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Schéma de sécurité pour le réseaux sans fil définis par logiciel

Christian MIRANDA

RÉSUMÉ

Les réseaux 5G deviennent des infrastructures très complexes en raison des nouveaux services
qu’ils sont censés fournir ainsi que de l’accessibilité accrue des appareils à l’internet. L’organisme
de normalisation 3GPP ne cesse de promouvoir les meilleures pratiques et les processus de
contrôle et de traitement des données au sein de ces infrastructures. Une pléthore de modèles
commerciaux a également encouragé la prolifération et l’expansion de la connectivité des
appareils et la densification du réseau par le biais de la solution 5G de base. La complexité du
réseau et sa capacité à évoluer constamment ont modifié la manière dont il est sécurisé. Les
mécanismes de sécurité traditionnels mettant en œuvre le contrôle d’accès (par exemple, les
pare-feu IP/TCP ou de niveau application), bien que nécessaires, devraient devenir insuffisants
pour répondre aux exigences de sécurité de la 5G. Les deux principaux outi,ls pour les réseaux
5G sont les réseaux définis par logiciel (SDN) et la virtualisation des fonctions réseau. Si ces
technologies offrent certains avantages en matière de gestion et de programmabilité des réseaux,
elles ouvrent la porte à de nouveaux problèmes de sécurité. Par exemple, l’exploitation de
réseaux radio en nuage (C-RAN) dans le contexte d’un environnement virtualisé partagé entre
différents locataires peut constituer un risque potentiel menant à d’innombrables attaques; cet
environnement tend donc à être indigne de confiance. Dans cette ligne de référence, cette thèse
vise à déployer de nouvelles approches pour prévenir, détecter et atténuer les menaces de sécurité
sur les réseaux sans fil définis par logiciel 5G.

À cette fin, le deuxième chapitre de cette thèse conçoit et évalue une approche multicouche qui
amalgame les informations de la couche physique (non cryptographique) en conjonction avec des
procédures cryptographiques pour fournir simultanément une haute sécurité et une faible latence.
En outre, un algorithme AES (Advanced Encryption Standard) est utilisé conjointement avec
l’ensemble de données RSS (Radio Signal Strength) pour créer le protocole d’authentification.

Dans le troisième chapitre, un réseau IoT à faible puissance défini par logiciel pour prévenir
les attaques de Rank est présenté. L’application d’un agent de renforcement et d’apprentissage
utilisant la méthode SARSA (State Action Reward State Action) est utilisée pour aider et
compléter un contrôleur SDN afin de réaliser une optimisation de route rentable et un routage de
paquets avec provisionnement de la QoS pour prévenir les attaques de Rank.

Le quatrième chapitre présente une évaluation des performances dans laquelle des algorithmes
de renforcement et d’apprentissage sans modèle sont utilisés pour aider le contrôleur SDN à
obtenir une solution rentable pour prévenir les effets néfastes de l’attaque du Rank. Résultats
expérimentaux démontrent que SARSA est plus efficace que l’algorithme d’apprentissage
Q-learning, facilitant la mise en œuvre de systèmes de prévention des intrusions dans 6LowPAN
défini par logiciel.



VIII

Le cinquième chapitre donne un aperçu des problèmes de sécurité dans le SD6LoWPAN, en
tenant compte de ses ressources, de sa topologie et de son trafic. En outre, une étude est
présentée sur les solutions de sécurité basées sur le SDN et l’intelligence artificielle qui sont
suggérées dans la littérature. Les défis et les tendances de la recherche en matière de sécurité
sont également mis en avant. En conclusion, une analyse des performances d’une solution de
l’intelligence artificielle basée sur le SDN est présentée.

Le sixième chapitre traite des problèmes de sécurité qui prévalent dans le plan de données SDN.
Dans ce sens, le travail se concentre sur l’authentification de haute précision et la détection
d’anomalies dans le plan de données SDN non fiable et limité en ressources. À cette fin, un
cadre de sécurité hiérarchique est proposé. Ce travail fusionne l’authentification légère avec un
système collaboratif de détection des anomalies.

Mots-clés: 5G, SDN, NFV, C-RAN, Wireless Networks



Security Framework for Software Defined Wireless Networks

Christian MIRANDA

ABSTRACT

The fifth generation (5G) of wireless networks are very complex infrastructures due to their
new services and the augmentation of the density of connected devices. The 3rd Generation
Partnership Project (3GPP) standardization body continuously promotes best practices, control,
and data handling processes within such infrastructures. Many business models have also
encouraged the proliferation and expansion of device connectivity and network densification
through the 5G core solution. The complexity of the network and its ability to evolve
constantly influence the security approaches considered. Although necessary, traditional
security mechanisms implementing access control (e.g., IP/TCP or application-level firewalls)
cannot solely fulfill the security requirements of 5G. Two major enablers in 5G networks are
Software Defined Networks (SDNs) and Network Function Virtualization (NFV). Although
these technologies offer some advantages concerning network management and programmability,
they open the door to new security issues. As such, running Cloud Radio Access Networks
(C-RANs) in the context of a virtualized environment shared among different tenants can be a
potential risk leading to numerous attacks; therefore, this environment tends to be untrusted. In
this line of reference, this thesis targets deploying novel security solutions for the authentication,
prevention, detection, and mitigation for 5G software-defined wireless networks.

Keywords: 5G, SDN, NFV, C-RAN, Wireless Networks
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INTRODUCTION

According to (Cisco), mobile data traffic is expected to expand at a compound annual rate

of 57% until 2020. Hence, the available capacities provided by the fourth generation (4G)

infrastructure will be exhausted (Rost, Banchs, Berberana, Breitbach, Doll, Droste, Mannweiler,

Puente, Samdanis & Sayadi, 2016). To address this challenge, a new generation of mobile

networks has emerged.

Since their conception, mobile communications systems have been vulnerable to security threats.

In the first generation (1G), mobile networks had several limitations, such as the lack of support

for encryption. They induced security threats to mobile terminals and channels, such as cloning

and masquerading attacks. Later, in the second generation of mobile networks (2G), weaknesses

in cryptographic algorithms led to an increase in both common attacks and the injection of fake

data or the dissemination of unwanted traffic. Then, the third generation of mobile networks (3G)

brought with it many vulnerabilities, such as unauthorized access to sensitive data. For example,

in 3G, the International Mobile Subscriber Identity (IMSI) is sent in clear text when the user

assigns the Temporary Mobile Subscriber Identity (TMSI). With the increased need for IP-based

communication, the fourth generation of mobile networks (4G) enabled the proliferation of

mobile terminals and channels, such as prominent cloning and masquerading attacks, which

brought common IP-based attacks (Miki, Ohya, Yoshino & Umeda, 2005).

The fifth generation of mobile communications (5G) poses specific requirements such as ultra-low

latency, network densification, ultra-low power consumption, and network virtualization, as

shown in Fig. (0.1). Therefore, to address these requirements, introducing intelligence and

quality of services can provide cost-effective solutions. Also, the deployment of emerging

technologies, such as cloud computing, Software-Defined Wireless Networks (SDWNs), and

network functions virtualization (NFV), have been proposed as promising solutions.
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In particular, cloud computing provides efficient communication where service providers can

handle large volumes of data, applications and services without significant investments in

physical infrastructure. Consequently, mobile clouds will bring together technologically different

systems into a single domain where multiple services can be deployed to achieve a higher

degree of flexibility and availability with a significant decrease in Capital Expenditure (CapEx)

and Operating Expenditure (OpEx) (Ahmad, Kumar, Liyanage, Okwuibe, Ylianttila & Gurtov,

2017).

The introduction of intelligence in 5G Heterogeneous Network (HetNet) deployments and

Cloud Radio Access Networks (C-RANs) has been investigated in (Peng, Li, Zhao & Wang,

2015a). Moreover, Software-Defined Networks (SDNs) enable network function virtualization
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by separating the network administration from the hardware plane. Also, SDNs facilitate the

network configuration through abstraction (Akyildiz, Wang & Lin, 2015b). Further, NFV offers

many advantages, such as independent vendor platforms, scalability and flexibility, performance

improvement, and shorter development cycles (Hawilo, Shami, Mirahmadi & Asal, 2014).

Additionally, the multi-tenancy model and virtualized resources in these promising enablers

have introduced new security threats that require novel techniques to guarantee data integrity

and protection in the presence of malicious actors (Sabahi, 2011).

Some preliminary work has been proposed in state-of-the-art to address these challenges. For

instance, a cross-layer architecture combining C-RAN with SDN characteristics is presented in

(Martini, Paganelli, Cappanera, Turchi & Castoldi, 2015) to formulate the problem of composing

and computing virtual networking functions to select nodes at the edge to minimize the overall

latency (i.e., network and processing latency) in heterogeneous 5G infrastructure. In (Akyildiz,

Wang & Lin, 2015a), the integration of SDN in a 5G network by considering cloudification and

virtualization of networks is proposed. In addition, to consider SDN as a deployment medium

within radio networks, the research community proposed to use SDN for security frameworks,

specifically for ubiquitous IoT and sensor applications at the edge of radio networks. In (Sahoo,

Sahoo & Panda, 2015), the authors proposed an architecture for IoT networks based on SDN.

The architecture implements an SDN controller, who plays the role of blocking unauthenticated

devices.

Moreover, in (Gonzalez, Charfadine, Flauzac & Nolot, 2016), a dynamic firewall, namely

Distributed Smart Firewall (DISFIRE), is implemented within a grid network, where multiple

SDN controllers are deployed in a hierarchical architecture. In the context of smart cities, in

(Chakrabarty & Engels, 2016), the authors propose a secure architecture that relies on SDN

controllers taking the Trusted Third Party (TTP) role. Furthermore, a software-defined wireless

network (SDWN)-enabled fast cross-authentication scheme that combines non-cryptographic
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and cryptographic algorithms to address the challenges of latency and weak security (Moreira,

Kaddoum & Bou-Harb, 2018a; Kaur, Garg, Kaddoum & Guizani, 2020). The novelty of this

work lies in devising and evaluating a multi-layer approach that amalgamates physical layer

information (i.e., non-cryptographic) in conjunction with cryptographic procedures. This thesis

proposal uses SDNs to corroborate security properties within 5G wireless networks.

This research focuses on novel approaches to prevent, detect, and mitigate security threats on

software-defined 5G wireless networks. In this context, we will elaborate security framework

stacks using machine learning algorithms to identify anomalies and prevent potential security

threats. We employ supervised, and reinforcement learning approaches to build prevention

and detection mechanisms. Moreover, we design and integrate virtual security functions to

mitigate security threats and anomalies in 5G wireless networks. The virtual security functions

are hooked to create on-the-fly security enforcement for 5G wireless networks. Security threat

mitigation tactics are part of a security policy that is proven free of anomalies and redundant

objectives. In this context, the purposes of this research are presented as follows.

1. Identification of security weaknesses in 5G wireless networks, a literature review will be

analyzed, including the study of analytics within 5G wireless networks.

2. Deployment of machine learning algorithms to detect security threats and anomalies.

3. Comparison of machine learning algorithms regarding the accuracy, processing, and data

collection method.

4. Introduction of a security framework to prevent, detect, and mitigate attacks.

These objectives aim to derive a consistent methodology from building prevention, detection,

and mitigation systems to secure 5G wireless network deployments. Hence, the methodology

used for this thesis is presented as follows
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• Survey of state of the art: Relevant attacks and security threat models for 5G wireless network

deployments will be surveyed to define the scope of the security study to propose a security

framework stack for intrusion detection and mitigation systems.

• Security threat model in 5G wireless networks based on SDN architecture: Mitigation

techniques will be analyzed to address security threats. In this context, using virtual security

functions based on SDN architecture is vital in improving security and performance in 5G

wireless network deployments.

• Proof of concepts and integration to showcase the feasibility of the proposed security

mechanisms and academic results dissemination through scientific articles.

In addition, this research work will use data from 5G wireless networks to create intelligent

algorithms to detect malicious attacks. We will use network traces generated from simulations

and traces collected from 5G testbeds. We will also consider using machine learning prediction

techniques to identify malicious attacks and big data analytics to frame the analysis of the

significant number of logs observed in virtual radio deployments. The research roadmap is

presented as follows:

1. The definition of a cross-layer authentication scheme combines non-cryptographic and

cryptographic algorithms to address the challenges of latency and weak security.

2. The deployment of an intrusion prevention scheme using State Action Reward State Action

(SARSA) to assist and complement an SDN controller in achieving cost-efficient route

optimization and quality of service provisioning packet forwarding to prevent rank attacks

in Software-Defined Low Power IoT Networks.

3. The introduction of a performance evaluation where model-free Reinforcement-Learning

[RL] algorithms are leveraged to help the SDN controller achieve a cost-efficient solution to

prevent rank attack harmful effects.

4. The introduction of an overview of security issues in SD6LoWPAN, considering its resource,

topology, and traffic. In addition, a study of the SDN- and ML-based security solutions
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that are suggested in the literature is presented. Security research challenges and trends are

also put forward. In conclusion, a performance analysis of an SDN-based ML solution is

presented.

5. The implementation of an SDN-based collaborative security framework hierarchically that

combines three security layers. At the bottom of this approach (Layer L1), an IPS-based

authentication process is designed to provide a lightweight security scheme in the data

plane. In the middle of the framework (Layer L2), an IDS-enabled energy prediction model

within the edge is designed to supply a cost-effective intrusion detection solution near the

data plane. Finally, at the top of this framework (Layer L3), in the control plane, a Smart

Monitoring System (SMS)-based SVM algorithm is introduced to achieve isolation, high

performance, enhanced anomaly detection, and efficient mitigation by segregating malicious

nodes over the Software-defined Wireless Sensor Networks (SDWSNs).

The dissertation is structured as shown in Fig. 0.2, and detailed as follows.

Chapter 1 presents a comprehensive literature review of 5G. It highlights the enabling technologies

of 5G, such as Software Defined Networks and Network Function Virtualization, and briefly

describes recent related works. Moreover, this chapter presents the most frequent security

methods and approaches cited in the literature. It also analyzes the most commonly used

prevention, detection, and mitigation methods, detailing their advantages and disadvantages.

Chapter 2 presents a software-defined wireless network (SDWN)-enabled fast cross-layer

authentication scheme that combines non-cryptographic and cryptographic algorithms to

address the challenges of high latency and robust security. Initially, the received radio signal

strength vectors at the mobile terminal (MT) are used as a fingerprinting source to generate an

unpredictable secret key. Subsequently, a cryptographic mechanism based on the authentication

and key agreement protocols is executed to improve the confidentiality and integrity of the

authentication handover. Further, with the help of the supervised KNN algorithm, a radio-trusted
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Figure 0.2 Thesis contributions

zone database is created to decrease the frequent authentication of radio devices in the network.

The proposed scheme is analyzed under different scenarios.

Chapter 3 presents a Reinforcement-Learning agent to assist and complement the SDN con-

troller in achieving cost-efficient route optimization and quality of service provisioning packet

forwarding to prevent rank attacks. Experimental results confirm that this approach effectively

prevents rank attacks while providing an adequate delay and radio duty cycle. Meanwhile, it

maximizes the packet delivery ratio, facilitating practical implementations in software-defined

Low Power Internet of Things (IoT) Networks.

Chapter 4 proposes a performance evaluation where model-free Reinforcement-Learning

algorithms are leveraged to help the SDN controller achieve a cost-efficient solution to prevent
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RA harmful effects. Experimental results demonstrate that the SARSA algorithm is more efficient

than the Q-learning (QL) algorithm, facilitating the implementation of intrusion prevention

systems (IPS) in software-defined Internet Protocol Version 6 Low Power Network (6LowPAN).

Chapter 5 provides an overview of security issues in SD6LoWPAN, considering its resource,

topology, and traffic. In addition, a study of the SDN- and ML-based security solutions that are

suggested in the literature is presented. Security research challenges and trends are also put

forward. In conclusion, a performance analysis of an SDN-based ML solution is presented.

Chapter 6 presents an SDN-based collaborative security framework that combines Intrusion

Prevention, Detection, and Smart Monitoring systems, taking advantage of energy snapshot

readings, which are proposed and evaluated. Initially, a distributed snapshot algorithm

and a watermarking technique are introduced to decrease latency and enhance the recurrent

authentication in wireless sensor nodes. Subsequently, the security features of the proposed

multilayer authentication approach are analyzed by executing automated protocol analysis using

the AVISPA tool. Consequently, an IDS-enabled energy prediction model is designed at the

network edge. Finally, to correlate the detection rate and reduce the false alarms that could

be generated at the network edge, an SMS-based SVM algorithm is executed and tested in the

control plane.



CHAPTER 1

BACKGROUND AND LITERATURE REVIEW

1.1 5G security requirements

5G HetNets are no longer restrained to offering faster mobile services for converged com-

munication. Instead, they offer virtual services, which provide a portfolio of new features.

The emerging network technologies such as software-defined networks and network functions

virtualization (NFV) additionally improve the ability of 5G to support new business models to

prosper. Meanwhile, these advances require complex security prerequisites. In (SIMalliance, b),

3GPP depicts the 5G security requirements that have to be addressed in different layers within

the 5G HetNet architecture as follows:

• Clearer identity of the device, user, network, application, and service platform;

• Faster handling for low-latency security procedures;

• Lower complexity for authentication, confidentiality, and integrity procedures ;

• Enhanced privacy protection to protect the user identity and location;

• Seamless authentication across heterogeneous infrastructures, avoiding cryptographic services

at intermediate nodes;

• Data verifiability.

Indeed, the security requirements of 5G will vary greatly depending on the application since

the underlying technologies for simple sensors requiring daily probes are different from those

of remote surgery that require real-time communications. According to (Ericsson), These

requirements can be met by the following countermeasures:

• Novel identity management and credentials;

• Optimization of low-latency mobile security;

• Efficiency of cloud security;

• Design of flexible and scalable security architectures;

• Implementation of energy-efficient security.
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1.1.1 Novel identity management and credentials

In legacy wireless networks, identity and key management depend on SIM cards. In 5G,

compatible hardware, such as sensors and IoT devices, will be too small or cheap to host a SIM

card. Therefore, it is essential to establish a novel method to produce, allocate and enforce

lifecycle management over device identities. The authors in (Ericsson) propose two identity

management mechanisms as follows:

• Combination of device identity and service identity: The novel identity management

framework separates the service identity from the device identity. The physical device

identity is unique and can be assigned during manufacturing. Hence, service identities are

assigned by network service providers, where one or more service identities may correspond

to one physical identity.

• From device-based management to user-based management: This allows the user to choose

which device has allowed access to the network and what services may run on it. For example,

devices of the same user may share bandwidth quotas online or offline.

1.1.2 Optimization of low-latency mobile security

The emergence of critical applications, such as vehicular ad hoc networks (VANETs) and sensor

networks, has led to communication scenarios characterized by low latency and high-security

requirements. In such systems, the 5G wireless network needs to maintain high reliability and

quality of services to satisfy extremely low delays in traffic transmission, which is essential to

prevent potential accidents such as vehicle collisions or surgical errors (Illy, Kaddoum, Moreira,

Kaur & Garg, 2019; Illy, Kaddoum, de Araujo-Filho, Kaur & Garg, 2022b; De Araujo-Filho,

Pinheiro, Kaddoum, Campelo & Soares, 2021; de Araujo-Filho, Kaddoum, Naili, Fapi & Zhu,

2022).

In addition, with ultra-dense technologies deployed in 5G, mobility management procedures may

frequently occur when mobile terminals are moving. Considering the low latency requirement,
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optimizing mobility management functional entities and processes has become a critical factor

in 5G.

To address these challenges, wireless security must be redesigned and optimized to build an

agile and simplified mobility management mechanism that supports the stringent low-latency

requirements of emerging technologies. Similarly, networks must be transformed to deliver faster

speeds, lower latency, and more capacity to facilitate the network traffic of billions of connected

nodes and the next wave of new compute-intensive 5G applications. Cloud computing is poised

to deliver 10x lower latency, 100x faster speeds, and 1000x more capacity than 5G, providing

the foundation for breakthrough customer experiences, business efficiencies and revolutionary

products and services.

1.1.3 Efficiency of cloud security

Cloud computing is a set of services provided to users over a dynamic network. Typically, cloud

computing services are provided by an external provider that usually owns the infrastructure. In

addition, a cloud provider can offer certain features, such as scalability, resiliency, flexibility,

reliability, efficiency and outsourcing of non-core activities. Despite the potential improvements

achieved by cloud computing to provide scalability to 5G wireless networks, cloud security must

address its associated security requirements, such as:

• Design hypervisors and virtual network functions with high assertiveness on isolation;

• Build desirable ecosystems and architectures from existing trusted infrastructures and

concepts for remote certification;

• Deploy more efficient cryptography solutions for the cloud-friendly environment;

• Create intuitive and trusted management for cloud systems.

To meet these requirements, wireless security must be redesigned and optimized to build an

optimized mobility management mechanism that is flexible, simplified and compatible with the

strict requirement of low latency.
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1.1.4 Design of flexible and scalable security architecture

The emerging virtualization of network functions brings dynamic configurations to 5G. Therefore,

it is crucial and essential to consider a more flexible and scalable security architecture for

this. For example, synchronization in a telecom environment, such as radio signaling, could

be designed at the network edge. These enhancements can achieve more effective security

management while limiting threats to sensitive user data.

1.1.5 Improvement of energy-efficient security

Although security services, such as cryptographic solutions and essentialmanagement procedures,

come with a high energy cost, the expense is no longer an issue for mobile services and devices

(Asif & Muneer, 2007). The energy cost of encrypting one bit is two times lower than the

cost of transmitting it. However, battery lifetime plays a fundamental role in performance for

resource-constrained devices like sensors. Hence, there is a necessity to consider even more

energy-efficient solutions.

The 5G wireless network architecture depends on the SDN architecture, as shown in Figure 1.1,

which minimizes the technological gap between legacy IP and telecommunications networks.

Accordingly, SDWNs are vulnerable to most attacks in general SDN networks. Nonetheless, this

chapter includes an overview of the SDN architecture, expected security challenges, and related

security attacks and solutions.

1.2 SDWN architecture

SDWN is an emerging technology resulting from separating the control plane from the data

plane. It is composed of the following layers:

• Application layer: The application layer consists of end-user and business applications. In

this context, legacy wireless network control devices, such as the Home Subscriber Server

(HSS), the Policy and Charging Rules Function (PCRF), the Mobility Management Entity
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(MME), and the Authentication Authorization and Accounting (AAA) are applications run

on the highest layer of the SDN infrastructure (Yoon, Lee, Kang, Park, Shin, Yegneswaran,

Porras & Gu, 2017). The northbound interface traverses the borderline between the applica-

tion and control layers.

• Control layer: The control layer comprises centralized management controllers. The open

application interface (API) empowers open switch information forwarding functions that

are aware of the state collection and centralized control of the data layer (Liyanage, Yliant-

tila & Gurtov, 2014a). The control channel manages the communication between the

controller and the data layer. This channel is implemented using control protocols, such as

the OpenFlow (OF) protocol, the standard used control protocol in the SDN domain.

• Data layer: The data layer, also known as the infrastructure layer, primarily consists of a data

forwarding process, which includes physical and virtual hardware and mobile terminals for

exchanging and forwarding data packets (Liyanage et al., 2014a). The user’s data traffic is

transported through the data plane. This communication channel is called the data channel.
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Figure 1.1 SDN functional Architecture

In addition, SDN integrates new paradigms such as NFV and OF protocol described as follows:
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network functions or business applications. For instance, a mobile service provider can

execute software-based network functions in a specific format of virtual resources such as

virtual machines or containers.

This network paradigm certainly allows the deployment of network functions, considering

the consolidation of various network devices situated in reliable data centers, distributed

network nodes, and end-user infrastructures. In this context, a given network service can be

decomposed into a set of virtual network functions (VNFs), which could then be implemented

in software running on one or more classical physical devices .

In (ETSI), the NFV-based LTE architecture with a reduced graph of NFV members is

presented. The authors define an NFV as a promising approach enabling easy and fast
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network function deployment in figure 1.3. In contrast to traditional network infrastructures,

it delivers the following promises:

◦ Cost reduction of ownership by moving network functions from physical devices in virtual

machines;

◦ Agile and cost-efficient deployment of network functions;

◦ Reduced energy consumption.

In contrast to common presumptions, NFV does not rely on software-defined networking

(SDN). It can be implemented independently. SDN and NFV are complementary and

bring significant advantages when used together. The key architectural components of

NFV are the virtual infrastructure manager (VIM) and the hypervisor, which is the main

element of the VIM. The flexible and scalable nature of NFV decreases the incident time

response, provides better resiliency against distributed denial of service (DDoS) attacks, and

enables on-demand security services, such as firewalls and intrusion detection and prevention

systems (IDS/IPS), to block or reroute malicious traffic (Illy, Kaddoum, Kaur & Garg, 2022c;

Rathee, Garg, Kaddoum, Choi, Hassan & AlQahtani, 2022; Babbar, Rani, Garg, Kaddoum,

Piran & Hossain, 2021). In addition, security in NFV brings up important issues related to its

adaptability in the underlying telecommunication infrastructure. Consequently, the hypervisor

is susceptible to various security attacks, such as manipulating VM operative systems and

data destruction. Moreover, other vulnerabilities can emerge when the hypervisor is hĳacked.

NFV dispatch software allows automated provisioning of network functions; however, this

feature could be an open door for security weaknesses, such as malicious configuration,

automatic network configuration, orchestration, and SDN controller vulnerabilities (Garg,

Kaur, Kaddoum, Garigipati & Aujla, 2021; Rathee, Garg, Kaddoum & Choi, 2020; Illy,

Kaddoum, de Araujo-Filho, Kaur & Garg, 2022a).

In (Hong, Xu, Wang&Gu, 2015), the authors discussed the probability of a topological poisoning

attack, in which the visibility of the network, the OpenFlow controller, and network functions

can be breached, leading to serious hĳacking, denial-of-service, and man-in-the-middle attacks.
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Furthermore, in (Hong et al., 2015), the authors mention that decoy attacks can target the IP

protocol address of the SDN controller, where the attacker intercepts OpenFlow traffic to prevent

it from adequately reaching the network switch. As a result, the spoofed SDN controller can

cause the spoofed traffic to bypass the policy charging rules function (PCRF), causing resource

exhaustion and generating a distributed denial of service (DDoS) attack that leads to network

performance degradation. In addition, the infected OpenFlow node can manipulate the counter

and insert fake traffic into users, bypassing the charging system and adopting incorrect traffic

costs.

According to (Shin & Gu, 2013), another information disclosure attack exists in which the

network fingerprint and data controller may be disclosed due to an external XML mechanism

attack. One of the most dangerous threats is the Distributed Denial of Service (DDoS) attack,

resulting in the exhaustion of resources, SDN controller overload, and OpenFlow switches

disconnection, as shown in (Kloti et al., 2013a; Hong et al., 2015; Shin & Gu, 2013; Shin,

Song, Lee, Lee, Chung, Porras, Yegneswaran, Noh & Kang, 2014). In general, some research

works indicate that the main security concerns in 5G are related to the SDWN. (Schehlmann,

Abt & Baier, 2014).

1.3 SDWN security challenges

The prevailing security challenges are inherited from the SDN architecture due to the following:

• Centralized management: Since the network configuration, network service access control,

and network service deployment are integrated into the centralized management at the

control layer, an attacker can compromise the SDWN successfully, which might cause the

interruption of network services and thus affect the whole network.

• Network programmability: SDWN network programmability has brought up new security

concerns such as:

◦ Additional interactions to handle various service level agreements and privacy issues

arising from device and traffic isolation.
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◦ Programmability could bring the convenience of automation, flexibility, and the exposition

of various security threats. Consequently, it is necessary to strengthen the authentication

algorithms in communication channels and virtual applications, to prevent the controller

from exposure.

◦ Protection of the application-controller plane interface (A-CPI) and intermediate-controller

plane interface (I-CPI). These SDN interfaces must support robust security components,

especially when they cross domain boundaries.

• The deployment of SDN requires an infrastructure connected with different domains. Hence,

it involves establishing authentication procedures to guarantee a secure channel configuration.

• The integration with the existing protocols must be ensured to SDNs. Meanwhile, in the

construction of the SDN architecture, the ability to increase or decrease performance and cost

in response to changes in application and system processing demands must be considered.

1.3.1 SDWN security attacks

The software-defined wireless network concept was proposed by (Kreutz, Ramos & Verissimo,

2013) as an extension of the SDN paradigm to integrate specific wireless network functionalities;

Revoltingly, SDWN is vulnerable to security attacks that can arise at different sections of the

wireless network. Security threats can be divided into Software-Defined Fronthaul (SDF) and

Backhaul (SDB) networks.

As for wireless SDF applications, SDWN threats are inherited from physical layer threats surface

attacks (Marinho, Granjal & Monteiro, 2015; Yoon et al., 2017). On the other hand, security

threats in SDB can be divided into four vectors, as follows:

• Application layer security;

• Control layer security;

• Data layer security;

• Communication channel security.
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The security threats in communication channels are divided into security attacks over control

channels and security attacks over the data layer. The scope of this research is limited to the

security attacks in the data layer and the communication channel, as detailed in the following

section.

1.3.1.1 Security attacks over control channels

The network controller is the critical component of the SDWN architecture due to its centralized

intelligence and management capabilities; consequently, it is the target of the most common IP

attacks. The absence of IP-level security is the main threat to control channel security. Current

SDN control channels are based on higher-layer security mechanisms like TLS and the SSL

(secure socket layer) communication protocol.

However, SSL and TSL are vulnerable to several IP-based attacks, such as Rivest Cipher 4 (RC4),

Browser Exploit Against SSL/TLS (BEAST), Compression Ratio Info-leakMade Easy (CRIME),

and Padding Oracle On Downgraded Legacy Encryption (POODLE) attacks (Liyanage et al.,

2014a). Consequentially, protection protocols from higher layers must be stronger to dispense a

proper level of security and resiliency for the control channel.

In addition, in the control layer, the security level depends on various factors such as self-

signed certificates (SSC), certificate authority (CA), and security protocols. Therefore, strong

authentication between the control and data planes is necessary.

Further, the TLS/SSL protocols are insufficient to perform a robust authentication procedure

between the control plane and the data plane; an attacker can inject fake flow requests to inundate

the controller’s resources and overload the flow tables in switches, performing DoS attacks.

Consequently, some researchers mention in (Meyer & Schwenk, 2013) that TLS/SSL authentica-

tion mechanisms are vulnerable to IP spoofing and CRIME attacks.
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Table 1.1 Known attacks on control channel

Attack Type Description Impact
RC4 attack The synchronization process enables this attack

when it is continuously encrypting since the
attacker can obtain the data in clear text.

Important information is extracted to
perform future attacks and reveal the
identity of network devices.

BEAST attack The attacker mounts a plain-text attack with
vectors available in the network using cipher
block chaining.

Important information is extracted to
perform future attacks and reveal the
identity of network devices.

CRIME attack During the authentication process, an attacker
can catch session tokens to perform session
hĳacking.

Overload controller resources by
adding or manipulating fake flow re-
quests.

POODLE attack The attacker downgrades TLS sessions to
SSL3.0 sessions and uses design flaws in SSL
3.0 that allow changing padding data at the
end of a block cipher. As a result, the encryp-
tion cipher becomes less secure each time it is
passed.

Abnormal termination of the commu-
nication between the control and data
layers.

DDoS A set of attackers sends a succession of TCP
Synchronization (SYN) requests to consume
server resources and make the controller and
DPSs unresponsive to legitimate traffic.

Overload of ternary content address-
able memory (TCAM) of the data
layer.

TCP reset attack The attacker injects a sequence of TCP reset
requests to reset the communication session
prematurely.

Abnormal termination and service
quality collapse of communication
channels.

LUCKY 13 attack The attacker performs a man-in-the-middle at-
tack to recover the plain text from a CBC
(Cipher-block chaining) encrypted TLS session.

Important information is extracted,
which can be used to perform future
attacks and reveal the identity of net-
work devices.

1.3.1.2 Security attacks over the data channel

In IP-based telecommunications networks such as SDWN, the radio network layer (RNL)

encryption terminates at the base station. Therefore, the data layer traffic is not encrypted.

Thus, the data channel is vulnerable to eavesdropping, reestablishment, denial of service,

and man-in-the-middle attacks. During an eavesdropping attack, the attacker can sniff the

switch network to collect flow table information to observe traffic patterns. Consequently, the

information gathered can be used to perform DoS attacks.

Nevertheless, the data channel in SDWN does not have defense mechanisms against data

alteration attacks. For instance, a man-in-the-middle attacker can modify or destroy data without
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Table 1.2 Known attacks on data channel

Attack Type Description Impact
Spoofing attacks DoS attack is performed because an

attacker may impersonate a legitimate
Deposit Protection Security (DPS).

The traffic flows are trans-
ferred to the wrong destina-
tion.

Eavesdropping attacks IP parameters and flow data are stolen
by an attacker.

DoS, reset, spoofing, and
flow modification attacks are
performed.

DoS/DDoS attacks The attacker exhausts the Ternary
Content-Addressable Memory
(TCAM) of switches.

Decreases or eliminates the
availability of the DPS.

Message modification attacks The attacker modifies flow tables with
fake rules.

Exhausts memory in DPS
and reduces QoS of user ser-
vices

Replay attacks An attacker intercepts legitimate sig-
naling traffic and overloads the network
by retransmitting it continuously.

Jeopardizes the data plane by
destroying the in-flight flow
rules.

Reset attacks The attacker inserts a sequence of TCP
reset requests to reset the communica-
tion session prematurely

Terminates the ongoing com-
munication sessions between
DPS devices

knowing the network provider. Accordingly, excessive flow entries may be stored in data layer

switches; thus, overloading the controller due to the unreasonable flow requests forwarded to it;

hence, decreasing the quality of service (QoS) of communication sessions. Moreover, the data

plane also needs robust mutual authentication mechanisms in the control plane. Intruders can

impersonate a legitimate switch without such authentication mechanisms and inject fake traffic

flows to the data plane (Scott-Hayward, O’Callaghan & Sezer, 2013). In this vein, the attacker

can deplete the flow tables of the data plane switch and downgrade the available bandwidth

for data traffic. Moreover, the controller may also be affected by forwarding unnecessary flow

requests. Common attacks on data channels, as summarized below (Liyanage, Braeken, Jurcut,

Ylianttila & Gurtov, 2017; Yoon et al., 2017).
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Table 1.3 SDWN features and mitigation mechanisms

SDN feature SDWN mitigation mechanism
Centralized control mode Different security mechanisms have centralized security policy

management and coordination.
Authentication procedures and all security mechanisms are
managed by the centralized controller.

Dynamic and flexible adjustment Dynamically adjust the security mechanisms to satisfy varying
traffic demands.

Scalability and flexibility Common security mechanisms can be applied to any section
of the network.
Securitymechanisms are decoupled from infrastructure devices
and implemented in cloud-based resources.
Security mechanisms use and share cloud-based resources.

Virtualized environment Common security mechanisms are implemented over multiple
access technologies and operators.
Eliminates vendor-specific security mechanisms.

Decision-making procedures Common monitoring tools and machine learning procedures
can be used to monitor every section of the network.
Network-monitoring resources are scaled to match traffic de-
mand without changing the physical infrastructure.

Abstraction Security mechanisms are not coupled to a specific section of
the network.
Security mechanisms are independent of the infrastructure.
Complex network access technologies and protocols to security
applications are hidden.

Granular policy management Security policies are applied at more granular levels, such as
user, application, or session.

Network programmability Software applications allow rapid and efficient changes in the
security mechanisms.
Security mechanisms are modified quickly according to traffic
demands.

Dynamic attack mitigation Fast deployment of new security mechanisms to prevent and
identify new attacks.
Efficient forensics with holistic network informatics prevent
future attacks.

Flow paradigm Flow labels isolation.
Energy efficiency It will be possible to make better use of sleep mode and achieve

more power savings while avoiding DoS attacks.
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1.3.1.3 Security solutions over communication channels

To prevent security threats from compromising the SDWN, real-time monitoring and decision-

making features are imprescriptible for a suitable security scheme for 5G communication

channels.

To secure the communication channels in current telecommunication networks, IPsec is the most

commonly used security protocol (Bikos & Sklavos, 2013). Correspondingly it is possible to use

IPsec with slight modifications to secure communication channels towards 5G as is presented in

(Meyer & Schwenk, 2013), wherein the authors propose a Host Identity Protocol (HIP)-based

secure control channel for SDWN. The authors suggest the following additional features to the

existing SDWN architecture.

1. Distributed Security Gateways (SecGWs) are utilized to secure the controller from external

intruders and provide high availability;

2. A SEC (Security) entity is attached as a control entity to control the SecGWs;

3. A Local Security Agent (LSA) application is installed in each data layer device to handle

security policies;

4. The IPsec BEET (Bounded-End-to-End-Tunnel) is used to secure the control channel.

Also, (Liyanage, Abro, Ylianttila & Gurtov, 2016) propose virtualized middleboxes that can

be especially useful for implementing dynamic, flexible and manageable security mechanisms

in 5G wireless networks. Table 1.3 lists possible use cases of new SDWN functions to

overcome existing wireless network security challenges. On the other hand, high-level security

for critical communication can be achieved by using new security mechanisms, such as

authentication procedures, integrity and encryption algorithms, as mentioned in (Zhang,

Janakiraman, Sim & Kumar, 2006; Xiao, 2004a; Koreman, Morris, Wu, Jassim, Sellahewa,

Ehlers, Chollet, Aversano, Bredin, Garcia-Salicetti et al., 2006), and biometric-based continuous

authentication as addressed in (Altinok & Turk, 2003). Furthermore, in citepB-25, the authors

propose an intrusion detection solution combining IP-trace back with Enhanced Adaptive

Acknowledgment (EAACK). Meanwhile, in citepB-32, intrusion detection with neural networks
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and watermarking techniques is proposed. Moreover, in citepB-33, intrusion detection based on

a soft margin support vector machine (SVM) is proposed. In (Liu, Yu, Lung & Tang, 2009; Bu,

Yu, Liu, Mason & Tang, 2011), intrusion detection and continuous authentication for SDWN are

combined. Hence, the main challenges of these security schemes are high resource consumption,

high overhead and lack of coordination. Thus, the solutions discussed in this section may not be

viable to address the critical requirements of 5G. Therefore, preliminary results are presented in

the following chapters to address these security challenges and provide a robust framework to

minimize the possibility of attacks in SDWN.
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2.1 Abstract

Creating a secure communication environment is becoming a significantly challenging task in

5G Heterogeneous Networks (HetNets), given the stringent latency and high capacity require-

ments of 5G networks. This is particularly factual, knowing that the infrastructure tends to be

highly diversified, especially with the continuous deployment of small cells. In fact, frequent

handovers in these cells introduce unnecessarily recurring authentications leading to increased

latency. In this paper, we propose a software-defined wireless network (SDWN)-enabled fast

cross-authentication scheme that combines non-cryptographic and cryptographic algorithms

to address the challenges of latency and weak security challenges. Initially, the received

radio signal strength vectors at the mobile terminal (MT) is used as a fingerprinting source to

generate an unpredictable secret key. Subsequently, a cryptographic mechanism based upon the

authentication and key agreement protocol by employing the generated secret key is performed

to improve the confidentiality and integrity of the authentication handover. Further, we propose

a radio-trusted zone database aiming to enhance the frequent authentication of radio devices

that are present in the network. To reduce recurring authentications, a given covered area is

divided into trusted zones where each zone contains more than one small cell, thus permitting

the MT to initiate a single authentication request per zone, even if it keeps roaming between

different cells. Accordingly, once the RSS vectors and the encrypted mobile identification are

received by the authentication slice (AS), this latter builds the authentication vector using the
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:-nearest neighborhood technique to estimate the :dh fingerprint distribution which is compared

to the radio trusted zones database to prove the legitimacy of the MT and the network slice

(NS). A cross-layer authentication protocol is consequently executed. The proposed scheme is

analyzed under different attack scenarios and its complexity is compared with cryptographic and

non-cryptographic approaches to demonstrate its security resilience and computational efficiency.

2.2 Introduction

Wireless connectivity has progressively secured its place in the last decade to be an indispensable

part of our communication means that has undoubtedly increased mobile traffic load. According

to (Index), mobile data traffic is expected to expand at a compound annual rate of 57% until

2019 and is predicted, by year 2020, to exhaust the available capacities provided by the fourth

generation (4G) and the long term evolution (LTE) infrastructures (Wang, Haider, Gao, You,

Yang, Yuan, Aggoune, Haas, Fletcher & Hepsaydir, 2014a).

In addition, network densification using low-power small cells is considered to be a core solution

for 5G. This new architecture indeed demands new requirements such as flexibility inmanagement

and configuration, adaptability and vendor-independence. To meet these requirements, software

defined wireless networks (SDWN) have been proposed as a cost-effective solution (Akyildiz,

Wang & Lin, 2015c). Hence, the hetnet nature of 5G with the separation of data and control

planes and the virtualization of major network functions increase the need for authentication

improvement, integrity, and privacy protection in the presence of malicious actors (Chen, Yang,

Trappe & Martin, 2010).

The traditional authentication handover mechanism is based on a cryptographic key and

on multiple handshakes. The authentication and key agreement (AKA) protocol which is

standardized by the third generation partnership project (3GPP) in (Deng, Fu, Xie, Zhou,

Zhang & Shi, 2009b) is widely used in current wireless networks. In brief, the AKA protocol
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involves three entities which are (i) the mobile terminal (MT) which represents the user, (ii) the

home environment (HE) and (iii) the serving network (SN).

AKA allows the SN to authenticate and exchange keys with the user, without ever being given

the user’s key. Instead, one-time authentication vector (AV) are issued to SN by the HE. All

communication and computations in AKA are very efficient thanks to the use of symmetric-key

cryptography. To this end, the client authenticates the network by computing the response (RES)

using its k secret key and the network authenticates back to the client across-AV by associating

its response with the expected response (XRES). Using symmetric cryptography, AKA shares

a k secret key with the MT and the HE in order to maintain the privacy and security of the

information.

By exploring and investigating the security analysis of current authentication protocols, we

pinpoint several of their vulnerabilities against different attacks including resistance attacks,

black hole attacks, replay attacks, man-in-the-middle attacks, impersonation attacks, and denial

of service attacks (Chen et al., 2010). We also note that considerable research has been made

to improve such protocol. For instance, in (Li & Wang, 2011), the authors propose a security

enhanced authentication and key agreement (SE-EPS AKA) method based on wireless public

key infrastructure by using the ellipse curve cipher (ECC) encryption. Additionally, the research

work in (Hamandi, Sarji, Chehab, Elhajj & Kayssi, 2013) points out a scheme which resolves the

privacy problem and prevents mobility management entity (MME) masquerading. Moreover,

the devised scheme takes into consideration the fact that the MT is energy-limited and for that

reason, public key cryptography is not used at the MT. The mechanism in (Purkhiabani & Salahi,

2011) suggests an enhanced AKA protocol using a methodology which provides zero-knowledge

proof using a pre-shared key that is never sent over the transmission medium. A new key

exchange procedure is proposed in (Deng et al., 2009b) where the user identity information and

authentication vector in the network domain are encrypted using the public key cryptosystem.

The public parent key adopted in local authentication is generated by means of random data. In

(Abdo, Chaouchi & Aoude, 2012), the authors show that their proposed approach eliminates

the synchronization between mobile station and its home network in the key exchange process.
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Besides the discussed vulnerabilities, the conventional AKA authentication protocol may not

fulfill the requirements of future dense small 5G network cells in terms of security, resistance to

spoofing, low latency, infrequent handover and low computational costs (Andrews, Buzzi, Choi,

Hanly, Lozano, Soong & Zhang, 2014).

Alternatively, it has been shown that exploiting the environment-dependent radiometric features

of a specific transceiver pair, such as the channel state information (CSI) (Duan & Wang, 2016)

and the received signal strength indicator (RSS) (Moghtadaiee & Dempster, 2014), can improve

the authentication procedure. In fact, these channel characteristics can be used to differentiate

signals arriving from authorized transmitters and those originating from spoofed transmitters

(Hao, Wang & Behnad, 2014), (Yu, Baras & Sadler, 2008). Moreover, (Honkavirta, Perala,

Ali-Loytty & Piche, 2009) presents a comparative survey of wireless local area network location

fingerprinting schemes. The foundation behind these schemes is that RSS is location-specific,

due to path loss and channel fading, where most works in this category usually assume that the

users are static; thus generating an excessive false positive rate in mobile scenarios. Accordingly,

an attacker who is at a different location from the genuine user might be placed in different RSS

profiles and whereby can infer the RSS of the user by using a wireless sniffer tool.

To tackle these challenges, a promising cross-layer authentication method is proposed in this

paper. The novelty of our work lies in devising and evaluating a multi-layer approach which

amalgamates physical layer information (i.e., non-cryptographic) (Hou, Wang & Chouinard,

2012) in conjunction with cryptographic procedures. In this context, we define two security level

agreements (SLAs) which are devised for decentralized and centralized networks, respectively.

These agreements are established at the beginning between the network slice (NS) and the

authentication slice (AS).

Moreover, we proposed the use of a radio trusted zones data base at the AS side. In fact, a

given covered area is divided into trusted zones where each zone contains more than one small

cell, thus permitting the MT to initiate a single authentication request per zone, even if it keeps

roaming between different cells. On the other hand, the data base of each zone contains the
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different RSS profiles and their corresponding localizations. Thanks to the widely used radio

mapping technique, this database is filled. Hence, this approach aims to add another security

level to the system and reduce the recurring authentications in the network.

At the MI side and for non-cryptographic procedures, the gathered RSS measurements at the

MT are used to generate the : th fingerprint aiming to randomize the secret key used by the AKA

protocol. After this step, a cryptographic approach employing an enhanced AKA protocol is

performed in order to improve the confidentiality and integrity of the authentication handover.

Furthermore, sending the mobile identity (IM) on the fly in a clear form (without encryption) is

still another weaknesses of the AKA protocol. We address this problem by generating a radio

signal fingerprint that prevents such transmission patterns, thus obscuring IM. Subsequently, the

obscured IM is encrypted and then transmitted with the RSS parameter to the AS to corroborate

the MT identity within the NS.

Once received, the AS, in response, sends an AV built with the aid of the : th fingerprint, to

approve the NS identity into the MT. In addition, before AS sends AV to MT across NS, AS

applies the :-nearest neighborhood (:-NN) technique on the revived RSS with the existing data

base to estimate the :dh fingerprint distribution. The nearest output of this algorithm is used to

identify the corresponding legitimate location stored in the database. It should be mentioned

that the inaccuracy of the estimation technique does not affect the reliability of the proposed

protocol because the identification of legitimate location is already takes into consideration

the localization error range to define the trusted radio zones. Finally, the AKA authentication

protocol is performed as operated in conventional cryptographic protocols. To have better

insights into this work, we frame the set of contributions of this paper as follows:

1. Defining two SLA for decentralized and centralized 5G networks and proposing a cross-layer

authentication approach based on SLA specifications.

2. Exploiting the random and unique RSS measurements in order to compute a secret : th

fingerprint.

3. Enhancing the security level of 5G networks by introducing a novel approach rendered by

the creation of a radio trusted Zones database.
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4. Executing security protocol analysis and validating the sensitivity of the proposed cross-layer

protocol against different threats by leveraging the AVISPA tool. Additionally, comparisons

of the computational complexity of the proposed scheme against traditional cryptographic

and non-cryptographic approaches are also conducted.

To the best of author’s knowledge, the cross-authentication approach along with radio trusted

zones have not yet been devised and evaluated in the literature. The remainder of this paper

is organized as follows. Section II introduces the proposed system model and the protocol

design. In Section III, the security and performance analysis are evaluated. Finally, this paper is

summarized in Section IV, where a number of future endeavors are also put forward.

2.3 System Model and Protocol Design

In order to tackle the important security challenge in SDWN-based 5G HetNets which results

from the separation of the radio control plane from the data plane, we propose an AS as a

third party security agent to provide isolation and efficient security authentication management

over the integral network. Therefore, a cross-layer authentication procedure is proposed. This

procedure is mainly based on increasing the security level of the AKA protocol by using physical

layer information and machine learning algorithms at the server side in order to estimate the

authenticity of the radio devices. The following subsections will detail the various steps related to

the proposed protocol, namely, fingerprint generation, estimation and distribution, the cross-layer

authentication and protocol design.

2.3.1 Generation of the : th fingerprint

In our approach, we employ a channel-based fingerprinting mechanism to enhance the authenti-

cation procedure. Towards this end, we first define two SLAs which address decentralized and

centralized networks, respectively. For decentralized networks, the authentication procedure is

comprised of two steps. For centralized networks, a complete three steps approach is applied.

These agreements are established at the beginning between the NS and the AS.
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After defining the agreement, the non-cryptographic procedure is performed. As shown in

Figure 2.1, the RSS measurements from different base stations are gathered and then averaged.

In fact, to make this RSS parameter unique and random to suit the generation of the : th

fingerprint key, different RSS values from various radio devices are required to compute the

average. Otherwise, considering a single RSS measurement from one radio device and due to

the multi-path propagation environment, two different users on different locations may have the

same value, which hinders the security of the protocol. Hence, the received radio signal strength

from different radio devices, when collected at the DCℎ MT side, can be represented as

RSSD = ['1,C1 , '2,C2 . . . , '#,C=], (2.1)

where C8 is the time of arrival of the signal received from the 8Cℎ access point '8,C8 to the DCℎ MT

at a given location. This time of arrival significantly reduces the possibility to impersonate the

RSS vectors by an intruder.

The MT then averages the RSS vectors to generate the : th fingerprint such that

: = E[RSSu], (2.2)

where E[.] is the mean operator.

The generated : th fingerprint aids in randomizing the secret key that is used by the AKA protocol.

After this step, the AKA protocol is performed at the MT. As a first step in this protocol, the IM

is masqueraded by the : th fingerprint. The output of the masquerading, dubbed as temporary

identification mobile (TIM) aims to hide the device IM. After masquerading, in order to protect

TIM from catching attack, this latter is encrypted with the AES ecryption algorithm. Finally,

MT sends TIM with the RSS vectors to the AS to corroborate the MT identity within the NS.
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Figure 2.1 RSS vectors transfer between 5G radio devices
through the MT in SDWN Architecture

2.3.2 Estimation of the :dh fingerprint distribution

In this section, we will first introduce the proposed radio trusted zone concept that we consider in

our system design to recognize the legitimacy of different radio device identities in the network.

To this end, each zone is set to form a cluster of neighboring small cells. The database of

this latter is built thanks to radio map database using the localization fingerprinting method in

(Honkavirta et al., 2009).

Since building the radio trusted zone database is out of the scope of this paper, in the remaining

of this work, we assume the existence of this database at the AS side. Once the radio signal

is received (i.e., TIM and RSS vectors), the AS analysis the RSS vectors and computes the

: th fingerprint as given in Eq. (6.2). The resultant key is used to unmask TIM in order to

corroborate the IM authenticity within the NS. After this step, the deterministic :-NN method is

used to estimate the :dh fingerprint distribution. In fact, the :-NN method is one of the simplest

ways to determine the fingerprinting process of wireless devices by using a radio map database.

Hence, in contrary to our solution, the conventional :-NN method is victim of false positive
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alarms when its output is compared to a radio trusted zone without taking into account the

localization error range. Finally, in the proposed system, the :-NN process considers multiple

nearest neighbors to compute the :dh fingerprint distribution as follows

:3ℎ = min

√√
.∑
H=1

(
RSSD − RSSH

)2
, (2.3)

where RSSH is the RSS vector stored in the radio trusted zone. The resultant :dh is used to

identify the corresponding location in the trusted radio zones database, taking into account the

localization error range, to prove the legitimacy of the radio device. In the next subsection, we

will detail the key exchange process; handover through the cross-layer authentication protocol.
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Figure 2.2 Cross-layer authentication handover procedure

2.3.3 Cross-layer Authentication Protocol

The procedure of keys’ exchange between different network entities is exhibited in Figure 2.2. In

this context, we assume that NS possesses previous credentials to coordinate with the AS. The
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following steps within the authentication protocol are executed only if the MT is a new user or

enters a certain trusted zone for the first time.

Step 1:
• MT computes the : th fingerprint based on Eq. (6.2) and masquerades IM with the : th

resulting TIM.

• MT sends TIM and RSS vectors to AS in response to the demand made by the NS.

Step 2:
• AS generates the : th fingerprint based on RSS vectors and IM from TIM, and : th.

• AS estimates :dh fingerprint distribution and search its corresponding legitimate

localization in the radio trusted zones database that has been previously built.

• AS generates AV only if the legitimate localisation is found in the database.

Hence, AV will contain the following keys:

• MAC = 51( : th, AMF, SQN, RAND)

• XRES = 52( : th, RAND)

• CK = 53( : th, RAND)

• IK = 54( : th, RAND)

• AK = 55( : th, RAND)

• AUTH = SQN ⊕ AK| |AMF| |MAC

where ⊕ and | | denote the bitwise XOR and the concatenation operations, respectively. The

notions 51 to 55 are the AES cryptographic hash functions, SQN is the fresh sequence number,

AMF denotes a public authentication management field handled by the network operator, RAND

signifies a random number, IK symbolizes the integrity key, CK refers to the cipher key, AK is

the anonymity key, MAC denotes message authentication code, XRES is the expected response,

XMAC is the expected MAC and AUTN implies the authentication token.
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It is important to note that for the decentralized network, the cross layer authentication algorithm

ceases in step 2 thus AS sends the AV[RAND, AUTH] to MT without passing by NS, then MT

verifies SQN and compares XMAC with the MAC to validate the network. Therefore, for the

case of the centralized network, the AS sends AV[RAND, AUTH, XRES] to the NS and then the

NS sends AV[RAND, AUTH] to MT. Subsequently, the MT calculates different keys as follows:

• AK = 55( : th, RAND)

• SQN= 1st(AUTN) ⊕ AK

• XMAC= 51(: th, 2nd(AUTN), SQN, RAND)

• RES = 52( : th, RAND)

• CK = 53( : th, RAND)

• IK = 54( : th, RAND)

After calculating the keys, the following is performed:

Step 3:
• If SQN is in the correct range, then the XMAC is compared with MAC to validate the

network.

• If SQN is not in the correct range, then the connection is rejected.

• Once validated, MT calculates its RES value and sends it to the NS for validation.

• NS compares RES with XRES that is already present in the authentication vector.

• If RES is equal to XRES, then the MT is also authenticated by NS and mutual

authentication is achieved. Otherwise, it is rejected.

2.4 Security and Performance Analyses

In the following, we perform automated security analysis to asses the security level of the

proposed cross-layer authentication protocol using the Avispa tool to verify its resistance against

various attacks. Moreover, we leverage a JAVA API to estimate the computational cost of the

proposed scheme.
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2.4.1 Security Analysis

In this section, we analyze the security of the conventional authentication protocol and the

proposed authentication protocol. In the first scenario, we assess the security of the conventional

AKA protocol. Since this protocol sends its pre-shared key over the air, we consider herein

that an intruder in the network has the knowledge about the key. In contrast, in the second

scenario related to the proposed protocol, the intruder is unable to acquire knowledge about the

pre-shared key given that this protocol does not send the key over the air. In both scenarios, the

intruder performs several typical attacks (i.e., man-in-the-middle, redirection, replay, etc.) on

the protocols.

2.4.1.1 Scenario 1

In this scenario, the MT sends the IM and the secret key k on the fly to AS to initiate the

authentication process. This process is formalized and then assessed using Avispa tool, As

depicted in Figure 2.3 the protocol analysis indicates UNSAFE, revealing that the protocol is

vulnerable to various analyzed threats.

Figure 2.3 Avispa simulation for scenario 1

2.4.1.2 Scenario 2

As described in our protocol, MT sends IM encrypted with '((D on the fly to AS. In contrast

to the conventional mechanism, MT, SN and AS generate the : th fingerprint separately which

improve the security as the fingerprint is never sent on the fly. This is corroborated by conducting
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protocol analysis using Avispa tool, which indicates that this protocol is SAFE (against the

analyzed threats) as shown in Figure 2.4.

Figure 2.4 Avispa simulation for scenario 2

In the following, we detail how different attacks could be performed under scenario 2 and how

our protocol design is resilient against such threats.

2.4.1.2.1 Redirection attacks and black-hole attacks

The mobile identification is not protected in the current mobile network and can be altered by an

adversary with some devices such as an IM catcher, which leads to the redirection attack. In our

protocol, the : th fingerprint is used to masquerade the IM and thereby protects 5G networks

against redirection attacks.

Accordingly, the attack fails if the malicious user is unable to obtain the legitimate user

information from the MT. In the proposed protocol, the MT computes the IM embedded with the

: th fingerprint generating TIM and sends it to the AS. The authentication request is denied if the

AS fails to match the IM sent by the MT. Such a technique solves the problem of miss-charged

billing in the 5G network. Thus, the proposed scheme immunes the 5G network from black-hole

attacks.



38

2.4.1.2.2 Replay attacks

The cross-layer protocol is resilient against this attack by solely sending the RSS vectors and

TIM during the transmission of information over the network. This prevents the misuse of valid

information; an adversary typically can delay the message over the network and sends it later for

somemalicious purpose if no randomnumber or fingerprint is involved in the transmittedmessage.

2.4.1.2.3 Man-in-the-middle attacks

Aman-in-the-middle attack occurs when an adversary eavesdrops the communicated information

between the MT and the NS. In the context of the our proposed cross-layer protocol, the : th key

is independently generated in the MT, AS and NS. This key prohibits the communication from

being eavesdropped.

2.4.1.2.4 Impersonation attacks

Over the 5G network, the corruption of the control plane endangers the security of the whole

network. Following are some scenarios in which an adversary may attempt to impersonate the

5G network.

1. Consider the presence of a fake NS where an intruder can eavesdrop all its messages. The

adversary must reply with a valid response RES to the NS in order to impersonate the MT,

but the intruder cannot obtain the correct RES since this latter is exchanged exclusively

between the MT and an uncorrupted AS.

2. If the intruder attempts to impersonate an uncorrupted network, the attempt would fail as

the MT can verify that previously, there was no initiated request for AV. Furthermore, MT

only exchanges traffic with trusted radio devices (i.e., the radio trusted zones database).
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2.4.1.2.5 Denial of Service (DoS) attacks

The DoS attack and its variants are discussed in the following scenarios; the attacker MT’s flood

the victim control plane with authentication requests by spoofing the IM/TIM, the k key and a

request number.

1. The attacker MT floods the NS victim with self IM. If the malicious MT does not respond

within the threshold time duration to the proxy, then the connection is simply terminated.

Accordingly, NS resets the authentication request and releases the resources that are used to

maintain the authentication request status. In addition, if the request is originating from

a malicious user, then the proxy will not acquire the : th key or would simply receive an

invalid : th key. There is a timeout period for each MT to maintain the state of half-opened

authentication requests. If the malicious MT attempts to cause an overflow at the victim

NS with the half-open authentication requests, NS would not be able to accept any new

incoming authentication requests.

2. The attacker MT floods the victim NS by spoofing IM. In this scenario, if the actual MT

that receives a message is not active, then the AS will not receive any information from the

MT, and this process becomes similar to first case; the NS waits for a threshold time to hear

from the AS. After the timeout period, the NS resets the authentication request and releases

the resources that are used to maintain the authentication request status.

In fact, in this protocol, the AS is supposed to receive an RSS vectors from the MT, which is

neither an actual IM of the MT nor a TIM for the NS. An actual IM or TIM with a fake : th key

will not be able to extract the correct IM of the MT and thus the connection will be terminated.

Hence, there is no chance that the attacker would be able to generate the same : th from a victim

MT’s IM. Indeed, given the aforementioned information, we assert that the proposed cross-layer

AKA protocol protects the network from DoS attacks.
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2.4.2 Computational cost analysis

We further thought that it would be insightful to analyze the computational cost of our proposed

cross-layer protocol. In this context, it is important to note that the SDWN paradigm introduces

the cloud radio access networks (C-RAN) paradigm, which aims at reducing the computational

cost as most of the processing activities are executed on the distributed cloud. Moreover,

the well-trusted radio zones database is formed by small cells; a mechanism which avoids

frequent authentication of the MT within each small cell. We perform comparisons of the

non-cryptographic and cryptographic authentication algorithms against the proposed cross-layer

protocol under an environment which does not employ radio trusted zones. For our analysis,

we exploit a dataset of 25 radio signal strength samples collected for 280 combinations of user

locations and orientations.

Since our proposed cross-layer protocol is implemented in Java, a Java API is developed for this

evaluation purpose to be coherent and to generate real time perspectives of the computational

cost. Moreover, we use an Intel Core i7-6700 CPU with 3.4 GHz X64 based processor and

16 GB RAM to conduct the computations. The results of this comparison is shown in Figure

2.5, which demonstrates the computational cost of cryptographic, non-cryptographic and the

proposed cross-layer protocol across small cells with and without employing the trusted zone

approach at the AS level. In the case where the proposed protocol operates without employing

the radio trusted zones, we observe a clear increment in computational cost in comparison with

non-cryptographic and cryptographic procedures, respectively, and this gap increases when the

number of cells increases. The augmentation is due to the fact that our proposed cross-layer

protocol operates in this specific case without a trusted zone and uses machine learning algorithm

to authenticate the radio devices. The absence of a trusted zone increases the recurrence of

authentication procedures, which leads to more complexity.

Once the radio trusted zones’ approach is employed, the computational cost of the proposed

cross-layer protocol drops in contrast with the first approach. This renders the deployment of a
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radio trusted zones a better choice to achieve a lower complexity and thus reduce latency.
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Figure 2.5 Cross-layer authentication protocol with and
without radio trusted zones, in comparisons with
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2.5 Conclusion

In this paper, we propose a software-defined wireless network (SDWN)-enabled fast cross

authentication scheme that combines non-cryptographic and cryptographic algorithms to tackle

the challenges of latency and weak security in 5G HetNets. First, the radio trusted zone

database concept is introduced aiming to reduce the authentication recurrence. Consequently, the

cross-layer algorithm is designed, implemented and evaluated. By executing automated protocol

analysis using the Avispa environment, the security posture of our cross-layer authentication

protocol in terms of resilience to various attacks is analyzed. The results show that the proposed

scheme satisfies 5G security requirements and its advantages have been verified by simulations.

Further, the proposed protocol causes considerable deduction of traffic authentications, thanks

to the introduction of the radio trusted zone unit. Finally, a Java API is developed to compute
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the complexity of our system and to compare it against cryptographic and non-cryptographic

approaches. It is shown that if a radio trusted zone is employed, the computation complexity is

significantly reduced in comparisons with the two latter approaches, by limiting the authentication

recurrence. As for future work, we will be focusing on employing machine learning techniques

to properly classify the various RSS profiles of a HetNet in an attempt to build reliable and

efficient radio trusted zones.
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3.1 Abstract

The 6LoWPAN [IPv6 over low-power wireless personal area networks] standard enables resource-

constrained devices to connect to the IPv6 network, blending an IPv6 header compression

protocol. For this network technology, a new routing protocol called Routing Protocol for

low power Lossy network [RPL] has been designed. The latter is a lightweight protocol that

determines the route across the nodes based on rank values. This protocol is known to be non-

resilient against Rank attacks, which aim at creating non-optimized routes for packet forwarding,

hence overwhelming the constrained 6LoWPAN. With 5G, Software-Defined Networks [SDNs]

have been developed to facilitate simple programmable control plane, Quality of Service [QoS]

provisioning, and route configuration services for 6LoWPAN. However, there is still a lack

of optimization mechanisms to protect 6LowPAN against Rank attacks in the SDN-based

deployment. To this end, in this paper, a Reinforcement-Learning [RL] agent is leveraged to

assist and complement a SDN controller in achieving cost-efficient route optimization, and QoS

provisioning packet forwarding to prevent rank attacks. Experimental results confirm that our

approach effectively prevents Rank attacks, while providing an adequate delay and radio duty

cycle. Meanwhile, it maximizes the packet delivery ratio, facilitating practical implementations

in software-defined Low Power Internet of Things (IoT) Networks.
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3.2 Introduction

Wireless sensor networks [WSNs] are considered as one of the most important applications of

the Internet of Things [IoT] (Kocakulak & Butun, 2017a). In general, WSNs can be considered

as Low Power and Lossy Networks [LLNs], presenting some constraints on their deployment,

especially in critical and large-scale scenarios (e.g., massively distributed, and heterogeneous

networks). The resource-constrained limitations prevent the deployment of WSNs in scenarios

where the operation is subject to strict reliability and performance requirements. At the same

time, the lack of flexibility stems from the rigidity of WSNs towards policy changes, making

these networks difficult to adapt. Internet Protocol (IP) technology considerably brings direct

and bidirectional access to devices reducing the mentioned difficulties, but some issues emerge

concerning interconnections’ complexity.

In WSNs, IP networks aim to provide end-to-end communication, which allows devices to be

accessed without the necessity for gateways to use adaptation techniques to boost efficiency

and quality of wireless transmissions (Bharadia, Choi, Jain, Katti, Kim & Levis, 2019). In this

context, the 6LoWPAN standard uses IPv6 addresses IPv6 addresses eliminating adaptation

techniques (Al-Kashoash, 2019a). Moreover, 6LowPAN is a network standard that defines

header compression mechanisms and encapsulation rather than being an IoT application protocol

technology (e.g., Bluetooth, ZigBee (Fisser, Ipach, Timm-Giel & Becker, 2020)). Nevertheless,

due to common factors, such as the node failures, limited bandwidth, etc., the wireless links

in multihop 6LoWPAN are unstable, and therefore not reliable. These difficulties can severely

impact the performance of the entire network (Miguel, Jamhour, Pellenz & Penna, 2018a; Kobo,

Abu-Mahfouz & Hancke, 2017b).

IP-based networks adopt distributed protocols (eg., Open Shortest Path First [OSPF], Border

Gateway Protocol [BGP], Routing Information Protocol [RIP]) for routing decisions and to

preserve topology while decreasing the overhead in the entire network (Nedyalkov, 2019). Since

low-power devices reduce the radio range compared to when all nodes communicate with a

single base station, a multihop grid allows systems to extend over a larger area. Consequently,
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from the introduction of multiple hops, the link uncertainty is aggravated along the hop distance

and may increase the possibility of dropped packets on the way. Specifically, RPL is a protocol

based on rank values that rely on an Objective Function [OF] to determine the route across the

nodes (Shin, Sharma, Kim, Kwon & You, 2017a). An OF defines how an RPL node selects and

optimizes routes to build a Destination Oriented Directed Acyclic Graph [DODAG] rooted at

the network’s border router. Further, the OF defines how the nodes should consider the metrics

and constraints in the rank value, which is roughly the node’s distance to the DODAG root.

Even though the rank values in RPL helps for multiple objectives, including route discovery and

distribution, loops prevention, and control overhead management, this protocol is exposed to a

wide variety of routing attacks (i,e., Sinkhole attacks, Wormhole attacks, Rank attacks (Kamble,

Malemath & Patil, 2017a)). These attacks can significantly impact the resource utilization

and the network performance (Kamble et al., 2017a). Precisely, in rank attacks, malicious

nodes broadcast messages to advertise lower ranks than their original ones to corrupt routing

cost values, which forces neighboring nodes to choose them as a preferred parent and change

their rank accordingly. Thus, Rank attacks create non-optimal routes and introduce loops that

overwhelm the network resources and increase resource consumption (Rai & Asawa, 2017a).

With the arrival of 5G, Software-Defined Networks [SDNs] have been developed to introduce

scalability and programmability to accomplish QoS provisioning and fast routing configuration

services over the 6LoWPAN. It has shown promising advances in network configurability, virtual

network functions plugin, and reduction in capital expenditure (Miguel et al., 2018a). In this

context, Software-Defined 6LoWPAN wireless sensor network [SD6WSN] is proposed. This

architecture aims to manage data plane forwarding in 6LoWPAN according to the SDN approach

(Charfi, Mouradian & Vèque, 2020a).

SD6LowPAN has several positive aspects, including a centralized SDN architecture that allows

flexibility and scalability, presenting further opportunities to move beyond the traditional notions

of low-power IoT driving from small to various networks connected across a network backbone

and protocols such as 6LoWPAN, to dynamically serve multiple applications, such as data

collection, actuation, and monitoring with varying QoS requirements.
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However, SD6LowPAN faces considerable challenges, such as the non-negligible overhead

introduced by SDN devices caused by the continuous exchange of messages and the vast distances

between the data plane and the controller, and is likely to suffer from Single Point of Failure

(SPoF). It is valid to mention that the problem of SPoF is out of the scope of this paper. Therefore,

a lightweight SDN controller is leveraged in the border router to promote northbound and

southbound communication with the data plane and applications correspondingly and reduce

the non-negligible overhead introduced by SD6LowPAN (Baddeley, Nejabati, Oikonomou,

Sooriyabandara & Simeonidou, 2018a). Furthermore, the incorporation of RPL in the routing

layer for network discovery and the lack of routing optimization procedures to optimize the

routes defined by the RPL make SD6LowPAN susceptible to Rank attacks. Hence, to tackle this

concern, in this paper, we propose an RL approach for routing optimization to prevent Rank

attacks in SD6LowPAN.

3.2.1 Motivation

The motivation behind this work is the computational complexity of managing security solutions

and the sample complexity of finding the right approach for routing optimization to prevent Rank

attacks in SD6LowPAN. In this vein, the centralization of security controls in SD6LowPAN

facilitates the network (re) configurability and network slicing which allow resource sharing

and the adoption of complex solutions in a multitenant environment where a single instance

of an application and its supporting resources serves multiple providers (Miguel et al., 2018a).

However, the programmable nature of SDNs increases the network’s vulnerability to attacks

(Kobo et al., 2017b), as applications can be easily installed.

Accordingly, in SD6LowPAN, authentication and intrusion detection mechanisms are mainly

implemented on the IoT nodes (Verma & Ranga, 2020b; Restuccia, D’Oro & Melodia, 2018),

while RPL can be performed at the controller or application-level (Ooko, Kadam’manja,

Uwizeye & Lemma, 2020). Moreover, the massive deployment of RPL-based low-powered IoT

devices makes SD6LowPAN more vulnerable to rank attacks. Hence, the RPL is vulnerable to

internal Rank attacks taking advantage of the vulnerable rank property defined by non-optimal
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routes established by the OF. Consequently, these attacks jeopardize the network performance,

topology, and traffic (Preda & Patriciu, 2020). Illustratively, an attacker can accomplish

this attack by misusing the rank property and infringing the routing protocol. Based on the

vulnerability analysis related to the rank property, Rank attacks create non-optimal paths for

all packets, which pass through malicious nodes and overwhelm the restricted SD6LoWPAN

(Sahay, Geethakumari & Modugu, 2018a).

Meta-heuristic algorithms, such as Ant Colony Optimization [ACO], Swarm optimization, and

artificial bee colony, are practical and widely used approaches to find solutions to combinatorial

optimization problems (Rajesh, Raajini, Rajan, Gokuldhev & Swetha, 2020a; Salem, Salam,

Abdelkader & Mohamed, 2019a). However, they are limited by the high sample complexity

required to reach a reasonable solution. The sample complexity represents the number of

training-samples that an algorithm needs to learn a target function successfully (Chen & Vaidya,

2019). Also, much work has been done in the field of machine learning for routing optimization,

but these methods can require an unreasonably large number of samples before a good policy

is obtained. Precisely, the lack of exploration in these methods leads to an unreasonably

large sample complexity, which is unrealistic for dynamic environments (Nagabandi, Kahn,

Fearing & Levine, 2018). In this context, RL seems to be a more promising and realistic solution

compared to traditional machine learning approaches as it relies on an RL agent that explores

and interact with its environment to generate its own training data. To this end, in this paper,

we incorporate a RL approach in the lightweight SDN controller design to achieve routing

optimization and QoS provisioning packet forwarding to address the vulnerable rank value

and the RPL objective functions’ weaknesses while minimizing the overhead and management

complexity introduced by SD6LowPAN.

3.2.2 Related Work

Some research works have looked into management complexity and security solutions to address

Rank attacks in resource-constrained SD6LowPANs. Precisely, in (Lasso, Clarke & Nirmalathas,

2018a), a software-defined networking framework for IoT based on 6LoWPAN is presented
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to reduce the management complexity in IoT networks. Further, in (Baddeley et al., 2018a),

a lightweight SDN framework for Contiki OS is introduced to reduce the control overhead to

practical levels. Moreover, in (Lin, Akyildiz, Wang & Luo, 2016a), a QoS-aware adaptive routing

[QAR] based on RL with a QoS-aware reward function is introduced for multi-layer hierarchical

SDNs achieving time-efficient, adaptive, and QoS-provisioning packet forwarding. In (Raba,

Juan, Panadero, Bayliss & Estrada-Moreno, 2019), the authors present a combination of the IoT

with a heuristic framework to enhance logistics in an agri-Food Supply Chain. In (Ancillotti,

Vallati, Bruno & Mingozzi, 2017a), the authors propose an improved objective function that

relies on an RL-based link quality estimation strategy for RPL to minimize the overhead caused

by active probing operations. However, the latter work introduces additional computational

complexity by incorporating an RL approach in 6LoWPAN. A security service to prevent Rank

attacks is proposed in (Dvir, Buttyan et al., 2011), where the authors generate a hash chaining

using a random number chosen by the root node to avoid the RPL from publishing an illegitimate

reduced rank. Moreover, in (Wadhaj, Ghaleb, Thomson, Al-Dubai & Buchanan, 2020a), a

challenge-response scheme is proposed to validate the nodes’ authenticity within a DODAG,

in (Shin et al., 2017a), a cost-efficient protocol for route optimization is introduced, where the

authors include steps for reliable route optimization and mutual authentication. Further, an

enhanced RPL protocol is proposed in (Muzammal, Murugesan, Jhanjhi & Jung, 2020), where a

rank threshold approach and the hash chain authentication technique are proposed to deal with

RPL-based attacks.



49

In addition, some works propose run-time verification mechanisms to detect unexpected behavior

in IoT system nodes. These mechanisms monitor the real-time events coming from the IoT

system elements and trigger self-healing actions if unexpected behaviour is detected at an IoT

device. For instance, in (İnçki & Ari, 2018), the use of complex event processing techniques for

detecting failures in the system is proposed by monitoring the run-time event occurrences with

regards to the system constraints denoted by event calculus. In (İnçki, Arı & Sözer, 2017), a

run-time monitoring approach for IoT systems is presented where the event relations expressed

in terms of the sequential interaction messaging model of Constrained Application Protocol

(CoAP) are explored. Nevertheless, this technique helps to detect IoT nodes’ misbehaviour; it

also introduces an overhead due to the recurrent monitoring system installed on each DODAG

node. Furthermore, this technique does not prevent SD6lowPAN from being compromised by a

Rank Attack because rank attack alters the assigned rank value but does not change the node’s

behavior, overloading the network with few resources. Indeed, the attacker’s main objective is to

overload the network using the behavioral patterns of the nodes in an RPL network.

Although essential works have been proposed in the literature to target management complex-

ity and Rank attacks in 6LowPAN, all these deployments are not satisfactory to simultane-

ously guarantee efficient Intrusion Prevention System (IPS), Low Management Complexity

(LMC), and considerable Overhead Reduction (OR) in software-defined Low Power Networks

(Vohra & Srivastava, 2015a). A comparison between some current research work and the

proposed Software-Defined Reinforcement Learning (SDRL) scheme is presented as follows.

Table 3.1 Related works comparison

Solution OR LMC IPS
[12],[22],[23] X 7 X
[25] X 7 X
[26] 7 7 7

[27] 7 X X
[28] X 7 X
[29],[30] 7 7 7

SDRL X X X
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3.2.3 Contribution

In this paper, a security scheme for preventing Rank attacks in SD6LowPAN is designed. The

novelty of the proposed work lies in devising and evaluating an intrusion prevention scheme that

amalgamates SDN applications in the control plane, achieving efficient topology discovery, flow

control management, and route optimization SD6LowPAN. The RPL-based topology discovery

service is deployed to cluster the SD6lowPAN and create the route tables used for the topology

optimization service. Subsequently, a coordinator flow control application is developed to

coordinate the communication between the application, control, and data planes. Further, an

RL-enabled topology optimization, achieving route optimization in SD6LowPAN, is designed.

It is worth mentioning that nodes’ authentication and integrity are out of the proposed work

scope. Thus, the main contributions of this work are summarized as follows:

1. A lightweight SDN controller is leveraged in the border router to reduce the non-negligible

overhead introduced by SD6LowPAN.

2. A coordinator flow control application is integrated into the SDN controller to handle the

interaction between the layers of SD6LowPAN.

3. In the SDN controller, a northbound and southbound interfaces are enhanced to facilitate

the communication between the SDN controller and the data plane and applications.

4. An RPL-based topology discovery application is employed for network discovery from the

IoT nodes towards the SDN controller.

5. An RL approach is developed in the SDN controller to optimize the RPL routing paths to

prevent Ranking attacks’ harmful effects in SD6LowPAN.

6. Moreover, analysis of the duty cycle and computational complexity are provided, while

simulations showing the effectiveness of the proposed scheme are executed by leveraging

the Contiki Cooja tool.

The remainder of this paper is organized as follows: Section II introduces the background

and network model, in Section III, we describe the RL based intrusion prevention scheme,

which falls into: the stack scheme, intrusion prevention algorithm and RL agent modeling and
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inner-workings. In Section IV, the simulation setup and the experimental results are conducted.

Finally, the paper is concluded in Section V, where future endeavors are also put forward.

3.3 Background and Network Model

In this section, we provide a brief background on RPL, Rank attacks and RL. Further, we present

the impact of Rank attacks on SD6LowPAN, and the considered network model.

3.3.1 Background

It is worth mentioning that the proposed approach does not detect or eliminate the attacker node.

Instead, this work devises an RL-based intrusion prevention system against RPL Rank attacks’

harmful effects through route optimization for low power IoT networks. The basic concepts

underlying these algorithms are detailed in what follows.

3.3.1.1 RPL Operation

RPL is an IPv6 routing protocol designed and standardized by the Internet Engineering Task

Force [IETF] (Wadhaj, Ghaleb, Thomson, Al-Dubai & Buchanan, 2020b). To build the network

topology, RPL employs Directed Acyclic Graphs [DAGs], which can be segregated by one or

more DODAGs, where each DODAG has a root node. Multiple root nodes are integrated within

a backbone network that consists of border routers that connect them to the internet. RPL is

a routing protocol for wireless systems with low power consumption that starts to find routes

based on the OF established in a setup stage. The OF is utilized to deliver traffic to different

routes according to traffic requirements. The OF encoded these traffic requirements to be used

by the RPL during routing operations. RPL applies three types of control messages, i.e DODAG

Information Object [DIO], DODAG Information Solicitation [DIS], and DODAG Advertisement

Object [DAO], as shown in Fig. 3.1. The root node broadcasts DIO messages at regular periods

defined by a trickle algorithm (Levis, Clausen, Hui, Gnawali & Ko, 2011a). The DIO message

gives the IoT nodes information to explore the DODAGs, acquire the setting parameters, and
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select the favored parent set. To choose the parent set, RPL applies the OF, which contains some

routing metrics (Magubane, Tarwireyi, Abu-Mahfouz & Adigun, 2019a). A DODAG uses DIS

message to request the DIO from its neighboring node to join the DODAG. DAO messages are

disseminated by the IoT nodes to the root node to update the DODAG. Thus the composition

of the DODAG topology is supported by the root node. The RPL operations include topology

discovery, DAG construction, route generation, data path validation, and loop detection based

on rank values (Yassein, Flefil, Krstic, Khamayseh, Mardini & Shatnawi, 2019a).

A rank value defines the relative position of a node within the DODAG. The 6loWPAN has

unique characteristics that require the specification of new routing metrics and constraints

(Khallef, Molnar, Benslimane & Durand, 2017a), which can be used by the RPL in the path

computation. These metrics/constraints can be categorized into two basic types:

• Node metrics and related constraints (e.g., hop counts, energy state.),

• Link metrics and related constraints (e.g., throughput, latency, packet loss).

3.3.1.2 Rank Attacks

The OF is an essential factor in the parent’s selection, along with the rank. Once a node receives

a valid rank, the OF’s setting based on the routing metrics must be determined before modifying

the selected parent node. For instance, if the routing metric relies on the Expected Transmission

Count [ETX], the OF is determined to hold the routing path with the lowest ETX value, and a

node will receive both the rank and ETX for the chosen parent node. Mainly, to successfully

originate a Rank attack, the attacking node must alter the routing metric advertised by the parent

node so that the OF of the neighboring nodes is exposed to be attacked.

In this regard, Rank attacks have raised serious concerns about the weakness of the objective

function of the RPL. This protocol usually implements two objective functions: the Minimum

Rank with Hysteresis Objective Function [MRHOF] and the Objective Function Zero [OF0].

The OF0 constructs a Directed Acyclic Graph [DAG] with the lowest number of hops (Safaei,

Monazzah & Ejlali, 2020), while MRHOF constructs a DAG with the lowest ETX to select
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the best path (Pradeska, Najib, Kusumawardani et al., 2016a). Since the existing OFs take into

account only one (Khallef et al., 2017a) or two metrics (Djedjig, Tandjaoui, Medjek & Romdhani,

2017a), the DODAGs cannot fully satisfy some recent applications which require several QoS

constraints such as packet loss, duty cycle, and end-to-end delay (Pradeska et al., 2016a). For

example, OF0 chooses the shortest path; however, it does not necessarily ensure the end-to-end

delay requirement, which is an essential constraint for interactive applications (Safaei et al.,

2020). Furthermore, in the MRHOF, the objective function aims to minimize the expected

total number of packet transmissions required to deliver a packet to the ultimate destination

successfully (Pradeska et al., 2016a).

It is worth mentioning that a DODAG only uses one OF for its formation and maintenance.

For instance, to illustrate a Rank attack, in this paper, we consider the ETX as the principal

routing metric for a network topology creation, an attacker node with a legitimate rank '; , and

'=, which is a minimum rank between the neighbors. In this example, the attacker node will

promote a rank value of less than '= to launch the attack. Consequently, the attacker alters his

rank to below '=, where '0 < '= is the rank announced for the attacker '0. Thus, the attacker’s

neighbors will drop the rank value if the announced rank of '0 is too low because the RPL

recommends that the rank setting is within a threshold. Otherwise, the unexpected rank can

induce unstable network topology. Accordingly, in Rank attacks, the attacker advertises a rank

with the ratio '? <'0< '=, where '? is the attacker’s preferred parent node rank.

In this vein, the updated rank advertised by the attacker is smaller than most neighboring nodes

(Rehman, Khan, Lodhi & Hussain, 2016a). Also, to boost the severity of the attack, the ETX

advertised in the DIO message is diminished compared to the minimum observed between

neighbors. In real 6lowPAN, routing metrics are subject to more variations than the rank;

therefore, RPL does not propose any measures to control the routing metric values. As depicted

in Fig. 3.1, the neighboring nodes of attacker (compromised) node six select the latter as their

new preferred parent because it changes its rank from R=3 to R=2 and the ETX announced in

the DIO message is lower than the minimum perceived between neighbors. As a result of such
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ranking misuse, new non-optimal links are considered (depicted through red lines in Fig. 3.1),

which impacts the network performance implicitly.

3.3.1.3 Reinforcement learning

RL is an area of machine learning that allows an agent to learn in an interactive environment by

trial and error using feedback from its actions and experiences (Lin et al., 2016a). Specifically,

it addresses how an agent/decision-maker tries to learn the dynamic system’s behavior through

interactions with the environment. The agent receives the current state and the reward from

the dynamic system at each iteration and takes an action that increases the long-term revenue.

The agent obtains the state and the system’s reward values, whereas the system captures the

action as an input from the agent (Recht, 2019a). RL can increase automation or optimize

sophisticated systems’ operational efficiency, eg., networking, robotics, manufacturing, and

supply chain logistics (Arulkumaran, Deisenroth, Brundage & Bharath, 2017). However, RL’s

practical implementations generally, we do not have information on the subjacent model. In such

a scenario, model-free learning algorithms are more suitable. The most widely used approaches

in this area are Monte Carlo [MC] and Temporal Difference [TD] learning. While MC learns

directly from episodes of experience without any previous knowledge of Markovian decision

Process [MDP] transitions, TD learns by bootstrapping from the current estimate of the value

function (Arulkumaran et al., 2017).

3.3.1.4 Rank attack impact

SD6lowPAN defines a controller that communicates with the data-plane through a Software

Defined 6LoWPANWireless Sensor Network Protocol [SD6WSNP], that employs IPv6 and RPL

at the routing layer, UDP at the communication layer, and CoAP at the application layer (Miguel

et al., 2018a). SD6WSNP uses CoAP messages to send rules dictated by SDN applications, such

as wireless link quality, geolocation, and power transmission level, to the nodes. Consequently,

RPL creates DODAGs of different sizes (hops) stored in flow tables for forwarding data plane

packets. Therefore, when a Rank attack is performed, the DODAGs communicated by RPL with
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the SDN controller contain a non-optimal set of paths. As a consequence, these non-optimized

paths impact the routing messages between the nodes and the SDN controller. They also affect

the routing rules of the messages exchanged between the nodes in the data plane; thus, they

overwhelm the SD6lowPAN. It is worth mentioning that this work focuses on the messages

between the nodes and the SDN controller in the experimental results.

Flow tables RPL routes 

SDN Controller

Data plane - IoT nodes

SDN 

Applications

Figure 3.2 Network Model

3.3.2 Network Model

As depicted in Fig. 3.2, the network model in the proposed scheme is a typical SDN-based

network architecture where, in the data plane, multi-hop low-power IoT nodes, connected by IPv6

to the Internet through a gateway (or border router), are deployed. These nodes are characterized

by a low power, low data rate, short radio range, and low cost. The control plane then consists

of a lightweight SDN controller on the border router that makes decisions about where traffic

is sent from the underlying data plane to selected destinations with a coordinator flow control.

Precisely, a lightweight SDN controller is used to minimize the signaling delay in traditional

SDNs. Finally, at the top of the architecture, the application plane is designed to discover the

network and optimize the topology in Low Power IoT Networks. The proposed stack scheme is

presented in the following section.
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3.4 Proposed Scheme

This stack scheme creates an enhanced version of the architecture concepts proposed in (Baddeley

et al., 2018a) while incorporating architectural, protocol, memory, and controller optimization to

mitigate control overload and improve scalability. Precisely, it takes advantage of a northbound

Application Programming Interface (API) to facilitate the control plane’s communication with

the SDN core applications and a southbound API to facilitate the control’s communication with

the data plane. The interaction between the northbound and southbound APIs is handled by the

coordinator flow control, located in the control plane, as shown in Fig. 3.3.

In summary, the proposed stack scheme incorporates three layers as follows. At the bottom of

the stack, typical IoT nodes in the data plane combine the following communication functions:

data plane forwarding, border routing and sensing applications. In the middle, the control layer,

the coordinator flow control is executed. At the top of the application layer, the SDN core

applications (topology discovery and topology optimization) are integrated. This architecture is

presented in Fig. 3.3 and is fully integrated with the IEEE 802.15.4-2012 protocol stack.

3.4.1 SDN data plane

In the data plane, the low power IoT network is executed. Due to the small packet size and low

bandwidth, the SDN data plane requires resource-saving to maximize the lifetime of IoT nodes.

The low power IoT node has at least three components: the data plane forwarding, routing agent,

and sensing components, which use large arrays of sensors to collect data from a particular

environment. The IoT network interacts with the control layer through control messages. The

main functions of the SDN IoT nodes are:

• Send information to the control plane;

• Examine data plane packet headers;

• Send or deny data plane packets according to matching entries in the flow table;

• Send packet-in notifications to the control plane when there is no matching entry.
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Figure 3.3 Network’s stack scheme

Moreover, the SDN data plane modifies packet forwarding at the operating system as follows.

The routing agent inspects packet headers and checks if the incoming packet is a control message.

If the control message requests an RPL discovery, it is routed through the control plane following

the 6LoWPAN-RPL routing standard. If the control message contains a flow table instruction,

it is routed through the data plane. Otherwise, the packet is delivered to the local sensing

application to perform the data plane forwarding function (Tanganelli, Virdis & Mingozzi,

2019b).

3.4.2 SDN control plane

To provide a platform for SDN experimentation in low power IoT networks, we have implemented

a lightweight SDN control plane introduced in (Baddeley et al., 2018a). The lightweight SDN

controller provides a coordinator flow control and an enhanced southbound and northbound

APIs, detailed as follows.
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3.4.2.1 Coordinator flow control

In the control plane, a coordinator flow control is developed to facilitate the communication in

the proposed SD6LowPAN architecture. In this context, the coordinator flow control integrates

three SDN functions that rely on (Baddeley et al., 2018a) to handle specific requirements of the

SDN implementation. A brief explanation of the SDN functions are detailed below.

3.4.2.1.1 SDN controller adapter

The controller adapter exposes a controller interface to the SD6LowPAN architecture, allowing

the control plane to implement third party interfaces.

3.4.2.1.2 SDN driver

The SDN driver determines how to manage the flow table. It provides high-level functions to

accomplish particular tasks by setting up flow table entries, such as aggregating or removing

flows, setting routing paths through the network, and creating security policy entries. It also

handles flow table actions and determines how and when nodes communicate to the controller

with specific rules.

3.4.2.1.3 SDN engine

The SDN engine defines the northbound and southbound communication (application plane

with the controller and the control plane with the data plane, respectively) for both incoming and

outgoing messages to the controller.

3.4.2.2 Southbound API

The coordinator flow control utilizes a southbound API to ensure that packets are transported

through the User Datagram Protocol [UDP] to enable a secure DTLS [Datagram Transport Layer

Security] and provide better communication between the data plane and the controller. Also,
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this API ensures that each node’s information is continuously sent to the controller. To this end,

the API employs control messages.

3.4.2.3 Northbound API

The coordinator flow control uses a northbound API to communicate the SDN controller with

the application plane. To this end, the northbound API employs control messages that are

encapsulated in TCP packets. This API continuously updates the routing table’s contents with

the routes built by the RPL and registers the optimized routes in the SDN flow table with the

RL agent’s decisions. The control messages implementation, which dictates how the data and

application planes handle controller communication, is explained as follows.

RL AGENT RL AGENT

States

Actions

Rewards/

Penalties

Metrics
States

Actions

Metrics

RPL routes 

& Metrics Flow tables

Actions

ExploitationExploration

SDN

Controller
6LowPAN
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Controller
6LowPAN

RPL Dodag

RL Dodag

Environment Environment

Figure 3.4 RL model

3.4.2.4 Control messages implementation

In the control plane, the coordinator flow control determines four control messages, i.e. node-

mod, info-get, flow-mod, and packet-in. Accordingly, the control messages are categorized

depending on the process to which they are associated. Node-mod and info-get are utilized for

topology discovery and optimization applications, while flow-mod and packet-in are employed

toward for flow control. These messages operate depending on the SDN core applications’

demand. Initially, as shown in Fig. 3.5, the northbound API initiates a node-mod message from

the RPL-based topology discovery application to the control plane to determine the network
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topology, requesting a notification every time a new node is identified. Once the notification is

received, the control plane transmits info-get through the southbound API to obtain the discovered

node’s neighbors and the respective wireless links’ quality. Subsequently, the northbound API

records the RPL routes in a routing table. After that, the RL-enabled topology optimization is

executed, optimizing the routes based on the data collected from the topology discovery-based

RPL application. Consequently, the northbound API registers the optimized routes in the SDN

flow table. Afterwards, the coordinator flow control sends an Info-get message to the data plane

to instruct the nodes to send back a notification when they receive packets that do not match any

entry in the flow table.

Control Plane

(Coordinator Flow Control)
Data PlaneApplication Plane

Node-mod Info-get

Notification

Notification

Node-mod
RL-enabled topology 

optimization

RPL-based topology 

Flow-mode RPL Flow 

TablePacked-in

Flow-mode RL Flow 

TablePacked-in

Info-get

NotificationNotification

NORTHBOUND 

API
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Figure 3.5 Control message sequence diagram

It is worth mentioning that the Flow-mod message is used to insert and remove entries from

flow tables, and to establish flows according to the SDN application’s purpose. The SDN core

applications can also request the controller to send an info-get whenever the applications need

information from the IoT nodes. The control message structure is summarized in TABLE 3.2.
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Table 3.2 Control messages

Message Method Observe Process

node-mod GET Required Topology discovery, Topology optimization

info-get GET Optional Topology discovery, Topology optimization

flow-mod PUT Required Flow control

packet-in GET Required Flow control

Accordingly, our approach’s flow tables are composed of two fields, i.e., match and action. The

match field records the incoming packet header’s features distinguishing the corresponding flow,

whereas the action field records the operation for a matching packet, as illustrated in Table 3.3

(Miguel et al., 2018a). Moreover, a set of attributes related to the standard SDN flow table

entries is included in the match field.

Table 3.3 Flow table entry match fields

Match Length(Bits) Description

ipv6src 128 IPv6 source address

srcmask 8 Mac source address)

ipv6dst 128 IPv6 destination address

dstmask 8 Mask destination address

srcport 16 Source port

dstport 16 Destination port

ipproto 8 IP protocol (UDP, TCP, ICMPv6)
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3.4.3 SDN application layer

In the SDN application layer, the core applications are performed. The SDN engine performs

the integration with the SDN controller.

3.4.3.1 RPL-based topology discovery

Since, the SDN controller needs to have a unified view of the SD6LowPAN and the neighbors

that each node sees, including the quality of the wireless links connecting them, a network

discovery protocol is mandatory. In this context, this scheme employs the RPL protocol in

non-storing mode. In this mode, the routing table entries are maintained only on the controller

to ensure that the IoT nodes always attempt to find a path to the controller.

3.4.3.2 RL-enabled topology optimization

In this work, we consider a route optimization approach that aims to find an adaptive QoS-aware

forwarding policy by applying an RL technique to allow each node to learn the proper forwarding

rate to cooperate in the routes optimization process. This application’s main objective is to

minimize energy consumption, packet delivery ratio, and end-to-end delay caused by the Rank

attack, thus preventing the latter from overwhelming the SD6LowPAN.

3.4.4 RL Model

The RL model consists of two main entities: the agent and the environment, as shown in Fig.

3.4. The agent is a quick learner who can make decisions according to its learning experiences

and the environment is an anonymous entity that affects the performance of the agents. In the

proposed solution, the agent lacks knowledge of the environment. Therefore, a model-free like

State Action Reward State Action [SARSA], a well-known temporal difference [TD] algorithm,

is adopted (Lin et al., 2016a). SARSA is an iterative dynamic programming algorithm to find

the optimal solution based on a limited environment. It is worth mentioning that SARSA has

a faster convergence rate than Q-learning and is less computationally complex than other RL
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algorithms (Habib, Khan & Uddin, 2016a). Also, since our environment is resource-constrained

and limited by the number of nodes per DODAG (30), different deep reinforcement learning

algorithms such as Deep Q-Learning [DQL] and Deep Deterministic Policy Gradient [DDPG]

are not considered in this paper, where we leave their integration in our scheme and test in a real

IoT testbed for future work.

In particular, in the proposed scheme, the state is the current node, and the action is the link

to follow to reach a neighboring node. Specifically, at each node, following the link to each

neighbor, the agent has to exploit past actions with great rewards and simultaneously explore the

system for better unknown actions. In this context, there are three components for the RL agent’s

design: the action policy, the quality function, and the reward function. These components are

detailed as follows:

3.4.4.1 Action selection policy

The action selection policy defines an agent’s action selection, which correlates an action to

a state. This function evaluates the trade-off between action exploitation and exploration to

maximize the reward value. Accordingly, the agent explores the state space in an unknown

environment. To this end, in our proposed routing model, we consider the Boltzmann softmax

policy (Iwata, 2016a), where the probability cC(BC , B0) of choosing an action 0C given the current

state BC is given by

cC(BC , B0) =
exp(&C(BC , 0C)/g=∑=
1=1 exp(&C(BC , 1C)/g=)

, (3.1)

where = is the number of possible actions, &C(BC , 0C) is the corresponding quality function, and

g= is a temperature control. The temperature control measures the trade-off between exploration

and exploitation. As a result, if this parameter obtains high values, all actions are reasonably

probable (i.e., exploration). In contrast, low values sustain the action with the maximum quality

(i.e., exploitation), which causes the policy to tend to a greedy one. Therefore, in highly dynamic
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environments g= should be set to a high value while it should decrease to a low value in static

environments. In this context, to guarantee a learning convergence on limited time, temperature

control is set to a linear function of the time and is expressed by

g= = − (g0 − g) )=
)

+ g0 = ≤ ), (3.2)

where ) denotes the time to reach the convergence, and g0 and g) are the initial and last value at

time ) of the temperature control, respectively.
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3.4.4.2 Quality function

The quality function estimates the quality that can be achieved by the possible next system

state, which can be determined by the agent based on the state and action. Significantly, in this

paper, the quality function &C+1(BC , 0C) relies on SARSA, as mentioned above, where the agent at

time C + 1 applies the action and the state to update the quality value. Indeed, SARSA uses the

expected quality value, taking into account how likely each action is under the current policy,

which indicates that the agent can utilize the future reward earned, rather than considering the

optimal action with the highest reward (Erdol, Gormus & Aydogdu, 2017) as follows:
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(3.3)&C+1(BC , 0C) = &C(BC , 0C) + U['C + W&C(BC+1, 0C+1) −&C(BC , 0C)],

where W ∈ [0, 1] is the discount factor that defines the purpose of future rewards, U ∈ [0, 1] is

the learning rate that represents the override measure of the recently acquired information to

the past one, and 'C is the reward at time C. As a consequence, in Eq. (3.3), the agent updates

the quality value based on the maximum potential quality value among the actions. Concretely,

the agent selects and takes action for the current state BC through the action selection policy.

Accordingly, the agent observes 'C and the state BC+1 and updates the & function.

Table 3.4 QoS requirements. Taken from (Shu et al., 2016a)

Traffic

type

Application QoS

Classic Telnet, FTP Delay, losses

HTTP, FTP Delay, Throughput

STMP,POP3,IMAP Losses

TELNET Losses

Real-time Multimedia Delay, Throughput

Control messages Delay

3.4.4.3 Reward function

In this section, we recommend a reward function based on the network QoS requirements

that are linked with the design of our route optimization approach. Specifically, the RL agent

discovers the routing path with the highest QoS-aware reward based on the types of traffic and

user applications. Precisely, TABLE 3.4 summarizes the QoS requirements and traffic type

of several applications (Shu et al., 2016a). For example, classic and real-time traffic adapts

the packet transmission rate and has significant QoS awareness. For this purpose, the reward

function is evaluated as
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(3.4)'C = −6(0C) + V1( delay8, 9 + queue8, 9 ) + V2PLR

This indicates that the system at state BC , using an action 0C , forwards packets from node 8 to

node 9 . In Eq. (3.4), 6(0C) indicates the cost to take action at time C, and V1, V2 ∈ [0, 1] are the

weights values determined by the QoS requirements of the packet flow. Unfortunately, one of the

significant concerns with RL algorithms is that, as the agent iterative estimates the action values,

the initial stages’ learning process is extensively random exploration, which might affect the

network performance. Therefore, since this work’s primary purpose is to prevent Rank attacks

from overwhelming the performance of SD6LowPANs, we introduce an exploration strategy

that incorporates QoS aware functions in the action selection process to guide the learner agent,

especially in the initial stages of the learning process (Tatsis & Parsopoulos, 2020), avoiding

excessive consumption of resources.

Since the impact of doing an action mainly relies on the QoS aware functions, the cost 6 is equal

to a constant value over all the actions. The QoS provisioning functions are defined as

(3.5a)delay8, 9 =
2
c

arctan

[
3;8, 9 −

∑�(8)
:=1 3

;
8,:

�(8)

]

(3.5b)queue8, 9 =
2
c

arctan

[
3
@

8, 9
−

∑�(8)
:=1 3

@

8,:

�(8)

]

(3.5c)PLR = (100 − PDR)

where 3;
8, 9

and 3@
8, 9

are the link transmission and packet queueing delays from node 8 to node

9 , respectively. �(8) is node 8’s number of neighbors in the DODAG, and %!' characterizes

the packet loss from node 8 to the controller. Eq. (3.5a) estimates the link delay of link 8 − 9

compared to other possible next hops, Eq. (3.5b) includes the queueing delay while accounting
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for the average delay over the DODAG, and Eq. (3.5c) represents the Packet Loss Ratio [PLR],

which shows the performance of the protocol in terms of percentage of Packets Delivery Ratio

[PDR], i.e. the packets successfully delivered to the controller (Musaddiq, Zikria, Kim et al.,

2020a).

3.4.5 Intrusion prevention algorithm

As shown in Fig. 3.6 this architecture consists of several IoT nodes connected to a border router

that plays the role of a lightweight SDN controller. In this reference frame, the SDN controller

gathers the routing paths and the global state of the network with the aid of RPL. Consequently,

a Rank attack is performed over an existing node in the network, affecting node six, which alters

its rank from R=3 to R=2, and the ETX announced in the DIO message that is lower than the

minimum perceived between neighbors. Hence, node nine selects node six as its parent instead

of node 3, affecting the entire network’s performance.

Subsequently, the SDN controller is in charge of path computation based on the network state

received for each incoming route path. After that, a new DODAG is created with an optimized

path based on the continuously received control messages, where node three is selected instead

of node six as parent node to node nine. Hence, through our RL approach, the controller

dynamically optimizes the best data flow routes according to the QoS requirements and dynamic

traffic patterns, and sets up the routing tables of the border router along the optimal path via

the SDN controller, thus enabling high security while providing efficient data transmissions

and superior link utilization (Tuncer, Charalambides, Clayman & Pavlou, 2016a; Moreira,

Kaddoum & Bou-Harb, 2018c; Miranda, Kaddoum, Bou-Harb, Garg & Kaur, 2020a). It is worth

mentioning that the resulting optimized paths could be different from those of DODAG without

the Rank attack before applying our RL approach. In Fig. 3.6, we assume a representation of the

possible optimized paths recovered by our RL approach. However, in the experimental results

section, we validated the optimization of DODAG paths based on some performance metrics

analysis. The intrusion prevention algorithm is summarized in two procedures that are explained

in detail in Algorithms 3.1 and 3.2.
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Algorithm 3.1 Intrusion prevention algorithm
1: Flow 5 arrives to the controller � 5 in the DODAG;
2: Set of paths and #( are in introduced in � 5 ;
3: QoS requirements are configured in � 5 ;
4: The QoS provisioning functions are calculated in � 5 ;
5: � 5 executes Algorithm 2;
6: Set of optimized paths are stored in the flow table;
7: The flow is forwarded following the flow tables in � 5 ;

Algorithm 3.2 RL agent
1: Initialize &0((0, 00) = 0 and '0 from Eq. 3.3;
2: At time C:
3: Choose next-hop using softmax in Eq. 3.1;
4: Observe 'C and BC+1;
5: Update &C+1 function using Eq. 3.4;
6: update t = t+1;
7: Continue from step 3 to choose next-hop;
8: Exit;

First, when a flow ( 5 ) appears at controller� 5 , it demands the forwarding path, and the controller

refreshes the current Network State (NS). Accordingly, the QoS requirements are configured in

� 5 and the QoS provisioning functions are computed. Subsequently, � 5 exploits Algorithm 3.2

to select a possible path with regard to the QoS requirements of the flow. Consequently, � 5

stores the forwarding tables of the IoT nodes along with the optimized path in the flow tables.

3.5 Simulation Setup and Experimental Results

In this section, we start by presenting the scenarios, network parameters, assumptions, and

metrics used in the evaluation. Afterwards, we go through the experimental results and the

corresponding analysis.
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3.5.1 Simulation Setup

We assume the composition of one DODAG with multiple sets of paths, one SDN controller,

one control channel, and a real-time network state.

To measure the impacts of rank attackers on the Operating System [OS], we choose an

open-source OS namely Contiki OS, designed for resource-constrained devices (Tanganelli,

Virdis & Mingozzi, 2019a). The benign nodes were placed at different locations and circle

around a malicious node as shown in Fig. 3.6. Here node 1 is the SDN controller/border router

in SD6LowPAN. The network parameters used in the simulations are listed in TABLE 3.5, and

nodes characteristics are mirrored according to the EXP5438 platform with TI MSP430F5438

CPU and CC2420 radio.

Table 3.5 Network Parameters

Parameter Value
Simulation runtime 3600s
MAC layer ContikiMAC
Objective function MRHF, ETX
Number of IoT nodes 30
Transmitting nodes All
Receiving node Root/Controller
Link quality 90%
Radio medium UDGM
RPL mode Non-Storing
Sending rate 1 packet every 10 sec
Number of attacking nodes 1
TX range 100 m
Interference range 0-30m
Packet size 50 Bytes
SDN update period 180s
SDN flow table lifetime 10min
Initial latency 60 ms
Maximum number of hops 5

We measure the results of the experiment with the following performance metrics.
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• Average Packet Delivery Ratio [PDR]: This is the ratio between the number of packets sent

to the destination and the number of packets received by the destination.

• Average end-to-end Delay [Delay]: This refers to the time to transmit a packet over the

network from the source to the destination.

• Radio Duty Cycle [RDC]: This is the energy consumed by an IoT node considering the time

it spends in the following states: listen, receive [Rx], and transmit [Tx]. In other words, it is

the ratio between the time spent by a node in those three states and in wake-up state.

3.5.2 Experimental Results

This section analyzes the results obtained from the experiments conducted using the Cooja

simulator testbed for Contiki OS (Tutunović &Wuttidittachotti, 2019). To this end, we consider a

low-power wireless network composed of 30 IoT nodes where 29 are benign and 1 is considered

malicious. The network is deployed in a simulated outdoor area.

It is worth mentioning that the results are obtained considering a static scenario in which there

are no wireless nodes. However, we emphasize that our testbed is deployed in a dynamic

wireless environment. Thus, our testbed’s radio channel conditions are susceptible to changes

due to interference (e.g., from other 802.15.4 and 802.11 radios), where this interference is

time-varying. Further, the underlying MAC protocol is ContikiMAC (Ali, Ishak, Zawawi,

Seman, Bhatti & Yusoff, 2020). To better illustrate the proposed solution’s performance better,

we first demonstrate the performance evaluation of our RL approach; afterward, a comparative

scenario analysis is presented.

3.5.2.1 Performance analysis of our RL approach

Initially, we analyze our RL approach’s performance to determine the best configuration settings

to minimize the Delay and RDC while maximizing the PDR. To this end, we present the training

phase as follows.
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3.5.2.1.1 Training Phase

It is essential to mention that the RL model’s training is made offline to record the first flow table;

after that, the model delivers the optimized routes online. Since this work aims to prevent Rank

attacks’ harmful effects based on network QoS metrics continuously received by the control

plane, to train the model, we select the step size parameters (U,W).

These parameters govern the RL agent’s performance, as defined in Eq. (3.3). Precisely, U

adjusts the error in the& value update; W n [0, 1) takes a value of zero if the routing estimates the

current reward and acts like a greedy algorithm, and a value close to one if the routing takes the

long-term revenue. As we consider the long-term revenue to be significant, for this experiment,

we set the value of W to 1. Moreover, we set the number of episodes to 1000, and each episode

contains 100 steps.
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of episodes vs. the average reward in the proposed

approach.
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The results shown in Fig. 3.7 demonstrate that our RL approach learns to reach a reward of 99%

when the step size converges between 0.5 and 1 with a number of episodes of 1000. Hence, to

analyze the Delay, RDC, and PDR, we vary the learning rate U from 0.5 to 1 with 1000 episodes.

Additionally, 6(0C) is set to 0.5 and the QoS provisioning values V1 = 1 and V2 = 0.5. The QoS

provisioning values indicate that a longer convergence time is required when considering the

end-to-end link and queue delay in the experiments. Fig. 3.8 shows the number of hops of

a suitable path through our RL agent for a given (U, W). It shows that there exists a trade-off

between algorithm convergence and end-to-end delay.

Therefore, the Delay increases with increases in the value of U. Additionally, the results

demonstrate that when 0.5 ≤ U < 0.7, with a number of paths between one and three hops, the

Delay is higher than for other values of U. On the contrary, when 0.7 < U ≤ 1 with paths with a

maximum of 2 hops, the Delay is lower than for other values of U. This means that the smaller

the network’s size, the lower the latency when the value of U is greater than 0.7.
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Moreover, in Fig 3.9, the results reveal that the PDR exponentially increases when U increases,

reflecting a significant decrement when U takes a value of 0.6 or 0.5. In Fig 3.10, the results

illustrate that high values of U are associated with higher RX and lower TX in the network.

Consequently, the energy consumption exponentially increases with the increase of U. Since IoT
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nodes often have a small battery, measured in millivolts, extra power consumption can reduce

the device’s battery life by forcing the node to change its state to off.

Although, the condition 0.7 < U ≤ 1 introduces the lowest Delay in small DODAGs, it is not

suitable for our scenario because we consider a network with a maximum of 5 hops. Moreover,

for 0.5 ≤ U < 7 with paths created with more than 2 hops, the Delay is lower than for other

values of U. However, there is a meaningful decrement in the PDR. Accordingly, to ensure a

suitable analysis in terms of Delay, PDR, and RDC, we set the value of U to 0.7 in subsequent

performance comparisons.

3.5.2.2 Performance comparison

In what follows, we compare the Delay, PDR, and RDC with the following four scenarios:

• S1: An RPL scenario with no SDN implementation under Rank attack.

• S2: An RPL scenario with SDN implementation without Rank attack.

• S3: An RPL scenario with SDN implementation under Rank attack.

• S4: An RPL scenario with our RL-based SDN approach under Rank attack (our approach).

3.5.2.2.1 Delay

In what follows, we analyze the delay of the four scenarios considering the path with the

maximum number of hops. As a result, Fig. 3.11 demonstrates that in S1, the delay reaches

1600 milliseconds. Further, in S2, the latency in SD6LowPAN reaches 2950 milliseconds. As a

consequence, the latency is 45.72% higher than in S1. This is because an additional overhead is

introduced due to the messages exchanged from the controller to the data plane. In S3, the latency

reaches 4400 millisecond, which is 63.63% and 32.95% higher than S1 and S2, respectively.

This is due the Rank attack, requiring the data plane to navigate downwards along the RPL

topology across multiple non-optimized paths. Furthermore, in S4, the results show that the

latency reaches 2500 milliseconds, which is 56.81% lower than S3 and 15.25% lower than S2.
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Although this scenario is 36% higher than the scenario where the SDN implementation is not

used, the proposed solution restores and even optimizes the typical behavior in SD6LowPAN.

This is because the number of SDN messages is decreased since the optimized paths are only

delivered once the RL approach’s exploration process is finished, rather than not every time the

RPL collects data from the data plane. It is worth mentioning that our solution obtains the best

results with DODAGs created with more than 3 hops.

3.5.2.2.2 PDR

In what follows, we analyze the four scenarios’ PDR. To this end, we consider the path with the

maximum number of hops and an average of 360 control packets delivered from the data plane

to the controller. Consequently, the results illustrated in Fig 3.12, demonstrate that 151 packets

were successfully delivered to the border router in S1. This means that this scenario reaches a

PDR of 48%.
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Further, in S2, the average delivery variation reaches 270 packets per second, reaching a PDR

of 75%. This is 27% more than S1 because the SDN approach helps speed up the packets

delivery. Subsequently, a SD6LowPAN under Rank attack introduces a packet loss ratio of 38%.

Thus, this scenario reaches a PDR of 62% which is 13% lower than S2 and 14% higher than S1.

Finally, in our method, the results demonstrate that the PDR reaches 85%, which is 23%, 10%,

and 37% more efficient than S3, S2, and S1, respectively. This is because the RL optimization

algorithm optimizes the network routes in SD6LowPAN.

3.5.2.2.3 RDC

In S1, as illustrated in Fig. 3.13, the Rx reaches 99.972% and Tx 0.028%. Meanwhile, in

S2, the Rx reaches 99.902% and Tx 0.098%. As a result, this scenario consumes less energy

than S1 because the centralized SDN architecture optimizes the power consumption by not

overloading the data plane with continuous execution of the RPL. Subsequently, in S3, the Rx

reaches 98.676%, and Tx is 1.324%. Therefore, this scenario introduce a higher duty cycle than

S2 due to the Rank attack execution. Conclusively, in S4, the Rx is 99.432%, and Tx is 0.568%.
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Consequently, this scenario consumes less energy than the third scenario restoring the excessive

energy consumption introduced by the Rank attack.
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Figure 3.13 RDC-An illustrative comparison between S1, S2,
S3, and S4

Although our approach introduces more latency than the other scenarios where the route consists

of a maximum of 3 hops, the latency is decreased in the fourth and fifth hop due to the exploration

of the RL agent’s environment. Moreover, the proposed scheme provides better performance in

packet delivery than S1 and S2 and restores the Rank attack’s energy consumption in S3.

It is worth mentioning that since the results obtained demonstrate that our approach provides

network performance efficiency, thus preventing rank attacks from overwhelming the constrained

SD6LowPAN, we did not create more test scenarios, including more malicious nodes. To the

best of our knowledge, the concept of a unified SDN-based intrusion prevention stack scheme,

integrating RPL for fast network discovery and RL for route optimization to avoid ranking

attacks, has never been attempted in any previous research works.

3.6 Conclusion

The core of our solution is the elaboration of a security preventive control that takes advantage

out of programmability of SDN in 6LowPAN to build a self-learning agent that capture states
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through flow tables and metrics collected from the control plane. The learning consists of

optimizing RPL routing based on QoS metrics like delays and packet loss rate. The control plane

and the application plane stack can be used into a wireless border router supporting 6LowPAN,

introducing therefore a QoS awareness intelligence and avoid RPL rank attacks sensitivity.

Such solution can be a support for 5G agnosticism with respect different wireless networks

like 6LowPAN networks. To analyze the performance of the proposed scheme, we leverage

Contiki Cooja. The results demonstrate that the proposed scheme satisfies the requirements

of SD6loWPAN, provides low computational complexity, and considerably prevents ranking

attacks, thanks to the introduction of the learning agent reinforcing the route optimization

approach. As for future work, we will implement the proposed security scheme in an IoT-centric

testbed.

Moreover, our research will explore the use of network slicing to tailor our approach for

heterogeneous networks with the help of hierarchical SDN drivers distributed between the cloud

and the edge. Such a deployment will promote decentralized decision making and introduces

our solution in large-scale scenarios.
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4.1 Abstract

The resource-constrained IPV6-based low power and lossy network (6LowPAN) is connected

through the routing protocol for low power and lossy networks (RPL). This protocol is subject to

a variety of attacks. This work specifically examines a routing attack called rank attack (RA). It

presents a performance evaluation where model-free reinforcement-learning [RL] algorithms are

leveraged to help the software-defined network (SDN) controller achieve a cost-efficient solution

to prevent the harmful effects of RA. Experimental results demonstrate that the state action

reward state action [SARSA] algorithm is more efficient than the Q-learning (QL) algorithm,

facilitating the implementation of intrusion prevention systems (IPSs) in software-defined

6LowPANs.

4.2 Introduction

The massive deployment of low-powered IoT devices has exposed them to ranking attacks. These

attacks have raised serious concerns about the strength of routing protocols. The RPL specifically

builds acyclic graphs and applies an objective function (OF) for the selection of parents, along

with the rank. RPL commonly implements two objective functions, the minimum rank with

hysteresis objective function (MRHOF) and the objective function zero (OF0). Consequently,

an adversary can accomplish this by misusing the rank property and infringing on the routing
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protocol. Based on the analysis of vulnerabilities related to the rank property, RAs create

non-optimal paths for all packets, which pass through malicious nodes and thus overwhelm the

restricted 6LowPAN (Sahay, Geethakumari & Modugu, 2018b). To address RPL vulnerabilities,

a new security service for preventing the misbehaving node from decreasing rank values is

presented in (Mangelkar, Dhage & Nimkar, 2017a). The authors avoid RPL publishing an

illegitimate reduced rank by generating a hash chaining using a random number chosen by the root

node. Moreover, in (Boudouaia, Ali-Pacha, Abouaissa & Lorenz, 2020a), a challenge-response

scheme is used to validate the authenticity of the nodes within a destination oriented directed

acyclic graph (DODAG). In (Shin, Sharma, Kim, Kwon & You, 2017b), a secure and efficient

protocol for route optimization is proposed. It includes steps for reliable route optimization and

handover management, where mutual authentication, key exchange, perfect forward secrecy,

and privacy are supported. Although essential works have been proposed in the literature to

target RAs in 6LowPANs, these deployments are not satisfactory to simultaneously guarantee

efficient intrusion prevention and low management complexity in low power IoT networks

(Kamble, Malemath & Patil, 2017b). Additionally, heuristic algorithms such as ant colony

optimization (ACO), swarm optimization, and artificial bee colony are practical and widely

used approaches to find solutions to combinatorial optimization problems (Rajesh, Raajini,

Rajan, Gokuldhev & Swetha, 2020b). However, they are limited by the high sample complexity

required to reach a reasonable solution.

With the advent of 5G, SDNs have been deployed to facilitate simple programmability, quality

of service (QoS) provisioning and fast routing configuration services over the 6LowPAN. In

this context, this paper uses a software-defined 6LowPAN (SD6LowPAN) architecture (Charfi,

Mouradian & Vèque, 2020b) to address the management complexity introduced by security

solutions and control data plane forwarding in the 6LowPAN according to the SDN approach.

In addition, an RL approach in the SDN application plane is proposed to achieve routing

optimization for packet forwarding in order to address the vulnerable rank value and the

weakness of RPL objective functions in 6LowPAN. However, it is well known that RL introduces

a non-negligible overhead into the network. To tackle this concern, this paper presents a
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performance evaluation where an RL-based QoS function using QL and SARSA algorithms

is leveraged for routing optimization to prevent the harmful effects of RAs in SD6LowPAN.

The novelty of the proposed work lies in devising and evaluating model-free RL algorithms to

achieve a cost-effective IPS through route optimization in SD6LowPAN. The main contributions

of this work are summarized as follows:

1. An RL-based IPS approach is proposed to optimize the RPL routing paths to prevent the

harmful effects of RAs in software-defined low power IoT networks.

2. A performance analysis of the computational complexity of the QL and SARSA algorithms

is provided.

Moreover, simulations showing the proposed method’s effectiveness are executed by leveraging

the Contiki Cooja tool. This remainder of this paper is organized as follows: Section II introduces

the proposed solution’s system model and intrusion prevention algorithm. Section III, details

the performance evaluation. Finally, the paper is concluded in Section IV, where some future

endeavors are also put forward.

4.3 System Model

To prevent RAs in SD6LowPAN and introduce intelligent application support to the SDN control

plane, we introduce an RL agent into the application plane to interact with a lightweight SDN

controller, namely, µSDN (Baddeley, Nejabati, Oikonomou, Sooriyabandara & Simeonidou,

2018b). The agent’s objective is to optimize routing to avoid RA overwhelm the resource-

constrained SD6LowPAN. The agent is a programmable asset that hooks into the control plane

to decide on building routes. The agent and its interaction with the control plane constitute

a stack supported by a border router for 6LowPANs. To this end, our work is focused on

utilizing model-free RL algorithms such as SARSA and QL. Since this evaluation is based on

the software-defined architecture, it comprises three layers, as shown in Fig. 4.1. At the bottom

of the framework, the low-power IoT network is developed in the data plane. In the middle,

i.e., the control plane, the µSDN functions are executed (Baddeley et al., 2018b), and in the

application plane, SDN applications are designed, as shown in Fig. 4.1. In what follows, we
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provide a brief background on model-free RL and its main algorithms, such as QL and SARSA.

Further, we present the impact of RAs on SD6LowPAN.
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Figure 4.1 System model

4.3.1 Background

Since this work proposes an IPS-based RL approach to avoid RAs for low-power IoT networks,

the basics concept underlying model-free RL algorithms are detailed in what follows.

4.3.1.1 Model-free RL methods

Practical RL applications generally deal with environments for which we do not have information

on the underlying model. In such a situation, model-free RL algorithms are more appropriate.

The most widely used approaches in this area are Monte Carlo and temporal difference (TD)

learning (Mammeri, 2019a). TD learning and the Monte Carlo method are similar in that they

both learn value functions directly from experience to obtain the optimal policy. However,

contrary to with the Monte Carlo method, TD learning is a step-by-step method and does not

need to wait for the agent to complete an episode and update its estimated value. In what follows,

we introduce two well-known model-free RL methods: QL and SARSA.
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4.3.1.2 The QL algorithm

The essence of the QL algorithm (Wang, Liu, Ma, Liu & Ma, 2020c) is to derive the estimated

value of Q directly from the Bellman optimality equation. It is combined with the idea of TD

learning, once we know the optimal action value &(BC , 0C) corresponding to all possible actions

0C of state BC of the next time step, we need only to select the action with the max action value

according to the greedy policy. Subsequently, we can obtain the estimate of &(BC , 0C) for the

current time step from

(4.1)&C+1((C , 0C) = &C((C , 0C) + U['C + W&C((C+1, 0C) −&C((C , 0C)],

where Wn[0, 1] is the discount factor that defines the importance of future rewards, Un[0, 1] is

the learning rate that determines the override measure of the newly acquired information to the

old one, and 'C is the reward at time C.

4.3.1.3 The SARSA algorithm

Unlike QL, SARSA is an on-policy TD algorithm that learns the Q values based on the action

performed by the current policy. The SARSA algorithm differs from the QL algorithm by the

way it sets up the future reward. In SARSA, the agent uses the action and the state at time C + 1

to update the Q-value as follows (Wang, Yao, Wang & Jornet, 2020a):

(4.2)&C+1((C , 0C) = &C((C , 0C) + U['C + W&C((C+1, 0C+1) −&C((C , 0C)],

4.3.2 Impact of Rank attack

Rank information is used to select the parent set and the preferred parent according to the rank

rule, which states that the parents’ rank always has to be smaller than the child’s rank, and the

preferred parent should be the parent with the best rank. The malicious node is programmed

to compromise the rank rule so that instead of choosing the best node for its preferred parent,
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it determines the worst one. As depicted in Fig. 4.2, the neighboring nodes of the attacker

(compromised) node nine selects node six as their new preferred parent because it changes its

rank from R=3 to R=2 and the ETX announced in the DIO message is lower than the minimum

perceived between neighbors. As a result of such ranking misuse, new non-optimal links are

considered (depicted by a red line in Fig. 4.2), which implicitly impacts network performance.
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4.3.3 RL Model

The SD6LowPAN RL life cycle consists of two phases as shown in Fig. 4.1. In the first phase,

the agent enters an exploration stage to explore potential states and actions to optimize routing

in SD6LowPAN networks. The second phase consists of deploying the agent and entering the

exploitation phase, where the agent engages the SD6LowPAN control plane, where actions

are triggered to decide on the routing of uplink packets. By adding or removing links from

the DODAGs, the agent can return to the exploration phase to enforce its routing optimization

again. In the proposed scheme in particular, the state is the current node, and the action is the

link to follow to reach a neighbor node. Unfortunately, one of the significant concerns with

RL applications is that since the agent iterative estimates the action values, the initial stages’

learning process is extensively random exploration, which might affect network performance. To

address this concern, we introduce an exploration strategy that incorporates a QoS provisioning
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function in the action selection process to guide the learner agent (Wang et al., 2020c) and avoid

excessive consumption of resources.

4.3.3.1 QoS provisioning function

For a given update on node 8 within a DODAG, the action selection policy is made based on QoS

provisioning delay on transmission and packet loss on link (8, 9). QoS provisioning is calculated

based on how a metric value compares to potential parent candidates’ average. For nodes 8, 9 ,

the gauging is done on range [−1, 1] through arctan normalization, which is maintained as a

parent or selected as a new parent from the set of neighboring nodes. The QoS provisioning

function is computed as follows:

(4.3)delay8, 9 =
2
c

arctan

[
3;8, 9 −

∑�(8)
:=1 3

;
8,:

�(8)

]
,

where 3;
8, 9

and 3;
8,:

are the link transmission and packet queueing delays from node 8 to node 9 ,

respectively. �(8) is node 8’s number of neighbors in the DODAG. Eq. (4.3) estimates the link

delay of link 8, 9 compared to other possible next hops.

4.3.3.2 Reward function

The reward function is based on the QoS provisioning function and is meant to measure the

reward behind choosing an action for route optimization. The RL agent discovers the uplink

routing path with the highest QoS-aware reward. For this purpose, the reward function is

evaluated as follows:

(4.4)'C = −6(0C) + delay8, 9

This indicates that the system at state BC , using an action 0C , forwards packets from node 8 to

node 9 . In Eq. (4.4), 6(0C) indicates the cost to take the action at time C. Since the impact of
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doing an action mainly relies on QoS-aware functions, the cost 6 is equal to a constant value

over all the actions.

4.3.4 Intrusion Prevention-Based RL

Intrusion prevention-based RL relies on the states capture interface, which receives ground truth

from the control plane and the RL agent, implementing the self-learning recursive process. The

interface component receives flow tables and metrics indexed by existing node in the observed

DODAGs. As depicted in Fig. 4.2, an RA affecting node nine occurs and changes its parent

from node three to node six. Then, our RL approach is executed in the SDN controller, which is

in charge of path computation based on the network states (NS) received for each incoming route

path. After that, a new DODAG is created with an optimized path based on the continuously

received control messages, where node six is selected instead of node three as parent node to

node nine. The intrusion prevention algorithm is summarized as follows:

Algorithm 4.1 Intrusion prevention algorithm
1: Flow 5 arrives to the controller � 5 in the DODAG.
2: A set of paths and #( are introduced in � 5 .
3: QoS requirements are configured in � 5 .
4: The QoS provisioning function is calculated in � 5 .
5: � 5 executes the RL agent.
6: A set of optimized paths are stored in the flow table.
7: The flow is forwarded following the flow tables in � 5 .

First, when flow 5 arrives at controller � 5 , it requests the forwarding path and the controller

updates the current network state. Then, the QoS requirements are configured accordingly in

� 5 , and the QoS provisioning function is computed. Subsequently, � 5 uses algorithm 6.1 to

select a possible path with regard to the QoS requirements of the flow. Lastly, � 5 stores the

forwarding tables of the IoT nodes along with the optimized path in the flow tables.
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4.4 Performance Evaluation

This section analyzes the results obtained from the experiments conducted using the Cooja

simulator testbed for Contiki OS (Simha, Mathew, Sahoo & Biradar, 2020a). The environment

was created with one DODAG having multiple paths, one SDN controller, one control channel,

and a real-time network state. Our low-power wireless network was composed of 30 IoT nodes

deployed in a simulated outdoor area. It is worth mentioning that the results are achieved

considering a scenario in which there are no mobile nodes. However, our testbed was deployed in

a dynamic wireless environment. Hence, our testbed was susceptible to changes in radio channel

conditions due to interference (e.g., from other 802.15.4 radios and 802.11 radios), where this

interference is time-varying. Furthermore, the underlying MAC protocol is ContikiMAC. The

network parameters used in the simulations are listed in TABLE 4.1, and node characteristics are

reflected according to the EXP5438 platform with TI MSP430F5438 CPU and CC2420 radio.

Table 4.1 Network Parameters

Parameter Value
Simulation runtime 3600000 ms
Objective function mrhf, ETX
Number of sensor nodes 30
Link quality 90%
RPL mode Non storing
Sending rate 1 packet every 10 s
Number of attacking nodes 1
TX range 100 m
Interference range 0-30 m
Packet size (excluding header) 50 Bytes
Initial latency 60 ms
Maximum number of hops 5

In what follows, we analyze the performance of the proposed solution in comparison with the

following scenarios: S1 - A RPL scenario with SDN implementation without RA, S2 - A RPL

scenario with SDN implementation under RA, and S3 - A RPL scenario with an RL-based SDN

approach under RA.
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4.4.1 Off-Policy vs On-Policy

In this section, we compare on-policy and off-policy control algorithms. Let us take QL

(off-policy) and SARSA (on-policy) as examples. To this end, we present the training model as

follows.
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Figure 4.3 Average reward of QL and SARSA under
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4.4.1.1 Training model

The step size parameters (U,W) govern the performance of the RL agent, as defined in Eq.

(4.1,4.2). More precisely, U adjusts the error in the & value update and W n [0, 1) takes a value

of zero if the routing estimates the current reward and acts like a greedy algorithm or a value

close to one if the routing takes the long-term revenue. Since we consider the long-term revenue

to be significant, we set the value of W to 1 for this experiment. Let the agent perform 100

episodes and operate for a total of 100000 steps. Based on the results presented in (Lin, Akyildiz,

Wang & Luo, 2016b), we set the value of U to 0.7, which is suitable for IoT networks with a

maximum of 5 hops. It is worth mentioning that since this work aims to prevent the harmful
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effects of RA based on network metrics continuously received by the control plane, the step size

parameters (U,W) are still selected whether the model is trained online or offline.

As shown in Fig. 4.3, by averaging over 100 runs, when the algorithms tend to converge in S1,

QL’s performance indicates that the episodes’ average reward is 11% better than that of SARSA.

This is because SARSA searches for the optimal path, whereas QL searches for the shortest one.

On the contrary, in S2, both algorithms present a decrement in their episodes’ average reward.

However, QL demonstrates 29% worse average reward than SARSA does. This is because the

entire network’s performance has been affected by the RA, which interferes with QL’s shortest

path method. Moreover, SARSA’s optimal path approach helps to mitigate the negative effects

of the rank attack. In S3, SARSA’s optimization approach provides 5% better performance than

QL. This is because the QoS provisioning function used in the RL approach diminishes the gap

existing between SARSA and QL when the algorithm converges to 100% of the episodes.
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Fig. 4.4 illustrates that when it comes to the length of the time step used during the episodes, in

S1, QL has a significantly shorter time step than SARSA, which means that QL finds shorter
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optimal paths than SARSA does. Moreover, in S2, network performance using QL is affected by

RA and reaches 317% of its S1 value, whereas network performance using SARSA increases

21% in comparison to S1 but remains far less than QL’s value, which means that QL is more

affected by the non-optimal routes created by the RA. In S3, QL restores the performance

obtained in S1, but SARSA delivers the packets 73% faster than QL. SARSA also improves on

its performance obtained in S1. Furthermore, Fig. 4.4 demonstrates that in S1, QL delivers

an average of 65 packets after the run of 100% of the episodes, whereas SARSA delivers 76

packets, which means that SARSA is 14% more effective in packet delivery than QL. In S2,

network performance is affected by the RA for both algorithms , with packet delivery impacted

by 50% after the episodes’ execution. In S3, SARSA restores and improves on average packet

delivery, reaching 107 packets. On the contrary, QL reaches 76 packets after the implementation

of the episodes, which means that SARSA is 71% more efficient in packet delivery than QL.
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4.5 Conclusion

An intrusion prevention-based RL solution to avoid RAs for software-defined low-power IoT

networks is proposed in this paper. This solution combines the advantages of software-defined

networks with routing optimization using an RL approach. We leveraged Contiki Cooja to

analyze the performance of the RL algorithms. The results demonstrate that the SARSA-RL

approach provides considerably better performance than the QL-RL approach and prevents

the harmful effects of RAs. As for future work, our research will analyze the use of deep

reinforcement algorithms for intrusion prevention systems for software-defined IoT networks.
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5.1 Abstract

Internet Protocol v6 (IPv6) for low-power wireless personal area networks (6LoWPAN) has

been developed to facilitate and support IP stack communication over IPv6 networks. In RFC

6550, the Internet Engineering Task Force (IETF) specifies the IPv6 Routing Protocol for low

power and lossy networks (RPL) to promote efficient routing in 6LoWPAN. However, this

technology is not mature enough to offer secure mechanisms and communications. In this

context, Software-Defined Networking (SDN) has been developed to provide programmability to

the resource-constrained 6LoWPAN architecture creating a new paradigm called SD6LoWPAN.

Moreover, researchers have proposed machine learning (ML) to provide fast reconfigurability

and intelligence for SD6LoWPAN. This paper aims to provide an overview pertaining to security

issues in SD6LoWPAN, considering its resource, topology, and traffic. In addition, a study

is presented of the SDN- and ML-based security solutions that are suggested in the literature.

Security research challenges and trends are also put forward. In conclusion a performance

analysis of an SDN-based ML solution is presented.

5.2 Introduction

The Internet of Things (IoT) is deployed using heterogeneous low-power and lossy networks

(LLNs) that are commonly characterized by communication connections with high packet loss

and low throughput. These networks are expected to increase in abundance by more than 2.4
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trillion per year by 2027. IPv6 has been developed to enable communication to support the

IP stack in LLNs. This new paradigm is called Internet Protocol v6 for low-power wireless

personal area networks (6LoWPAN). As this new architecture increases in use, it meets different

challenges, including ones pertaining to network management and heterogeneity. To address

these challenges, the software-defined networking (SDN) approach to 6LoWPAN aims to

highlight the efficiency and sustainability of LLNs. SDN endeavors to centralize network

intelligence in a network component by decoupling the network packet forwarding process (data

plane) from the routing process (control plane). SDN typically uses the OpenFlow protocol for

remote communication with data plane elements to determine the routing of network packets

through network switches.

The amalgamation of these technologies gives a new architecture named software-defined

6LoWPAN (SD6LoWPAN). There are a wide range of communication protocols commonly

used in SD6LoWPAN, e.g., WiFi, IEEE 802.15.4, RFID, and Bluetooth, that are used depending

on the characteristics of the devices, their environment and the communication range. In this

paper, we consider the standardized IPv6 Routing Protocol for LLNs (RPL) to facilitate efficient

routing in LLNs. This protocol has become very popular in both industry and academia. The

motivation behind using RPL is to provide efficient routing between resource-constrained nodes,

adaptability to other network topologies, and quality of service (QoS). RPL build acyclic graphs

and applies an objective function (OF) to select the parents and rank. RPL implements two

objective functions in particular, the minimum rank objective function with hysteresis (MRHOF)

and the objective function zero (OF0). The OF defines how the nodes should consider the

metrics and constraints of the rank value, which is approximately the node’s distance to the

destination oriented directed acyclic graph (DODAG) root. Although the rank value helps RPL

with multiple objectives, such as route discovery and distribution, loop prevention, and control

overhead management, the protocol is exposed to many routing attacks. Wireless sensor network

(WSN)-inherit attacks (i.e., sinkhole attacks, wormhole attacks) and IPv6-based attacks(i.e.,

rank attacks, DIO suppression attacks) have raised serious doubts about the robustness of RPL.
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Furthermore, RPL features, such as self-organization, self-healing, and resource limitation,

expose SD6LoWPAN to various attacks that compromise the user’s security and privacy.

Some cryptography solutions have been proposed to address those threats. However, the

resource-constrained nature of SD6LoWPAN poses many key management challenges related to

establishing, storing, distributing, revoking, and replacing secure keys in LLNs, making current

cryptography solutions inadequate for LLNs. In this context, the limitations of SD6LoWPAN

represent a critical menace to RPL security because traditional cryptography-based solutions

rely on secure key distribution. Hence, an intruder can access a large set of preloaded keys

if a reliable node is compromised. An adversary can carry out a routing rank attack (RA)

by misusing the rank property and breaching the routing protocol. Based on the analysis

of rank-related vulnerabilities, RAs create non-optimal paths for all packets, which bypass

malicious nodes and thus overwhelm the constrained 6LoWPAN architecture. To this end, a

new security service is presented to prevent the misbehaving node from decreasing rank values

to cope with RPL vulnerabilities (Miguel, Jamhour, Pellenz & Penna, 2018c). Specifically, the

authors propose to prevent RPL from publishing an illegitimate reduced rank by generating hash

chaining using a random number chosen by the root node. Moreover, in (Boudouaia, Ali-Pacha,

Abouaissa & Lorenz, 2020b), a challenge-response scheme is used to validate the authenticity

of the nodes within a DODAG. In (Shin, Sharma, Kim, Kwon & You, 2017c), a secure and

efficient route optimization protocol is proposed. It includes steps for reliable route optimization

and handover key management, that include mutual authentication and privacy. Although

essential works have been proposed in the literature to target RAs in 6LoWPAN networks, these

deployments are not satisfactory to simultaneously guarantee efficient intrusion prevention and

low management complexity in 6LoWPAN networks. In addition, heuristic algorithms, e.g., ant

colony optimization (ACO), swarm optimization, and artificial bee colonies are widely used to

find solutions to combinatorial optimization problems. However, they are limited by the high

sample complexity required to reach a reasonable solution. Therefore, the contributions of this

paper can be summarized as follows:
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1. A taxonomy of SD6LoWPAN security issues is presented, including key attributes such as

resources, topology and traffic.

2. A study of existing SDN- and ML-based security solutions is introduced.

3. Security research challenges and trends are also put forward.

The remainder of this paper is organized as follows: Section II introduces the taxonomy of RPL

security issues. Section III details existing SDN and ML-based security solutions. Section IV

presents SD6LoWPAN security research challenges and trends. In Section V, a reinforcement

learning-based solution’s performance thwarting RAs by leveraging the Contiki Cooja tools is

evaluated. Finally, paper’s conclusion is presented in Section VI.

Flow tables RPL routes 

SDN Controller

SDN 

Applications

SDN data plane

Network ServiceSensing Interface

Figure 5.1 SD6LoWPAN Architecture

5.3 SD6LoWPAN security issues

SD6LoWPAN architecture incorporates three layers. At the bottom of the stack, in the data

plane, typical IoT nodes combine the following communication layers: the sensing layer, the



97

network layer, the service layer, and the interface layer. In the middle, the control layer, the

coordinator flow control handles the OpenFlow and RPL routes. At the top, in the application

layer, the SDN applications are integrated. This architecture is fully integrated with the IEEE

802.15.4-2012 protocol stack, as shown in Fig. 5.1. In this paper, we will focus on security

issues in the data plane. The main data plane concerns are briefly explained below

5.3.1 Sensing layer

Three kinds of attacks are considered in the sensing layer: cyber-physical, eavesdropping, and

radio frequency identification (RFID) attacks. A cyber-physical attack results when a sensor in

an SD6LowPAN network is physically compromised by a cyber-attacker called a faulty node.

An eavesdropping attack happens when an attacker eavesdrops on the information sent by the

nodes in the network. An RFID attack employs a physical device to spoof the victim. As a result,

the attacker alters the information attached to a tag, which is sent back to the victim’s device.

5.3.2 Network layer

The network layer comprises two sublayers: the routing layer, which manages packet transfer

from source to destination, and the encapsulation layer that produces the packets. Since the

network’s availability, manageability, and scalability are crucial for SD6LowPAN network

operation, an attacker can use different mechanisms to compromise the routing and encapsulation

layers and to overwhelm and cause harm to the network.

5.3.3 Service layer

The service layer serves as a gateway between the sensing layer and the interface layer. An

attack on the service layer could impact critical functions such as device and information

management, resulting in end users not receiving a service. Access control, user authentication,

communications security, data integrity and confidentiality are vital aspects of service layer

security.
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5.3.4 Interface layer

The interface layer is the most vulnerable part of the SD6LoWPAN infrastructure. This layer

sits at the top of the IoT ecosystem and is a gateway to the other layers. For instance, if the

authentication and authorization mechanisms are compromised at the interface layer, there

is a ripple effect through the other layers. In this sense, the end-user is a potential attack

mechanism, as attackers could obtain sensitive information through impersonation. In addition,

web application interfaces can be subject to frequent SQL injection and cross-site scripting

attacks. This manuscript takes an in-depth look at the most common problems encountered in

the network layer. Bellow, we present an overview of RPL and the security issues specific to the

RPL-based SD6LoWPAN.

5.3.5 Overview of RPL

The Internet Engineering Task Force (IETF) designed and standardized RPL, the IPv6 Routing

Protocol for LLNs. RPL builds the network topology using directed acyclic graphs (DAGs)

segmented by one or more DODAGs, each of which has a root node. Multiple root nodes are

integrated into a backbone network that consists of border routers that connect them to the

Internet. RPL is a routing protocol for mobile systems with low power consumption that find

routes based on the objective function (OF) established in the initial stage. The OF delivers

traffic to different routes according to traffic requirements it encoded to be used by RPL during

routing operations. RPL applies some control messages such as DODAG Information Object

(DIO), DODAG Information Solicitation (DIS), and DODAG Advertisement Object (DAO),

as shown in Fig. 5.3. RPL operations include topology discovery, DAG construction, route

generation, data path validation, and loop detection based on rank values.

5.3.6 RPL attacks

RPL is vulnerable to various types of internal and external attacks. In the resource-constrained

SD6LoWPAN environment, these attacks are hard to mitigate and detect. Also, mobility
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and easy node manipulation represents critical challenges for the network. RPL deployments

typically do not provide for grant security methods due to the overhead they can produce during

implementation. Although some works have proposed security mechanisms for RPL networks,

including encryption and security protocol techniques, the mechanisms effectively defend against

only external attacks, not internal ones. This is because an internal attacker can evade RPL’s

security mechanisms and interrupt network operations. A summary of RPL attacks based on

their primary target is shown in Fig. 5.2. Each type of RPL attack is briefly discussed below.

Attacks on RPL

Resources Topology Traffic

Rank attack

Version Number 
attack

DAG 
inconsistency

Local Repair 
attack

Replay attack

Routing table 
falsification

DIO supression

DAO 
Inconsistency

Eavesdropping 
attacks

Impersonation 
attacks

Figure 5.2 Taxonomy of RPL-based attacks

5.3.6.1 Replay attack

In this attack, a malicious node copies and multicasts the DIO messages received from its parent.

Neighboring nodes receiving the DIO message thus believe it is from a legitimate node. In

addition, if the DIO message includes routing information such as the rank value, the victim

neighbor node adds the rank node as its preferred parent. Consequently, it changes the routes of

the original DODAG, causing the network to be saturated.
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5.3.6.2 DAO inconsistency attack

This attack happens when an adversary node periodically sends the wrong DAO messages

to its parent nodes. Consequently, the parent nodes, command updates the routing table by

overwhelming the network with acquired DAO messages that swamp network resources.

5.3.6.3 Routing table spoofing attack

A routing table forgery attack occurs when a malicious node spoofs routing information in DAO

messages. The attacker convinces benign nodes to construct a fake route. Thus, the benign nodes

attempt to forward data to non-existent nodes. This situation causes DODAG inconsistencies,

packet delays and increased control overhead.

5.3.6.4 DIS attack

A DIS attack occurs when a malicious node transmits periodic DIS messages to neighboring

nodes. Consequently, victim nodes restart their trickle timer and respond with DIO messages.

This attack is carried out by forwarding DIS messages to a single node or multicasting DIS

messages to multiple nodes to disrupt routing, increase power consumption and control packet

overhead.

5.3.6.5 Version number attack

A version number attack occurs when an attacker modifies the version number field of the DIO

message and then forwards it to neighboring nodes. This adjustment unnecessarily pushes

DODAG reconstruction, causing routing loops, control packet overhead, end-to-end delay, and

increased power consumption. It is worth mentioning that RPL does not specify a mechanism to

prevent nodes other than the border router from illegitimately modifying the version number

field in the DIO message.
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5.3.6.6 Local repair attack

RPL carries out a local repair procedure when a node misses the link to its preferred parent. In

the case of a local repair attack, a malicious node changes the DODAG ID value field of DIO

messages or updates the node’s rank to infinity. As a result, it multicasts the DIO message to its

neighbors, making them search for a new preferred parent. In this context, the malicious node

unnecessarily triggers the local repair mechanism, increasing the DODAG’s energy consumption

and disturbing the routing process.

5.3.6.7 DODAG inconsistency attack

RPL uses different flags to detect and fix loops in DODAGs. In this context, an intruder can

misuse RPL flags to perform a DODAG inconsistency attack. A malicious node sets the RPL

header flag to "0", meaning the rank relationship with the node that sent the packet is not traced,

and the intruder set flag "R" to 1 before transmitting the packet to its neighbor. As a result, when

a node receives a packet with the flag set to "R", it cancels and restarts its timer to perform a

local repair unnecessarily.

5.3.6.8 DIO suppression attack

In a DIO suppression attack, a malicious node removes the transmission of DIO control messages

in the SD6LoWPAN data plane, forcing nodes to explore new routing paths. Consequently, this

attack creates unoptimized routes.

5.3.6.9 Rank attack

OF is an essential factor in the parent and rank selection. Once a node receives a valid rank, the

OF’s setting must be determined based on the routing metrics before the selected parent node is

modified. For instance, if the routing metric relies on the expected transmission count (ETX),

the OF holds the routing path with the lowest ETX value, and a node will receive both the rank

and ETX for the chosen parent node. As shown in Fig. 5.3, to successfully originate a rank
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attack, the attacking node must alter the routing metric advertised by the parent node so that the

OF of the neighboring nodes is exposed to be attacked.
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Figure 5.3 DODAG instance before and after an RA

5.4 SDN- and ML-based security solutions

Using ML to deploy RPL-based security solutions remains a significant task due to 6LowPAN’s

resource limitations and heterogeneity. Although ML has proven itself effective in securing

resource-intensive wired and wireless networks, ML algorithms must be customized for 6LoW-

PAN networks with limited resources. In this regard, an SDN-based 6LoWPAN configuration

can help overcome some of these challenges. Since the SDN controller supposedly has more

resources than a typical 6LoWPAN configuration, the border router can accomplish some

network operations, e.g., intelligent configurability and routing. Therefore, the 6LoWPAN

architecture’s security requirements can be addressed by integrating existing SDN functions

into the border router. Some SDN- and ML-based security solutions that are presented in the

literature are detailed below.
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5.4.1 SDN-based security solutions

SDN-based security solutions have been deployed to provide programmability and intelligence

to the resource-constrained 6LoWPAN architecture. The architecture consists of a central SDN

controller that manages the data plane, including IoT operations, such as sensing, delay and

sleep scheduling. Unfortunately, control overhead and end-to-end delay need to be addressed

in the proposed system. In (Theodorou & Mamatas, 2020), the authors propose innovative

SDN-based control of WSNs to decrease the data plane’s energy consumption. More specifically,

the border router plays the role of central controller located at the network edge to command

the packet forwarding mechanism in the data plane. Furthermore, in (Miguel et al., 2018c), an

SDN architecture is introduced to provide end-to-end connectivity to 6LoWPAN. The proposed

architecture uses SDN and network function virtualization (NFV) methods to minimize delay

and reduce the data plane’s energy consumption. In addition, (Baddeley, Nejabati, Oikonomou,

Sooriyabandara & Simeonidou, 2018c) proposes an architecture called `SDN that aims to

provide interoperability between different protocol stacks. The `SDN protocol uses an adapter

to communicate with other protocols. In addition, it includes a discovery module to discover new

nodes in the data plane. The module uses RL to help the network nodes discover the controller.

The limitation of this study is having the SDN controller included in the border router, which

may increase the system’s total processing time. Moreover, in (Lasso, Clarke & Nirmalathas,

2018c), an SD6LoWPAN architecture is presented that introduces an SDN agent at each node

in the network. The SDN agent communicates with the SDN controller by using the software-

defined IPv6 wireless sensor network protocol (SD6WSNP) to interact with the northbound

and southbound interfaces. The authors claim that latency and network overhead are reduced.

Furthermore, some works propose an SD6LoWPAN architecture in which RPL is used for

communication between the data and control planes. More specifically, the SDN controller

communicates with the SD6LoWPAN data plane through CoAP messages. The adaptation layer

adapts the data plane of this architecture, which manages packet forwarding routes via RPL.

Although this architecture aims to reduce delay and increase SD6LoWPAN’s reliability and



104

availability, it has a limitation in handling heterogeneity, as each sensor node used must have the

SDN system enabled.

5.4.2 ML-based security solutions

ML techniques have successfully addressed classified dilemmas in variety of areas including

speech recognition, spam detection, computer vision, and fraud detection. Although ML

solutions can be considered a developed field, some authors consider their applicability for

LLNs to be complicated due to the resource-constrained nature of the network nodes. For

example, in (Zhang, Restuccia, Melodia & Pudlewski, 2018), the authors propose a framework

that is based on applying Bayesian learning to detect and mitigate cross-layer wireless attacks.

More specifically, the framework builds a relationship between a hypothesis (an attack is

expected to occur) and the proof of it (proof of attack activities). This relationship allows the

hypothesis to be dynamically updated when new evidence becomes available. Furthermore, in

(Khan, Harous, Hassan, Khan, Iqbal & Mumtaz, 2019), a neural network is used to deploy a

self-learning mechanism that legitimates the information produced by IoT nodes. Moreover, in

(Zareen & Karam, 2018), an artificial immune system is proposed that leverages ML procedures

to generate an adaptive immune system. The system evolves and branches based on observations

and past experiences, and incorporates desirable features such as error tolerance, distributed

computing, and self-monitoring. Although the system proposed facilitates adaptive applications,

the evolved code may be faulty and could possibly be exposed to security attacks. Furthermore,

in (Chaabouni, Mosbah, Zemmari, Sauvignac & Faruki, 2019), ML is used to build an intelligent

system that automatically detects security threats, and in (Al-Garadi, Mohamed, Al-Ali, Du,

Ali & Guizani, 2020), the author uses ML to develop a vulnerability assessment mechanism in

order to identify and classify IoT devices based on their trustworthiness.

5.5 Security research challenges and trends

SD6LoWPAN networks face serious problems identifying and detecting intrusions due to their

resource-constrained nature and massive development. Some of these challenges include:



105

1. System throughput in the data plane as many nodes are connected.

2. SD6LoWPAN scalability issues due to SDN node heterogeneity.

3. Computation complexity due to the resource-constrained data plane.

Some RPL-based security challenges are also presented below.

5.5.1 Security against new routing attacks

In RPL networks, some attacks , such as DIO suppression and rank attacks, can degrade network

performance silently. To this end, efforts have been made to develop defence mechanisms

against these attacks. However, due to new attacks’ dynamics and intelligence, these defence

techniques need to be improved to defend SD6LoWPAN accordingly. Reinforcement learning

(RL) methods can be suitable to address these challenges and thereby prevent and detect new

routing attacks.

5.5.2 Scalability

Existing defence security solutions have been recreated in small network scenarios, but in reality,

the SD6LoWPAN data plane is composed of an extensive network of heterogeneous nodes

with limited resources. Moreover, the performance of existing solutions may be inadequate

in a more extensive and heterogeneous network, thereby leaving SDN applications exposed

to attackers. Critical applications demand minimal delay in regards to packet forwarding.

Therefore, high-speed and lightweight defence solutions are needed to perform complete network

operations. In addition, these solutions must avoid degrading the network’s QoS and, at the

same time, support high scalability.

5.5.3 Mobility

RPL analysis demonstrates that mobile nodes critically affect RPL performance. This is

because the RPL specification does not provide mechanisms to support such mobility. Network

performance therefore deteriorates in the presence of mobile nodes. In addition, mobile features
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increase the probability of link disconnections, packet loss and collisions, which means if

malicious mobile nodes are compromised, network performance drastically decreases. It is

therefore necessary to thoroughly study the security issues related to RPL attacks in a mobile

environment. Most RPL-based defence solutions consider only the static environment and may

not apply to mobile scenarios.

5.5.4 Cryptography challenges

Key management is a critical challenge for the resource-constrained SD6LoWPAN protocol. To

this end, some defence solutions have used cryptographic techniques such as dynamic key, hash

chain, and Merkle tree authentication. These methods require computational, memory and power

consumption which makes them not suitable for resource-constrained devices. These overloads

change the lifetime of nodes, which is a crucial principle for critical IoT applications. In this

vein, the construction of lightweight cryptography-based security solutions for SD6LoWPAN

remains a significant challenge to be addressed.

5.5.5 ML challenges

ML is efficient for securing resource-abundant WSNs. However, the deployment of ML

algorithms must be improved to minimize their computational complexity in SD6LoWPAN

networks with limited resources. Attempts to address this challenge will lead to the development

of lightweight security solutions, which can help provide efficient prevention and detection

mechanisms. In addition, selecting the suitable dataset, consecutive training and labelling

remain ongoing challenges researchers face.

5.5.6 SDN challenges

We highlight bellow some of the requirements that need to be taken into account in the design of

SD6LoWPAN networks.
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5.5.6.1 Duty cycle

The SD6LoWPAN architecture should promote duty cycling, i.e., idle radio communication

when not in use. There are ways to achieve this, either reactively on-demand or periodically

through constant synchronization. Since high-duty cycling could degrade energy efficiency, it is

recommended that SD6LoWPAN networks have low duty cycle operations.

5.5.6.2 Data aggregation

The SD6LoWPAN protocol must support network data aggregation to avoid sending bulk data

to the controller. The goal of data aggregation approaches is to organize the data and send only

the processed information. These methods are based on factors, such as source, destination,

or application attributes. Determining which of these factors to consider requires a proper

structural evaluation.

5.5.6.3 Flexible rules definition

The SD6LoWPAN architecture must support flexible policy and rule definition and application.

Also, a mechanism to reverse and prevent rule or policy collisions is recommended to be

implemented.

5.5.6.4 Wireless link unreliability

The SD6LoWPAN data plane is composed of radio wireless communication links. Wireless

links frequently experience some instability due to common factors such as limited bandwidth,

and node failures and are therefore unreliable (Al-Kashoash, 2019c). In this regard, the design

of the SD6LoWPAN architecture should consider the rapid topological changes caused by

temporary node unavailability.
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5.5.6.5 Self-healing ability

The mobile nature of the SD6LoWPAN networks can trigger failures at data plane nodes. The

network must therefore be efficient and able to rapidly reorganize to cope with such occurrences.

Moreover, the controller must be logically centralized but operate logically as a single controller

to avoid a single-point-of-failure scenario.

5.5.6.6 Backward compatibility

The SD6LoWPAN network should be compatible with existing WSNs other than OpenFlow

and SDN-based sensor nodes should interoperate with normal sensor nodes. In addition, the

SD6LoWPAN protocol should be integrated with the IoT framework and its protocols.

5.5.6.7 Southbound and northbound interfaces

The southbound and northbound interfaces are essential in the SD6LoWPAN architecture for

fluid communication between layers. However, some work has been done on the southbound

interface and less on the northbound one. As yet, there is no standardized API for northbound

communication.

5.5.7 Security research trends

In addition to the research challenges already discussed, we list possible research trends for other

researchers in this field.

5.5.7.1 IPv6 defense moving target

A proper mechanism against eavesdropping and IPv6-based attacks can continuously change the

device’s IPv6 address. Accordingly, lightweight IPv6 defense moving target mechanisms should

be explored to secure the resource-constrained SD6LoWPAN networks. The use of temporary

private IPv6 addresses can also be examined.
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5.5.7.2 Defence mechanisms against coordinated routing attacks

Coordinated routing attacks severely degrade network performance without detection. Most

well-known intrusion detection systems (IDSs) are vulnerable to coordinated routing attacks. It

is, therefore, necessary to deploy efficient attack mitigation and detection solutions to defend

SD6LoWPAN networks from coordinated routing attacks. One such mitigation solution is

tasking solutions that allocate tasks to efficiently determine the optimal route for managing

constrained resources (Baek, Kaddoum, Garg, Kaur & Gravel, 2019; Baek & Kaddoum, 2020;

Amande, Kaur, Garg & Guizani, 2022; Cao, Garg, Kaddoum, Hassan & AlQahtani, 2022).

For example, in (Miranda, Kaddoum, Baek & Selim, 2021), the authors propose a hybrid

meta-heuristic algorithm that uses a task allocation framework to determine the optimal path

for efficient task allocation management. This framework can help to minimize the risk that a

coordinated routing attack overwhelms the limited network resources.

5.5.7.3 Collaborative IDSs

Collaborative IDSs have been created to leverage collaboration among sensor nodes and the

border router to detect efficient and quick attackers. Some research works have proposed

deploying collaborative security frameworks, but they still need further exploration. For instance,

in (Miranda, Kaddoum, Bou-Harb, Garg & Kaur, 2020c), a software-defined security framework

for software-defined, wireless sensor networks (SDWSNs) is proposed that combines intrusion

prevention and collaborative anomaly detection systems.

5.5.7.4 Active learning

Insufficient dataset quantity and quality are critical issues for ML-based security solutions. This

problem can be addressed with active learning mechanisms, which optimizes model learning

through a training phase. In recent years, RL domain has obtained the attention of researchers.

The RL model consists of two main entities: the agent and the environment, as shown in Fig.

??. The agent is a fast learner who can make decisions based on past experiences, and the
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environment is an entity that affects agent performance. In this vein, an in-depth study is

recommended to leverage RL in the development of SD6LoWPAN prevention and detection

mechanisms.
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5.5.7.5 Key management and energy-efficient cryptography mechanisms

The construction of efficient and scalable key management mechanisms such as generation and

storage, is a booming area of RPL security. Since security keys are loaded in IoT nodes in RPL

secure mode, it can represent a security risk for SD6LoWPAN networks due to the centralized

controller’s single point of failure. In addition, classical cryptographic algorithms can achieve

strong security as well. However, these algorithms are computationally and intensive. Thus, they

cannot be used directly in the SDN6LoWPAN data plane because of its resource-constrained

nature. Deploying energy-efficient cryptographic methods that meet the security requirement

with minimal energy consumption is a critical challenge for the SD6LoWPAN protocol. For

example, in (Moreira, Kaddoum & Bou-Harb, 2018f), a software-defined wireless network-

enabled fast cross-authentication scheme combines non-cryptographic (radio signal strength and

cryptographic algorithms) to address the challenges of latency and weak security. Additionally,

quantum computers are expected to be available for computing applications in the coming years.
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All existing cryptographic technologies will fail because current cryptographic methods can

be decrypted. Quantum cryptography is essential to handle such complexities. Blockchain

technology could be developed for authentication schemes for SD6LoWPAN and take the form of

a distributed peer-to-peer network to manage the ledger that stores data plane-related information.

In the next section, an RL-based security system’s performance is analyzed to understand how

rank attacks work and exemplify how RL can prevent this type of attack from being executed is

presented in what follows.

5.6 Analysis of an SDN-based RL security solution’s performance thwarting RAs

We consider a 6LoWPAN network composed of 30 IoT nodes where 29 are benign and 1 is

malicious. The network is deployed in a simulated outdoor area. It is worth mentioning that the

results are obtained considering a static scenario in which there are no mobile nodes. However,

our emulation scenario is deployed in a dynamic wireless environment. Thus, our testbed’s

radio channel conditions are susceptible to changes due to interference (e.g., and from other

802.15.4 and 802.11 radios), and this interference is time-varying. Furthermore, the underlying

MAC protocol is ContikiMAC. The following four scenarios are presented in our analysis:

1. S1: An RPL network with no SDN implementation under rank attack.

2. S2: An RPL network with SDN implementation without rank attack.

3. S3: An RPL network with SDN implementation under rank attack.

4. S4: An RPL network with our RL-based SDN approach under rank attack.

We analyzed the delay of the four scenarios considering a path with 5 hops. Fig. 5.5 demonstrates

that in S1, there is a 1600-millisecond delay, and in S2, the latency is 2950 milliseconds, meaning

S2 is 45.72% slower than S1. This is because additional overhead is introduced by the messages

exchanged between the controller and the data plane. In S3, the latency is 4400 millisecond,

which is 63.63% slower than S1 and 32.95% slower than S2. This is due to the rank attack

requiring the data plane to navigate downwards along the RPL topology across multiple non-

optimized paths. In S4, the latency is 2500 milliseconds, which is 56.81% quicker than S3 and

15.25% quicker than S2.
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Although S4 (our approach) is 36% slower than the scenario in which SDN is not implemented

(S1), it restores and even optimizes typical behavior in the SD6LoWPAN network. This is

because there are fewer SDN messages since the optimized paths are delivered only once the RL

approach’s exploration process is finished, rather than every time the RPL collects data from the

data plane. It is worth mentioning that S4 obtains the best results with DODAGs having more

than 3 hops.

5.7 Conclusion

The SD6LoWPAN protocol’s characteristics, such as global connectivity, heterogeneity, self-

healing and resource limitation, make it an ideal environment to be compromised by attackers.

In particular, the mobile nature of the SD6LoWPAN data plane make it a favorite target for

malicious activity because the SDN nodes communicate using wireless links. The RPL protocol
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has been standardized to support efficient routing in LLNs. However, it is vulnerable to a

variety of attacks, including legacy SDN, WSN and RPL attacks. In this paper, we present a

comprehensive study of common RPL attacks and related defence solutions. First, we discuss

the security issues in the SD6LoWPAN architecture. Then, we present a taxonomy of existing

SDN- and ML-based security solutions. We also discuss some research challenges and future

trends. Finally, we present an analysis of an RL-based security solution’s performance thwarting

rank attacks. The research related to security solutions specific to SD6LoWPAN is still young

and requires more attention to provide comprehensive security for SDN applications.
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6.1 Abstract

With the advent of 5G, technologies such as Software-Defined Networks (SDNs) and Network

Function Virtualization (NFV) have been developed to facilitate simple programmable control

of Wireless Sensor Networks (WSNs). However, WSNs are typically deployed in potentially

untrusted environments. Therefore, it is imperative to address the security challenges before

they can be implemented. In this paper, we propose a software-defined security framework that

combines intrusion prevention in conjunction with a collaborative anomaly detection systems.

Initially, an IPS-based authentication process is designed to provide a lightweight intrusion

prevention scheme in the data plane. Subsequently, a collaborative anomaly detection system is

leveraged with the aim of supplying a cost-effective intrusion detection solution near the data

plane. Moreover, to correlate the true positive alerts raised by the sensor nodes in the network

edge, a Smart Monitoring System (SMS) is exploited in the control plane. The performance of

the proposed model is evaluated under different security scenarios as well as compared with

other methods, where the model’s high security and reduction of false alarms are demonstrated.

6.2 Introduction

Wireless Sensor Networks (WSNs) provide infrastructure-free communications over the shared

wireless channels without the need for fixed infrastructures or centralized access points. Sensor

networks comprise of a set of dynamic cooperating nodes; forming one of the most promising
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wireless technologies which introduce a new wireless transmission paradigm by employing

multi-hops for information transfer. WSNs have significant potential applications in the fields

of transportation, agriculture, industrial automation, process monitoring, military surveillance,

environment monitoring, health-care, etc. According to (Rashid & Rehmani, 2016), these

wireless sensors need to be self-configured into a network to process and interpret sensor

measurements, and convey this information to a centralized control location.

Moreover, traditional WSNs typically consist of routers and switches as network devices.

Therefore, as they grow, they become difficult to monitor and update. Meanwhile large-scale

WSNs are also heterogeneous due to the use of different communication protocols, which

fundamentally means they consist of different network clusters that only cooperate at low level

of communication (Kobo, Abu-Mahfouz & Hancke, 2017a). Since the distributed management

of a communication protocol determines which node can receive or transmit data, this makes

the global vision and the applicability of security mechanisms in the network a very complex

task. Further, as the scale of the WSN expands, it is faced with several constraints, such as

resource and energy restrictions, processing, memory, and communication capabilities. To

address these constraints, the deployment of a lightweight security framework which includes

the centralization of intelligent features becomes essential.

With the emergence of 5G, promising technologies such as Software-Defined Networks (SDNs)

and Network Function Virtualization (NFV) have been designed to support innovations and

enable simple programmable control of data paths in wireless sensor nodes (Sun, Gong,

Rong & Lu, 2015). These technologies provide WSNs with the capability of being programmed

upon request. In addition, they allow multiple isolated sensor functions, by addressing and

forwarding mechanisms, to share the same physical infrastructure. Furthermore, SDNs allow

network administrators to manage network services through the abstraction of lower level

functionalities. This is done by decoupling the control plane that makes decisions about where

traffic is sent from the underlying data plane to the selected destinations. As a consequence,

computational complexity is reduced while throughput is enhanced. In addition, the SDN

approach to WSNs seeks to alleviate most of the challenges and ultimately foster efficiency and
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sustainability in WSNs. Thus, the control plane can dynamically enforce flow rules when the

data plane requires it. However, this control operation can cause serious problems when there

are excessive requests from the data plane to the control plane. On the other hand, if the data

plane receives many requests in a short period of time, it can flood the messages to the control

plane. Moreover, a flow table in the constrained data plane can also be flooded by rules for

handling requests (Fawcett, Scott-Hayward, Broadbent, Wright & Race, 2018).

Despite the high programmability and automation of WSNs gained from 5G, these networks are

not immune to malicious users. Since, network intelligence is centralized in SDN controllers,

protecting the communications throughout the data and the control planes is critical (De Gante,

Aslan & Matrawy, 2014). For instance, the centralized network intelligence might become

victim of malware (Pritchard, Hancke & Abu-Mahfouz, 2017).

In the SDN environment, some WSN-unique data plane threats can take place. Under such

scenarios, fake traffic flows caused by both flawed devices and malicious sensor nodes can

compromise the entire SDN architecture. Similarly, OpenFlow switches and resource-constrained

nodes can be disrupted by network elements infected with Denial of Service Attacks (DoS)

such as Black hole attacks, Selective Forwarding attacks, Hello Flood attacks, and Sybil attacks

(Pritchard et al., 2017; Liyanage, Ylianttila & Gurtov, 2014b). It is evident from the above

discussion that the disruptive SDN technology is also prone to different attack vectors.

In this vein, several works have been proposed to leverage the benefits of the SDN architecture

for enhanced network security such as virtual firewall, access control, and deep packet inspector

systems (Pritchard et al., 2017). Motivated by their findings, the major contribution of the

proposed work is on addressing the security issues prevalent in the SDN’s data plane. In

this direction, the work emphasizes the problem of authentication and high-precision anomaly

detection in the untrusted and resource-constrained data plane of SDNs.
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6.2.1 Motivation

Along this line of thought, a hierarchical security framework is proposed in this work. The

proposed framework amalgamates a lightweight authentication with a collaborative anomaly

detection system (Boggs, Hiremagalore, Stavrou & Stolfo, 2011), which correlates the alerts of

the lightweight IDSs distributed across the WSN.

The lightweight authentication system for the SDN’s resource-constrained data plane demands

an efficient Intrusion Prevention System (IPS)-based authentication scheme for Software Defined

Wireless Sensor Networks (SDWSNs). This scheme protects the network by allowing only correct

information to be inserted by the authenticated nodes. Thus, authentication of the nodes needs

to be performed continuously and frequently; thereby considerably increasing its complexity

(Habib, Makhoul, Darazi & Salim, 2016b). Furthermore, an IPS-based authentication scheme

can be performed by using one or more validation factors including credentials, knowledge

factors (keys interchange), possession factors (tokens), and biometric factors (eg., fingerprint

recognition, iris, face, retina, etc.) (Perera & Patel, 2018). Although validation factors might

present a low-latency solution, they also introduce complexity due to recurrent authentication

handovers. Nonetheless, traditional IPS-based authentication procedures rely on cryptographic

keys and multiple handshakes, such as Authentication and Key Agreement (AKA) protocols.

However, due to their high latency, infrequent handovers, and high computational cost, they were

found unsuitable for the requirements of SDWSNs (Zhang & Fang, 2005). Although IPS-based

authentication procedures can effectively identify malicious nodes, they cannot eliminate all

of them, especially the ones launched from inside the network. Further, the captured nodes

can quickly lunch attacks as they have total control over the encryption and authentication keys.

Consequently, mobile nodes without an additional protection are prone to be compromised,

corrupted, and hĳacked. To address these issues, IDS-based solutions can be an indispensable

second line of defense to safeguard the data plane from insider attacks in SDWSNs. To this end,

machine learning procedures like Support Vector Machine (SVM) and neural networks (Ma,

Yu, Wang, Zhang & Chen, 2016) are usually employed. Nevertheless, such techniques typically

introduce a non-negligible overhead and high computational cost in SDWNs (Shon & Moon,



119

2007). To minimize the overhead introduced by machine learning solutions, edge-based energy

prediction models might be used (Han, Jiang, Shen, Shu & Rodrigues, 2013b).

However, the sensor nodes are individually prone to generate a tremendous number of alerts.

According to (Milenkoski, Jayaram, Antunes, Vieira & Kounev, 2016), an alert does not always

implies a problem; instead, it may just be an indication that the sensor has inspected some

traffic which has matched a signature or a pattern. Thus, the malicious and trusted activity are

considered an anomaly. These alerts are called false positives and can overwhelm a sensor

network. This is because the sensor nodes only have local visibility of the network behavior. On

the other hand, the stochastic nature of energy features in wireless communications contributes

to an IDS-enabled energy prediction model might cause false positives as well. Accordingly,

to minimize false alarms and make the decision-making process more efficient by correlating

the decisions already taken by an IDS, the deployment of a real-time Smart Monitoring System

(SMS) with the aid of a machine learning algorithm in the control plane becomes an encouraging

solution.

Since the proposed SMS is located in the control plane, it can be customized with additional

security services that address the topology and network operator specific requirements/issues.

Consequently, instead of isolated security schemes, this work proposes a collaborative software-

defined security framework to coordinate different security controls on each framework layer.

Each security control is designed based on the criticality of the wireless environment, its security

criteria, and its resource constraints.

6.2.2 Related work

A plethora of research works have been performed to address high security and low-latency

solutions for resource-constrained WSNs. In this context, some of the existing IPS-based

authentication procedures have been developed using classical key management authentication

mechanisms. For example, an IPS combining Internet Protocol (IP) trace-back with an enhanced

adaptive acknowledgment (EAACK) was proposed in (Murugesan, Saravanan & Vĳyaraj,
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a) SDN-based three layers’ framework b) Security framework stack

Figure 6.1 A collaborative security framework for SDWSNs

2014b). Moreover, Location-Based Keys (LBKs), binding private keys of individual nodes to

both their identifications and geographic locations was proposed in (Zhu, Leung, Yang & Shu,

2015). These approaches improved the security at the cost of increasing the latency of the

network. To address the challenges associated with the low-latency requirements, some works

used physical layer features. For instance, a two-factor user authentication mechanism was

recommended in (Wang, He, Wang & Chu, 2015), where the authors devised an authentication

mechanism comprising of registration and authentication phases. Furthermore, the authors in

(Jagadiswary & Saraswady, 2016; Akyildiz et al., 2015a; Gonzalez et al., 2016), explored a

biometric-based continuous authentication technique, without the the need for an authentication

server. These approaches reduced the latency but at the cost of increasing the complexity of the

authentication procedures.

Furthermore, some works also exploited physical layer features in IDS to achieve low-latency

in WSNs. In this context, a novel intrusion detection scheme based on energy prediction for

cluster-based WSNs was introduced in (Amjad, Qureshi, Lestas, Mumtaz & Rodrigues, 2018),

wherein the authors used the energy states of wireless sensor nodes to predict malicious behaviors

at a given time. Excessive false alarms are a common artifact of these approaches.
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Consequently, machine learning procedures have been widely used to develop IDS-based

solutions. For instance, the use of neural networks and watermarking techniques was suggested

in (Yin, Zhu, Fei & He, 2017). A SVM methodology was proposed in (Ambusaidi, He,

Nanda & Tan, 2016), while a hybrid machine learning approach for network anomaly detection

was put forward in (Shon & Moon, 2007). A hybrid anomaly-based IDS was recommended in

(Ma et al., 2016) which employed SVM and multi-layer perceptron (MLP) to identify anomalies

in the network. Further, the authors in (Kim, Kim, Thu & Kim, 2016) presented an intrusion

detection engine based on neural networks combined with a protection method-based on a

watermarking technique. While these algorithms improve the accuracy of network anomaly

detection models, they also introduce high computational cost which is inadequate for WSNs.

Even though relevant works have been proposed in the literature to target security issues in

SDWSNs, challenges such as high security, excessive false alarms, low-latency, and high

computational cost still remain unaddressed.
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6.2.3 Contributions

To address these imperative challenges, in this paper, a bottom-up security framework is designed.

The novelty of the proposed work lies in devising and evaluating a collaborative framework which

amalgamates a recurrent lightweight authentication method in conjunction with an intrusion
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detection and a real-time smart monitoring system; achieving lightweight authentication and

enhanced anomaly detection mechanisms in SDWSNs.

Since a single-gateway (cluster head) architecture is not scalable and might cause an incremental

overhead in large-scale WSNs, the proposed work uses a cluster-based SDWSN architecture that

provides a hierarchical organization to a flat sensor network topology, considerably reduces the

latency of the network (Younis, Youssef & Arisha, 2002). This architecture consists of four

kinds of dynamic nodes, namely, cluster members, cluster heads, link nodes, and sink nodes.

Further, in this framework, a Distributed Snapshot Algorithm (DSA) is executed to capture

network snapshots periodically so as to obtain the global energy state of the WSN; wherein the

global energy state corresponds to a map of the energy state for each node at a given moment.

Moreover, the DSA is also used to dynamically adapt the network topology within the cluster to

reduce the energy consumed for communication; thus, extending the lifetime of the network

while achieving an acceptable performance for data transmission (Han et al., 2013b).

The proposed framework hierarchically combines three security layers. At the bottom of this

approach (Layer L1), an IPS-based authentication process is designed to provide a lightweight

security scheme in the data plane. In the middle of the framework (Layer L2), an IDS-enabled

energy prediction model within the edge is designed with the aim of supplying a cost-effective

intrusion detection solution near the data plane. Finally, at the top of this framework (Layer

L3), in the control plane, a SMS-based SVM algorithm is introduced to achieve isolation, high

performance, enhanced anomaly detection, and efficient mitigation by segregating malicious

nodes over the SDWSNs. Since the SMS-based SVM algorithm has global visibility of the

sensor network, it can see the correlations between true positives, which lets it filter out the false

positives. Thus, the main contributions of this work are summarized as follows:

1. A novel security scheme based on network snapshot readings, providing continuous

authentication in large-scale SDWSNs, is proposed.

2. A watermarking technique is exploited to guarantee the accuracy of concurrent authentica-

tions while performing data integrity checks for the entire SDWSN.
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3. The authenticationmethod is improved by introducing a link node, which creates a connection

between all the cluster of sensors.

4. An edge computing empowered IDS is leveraged to efficiently handle the limited resources

in SDWSNs.

5. A two label dataset is generated in the edge, with the aim to train an SVM classification

algorithm that is subsequently used by the SMS; wherein the latter is deployed at the control

plane and is designed to correlate the alerts from the low-delay IDSs distributed across the

edge network.

Moreover, analysis of the computational complexity is provided and simulations showing the

effectiveness of the proposed framework are executed by leveraging the AVISPA tool and

MATLAB. The results demonstrate an accuracy of 84.75%.

The remainder of this paper is organized as follows: Section II and Section III introduce the

different layers of the proposed framework. In Section IV, security analysis and performance

evaluation are conducted. Finally, the paper is concluded in Section V, where some future

endeavors are also put forward.

6.3 System Model

Aiming to achieve high-security, address the limited resources constraints and take advantage of

SDN architectures, our work proposes a collaborative security framework design, as depicted in

Fig. 6.1a. To summarize, the proposed security framework possesses a hierarchical structure

and comprises of three layers. At the bottom of the framework stack, in the data plane, in

L1, an IPS-based authentication process is performed. At the middle, at the edge, in L2, an

IDS-enabled energy prediction model is executed, and finally, in the control plane, in L3, the

SMS-based SVM algorithm is designed. In this context, in L1, a cluster-based WSN is created

(Han et al., 2013b) and DSA is employed, where the sink nodes initiate the snapshot acquisition

process by sending a marker message to their cluster heads in order to form a global energy state

of the network. Afterwards, the marker message is propagated to the cluster members. Each
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member sends its energy state back to its cluster head post receiving the message. Once the

cluster head collects the global energy state from its cluster members, it protects the data using

a watermarking-embedded method with the aid of a generated public key and other security

parameters to ensure that the derived data will not be altered on the fly by possible malicious

attackers. Consequently, the network snapshot and the watermarked data is forwarded to the

sink node. Likewise, the sink sends a copy of the energy map to the control plane, which is

located in the cloud. Moreover, in the edge, the sink node periodically receives the snapshot

readings aiming to detect the embedded watermark for the sake of continuous authentication

and for the subsequent energy consumption prediction procedure. Furthermore, the appropriate

watermarked data is considered reliable, while the data without a correct watermark is marked

as unreliable. Subsequently, in L2, an IDS-enabled energy prediction model is executed, where

a Markov chain prediction procedure is used to detect nodes’ misbehavior. Conclusively, to

amalgamate this framework, in the control plane, in L3, an SMS-based SVM algorithm is

designed where the dataset resulting from L2 is processed by employing a SVM classification

algorithm. A summary of the security framework stack is presented in Fig. 6.1b.

6.4 Proposed Scheme

In the following subsections, the proposed L1, L2, and L3 layers along with their corresponding

stack of algorithms are elaborated.

6.4.1 IPS-based authentication process

In SDWSN applications, the reliability and the integrity features of the cluster nodes should

not be compromised. However, if the data transmission is not reliable, the integrity of the

whole network is affected. To handle this security challenge, this work considers deploying an

IPS-based authentication mechanism which is an amalgamation of the DSA and watermarking

techniques. The designed mechanism aims to provide a two-way authentication handover

between the cluster node, the cluster head, and the sink node.
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In the following subsections, the sublayers, the DSA-based authentication procedure, and the

watermarking-based authentication technique are detailed.

6.4.2 DSA-based authentication procedure

As illustrated in Fig. 6.2, this procedure starts when the sink node initiates snapshot acquisition

by sending the first message to its cluster head; from there, the request message is propagated to

every cluster member. After receiving this message, every cluster member sends its energy state

back to its cluster head which is then used to generate the key fingerprint with other security

parameters. It is worth mentioning that a link node could receive multiple request messages from

multiple clusters’ heads. Thus, each link node must send a reply back to all of them, in order

to provide scalability for large-scale WSN and maximize the efficiency of the authentication

procedure. Before data transmission, the energy state of the cluster heads is embedded into the

global energy state gathered by them. The concurrent snapshot readings gathered in a given

time by the Dth cluster head are represented as follows.

GSD; = [�(D1,C1 , �(
D
2,C2 . . . , �(

D
8,C8

], (6.1)

where GSD
;
represents the snapshot readings collected in ; cycles at C8 time of arrival from

the 8th cluster member �(D
8,C8

to the Dth cluster head. This time of arrival significantly reduces

the possibility of impersonation of the GSD
;
vector by an intruder. This is due to the random

behavior of wireless communications which makes the time of arrival unforeseeable (Moreira,

Kaddoum & Bou-Harb, 2018b). The cluster head then averages the GSD
;
vector to generate the

: th
D fingerprint using the following equation.

: th
D = E[GSu

l ], (6.2)

where E[.] is the mean operator.
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Afterwards, the : th
D fingerprint is encrypted with the advanced encryption standard (AES)

algorithm with a key length of 128 bits (Lu & Tseng, 2002). The generated : th
D fingerprint

contributes to making the public key unpredictable.

Further, the aim of the DSA is to obtain a distributed network global state by recording the

consistent energy state at a specific time (Uslu, Serdaroglu & Baydere, 2013). In this sense, as

shown in Fig. 6.1b, the DSA is divided in four algorithms hierarchically distributed as follows:

• The Snapshot-Initiation (SI) algorithm, launched by the sink node;

• The Snapshot-Acquisition (SA) algorithm, exploited by the cluster head;

• The Snapshot-Gathering (SG) algorithm, executed by the cluster members;

• The Snapshot-Synchronization (SC) algorithm, exploited by the sink and the cluster head

nodes.

Next, we detail the four algorithms which use the notations presented as follows.

6.4.3 Snapshot-initiation algorithm

Since DSA collects snapshots through messages, it is important to ensure message delivery.

Thus, in order to solve this problem, we implement a two-way handshake between the cluster

node and the sink node. Here, the authentication procedure relies on the SI algorithm, which

assumes that the number of sensor nodes and their first snapshot is known by the sink in a

setup stage. The sink ensures reliable �(D
8,C8

delivery by keeping a table indexed with nodes’

identification. In this context, the sink node sends an initial "A43 message to its cluster head.

The SI algorithm execution ends only when the sink node acquires the network snapshot from

all functioning nodes. In this manner, the sink node waits until timeout CF expires. Once the

sink receives ®RD, a flag is set to true for all the nodes that have already sent their corresponding

�(D
8,C8
, otherwise, it remains false as shown in Algorithm 6.1. After the timeout expiration, the

sink node checks the content of the table in order to explore the nodes which have not yet sent

their energy state.



127

Table 6.1 Algorithms’ notations

Notation Description
®S Represents the vector of cluster heads’ identification
®CD Represents the vector of clustermembers’ identification
®ZD Is the vector of cluster members’ identification whose

snapshot is not collected by the sink at timeout
®RD Is the watermarked data
"A43 Is a request message from the sink node to the 8th cluster

members
"D
Fℎ8C4,8

Is a response message from the 8th cluster members to
the sink

CF Illustrates the timeout for generating a new snapshot
message at the sink node

,D Is a random position used to select the most significant
bits (MSB) at the Dth cluster head

ED Is a value used to control the proportion of the marked
data at the Dth cluster head

UD Is a value used to calculate the embedded location of
the marked data at the Dth cluster head

Algorithm 6.1 SI algorithm
procedure Snapshot-Initiation()

<"4BB064 ← "A43

while CF 6= C8<4>DC do
®RD ←Snapshot-Acquisition(®S, ®CD, <"4BB064)

if �(D
8,C8
6= =D;; then

5 ;06 ← CAD4

Watermark-Detect(®RD,®S, ®CD, : th
D ,,D,ED, UD ) else

5 ;06 ← 5 0;B4

6.4.4 Snapshot-acquisition algorithm

In response to the sink’s request, the SA algorithm is executed. Initially, the Dth cluster head

takes a backup of their current �(D
8,C8

to be used, if necessary, by the SC algorithm, if necessary.

Subsequently, the periodic snapshot acquisition is performed where the Dth cluster head acquires
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the initial "A43 , which is propagated to its cluster members. This procedure continues until the

cluster head collects the energy states of all the cluster members. The acquisition of the initial

message is achieved by the SA algorithm as follows.

Algorithm 6.2 SA algorithm

procedure Snapshot-Acquisition(®S, ®CD, <"4BB064)
while ®S 6= =D;; do

GSD
;
←Snapshot-Gathered((®S, ®CD, <"4BB064)

<"4BB064 ← "D
Fℎ8C4,8

return Watermark-Embed(GSD
;
,30C0,: th

D ,,D,ED, UD)

6.4.5 Snapshot-gathering algorithm

Once a cluster member receives "A43 from its cluster head, it takes a backup of their current

�(D
8,C8
. Then, it sets its marker message to "D

Fℎ8C4,8
. Afterwards, as noted in Algorithm 6.3, it

sends its �(D
8,C8

and the marker message to its cluster head. As soon as the cluster head gathers

�(D
8,C8

from all its cluster members, it averages the GSu
l vector to generate the : CℎD fingerprint.

Algorithm 6.3 SG algorithm

procedure Snapshot-Gathered((®S, ®CD, <"4BB064)
while ®CD 6= =D;; do

<"4BB064 ← "D
Fℎ8C4,8

return �(D
8,C8

, <"4BB064

6.4.6 Snapshot-synchronization algorithm

The SC algorithm aims to achieve reliability in detecting the missing control states within a

defined acquisition time frame and forces these specific nodes to resend their backed-up states to

the sink node. In this manner, if a node receives a retransmission request from its cluster head, it

means that the sink did not gather yet its energy state.
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The synchronization algorithm is designed to handle two scenarios, which might cause premature

delivery. The first scenario is when the initial message is not picked by the node, (i.e., snapshot

is not taken), and the �(D
8,C8

is not generated. The second scenario is when the initial message is

received, and the �(D
8,C8

is sent but it does not reach the sink node. Once the sink node receives

the global energy states from its cluster heads, it sets the flag belonging to the sender node

to indicate successful reception of the state information. When CF expires, if there are flags

containing false, the sink performs the synchronization procedure to the nodes in ®ZD, i.e., the

nodes from which the �(D
8,C8

is not gathered yet. The synchronization procedure is provided in

Algorithm 6.4.

Algorithm 6.4 SC algorithm

procedure Snapshot-synchronization(®S, ®ZD, "A43)
while ®ZD 6= =D;; do

Snapshot-Adquisition(®S, ®ZD, "A43)

Intuitively, a snapshot reading can be visualized as a representation of the energy map collected

from the entire sensor network, where each node is analogous to a pixel, and its reading indicates

the pixel’s intensity. Therefore this snapshot can be embedded within a watermark (Hameed,

Khan, Ahmed, Reddy & Rathore, 2018).

In the following subsection, a continuous watermarking-based authentication technique is

considered to ensure the reliability of data transmission by authenticating the identity of sensor

nodes.

6.4.7 Watermarking-based authentication technique

The watermarking-based authentication technique is designed to determine the authenticity of

the data transmitting node and guarantee the integrity of the data. For this purpose, the proposed

technique is composed of three algorithms distributed hierarchically as follows:

• The Watermark-Generation (WG) algorithm, executed by the cluster head;

• The Watermark-Embedding (WE) algorithm, performed by the cluster head;
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• The Watermark-Detection (WD) algorithm, launched by the sink node.

According to this model, the proposed technique operates in three phases: data transmission,

data collection and data processing as depicted in Fig. 6.2. In this context, an approximation of

the algorithm in (Boubiche, Boubiche & Bilami, 2015) is used with the aid of the : th
D fingerprint,

which was previously built in the data processing phase.

6.4.8 Watermark-generation algorithm

WG algorithm employs the most significant bit (MSB) and the least significant bit (LSB)

techniques to improve the integrity of the procedure (Solé & Zinoviev, 2004; ?). Each element

of the collected data is given by Eq. (6.1). For each data element, GSD
;
and : th

D are inputted into

a one-way hash function following which ℎ = �0Bℎ (: th
D , GSD

;
) is calculated. A bit of watermark

WM [8] is obtained by calculating the XOR of the,D bits of the MSB (ℎ), which represents the

most significant bits of ℎ. The watermark WM is the collection of WM [8]. Thus, the snapshot

is only authenticated by the watermark generation algorithm which is shown in Algorithm 6.5.

Algorithm 6.5 WG algorithm
procedure Watermark-Generate(GSD

;
,: th
D ,,D)

for each GSD
;
do

ℎ← �0Bℎ (: th
D ,GSD

;
)

WM [8]←XOR (MSB (ℎ), ,D)
end for
return WM [8]

6.4.9 Watermark-embedding algorithm

The aim of this algorithm is to embed the watermark generated in WG into the sent data. Towards

this end, we use the LSB technique which is executed before inserting some random values

to the sent data of each watermark bit WM. The random value of each snapshot is calculated

by introducing the most significant bits of the sent data, GSD
;
and the : th

D key into a random

function. The : th
D key is the same as in WG. The parameter ED is chosen in a range from two to
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nine to control the proportion of the marked data. The watermark is embedded into each data

item only when the random value can be split precisely by the proportion of the marked data,

ED. Consecutively, the random values are used to calculate the embedding location in the least

significant bits. Conclusively, the Gth LSB of each data item is replaced by the watermark bits

WM generated by Algorithm 6.5. The Watermarking-Embedding (WE) technique is shown in

Algorithm 6.6.

Algorithm 6.6 WE Algorithm
procedure Watermark-Embed(GSD

;
,30C0, : th

D ,,D,ED, UD) Watermark-
Generate(GSD

;
,: th
D ,,D)

for each WM do
6 ← Rand (: th

D ,GSD
;
, "(� (30C0))

if (6 mod(ED) == 0) then
G ←6 mod(UD)
Gth LSB (30C0)←WM [8]

end for

6.4.10 Watermark-detection algorithm

Once the watermark message is constructed by the cluster head with the energy state of each

cluster member, the : CℎD key, and other security parameters, the cluster head is then able to

forward it in a distributed manner to the sink node. As soon as the watermarked message is

received by the sink, a watermark-detection algorithm is initiated which extracts and verifies the

watermark to determine each node’s authenticity. The Watermark-Detection (WD) technique is

described in Algorithm 6.7. If the watermark-detection rate is larger than a threshold V, then the

watermark is detected which corroborates the node’s authenticity. The value of V is given by

each energy state and its corresponding energy consumption threshold, which needs to be set

up in the configuration stage (Shanthi & Rajan, 2016). To maintain the security framework’s

performance, only the data transmission process among the cluster head and the sink node is

watermarked. It is worth mentioning that the unwatermarked �(D
8,C8

transmitted between the

member nodes does not affect the reliability of the proposed architecture. This is because a
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cluster member could share the �(D
8,C8

with more than one cluster head, creating a link between

the cluster nodes rendering the continuous network snapshots and readings unpredictable.

Algorithm 6.7 WD Algorithm

procedure Watermark-Detect(®RD, GSD
;

,: th
D ,,D,ED, UD )

C>C ← 0
<0C2ℎ← 0 Watermark-Generate(GSD

;
,: th
D ,,D)

for each WM do
6 ← Rand (: th

D , GSD
;
, MSB (®RD))

if 6 mod(ED) = 0 then
G ←6 mod(UD)
C>C ← C>C + 1
if Gth LSB (®RD) =WM [8] then

<0C2ℎ← <0C2ℎ + 1
end for
A0C4 ← C>C/<0C2ℎ

if A0C4 >V then return CAD4 else return 5 0;B4

Furthermore, it is important to highlight that the snapshot synchronization and watermark

detection processes are added to the data processing phase to address the limited computational

capabilities and storage capacity in SDWSNs.

6.4.11 IDS-enabled energy prediction model

To execute DoS attacks, malicious nodes have to use additional energy. In this context, energy

thresholds are set to identify malicious attacks (Pacheco, Gondim, Barreto & Alchieri, 2016).

Once the network nodes are authenticated, a second line of defense is initiated, taking advantage

of physical layer features. Precisely, an IDS-enabled energy prediction model is employed at the

edge with the aim of detecting DoS attacks such as Black hole attacks, Selective Forwarding

attacks, Hello Flood attacks and Sybil attacks. Towards this end, we propose a snapshot

prediction procedure (SPP) to detect the nodes’ misbehavior. Further, a Markov chain model

(Han et al., 2013b) is leveraged in order to predict energy states of SDWSNs.
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6.4.12 Snapshot prediction procedure

In this framework layer, a Markov chain model is presented as a promising solution to predict

wireless sensor nodes’ snapshots behavior. Towards this end, the nodes’ energy states are

represented by the transition states of a Markov chain model. In this context, each sensor node

has < transition states. Therefore, the < transition states are classified into < n {0-sensing,

1-transmitting, 2-receiving and 3-sleeping}. Eq. (6.1) is used as a sequence of random vectors

to represent the transition probability of staying at each state in a given time. Thus, �(D
8,C8 ,;

= <,

assuming that the energy sate of the 8Cℎ cluster node to the Dth cluster head, gathered at C8 time

and ; cycles, is in mode of operation < (Cammarano, Petrioli & Spenza, 2016). Furthermore,

the transition probability of %<, 9 , a node which is presently in state < will be in state 9 at the

next transition is represented by:

%<, 9 = %{�(D8,C8 ,;+1 = 9 |�(D8,C8 ,; = <}, (6.3)

The two-stage transition probability can be defined as

%
(2)
<, 9

= %{�(D8,C8 ,;+2 = 9 |�(D8,C8 ,; = <}, (6.4)

where %(2)
<, 9

can be computed from %<, 9 using the following equation.

%
(2)
<, 9

=
#∑
3=1

%<,3%3, 9 , (6.5)

In cluster-based sensor networks, each cycle ; contains @ transition probabilities. Therefore,

the transition probability @, denoted as %(@)
<, 9

, is defined by the Chapman-Kolmogorov equation

(Haken & Mayer-Kress, 1981).
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%
(@)
<, 9

=
#∑
3=1

%
(A)
<,3
%

(@−A)
3, 9

, for 0 < A < @, (6.6)

Indeed, if the sink node is aware of the probabilities %(@)
<, 9

for all the network nodes and its initial

state �(8,C8 ,; , it is easy to predict the energy transition of each sensor node. Thus, the prediction

process can be described as follows:

1. When a sensor node is in a state <, the sink node counts the number of @ transition

probabilities that a node will stay in state 9 each cycle ;. Since each cycle ; contains @

transition probabilities, the calculation is represented by ∑;
@=1 %

(@)
<, 9

.

2. Hence, the sink node predicts the energy consumption of the sensor node as follows

�? =
4∑
9=1

(
;∑
@=1

%
(@)
<, 9

)
�D8, 9 , (6.7)

where �D
8, 9

represents the energy consumption of the 8th cluster member to the Dth cluster head in

state 9 after one transition. Aiming to predict a sensor node’s energy state, given its initial node

operation �?1 , the procedure uses the first network snapshot collected by the sink node in the

setup stage. Accordingly, once the snapshot is received, the next cycle for the sink node is the

residual energy state �A1 . Thus, the actual energy state �01 is given by:

�01 = �?1 − �A1 . (6.8)

Subsequently, the residual energy �A1 received from all the nodes in the next cycle is denoted as

�̂A1 . The next energy state is represented as follows.

�01 = �A1 − �̂A1 . (6.9)
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Therefore, if the actual energy state �01 is different from the predicted one �?1 , the sensor node

is labeled malicious in the operating environment. On the contrary, if the current energy state

�01 is equal to the predicted one �?1 or within the allowed threshold, the sensor node is labeled

trusted in the same environment. Afterwards, this dataset is watermarked using Algorithm 6.6

and forwarded to the control plane.

On the other hand, since a cluster member might become a cluster head in the next iteration, its

actual energy consumption will be higher than the previous iteration due to the collecting and

watermarking processes. Hence, this means that its increasing energy state transition likelihood

will be inaccurate when the energy prediction procedure runs on the edge. This might cause a

prediction error.

In addition, because they only have local visibility, the sensor nodes deployed across the data

plane are individually prone to false positives. Both trusted and malicious activities cause

changes in energy patterns on these nodes, thus, both can be considered as anomalous activities.

In this sense, there will be a lot of similarity between true positive alerts generated by different

nodes in the network. Further, the prediction error is impacted by several environmental

parameters such as the number of sensor nodes, the sink node’s position, the network size, the

communication range, and so on. Thus, these parameters might generate excessive false alarms

as well. To this end, it becomes necessary to empower our IDS located in the edge with an

additional layer of detection, which allows it to see the correlations between multiple instances

of an attack. This is explained in the sequel.

6.4.13 SMS-based SVM algorithm design

At the top of the security framework, as depicted in Fig. 6.1a, a collaborative anomaly detection

mechanism is introduced as a real time centralized smart monitoring system based on SVM

(Shon & Moon, 2007). Towards this end, the information of trusted and malicious nodes, which

is continuously received by the sink, is used to create a training dataset that contains 200 features

(i.e., energy state transitions), and is labeled as either trusted or malicious node. Thus, the
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dataset is watermarked and delivered to the control plane. Since the SMS-based SVM has a

global visibility of the WSN, it can see the correlations between true positives from a large

number of weak sensors’ classifiers providing a higher detection rate and considerable reduction

of false alarms.

The use of SVM in the IDS domain introduces several advantages, including the support

for kernels and binary classification. However, it has some limitations since SVM, being a

supervised learning method, requires labeled information for efficient learning. Thereby, it is

essential to mention that such restrictions do not affect our proposed solution since the smart

monitoring system receives marked information by the edge. On the other hand, the SVM

classification algorithm was chosen because of its ability to provide a higher detection accuracy

in pattern recognition problems (Venkatesan, Karthigaikumar, Paul, Satheeskumaran & Kumar,

2018; Kim, Stanković, Johansson & Kim, 2015).

Nevertheless, once the control plane receives the watermarked dataset, Algorithm 6.7 is

immediately executed to verify the sink node’s authenticity and recover the labeled dataset to

execute the SVM classification algorithm. As a result, the malicious misclassified nodes will be

segregated from the data plane by removing them from the OpenFlow table.

6.4.14 SVM classification algorithm

The SVM classification algorithm has a slack function and a penalty function to organize

non-separable models (Kim et al., 2015). Initially, given a set of points -8 n '3; 8 = 1, . . . , # ,

where each -8 belongs to one of the two classes with tags .8 n (−1, 1). These two classes define

the detection of nodes. Assuming there is a hyperplane which separates the positive class (S)

from the negative class (G), the positive ones represent the behavior of the trusted nodes and the

negative ones represent the behavior of the malicious ones. All the training class is satisfied in

Eq. (6.10).
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w)-8 + 1 ≥ 1, for all -8 n (

w)-8 + 1 ≤ −1, for all -8 n �,
(6.10)

where w is an adjustable weight vector, -8 represents the input set of points, and 1 is the bias

term as shown in Eq. (6.11).

.8(w)-8 + 1) ≥ 1, for all 8 =1 . . . #, (6.11)

Therefore, the set of data received by the control plane is linearly separable, where the distance

between the hyperplane and the set of points -8 is 1
w . Therefore, the margin of the separation

hyperplane is defined by 2
w . The learning problem is reformulated, since by minimizing w2 = w) ,

w becomes subject to the linear separation limitations shown in Eq. (6.12). This formulation

is equivalent to maximizing the hyperplane distance between the two classes, for which the

maximum distance is called a support vector.

Minimizew,1 q(w) =
1
2
‖w‖2

s.t. .8(w)-8 + 1) ≥ 1 -8 ≥ 0, 8 = 1 . . . #,
(6.12)

Since q(w) = 1
2 ‖w‖

2 is convex in w and the constraints are linear in w and 1, we can guarantee

an optimum solution. For this solution, the parameters in the quadratic programming (QP) only

affect the training time and not the quality of the solution. On the other hand, the anomalies in

the energy state sensors’ transitions present characteristics of non-linearity and as a result are

very difficult to classify. In this sense, to proceed with the non-linear approach, the Lagrange

solution for this problem is described as
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!(w, 1,Λ) =
1
2
‖w‖2 −

#∑
8=1
_8[.8(w)-8 + 1) − 1], (6.13)

where Λ = (_8 . . . _ℎ)) are the Lagrange multipliers, one for each data point. The solution

to this quadratic programming problem is obtained by maximizing ! with respect to Λ ≥ 0

and minimizing 1
2w2 with respect to w and 1. Lagrange multipliers are only non-zero when

.8(w)-8 + 1) = 1, and the vectors for this case are called support vectors, since they are closest

to the separating hyperplane. Furthermore, in the non-separable case, forcing zero training error

leads to poor generalization. The SVM classification method uses a vector of slack variables

f = (b8 . . . bℎ)) that measure the amount of violation of the constraints, taking into account the

fact that some data points might be misclassified. The current optimization problem becomes

the following:

Minimizew,1,f q(w, 1, f) =
1
2
‖w‖2 + �

#∑
8=1

b2
8

s.t. H8q(w)-8 + 1) ≥ 1 − b8, b8 ≥ 0, 8 = 1 . . . #,
(6.14)

where � is a regularization parameter that handles the balance between maximizing the margin

and minimizing the training error. The value of � is of importance since if � is too small,

insufficient stress is placed on fitting the training data, whereas if � is too high, the algorithm

might overfit the dataset.
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Figure 6.3 Simulation results using Security Protocol Animator for AVISPA (SPAN)



139

6.5 Security Analysis and Performance evaluation

In the following subsections, we analyze the security features of the proposed IPS-based

authentication process using the AVISPA tool. Moreover, a performance evaluation of the

collaborative anomaly detection system is also conducted using MATLAB.

6.5.1 Formal Security Analysis

In SDWSNs, the nodes could function as routers that discover and maintain the routing path

among network nodes. The predicament is that the path relies on the trustworthiness of all the

cluster nodes. Therefore, DoS attacks can easily be executed against routing paths in SDWSNs.

DoS attacks attempt to suspend network operations by injecting malicious packets into the data

stream or by modifying packets. For this purpose, DoS attacks based on our proposed PS-based

authentication process are analyzed.

Foremost, a comparison of a conventional authentication procedure against the proposed

authentication method is conducted under two use cases. In the first use case, the security of

the traditional AKA protocol is executed (Zhang & Fang, 2005). Since this protocol shares

its public key over the air, this use case considers that a malicious cluster head in the network

knows the key. Hence, a fake node can perform a coordinated hĳacking attack, taking control of

the communication over the wireless data channel. On the contrary, in the second use case, in

our proposed protocol, a malicious cluster head is unable to acquire knowledge about the key.

This is because the proposed protocol does not send the key and other parameters over the air.

These uses cases are formalized and then assessed using the AVISPA tool as follows.

1. The Cluster Head (CH) sends GSD
;
and the : th

D fingerprint in plain text on the fly to

authenticate themselves at the sink. As depicted in Fig. 6.3a, the analysis indicates

UNSAFE, revealing that the protocol is vulnerable to being impersonated.

2. In the proposed protocol, CH sends GSD
;
and the : th

D fingerprint obscured by a watermarked

message on the fly to the sink. In contrast to the conventional algorithm, the cluster head,

the sink, and the control plane generate the : th
D fingerprint and the watermark message
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separately which improves the security as the : th
D key is never sent in plain text on the fly.

The results shown in Fig. 6.3b indicate that this protocol is SAFE against the analyzed

threats.

6.5.2 Informal Security Analysis of the IPS-based authentication mechanism

In the following, we analyze how different DoS attacks might be performed, and how our

proposed IPS prevents such attacks.

• Black hole attacks. This is an active attack (Gurung & Chauhan, 2017), where the intruder

node listens to a route request packet in the network, and responds with a claim of having a

shorter route to the destination node thus intercepting the packets, without actually having

access to the route. As a result, the intruder node could easily redirect big loads of network

traffic to itself and can manipulate all the packets passing through it. Accordingly, this attack

fails if the malicious node is unable to obtain the legitimate node’s identity from the sink. In

the proposed solution, the sink node extracts the watermark message with the : th
D fingerprint

and other parameters. In this manner, the authentication request is denied if the sink node

fails to match the watermarked data sent by the cluster head. Such a technique solves the

problem of miss-charged billing in SDWSNs (Liu, Dong, Ota & Liu, 2016). Thus, the

proposed scheme immunes SDWSNs from black hole attacks.

• Selective Forwarding attacks.A selective forwarding attack is a network layer attack described

in (Ren, Zhang, Zhang & Shen, 2016). In multi-hop SDWSNs, the nodes send packets to

their neighbors assuming that they have forwarded the messages to the destinations faithfully.

In selective forwarding attacks, malicious nodes purposely refuse some packets and drop

them. In this active attack, an intruder that is interested to eavesdrop packets originating from

a few selected nodes can reliably forward the remaining traffic by limiting the chances of

being detected. In this matter, to identify and mitigate this attack, the proposed authentication

method prevents the intruder from manipulating the traffic if the sink fails to match the

watermarked data sent by the cluster head.
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• Hello Flood attacks. Within SDWSNs, an intruder typically attempts to drain the energy of

a node or exhaust its resources. An intruder with vast transmission power could broadcast

HELLO packets to convince every other node in the network that the adversary is within

one-hop communication range, causing a large number of nodes to waste energy in sending

packets to this imaginary neighbor (Gurung & Chauhan, 2017). Subsequently, this active

attack might be easily prevented if the sink is aware of the energy state of each network

node. For this purpose, our IPS that operates at the edge, performs a watermarking technique,

validating the authenticity of the data transmitting node and guaranteeing the integrity of the

send data.

• Sybil attacks. This active attack was introduced in (Jan, Nanda, He & Liu, 2015), wherein

the attacker (Sybil node) tries to forge multiple identifications in a particular region. A Sybil

node can fix the vote on group-based decisions and cause disruption in network services.

When these nodes can no longer communicate, the attacker sends fake traffic, impersonating

the network nodes. Therefore, to address this security threat, the first layer of the framework

prevents the nodes from being imitated. Hence, the watermark message, the : th
D fingerprint,

and other parameters are used to strengthen the two-way authentication process. These

parameters are independently generated between the cluster nodes and the sink node to

safeguard nodes and provide data authenticity. Furthermore, the links between the link node

and its cluster heads reinforce the nodes and data authenticity. This is because the link node

shares its energy states with more than one cluster head. Thus, each cluster head generates

the watermarked message based on those energy states. Thereby, the more the link nodes,

the more reliable our solution becomes.

6.5.3 Performance Evaluation of the Collaborative anomaly detection system

In order to evaluate the performance of our collaborative anomaly detection approach across

its layers, it is essential to mention that the SDN paradigm aims to reduce the non-negligible

overhead introduced by IDS-based machine learning algorithms (Pranata, Jun & Kim, 2019).

For this reason, we assume the SMS (L3) is deployed in a SDN controller located in the cloud
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Table 6.2 Network parameters of the data plane

Parameters Value
Number of nodes 400

Energy state transitions 200
Node placement Random

Location of the Sink 50, 50
Transmission range 25m
Channel bandwidth 1 Mbps
Simulation time 1000 seconds
Propagation mode Free Space

Packet size 512 bytes
Initial energy 5 `�/18C

and the IDS-enabled energy prediction procedure (L2) is performed in a edge architecture nearby

the end devices.

Even though the edge architecture aims to avoid the overhead of processing requests from the

data plane towards the control plane, there are inaccuracies in the cluster-based energy model

due to the overhead, packet dropping and propagation delay of refresh messages exchanged

between the control plane, the sink, and the sensor nodes. To the best of our knowledge, the

model approximation is still suitable for SDWNs since frequent refreshing, and fine-tuning of

routing parameters, can keep deviation within permissible limits (Younis et al., 2002). Indeed,

the overload analysis of the proposed SDN-based framework will be addressed in a future work.

In the proposed work, we employed MATLAB to simulate various DoS attacks such as Black

hole, Selective Forwarding, Hello Flood, and Sybil attacks in SDN setups. During these

simulations, we compared the energy state transitions with the predicted results using the Markov

chain model (Jinhui, Yang, Feiyue, Leina, Juan & Yao, 2018). Towards this end, we employed

different network parameters to depict the SDN data plane characteristics as shown in the

following Table.
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Figure 6.4 Energy state transitions probability of trusted vs.
malicious nodes

As depicted in Fig. 6.4, the obtained results illustrate the differences between the energy state

transitions of a trusted node and the malicious one across the SDWSN. In black hole attacks, the

malicious node maximizes its broadcast range as well as the signal strength. Thus, the energy

consumption is significantly larger than the energy predicted. Subsequently, in Hello Flood

attacks, the malicious node attracts the communications of cluster heads coming from the cluster

nodes. Thus, the gap between the energy state of Hello Flood attack and the predicted result

is higher at the beginning but it decreases gradually through the simulation. Additionally, the

energy state transitions in Sybil attack is far beyond the predicted result, thus, is the easiest to

detect. Moreover, the IDS-enabled energy prediction procedure of our framework recognizes

Selective Forwarding attacks as well, where the malicious node could be undetected at the

beginning of the simulation but the probability of being inferred increases due to its signal

strength variation in a given time.

In addition, it is worth mentioning that the energy state transitions interconnect to each other at

certain periods of time, which means that the gap between the attacks and the predicted results

is minimal. Thus, false alarms are generated.
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Furthermore, Fig. 6.5, illustrates the gap generated between the energy state transitions based

on the Markov chain model of trusted nodes and malicious nodes. Hence, the average detection

probability of the energy transitions of the malicious nodes reaches 24.92% which implies that

the detection rate probability of a trusted node is 75.08%. As a result, 210 nodes were found to

be trusted, whereas 190 nodes were marked as malicious.
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Figure 6.5 IDS-based Markov chain model

Some feature comparisons between layer L1 and layer L2 against cryptographic (Murugesan

et al., 2014b; Zhang & Fang, 2005), and machine learning (ML) approaches (Ma et al., 2016;

Kim et al., 2015), respectively, are introduced. It can be noted that although our L1 provides

important security features (F1:Mutual Authentication, F2:Frequent Handover, F3:Outsider

Attacks’ Resiliency), thus is suitable for SDWSN, it is still not sufficient to address insider attacks

(F4) as shown as follows.

Table 6.3 IPS-based Authentication Solutions’ Comparison

Solution F1 F2 F3 F4
Crypto (Murugesan et al., 2014b;
Zhang & Fang, 2005)

X 7 X 7

Layer L1 X X X 7
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As a consequence, L2 appears to tackle insider attacks (F4:Insider Attacks’ Resiliency) while

providing low latency features (F5) as presented in the Table as follows. Additionally, a

computational complexity (F6) comparison between our L2 and ML approaches is shown in Fig.

6.6. As a result, the proposed L2, maintains a linear complexity while ML grows exponentially

as the number of nodes increases which makes it unsuitable for edge computing ecosystems.

Nevertheless, L2 generates excessive false alerts (F7) as well.

Table 6.4 An illustrative comparison of IDS-based solutions

Solution F4: F5 F7
ML (Ma et al., 2016; Kim et al., 2015) X 7 X
Layer L2 X X 7
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Figure 6.6 An illustrative comparison of computational
complexity analysis (F6)

In this context, to minimize the number of false alarms, determine the accuracy, and correlates

the detection rate of the IDS performed at the edge, L3 is executed in the control plane. For this

purpose, a binary SVM classifier is developed and employed in the control plane. Since the

optimal parameter search plays a crucial role in building a prediction model with high accuracy,

we employ a grid-search technique using 5-fold cross-validation to find out the optimal parameter

values of the kernel function for SVM (Venkatesan et al., 2018).The results shown in Fig. 6.7

were modeled using a Radial Basis Function (RBF).
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The evaluation of L3’s classifier accuracy uses L2’s output as ground truth, where trusted and

malicious nodes are represented by a non-linear classification model. The obtained results

demonstrate that there are 61 False Alarms (FA) as shown as follows.

Figure 6.7 SMS-based SVM algorithm hyperplane

Table 6.5 False alarm details

Layer TP TN FP FN FA (FP+FN)

L3 183 155 26 35 61

where )% is the true positive (a malicious node detected as a malicious node), )# is the true

negative (a trusted node identified as a trusted node), �% represents a false positive (a trusted

node detected as a malicious node), and �# is a false negative (a malicious node recognized as

a trusted node). The performance evaluation of the experiment is carried out by evaluating the

accuracy �2 of the framework, the detection rate �A , and the false alarm �0 rate by using the

following equations (Venkatesan et al., 2018).
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�2 = ()% + )#)/()% + )# + �% + �#), (6.15)

�A = )%/()% + �%), (6.16)

�0 = �%/(�% + )#), (6.17)

From the experimental results and the performance evaluation, �2 is found to be 84.75%, �A
is equal to 87.55%, which was increased in comparison with the second layer, whereas the

false alarm rate is equivalent to 14.36%. To the best of our knowledge, the concept of a unified

SDN-based security framework stack, integrating IPS, and a hierarchical collaborative anomaly

detection system has never been attempted in any previous research works.

6.6 Conclusion

In this paper, an SDN-based collaborative security framework, which combines IPS, IDS, and

smart monitoring systems, taking the advantage of energy snapshot readings, is proposed and

evaluated. Initially, a distributed snapshot algorithm along with a watermarking technique is

introduced aiming to decrease the latency and enhance the recurrent authentication in wireless

sensor nodes. Subsequently, the security features of the proposed multi-layer authentication

approach regarding resiliency against various attacks are analyzed by executing automated

protocol analysis using the AVISPA tool. Consequently, an IDS-enabled energy prediction

model is designed at the network edge. Finally, to correlate the detection rate and reduce the

false alarms that could be generated at the network edge, an SMS-based SVM algorithm is

executed and tested in the control plane. In order to compute the accuracy and complexity of

the proposed framework against the trusted and malicious traffic collected in the lower layers,

we leveraged MATLAB. The results show that the proposed framework satisfies 5G security
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requirements and simultaneously provides high security, low-computational complexity, and a

considerable reduction of false alarms in SDWSNs, thanks to the introduction of the multilayer

approach and recurrent snapshot readings. Furthermore, it is shown that the employment of the

SMS-based SVM algorithm significantly improves the anomaly detection rate.

As for future work, we will implement the proposed security framework in an IoT-centric testbed.

Moreover, our research will explore deep learning techniques to accurately classify and identify

unknown anomalies in SDWSN environments with the aid of distributed SDN controllers at the

edge. Such a deployment will promote decentralized decision-making and reduce the overhead

introduced by the SDN controller located in the cloud.



CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion

In 5G, mobile networks must guarantee specific requirements, such as ultra-low latency, network

densification, ultra-low energy consumption, network virtualization, etc. Therefore, to address

these requirements, the introduction of intelligence may provide cost-efficient solutions in which

a particular application, security service, and quality provision are achieved. In this context,

SDNs have been developed to facilitate simple programmable control of WSNs. However,

WSNs are typically deployed in potentially untrusted environments. Therefore, addressing the

security challenges before they can be implemented is imperative.

SDNs enhance network security by enabling global visibility of the network state. In SDNs, a

standard distribution layer gathers information about the security requirements of the different

services, resources, and hosts. It disseminates security by establishing commands to network

elements to enforce security policies. Centralizing the network control plane and enabling

network programmability can result in robust and scalable security enforcement. Therefore, in

this thesis, we have presented the weaknesses and strengths of SDWNs. In doing so, we have

highlighted security vulnerabilities in the data plane and communication channels of SDWNs

and presented security solutions using the control and application planes. We also summarized

security techniques that can strengthen network-wide security in SDWNs. Moreover, we showed

security solutions that fit the 5G requirements and briefly described the costs associated with the

developed solutions. To be specific, the thesis contributions are summarized as follows:

In chapter two, we proposed a cross-layer approach that amalgamates physical layer informa-

tion (i.e., non-cryptographic) in conjunction with cryptographic procedures to simultaneously

provide high security and low latency. Moreover, an Advanced Encryption Standard (AES)
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algorithm in conjunction with the RSS dataset was leveraged to create the authentication protocol.

In chapter three, a Software-Defined Low Power IoT Network with the aim of preventing Rank

attacks was presented. An RL agent using SARSA was leveraged to assist and complement

an SDN controller in achieving cost-efficient route optimization and QoS provisioning packet

forwarding to prevent rank attacks.

In chapter four, we presented a performance evaluation where model-free RL algorithms help

the SDN controller achieve a cost-efficient solution to prevent RA harmful effects. Experimental

results demonstrated that SARSA is more efficient than QL, facilitating the implementation of

intrusion prevention systems in software-defined 6LowPAN.

In chapter five, we provide an overview of security issues in SD6LoWPAN, considering its

resource, topology, and traffic. In addition, a study of the SDN- and ML-based security solutions

that are suggested in the literature is presented. Security research challenges and trends are also

put forward. In conclusion, a performance analysis of an SDN-based ML solution is presented.

Conclusively in chapter six, we addressed the security issues in the SDN’s data plane. In

this direction, the work introduced authentication and high-precision anomaly detection in

the untrusted and resource-constrained data plane of the SDNs. To this end, a hierarchical

security framework was proposed. This work amalgamated a lightweight authentication with a

collaborative anomaly detection system.
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The author’s Ph.D. research contributed to the following published and submitted research

articles. The journal publications and conference proceedings are denoted by "J" and "C,"
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Transaction on Information and Forensics Security 2020.

J2: Moreira, C. M., Kaddoum, G., J. Baek & B.Selim, (2020, Oct). Task Allocation Framework

for Software-Defined Fog v-RAN," IEEE Internet of Things journal 2021.

J3: Moreira, C.M., Kaddoum, (2021, Oct). QL vs. SARSA: Performance evaluation for intrusion

prevention systems in software-defined low-power IoT networks, Submitted to International

Wireless Communications and Mobile Computing Conference (IWCMC), 2023.

J4: Moreira, C. M., Kaddoum, (2021, Sept). SD6LoWPAN Security: Issues, Solutions, Research

Challenges, and Trends, submitted to IEEE IoT Magazine.

C1: Moreira, C. M., Kaddoum, G., & Bou-Harb, E. (2018, May). Cross-layer authentication

protocol design for ultra-dense 5G HetNets. IEEE International Conference on Communications

(ICC), 2018.
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C2: Moreira, C. M., Kaddoum, G., A. Boukhtouta, T.Madi & H. Alameddine, (2020, Oct). In-

trusion Prevention Scheme against Rank Attacks for Software-Defined Low Power IoT Networks

submitted to IEEE Access, 2022.

Besides the above articles that contribute to the main contents of this thesis, a complete list of

publications that the author was involved in and which are not included in this thesis is given at

the end of this thesis.

7.3 Future Work

Based on the literature review and the research outcomes of this Ph.D. thesis, following future

research directions could be worth investigating.

7.3.1 Intrusion Detection Systems using Deep Reinforcement Learning approaches for
Software-Defined Low Power IoT Networks

6LowPaN introduces new challenges to the conventional communication model, such as object

heterogeneity and scalability, which require revolutionary solutions. Currently, there is no

universal security framework for 6LowPAN. In this context, we will use an architecture based

on SDNs to introduce network programmability and centralization which facilitate network

abstraction and simplify network management. In this research work, we will explore SDN as a

novel communication architecture for 6LowPAN to enhance the security and resilience of IoT

devices. The study will investigate an Intrusion detection system based on Deep Reinforcement

Learning.
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7.3.2 Virtual microservices to detect and mitigate nodes misbehavior in
Software-Defined IoT Networks.

As IoT network adoption is growing in diverse disciplines, cybersecurity attacks involving

low-cost end-user devices are also increasing, weakening the expected deployment of IoT

solutions. To address this challenge, our work will address an intrusion detection and mitigation

system using NFV and SDN technologies. In this sense, virtual honeynets can be deployed with

the support of the SDN and NFV support in IoT scenarios, thereby strengthening overall security.

IoT honeynets are virtual microservices that emulate real IoT network deployments to distract

attackers from the real target. In this direction, we will present a novel mechanism leveraging

SDN and virtual microservices to deploy and detect malicious behavior on Software-defined IoT

Networks.

7.3.3 Intrusion Detection Systems using Quantum Machine Learning approaches for
Software-Defined Low Power IoT Networks

Intrusion Detection Systems are commonly used to detect malicious activities. Quantum

computers, despite not being practical yet, are becoming available for experimental purposes.

In this context, we will explore an approach for applying unsupervised Quantum Machine

Learning (QML) in the context of intrusion detection for Software-Defined IoT networks from

the perspective of quantum information based on the concept of quantum-assisted ML. The

main goal of Quantum Machine Learning is to speed things up by applying what we know from

quantum computing to machine learning. The theory of Quantum Machine Learning takes

elements from classical Machine Learning theory and views quantum computing from that lens.

The proposed approach will be evaluated using IBM QX in simulation mode. Moreover, we

will compare the proposed method with other highly considered state-of-the-art techniques, e.g.,

SVM, Reinforcement Learning.
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7.3.4 Quantum Cryptography solutions for 6G Networks

With the introduction of the quantum computing paradigm, some algorithms can quickly be

resolved, such as asymmetric cryptographic methods. If large-scale quantum computing becomes

a reality, these cryptographic primitives must be replaced by quantum-secure ones (Nanda,

Puthal, Mohanty & Choppali, 2018). While large-scale quantum computing can be expected to

take longer, it is time to prepare for the shift to crypto-based authentication procedures that are

secure in the post-quantum world. According to current knowledge, contemporary symmetric

cryptography will mostly remain safe even after the advent of quantum computing. In general,

it suffices to double the size of the symmetric keys due to Grover’s algorithm. The problem

lies in asymmetric primitives based on integer factorization and the discrete logarithm (Ng,

Conti, Long, Muller, Sayeed, Yuan & Hanzo, 2020). In this context, we want to address this

challenge with an authentication procedure using a polynomial time on a quantum computer for

6G HetNets using Shor’s algorithm.
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