn

class-wise multipliers during training, yielding a powerful alternative to common label smoothing

penalties. Our method builds on a general Augmented Lagrangian approach, a well-established

technique in constrained optimization, but we introduce several modifications to tailor it for

large-scale, class-adaptive training. Comprehensive evaluation and multiple comparisons on

a variety of benchmarks, including standard and long-tailed image classification, semantic

segmentation, and text classification, demonstrate the superiority of the proposed method. The

code is available at https://github.com/by-liu/CALS.

126

6.1 Introduction

Deep Neural Networks (DNNs) have become the prevailing model in machine learning,

particularly for computer vision(He et al., 2016a) and natural language processing appli-

cations(Vaswani et al., 2017). Increasingly powerful architectures(He et al., 2016a; Chen,

Papandreou, Schroff & Adam, 2017; Liu et al., 2021), learning methods (Chen et al., 2020; He

et al., 2022) and a large body of other techniques (Ioffe & Szegedy, 2015; Loshchilov & Hutter,

2019) are constantly introduced. Nonetheless, recent studies(Guo et al., 2017; Mukhoti et al.,

2020) have shown that regardless of their superior discriminative performance, high-capacity

modern DNNs are poorly calibrated, i.e. failing to produce reliable predictive confidences.

Specifically, they tend to yield over-confident predictions, where the probability associated

with the predicted class overestimates the actual likelihood. Since this is a critical issue in

safety-sensitive applications like autonomous driving or computational medical diagnosis, the

problem of DNN calibration has been attracting increasing attention in recent years (Guo et al.,

2017; Mukhoti et al., 2020; Pereyra et al., 2017).

Current calibration methods can be categorized into two main families. The first family involves

techniques that perform an additional post-processing parameterized operation on the output

logits (or pre-softmax activations) (Guo et al., 2017), with the calibration parameters of that

operation obtained from a validation set by either learning or grid-search. Despite the simplicity

and low computational cost, these methods have empirically proven to be highly effective (Guo

et al., 2017; Ding, Han, Liu & Niethammer, 2021). However, their main drawback is that the

choice of the optimal calibration parameters is highly sensitive to the trained model instance and

validation set (Mukhoti et al., 2020; Liu et al., 2022a).

The second family of methods attempts to simultaneously optimize for accuracy and calibration

during network training. This is achieved by introducing, explicitly or implicitly, a secondary

optimization goal involving the model’s predictive uncertainty, alongside the main training

objective. As a result, a scalar balancing hyper-parameter is required to tune the relative

contribution of each term in the overall loss function. Some examples of this type of approaches

127

Figure 6.1 Many techniques have been proposed for jointly improving accuracy and

calibration during training (Guo et al., 2017; Mukhoti et al., 2020), but they fail to consider

uneven learning scenarios like high class imbalance or long-tail distributions. We show a

comparison of the proposed CALS-ALM method and different learning approaches in

terms of Calibration Error (ECE) vs Accuracy on the (a) ImageNet and (b) ImageNet-LT

(long-tailed ImageNet) datasets. A lower ECE indicates better calibration: a better model

should attain high ACC and low ECE. Among all the considered methods, CALS-ALM
shows superior performance when considering both discriminative power and

well-balanced probabilistic predictions, achieving best accuracy and calibration on

ImageNet, and best calibration and second best accuracy on ImageNet-LT.

include: Explicit Confidence Penalty (ECP)(Pereyra et al., 2017), Label Smoothing (LS)(Müller,

Kornblith & Hinton, 2019), Focal Loss (FL) (Lin et al., 2017) and its variant, Sample-Dependent

Focal Loss (FLSD) (Mukhoti et al., 2020). It has been recently demonstrated in(Liu et al.,

2022a) that all these methods can be formulated as different penalty terms that enforce the same

equality constraint on the logits of the DNN: driving the logit distances towards zero. Here,

logit distances refers to the vector of L1 distances between the highest logit value and the rest.

Observing the non-informative nature of this equality constraint, (Liu et al., 2022a) proposed to

use a generalized inequality constraint, only penalizing those logits for which the distance is

larger than a pre-defined margin, achieving state-of-the-art calibration performance on many

different benchmarks.

Although learning based methods achieve greater calibration performance (Mukhoti et al., 2020;

Liu et al., 2022a), they have two major limitations: 1) The scalar balancing weight is equal for

all classes. This hinders the network performance when some classes are harder to learn or less

128

represented than others, such as in datasets with a large number of categories (ImageNet) or

considerable class imbalance (ImageNet-LT). 2) The balancing weight is usually fixed before

network optimization, with no learning or adaptive strategy throughout training. This can prevent

the model from reaching the best compromise between accuracy and calibration. To address the

above issues, we introduce Class Adaptive Label Smoothing method based on an Augmented

Lagrangian Multiplier algorithm, which we refer to as CALS-ALM. Our Contributions can be

summarized as follows:

• We propose Class Adaptive Label Smoothing (CALS) for network calibration. Adaptive

class-wise multipliers are introduced instead of the widely used single balancing weight,

which addresses the above two issues: 1) CALS can handle a high number of classes

with different intrinsic difficulties, e.g. ImageNet; 2) CALS can effectively learn from data

suffering from class imbalance or a long-tailed distribution, e.g. ImageNet-LT.

• Different from previous penalty based methods, we solve the resulting constrained opti-

mization problem by implementing a modified Augmented Lagrangian Multiplier (ALM)

algorithm, which yields adaptive and optimal weights for the constraints. We make some

critical design decisions in order to adapt ALM to the nature of modern learning techniques:

1) The inner convergence criterion in ALM is relaxed to a fixed number of iterations in each

inner stage, which is amenable to mini-batch stochastic gradient optimization in deep learning.

2) Popular techniques, such as data augmentation, batch normalization (Ioffe & Szegedy,

2015) and dropout (Gal & Ghahramani, 2016), rule out the possibility of tracking original

samples and applying sample-wise multipliers. To overcome this complication, we introduce

class-wise multipliers, instead of sample-wise multipliers in the standard ALM. 3) The

outer-step update for estimating optimal ALM multipliers is performed on the validation set,

which is meaningful for training on large-scale training set and avoids potential overfitting.

• Comprehensive experiments over a variety of applications and benchmarks, including

standard image classification (Tiny-ImageNet and ImageNet), long-tailed image classification

(ImageNet-LT), semantic segmentation (PASCAL VOC 2012), and text classification (20

Newsgroups), demonstrate the effectiveness of our CALS-ALM method. As shown in

Figure 6.1, CALS-ALM yields superior performance over baselines and state-of-the-art

129

calibration losses when considering both accuracy and calibration, especially for more

realistic large-scaled datasets with large number of classes or class imbalance.

6.2 Related Work

6.2.1 Problem Formulation

Given a dataset D = {(𝒙 (𝑖) , 𝑦 (𝑖))}𝑁
𝑖=1

with 𝑁 ∈ N pairs of samples 𝒙 ∈ X and corresponding

labels 𝑦 ∈ Y, with Y = {1, . . . , 𝐾}, a deep neural network (DNN) 𝑓𝜃 : X → R𝐾 parameterized

by 𝜃 yields logits 𝒛 = 𝑓𝜃 (𝒙) = (𝑓𝜃 (𝒙)𝑘)1≤𝑘≤𝐾 ∈ R𝐾 . In a classification scenario, the output

probability 𝒔 = (𝑠𝑘)1≤𝑘≤𝐾 ∈ Δ𝐾−1, where Δ𝐾−1 ⊂ [0, 1]𝐾 denotes the probability simplex, is

obtained by applying the softmax function on the output logits, i.e. 𝒔 = softmax(𝒛) = exp 𝒛∑
exp 𝒛 .

Therefore, the predicted class 𝑦̂ is computed as 𝑦̂ = arg max𝑘 𝑠𝑘 , and the predicted confidence is

𝑝 = 𝒔 𝑦̂ = max𝑘 𝑠𝑘 . A perfectly calibrated model should satisfy that the predicted confidence of

any input is equal to the accuracy of the model: 𝑝 = 𝑃(𝑦̂ = 𝑦 |𝑝). Hence, an over-confident model

yields on average larger confidences than the associated accuracy, whereas an under-confident

model yields lower confidence than its accuracy.

A number of recent studies (Guo et al., 2017; Mukhoti et al., 2020; Minderer et al., 2021; Liu

et al., 2022a) have shown that DNNs tend to become over-confident during training as a result

of minimizing the popular cross-entropy (CE) training loss:

LCE(𝒙, 𝑦) = −
𝐾∑

𝑘=1

𝑦𝑘 log 𝑠𝑘 (6.1)

where 𝒚 ∈ {0, 1}𝐾 is the one-hot encoding of 𝑦. This objective function is minimized when the

predictions for all the training samples fully match the ground-truth labels 𝑦, i.e. 𝑠𝑦 = 1 and

∀𝑘 ≠ 𝑦, 𝑠𝑘 = 0. The negative logarithmic term on the logit of the correct category renders the

global minimization of the CE loss unreachable, as it keeps pushing the predicted probabilities

vs. towards the vertices of the (𝐾−1)-simplex even after the classification error is zero (Mukhoti

et al., 2020), resulting in over-confident models.

130

6.2.2 Post-processing methods

To address mis-calibration, different post-processing techniques applied after model training

have been proposed recently (Guo et al., 2017; Ding et al., 2021; Tomani, Gruber, Erdem,

Cremers & Buettner, 2021). The most popular of these strategies is Temperature Scaling (TS)

(Guo et al., 2017), which applies a single scalar temperature parameter to manipulate logit

outputs monotonely, resulting in softened prediction confidences without affecting predicted

labels. Note that here the temperature parameter needs to be tuned on a separate validation set.

Despite its simplicity, TS has been shown effective in fixing over-confidence predictions (Guo

et al., 2017). As a local alternative to TS, (Ding et al., 2021) proposed to train a regression model

for learning position-specific temperature for semantic segmentation problems. Unfortunately,

TS and its variants can be sensitive to both the model and the validation set, and do not work well

under data distribution shifts (Ovadia et al., 2019). Thus, some subsequent works (Tomani et al.,

2021; Ma & Blaschko, 2021) have attempted to provide solutions for improving performance

under domain shift.

6.2.3 Learning-based methods

Another popular direction is to directly address mis-calibration during training by introducing

an additional penalty or supervision regarding model calibration with the standard training

loss. In (Kumar et al., 2018), the authors introduced a trainable calibration measure based on

RKHS kernels, while (Karandikar et al., 2021) proposed a differential calibration loss based on

a soft version of the binning operation in the ECE metric. In (Cheng & Vasconcelos, 2022),

two types of binary pairwise calibration constraints were proposed as additional penalty terms

during training. Other methods try to decrease over-fitting on the cross-entropy loss, which has

been demonstrated to be the main reason of over-confidence (Guo et al., 2017; Mukhoti et al.,

2020). In (Pereyra et al., 2017) an explicit confidence penalty (ECP) is proposed to maximize

the entropy and reduce over-fitting, while Label Smoothing (Szegedy et al., 2016) has also

been shown to implicitly improve the calibration (Müller et al., 2019) by softening the hard

one-hot targets in the cross-entropy. The Focal Loss (Lin et al., 2017), originally proposed

131

to tackle class imbalance, can also be effective for calibration (Mukhoti et al., 2020), as it

implicitly minimizes the Kullback-Leibler (KL) divergence between the uniform distribution

and the network softmax probabilities, thereby increasing the entropy of the predictions. As

an extension the Sample-Dependent Focal Loss (FLSD) was also proposed in (Mukhoti et al.,

2020) to further boost calibration performance.

Margin-based Label Smoothing (MbLS) A unifying constrained-optimization formulation

of loss functions promoting calibration has been recently presented in (Liu et al., 2022a).

Specifically, the additional penalties integrated in these methods, including ECP (Pereyra et al.,

2017), LS (Müller et al., 2019) and FL (Mukhoti et al., 2020), can be viewed as different forms

of approximations to the same constraint, i.e. enforcing the logit distances to be zero. Noticing

that this constraint is non-informative (its solution being uniformly distributed probabilities),

(Liu et al., 2022a) further proposed a generalized formulation by relaxing the constraint to allow

the logit distances being lower than a strictly positive margin.

The specific formulation of MbLS (Liu et al., 2022a) is as follows. Given a margin 𝑚 ∈ R+, the

constrained optimization problem for network training is:

minimize
𝜃

𝑁∑
𝑖=1

LCE(𝒙 (𝑖) , 𝑦 (𝑖)) subject to max
𝑘
{𝑧(𝑖)𝑘 } − 𝒛(𝑖) � 𝑚1𝐾, 𝑖 = 1, . . . , 𝑁, (6.2)

where 𝒛(𝑖) = 𝑓𝜃 (𝒙 (𝑖)). The minimum can be approximated by penalty-based optimization

methods, transforming the above formulation into an unconstrained problem by means of simple

ReLU functions:

minimize
𝜃

𝑁∑
𝑖=1

LCE(𝒙 (𝑖) , 𝑦 (𝑖)) + 𝜆
𝑁∑

𝑖=1

𝐾∑
𝑗=1

max{0, max
𝑘
{𝑧(𝑖)𝑘 } − 𝑧(𝑖)𝑗 − 𝑚}, (6.3)

where 𝜆 ∈ R+ is a scalar weight balancing the contributions of the CE loss and the corresponding

penalty.

132

6.3 Sample-wise Constrained DNN Optimization

Although MbLS can significantly improve calibration, the associated constrained problem (6.2)

is not solved accurately. It is approximated by an unconstrained problem with a single uniform

penalty, regardless of the data sample or category. However, the samples and classes considered

in a classification problem have different intrinsic learning difficulties. Therefore, an improved

training scheme would involve considering distinct penalty weights 𝜆 for each sample and class.

This would result in having to chose 𝑁 × 𝐾 penalty weights Λ ∈ R𝑁×𝐾+ , with the resulting

optimization problem being:

minimize
𝜃

𝑁∑
𝑖=1

LCE(𝒙 (𝑖) , 𝑦 (𝑖)) +
𝑁∑

𝑖=1

𝐾∑
𝑗=1

Λ𝑖 𝑗 max{0, max
𝑘
{𝑧(𝑖)𝑘 } − 𝑧(𝑖)𝑗 − 𝑚}. (6.4)

From an optimization perspective, supposing that optimal weights 𝜃★ exists for problem (6.2),

there exists Λ★ ∈ R𝑁×𝐾+ such that (𝜃★,Λ★) is a saddle point of the Lagrangian associated to (6.2).

These Λ★ are the Lagrange multipliers of the problem. Therefore, using Λ = Λ★ would be the

best choice to solve (6.4).

In practice, using the Lagrange multipliers of problem (6.2) as the weights for the penalties may

not be computationally feasible, and it could even result in degraded performance. Indeed, in

the context of machine learning, we optimize a model’s weights 𝜃 to solve (6.2) on a training

set Dtrain, and expect to generalize on a test set Dtest, which we do not have access to during

training. Because of the bias-variance trade-off, solving (6.2) optimally would likely result in

overfitting, i.e. we may solve problem (6.2) accurately on the train set, but not generalize properly

on the test set, resulting in poor calibration and classification performance overall. This suggests

that it could be preferable to evaluate during training the quality of multipliers on a separate

validation set Dvalid. Additionally, several mechanisms for training DNNs are not compatible

with a straightforward minimization. First, the use of batch normalization yields predictions

that are not independent between samples in a minibatch. Second, the use of regularization

techniques such as dropout may lead to virtually inaccurate predictions on certain training

samples, impacting the correct estimation of multipliers. Third, data augmentation, which is

133

standard in DNN training, would result in additional penalty weights for the augmented samples:

they can be easier or harder to classify than the original ones.

In addition to the above obstacles, applying a penalty weight per sample and per class (resulting

in 𝑁 × 𝐾 weights) would not scale well for large datasets and dense predictive tasks, such as

semantic segmentation, which is typically formulated as a per-pixel classification task. Assuming

that images in the dataset have a size of 𝐻 ×𝑊 , this would result in 𝑁 × 𝐻 ×𝑊 × 𝐾 penalty

weights. This rapidly becomes a limiting factor for moderately sized segmentation datasets. For

instance, Pascal VOC 2012 (Everingham et al., 2012) contains 21 classes and 1464 training

images, amounting to 2.62×108 pixels, or 5.5×109 penalty weights, which, stored as float32,

would use ∼20 GiB. For Cityscapes (Cordts et al., 2016), containing approximately 3000 training

images of size 2048×1024 in 19 classes, this amounts to ∼445 GiB.

Following the above observations, we introduce a relaxation of sample-wise penalties, and

propose to solve the following problem:

minimize
𝜃

𝑁∑
𝑖=1

LCE(𝒙 (𝑖) , 𝑦 (𝑖)) +
𝑁∑

𝑖=1

𝐾∑
𝑗=1

𝜆 𝑗 max{0, max
𝑘
{𝑧(𝑖)𝑘 } − 𝑧(𝑖)𝑗 − 𝑚}, (6.5)

where (𝜆 𝑗)1≤ 𝑗≤𝐾 ∈ R𝐾+ . Since penalties are now class-wise, we need 𝐾 penalty weights. This

has the advantage to scale well to denser classification tasks such as segmentation. However,

we still face a challenging optimization problem (6.5), since we still need to chose 𝐾 weights,

which can be extremely complicated for large-scale datasets with many classes such as ImageNet,

which contains 1000 classes. In the next section, we introduce a numerical technique to deal

with this challenge.

6.4 Class Adaptive Network Calibration

The challenge of the previous formulation stems from correctly choosing the weights 𝝀 ∈ R𝐾+ ,

which can be cumbersome when 𝐾 is large. Therefore, we propose to use an Augmented

Lagrangian Multiplier (ALM) method to adaptively learn the weights of the penalties.

134

6.4.1 General ALM

ALM methods combine penalties and primal-dual updates to solve a constrained problem.

They have well-established advantages and enjoy widespread popularity in the general context

of optimization (Bertsekas, 2014; Nocedal & Wright, 2006; Sangalli, Erdil, Hötker, Do-

nati & Konukoglu, 2021). Specifically, we have the following generic constrained optimization

problem:

minimize
𝑥

𝑔(𝑥) subject to ℎ𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑛 (6.6)

where 𝑔 : R𝑑 → R is the objective function and ℎ𝑖 : R𝑑 → R, 𝑖 = 1, . . . , 𝑛 are the constraint

functions. We tackle it by approximately solving a sequence 𝑗 ∈ N of unconstrained problems:

minimize
𝑥

L(𝑗) (𝑥) = 𝑔(𝑥) +
𝑛∑

𝑖=1

𝑃(ℎ𝑖 (𝑥), 𝜌
(𝑗)
𝑖 , 𝜆

(𝑗)
𝑖) (6.7)

with 𝑃 : R × R𝑛++ × R𝑛++ → R a penalty-Lagrangian function, and 𝝆(𝑗) = (𝜌𝑖)1≤𝑖≤𝑛 ∈ R𝑛++,

𝝀(𝑗) = (𝜆(𝑗)𝑖)1≤𝑖≤𝑛 ∈ R𝑛++ the penalty parameters and multipliers associated to 𝑃 at the 𝑗-th

iteration. This sequence of unconstrained problems is called outer iterations, while the steps in

the minimization of L(𝑗) are called inner iterations.

The main components of ALM methods are (i) the penalty-Lagrangian function 𝑃, (ii) the

update of the penalty multipliers 𝝀(𝑗) and (iii) the increase of the penalty parameters 𝝆(𝑗) . First,

the penalty function 𝑃 needs to satisfy a set of axioms (Birgin et al., 2005) (see section 1):

these axioms constrain the function to be continuously differentiable w.r.t. its first variable and

to have a non-negative derivative: ∀𝑧 ∈ R, 𝑃′(𝑧, 𝜌, 𝜆) = 𝜕
𝜕𝑧 𝑃(𝑧, 𝜌, 𝜆) ≥ 0, with 𝑃′(0, 𝜌, 𝜆) = 𝜆.

Figure 6.2 gives an example of a penalty, and how 𝜌 and 𝜆 affect it. The choice of penalty function

is critical to the performance of ALM methods, especially for nonconvex problems (Birgin et al.,

2005). Typical functions include PHR (Hestenes, 1969; Powell, 1969), 𝑃2 (Kort & Bertsekas,

1976) and 𝑃3 (Nakayama, Sayama & Sawaragi, 1975) (see section 3.2 of (Birgin et al., 2005)).

Second, the penalty multipliers 𝝀(𝑗) are updated to the derivative of 𝑃 w.r.t. the solution obtained

during the last inner minimization. Formally, let 𝑥 (𝑗) be the approximate minimizer of L(𝑗) ,

135

−5 −4 −3 −2 −1 0 1 2 3
−2

0

2

4

𝑧

𝑃
(𝑧,

𝜌
,𝜆
)

𝜌 = 1 , 𝜆 = 1

𝜌 = 10, 𝜆 = 1

𝜌 = 1 , 𝜆 = 0.3

Figure 6.2 A penalty-Lagrangian function 𝑃 with varying values of 𝜌 and

𝜇. Higher values of 𝜌 bring 𝑃 closer to an ideal penalty. The multiplier 𝜆 is

the derivative of 𝑃 w.r.t. the constraint at 𝑧 = 0

then ∀𝑖 ∈ {1, . . . , 𝑛}:
𝜆
(𝑗+1)
𝑖 = 𝑃′(ℎ𝑖 (𝑥 (𝑗)), 𝜌

(𝑗)
𝑖 , 𝜆

(𝑗)
𝑖) (6.8)

This update rule corresponds to a first-order multiplier estimate for the constrained problem.

Third, the penalty parameters 𝝆(𝑗) are increased during the outer iterations if the constraints do

not improve (i.e. is closer to being satisfied) compared to the previous outer iteration. Typically,

𝜌
(𝑗+1)
𝑖 = 𝛾𝜌

(𝑗)
𝑖 if ℎ𝑖 does not improve, with 𝛾 > 1.

When the problem is convex, alternating between the approximate minimization of (6.7) and

the update of the multipliers (6.8) leads to a solution for the constrained problem. The inner

minimization corresponds to minimizing the primal while the outer iterations correspond to

solving the dual problem. The complete procedure is presented in Algorithm 6.1. Although

guarantees exist only in the convex case, it is well-known that ALM methods can efficiently

solve nonconvex problems as well (Birgin et al., 2005). In the context of deep learning, their use

has been surprisingly under-explored (Rony et al., 2021; Sangalli et al., 2021).

136

Algorithm 6.1 Augmented Lagrangian Multiplier algorithm

Input: Objective function 𝑓
Input: Constraint functions ℎ𝑖, 𝑖 = 1, . . . , 𝑛
Input: Penalty function 𝑃, initial 𝝀(0) ∈ R𝑛++, 𝝆(0) ∈ R𝑛++
Input: Initial variable 𝑥 (0) , iterations 𝑗 = 1

1 while not converged do
2 Initialize with 𝑥 (𝑗−1) and minimize (approximately):

3 L(𝑗) (𝑥) = 𝑓 (𝑥) +∑𝑛
𝑖=1 𝑃(ℎ𝑖 (𝑥), 𝜌

(𝑗)
𝑖 , 𝜆

(𝑗)
𝑖)

4 𝑥 (𝑗) ← (approximate) minimizer of L(𝑗)

5 for 𝑖 = 1, . . . , 𝑛 do
6 𝜆

(𝑗+1)
𝑖 ← 𝑃′(ℎ𝑖 (𝑥 (𝑗)), 𝜌

(𝑗)
𝑖 , 𝜆

(𝑗)
𝑖)

7 if the 𝑖-th constraint does not improve then
8 𝜌

(𝑗+1)
𝑖 ← 𝛾𝜌

(𝑗)
𝑖

9 else
10 𝜌

(𝑗+1)
𝑖 ← 𝜌

(𝑗)
𝑖

11 end for
12 𝑗 ← 𝑗 + 1

13 end while

6.4.2 ALM for calibration

Our goal now is to build an ALM method effective for calibration purposes. We can achieve this

by reformulating problem (6.5) using a penalty function 𝑃 parametrized by (𝝆, 𝝀) ∈ R𝐾++ × R𝐾++

as follows:

minimize
𝜃

𝑁∑
𝑖=1

LCE(𝒙 (𝑖) , 𝑦 (𝑖)) +
𝐾∑

𝑘=1

𝑃(𝑑 (𝑖)𝑘 − 𝑚, 𝜌𝑘 , 𝜆𝑘) (6.9)

with 𝑑 (𝑖)𝑘 = max{𝒛(𝑖) } − 𝑧(𝑖)𝑘 ∈ R+. With this formulation, it is natural to use a penalty-Lagrangian

function for 𝑃. To avoid numerical issues typically associated with non-linear penalties, we

normalize the constraints by the margin 𝑚 > 0:

𝑑 (𝑖)𝑘 − 𝑚 ≤ 0 ⇔ 𝑑 (𝑖)𝑘

𝑚
− 1 ≤ 0 (6.10)

This leads to improved numerical stability for the ALM multiplier update as well. Additionally,

we average the constraints instead of summing them. This makes the method independent of the

137

number of classes, and eases the choice of initial penalty parameters 𝝆(0) . The resulting loss is:

𝑁∑
𝑖=1

LCE(𝒙 (𝑖) , 𝑦 (𝑖)) + 1

𝐾

𝐾∑
𝑘=1

𝑃

(
𝑑 (𝑖)𝑘

𝑚
− 1, 𝜌𝑘 , 𝜆𝑘

)
(6.11)

Algorithm 6.2 CALS-ALM training

Input: DNN initial 𝜃 (0) , margin 𝑚
Input: Dataset: Dtrain, Dvalid, batch size 𝐵
Input: Penalty function 𝑃, 𝛾 > 1, 𝜏 ∈ (0, 1)
Input: Initial 𝝀(0) ∈ R𝑛++, 𝝆(0) ∈ R𝑛++

1 for 𝑗 = 0, . . . , 𝑇 do
2 for each mini-batch {(𝒙 (𝑖) , 𝑦 (𝑖))}𝐵

𝑖=1
in Dtrain do

3 Lc =
𝐵∑

𝑖=1
LCE(𝒙 (𝑖) , 𝑦 (𝑖)) ; // Cross-entropy

4 Lp =
𝐵∑

𝑖=1

1
𝐾

𝐾∑
𝑘=1

𝑃
(

𝑑
(𝑖)
𝑘

𝑚 − 1, 𝜌
(𝑗)
𝑘 , 𝜆

(𝑗)
𝑘

)
; // Penalties

5 L = 1
𝐵 (Lc + Lp)

6 𝜃 (𝑡+1) ← 𝜃 (𝑡) − 𝛼 · ∇𝜃L ; // Gradient descent

7 end for
8 for 𝑘 = 1, . . . , 𝐾 do

9 𝜆
(𝑗+1)
𝑘 = 1

|Dvalid |
∑

(𝒙,𝑦)∈Dvalid

𝑃′
(
𝑑𝑘

𝑚
− 1, 𝜌

(𝑗)
𝑘 , 𝜆

(𝑗)
𝑘

)
10 𝑑𝑘

(𝑗)
= 1

|Dvalid |
∑

(𝒙,𝑦)∈Dvalid

𝑑𝑘

𝑚
− 1 ; // Average constraint

11 if 𝑗 ≥ 1 and 𝑑𝑘
(𝑗)

> 𝜏 max{0, 𝑑𝑘
(𝑗−1) } then

12 𝜌
(𝑗+1)
𝑘 ← 𝛾𝜌

(𝑗)
𝑘 ; // Constraint has not improved

13 else
14 𝜌

(𝑗+1)
𝑘 ← 𝜌

(𝑗)
𝑘

15 end for
16 end for

As noted in section 6.3, one of the main downsides of estimating Lagrange multipliers from the

training set is that we could quickly overfit the data. Therefore, we propose to use the validation

set to obtain a reliable estimate of the penalty multipliers at each epoch. We consider that an

epoch of training corresponds to the approximate minimization of the loss function, and then

compute the average penalty multiplier on the validation set. Formally after a training epoch 𝑗 ,

138

the penalty multipliers for epoch 𝑗+1 will be, for all 𝑘 = 1, . . . , 𝐾:

𝜆
(𝑗+1)
𝑘 =

1

|Dvalid |
∑

(𝒙,𝑦)∈Dvalid

𝑃′
(
𝑑𝑘

𝑚
− 1, 𝜌

(𝑗)
𝑘 , 𝜆

(𝑗)
𝑘

)
(6.12)

Finally, the penalty multiplier is projected on a safeguarding interval [𝜆min, 𝜆max] = [10−6, 106]
in our case. To update the penalty parameters 𝝆, we compute the average constraint per class on

the validation set. Then, for each class, if the average constraint is positive and has not decreased

compared to the previous epoch, we multiply the corresponding penalty parameter by 𝛾.

Finally, as suggested by (Birgin et al., 2005) and confirmed by our empirical results, we utilize

the PHR function in our implementation, defined as follows:

PHR(𝑧, 𝜌, 𝜆) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜆𝑧 + 1
2
𝜌𝑧2 if 𝜆 + 𝜌𝑧 ≥ 0;

− 𝜆2

2𝜌 otherwise.

(6.13)

Overall, the proposed method, consolidated in Algorithm 6.2, corresponds to approximately

solving the constrained problem (6.2), by learning class-wise penalty multipliers on the

validation set, to avoid overfitting and training specificities (i.e. batch normalization, dropout,

augmentations) which would result in unreliable penalty multipliers estimates.

6.5 Experiments

6.5.1 Experimental Setup

Datasets. We perform experiments on a variety of popular benchmarks. First, we include

three widely used image classification benchmarks, including Tiny-ImageNet (Deng et al.,

2009), ImageNet (Deng et al., 2009) and one long-tailed image classification, ImageNet-LT

(Liu et al., 2019). Tiny-ImageNet is widely used in the calibration literature (Mukhoti et al.,

2020; Liu et al., 2022a), with relatively small 64×64 resolution, while ImageNet (Deng et al.,

2009) is a large-scale benchmark consisting of 1000 categories and over 1M images. The

139

main characteristic of ImageNet-LT is that the number of samples is extremely imbalanced

across classes, ranging from 5 to 1280. To evaluate performance in dense prediction tasks, we

include one semantic segmentation benchmark, PASCAL VOC 2012 (Everingham et al., 2012).

Furthermore, one benchmark from the NLP domain, 20 Newsgroups (Lang, 1995), is included to

show the general applicability. For a detailed description of each dataset and the pre-processing

settings, please refer to section 2.

Evaluation Metrics. For calibration, we report the most widely used Expected Calibration Error

(ECE) (Naeini, Cooper & Hauskrecht, 2015). Samples are grouped into 𝑀 equi-spaced bins

according to prediction confidence, and a weighted average of the absolute difference between

accuracy and confidence in each bin is calculated:

ECE =
𝑀∑

𝑚=1

|𝐵𝑚 |
𝑁

|𝐴𝑚 − 𝐶𝑚 |, (6.14)

where 𝑀 is the number of bins, 𝑁 the amount of test samples, 𝐵𝑚 the samples with prediction

confidence in the 𝑚𝑡ℎ bin, 𝐴𝑚 the accuracy and 𝐶𝑚 the mean confidence of samples in the 𝑚𝑡ℎ

bin. Note we fix 𝑁 to 15 according to (Mukhoti et al., 2020; Liu et al., 2022a). In accordance

with (Liu et al., 2022a), we also report Adaptive ECE (AECE), a variant of ECE where the

bins are configured to evenly distribute the test samples across them. Additionally, Classwise

Calibration Error (CWCE) (Maier-Hein et al., 2022), a classwise extension of ECE, is included

in section 3. For discriminative performance, we use standard measures: accuracy (Acc) for

classification, and intersection over union (mIoU) for segmentation.

Compared methods. We compare our method to other learning based calibration losses, includ-

ing (i) methods that impose constraints on predictions (either logits or softmax probabilities),

i.e. Explicit Confidence Penalty (ECP) (Pereyra et al., 2017), Label Smoothing (LS) (Szegedy

et al., 2016), Focal Loss (FL) (Lin et al., 2017) and its sample-dependent version (FLSD)

(Mukhoti et al., 2020), Margin-based Label Smoothing (MbLS) (Liu et al., 2022a) and CPC

(Cheng & Vasconcelos, 2022), and (ii) techniques that directly optimize calibration measures,

i.e. MMCE (Kumar et al., 2018). We refer to the related literature (Mukhoti et al., 2020; Liu

140

et al., 2022a) to set the hyper-parameters for various methods. For instance, the smoothing factor

in LS and FL is set to 0.05 and 3 respectively, and we set margin to 10 in MbLS. A detailed

description of hyper-parameter values can be found in section 6.

Our methods. A simple alternative to the algorithm presented in subsection 6.4.2 would be to

heuristically tune multipliers by scaling them according to penalty values: if 𝑃
(𝑗+1)
𝑘 increases

we also increase 𝜆
𝑗+1

𝑘 and vice versa. This strategy, akin to learning rate scheduling, can be

formulated as:

𝜆
(𝑗+1)
𝑘 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜇𝜆
(𝑗)
𝑘 if 𝑃

(𝑗+1)
𝑘 > 𝜏𝑃

(𝑗)
𝑘

𝜆
(𝑗)
𝑘 /𝜇 if 𝑃

(𝑗)
𝑘 > 𝜏𝑃

(𝑗+1)
𝑘

𝜆
(𝑗)
𝑘 otherwise

(6.15)

where 𝜇 > 1 and 𝜏 > 1 are hyper-parameters that we fix to 1.1. We refer to our main algorithm

as CALS-ALM and to this heuristic rule as CALS-HR in what follows.

We fix the margin to 𝑚 = 10 on vision tasks and 𝑚 = 6 on the NLP benchmark, as in (Liu et al.,

2022a), for a fair comparison. We also perform an ablation study to investigate the impact of

the margin value. For other hyper-parameters, we set 𝝀(0) = 10−6 · 1𝐾 , 𝝆(0) = 1𝐾 , 𝛾 = 1.2, and

we update the penalty parameters 𝝆 every 10 epochs. Please refer to section 6 for a detailed

description of all hyper-parameters.

Implementation Details. For image classification, we experiment with ResNet (He et al.,

2016a) and a vision Transformer model, i.e. Swin Transformer V2 (SwinV2-T) (Liu et al.,

2022b). DeepLabV3 (Chen et al., 2017) is employed for semantic segmentation on PASCAL

VOC 2012. Following (Mukhoti et al., 2020; Liu et al., 2022a), we use the Global Pooling

CNN (GPool-CNN) architecture (Lin, Chen & Yan, 2014) on the NLP recognition task. Further

training details on each dataset can be found in section 2.

141

0

10

20

30
V
a
li
d
a
ti
o
n

E
C
E

(%
)

CALS

MbLS

CE

0 50 100 150 200
Epoch

0.0

0.5

1.0

1.5

C
A
L
S

m
u
lt
p
li
e
rs

max(λ)

mean(λ)

min(λ)

a) Validation ECE and multipliers

during training.

0

10

20

30

E
C
E

(%
)

Validation

PHR

P2

P3

1 5 10 15 20
Margin m

10

20

30

40

A
c
c
u
ra

c
y

(%
)

Test

1 5 10 15 20
Margin m

b) Effect of penalty function and margin on accuracy and ECE for

CALS.

Figure 6.3 Ablation study on ImageNet-LT. (a) Evolution of ECE on validation and
multipliers for CALS: ECE on the validation set for our method (CALS), CE and MbLS

(Liu et al., 2022a) and values of multipliers 𝝀 for CALS after each training epoch. (b)

Effect of penalty functions and margin: ECE and accuracy on validation and test set are

shown across different choices of penalty functions and margin values.

6.5.2 Results

Results on image classification. Table 6.1 presents the discriminative and calibration perfor-

mance of our methods across three widely used classification benchmarks, compared to baselines

and related works. We can observe that our CALS-ALM approach consistently outperforms

existing techniques in terms of calibration. Specifically, the results indicate that the standard CE

loss and other approaches often lead to miscalibrated models, with the severity of miscalibration

substantially increasing in correlation with dataset difficulty. This is particularly evident in

large-scaled datasets with numerous classes, such as ImageNet, or those with long-tail class

distributions, like ImageNet-LT. Although other learning-based methods could provide better

calibrated networks, their performance is not stable across different settings. For example, while

FL achieves a relatively low ECE of 1.60 with a Resnet50 trained on ImageNet, it only yields an

ECE of 25.50 when training a SwinV2-T network on ImageNet-LT, revealing a limitation in

adapting to different learning scenarios. In contrast, CALS-ALM attains the best calibration

performance in all cases, frequently outperforming exsiting approaches by a significant margin,

with minimal variations across datasets and architectures. This trends persists when compared

142

to the most closely related technique, MbLS. It is noteworthy that the improvements on the

long-tailed ImageNet-LT dataset are substantial; for example, we decrese ECE from 28.12

to 2.15 for ResNet-50, and from 31.82 to 2.32 for SwinV2-T, validating the effectiveness of

class adaptive learning. Another interesting finding is that CALS-HR, employing a naive

update strategy for class-wise penalty weights, achieves nearly the second-best performance

in the ImageNet-LT dataset. This further demonstrates the effectiveness of CALS for learning

under class-imbalance scenarios. For the reliability diagrams of various models, please refer to

section 5.

In terms of model accuracy, our method delivers competitive performances, surpassing existing

methods in certain cases. It is important to emphasize that, while the proposed method

achieves discriminative results comparable to the best-performing approach for each dataset,

the differences in calibration are considerable. This highlights the superiority of the proposed

formulation for training highly discriminative and well-calibrated networks. Figure 6.1 provides a

more visual comparison considering both accuracy and ECE. It is demonstrated that CALS-ALM

provides the optimal compromise between accuracy and calibration performance.

Ablation Analysis. Figure 6.3 illustrates the evolution of ECE in (a) and penalty multipliers

𝝀 in (b) during training. It is interesting to observe that the evolution of 𝝀 is consistent with

the ECE. Specifically, the average penalty weight gradually increases while the ECE initially

deteriorates because the model is focused on increasing accuracy. However, the value of the

penalty weight begins to decline alongside the ECE, as the network starts to become better

calibrated. For a visualization of classwise multipliers, please refer to section 4. Figure 6.3(c)

highlights the impact of the choice of penalty functions and margin values. This demonstrates

that the PHR penalty function is preferable over the other two options, P2 and P3, for both

calibration and accuracy. Regarding the margin, the best performance is achieved with 𝑚 ≈ 10,

which is consistent with the findings in (Liu et al., 2022a).

Semantic Segmentation. Table 6.2 presents the performance on Pascal VOC dataset. Note here

CALS refers to our best method, i.e. CALS-ALM. It can be observed that the trend is consistent

143

Table 6.1 Calibration performance for different approaches on three image classification

benchmarks. We report two lower-is-better calibration metrics, i.e. ECE and AECE. Best

method is highlighted in bold, while the second-best one is underlined

TinyImageNet ImageNet

ResNet-50 ResNet-50 SwinV2-T

Method Acc ECE AECE Acc ECE AECE Acc ECE AECE

CE 65.02 3.73 3.69 75.16 9.19 9.18 75.60 9.95 9.94

MMCE 65.34 2.81 2.61 74.85 8.57 8.56 76.68 9.07 9.08

ECP 64.90 4.00 3.92 75.22 8.27 8.26 75.82 9.88 9.86

LS 65.78 3.17 3.16 76.04 2.57 2.88 75.42 7.32 7.33

FL 63.09 2.96 3.12 73.87 1.60 1.65 75.60 3.19 3.18

FLSD 64.09 2.91 2.95 73.97 2.08 2.06 74.70 2.44 2.37

CPC 64.49 4.88 4.91 76.33 3.66 3.59 76.34 5.50 5.33

MbLS 64.74 1.64 1.73 75.82 4.44 4.26 77.18 1.95 1.73

CALS-HR 65.09 2.50 2.42 76.34 5.63 5.69 77.58 3.06 2.95

CALS-ALM 65.03 1.54 1.38 76.44 1.46 1.32 77.10 1.61 1.69

ImageNet-LT

ResNet-50 SwinV2-T

Method Acc ECE AECE Acc ECE AECE

CE 37.90 28.12 28.12 31.82 31.82 36.68

MMCE 37.79 28.41 28.40 33.14 26.41 26.41

ECP 37.69 28.14 28.13 31.22 33.70 33.70

LS 37.88 10.46 10.38 31.70 11.42 11.40

FL 36.04 18.37 18.36 30.73 25.50 25.50

FLSD 36.18 17.77 17.78 32.56 25.16 25.17

CPC 38.90 16.00 15.99 32.54 13.21 13.19

MbLS 38.32 6.16 6.16 32.05 7.65 7.64

CALS-HR 38.50 2.83 2.78 34.31 2.37 2.45
CALS-ALM 38.56 2.15 2.30 33.94 2.32 2.45

with image classification experiments: CALS outperforms counterparts in terms of ECE, and

yields competitive results on discriminative performance, i.e. mIoU in segmentation. It is worth

noting that some methods like MMCE, FLSD and CPC, are not included here because their

computation demands were too heavy for pixel-wise segmentation tasks. In contrast, our method

is unlimited in dense prediction tasks as the computation cost it adds is moderate.

144

Table 6.2 Segmentation results on PASCAL VOC 2012

Loss CE ECP LS FL MbLS CALS

ECE 14.75 5.15 6.90 10.87 5.22 4.66
mIoU 66.46 65.57 67.73 64.25 65.29 66.77

Text Classification. Last, we demonstrate the general applicability of the proposed method

by analyzing its performance on a non-vision task, i.e. text classification on 20 Newsgroups

dataset. The results are reported in Table 6.3. Remarkably, CALS again brings substantial

improvement in terms of calibration, with ECE decreasing to 2.04%, while yielding the best

accuracy 68.32%. This reveals that the proposed class adaptive learning method is also able to

handle class differences in NLP applications and provide promising performance in terms of

both accuracy and calibration.

Table 6.3 Results on the text classification task, 20 Newsgroups

Loss CE MMCE ECP LS FL FLSD CPC MbLS CALS

ECE 22.75 23.02 22.97 8.07 10.80 10.87 9.46 5.40 2.04
ACC 67.01 66.23 66.48 67.14 66.08 65.85 68.27 67.89 68.32

6.6 Limitations and Future Work

We have proposed Class Adaptive Label Smoothing for network calibration based on a modified

Augmented Lagrangian Multiplier algorithm. Despite its superior performance over previous

methods, there are potential limitations in this work. For instance, our method requires the

validation set to have the same distribution as the training set. Although this is satisfied in nearly

every benchmark, it will be interesting to investigate the impact of using non-independent and

identically distributed (i.i.d) validation sets.

CONCLUSION AND RECOMMENDATIONS

In this thesis, we revisited several optimization problems related to the training and verification

of deep learning models.

First, we established a link between the cross-entropy and several pairwise losses that are used

in the deep metric learning literature. With this link, we prove that cross-entropy is relevant for

feature learning, and experimentally show that it often outperforms pairwise methods thanks to

its simplicity and training stability.

Second, we devised several adversarial attack algorithms. The first one, DDN, which is an

efficient and robust solution to generate adversarial examples with small ℓ2-norms. However, like

many attack in the literature, it lacks the generality of penalty-based approaches to minimize other

distances. Therefore, we propose to leverage a well-known augmented Lagrangian multiplier

method to tackle the general constrained optimization problem of generating adversarial attacks.

The resulting ALMA attack can be used for a wide family of smooth discrepancy measures such

as ℓ2, ℓ1, SSIM, LPIPS, CIEDE2000, etc. This attack framework allows tackling a more general

– but also more difficult – problem: generating adversarial attacks for semantic segmentation.

For this task, we need to satisfy potentially millions of constraints. To be able to minimize the

non-smooth ℓ∞-norm, we combine it with a proximal splitting. We prove that the proximity

operator of the sum of the ℓ∞-norm and the hypercube indicator function can be efficiently

computed. This allows us to better evaluate the robustness of deep semantic segmentation

models, and show that it was largely overestimated, when done with attacks adapted from

segmentation.

Finally, with the new insights provided by Liu et al., we notice that improving the calibration of

deep neural networks is closely related to the satisfaction of inequality constraints on the logit

distance. However, manually tuning naive penalties to satisfy this constraint is infeasible in

practice. Therefore, we resort to an augmented Lagrangian multiplier method to automatically

146

learn class-wise penalty weights. With this strategy, we are able to achieve state-of-the-art

classification and calibration performances on several tasks, including semantic segmentation

where we can take advantage of the scalability of our method.

Recommendations and future work

• Simplicity and equivalence of methods: as shown in chapter 2, many methods proposed

to solve a particular task tend to make it more complex. This creates a distorted view

of the effectiveness of such methods, where a finer analysis reveals that the performance

improvements can be mainly attributed to training strategies or tricks. While several methods

may look different on the surface, they can, in fact, be equivalent and provide little to no

additional benefit while introducing more confounding variables. Therefore, we recommend

to carefully evaluate robust baseline methods, which often perform as well, or better than

more complex alternatives.

• Benchmark of adversarial attacks: an increasing number of adversarial attacks have

been published over the years. Some tackle new problems, while many try to improve the

efficiency and quality of the solutions for the adversarial perturbation generation problems.

This has created a confusion around which attacks are best suited to accurately evaluate the

robustness of deep learning models, especially the one trained with defense methods. This

often leads to over-estimation of the actual robustness of models, and lures researchers to a

false sense of security. Therefore, our future work includes establishing recommendations

for which combination of attacks to use to best assess the robustness of deep models, based

on a comprehensive benchmark of the proposed methods.

• Learning with constraints: many tasks in machine learning can be formulated as constrained

optimization problems. In chapter 6, we have shown that using well-known optimization

methods to improve constraints satisfactions results in better calibration. This can be applied

to several other problems, which have been solely approached with naive regularization, or

linear and quadratic penalties. Such problems include, for instance, incorporating domain

147

knowledge in medical imaging by constraining the size of organs, which allows training a

model with limited amounts of data (Kervadec et al., 2022).

APPENDIX I

SUPPLEMENTARY MATERIAL FOR THE PAPER TITLED
A UNIFYING MUTUAL INFORMATION VIEW OF METRIC LEARNING:

CROSS-ENTROPY VS. PAIRWISE LOSSES

1. Proof of Lemma 2.1

Proof. Throughout the following proofs, we will use the fact that classes are assumed to be

balanced in order to consider Z𝑘 , for any class 𝑘 , as a constant |Z𝑘 | = 𝑛
𝐾 . We will also

use the feature normalization assumption to connect cosine and Euclidean distances. On the

unit-hypersphere, we will use that: 𝐷cos
𝑖, 𝑗 = 1 − ‖𝒛𝑖−𝒛 𝑗 ‖2

2
.

Tightness terms: Let us start by linking center loss to contrastive loss. For any specific class 𝑘 ,

let 𝒄𝑘 = 1
|Z𝑘 |

∑
𝒛∈Z𝑘

𝒛 denotes the hard mean. We can write:

∑
𝒛𝑖∈Z𝑘

‖𝒛𝑖 − 𝒄𝑘 ‖2 =
∑
𝒛𝑖∈Z𝑘

[‖𝒛𝑖‖2 − 2𝒛	𝑖 𝒄𝑘] + |Z𝑘 | ‖𝒄𝑘 ‖2

=
∑
𝒛𝑖∈Z𝑘

‖𝒛𝑖‖2 − 2
1

|Z𝑘 |
∑
𝒛𝑖∈Z𝑘

∑
𝒛 𝑗∈Z𝑘

𝒛	𝑖 𝒛 𝑗 + 1

|Z𝑘 |
∑
𝒛𝑖∈Z𝑘

∑
𝒛 𝑗∈Z𝑘

𝒛	𝑖 𝒛 𝑗

=
∑
𝒛𝑖∈Z𝑘

‖𝒛𝑖‖2 − 1

|Z𝑘 |
∑
𝒛𝑖∈Z𝑘

∑
𝒛 𝑗∈Z𝑘

𝒛	𝑖 𝒛 𝑗

=
1

2
[
∑
𝒛𝑖∈Z𝑘

‖𝒛𝑖‖2 +
∑
𝒛 𝑗∈Z𝑘

		𝒛 𝑗

		2] − 1

|Z𝑘 |
∑
𝒛𝑖∈Z𝑘

∑
𝒛 𝑗∈Z𝑘

𝒛	𝑖 𝒛 𝑗

=
1

2|Z𝑘 |
[
∑
𝒛𝑖∈Z𝑘

∑
𝒛 𝑗∈Z𝑘

‖𝒛𝑖‖2 +
∑
𝒛𝑖∈Z𝑘

∑
𝒛 𝑗∈Z𝑘

		𝒛 𝑗

		2] − 1

2|Z𝑘 |
∑
𝒛𝑖∈Z𝑘

∑
𝒛 𝑗∈Z𝑘

2𝒛	𝑖 𝒛 𝑗

=
1

2|Z𝑘 |
∑

𝒛𝑖 ,𝒛 𝑗∈Z𝑘

‖𝒛𝑖‖2 − 2𝒛	𝑖 𝒛 𝑗 +
		𝒛 𝑗

		2

=
1

2|Z𝑘 |
∑

𝒛𝑖 ,𝒛 𝑗∈Z𝑘

		𝒛𝑖 − 𝒛 𝑗

		2

c
=

∑
𝒛𝑖 ,𝒛 𝑗∈Z𝑘

		𝒛𝑖 − 𝒛 𝑗

		2

(A I-1)

150

Summing over all classes 𝑘 , we get the desired equivalence. Note that, in the context of K-means

clustering, where the setting is different15, a technically similar result could be established (Tang

et al., 2019), linking K-means to pairwise graph clusteirng objectives.

Now we link contrastive loss to SNCA loss. For any class 𝑘 , we can write:

−
∑
𝒛𝑖∈Z𝑘

log
∑

𝒛 𝑗∈Z𝑘\{𝑖}
𝑒
𝐷cos
𝑖, 𝑗
𝜎

c
= −

∑
𝒛𝑖∈Z𝑘

log
�� 1

|Z𝑘 | − 1

∑
𝒛 𝑗∈Z𝑘\{𝑖}

𝑒
𝐷cos
𝑖, 𝑗
𝜎

!"#
≤ −

∑
𝒛𝑖∈Z𝑘

∑
𝒛 𝑗∈Z𝑘\{𝑖}

𝐷cos
𝑖, 𝑗

(|Z𝑘 | − 1)𝜎

c
=

∑
𝒛𝑖∈Z𝑘

∑
𝒛 𝑗∈Z𝑘\{𝑖}

		𝒛𝑖 − 𝒛 𝑗

		2

2𝜎(|Z𝑘 | − 1)
c
=

∑
𝒛𝑖∈Z𝑘

∑
𝒛 𝑗∈Z𝑘\{𝑖}

		𝒛𝑖 − 𝒛 𝑗

		2

(A I-2)

where we used the convexity of 𝑥 → − log(𝑥) and Jensen’s inequality. The proof can be finished

by summing over all classes 𝑘 .

Finally, we link MS loss (Wang et al., 2019b) to contrastive loss:

∑
𝒛𝑖∈Z𝑘

1

𝛼
log

�� 1 +
∑

𝒛 𝑗∈Z𝑘\{𝑖}
𝑒−𝛼(𝐷cos

𝑖, 𝑗−1)!"# =
∑
𝒛𝑖∈Z𝑘

1

𝛼
log

∑
𝒛 𝑗∈Z𝑘

𝑒−𝛼(𝐷cos
𝑖, 𝑗−1)

c
=

∑
𝒛𝑖∈Z𝑘

1

𝛼
log

�� 1

|Z𝑘 |
∑
𝒛 𝑗∈Z𝑘

𝑒−𝛼(𝐷cos
𝑖, 𝑗−1)!"#

≥ 1

|Z𝑘 |
∑

𝒛𝑖 ,𝒛 𝑗∈Z𝑘

−(𝐷cos
𝑖, 𝑗 − 1)

c
=

∑
𝒛𝑖 ,𝒛 𝑗∈Z𝑘

		𝒛𝑖 − 𝒛 𝑗

		2
,

(A I-3)

where we used the concavity of 𝑥 → log(𝑥) and Jensen’s inequality.

15 In clustering, the optimization is performed over assignment variables, as opposed to DML, where

assignments are already known and optimization is carried out over the embedding.

151

Contrastive terms: In this part, we first show that the contrastive terms 𝐶𝑆𝑁𝐶𝐴 and 𝐶𝑀𝑆

represent upper bounds on 𝐶 = −1
𝑛

∑𝑛
𝑖=1

∑
𝑗 :𝑦 𝑗≠𝑦𝑖 𝐷2

𝑖 𝑗 :

𝐶𝑀𝑆 =
1

𝛽𝑛

𝑛∑
𝑖=1

log
�� 1 +

∑
𝑗 :𝑦 𝑗≠𝑦𝑖

𝑒𝛽(𝐷cos
𝑖 𝑗 −1)!"# ≥ 1

𝛽𝑛

𝑛∑
𝑖=1

log
��

∑
𝑗 :𝑦 𝑗≠𝑦𝑖

𝑒𝛽(𝐷cos
𝑖 𝑗 −1)!"#

c≥ 1

𝛽𝑛

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗≠𝑦𝑖

𝛽(𝐷cos
𝑖 𝑗 − 1)

c
= −1

𝑛

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗≠𝑦𝑖

𝐷2
𝑖 𝑗

= 𝐶

(A I-4)

where, again, we used Jensen’s inequality in the second line above. The link between SNCA and

contrastive loss can be established quite similarly:

𝐶𝑆𝑁𝐶𝐴 =
1

𝑛

𝑛∑
𝑖=1

log

(∑
𝑗≠𝑖

𝑒
𝐷cos
𝑖 𝑗
𝜎

)
=

1

𝑛

𝑛∑
𝑖=1

log
��

∑
𝑗≠𝑖:𝑦𝑖=𝑦 𝑗

𝑒
𝐷cos
𝑖 𝑗
𝜎 +

∑
𝑗 :𝑦 𝑗≠𝑦𝑖

𝑒
𝐷cos
𝑖 𝑗
𝜎

!"#
≥ 1

𝑛

𝑛∑
𝑖=1

log
��

∑
𝑗 :𝑦 𝑗≠𝑦𝑖

𝑒
𝐷cos
𝑖 𝑗
𝜎

!"#
c≥ 1

𝑛

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗≠𝑦𝑖

𝐷cos
𝑖 𝑗

𝜎

c
= −1

𝑛

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗≠𝑦𝑖

𝐷2
𝑖 𝑗

= 𝐶

(A I-5)

Now, similarly to the reasoning carried out in subsection 2.3.1, we can write:

𝐶 = −1

𝑛

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗≠𝑦𝑖

𝐷2
𝑖 𝑗 = −

1

𝑛

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐷2
𝑖 𝑗︸����������︷︷����������︸

contrast ∝ H(𝑍̂)

+ 1

𝑛

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗=𝑦𝑖

𝐷2
𝑖 𝑗︸��������������︷︷��������������︸

tightness subterm ∝ H(𝑍̂ |𝑌)

(A I-6)

152

Where the redundant tightness term is very similar to the tightness term in contrastive loss

𝑇𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 treated in details in subsection 2.3.1. As for the truly contrastive part of 𝐶, it can also

be related to the differential entropy estimator used in (Wang & Sha, 2011):

Ĥ (𝑍) = 𝑑

𝑛(𝑛 − 1)
𝑛∑

𝑖=1

𝑛∑
𝑗=1

log 𝐷2
𝑖 𝑗

c
=

1

𝑛

𝑛∑
𝑖=1

𝑛∑
𝑗=1

log 𝐷2
𝑖 𝑗 (A I-7)

In summary, we just proved that the contrastive parts of MS and SNCA losses are upper bounds

on the contrastive term 𝐶. The latter term is composed of a proxy for the entropy of features

H(𝑍̂), as well as a tightness sub-term.

2. Proof of Proposition 2.1

Proof. First, let us show that L𝐶𝐸 ≥ L𝑃𝐶𝐸 . Consider the usual softmax parametrization of

point 𝑖 belonging to class 𝑘: 𝑝𝑖𝑘 = (𝑓𝜃 (𝒛𝑖))𝑘 =
exp 𝜃	𝑘 𝒛𝑖∑
𝑗 exp 𝜃	𝑗 𝒛𝑖

, where 𝒛 = 𝜙W(𝑥). We can explicitly

write the cross-entropy loss:

L𝐶𝐸 = −1

𝑛

𝑛∑
𝑖=1

log 𝑓𝜃 (𝒛𝑖)

= −1

𝑛

𝑛∑
𝑖=1

𝜃	𝑦𝑖 𝒛𝑖 + 𝜆

2

𝐾∑
𝑘=1

𝜃	𝑘 𝜃𝑘︸���������������������������︷︷���������������������������︸
ℎ1 (𝜃)

+ 1

𝑛

𝑛∑
𝑖=1

log

𝐾∑
𝑗=1

𝑒𝜃	𝑗 𝒛𝑖 − 𝜆

2

𝐾∑
𝑘=1

𝜃	𝑘 𝜃𝑘︸������������������������������������︷︷������������������������������������︸
ℎ2 (𝜃)

.
(A I-8)

Where we introduced 𝜆 ∈ R. How to specifically set 𝜆 will soon become clear. Let us now write

the gradients of ℎ1 and ℎ2 in Equation A I-8 with respect to 𝜃𝑘 :

𝜕ℎ1

𝜕𝜃𝑘
= −1

𝑛

∑
𝑖:𝑦𝑖=𝑘

𝒛𝑖 + 𝜆𝜃𝑘 (A I-9)

𝜕ℎ2

𝜕𝜃𝑘
=

1

𝑛

∑
𝑖

exp(𝜃	𝑘 𝒛𝑖)∑𝐾
𝑗=1 exp(𝜃	𝑗 𝒛𝑖)︸��������������︷︷��������������︸

𝑝𝑖𝑘

𝒛𝑖 − 𝜆𝜃𝑘 (A I-10)

153

Notice that ℎ1 is a convex function of 𝜃, regardless of 𝜆. As for ℎ2, we set 𝜆 such that ℎ2 becomes

a convex function of 𝜃. Specifically, by setting:

𝜆 = min
𝑘,𝑙

𝜎𝑙 (𝐴𝑘) (A I-11)

where 𝐴𝑘 = 1
𝑛

∑𝑛
𝑖=1(𝑝𝑖𝑘 − 𝑝2

𝑖𝑘)𝒛𝑖𝒛
	
𝑖 and 𝜎𝑙 (𝐴) represents the 𝑙𝑡ℎ eigenvalue of 𝐴, we make sure

that the hessian of ℎ2 is semi-definite positive. Therefore, we can look for the minima of ℎ1 and

ℎ2.

Setting gradients in Equation A I-9 and Equation A I-10 to 0, we obtain that for all 𝑘 ∈ [1, 𝐾],
the optimal 𝜃𝑘 for ℎ1 is, up to a multiplicative constant, the hard mean of features from class 𝑘:

𝜃ℎ1∗
𝑘 = 1

𝜆𝑛

∑
𝑖:𝑦𝑖=𝑘

𝒛𝑖 ∝ 𝒄𝑘 , while the optimal 𝜃𝑘 for ℎ2 is, up to a multiplicative constant, the soft

mean of features: 𝜃ℎ2∗
𝑘 = 1

𝜆𝑛

∑𝑛
𝑖=1 𝑝𝑖𝑘 𝒛𝑖 = 𝒄𝑠

𝑘/𝜆. Therefore, we can write:

ℎ1(𝜃) ≥ ℎ1(𝜃ℎ1∗) = − 1

𝜆𝑛2

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗=𝑦𝑖

𝒛	𝑖 𝒛 𝑗 + 𝜆

2𝜆2

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗=𝑦𝑖

𝒛	𝑖 𝒛 𝑗 (A I-12)

= − 1

2𝜆𝑛2

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗=𝑦𝑖

𝒛	𝑖 𝒛 𝑗 (A I-13)

And

ℎ2(𝜃) ≥ ℎ2(𝜃ℎ2∗)

=
1

𝑛

𝑛∑
𝑖=1

log

𝐾∑
𝑘=1

exp
�� 1

𝜆𝑛

𝑛∑
𝑗=1

𝑝 𝑗𝑘 𝒛
	
𝑖 𝒛 𝑗

!"# − 1

2𝜆

𝐾∑
𝑘=1

		𝒄𝑠
𝑘

		2
(A I-14)

Putting it all together, we can obtain the desired result:

L𝐶𝐸 ≥ − 1

2𝜆𝑛2

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗=𝑦𝑖

𝒛	𝑖 𝒛 𝑗 + 1

𝑛

𝑛∑
𝑖=1

log

𝐾∑
𝑘=1

𝑒
1
𝜆𝑛

∑
𝑗

𝑝 𝑗𝑘 𝒛
	
𝑖 𝒛 𝑗 − 1

2𝜆

𝐾∑
𝑘=1

		𝒄𝑠
𝑘

		2

= L𝑃𝐶𝐸

(A I-15)

where 𝒄𝑠
𝑘 = 1

𝑛

∑𝑛
𝑖=1 𝑝𝑖𝑘 𝒛𝑖 represents the soft mean of class k.

154

Let us now justify that minimizing cross-entropy can be seen as an approximate bound

optimization on L𝑃𝐶𝐸 . At every iteration 𝑡 of the training, cross-entropy represents an upper

bound on Pairwise Cross-entropy.

L𝐶𝐸 (W(𝑡), 𝜃 (𝑡)) ≥ L𝑃𝐶𝐸 (W(𝑡), 𝜃 (𝑡)) (A I-16)

When optimizing w.r.t 𝜃, the bound almost becomes tight. The approximation comes from the

fact that 𝜃ℎ1∗
𝑘 and 𝜃ℎ2∗

𝑘 are quite dissimilar in early training, but become very similar as training

progresses and the model’s softmax probabilities align with the labels. Therefore, using the

notation:

𝜃 (𝑡 + 1) = min
𝜃
L𝐶𝐸 (W(𝑡), 𝜃) (A I-17)

We can write:

L𝐶𝐸 (W(𝑡), 𝜃 (𝑡 + 1)) ≈ L𝑃𝐶𝐸 (W(𝑡), 𝜃 (𝑡 + 1)) (A I-18)

Then, minimizing L𝐶𝐸 and L𝑃𝐶𝐸 w.r.t W becomes approximately equivalent.

2.1 Proof of Lemma 2.2

Proof. Using the discriminative view of MI, we can write:

I(𝑍;𝑌) = H(𝑌) − H (𝑌 |𝑍) (A I-19)

The entropy of labels H(𝑌) is a constant and, therefore, can be ignored. From this view of

MI, maximization of I(𝑍;𝑌) can only be achieved through a minimization of H(𝑌 |𝑍), which

depends on our embeddings 𝑍 = 𝜙W(𝑋). We can relate this term to our cross-entropy loss

using the following relation:

H(𝑌 ;𝑌 |𝑍) = H(𝑌 |𝑍) + D𝐾𝐿 (𝑌 ‖𝑌 |𝑍) (A I-20)

155

Therefore, while minimizing cross-entropy, we are implicitly both minimizing H(𝑌 |𝑍) as well

as D𝐾𝐿 (𝑌 ‖𝑌 |𝑍). In fact, following Equation A I-20, optimization could naturally be decoupled

in 2 steps, in a Maximize-Minimize fashion. One step would consist in fixing the encoder’s

weights W and only minimizing Equation A I-20 w.r.t to the classifier’s weights 𝜃. At this step,

H(𝑌 |𝑍) would be fixed while 𝑌 would be adjusted to minimize D𝐾𝐿 (𝑌 | |𝑌 |𝑍). Ideally, the KL

term would vanish at the end of this step. In the following step, we would minimize Equation A

I-20 w.r.t to the encoder’s weights W, while keeping the classifier fixed.

3. Preliminary results with SPCE

Figure-A I-1 Evolution of the cross-entropy loss (CE) and the simplified pairwise

cross-entropy (SPCE) during training on MNIST, as well as the validation accuracy for both

losses

In Figure I-1, we track the evolution of both loss functions and validation accuracy when training

with L𝐶𝐸 and L𝑆𝑃𝐶𝐸 on MNIST dataset. We use a small CNN composed of four convolutional

layers. The optimizer used is Adam. Batch size is set to 128, learning rate to 1𝑒−4 with cosine

annealing, weight decay to 1𝑒−4 and feature dimension to 𝑑 = 100. Figure I-1 supports the

156

theoretical links that were drawn between Cross-Entropy and its simplied pairwise version SPCE.

Particularly, this preliminary result demonstrates that SPCE is indeed employable as a loss, and

exhibits a very similar behavior to the original cross-entropy. Both losses remain very close to

each other throughout the training, and so remain the validation accuracies.

4. Analysis of ranking losses for Deep Metric Learning

Some recent works (Cakir, He, Xia, Kulis & Sclaroff, 2019; Wang et al., 2019a; Rolínek

et al., 2020) tackle the problem of deep metric learning using a rank-based approach. In other

words, given a point in feature space 𝒛𝑖, the pairwise losses studied throughout this work try

to impose manual margins 𝑚, so that the distance between 𝒛𝑖 and any negative point 𝒛−𝑗 is at

least 𝑚. Rank-based losses rather encourage that all points are well ranked, distance-wise, such

that 𝑑 (𝒛𝑖 , 𝒛
+
𝑗) ≤ 𝑑 (𝒛𝑖 , 𝒛

−
𝑗) for any positive and negative points 𝒛+𝑗 and 𝒛−𝑗 . We show that our

tightness/contrastive analysis also holds for such ranking losses. In particular, we analyse the

loss proposed in (Cakir et al., 2019). For any given query embedded point 𝒛𝑖, let us call 𝐷 the

random variable associated to the distance between 𝒛𝑖 and all other points in the embedded space,

defined over all possible (discretized) distances D. Furthermore, let us call 𝑅 the binary random

variable that describes the relation to the current query point (𝑅+ and 𝑅− describe respectively a

positive and negative relationship to 𝒛𝑖). The loss maximized in (Cakir et al., 2019) reads:

FastAP =
∑
𝑑∈D

𝑃(𝐷 < 𝑑 |𝑅+)𝑃(𝑅+)
𝑃(𝐷 < 𝑑) 𝑃(𝐷 = 𝑑 |𝑅+) (A I-21)

Taking the logarithm, and using Jensen’s inequality, we can lower bound this loss:

log(FastAP) ≥
∑
𝑑∈D

𝑃(𝐷 = 𝑑, 𝑅+) log(𝑃(𝐷 < 𝑑 |𝑅+)
𝑃(𝐷 < 𝑑))

= E
𝑑∼𝑃(.,𝑅+)

log 𝑃(𝐷 < 𝑑 |𝑅+)︸����������������������������︷︷����������������������������︸
𝑇𝐴𝑃=TIGHTNESS

− E
𝑑∼𝑃(.,𝑅+)

log 𝑃(𝐷 < 𝑑)︸�����������������������︷︷�����������������������︸
𝐶𝐴𝑃=CONTRASTIVE

(A I-22)

To intuitively understand what those two terms are doing, let us imagine we approximate each of

the expectations with a single point Monte-Carlo approximation. In other words, we sample a

157

positive point 𝒛+𝑗 , take its associated distance to 𝒛𝑖, which we call 𝑑+, then we approximate the

tightness term as:

𝑇𝐴𝑃 ≈ log 𝑃(𝐷 < 𝑑+|𝑅+) (A I-23)

Maximizing 𝑇𝐴𝑃 has a clear interpretation: it encourages all positive points to lie inside the

hypersphere of radius 𝑑+ around query point 𝒛𝑖. Similarly:

𝐶𝐴𝑃 ≈ − log 𝑃(𝐷 < 𝑑+) (A I-24)

Maximizing 𝐶𝐴𝑃 also has a clear interpretation: it encourages all points (both positive and

negative ones) to lie outside the hypersphere of radius 𝑑+ around query point 𝒛𝑖. Now, Equation A

I-22 is nothing more than an expectation over all positive distance 𝑑+ one could sample. Therefore,

such loss can be analyzed through the same lens as other DML losses, i.e., one tightness term

that encourages all points from the same class as 𝒛𝑖 to lie close to it in the embedded space,

and one contrastive term that oppositely refrains all points from approaching 𝒛𝑖 closer than its

current positive points.

5. On the limitations of cross-entropy

While we demonstrated that the cross-entropy loss could be competitive in comparison to pairwise

losses, while being easier to optimize, there still exist scenarios for which a straightforward use

of the CE loss becomes prohibitive. Hereafter, we describe two such scenarios.

Case of relative labels: The current setting assumes that absolute labels are given for each

sample, i.e., each sample 𝒙𝑖 belongs to a single absolute class 𝑦𝑖. However, DML can be applied

to more general problems where the absolute class labels are not available. Instead, one has

access to relative labels that only describe the relationships between points (e.g., a pair is similar

or dissimilar). From these relative labels, one could still define absolute classes as sets of samples

inside which every pair has a positive relationship. Note that with this definition, each sample

may belong to multiple classes simultaneously, which makes the use of standard cross-entropy

difficult. However, with such re-formulation, our Simplified Pairwise Cross-Entropy (SPCE),

158

which we hereby remind:

LSPCE = − 1

𝑛2

𝑛∑
𝑖=1

∑
𝑗 :𝑦 𝑗=𝑦𝑖

𝒛	𝑖 𝒛 𝑗︸�������������������︷︷�������������������︸
tightness

+ 1

𝑛

𝑛∑
𝑖=1

log

𝐾∑
𝑘=1

exp
(1

𝑛

∑
𝑗 :𝑦 𝑗=𝑘

𝒛	𝑖 𝒛 𝑗

)
︸������������������������������������︷︷������������������������������������︸

contrastive

(2.15)

can handle such problems, just like any other pairwise loss.

Case of large number of classes: In some problems, the total number of classes K can grow

to several millions. In such cases, even simply storing the weight matrix 𝜃 ∈ R𝐾×𝑑 of the final

classifier required by cross-entropy becomes prohibitive. Note that there exist heuristics to

handle such problems with standard cross-entropy, such as sampling subsets of classes and

solving those sub-problems instead, as was done in (Zhai & Wu, 2019). However, we would be

introducing new training heuristics (e.g., class sampling), which defeats the initial objective of

using the cross-entropy loss. Again, the SPCE loss underlying the unary cross-entropy could

again handle such cases, similarly to other pairwise losses, given that it doesn’t require storing

such weight matrix.

APPENDIX II

SUPPLEMENTARY MATERIAL FOR THE PAPER TITLED
DECOUPLING DIRECTION AND NORM FOR EFFICIENT GRADIENT-BASED ℓ2

ADVERSARIAL ATTACKS AND DEFENSES

1. Model architectures

Table II-1 lists the architectures of the CNNs used in the Attack Evaluation - we used the

same architecture as in (Carlini & Wagner (2017)) for a fair comparison against the C&W and

DeepFool attacks. Table II-2 lists the architecture used in the robust model (defense) trained on

CIFAR-10. We used a Wide ResNet with 28 layers and widening factor of 10 (WRN-28-10). The

residual blocks used are the “basic block" (He et al. (2016a); Zagoruyko & Komodakis (2016)),

with stride 1 for the first group and stride 2 for the second an third groups. This architecture

is slightly different from the one used by Madry et al. (2018), where Madry et al. (2018) they

use a modified version of Wide ResNet with 5 residual blocks instead of 4 in each group, and

without convolutions in the residual connections (when the shape of the output changes, e.g.

with stride=2).

2. Hyperparameters selected for the C&W attack

Table-A II-1 CNN architectures used for the Attack Evaluation

Layer Type MNIST Model CIFAR-10 Model
Convolution + ReLU 3 × 3 × 32 3 × 3 × 64

Convolution + ReLU 3 × 3 × 32 3 × 3 × 64

Max Pooling 2 × 2 2 × 2

Convolution + ReLU 3 × 3 × 64 3 × 3 × 128

Convolution + ReLU 3 × 3 × 64 3 × 3 × 128

Max Pooling 2 × 2 2 × 2

Fully Connected + ReLU 200 256

Fully Connected + ReLU 200 256

Fully Connected + Softmax 10 10

160

Table-A II-2 CIFAR-10 architecture used for the

Defense evaluation

Layer Type Size
Convolution 3 × 3 × 16

Residual Block

[
3 × 3, 160

3 × 3, 160

]
× 4

Residual Block

[
3 × 3, 320

3 × 3, 320

]
× 4

Residual Block

[
3 × 3, 640

3 × 3, 640

]
× 4

Batch Normalization + ReLU -

Average Pooling 8 × 8

Fully Connected + Softmax 10

We considered a scenario of running the C&W attack with 100 steps and a fixed 𝐶 (1×100), and a

scenario of running 4 search steps on 𝐶, of 25 iterations each (4×25). Since the hyperparameters

proposed in (Carlini & Wagner (2017)) were tuned for a larger number of iterations and search

steps, we performed a grid search for each dataset, using learning rates in the range [0.01,

0.05, 0.1, 0.5, 1], and 𝐶 in the range [0.001, 0.01, 0.1, 1, 10, 100, 1 000]. We selected

the hyperparameters that resulted in targeted attacks with lowest Median ℓ2 for each dataset.

Table II-3 lists the hyperparameters found through this search procedure.

Table-A II-3 Hyperparameters used for the

C&W attack when restricted to 100 iterations

Dataset # Iterations Parameters
MNIST 1 × 100 𝛼 = 0.1, 𝐶 = 1

MNIST 4 × 25 𝛼 = 0.5, 𝐶 = 1

CIFAR-10 1 × 100 𝛼 = 0.01, 𝐶 = 0.1
CIFAR-10 4 × 25 𝛼 = 0.01, 𝐶 = 0.1
ImageNet 1 × 100 𝛼 = 0.01, 𝐶 = 1

ImageNet 4 × 25 𝛼 = 0.01, 𝐶 = 10

161

3. Examples of adversarial images

a) Baseline (without adversarial training) b) Adversarially trained

Figure-A II-1 Adversarial examples obtained using the C&W ℓ2 attack on two models: (a)

Baseline, (b) model adversarially trained with our attack

Figure II-1 plots a grid of attacks (obtained with the C&W attack) against the first 10 examples

in the MNIST dataset. The rows indicate the source classification (label), and the columns

indicate the target class used to generate the attack (images on the diagonal are the original

samples). We can see that in the adversarially trained model, the attacks need to introduce much

larger changes to the samples in order to make them adversarial, and some of the adversarial

samples visually resemble another class.

Figure II-2 shows randomly-selected adversarial examples for the CIFAR-10 dataset, comparing

the baseline model (WRN 28-10), the Madry defense and our proposed defense. For each image

and model, we ran three attacks (DDN 1 000, C&W 9×10 000, DeepFool 100), and present the

adversarial example with minimum ℓ2 perturbation among them. Figure II-3 shows cherry-picked

adversarial examples on CIFAR-10, that visually resemble another class, when attacking the

proposed defense. We see that on the average case (randomly-selected), adversarial examples

against the defenses still require low amounts of noise (perceptually) to induce misclassification.

162

On the other hand, we notice that on adversarially trained models, some examples do require a

much larger change on the image, making it effectively resemble another class.

Figure-A II-2 Randomly chosen adversarial examples on CIFAR-10 for three models.

Top row: original images; second row: attacks against the baseline; third row: attacks

against the Madry defense

Figure-A II-3 Cherry-picked adversarial examples on CIFAR-10 for three models. Top
row: original images; second row: attacks against the baseline; third row: attacks against

the Madry defense; bottom row: attacks against the proposed defense. Predicted labels for

the last row are, from left to right: dog, ship, deer, dog, dog, truck, horse, dog, cat, cat

163

4. Attack performance curves

Figure II-4 reports curves of the perturbation size against accuracy of the models for three

attacks: Carlini 9×10 000, DeepFool 100 and DDN 300.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
L2 norm of the noise

0.0

20.0

40.0

60.0

80.0

100.0

%
A
cc
u
ra
cy

Carlini 9×10 000

DeepFool 100

DDN 300

a) MNIST / Baseline model.

0 1 2 3 4 5 6 7 8
L2 norm of the noise

0.0

20.0

40.0

60.0

80.0

100.0

%
A
cc
u
ra
cy

Carlini 9×10 000

DeepFool 100

DDN 300

b) MNIST / Madry defense.

0 1 2 3 4 5 6 7 8
L2 norm of the noise

0.0

20.0

40.0

60.0

80.0

100.0

%
A
cc
u
ra
cy

Carlini 9×10 000

DeepFool 100

DDN 300

c) MNIST / Our Defense

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
L2 norm of the noise

0.0

20.0

40.0

60.0

80.0

100.0

%
A
cc
u
ra
cy

Carlini 9×10 000

DeepFool 100

DDN 300

d) ImageNet / Inception V3.

0.0 0.2 0.4 0.6 0.8 1.0
L2 norm of the noise

0.0

20.0

40.0

60.0

80.0

100.0

%
A
cc
u
ra
cy

Carlini 9×10 000

DeepFool 100

DDN 300

e) CIFAR-10 / Baseline model.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
L2 norm of the noise

0.0

20.0

40.0

60.0

80.0

100.0

%
A
cc
u
ra
cy

Carlini 9×10 000

DeepFool 100

DDN 300

f) CIFAR-10 / Baseline WRN

28-10.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
L2 norm of the noise

0.0

20.0

40.0

60.0

80.0

100.0

%
A
cc
u
ra
cy

Carlini 9×10 000

DeepFool 100

DDN 300

g) CIFAR-10 / Madry defense.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
L2 norm of the noise

0.0

20.0

40.0

60.0

80.0

100.0

%
A
cc
u
ra
cy

Carlini 9×10 000

DeepFool 100

DDN 300

h) CIFAR-10 / Our Defense.

Figure-A II-4 Attacks performances on different datasets and models

APPENDIX III

SUPPLEMENTARY MATERIAL FOR THE PAPER TITLED
AUGMENTED LAGRANGIAN ADVERSARIAL ATTACKS

1. Differences with ADMM attack (Zhao, Xu, Liu, Wang & Lin, 2019) and

StrAttack (Xu et al., 2019)

There is a significant technical difference between our proposed attack and the two attacks based

on ADMM approaches (Zhao et al., 2019; Xu et al., 2019) as the multipliers in the ADMM

attacks are used for the problem-splitting constraints, but not for the attack constraints as in our

ALM. For two terms, ADMM replaces a one-variable problem of the form minimize
𝑥

𝑔(𝑥) + ℎ(𝑥)
by a two-variable problem:

minimize
𝑥,𝑦

𝑔(𝑥) + ℎ(𝑦) subject to 𝑥 = 𝑦 (A III-1)

a splitting that gives raise to variable-consistency constraints 𝑥 = 𝑦. In fact, both ADMM attacks

(Xu et al., 2019; Zhao et al., 2019) are based on a decomposition of the Carlini-Wagner penalty

formulation (Equation 7 in (Zhao et al., 2019) and Equation 4 in (Xu et al., 2019)):

𝐷 (𝒙 + 𝜹, 𝒙) + 𝑔CW(𝛽) subject to 𝜹 = 𝛽 (A III-2)

where 𝐷 is the distance and 𝑔CW is the standard CW penalty for attack constraint 𝑓𝑦 (𝒙 + 𝜹) −
max𝑘≠𝑦 𝑓𝑘 (𝒙 + 𝜹) < 0; see Equation 5 in (Zhao et al., 2019) and Equation 3 in (Xu et al.,

2019). The Lagrange multipliers in these ADMM attacks are for the decomposition constraints

𝜹 = 𝛽, but the attack constraints are still handled with the standard CW penalty. In our case, we

address the attack constraints with augmented Lagrangian principles, and there is no ADMM

splitting in our method. The ADMM attack in (Zhao et al., 2019) has no public implementation,

so we were not able to implement it in our experimental framework. The publicly available

implementation of the StrAttack (Xu et al., 2019) contains several differences with the original

paper regarding hyper-parameters and update rules for the auxiliary variables. Therefore, we

166

contacted the authors of both papers (of which several are in common) regarding the lack of

public implementation, and discrepancies between paper and code, but did not get any answer.

Therefore, we did not include these attacks in our experiments. It should be noted that StrAttack’s

(Xu et al., 2019) implementation is based on the C&W ℓ2 attack, but adds a sparsity objective,

which tends to increase the perturbation size in terms of ℓ2 norm compared to the vanilla C&W

ℓ2 attack.

2. CIEDE2000

The CIEDE2000 color difference formula is complex, so we advise the reader to look at the

original work (Sharma et al., 2005). This formula is calculated using the CIELAB color space.

However, most image datasets are provided in an RGB format. Therefore, to use the CIEDE2000

color difference formula, we must first convert the images from RGB to the CIELAB color

space. We need to use a first conversion between RGB and XYZ color spaces. For this step,

we need to know the RGB working space and the reference white. However, we do not have

that information available, as we do not know how the images were captured in the first place.

As a consequence, we make the assumption of the sRGB working space with an Illuminant

D65 white reference. With these assumptions, the formula to convert from RGB (with values in

[0, 1]) to XYZ is the following:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑋

𝑌

𝑍

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0.4124564 0.3575761 0.1804375

0.2126729 0.7151522 0.0721750

0.0193339 0.1191920 0.9503041

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑅

𝐺

𝐵

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A III-3)

167

Once we have the colors represented in the XYZ color space, we need to convert to the CIELAB

color space. The conversion is the following:

𝐿★ = 116 𝑓

(
𝑌

𝑌𝑛

)
− 16

𝑎★ = 500

(
𝑓

(
𝑋

𝑋𝑛

)
− 𝑓

(
𝑌

𝑌𝑛

))
𝑏★ = 200

(
𝑓

(
𝑌

𝑌𝑛

)
− 𝑓

(
𝑍

𝑍𝑛

)) (A III-4)

where:

𝑓 (𝑡) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3
√

𝑡 if 𝑡 > 𝜹3

𝑡
3𝜹2 + 4

29
otherwise

(A III-5)

with 𝜹 = 6
29

. Under the Illuminant D65 white reference, we have 𝑋𝑛 = 95.0489, 𝑌𝑛 = 100 and

𝑍𝑛 = 108.8840.

3. Modified DLR loss

The original DLR loss proposed in (Croce & Hein, 2020b) is formulated as follows:

DLR(𝒛, 𝑦) = −
𝒛𝑦 −max

𝑖≠𝑦
𝒛𝑖

𝒛𝜋1
− 𝒛𝜋3

(A III-6)

where 𝒛 = 𝑓 (𝒙) and 𝜋 is the ordering of the element of 𝒛 in decreasing order. If a sample 𝒙 is

correctly classified, we have DLR(𝒛, 𝑦) ∈ [−1, 0] and 𝒙 is misclassified only if DLR(𝒛, 𝑦) > 0.

Croce et al. also propose a variant for untargeted attacks with a targeted objective. In some

cases, performing a targeted attack against each class proved to be more successful at finding

untargeted adversarial examples than simply performing an untargeted attack. The targeted

variant is:

tDLR(𝒛, 𝑦) = − 𝒛𝑦 − 𝒛𝑡

𝒛𝜋1
− (𝒛𝜋3

+ 𝒛𝜋4
)/2 (A III-7)

where 𝑡 is the target class. For this variant, we can have no guarantee as to what 𝒙 is classified

as, simply by looking at the value of tDLR.

168

For our optimization problem, we need to have a loss that is negative only when the misclassifi-

cation or targeted classification is achieved. This way, we can formulate the misclassification

or targeted classification constraint as 𝑔(𝑥) < 0. To this end, we modify DLR by taking the

negative as follows:

DLR+(𝒛, 𝑦) =
𝒛𝑦 −max

𝑖≠𝑦
𝒛𝑖

𝒛𝜋1
− 𝒛𝜋3

(4.4)

For targeted attack, we modify tDLR as follows:

tDLR+(𝒛, 𝑦) =
max
𝑖≠𝑡

𝒛𝑖 − 𝒛𝑡

𝒛𝜋1
− (𝒛𝜋3

+ 𝒛𝜋4
)/2 (A III-8)

With these modifications, the misclassification and targeted classification constraints are respected

only when DLR+ and tDLR+ are negative. Conversely, the constraints are violated when these

losses are positive, hence the + superscript.

4. Penalty functions

The four penalty functions plotted in Figure 4.1 are taken from (Birgin et al., 2005) and defined

as follows:

PHR(𝑦, 𝜌, 𝜇) = 1

2𝜌
(max{0, 𝜇 + 𝜌𝑦}2 − 𝜇2) (A III-9)

𝑃1(𝑦, 𝜌, 𝜇) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
𝜇𝑦 + 1

2
𝜌𝑦2 + 𝜌2𝑦3 if 𝑦 ≥ 0

𝜇𝑦 + 1
2
𝜌𝑦2 if − 𝜇

𝜌 ≤ 𝑦 ≤ 0

− 1
2𝜌 𝜇2 if 𝑦 ≤ − 𝜇

𝜌

(A III-10)

𝑃2(𝑦, 𝜌, 𝜇) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜇𝑦 + 𝜇𝜌𝑦2 + 1
6
𝜌2𝑦3 if 𝑦 ≥ 0

𝜇𝑦
1−𝜌𝑦 if 𝑦 ≤ 0

(A III-11)

𝑃3(𝑦, 𝜌, 𝜇) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜇𝑦 + 𝜇𝜌𝑦2 if 𝑦 ≥ 0

𝜇𝑦
1−𝜌𝑦 if 𝑦 ≤ 0

(A III-12)

169

5. Choice of 𝛼

For the experiments, we change the value of 𝛼 according to the number of iterations. In our

attack, 𝛼 is a smoothing parameter. However, too much smoothing can degrade the performance

of the attack for lower numbers of iterations. Therefore, we recommend values between 0.5 and

0.9 for numbers of iterations between 100 and 1 000, and to keep 𝛼 = 0.9 for more than 1 000

iterations. Since our attack aims to find minimal adversarial perturbations, lower numbers of

iterations are not recommended.

6. Hyper-parameter 𝜖 values

Table III-1 reports the different 𝜖 used for each distance function in our experiments.

Table-A III-1 Initial values of

𝜖 for each distance

Distance 𝜖
ℓ1 0.5

ℓ2 0.1

SSIM 3 × 10−5

CIEDE2000 0.05

LPIPS 1 × 10−3

7. Additional results with SSIM

We also tested our ALMA attack with the SSIM (Wang, Bovik, Sheikh & Simoncelli, 2004)

for which, to the best of our knowledge, no gradient-based attack currently exists. The only

related work on adversarial attacks and SSIM is a black-box method (Gragnaniello et al., 2021).

SSIM is a similarity function, so identical images have a SSIM of 1. Therefore, we minimize the

quantity 1− SSIM and report this instead of the SSIM. The SSIM metric is defined between two

gray-level images. Several modifications exist for color images, however, we simply considered

the average SSIM over the color channels. Tables III-8 and III-13 report the results for all models

on CIFAR10 and ImageNet respectively.

170

8. Detailed experimental results

Tables III-2, III-3, III-4, III-5, III-8, III-6, III-7, III-9, III-10, III-13, III-11 and III-12 report the

detailed results for each dataset, model and attack. Results from Tables 4.1 and 4.2 are calculated

from these tables using the geometric mean over the models. For the CIFAR10 and ImageNet

models, RN stands for ResNet and WRN for Wide ResNet. For ImageNet, the targeted variant

of FAB is used in the experiments denoted by a T superscript (see section 4.4 for details).

9. Robust Accuracy curves

Figures III-1, III-2, III-3, III-4, III-5, III-7, III-8 and III-9 present the robust accuracy curves

for each dataset and model against the attacks considered for each distance. The dotted line

represent the reduced budget versions of the attack, as reported in the corresponding tables.

171

Table-A III-2 Performance of the ℓ1 attacks on the MNIST dataset for each model

Model Attack ASR (%) Median ℓ1
Forwards /

Backwards

SmallCNN

EAD 9×100 (Chen et al., 2018b) 100 8.41 870 / 439

EAD 9×1 000 (Chen et al., 2018b) 100 7.90 3 810 / 1 909

FAB ℓ1 100 (Croce & Hein, 2020a) 100 6.31 201 / 1 000

FAB ℓ1 1 000 (Croce & Hein, 2020a) 100 6.20 2 001 / 10 000

FMN ℓ1 100 (Pintor et al., 2021) 95.02 6.50 100 / 100

FMN ℓ1 1 000 (Pintor et al., 2021) 95.19 6.39 1 000 / 1 000

ALMA ℓ1 100 100 6.77 100 / 100

ALMA ℓ1 1 000 100 6.23 1 000 / 1 000

SmallCNN

DDN

EAD 9×100 (Chen et al., 2018b) 100 17.41 990 / 499

EAD 9×1 000 (Chen et al., 2018b) 100 16.35 5 010 / 2 509

FAB ℓ1 100 (Croce & Hein, 2020a) 100 16.53 201 / 1 000

FAB ℓ1 1 000 (Croce & Hein, 2020a) 100 15.42 2 001 / 10 000

FMN ℓ1 100 (Pintor et al., 2021) 99.97 16.09 100 / 100

FMN ℓ1 1 000 (Pintor et al., 2021) 99.97 15.67 1 000 / 1 000

ALMA ℓ1 100 100 14.73 100 / 100

ALMA ℓ1 1 000 100 14.02 1 000 / 1 000

SmallCNN

TRADES

EAD 9×100 (Chen et al., 2018b) 100 14.80 967 / 486

EAD 9×1 000 (Chen et al., 2018b) 100 12.15 6 409 / 3 208

FAB ℓ1 100 (Croce & Hein, 2020a) 99.22 36.60 201 / 1 000

FAB ℓ1 1 000 (Croce & Hein, 2020a) 99.35 32.37 2 001 / 10 000

FMN ℓ1 100 (Pintor et al., 2021) 50.30 42.02 100 / 100

FMN ℓ1 1 000 (Pintor et al., 2021) 98.30 8.28 1 000 / 1 000

ALMA ℓ1 100 100 6.16 100 / 100

ALMA ℓ1 1 000 100 5.32 1 000 / 1 000

CROWN

IBP

EAD 9×100 (Chen et al., 2018b) 89.17 106.95 509 / 258

EAD 9×1 000 (Chen et al., 2018b) 91.32 86.45 5 210 / 2 609

FAB ℓ1 100 (Croce & Hein, 2020a) 99.99 147.79 201 / 1 000

FAB ℓ1 1 000 (Croce & Hein, 2020a) 99.99 110.96 2 001 / 10 000

FMN ℓ1 100 (Pintor et al., 2021) 49.89 – 100 / 100

FMN ℓ1 1 000 (Pintor et al., 2021) 88.36 3.50 1 000 / 1 000

ALMA ℓ1 100 99.59 27.94 100 / 100

ALMA ℓ1 1 000 100 5.65 1 000 / 1 000

172

Table-A III-3 Performance of the ℓ2 attacks on the MNIST dataset for each model

Model Attack ASR (%) Median ℓ2
Forwards /

Backwards

SmallCNN

C&W ℓ2 9×1 000 (Carlini & Wagner, 2017) 99.98 1.35 9 000 / 9 000

C&W ℓ2 9×10 000 (Carlini & Wagner, 2017) 99.77 1.35 90 000 / 90 000

DDN 100 (Rony et al., 2019) 100 1.39 100 / 100

DDN 1 000 (Rony et al., 2019) 100 1.37 1 000 / 1 000

FAB ℓ2 100 (Croce & Hein, 2020a) 100 1.37 201 / 1 000

FAB ℓ2 1 000 (Croce & Hein, 2020a) 100 1.36 2 001 / 10 000

FMN ℓ2 100 (Pintor et al., 2021) 82.04 1.53 100 / 100

FMN ℓ2 1 000 (Pintor et al., 2021) 96.61 1.39 1 000 / 1 000

APGDT
DLR

ℓ2 (Croce & Hein, 2020b) 100 1.31 13 082 / 13 062

ALMA ℓ2 100 100 1.38 100 / 100

ALMA ℓ2 1 000 100 1.32 1 000 / 1 000

SmallCNN

DDN

C&W ℓ2 9×1 000 (Carlini & Wagner, 2017) 99.96 2.76 9 000 / 9 000

C&W ℓ2 9×10 000 (Carlini & Wagner, 2017) 99.59 2.69 90 000 / 90 000

DDN 100 (Rony et al., 2019) 100 2.74 100 / 100

DDN 1 000 (Rony et al., 2019) 100 2.66 1 000 / 1 000

FAB ℓ2 100 (Croce & Hein, 2020a) 100 2.74 201 / 1 000

FAB ℓ2 1 000 (Croce & Hein, 2020a) 100 2.71 2 001 / 10 000

FMN ℓ2 100 (Pintor et al., 2021) 99.95 2.67 100 / 100

FMN ℓ2 1 000 (Pintor et al., 2021) 100 2.67 1 000 / 1 000

APGDT
DLR

ℓ2 (Croce & Hein, 2020b) 100 2.58 13 410 / 13 390

ALMA ℓ2 100 100 2.68 100 / 100

ALMA ℓ2 1 000 100 2.59 1 000 / 1 000

SmallCNN

TRADES

C&W ℓ2 9×1 000 (Carlini & Wagner, 2017) 99.99 3.32 9 000 / 9 000

C&W ℓ2 9×10 000 (Carlini & Wagner, 2017) 99.97 2.28 90 000 / 90 000

DDN 100 (Rony et al., 2019) 99.69 2.17 100 / 100

DDN 1 000 (Rony et al., 2019) 100 1.91 1 000 / 1 000

FAB ℓ2 100 (Croce & Hein, 2020a) 99.88 1.77 201 / 1 000

FAB ℓ2 1 000 (Croce & Hein, 2020a) 99.90 1.74 2 001 / 10 000

FMN ℓ2 100 (Pintor et al., 2021) 86.41 2.24 100 / 100

FMN ℓ2 1 000 (Pintor et al., 2021) 99.83 1.99 1 000 / 1 000

APGDT
DLR

ℓ2 (Croce & Hein, 2020b) 100 3.36 13 919 / 13 899

ALMA ℓ2 100 100 1.74 100 / 100

ALMA ℓ2 1 000 100 1.55 1 000 / 1 000

CROWN

IBP

C&W ℓ2 9×1 000 (Carlini & Wagner, 2017) 2.61 – 9 000 / 9 000

C&W ℓ2 9×10 000 (Carlini & Wagner, 2017) 2.63 – 90 000 / 90 000

DDN 100 (Rony et al., 2019) 94.34 1.46 100 / 100

DDN 1 000 (Rony et al., 2019) 99.27 0.97 1 000 / 1 000

FAB ℓ2 100 (Croce & Hein, 2020a) 99.98 5.19 201 / 1 000

FAB ℓ2 1 000 (Croce & Hein, 2020a) 99.98 3.34 2 001 / 10 000

FMN ℓ2 100 (Pintor et al., 2021) 67.80 2.14 100 / 100

FMN ℓ2 1 000 (Pintor et al., 2021) 89.08 1.34 1 000 / 1 000

APGDT
DLR

ℓ2 (Croce & Hein, 2020b) 99.94 3.57 9 286 / 9 273

ALMA ℓ2 100 98.90 4.96 100 / 100

ALMA ℓ2 1 000 100 1.26 1 000 / 1 000

173

Table-A III-4 Performance of the ℓ1 attacks on the CIFAR10 dataset for each model

Model Attack ASR (%) Median ℓ1
Forwards /

Backwards

WRN 28-10

EAD 9×100 (Chen et al., 2018b) 100 1.79 530 / 269

EAD 9×1 000 (Chen et al., 2018b) 100 1.62 4 910 / 2 459

FAB ℓ1 100 (Croce & Hein, 2020a) 92.3 1.27 200 / 1 000

FAB ℓ1 1 000 (Croce & Hein, 2020a) 98.8 1.07 2 000 / 10 000

FMN ℓ1 100 (Pintor et al., 2021) 99.7 1.01 100 / 100

FMN ℓ1 1 000 (Pintor et al., 2021) 99.5 0.98 1 000 / 1 000

ALMA ℓ1 100 100 1.26 100 / 100

ALMA ℓ1 1 000 100 1.02 1 000 / 1 000

WRN 28-10

Carmon et al.
(2019)

EAD 9×100 (Chen et al., 2018b) 100 6.62 600 / 304

EAD 9×1 000 (Chen et al., 2018b) 100 6.07 3 760 / 1 884

FAB ℓ1 100 (Croce & Hein, 2020a) 97.8 5.57 200 / 1 000

FAB ℓ1 1 000 (Croce & Hein, 2020a) 98.2 5.07 2 000 / 10 000

FMN ℓ1 100 (Pintor et al., 2021) 100 4.70 100 / 100

FMN ℓ1 1 000 (Pintor et al., 2021) 100 4.64 1 000 / 1 000

ALMA ℓ1 100 100 5.20 100 / 100

ALMA ℓ1 1 000 100 4.75 1 000 / 1 000

RN-50

Augustin et al.
(2020)

EAD 9×100 (Chen et al., 2018b) 100 19.18 590 / 299

EAD 9×1 000 (Chen et al., 2018b) 100 16.39 4 260 / 2 134

FAB ℓ1 100 (Croce & Hein, 2020a) 99.8 10.95 200 / 1 000

FAB ℓ1 1 000 (Croce & Hein, 2020a) 99.8 10.09 2 000 / 10 000

FMN ℓ1 100 (Pintor et al., 2021) 100 10.21 100 / 100

FMN ℓ1 1 000 (Pintor et al., 2021) 100 9.79 1 000 / 1 000

ALMA ℓ1 100 100 12.15 100 / 100

ALMA ℓ1 1 000 100 10.35 1 000 / 1 000

174

Table-A III-5 Performance of the ℓ2 attacks on the CIFAR10 dataset for each model

Model Attack ASR (%) Median ℓ2
Forwards /

Backwards

WRN 28-10

C&W ℓ2 9×1 000 (Carlini & Wagner, 2017) 100 0.10 9 000 / 9 000

C&W ℓ2 9×10 000 (Carlini & Wagner, 2017) 100 0.10 90 000 / 90 000

DDN 100 (Rony et al., 2019) 100 0.11 100 / 100

DDN 1 000 (Rony et al., 2019) 100 0.11 1 000 / 1 000

FAB ℓ2 100 (Croce & Hein, 2020a) 100 0.09 201 / 1 000

FAB ℓ2 1 000 (Croce & Hein, 2020a) 100 0.09 2 001 / 10 000

FMN ℓ2 100 (Pintor et al., 2021) 99.7 0.12 100 / 100

FMN ℓ2 1 000 (Pintor et al., 2021) 99.5 0.09 1 000 / 1 000

APGDT
DLR

ℓ2 (Croce & Hein, 2020b) 100 0.09 4 336 / 4 312

ALMA ℓ2 100 100 0.09 100 / 100

ALMA ℓ2 1 000 100 0.09 1 000 / 1 000

WRN 28-10

Carmon et al.
(2019)

C&W ℓ2 9×1 000 (Carlini & Wagner, 2017) 100 0.70 7 502 / 7 500

C&W ℓ2 9×10 000 (Carlini & Wagner, 2017) 100 0.70 71 602 / 71 600

DDN 100 (Rony et al., 2019) 100 0.72 100 / 100

DDN 1 000 (Rony et al., 2019) 100 0.71 1 000 / 1 000

FAB ℓ2 100 (Croce & Hein, 2020a) 100 0.71 201 / 1 000

FAB ℓ2 1 000 (Croce & Hein, 2020a) 100 0.71 2 001 / 10 000

FMN ℓ2 100 (Pintor et al., 2021) 100 0.69 100 / 100

FMN ℓ2 1 000 (Pintor et al., 2021) 100 0.70 1 000 / 1 000

APGDT
DLR

ℓ2 (Croce & Hein, 2020b) 100 0.68 5 683 / 5 659

ALMA ℓ2 100 100 0.70 100 / 100

ALMA ℓ2 1 000 100 0.67 1 000 / 1 000

RN-50

Augustin et al.
(2020)

C&W ℓ2 9×1 000 (Carlini & Wagner, 2017) 100 0.96 7 515 / 7 513

C&W ℓ2 9×10 000 (Carlini & Wagner, 2017) 100 0.95 73 869 / 73 867

DDN 100 (Rony et al., 2019) 100 0.97 100 / 100

DDN 1 000 (Rony et al., 2019) 100 0.96 1 000 / 1 000

FAB ℓ2 100 (Croce & Hein, 2020a) 100 1.01 201 / 1 000

FAB ℓ2 1 000 (Croce & Hein, 2020a) 100 1.00 2 001 / 10 000

FMN ℓ2 100 (Pintor et al., 2021) 100 0.95 100 / 100

FMN ℓ2 1 000 (Pintor et al., 2021) 100 0.96 1 000 / 1 000

APGDT
DLR

ℓ2 (Croce & Hein, 2020b) 100 0.91 6 198 / 6 174

ALMA ℓ2 100 100 0.98 100 / 100

ALMA ℓ2 1 000 100 0.92 1 000 / 1 000

175

Table-A III-6 Performance of the CIEDE2000 attacks on the CIFAR10 dataset for each

model

Model Attack ASR (%)
Median

CIEDE2000

Forwards /

Backwards

WRN

28-10

C&W CIEDE2000 9×1 000 100 0.23 7 741 / 7 740

Perc-AL 100 (Zhao et al., 2020) 100 0.86 201 / 100

Perc-AL 1 000 (Zhao et al., 2020) 100 0.72 2 001 / 1 000

ALMA CIEDE2000 100 100 0.18 100 / 100

ALMA CIEDE2000 1 000 100 0.14 1 000 / 1 000

WRN 28-10

Carmon et al.
(2019)

C&W CIEDE2000 9×1 000 100 2.12 6 243 / 6 240

Perc-AL 100 (Zhao et al., 2020) 100 5.69 201 / 100

Perc-AL 1 000 (Zhao et al., 2020) 100 5.82 2 001 / 1 000

ALMA CIEDE2000 100 100 3.65 100 / 100

ALMA CIEDE2000 1 000 100 2.08 1 000 / 1 000

RN-50

Augustin et al.
(2020)

C&W CIEDE2000 9×1 000 100 1.63 6 303 / 6 300

Perc-AL 100 (Zhao et al., 2020) 100 4.85 201 / 100

Perc-AL 1 000 (Zhao et al., 2020) 100 4.83 2 001 / 1 000

ALMA CIEDE2000 100 99.8 1.94 100 / 100

ALMA CIEDE2000 1 000 99.8 1.58 1 000 / 1 000

Table-A III-7 Performance of the LPIPS variant of ALMA on the CIFAR10 dataset for

each model. ‡A binary search is performed on each sample to get a minimal perturbation

attack (Equation 4.2)

Model Attack ASR (%)
Median

LPIPS ×10−2
Forwards /

Backwards

WRN 28-10

C&W LPIPS 9×1 000 100 0.32 4 565 / 4 560

LPA‡ (Laidlaw et al., 2021) 100 4.81 1 129 / 1 119

ALMA LPIPS 100 100 0.29 100 / 100

ALMA LPIPS 1 000 100 0.12 1 000 / 1 000

WRN 28-10

Carmon et al.
(2019)

C&W LPIPS 9×1 000 100 0.50 7 981 / 7 980

LPA‡ (Laidlaw et al., 2021) 100 5.06 1 092 / 1 082

ALMA LPIPS 100 100 6.76 100 / 100

ALMA LPIPS 1 000 100 1.01 1 000 / 1 000

RN-50

Augustin et al.
(2020)

C&W LPIPS 9×1 000 100 0.64 8 101 / 8 100

LPA‡ (Laidlaw et al., 2021) 100 6.42 1 133 / 1 123

ALMA LPIPS 100 99.9 7.66 100 / 100

ALMA LPIPS 1 000 100 1.82 1 000 / 1 000

176

Table-A III-8 Performance of the SSIM variant of ALMA on the CIFAR10 dataset for

each model

Model Attack ASR (%)
Median

1−SSIM ×10−4
Forwards /

Backwards

WRN

28-10

ALMA SSIM 100 100 0.4 100 / 100

ALMA SSIM 1 000 100 0.1 1 000 / 1 000

WRN 28-10

Carmon et al. (2019)

ALMA SSIM 100 100 7.5 100 / 100

ALMA SSIM 1 000 100 2.8 1 000 / 1 000

ResNet-50

Augustin et al. (2020)

ALMA SSIM 100 100 4.1 100 / 100

ALMA SSIM 1 000 100 2.0 1 000 / 1 000

Table-A III-9 Performance of the ℓ1 attacks on the ImageNet dataset for each model

Model Attack ASR (%) Median ℓ1
Forwards /

Backwards

RN-50

EAD 9×100 (Chen et al., 2018b) 100 6.70 437 / 222

EAD 9×1 000 (Chen et al., 2018b) 100 6.08 4 510 / 2 259

FABT ℓ1 100 (Croce & Hein, 2020a) 74.4 9.01 1 810 / 900

FABT ℓ1 1 000 (Croce & Hein, 2020a) 81.0 4.82 18 010 / 9 000

FMN ℓ1 100 (Pintor et al., 2021) 95.6 3.72 100 / 100

FMN ℓ1 1 000 (Pintor et al., 2021) 94.5 3.43 1 000 / 1 000

ALMA ℓ1 100 100 8.47 100 / 100

ALMA ℓ1 1 000 100 4.25 1 000 / 1 000

RN-50

ℓ2-AT

EAD 9×100 (Chen et al., 2018b) 100 62.21 458 / 233

EAD 9×1 000 (Chen et al., 2018b) 100 55.16 3 450 / 1 729

FABT ℓ1 100 (Croce & Hein, 2020a) 98.5 31.33 1 810 / 900

FABT ℓ1 1 000 (Croce & Hein, 2020a) 93.2 33.58 18 010 / 9 000

FMN ℓ1 100 (Pintor et al., 2021) 100 36.68 100 / 100

FMN ℓ1 1 000 (Pintor et al., 2021) 100 30.52 1 000 / 1 000

ALMA ℓ1 100 100 61.37 100 / 100

ALMA ℓ1 1 000 100 40.41 1 000 / 1 000

RN-50

ℓ∞-AT

EAD 9×100 (Chen et al., 2018b) 100 6.40 582 / 295

EAD 9×1 000 (Chen et al., 2018b) 100 6.29 3 410 / 1 709

FABT ℓ1 100 (Croce & Hein, 2020a) 95.6 4.36 1 810 / 900

FABT ℓ1 1 000 (Croce & Hein, 2020a) 93.6 4.33 18 010 / 9 000

FMN ℓ1 100 (Pintor et al., 2021) 87.8 4.16 100 / 100

FMN ℓ1 1 000 (Pintor et al., 2021) 87.7 4.16 1 000 / 1 000

ALMA ℓ1 100 100 14.90 100 / 100

ALMA ℓ1 1 000 100 10.33 1 000 / 1 000

177

Table-A III-10 Performance of the ℓ2 attacks on the ImageNet dataset for each model

Model Attack ASR (%) Median ℓ2
Forwards /

Backwards

RN-50

C&W ℓ2 9×1 000 (Carlini & Wagner, 2017) 100 0.21 8 775 / 8 775

C&W ℓ2 9×10 000 (Carlini & Wagner, 2017) 100 0.21 82 668 / 82 667

DDN 100 (Rony et al., 2019) 99.8 0.18 100 / 100

DDN 1 000 (Rony et al., 2019) 99.9 0.17 1 000 / 1 000

FABT ℓ2 100 (Croce & Hein, 2020a) 99.3 0.10 1 810 / 900

FABT ℓ2 1 000 (Croce & Hein, 2020a) 98.0 0.10 18 010 / 9 000

FMN ℓ2 100 (Pintor et al., 2021) 98.9 0.12 100 / 100

FMN ℓ2 1 000 (Pintor et al., 2021) 99.3 0.10 1 000 / 1 000

APGDT
DLR

ℓ2 (Croce & Hein, 2020b) 100 0.09 4 866 4 838

ALMA ℓ2 100 100 0.10 100 / 100

ALMA ℓ2 1 000 100 0.10 1 000 / 1 000

RN-50

ℓ2-AT

C&W ℓ2 9×1 000 (Carlini & Wagner, 2017) 99.9 1.17 6 260 / 6 256

C&W ℓ2 9×10 000 (Carlini & Wagner, 2017) 99.9 1.17 57 004 / 52 000

DDN 100 (Rony et al., 2019) 99.5 1.09 100 / 100

DDN 1 000 (Rony et al., 2019) 99.7 1.10 1 000 / 1 000

FABT ℓ2 100 (Croce & Hein, 2020a) 100 0.81 1 810 / 900

FABT ℓ2 1 000 (Croce & Hein, 2020a) 99.3 0.81 18 010 / 9 000

FMN ℓ2 100 (Pintor et al., 2021) 99.6 0.84 100 / 100

FMN ℓ2 1 000 (Pintor et al., 2021) 99.9 0.82 1 000 / 1 000

APGDT
DLR

ℓ2 (Croce & Hein, 2020b) 100 0.80 7 005 / 6 977

ALMA ℓ2 100 100 0.85 100 / 100

ALMA ℓ2 1 000 100 0.84 1 000 / 1 000

RN-50

ℓ∞-AT

C&W ℓ2 9×1 000 (Carlini & Wagner, 2017) 99.6 0.76 6 933 / 6 930

C&W ℓ2 9×10 000 (Carlini & Wagner, 2017) 99.6 0.76 65 203 / 65 200

DDN 100 (Rony et al., 2019) 99.8 0.67 100 / 100

DDN 1 000 (Rony et al., 2019) 100 0.66 1 000 / 1 000

FABT ℓ2 100 (Croce & Hein, 2020a) 99.8 0.55 1 810 / 900

FABT ℓ2 1 000 (Croce & Hein, 2020a) 99.4 0.55 18 010 / 9 000

FMN ℓ2 100 (Pintor et al., 2021) 99.8 0.57 100 / 100

FMN ℓ2 1 000 (Pintor et al., 2021) 99.7 0.57 1 000 / 1 000

APGDT
DLR

ℓ2 (Croce & Hein, 2020b) 100 0.54 6 647 / 6 619

ALMA ℓ2 100 100 0.62 100 / 100

ALMA ℓ2 1 000 100 0.54 1 000 / 1 000

178

Table-A III-11 Performance of the CIEDE2000 attacks on the CIFAR10 dataset for each

model

Model Attack ASR (%)
Median

CIEDE2000

Forwards /

Backwards

RN-50

C&W CIEDE2000 9×1 000 100 0.80 4 505 / 4 500

Perc-AL 100 (Zhao et al., 2020) 100 1.31 2 01 / 100

Perc-AL 1 000 (Zhao et al., 2020) 100 1.07 2 001 / 1 000

ALMA CIEDE2000 100 100 0.17 100 / 100

ALMA CIEDE2000 1 000 100 0.13 1 000 / 1 000

RN-50

ℓ2-AT

C&W CIEDE2000 9×1 000 100 1.64 6 303 / 6 300

Perc-AL 100 (Zhao et al., 2020) 99.9 5.87 201 / 100

Perc-AL 1 000 (Zhao et al., 2020) 99.9 6.07 2 001 / 1 000

ALMA CIEDE2000 100 100 1.51 100 / 100

ALMA CIEDE2000 1 000 100 1.34 1 000 / 1 000

RN-50

ℓ∞-AT

C&W CIEDE2000 9×1 000 100 2.05 6 303 / 6 300

Perc-AL 100 (Zhao et al., 2020) 99.8 5.82 201 / 100

Perc-AL 1 000 (Zhao et al., 2020) 99.9 6.12 2 001 / 1 000

ALMA CIEDE2000 100 100 1.61 100 / 100

ALMA CIEDE2000 1 000 100 1.46 1 000 / 1 000

Table-A III-12 Performance of the LPIPS variant of ALMA on the ImageNet dataset for

each model. ‡A binary search is performed on each sample to get a minimal perturbation

attack (Equation 4.2)

Model Attack ASR (%)
Median

LPIPS ×10−2 Forwards / Backwards

RN-50

C&W LPIPS 9×1 000 100 2.39 2 332 / 2 325

LPA‡ (Laidlaw et al., 2021) 100 5.02 1 159 / 1 149

ALMA LPIPS 100 100 0.34 100 / 100

ALMA LPIPS 1 000 100 0.24 1 000 / 1 000

RN-50

ℓ2-AT

C&W LPIPS 9×1 000 100 2.22 7 701 / 7 700

LPA‡ (Laidlaw et al., 2021) 100 6.83 1 257 / 1 247

ALMA LPIPS 100 100 3.96 100 / 100

ALMA LPIPS 1 000 100 2.90 1 000 / 1 000

RN-50

ℓ∞-AT

C&W LPIPS 9×1 000 100 1.68 6 753 / 6 750

LPA‡ (Laidlaw et al., 2021) 100 5.66 1 218 / 1 208

ALMA LPIPS 100 100 2.99 100 / 100

ALMA LPIPS 1 000 100 2.11 1 000 / 1 000

179

Table-A III-13 Performance of the SSIM variant of ALMA on the ImageNet dataset for

each model

Model Attack ASR (%)
Median

1−SSIM ×10−5 Forwards / Backwards

RN-50
ALMA SSIM 100 100 0.44 100 / 100

ALMA SSIM 1 000 100 0.05 1 000 / 1 000

RN-50

ℓ2-AT

ALMA SSIM 100 100 16.13 100 / 100

ALMA SSIM 1 000 100 5.58 1 000 / 1 000

RN-50

ℓ∞-AT

ALMA SSIM 100 100 8.69 100 / 100

ALMA SSIM 1 000 100 2.77 1 000 / 1 000

0 5 10 15 20 25

�1-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

EAD 9×1000

FAB �1 1000

FMN �1 1000

ALMA �1 1000

a) SmallCNN

0 10 20 30 40

�1-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

EAD 9×1000

FAB �1 1000

FMN �1 1000

ALMA �1 1000

b) SmallCNN-DDN

0 20 40 60 80 100

�1-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

EAD 9×1000

FAB �1 1000

FMN �1 1000

ALMA �1 1000

c) SmallCNN-TRADES

0 50 100 150 200 250

�1-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

EAD 9×1000

FAB �1 1000

FMN �1 1000

ALMA �1 1000

d) CROWN-IBP

Figure-A III-1 Robust accuracy curves for MNIST models against ℓ1 attacks

180

0.0 0.5 1.0 1.5 2.0 2.5 3.0

�2-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W �2 9×104

DDN 1000

FAB �2 1000

FMN �2 1000

APGDT
DLR �2

ALMA �2 1000

a) SmallCNN

0 1 2 3 4 5

�2-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W �2 9×104

DDN 1000

FAB �2 1000

FMN �2 1000

APGDT
DLR �2

ALMA �2 1000

b) SmallCNN-DDN

0 1 2 3 4 5 6

�2-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W �2 9×104

DDN 1000

FAB �2 1000

FMN �2 1000

APGDT
DLR �2

ALMA �2 1000

c) SmallCNN-TRADES

0 2 4 6 8

�2-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W �2 9×104

DDN 1000

FAB �2 1000

FMN �2 1000

APGDT
DLR �2

ALMA �2 1000

d) CROWN-IBP

Figure-A III-2 Robust accuracy curves for MNIST models against ℓ2 attacks

181

0 2 4 6 8 10

�1-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

EAD 9×1000

FAB �1 1000

FMN �1 1000

ALMA �1 1000

a) Wide ResNet 28-10

0 5 10 15 20 25 30

�1-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

EAD 9×1000

FAB �1 1000

FMN �1 1000

ALMA �1 1000

b) Wide ResNet 28-10 (Carmon et al., 2019)

0 10 20 30 40 50 60

�1-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

EAD 9×1000

FAB �1 1000

FMN �1 1000

ALMA �1 1000

c) ResNet-50 (Augustin et al., 2020)

Figure-A III-3 Robust accuracy curves for CIFAR10 models against ℓ1 attacks

182

0.00 0.05 0.10 0.15 0.20 0.25 0.30

�2-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W �2 9×104

DDN 1000

FAB �2 1000

FMN �2 1000

APGDT
DLR �2

ALMA �2 1000

a) Wide ResNet 28-10

0.0 0.5 1.0 1.5 2.0 2.5

�2-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W �2 9×104

DDN 1000

FAB �2 1000

FMN �2 1000

APGDT
DLR �2

ALMA �2 1000

b) Wide ResNet 28-10 (Carmon et al., 2019)

0.0 0.5 1.0 1.5 2.0 2.5

�2-norm

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W �2 9×104

DDN 1000

FAB �2 1000

FMN �2 1000

APGDT
DLR �2

ALMA �2 1000

c) ResNet-50 (Augustin et al., 2020)

Figure-A III-4 Robust accuracy curves for CIFAR10 models against ℓ2 attacks

183

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Accumulated CIEDE2000

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W CIEDE2000 9×1000

PerC-AL 1000

ALMA CIEDE2000 1000

a) Wide ResNet 28-10

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Accumulated CIEDE2000

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W CIEDE2000 9×1000

PerC-AL 1000

ALMA CIEDE2000 1000

b) Wide ResNet 28-10 (Carmon et al., 2019)

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Accumulated CIEDE2000

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W CIEDE2000 9×1000

PerC-AL 1000

ALMA CIEDE2000 1000

c) ResNet-50 (Augustin et al., 2020)

Figure-A III-5 Robust accuracy curves for CIFAR10 models against CIEDE2000 attacks

184

0.00 0.02 0.04 0.06 0.08

LPIPS

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W CIEDE2000 9×1000

LPA (binary search)

ALMA LPIPS 1000

a) Wide ResNet 28-10

0.00 0.05 0.10 0.15 0.20 0.25 0.30

LPIPS

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W CIEDE2000 9×1000

LPA (binary search)

ALMA LPIPS 1000

b) Wide ResNet 28-10(Carmon et al., 2019)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

LPIPS

0

10

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W CIEDE2000 9×1000

LPA (binary search)

ALMA LPIPS 1000

c) ResNet-50(Augustin et al., 2020)

Figure-A III-6 Robust accuracy curves for CIFAR10 models against LPIPS attacks

185

0 50 100 150 200

�1-norm

0

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

EAD 9×1000

FABT �1 1000

FMN �1 1000

ALMA �1 1000

a) ResNet-50

0 200 400 600 800 1000

�1-norm

0

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

EAD 9×1000

FABT �1 1000

FMN �1 1000

ALMA �1 1000

b) ResNet-50 ℓ2 adv. trained

0 50 100 150 200 250 300

�1-norm

0

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

EAD 9×1000

FABT �1 1000

FMN �1 1000

ALMA �1 1000

c) ResNet-50 ℓ∞ adv. trained

Figure-A III-7 Robust accuracy curves for ImageNet models against ℓ1 attacks

186

0.0 0.2 0.4 0.6 0.8 1.0

�2-norm

0

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W �2 9×104

DDN 1000

FABT �2 1000

FMN �2 1000

APGDT
DLR �2

ALMA �2 1000

a) ResNet-50

0.0 2.5 5.0 7.5 10.0 12.5 15.0

�2-norm

0

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W �2 9×104

DDN 1000

FABT �2 1000

FMN �2 1000

APGDT
DLR �2

ALMA �2 1000

b) ResNet-50 ℓ2 adv. trained

0 2 4 6 8

�2-norm

0

25

50

75

100
R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W �2 9×104

DDN 1000

FABT �2 1000

FMN �2 1000

APGDT
DLR �2

ALMA �2 1000

c) ResNet-50 ℓ∞ adv. trained

Figure-A III-8 Robust accuracy curves for ImageNet models against ℓ2 attacks

187

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Accumulated CIEDE2000

0

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W CIEDE2000 9×1000

PerC-AL 1000

ALMA CIEDE2000 1000

a) ResNet-50

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Accumulated CIEDE2000

0

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W CIEDE2000 9×1000

PerC-AL 1000

ALMA CIEDE2000 1000

b) ResNet-50 ℓ2 adv. trained

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Accumulated CIEDE2000

0

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W CIEDE2000 9×1000

PerC-AL 1000

ALMA CIEDE2000 1000

c) ResNet-50 ℓ∞ adv. trained

Figure-A III-9 Robust accuracy curves for ImageNet models against CIEDE2000 attacks

188

0.000 0.025 0.050 0.075 0.100 0.125 0.150

LPIPS

0

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W CIEDE2000 9×1000

LPA (binary search)

ALMA LPIPS 1000

a) ResNet-50

0.00 0.05 0.10 0.15 0.20 0.25 0.30

LPIPS

0

25

50

75

100

R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W CIEDE2000 9×1000

LPA (binary search)

ALMA LPIPS 1000

b) ResNet-50 ℓ2 adv. trained

0.00 0.05 0.10 0.15 0.20 0.25 0.30

LPIPS

0

25

50

75

100
R
o
b
u
st

A
cc
u
ra
cy

(%
)

C&W CIEDE2000 9×1000

LPA (binary search)

ALMA LPIPS 1000

c) ResNet-50 ℓ∞ adv. trained

Figure-A III-10 Robust accuracy curves for ImageNet models against LPIPS attacks

APPENDIX IV

SUPPLEMENTARY MATERIAL FOR THE PAPER TITLED
PROXIMAL SPLITTING ADVERSARIAL ATTACK FOR SEMANTIC SEGMENTATION

1. Dense Adversary Generation attack

Algorithm-A IV-1 DAG attack

Input: Classifier 𝑓 , original image 𝒙 ∈ [0, 1]𝐶×𝐻×𝑊 , true or target label 𝒚 ∈ N𝐻×𝑊 ,

binary mask 𝒎 ∈ {0, 1}𝐻×𝑊

Input: Step size 𝜂, maximum number of iterations 𝑁 , threshold of pixel success rate 𝜈
1 Initialize 𝜹(0) ← 0
2 If targeted attack: 𝜇 ← −1 else 𝜇 ← 1

3 for 𝑡 ← 1, . . . , 𝑁 do
4 𝒙̃ (𝑡) ← P[0,1] (𝒙 + 𝜹(𝑡−1)) ; // ∈ [0, 1]𝐶×𝐻×𝑊

5 𝒛 ← 𝑓 (𝒙̃ (𝑡)) ; // ∈ R𝐾×𝐻×𝑊

6 for 𝑖 ← 1, . . . , 𝑑 do
7 𝚫𝒛𝑖 = 𝜇(𝒛𝒚𝑖 ,𝑖 −max

𝑗≠𝒚𝑖
𝒛 𝑗 ,𝑖) ; // Difference of logits

8 end for
9 𝑟 ← 𝒎	[𝚫𝒛<0]

‖𝒎‖1
; // Pixel success rate

10 if 𝑟 ≥ 𝜈 then
11 return 𝒙̃ (𝑡) ; // Stop the attack
12 L ← 𝒎	 max{0,𝚫𝒛𝑖}
13 𝒈 ← ∇𝜹L
14 𝜹(𝑡) ← 𝜹(𝑡−1) − 𝜂

‖𝒈‖∞ 𝒈 ; // Normalized gradient step

15 end for

In this section, we provide the algorithm of the Dense Adversary Generation (DAG) attack from

(Xie et al., 2017). The main difference with the original algorithm proposed in (Xie et al.,

2017) is the stopping criterion based on the pixel success rate in steps 9 to 11. In the original

method published in (Xie et al., 2017), the attack is supposed to stop once all the constraints are

satisfied (i.e. all pixels in the mask 𝒎 are adversarial). However, since this criterion is rarely

satisfied, even after hundreds of iterations on a dataset like Cityscapes, the actual implementation

made available in https://github.com/cihangxie/DAG uses the stopping criterion described in

190

Algorithm IV-1: the attack stops once a threshold of pixel success rate set to 99% is reached.

The threshold value used is thus identical to the one used in the experiments of this paper.

2. Proof of Proposition 1

Proof. Problem (5.12) amounts to minimizing function

Φ : (𝒑, 𝛽) ↦→ 1

2
‖ 𝒑 − 𝜹‖2

2 + 𝜆𝛽 + 𝜄[0,+∞[𝐶𝑑 (𝛽1𝐶𝑑 − 𝒑)

+ 𝜄[0,+∞[𝐶𝑑 (𝒑 + 𝛽1𝐶𝑑) + 𝜄Λ(𝒑),
(A IV-1)

defined on R𝐶𝑑 × R. This function is convex since it is a sum of elementary convex functions of

(𝒑, 𝛽). It follows that its marginal function

Φ : 𝛽 ↦→ inf
𝒑∈R𝐶𝑑

Φ(𝒑, 𝛽) (A IV-2)

is convex. Since, for any given 𝛽 ∈ [0, 1], 𝒑 ↦→ Φ(𝒑, 𝛽) is strongly convex and proper, it admits

a unique minimizer 𝒑𝛽. More precisely, we have, for every 𝛽 ∈ R,

Φ(𝛽) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

		 𝒑𝛽 − 𝜹
		2

2
+ 𝜆𝛽 if 𝛽 ∈ [0, 1]

+∞ otherwise.

(A IV-3)

The above function admits a unique minimizer 𝛽★ ∈ [0, 1] since 𝒑★ = 𝒑𝛽★ is uniquely defined (as

it is the proximity point of a proper lower-semicontinuous convex function) and 𝛽★ = ‖ 𝒑𝛽★‖∞.

Let 𝒑★ = prox𝜆‖·‖∞+𝜄Λ
(𝜹) be the minimizer of (5.12) and let 𝜹Λ = PΛ(𝜹). We have

1

2

		 𝒑★ − 𝜹
		2

2
+ 𝜆

		 𝒑★
		
∞ ≤ 1

2
‖𝜹Λ − 𝜹‖2

2 + 𝜆 ‖𝜹Λ‖∞ (A IV-4)

Since 𝜹Λ = PΛ(𝜹) = arg min
𝒚∈Λ

‖𝒚 − 𝜹‖2
2, we also have

‖𝜹Λ − 𝜹‖2
2 ≤

		 𝒑★ − 𝜹
		2

2
(A IV-5)

191

Thus

𝜆
		 𝒑★

		
∞ ≤ 1

2
(‖𝜹Λ − 𝜹‖2

2 −
		 𝒑★ − 𝜹

		2

2
)︸�����������������������������︷︷�����������������������������︸

≤0

+𝜆 ‖𝜹Λ‖∞

≤ 𝜆 ‖𝜹Λ‖∞

(A IV-6)

We deduce that 𝛽★ =
		 𝒑★

		
∞ ≤ ‖𝜹Λ‖∞ .

3. ALMA prox attack algorithm

Algorithm IV-2 details the complete algorithm of the attack.

4. Image size and performance of the models

For all models, except DeepLabV3 DDC-AT, the images of Pascal VOC 2012 are resized so that

the smaller side is of length 512 while keeping the aspect ratio, and for Cityscapes, the images

keep their original size of 2 048×1 024. For DeepLabV3 DDC-AT from (Xu et al., 2021), the

images of Pascal VOC 2012 are resized so that the longer side is of length 512 while keeping the

aspect ratio, and for Cityscapes, the images are resized to 1 024 × 512.

Table-A IV-1 Performance of the models used in the experiments on the

validation sets. Numbers were obtained from our evaluation; subscripts

correspond to the difference with the original evaluation protocol. For

DeepLabV3 DDC-AT from (Xu et al., 2021), the pixel accuracy was not

reported

Dataset Model mIoU (%) Pixel Accuracy (%)

Pascal VOC

2012 (+Aug)

DeepLabV3+ ResNet-50 77.4+0.8 94.9+0.2

DeepLabV3+ ResNet-101 78.8+0.1 95.3+0.1

FCN HRNetV2 W48 76.4+0.2 94.7+0.1

DeepLabV3 DDC-AT 75.2+0.0 94.4

Cityscapes

DeepLabV3+ ResNet-50 80.1−0.2 96.4−0.1

FCN HRNetV2 W48 80.5−0.2 96.6−0.1

SegFormer MiT-B0 76.4−0.1 95.9−0.0

SegFormer MiT-B3 81.8−0.0 96.7−0.1

DeepLabV3 DDC-AT 71.0−0.3 95.0

192

5. Cityscapes target label

Figure-A IV-1 Cityscapes target segmentation used in our experiments. Top is the pixel

majority label, bottom is the smoothed version. Classes in the target are: road (purple),

sidewalk (pink), car (blue), building (dark gray), vegetation (green), sky (cyan) and no label
(black)

193

Algorithm-A IV-2 ALMA prox attack (untargeted)

Input: Classifier 𝑓 , original image 𝒙 ∈ [0, 1]𝐶×𝐻×𝑊 , true or target label 𝒚 ∈ N𝐻×𝑊 ,

binary mask 𝒎 ∈ {0, 1}𝐻×𝑊

Input: Threshold of pixel success rate 𝜈
Input: Penalty function 𝑃, initial multiplier 𝝁(0) ∈ R𝐻×𝑊++ , initial penalty parameter

𝝆(0) ∈ R𝐻×𝑊++
Input: Minimum scale 𝑤min, scale adjustment rate 𝛾𝑤 > 0

Input: Number of iterations 𝑁 , initial step size 𝜆(0) , penalty parameter increase rate

𝛾 > 1, constraint improvement rate 𝜏, 𝑀 number of steps between 𝜌 increase, 𝛼
smoothing parameter

1 Initialize 𝜹(0) ← 0, 𝒗 (0) ← 0, 𝑤 (0) ← 1

2 for 𝑡 ← 1, . . . , 𝑁 do
3 𝒙̃ (𝑡) ← 𝒙 + 𝜹(𝑡−1) ; // ∈ [0, 1]𝐶×𝐻×𝑊

4 𝒅 (𝑡) ← DLR+(𝑓 (𝒙̃ (𝑡)), 𝒚) ; // ∈ R𝐻×𝑊

5 if 𝒎	[𝒅 (𝑡) ≤0]
‖𝒎‖1

< 𝜏 then
6 𝑤̂ ← 𝑤 (𝑡−1)

1−𝛾𝑤
; // Increase scale

7 else
8 𝑤̂ ← 𝑤 (𝑡−1)

1+𝛾𝑤
; // Decrease scale

9 𝑤 (𝑡) ← P[𝑤min,1] (𝑤̂)
10 𝜉 (𝑡) ← (1 − (1 − 𝜈) 𝑡−1

𝑁−1
)-percentile of 𝒅 (𝑡)

11 𝒎̃ (𝑡) ← [𝒅 (𝑡) ≤ 𝜉 (𝑡)] ; // ∈ {0, 1}𝐻×𝑊

12 𝝁̂ ← ∇𝒅

(
(𝒎̃ (𝑡))	𝑃(𝑤 (𝑡)𝒅 (𝑡) , 𝝆(𝑡−1) , 𝝁(𝑡−1))

)
13 𝝁(𝑡) ← P[𝜇min,𝜇max]

(
𝛼𝝁(𝑡−1) + (1 − 𝛼) 𝝁̂) ; // ∈ R𝐻×𝑊++

14 for 𝑖 ← 1, . . . , 𝑑 do
15 if 𝑡 mod 𝑀 = 0 and 𝒎̃ (𝑡)

𝑖 = 1 and
(∃ 𝑗 ∈ {0, . . . , 𝑀 − 1} : 𝒅 (𝑡− 𝑗)

𝑖 ≤ 0 or
𝒅 (𝑡)𝑖 ≤ 𝜏𝒅 (𝑡−𝑀)

𝑖

)
then

16 𝝆(𝑡)𝑖 ← 𝝆(𝑡−1)
𝑖 ; // Constraint improved or satisfied

17 else
18 𝝆(𝑡)𝑖 ← 𝛾𝝆(𝑡−1)

𝑖

19 end for
20 L ← (𝒎̃ (𝑡))	𝑃(𝑤 (𝑡)𝒅 (𝑡) , 𝝆(𝑡) , 𝝁(𝑡)) ; // ∈ R
21 𝒈(𝑡) ← ∇𝜹L ; // ∈ R𝐶×𝐻×𝑊

22 𝒗 (𝑡) ← 𝛼𝒗 (𝑡−1) + (1 − 𝛼) (𝒈(𝑡))2 ; // ∈ R𝐶×𝐻×𝑊+

23 H ← Diag

(√
𝒗 (𝑡)

1−𝛼𝑡 + 𝜀

)
24 𝜹(𝑡) ← proxH

𝜆 (𝑡) ‖·‖∞+𝜄Λ
(𝜹(𝑡−1) − 𝜆(𝑡)H−1𝒈) ; // VMFB

25 end for
26 return 𝒙̃ (𝑡) that is adversarial and has the smallest norm

194

6. Masking strategies for ALMA prox and PDPGD

In this section, we detail the modifications brought to PDPGD (Matyasko & Chau, 2021)

and study the effect of the masking strategies on PDPGD and ALMA prox. Besides the

addition of perturbation tracking logic (i.e. monitoring the best smallest perturbations during the

optimization), we also incorporate the masking needed for the unlabeled regions.

6.1 Modifications for PDPGD

For PDPGD, the dual variable 𝜆 ∈ R is replaced by a vector 𝝀 ∈ R𝑑 . In (Matyasko & Chau,

2021), the gradient ascent on the dual variable is performed in the log domain, and is projected

onto the 1-simplex (section IV of (Matyasko & Chau, 2021)). For the segmentation variant,

this translates into adding 1 to the denominator of the softmax function used to project onto the

(𝑑 − 1)-simplex. This is equivalent to padding 𝝀 with a 0 and projecting it on the 𝑑-simplex

Δ𝑑 ⊂ [0, 1]𝑑+1. The weight of the norm ‖𝜹‖ in Equation (10) of (Matyasko & Chau, 2021)

becomes 1 minus the sum of the weights of the constraints. Adding the mask 𝒎, this results in

the following computations (introducing variables not described in (Matyasko & Chau, 2021)):

𝝀Δ =
𝒎 � exp 𝝀

1 + 𝒎	 exp 𝝀
∈ [0, 1]𝑑

L𝜹 (𝜹, 𝝀) = (1 − 𝒎	𝝀Δ) ‖𝜹‖ + 𝝀	ΔL(𝒙 + 𝜹, 𝒚).
(A IV-7)

By replacing 𝒎 by 𝒎̃ (𝑡) in each iteration, we obtain the adaptive constraint masking described

in subsection 5.4.1.

The step-size is set to 0.01 for the primal variables and 0.1 for the dual variables with the same

exponential and linear decays respectively, as in (Matyasko & Chau, 2021). The dual variable is

initialized such that the ratio of the weight of the norm term and the constraints terms is 1. From

195

the above equations, we can derive the initial 𝝀(0) ∈ R𝑑 from the ratio 𝑟 ∈ R++:

1 − 𝒎	𝝀(0)Δ

𝒎	𝝀(0)Δ

= 𝑟 ⇔ 1 − 𝒎	𝝀(0)Δ = 𝑟𝒎	𝝀(0)Δ

⇔ (1 + 𝑟)𝒎	𝝀(0)Δ = 1

⇔ (1 + 𝑟) 𝒎	 exp 𝝀(0)

1 + 𝒎	 exp 𝝀(0)
= 1

⇔ (1 + 𝑟)𝒎	 exp 𝝀(0) =

1 + 𝒎	 exp 𝝀(0)

⇔ 𝒎	 exp 𝝀(0) =
1

𝑟

(A IV-8)

Assuming that 𝝀(0) = 𝜔1𝑑 with 𝜔 ∈ R, we get:

𝒎	 exp 𝝀(0) =
1

𝑟
⇔ ‖𝒎‖1 exp 𝜔 =

1

𝑟

⇔ 𝜔 = − log(𝑟 ‖𝒎‖1)
(A IV-9)

6.2 Ablation

To test the effect of these modifications on PDPGD and ALMA prox, we perform an ablation

study on the masking strategy. We perform this experiment with DeepLabV3+ ResNet-50 on

Cityscapes. We compare three different constraint masking strategies:

• masking only the unlabeled regions, denoted by 𝒎;

• masking the unlabeled regions and (100 − 𝜈)% of the largest constraints, denoted by 𝒎̃;

• masking the unlabeled regions and linearly decreasing the fraction of constraints to reach 𝜈%

at the last iteration, corresponding to strategy described in Equation (5.6), denoted by 𝒎̃ (𝑡) .

The results of this experiment are provided in Figure IV-2. While the effect is small for this

particular model and dataset, the ˜𝑣𝑚 and ˜𝑣𝑚 (𝑡) strategies do result in smaller perturbations.

However, PDPGD does not seem to benefit from the more advanced masking strategies. It

obtains the best results when masking only the unlabeled regions. This issue comes from

the projection of the dual variables onto the 𝑑-simplex (A IV-7): as different constraints get

196

discarded in subsequent iterations, their relative weights vary drastically, leading to oscillations

of the dual variables. This phenomenon does not occur with an Augmented Lagrangian based

attacks, as the penalty multipliers are not projected together. This does not create a dependency

between the multipliers, resulting in a more stable optimization. Therefore, for the experiments,

ALMA prox is used with the adaptive masking strategy with a linear decay, whereas PDPGD is

used with the unlabeled region masking only.

0 1
255

2
255

4
255

8
255

16
255

32
255

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

≤
9
9
%
)

PDPGD �∞ m

PDPGD �∞ m̃

PDPGD �∞ m̃(t)

ALMA prox �∞ m

ALMA prox �∞ m̃

ALMA prox �∞ m̃(t)

Figure-A IV-2 Influence of the constraint masking strategies on PDPGD

and ALMA prox for untargeted attacks on Cityscapes with DeepLabV3+

ResNet-50. 𝒎 corresponds to masking the pixels with no labels, 𝒎̃
corresponds to additionally masking the top (100 − 𝜈)% constraints, and

𝒎̃ (𝑡) corresponds to the strategy in Equation (5.6). The curves for PDGD and

ALMA prox 𝒎̃ and 𝒎̃ (𝑡) overlap

197

7. Attack complexities and run-times

Tables IV-2, IV-3 and IV-4 report the average complexities (in terms of forward and backward)

and run-time per sample for the attacks. The run-times for the targeted attacks are similar to

their targeted variant, as the only difference lies in the loss, which is far from being the most

computationally expensive part of the attacks. These results show that ALMA prox has slightly

higher run-times compared to the other attacks with similar budgets, while being more effective.

Note that some variance come from the fact that the experiments were run on a shared compute

cluster.

Table-A IV-2 Average complexity of the attacks in terms

of number of forward and backward propagations. All the

attacks, except I-FGSM, MI-FGSM and PGD have a 500

iteration budget. DAG is the only attack that uses an early

stopping criterion

Attack Forwards Backwards

I-FGSM 13 × 20 and MI-FGSM 260 260

PGD 13 × 40 and 13 × 4 × 10 520 520

DAG 𝜂 = 0.003 63 62

DAG 𝜂 = 0.001 155 154

FMN ℓ∞ 500 500

PDPGD ℓ∞ 500 500

ALMA prox 500 500

8. Complete attack results

Tables IV-5 and IV-6 report the median and average ℓ∞-norm (multiplied by 255 for readability)

of the perturbations produced by the attacks for all regular models. As in section 5.6, the

perturbation norm is considered to be 1 for unsuccessful attacks. This means that attack with less

than 50% success have a 1 (i.e. 255) median ℓ∞-norm in the table. Additionally, Figures IV-3,

IV-4 and IV-5 show the percentage of unsuccessful attacks on Pascal VOC 2012 and Cityscapes

for all models considered.

198

Table-A IV-3 Average run-times per image, in seconds, for the attacks on Pascal VOC

2012

Attack
DeepLabV3+

ResNet-50

DeepLabV3+

ResNet-101

FCN

HRNetV2 W48

DeepLabV3

DDC-AT

U
n
ta

rg
et

ed

I-FGSM 13 × 20 13.3 19.2 28.8 –

MI-FGSM 13 × 20 13.3 19.2 29.1 –

PGD CE 13 × 40 26.4 38.2 57.0 –

PGD CE 13 × 4 × 10 26.6 38.3 57.2 –

PGD DLR 13 × 40 27.7 39.3 60.9 –

PGD DLR 13 × 4 × 10 27.9 39.4 57.6 –

DAG 𝜂 = 0.003 2.1 5.2 6.0 7.0

DAG 𝜂 = 0.001 4.8 12.9 14.8 12.7

FMN ℓ∞ 24.4 32.0 41.3 24

PDPGD ℓ∞ 28.1 35.5 41.0 25.5

ALMA prox 28.1 36.1 43.4 28

T
ar

g
et

ed

I-FGSM 13 × 20 13.3 19.2 29.8 –

MI-FGSM 13 × 20 13.3 19.4 28.8 –

PGD CE 13 × 40 27.0 38.1 56.8 –

PGD CE 13 × 4 × 10 26.7 38.4 56.5 –

PGD DLR 13 × 40 27.7 39.4 58.9 –

PGD DLR 13 × 4 × 10 27.8 39.8 58.7 –

DAG 𝜂 = 0.003 0.8 1.5 1.9 2.2

DAG 𝜂 = 0.001 2.1 4.2 4.6 4.8

FMN ℓ∞ 24.4 32.1 41.1 25.4

PDPGD ℓ∞ 27.6 36.9 39.0 26.8

ALMA prox 28.4 36.3 43.0 28.5

199

Table-A IV-4 Average run-times per image, in seconds, for the attacks on Cityscapes

Attack
DeepLabV3+

ResNet-50

FCN

HRNetV2 W48

SegFormer

MiT-B0

SegFormer

MiT-B3

DeepLabV3

DDC-AT

U
n
ta

rg
et

ed

I-FGSM 13 × 20 87.0 43.2 31.5 83.4 –

MI-FGSM 13 × 20 87.6 41.5 31.1 83.2 –

PGD CE 13 × 40 171.9 81.9 61.7 164.6 –

PGD CE 13 × 4 × 10 174.1 81.9 61.6 164.5 –

PGD DLR 13 × 40 179.5 88.1 67.6 170.7 –

PGD DLR 13 × 4 × 10 179.3 88.2 67.6 170.6 –

DAG 𝜂 = 0.003 19.5 14.4 9.2 49.2 22.4

DAG 𝜂 = 0.001 45.5 37.3 23.4 107.3 44.7

FMN ℓ∞ 155.2 79.1 59.1 158.2 64.5

PDPGD ℓ∞ 161.0 84.5 64.1 162.4 64.7

ALMA prox 161.9 96.8 77.6 176.3 69.8

T
ar

g
et

ed

I-FGSM 13 × 20 87.5 41.4 31.1 83.0 –

MI-FGSM 13 × 20 87.8 41.4 31.1 83.1 –

PGD CE 13 × 40 171.9 81.9 61.4 165.0 –

PGD CE 13 × 4 × 10 171.9 82.0 61.5 164.3 –

PGD DLR 13 × 40 179.6 88.2 68.4 172.0 –

PGD DLR 13 × 4 × 10 179.4 88.2 69.7 171.0 –

DAG 𝜂 = 0.003 47.6 18.6 21.9 54.1 44.5

DAG 𝜂 = 0.001 111.7 44.9 52.0 132.9 61.0

FMN ℓ∞ 155.1 79.2 58.7 157.9 60.4

PDPGD ℓ∞ 158.8 81.4 64.1 159.1 63.2

ALMA prox 161.9 97.2 78.4 179.5 67.6

200

Table-A IV-5 Median and average ‖𝜹‖∞ ×255 for each adversarial attack on Pascal VOC
2012 for the regular models

Attack
DeepLabV3+

ResNet-50

DeepLabV3+

ResNet-101

FCN

HRNetV2 W48

U
n
ta

rg
et

ed

I-FGSM 13 × 20 146.32 136.55 124.14 131.34 227.11 145.69

MI-FGSM 13 × 20 195.35 145.96 188.37 150.13 255.00 157.63

PGD CE 13 × 40 80.10 120.93 100.42 123.17 152.08 136.05

PGD CE 13 × 4 × 10 24.90 74.15 20.05 30.28 66.93 118.76

PGD DLR 13 × 40 7.22 26.42 9.00 21.29 11.11 23.85

PGD DLR 13 × 4 × 10 4.42 24.99 6.41 11.02 10.46 29.75

DAG 𝜂 = 0.003 5.69 6.63 6.65 8.74 8.80 10.61

DAG 𝜂 = 0.001 5.23 8.22 6.17 21.14 8.49 14.61

FMN ℓ∞ 0.46 38.34 0.56 51.60 0.91 46.39

PDPGD ℓ∞ 0.73 1.77 1.17 3.49 1.52 2.43

ALMA prox 0.32 0.34 0.37 0.41 0.51 0.56

T
ar

g
et

ed

I-FGSM 13 × 20 0.47 0.50 0.65 0.67 0.59 0.64

MI-FGSM 13 × 20 0.59 0.66 0.77 0.82 0.77 0.85

PGD CE 13 × 40 0.37 0.43 0.50 0.55 0.50 0.54

PGD CE 13 × 4 × 10 0.50 0.51 0.62 0.70 0.62 0.65

PGD DLR 13 × 40 0.62 0.68 0.81 0.92 0.81 0.94

PGD DLR 13 × 4 × 10 0.87 1.07 1.18 2.03 1.12 1.28

DAG 𝜂 = 0.003 4.21 4.50 4.84 5.09 5.32 5.66

DAG 𝜂 = 0.001 3.92 4.21 4.55 5.80 5.07 5.36

FMN ℓ∞ 0.42 0.45 0.46 0.56 0.47 0.49

PDPGD ℓ∞ 0.28 0.36 0.31 0.40 0.35 0.46

ALMA prox 0.25 0.26 0.29 0.30 0.32 0.34

201

Table-A IV-6 Median and average ‖𝜹‖∞ ×255 for each adversarial attack on Cityscapes
for the regular models

Attack
DeepLabV3+

ResNet-50

FCN

HRNetV2 W48

SegFormer

MiT-B0

SegFormer

MiT-B3

U
n
ta

rg
et

ed

I-FGSM 13 × 20 255.00 242.15 255.00 194.98 106.34 121.12 255.00 208.97

MI-FGSM 13 × 20 255.00 244.43 255.00 218.91 202.15 159.52 255.00 228.43

PGD CE 13 × 40 255.00 236.77 255.00 176.94 9.31 48.10 255.00 188.15

PGD CE 13 × 4 × 10 255.00 244.92 255.00 216.38 34.77 42.49 255.00 231.51

PGD DLR 13 × 40 17.75 24.23 13.29 16.15 23.53 32.34 84.22 102.80

PGD DLR 13 × 4 × 10 255.00 227.89 12.08 45.17 22.37 35.49 110.82 134.41

DAG 𝜂 = 0.003 6.30 7.51 8.42 9.91 6.41 6.48 8.83 9.02

DAG 𝜂 = 0.001 5.95 9.39 8.20 20.29 6.08 13.57 8.59 53.65

FMN ℓ∞ 1.97 96.57 0.97 35.12 0.58 1.16 1.08 6.42

PDPGD ℓ∞ 1.06 2.82 1.69 2.75 0.87 1.17 1.39 3.05

ALMA prox 0.24 0.26 0.40 0.41 0.26 0.26 0.33 0.33

T
ar

g
et

ed

I-FGSM 13 × 20 255.00 255.00 115.76 128.65 5.91 31.96 51.73 88.24

MI-FGSM 13 × 20 4.26 55.35 4.23 4.47 2.48 2.53 2.54 2.60

PGD CE 13 × 40 3.49 3.71 3.49 3.62 2.30 2.34 1.87 1.92

PGD CE 13 × 4 × 10 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00

PGD DLR 13 × 40 8.37 67.86 7.41 7.52 4.79 4.96 3.98 4.09

PGD DLR 13 × 4 × 10 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00

DAG 𝜂 = 0.003 11.34 12.96 9.87 10.49 8.05 8.44 9.82 10.06

DAG 𝜂 = 0.001 10.96 40.28 9.43 14.42 255.00 145.61 11.53 119.47

FMN ℓ∞ 255.00 254.36 2.25 2.34 255.00 255.00 255.00 255.00

PDPGD ℓ∞ 14.51 14.41 16.71 16.75 17.93 17.87 19.26 19.20

ALMA prox 1.15 1.17 1.11 1.12 0.70 0.70 0.65 0.66

202

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

DeepLabV3+ ResNet-50 - Untargeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

DeepLabV3+ ResNet-50 - Targeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

DeepLabV3+ ResNet-101 - Untargeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

DeepLabV3+ ResNet-101 - Targeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

FCN HRNetV2 W48 - Untargeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

FCN HRNetV2 W48 - Targeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

Figure-A IV-3 Percentage of unsuccessful ℓ∞ attacks on Pascal VOC 2012 (i.e. with

APSR ≤ 99%). A stronger attack has a lower curve; a more robust model has a higher

curve. Horizontal axis is linear on [0, 2/255] and logarithmic on [2/255, 1]

203

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100
A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

DeepLabV3+ ResNet-50 - Untargeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

DeepLabV3+ ResNet-50 - Targeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

FCN HRNetV2 W48 - Untargeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

FCN HRNetV2 W48 - Targeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

Segformer MiT-B0 - Untargeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

Segformer MiT-B0 - Targeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

Segformer MiT-B3 - Untargeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

Segformer MiT-B3 - Targeted

I-FGSM 13×20

MI-FGSM 13×20

PGD CE 13×40

PGD CE 13×4×10

PGD DLR 13×40

PGD DLR 13×4×10

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

Figure-A IV-4 Percentage of unsuccessful ℓ∞ attacks on Cityscapes (i.e. with

APSR ≤ 99%). A stronger attack has a lower curve; a more robust model has a higher

curve. Horizontal axis is linear on [0, 2/255] and logarithmic on [2/255, 1]

204

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

DeepLabV3 ResNet-50 DDCAT - Untargeted

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

DeepLabV3 ResNet-50 DDCAT - Targeted

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

DeepLabV3 ResNet-50 DDCAT - Untargeted

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

0 1
255

2
255

4
255

8
255

16
255

32
255

64
255

128
255

1

�∞-norm

0

25

50

75

100

A
tt
a
ck

fa
il
u
re

ra
te

(A
P
S
R

<
9
9
%
)

DeepLabV3 ResNet-50 DDCAT - Targeted

DAG η = 0.003

DAG η = 0.001

FMN �∞
PDPGD �∞
ALMA prox

Figure-A IV-5 Percentage of unsuccessful ℓ∞ attacks on Pascal VOC 2012 and Cityscapes

(i.e. with APSR ≤ 99%) for the robust model DeepLabV3-DDCAT. A stronger attack has a

lower curve; a more robust model has a higher curve. Horizontal axis is linear on [0, 2/255]
and logarithmic on [2/255, 1]

APPENDIX V

SUPPLEMENTARY MATERIAL FOR THE PAPER TITLED
CLASS ADAPTIVE NETWORK CALIBRATION

1. Penalty functions for ALM

Here, we provide the requirements for a penalty function in Augmented Lagrangian Multiplier

(ALM) method.

A function 𝑃 : R × R++ × R++ → R is a Penalty-Lagrangian function such that 𝑃′(𝑧, 𝜌, 𝜆) =
𝜕
𝜕𝑦 𝑃(𝑧, 𝜌, 𝜆) exists and is continuous for all 𝑧 ∈ R, 𝜌 ∈ R++ and 𝜆 ∈ R++. In addition, it should

satisfy the following four axioms (Birgin et al., 2005):

Axiom 1: 𝑃′(𝑧, 𝜌, 𝜆) ≥ 0 ∀𝑧 ∈ R, 𝜌 ∈ R++, 𝜆 ∈ R++
Axiom 2: 𝑃′(𝑧, 𝜌, 𝜆) = 𝜆 ∀𝜌 ∈ R++, 𝜆 ∈ R++
Axiom 3: If, for all 𝑗 ∈ N, 0 < 𝜆min ≤ 𝜆(𝑗) ≤ 𝜆max < ∞, then: lim

𝑗→∞
𝜌(𝑗) = ∞ and

lim
𝑗→∞

𝑧(𝑗) > 0 imply that lim
𝑗→∞

𝑃′(𝑧(𝑗) , 𝜌(𝑗) , 𝜆(𝑗)) = ∞
Axiom 4: If, for all 𝑗 ∈ N, 0 < 𝜆min ≤ 𝜆(𝑗) ≤ 𝜆max < ∞, then: lim

𝑗→∞
𝜌(𝑗) = ∞ and

lim
𝑗→∞

𝑧(𝑗) < 0 imply that lim
𝑗→∞

𝑃′(𝑧(𝑗) , 𝜌(𝑗) , 𝜆(𝑗)) = 0

where the first two axioms guarantee the derivative of the Penalty-Lagrangian function 𝑃 w.r.t. 𝑧

is positive and equals to 𝜆 when 𝑧 = 0, while the last two axioms guarantee that the derivative

tends to infinity when the constraint is not satisfied, and zero when the constraint holds.

There is a large number of valid penalty functions (Birgin et al., 2005). In this paper we adopt

the PHR function suggested by (Birgin et al., 2005) and confirmed by our empirical results in

Section 5 of the main text. We also empirically compare with another two popular choices, i.e.

P2 and P3 (Birgin et al., 2005), as shown in Figure 3 of the main text. The formulations of the

above three penalty functions are as follows:

PHR(𝑧, 𝜌, 𝜆) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜆𝑧 + 1
2
𝜌𝑧2 if 𝜆 + 𝜌𝑧 ≥ 0;

− 𝜆2

2𝜌 otherwise.

(A V-1)

206

𝑃2(𝑧, 𝜌, 𝜆) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜆𝑧 + 𝜆𝜌𝑧2 + 1
6
𝜌2𝑧3 if 𝑧 ≥ 0

𝜆𝑧
1−𝜌𝑧 if 𝑧 ≤ 0

(A V-2)

𝑃3(𝑧, 𝜌, 𝜆) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜆𝑧 + 𝜆𝜌𝑧2 if 𝑧 ≥ 0

𝜆𝑧
1−𝜌𝑧 if 𝑧 ≤ 0

(A V-3)

2. Dataset description with implementation details

Tiny-ImageNet (Deng et al., 2009) is a standard benchmark for image classification and

commonly used in the calibration literature (Mukhoti et al., 2020; Liu et al., 2022a). It includes

64× 64 dimensional images across 200 classes, with 500 images per class in the train set and 50

per class in the validation set. Following (Mukhoti et al., 2020), we split out a validation set by

randomly choose 50 samples per class from the train set, while the original validation set is used

as the test set. We train ResNet-50 (He et al., 2016a) model by SGD optimizer with a batch size

of 128, and the number of epochs is set to 100. A multi-step learning rate scheduling strategy is

used, i.e. learning rate 0.1 for the first 40 epochs, 0.01 for the next 20 epochs and 0.001 for the

rest.

ImageNet (Deng et al., 2009) is a large-scaled image classification benchmark. We use the

version of ILSVRC-2012 (or ImageNet-1K) in our experiments (referred as ImageNet in this

paper). It consists of 1K object classes with 1.2M images for training and 5K for validation. The

average resolution of an image is 469 × 387. We follow (Minderer et al., 2021) for evaluating

calibration performance on ImageNet, i.e. reserving 20% for validation and the remaining 80%

for testing. Besides ResetNet-50 (He et al., 2016a), we also train state-of-the-art transformer

based network, i.e. SwinV2-T (Liu et al., 2022b), on this dataset. AdamW (Loshchilov & Hutter,

2019) optimizer is applied, and a cosine learning rate scheduler (Loshchilov & Hutter, 2017)

with an initial learning rate of 0.001 is used. The number of training epochs is set to 200 and

300 for ResNet-50 and SwinV2-T respectively. The input size is 224 × 224 for ResNet-50 and

256 × 256 for SwinV2-T, while the batch size is 1024 for training both networks. Regular data

207

augmentation techniques like random resized crop, random horizontal flips, random color jitter,

and random pixel erasing are applied on the training samples.

ImageNet-LT (Liu et al., 2019) is truncated from ImageNet by sampling a subset so that

the labels of the training set follow a long-tailed distribution. Overall, it has 115.8K images

belonging to 1K classes, and the number of samples per class ranges from 5 to 1280. Both the

validation and test sets are balanced, where the validation set includes 20 images per class and

the original validation set in ImageNet is employed as the test set. Regarding the networks and

training details, we use the same settings as those on ImageNet.

PASCAL VOC2012 (Everingham et al., 2012) is a natural semantic segmentation benchmark

including 20 foreground object classes and an additional background class. As the original test

set is not publicly released and it is unable to evaluate the calibration performance via the official

evaluation server, we split out a validation set by randomly selecting 20% images from the

training set and treat the original validation set as our test set. Overall, the training/validation/test

split contains 1171/293/1449 images. For segmentation model training, we employ DeepLabV3

(Chen et al., 2017) implemented by the popular public library16, where we use ResNet-34 as

encoder initialized with pre-trained weights on ImageNet, and the decoder is trained from scratch.

The batch size is set to 8 and AdamW optimizer is used with an initial learning rate of 0.001

alongside a cosine learning rate scheduler. Finally, the maximum training epoch is set to 100.

20 Newsgroups (Lang, 1995). To evaluate the generalization of the proposed method, we

include a non-vision dataset, i.e. 20 Newsgroups, which is a text classification benchmark and

also used in previous calibration papers (Mukhoti et al., 2020; Liu et al., 2022a). It contains 20𝐾

news articles from 20 different groups according to the content, e.g. rec.motorcycles, rec.autos,

sci.space, etc. We use the standard data split setting : 15, 098 documents for training, 900 for

validation and 3, 999 for testing. The Glove word embedding (Pennington, Socher & Manning,

2014) is used to encode the text and then a Global Pooling Convolutional Network (GPCN) (Lin

et al., 2014) is trained. During training, we use Adam optimizer with an initial learning rate of

16 https://github.com/qubvel/segmentation_models.pytorch

208

0.001. We train the model for 100 epochs, where the learning rate is decayed by a factor of 0.1

after the first 50 epochs.

3. Additional results

Table-A V-1 Calibration performance (ECE in %) when adding post temperature

scaling (best T value for each method in subscript). The architecture is fixed to ResNet-50

for the vision datasets and GPCN for 20 News dataset.

TinyImageNet ImageNet ImageNet-LT 20 News

Method Pre-TS Post-TS Pre-TS Post-TS Pre-TS Post-TS Pre-TS Post-TS

CE 3.73 1.86 1.1 9.19 3.88 1.6 28.12 3.72 1.7 22.75 3.01 3.1

LS 3.17 1.79 0.9 2.57 2.57 1.0 10.46 3.32 1.3 8.07 3.69 1.2

FL 2.96 1.74 0.9 1.60 1.60 1.0 18.37 2.52 1.5 10.80 3.33 1.4

FLSD 2.91 1.74 0.9 2.08 2.08 1.0 17.77 3.40 1.4 10.87 4.10 1.4

CPC 4.88 2.66 1.5 3.66 2.00 1.1 16.00 3.22 1.2 9.46 4.35 1.4

MbLS 1.64 1.64 1.0 4.44 2.07 1.1 6.16 2.60 1.1 5.40 2.09 1.1

CALS-HR 2.50 1.82 0.9 5.63 1.68 1.4 2.83 2.83 1.0 6.99 3.14 1.1

CALS-ALM 1.54 1.54 1.0 1.46 1.28 1.1 2.15 1.81 0.9 2.04 1.86 1.1

Table V-1 reports the results of post-training temperature scaling (post-TS) on the outputs of the

trained models (Guo et al., 2017). Since this post-process technique is orthogonal to training

based methods, we also present the results of applying it to our method, as well as the related

works. We can see that our method without temperature scaling (pre-TS) outperforms previous

methods, even post-TS, across all the benchmarks. Additionally, the ECE of our model is

further reduced with post-TS in some cases, for instance on ImageNet (1.46% → 1.28%) and

ImageNet-LT (2.04% → 1.81%).

Table V-2 reports the performance on the two natural image datasets, i.e. ImageNet and ImageNet-

LT, in terms of Class-wise Calibration Errors (CWCE) (Maier-Hein et al., 2022), which is a

class-wise extension of ECE. Our method consistently achieve the best scores, with relative

improvements of 25.0% on ImageNet and 23.3% on ImageNet-LT.

In Table V-3, we present results on the out-of-distribution (OOD) scenario (Minderer et al.,

2021). It is shown nn both settings, our method achieves the lowest ECE on the target domain.

These results confirm the effectiveness of our method in the OOD scenario.

209

Table-A V-2 Class-wise Calibration Error (CWCE in

%) computed for different approaches on ImageNet and

ImageNet-LT. The architecture is fixed to ResNet-5. Best

method is highlighted in bold.

Method ImageNet ImageNet-LT

CE 0.036 0.090

LS 0.029 0.072

FL 0.030 0.087

FLSD 0.029 0.087

CPC 0.049 0.078

MbLS 0.030 0.072

CALS-HR 0.029 0.071

CALS-ALM 0.027 0.069

Table-A V-3 ECE (%) on the out-of-distribution dataset, i.e. ImageNet-C

(Gaussian noise corruption with severity level 5), for models trained on

in-distribution datasets, i.e. ImageNet and ImageNetLT.

CE LS FL MbLS Ours
ImageNet → ImageNet-C 26.25 24.00 23.73 26.55 22.52
ImageNet-LT → ImageNet-C 19.99 27.51 15.80 15.40 12.91

4. Visualization of learned classwise multipliers

Figure V-1 shows the evolution of learned multipliers 𝜆𝑘 on ImageNet for the three classes with

the highest average and the three classes with the lowest average. This highlights the advantages

of our method: 1) assigning distinct penalty weights for different classes; 2) adaptively updating

the weight for each class throughout the training process.

5. Reliability diagram

Figure V-2 presents the reliability diagrams for different models trained on ImageNet and

ImageNet-LT, which is a standard way of visualizing calibration performance. The curve of a

perfectly calibrated model in the reliability diagram should match the dashed red line, where the

prediction confidence perfectly reflects the accuracy of the model. It is shown that the models

210

0 25 50 75 100 125 150 175 200

Training epoch

0.0

0.2

0.4

0.6

0.8

1.0

C
la
ss
-w

is
e
m
u
lt
ip
li
er
s
λ
k

Highest averages
111: nematode

384: indri

576: gondola

Lowest averages
463: bucket

898: bottle

457: bowtie

Figure-A V-1 Visualization of learned multipliers 𝜆𝑘 during the training of the ResNet-50

model on ImageNet. We show classes with the highest average (Solid lines) and the lowest

average (dashed lines).

trained with CE (left-most plots) are over-confident, with accuracy mostly lower than confidence.

Our method, CALS, is the most effective one to pull the curves closer to the expected lines,

showing nearly perfect calibration performances. In particular, the improvement on ImageNet-LT

is substantial compared to the other methods like LS and FL, which further demonstrates that

the proposed class adaptive learning method could address the class imbalance issue in the

long-tailed dataset. On ImageNet, LS and FL also present strong calibration performance, but

decrease the final accuracy as shown in Table 1 of the main text. Overall, our method achieves

the best compromise between calibration and accuracy. It is noted that the observation from

Figure V-2 is supported by the quantitative scores reported in Table 1 of the main text.

6. Hyper-parameter setting

Table V-4 gives details of the hyper-parameter settings in our method, i.e. CALS-ALM. Note,

the margin values are set by following (Liu et al., 2022a), i.e. 10 for all the vision tasks including

classification and segmentation, and 6 for the text classification on 20 Newsgroups.

Regarding the related methods reported in Table 1 of the main text, we set their hyper-parameters

by following previous works, except that the values for MMCE (Kumar et al., 2018) and CPC

211

CE LS FL CALS (Ours)MbLS

A
cc

ur
ac

y

(b)

Confidence

 ECE = 28.12

Confidence

 ECE = 10.46

Confidence

 ECE = 18.37

Confidence

 ECE = 6.16

Confidence

 ECE = 2.15

 ECE = 9.19 ECE = 2.57 ECE = 1.60 ECE = 4.44 ECE = 1.46

A
cc

ur
ac

y

(a)

 ECE = 9.95 ECE = 7.32 ECE = 3.19 ECE = 1.95 ECE = 1.69

A
cc

ur
ac

y

(c)

A
cc

ur
ac

y

(d)

 ECE = 31.82 ECE = 11.42 ECE = 25.50 ECE = 7.65 ECE = 2.32

Figure-A V-2 Calibration visualizations: (a) ImageNet (ResNet-50), (b) ImageNet
(SwinV2-T), (c) ImageNet-LT (ResNet-50), and (d) ImageNet-LT (SwinV2-T) . We

present the reliability diagrams of our method (CALS), compared with those of baselines

and closely related works. The number of bins to plot reliability diagrams is set to 25.

Table-A V-4 Hyper-parameters for our

CALS-ALM method

Hyper-parameter value

Margin 𝑚 (all vision tasks) 10

Margin 𝑚 (text classification) 6

Initial multiplier 𝝀(0) 10−6 · 1𝐾

Initial Penalty parameter 𝝆(0) 1𝐾

Penalty increasing factor 𝛾 1.2

Constraint improvement factor 𝜏 0.9

Period of penalty parameter update 10

212

(Cheng & Vasconcelos, 2022) are empirically set according to our implementation . Detailed

hyper-parameter settings for each method are as follows:

• MMCE (Kumar et al., 2018): balancing weight 𝜆 = 0.1.

• ECP (Pereyra et al., 2017): balancing weight 𝜆 = 0.1.

• LS (Szegedy et al., 2016): smoothing factor 𝛼 = 0.05.

• FL (Mukhoti et al., 2020): scaling factor 𝛾 = 3

• FLSD (Mukhoti et al., 2020): scaling factor 𝛾 is set to 5 for 𝑠𝑘 ∈ [0, 0.2) and 3 for

𝑠𝑘 ∈ [0.2, 1), where 𝑘 is the right class for the sample.

• CPC (Cheng & Vasconcelos, 2022): balancing weights for the binary discrimination penalty

and binary exclusion penalty are set to 10 and 1 respectively. It is noted that we re-implement

CPC since the official code is not publicly available.

• MbLS (Liu et al., 2022a): balancing weight 𝜆 = 0.1, margin 𝑚 = 10 for all the vision tasks,

and 𝑚 = 6 for the text classification task.

BIBLIOGRAPHY

Arnab, A., Miksik, O. & Torr, P. H. (2018). On the robustness of semantic segmentation models

to adversarial attacks. IEEE Conference on Computer Vision and Pattern Recognition.

Athalye, A., Carlini, N. & Wagner, D. (2018). Obfuscated Gradients Give a False Sense of

Security: Circumventing Defenses to Adversarial Examples. International Conference
on Machine Learning.

Attouch, H., Bolte, J. & Svaiter, B. F. (2013). Convergence of descent methods for semi-algebraic

and tame problems: proximal algorithms, forward–backward splitting, and regularized

Gauss–Seidel methods. Mathematical Programming, 137(1), 91–129.

Augustin, M., Meinke, A. & Hein, M. (2020). Adversarial Robustness on In-and Out-Distribution

Improves Explainability. European Conference on Computer Vision.

Bach, F., Jenatton, R., Mairal, J., Obozinski, G. et al. (2012). Optimization with sparsity-inducing

penalties. Foundations and Trends® in Machine Learning, 4(1), 1–106.

Bauschke, H. H., Combettes, P. L. et al. (2011). Convex analysis and monotone operator theory
in Hilbert spaces. Springer.

Beck, A. & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM journal on imaging sciences, 2(1), 183–202.

Becker, S. & Fadili, J. (2012). A quasi-Newton proximal splitting method. Advances in Neural
Information Processing Systems.

Bertsekas, D. P. (2014). Constrained Optimization and Lagrange Multiplier Methods. Academic

press.

Bertsekas, D. P. (2016). Nonlinear Programming: 3rd Edition. Athena Scientific.

Biggio, B. & Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial machine

learning. Pattern Recognition, 84, 317-331.

Birgin, E. G. & Martínez, J. M. (2014). Practical augmented Lagrangian methods for constrained
optimization. SIAM.

Birgin, E. G., Castillo, R. A. & Martínez, J. M. (2005). Numerical Comparison of Augmented

Lagrangian Algorithms for Nonconvex Problems. Computational Optimization and
Applications, 31(1), 31–55.

214

Bonnet, B., Furon, T. & Bas, P. (2020). What If Adversarial Samples Were Digital Images?

Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security.

Boudiaf, M., Rony, J., Ziko, I. M., Granger, E., Pedersoli, M., Piantanida, P. & Ben Ayed,

I. (2020). A unifying mutual information view of metric learning: cross-entropy vs.

pairwise losses. European Conference on Computer Vision.

Boyd, S., Boyd, S. P. & Vandenberghe, L. (2004). Convex optimization. Cambridge university

press.

Brendel, W., Rauber, J., Kümmerer, M., Ustyuzhaninov, I. & Bethge, M. (2019). Accurate,

reliable and fast robustness evaluation. Advances in Neural Information Processing
Systems.

Brendel, W., Rauber, J., Kurakin, A., Papernot, N., Veliqi, B., Mohanty, S. P., Laurent, F., Salathé,

M., Bethge, M., Yu, Y. et al. (2020). Adversarial vision challenge. The NeurIPS’18
Competition: From Machine Learning to Intelligent Conversations.

Buckman, J., Roy, A., Raffel, C. & Goodfellow, I. (2018). Thermometer Encoding: One Hot Way

To Resist Adversarial Examples. International Conference on Learning Representations.

Cakir, F., He, K., Xia, X., Kulis, B. & Sclaroff, S. (2019). Deep metric learning to rank. IEEE
Conference on Computer Vision and Pattern Recognition.

Carlini, N. & Wagner, D. (2017). Towards evaluating the robustness of neural networks. IEEE
Symposium on Security and Privacy.

Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber, J., Tsipras, D., Goodfellow, I.,

Madry, A. & Kurakin, A. (2019). On Evaluating Adversarial Robustness.

Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C. & Liang, P. S. (2019). Unlabeled Data

Improves Adversarial Robustness. Advances in Neural Information Processing Systems.

Chambolle, A. & Dossal, C. H. (2015). On the convergence of the iterates of the “fast iterative

shrinkage/thresholding algorithm”. Journal of Optimization theory and Applications,
166(3), 968–982.

Chen, L.-C., Papandreou, G., Schroff, F. & Adam, H. (2017). Rethinking atrous convolution

for semantic image segmentation. IEEE Conference on Computer Vision and Pattern
Recognition.

215

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. (2018a). Encoder-decoder with

atrous separable convolution for semantic image segmentation. European Conference on
Computer Vision.

Chen, P.-Y., Sharma, Y., Zhang, H., Yi, J. & Hsieh, C.-J. (2018b). EAD: Elastic-Net Attacks to

Deep Neural Networks via Adversarial Examples. Association for the Advancement of
Artificial Intelligence.

Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. (2020). A Simple Framework for Contrastive

Learning of Visual Representations. International Conference on Machine Learning.

Cheng, J. & Vasconcelos, N. (2022). Calibrating deep neural networks by pairwise constraints.

IEEE Conference on Computer Vision and Pattern Recognition.

Chouzenoux, E., Pesquet, J.-C. & Repetti, A. (2014). Variable metric forward–backward

algorithm for minimizing the sum of a differentiable function and a convex function.

Journal of Optimization Theory and Applications, 162(1), 107–132.

Cisse, M. M., Adi, Y., Neverova, N. & Keshet, J. (2017). Houdini: Fooling Deep Structured

Visual and Speech Recognition Models with Adversarial Examples. Advances in Neural
Information Processing Systems.

Cohen, J., Rosenfeld, E. & Kolter, Z. (2019). Certified Adversarial Robustness via Randomized

Smoothing. International Conference on Machine Learning.

Combettes, P. L. & Pesquet, J.-C. (2011). Proximal splitting methods in signal processing.

In Fixed-point algorithms for inverse problems in science and engineering (pp. 185–212).

Springer.

Combettes, P. L. & Vũ, B. C. (2014). Variable metric forward–backward splitting with

applications to monotone inclusions in duality. Optimization, 63(9), 1289–1318.

Combettes, P. L. & Wajs, V. R. (2005). Signal recovery by proximal forward-backward splitting.

Multiscale modeling & simulation, 4(4), 1168–1200.

Combettes, P. L., Dũng, Ð. & Vũ, B. C. (2010). Dualization of signal recovery problems.

Set-Valued and Variational Analysis, 18(3), 373–404.

Conn, A., Gould, N. & Toint, P. (1997). A Globally Convergent Lagrangian Barrier Algorithm

for Optimization with General Inequality Constraints and Simple Bounds. Mathematics
of Computation, 66(217), 261–288.

216

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U.,

Roth, S. & Schiele, B. (2016). The Cityscapes Dataset for Semantic Urban Scene

Understanding. IEEE Conference on Computer Vision and Pattern Recognition.

Croce, F. & Hein, M. (2020a). Minimally distorted Adversarial Examples with a Fast Adaptive

Boundary Attack. International Conference on Machine Learning.

Croce, F. & Hein, M. (2020b). Reliable Evaluation of Adversarial Robustness with an Ensemble

of Diverse Parameter-free Attacks. International Conference on Machine Learning.

Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E., Flammarion, N., Chiang, M.,

Mittal, P. & Hein, M. (2021). RobustBench: a standardized adversarial robustness

benchmark. Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2).

Davis, J. V., Kulis, B., Jain, P., Sra, S. & Dhillon, I. S. (2007). Information-theoretic metric

learning. International Conference on Machine Learning.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. & Fei-Fei, L. (2009). Imagenet: A large-

scale hierarchical image database. IEEE Conference on Computer Vision and Pattern
Recognition.

Dhillon, G. S., Azizzadenesheli, K., Bernstein, J. D., Kossaifi, J., Khanna, A., Lipton,

Z. C. & Anandkumar, A. (2018). Stochastic activation pruning for robust adversarial

defense. International Conference on Learning Representations.

Ding, Z., Han, X., Liu, P. & Niethammer, M. (2021). Local temperature scaling for probability

calibration. International Conference on Computer Vision.

Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X. & Li, J. (2018). Boosting adversarial attacks

with momentum. IEEE Conference on Computer Vision and Pattern Recognition.

Engstrom, L., Ilyas, A., Salman, H., Santurkar, S. & Tsipras, D. (2019). Robustness (Python

Library). Retrieved from: https://github.com/MadryLab/robustness.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J. & Zisserman, A. (2012). The

PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. Retrieved from: http:

//www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.

Fischer, V., Kumar, M. C., Metzen, J. H. & Brox, T. (2017). Adversarial Examples for Semantic

Image Segmentation. International Conference on Learning Representations, Workshop
Track Proceedings.

217

Fletcher, R. (2013). Practical Methods of Optimization. John Wiley & Sons.

Gal, Y. & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model

uncertainty in deep learning. International Conference on Machine Learning.

Ge, W. (2018). Deep metric learning with hierarchical triplet loss. European Conference on
Computer Vision.

Goldberger, J., Hinton, G. E., Roweis, S. T. & Salakhutdinov, R. R. (2005). Neighbourhood

components analysis. Advances in Neural Information Processing Systems.

Goodfellow, I., Shlens, J. & Szegedy, C. (2015). Explaining and Harnessing Adversarial

Examples. International Conference on Learning Representations.

Gragnaniello, D., Marra, F., Verdoliva, L. & Poggi, G. (2021). Perceptual quality-preserving

black-box attack against deep learning image classifiers. Pattern Recognition Letters,
147, 142-149.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J.

et al. (2018). Recent advances in convolutional neural networks. Pattern Recognition,

77, 354-377.

Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. Q. (2017). On calibration of modern neural

networks. International Conference on Machine Learning.

Guo, C., Rana, M., Cisse, M. & van der Maaten, L. (2018). Countering Adversarial Images

using Input Transformations. International Conference on Learning Representations.

Hadsell, R., Chopra, S. & LeCun, Y. (2006). Dimensionality reduction by learning an invariant

mapping. IEEE Conference on Computer Vision and Pattern Recognition.

He, K., Zhang, X., Ren, S. & Sun, J. (2016a). Deep residual learning for image recognition.

IEEE Conference on Computer Vision and Pattern Recognition.

He, K., Zhang, X., Ren, S. & Sun, J. (2016b). Identity mappings in deep residual networks.

European Conference on Computer Vision.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P. & Girshick, R. (2022). Masked autoencoders are

scalable vision learners. IEEE Conference on Computer Vision and Pattern Recognition.

He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J. & Li, M. (2019). Bag of tricks for image

classification with convolutional neural networks. IEEE Conference on Computer Vision
and Pattern Recognition.

218

Hein, M. & Andriushchenko, M. (2017). Formal Guarantees on the Robustness of a Classifier

against Adversarial Manipulation. Advances in Neural Information Processing Systems.

Hendrycks, D. & Dietterich, T. (2019). Benchmarking Neural Network Robustness to Common

Corruptions and Perturbations.

Hermans, A., Beyer, L. & Leibe, B. (2017). In defense of the triplet loss for person re-
identification.

Hestenes, M. R. (1969). Multiplier and gradient methods. Journal of optimization theory and
applications, 4(5), 303–320.

Ioffe, S. & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by

reducing internal covariate shift. International Conference on Machine Learning.

Jensen, P. A. & Bard, J. F. (2002). Operations research models and methods. John Wiley &

Sons.

Jia, X., Song, S., He, W., Wang, Y., Rong, H., Zhou, F., Xie, L., Guo, Z., Yang, Y., Yu, L. et al.

(2018). Highly scalable deep learning training system with mixed-precision: Training
imagenet in four minutes.

Kang, X., Song, B., Du, X. & Guizani, M. (2020). Adversarial Attacks for Image Segmentation

on Multiple Lightweight Models. IEEE Access, 8, 31359-31370.

Karandikar, A., Cain, N., Tran, D., Lakshminarayanan, B., Shlens, J., Mozer, M. C. & Roelofs,

R. (2021). Soft Calibration Objectives for Neural Networks.

Katz, G., Barrett, C., Dill, D. L., Julian, K. & Kochenderfer, M. J. (2017). Reluplex: An efficient

SMT solver for verifying deep neural networks. International Conference on Computer
Aided Verification, pp. 97–117.

Kaya, M. & Bilge, H. Ş. (2019). Deep metric learning: A survey. Symmetry, 1066.

Kedem, D., Tyree, S., Sha, F., Lanckriet, G. R. & Weinberger, K. Q. (2012). Non-linear metric

learning. Advances in Neural Information Processing Systems.

Kervadec, H., Dolz, J., Yuan, J., Desrosiers, C., Granger, E. & Ben Ayed, I. (2022). Constrained

deep networks: Lagrangian optimization via log-barrier extensions. 2022 30th European
Signal Processing Conference (EUSIPCO).

Kim, W., Goyal, B., Chawla, K., Lee, J. & Kwon, K. (2018). Attention-based ensemble for deep

metric learning. European Conference on Computer Vision.

219

Kingma, D. P. & Ba, J. (2015). Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations.

Kort, B. W. & Bertsekas, D. P. (1976). Combined Primal–Dual and Penalty Methods for Convex

Programming. SIAM Journal on Control and Optimization, 14(2), 268–294.

Krause, J., Stark, M., Deng, J. & Fei-Fei, L. (2013). 3d object representations for fine-grained

categorization. Proceedings of the IEEE International Conference on Computer Vision
(ICCV) Workshops.

Kumar, A., Sarawagi, S. & Jain, U. (2018). Trainable calibration measures for neural networks

from kernel mean embeddings. International Conference on Machine Learning.

Kurakin, A., Goodfellow, I. & Bengio, S. (2017a). Adversarial examples in the physical world.

International Conference on Learning Representations (workshop track).

Kurakin, A., Goodfellow, I. J. & Bengio, S. (2017b). Adversarial Machine Learning at Scale.

International Conference on Learning Representations.

Laidlaw, C., Singla, S. & Feizi, S. (2021). Perceptual Adversarial Robustness: Defense Against

Unseen Threat Models. International Conference on Learning Representations.

Lang, K. (1995). Newsweeder: Learning to filter netnews. International Conference on Machine
Learning.

Lin, M., Chen, Q. & Yan, S. (2014). Network in network. International Conference on Learning
Representations.

Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. (2017). Focal loss for dense object

detection. IEEE Conference on Computer Vision and Pattern Recognition.

Lions, P.-L. & Mercier, B. (1979). Splitting algorithms for the sum of two nonlinear operators.

SIAM Journal on Numerical Analysis, 16(6), 964–979.

Liu, B., Ben Ayed, I., Galdran, A. & Dolz, J. (2022a). The devil is in the margin: Margin-based

label smoothing for network calibration. IEEE Conference on Computer Vision and
Pattern Recognition.

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B. & Song, L. (2017). Sphereface: Deep hypersphere

embedding for face recognition. IEEE Conference on Computer Vision and Pattern
Recognition.

220

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S. & Guo, B. (2021). Swin Transformer:

Hierarchical Vision Transformer using Shifted Windows. International Conference on
Computer Vision.

Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang, Z., Dong, L. et al.

(2022b). Swin transformer v2: Scaling up capacity and resolution. IEEE Conference on
Computer Vision and Pattern Recognition.

Liu, Z., Luo, P., Qiu, S., Wang, X. & Tang, X. (2016). DeepFashion: Powering Robust Clothes

Recognition and Retrieval with Rich Annotations. IEEE Conference on Computer Vision
and Pattern Recognition.

Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B. & Yu, S. X. (2019). Large-scale long-tailed

recognition in an open world. IEEE Conference on Computer Vision and Pattern
Recognition.

Loshchilov, I. & Hutter, F. (2017). SGDR: Stochastic Gradient Descent with Warm Restarts.

International Conference on Learning Representations.

Loshchilov, I. & Hutter, F. (2019). Decoupled Weight Decay Regularization. International
Conference on Learning Representations.

Lowe, D. G. (1995). Similarity metric learning for a variable-kernel classifier. Neural
computation, 7(1), 72–85.

Ma, X. & Blaschko, M. B. (2021). Meta-cal: Well-controlled post-hoc calibration by ranking.

International Conference on Machine Learning.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D. & Vladu, A. (2018). Towards Deep

Learning Models Resistant to Adversarial Attacks. International Conference on Learning
Representations.

Maier-Hein, L., Reinke, A., Christodoulou, E., Glocker, B., Godau, P., Isensee, F., Kleesiek, J.,

Kozubek, M., Reyes, M., Riegler, M. A. et al. (2022). Metrics reloaded: Pitfalls and
recommendations for image analysis validation.

Matyasko, A. & Chau, L.-P. (2021). PDPGD: Primal-Dual Proximal Gradient Descent
Adversarial Attack. Retrieved from: https://arxiv.org/abs/2106.01538.

Melchior, P., Joseph, R. & Moolekamp, F. (2019). Proximal Adam: robust adaptive update
scheme for constrained optimization. Retrieved from: https://arxiv.org/abs/1910.10094.

221

Minderer et al. (2021). Revisiting the Calibration of Modern Neural Networks. Advances in
Neural Information Processing Systems.

MMSegmentation Contributors. (2020). MMSegmentation: OpenMMLab Semantic Seg-

mentation Toolbox and Benchmark. Retrieved from: https://github.com/open-mmlab/

mmsegmentation.

Moosavi-Dezfooli, S.-M., Fawzi, A. & Frossard, P. (2016). DeepFool: A Simple and Accurate

Method to Fool Deep Neural Networks. IEEE Conference on Computer Vision and
Pattern Recognition.

Movshovitz-Attias, Y., Toshev, A., Leung, T. K., Ioffe, S. & Singh, S. (2017). No fuss distance

metric learning using proxies. International Conference on Computer Vision.

Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P. & Dokania, P. (2020). Calibrating

deep neural networks using focal loss.

Müller, R., Kornblith, S. & Hinton, G. E. (2019). When does label smoothing help?

Musgrave, K., Belongie, S. & Lim, S.-N. (2020). A metric learning reality check. European
Conference on Computer Vision.

Naeini, M. P., Cooper, G. & Hauskrecht, M. (2015). Obtaining well calibrated probabilities

using bayesian binning. Association for the Advancement of Artificial Intelligence.

Nakayama, H., Sayama, H. & Sawaragi, Y. (1975). A generalized Lagrangian function and

multiplier method. Journal of Optimization Theory and Applications, 17, 211–227.

Narasimhan, M. & Bilmes, J. (2005). A submodular-supermodular procedure with applications

to discriminative structure learning. Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence (UAI).

Nesterov, Y. (1983). A method for solving the convex programming problem with convergence

rate O(1/𝑘2). Proceedings of the USSR Academy of Sciences, 269, 543-547.

Nocedal, J. & Wright, S. (2006). Numerical Optimization. Springer Science & Business Media.

Oh Song, H., Jegelka, S., Rathod, V. & Murphy, K. (2017). Deep metric learning via facility

location. IEEE Conference on Computer Vision and Pattern Recognition.

Oord, A. v. d., Li, Y. & Vinyals, O. (2018). Representation learning with contrastive predictive
coding.

222

Opitz, M., Waltner, G., Possegger, H. & Bischof, H. (2017). Bier-boosting independent

embeddings robustly. International Conference on Computer Vision.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J. V., Lakshminarayanan,

B. & Snoek, J. (2019). Can you trust your model’s uncertainty? Evaluating predictive

uncertainty under dataset shift. Advances in Neural Information Processing Systems.

Ozbulak, U., Van Messem, A. & De Neve, W. (2019). Impact of adversarial examples on

deep learning models for biomedical image segmentation. International Conference on
Medical Image Computing and Computer-Assisted Intervention.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B. & Swami, A. (2016a). The

limitations of deep learning in adversarial settings. IEEE Symposium on Security and
Privacy.

Papernot, N., McDaniel, P., Wu, X., Jha, S. & Swami, A. (2016b). Distillation as a defense to

adversarial perturbations against deep neural networks. IEEE Symposium on Security
and Privacy.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,

M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. & Chintala, S. (2019).

PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances
in Neural Information Processing Systems. Curran Associates, Inc.

Pennington, J., Socher, R. & Manning, C. D. (2014). Glove: Global vectors for word

representation. Conference on Empirical Methods in Natural Language Processing.

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, L. & Hinton, G. (2017). Regularizing Neural

Networks by Penalizing Confident Output Distributions. International Conference on
Learning Representations.

Pintor, M., Roli, F., Brendel, W. & Biggio, B. (2021). Fast Minimum-norm Adversarial

Attacks through Adaptive Norm Constraints. Advances in Neural Information Processing
Systems.

Powell, M. J. (1969). A method for nonlinear constraints in minimization problems. Optimization,

283–298.

Raghunathan, A., Steinhardt, J. & Liang, P. (2018). Certified Defenses against Adversarial

Examples. International Conference on Learning Representations.

223

Rauber, J., Brendel, W. & Bethge, M. (2017). Foolbox: A Python toolbox to benchmark

the robustness of machine learning models. Reliable Machine Learning in the Wild
Workshop, 34th International Conference on Machine Learning.

Rolínek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C. & Martius, G. (2020).

Optimizing Rank-based Metrics with Blackbox Differentiation. IEEE Conference on
Computer Vision and Pattern Recognition.

Rony, J., Hafemann, L. G., Oliveira, L. S., Ben Ayed, I., Sabourin, R. & Granger, E. (2019).

Decoupling Direction and Norm for Efficient Gradient-Based L2 Adversarial Attacks

and Defenses. IEEE Conference on Computer Vision and Pattern Recognition.

Rony, J., Granger, E., Pedersoli, M. & Ben Ayed, I. (2021). Augmented Lagrangian Adversarial

Attacks. International Conference on Computer Vision.

Salman, H., Li, J., Razenshteyn, I., Zhang, P., Zhang, H., Bubeck, S. & Yang, G. (2019).

Provably robust deep learning via adversarially trained smoothed classifiers. Advances
in Neural Information Processing Systems.

Sanakoyeu, A., Tschernezki, V., Buchler, U. & Ommer, B. (2019). Divide and conquer the

embedding space for metric learning. IEEE Conference on Computer Vision and Pattern
Recognition.

Sangalli, S., Erdil, E., Hötker, A., Donati, O. F. & Konukoglu, E. (2021). Constrained

Optimization to Train Neural Networks on Critical and Under-Represented Classes.

Advances in Neural Information Processing Systems.

Savanier, M., Chouzenoux, E., Pesquet, J.-C. & Riddell, C. (2022). Unmatched Preconditioning

of the Proximal Gradient Algorithm. IEEE Signal Processing Letters, 1122-1126.

Schroff, F., Kalenichenko, D. & Philbin, J. (2015). Facenet: A unified embedding for

face recognition and clustering. IEEE Conference on Computer Vision and Pattern
Recognition.

Schultz, M. & Joachims, T. (2004). Learning a distance metric from relative comparisons.

Advances in Neural Information Processing Systems.

Sharma, G., Wu, W. & Dalal, E. N. (2005). The CIEDE2000 color-difference formula:

Implementation notes, supplementary test data, and mathematical observations. Color
Research & Application, 30(1), 21–30.

Sohn, K. (2016). Improved deep metric learning with multi-class n-pair loss objective. Advances
in Neural Information Processing Systems.

224

Song, H. O., Xiang, Y., Jegelka, S. & Savarese, S. (2016). Deep Metric Learning via Lifted

Structured Feature Embedding. IEEE Conference on Computer Vision and Pattern
Recognition.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. & Fergus, R.

(2014). Intriguing properties of neural networks. International Conference on Learning
Representations.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,

V. & Rabinovich, A. (2015). Going deeper with convolutions. IEEE Conference on
Computer Vision and Pattern Recognition.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. (2016). Rethinking the inception

architecture for computer vision. IEEE Conference on Computer Vision and Pattern
Recognition.

Tang, M., Marin, D., Ben Ayed, I. & Boykov, Y. (2019). Kernel cuts: Kernel and spectral

clustering meet regularization. International Journal of Computer Vision, 127, 477–511.

Tieleman, T. & Hinton, G. (2012). Lecture 6.5-rmsprop, coursera: Neural Networks for Machine

Learning.

Tomani, C., Gruber, S., Erdem, M. E., Cremers, D. & Buettner, F. (2021). Post-hoc uncertainty

calibration for domain drift scenarios. IEEE Conference on Computer Vision and Pattern
Recognition.

Tramer, F., Carlini, N., Brendel, W. & Madry, A. (2020). On adaptive attacks to adversarial

example defenses.

Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D. & McDaniel, P. (2018).

Ensemble Adversarial Training: Attacks and Defenses. International Conference on
Learning Representations.

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S. & Lucic, M. (2020). On Mutual

Information Maximization for Representation Learning. International Conference on
Learning Representations.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A. & Madry, A. (2019). Robustness May Be at

Odds with Accuracy. International Conference on Learning Representations.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. & Polo-

sukhin, I. (2017). Attention is all you need.

225

Wah, C., Branson, S., Welinder, P., Perona, P. & Belongie, S. (2011). The Caltech-UCSD
Birds-200-2011 Dataset (Report n◦CNS-TR-2011-001).

Wang, F., Cheng, J., Liu, W. & Liu, H. (2018a). Additive margin softmax for face verification.

IEEE Signal Processing Letters, 25(7), 926–930.

Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z. & Liu, W. (2018b). Cosface:

Large margin cosine loss for deep face recognition. IEEE Conference on Computer
Vision and Pattern Recognition.

Wang, J., Zhou, F., Wen, S., Liu, X. & Lin, Y. (2017). Deep metric learning with angular loss.

International Conference on Computer Vision.

Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X.

et al. (2020). Deep high-resolution representation learning for visual recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 43(10), 3349–3364.

Wang, M. & Sha, F. (2011). Information theoretical clustering via semidefinite programming.

Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics (AIStats).

Wang, X., Hua, Y., Kodirov, E., Hu, G., Garnier, R. & Robertson, N. M. (2019a). Ranked

list loss for deep metric learning. IEEE Conference on Computer Vision and Pattern
Recognition.

Wang, X., Han, X., Huang, W., Dong, D. & Scott, M. R. (2019b). Multi-similarity loss with

general pair weighting for deep metric learning. IEEE Conference on Computer Vision
and Pattern Recognition.

Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. (2004). Image Quality Assessment:

From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing,

13(4), 600–612.

Weinberger, K. Q. & Saul, L. K. (2009). Distance Metric Learning for Large Margin Nearest

Neighbor Classification. Journal of Machine Learning Research, 10(9), 207–244.

Wen, Y., Zhang, K., Li, Z. & Qiao, Y. (2016). A discriminative feature learning approach for

deep face recognition. European Conference on Computer Vision.

Wong, E. & Kolter, Z. (2018). Provable Defenses against Adversarial Examples via the Convex

Outer Adversarial Polytope. International Conference on Machine Learning.

226

Wong, E., Schmidt, F. & Kolter, Z. (2019). Wasserstein Adversarial Examples via Projected

Sinkhorn Iterations. International Conference on Machine Learning.

Wu, Z., Efros, A. A. & Yu, S. X. (2018). Improving generalization via scalable neighborhood

component analysis. European Conference on Computer Vision.

Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L. & Yuille, A. (2017). Adversarial examples for

semantic segmentation and object detection. International Conference on Computer
Vision.

Xie, C., Wang, J., Zhang, Z., Ren, Z. & Yuille, A. (2018). Mitigating Adversarial Effects

Through Randomization. International Conference on Learning Representations.

Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M. & Luo, P. (2021). SegFormer:

Simple and efficient design for semantic segmentation with transformers. Advances in
Neural Information Processing Systems.

Xing, E. P., Jordan, M. I., Russell, S. J. & Ng, A. Y. (2003). Distance metric learning

with application to clustering with side-information. Advances in Neural Information
Processing Systems.

Xu, K., Liu, S., Zhao, P., Chen, P.-Y., Zhang, H., Fan, Q., Erdogmus, D., Wang, Y. & Lin, X.

(2019). Structured Adversarial Attack: Towards General Implementation and Better

Interpretability. International Conference on Learning Representations.

Xu, X., Zhao, H. & Jia, J. (2021). Dynamic divide-and-conquer adversarial training for robust

semantic segmentation. International Conference on Computer Vision.

Xuan, H., Souvenir, R. & Pless, R. (2018). Deep randomized ensembles for metric learning.

European Conference on Computer Vision.

Xuan, H., Stylianou, A. & Pless, R. (2020). Improved embeddings with easy positive triplet

mining. IEEE Winter Conference on Applications of Computer Vision (WACV).

Yao, Z., Gholami, A., Xu, P., Keutzer, K. & Mahoney, M. W. (2019). Trust region based

adversarial attack on neural networks. IEEE Conference on Computer Vision and Pattern
Recognition.

Yuan, Y., Yang, K. & Zhang, C. (2017). Hard-aware deeply cascaded embedding. IEEE
Conference on Computer Vision and Pattern Recognition.

Yuille, A. L. & Rangarajan, A. (2001). The concave-convex procedure (CCCP).

227

Zagoruyko, S. & Komodakis, N. (2016). Wide Residual Networks. British Machine Vision
Conference.

Zhai, A. & Wu, H.-Y. (2019). Classification is a Strong Baseline for Deep Metric Learning.

British Machine Vision Conference.

Zhang, H., Yu, Y., Jiao, J., Xing, E. P., Ghaoui, L. E. & Jordan, M. I. (2019a). Theoretically

Principled Trade-off between Robustness and Accuracy. International Conference on
Machine Learning.

Zhang, H., Chen, H., Xiao, C., Gowal, S., Stanforth, R., Li, B., Boning, D. & Hsieh, C.-J.

(2019b). Towards Stable and Efficient Training of Verifiably Robust Neural Networks.

International Conference on Learning Representations.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E. & Wang, O. (2018). The Unreasonable

Effectiveness of Deep Features as a Perceptual Metric. IEEE Conference on Computer
Vision and Pattern Recognition.

Zhao, P., Xu, K., Liu, S., Wang, Y. & Lin, X. (2019). ADMM Attack: An Enhanced Adversarial

Attack for Deep Neural Networks with Undetectable Distortions. Proceedings of the
24th Asia and South Pacific Design Automation Conference.

Zhao, Z., Liu, Z. & Larson, M. (2020). Towards Large yet Imperceptible Adversarial Image

Perturbations with Perceptual Color Distance. IEEE Conference on Computer Vision
and Pattern Recognition.

Zheng, W., Chen, Z., Lu, J. & Zhou, J. (2019). Hardness-aware deep metric learning. IEEE
Conference on Computer Vision and Pattern Recognition.

