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Simulation multi-échelle du débit des cours d’eau

Siavash POURYOUSEFI MARKHALI

RÉSUMÉ

Les questions d’échelle représentent un problème non résolu en hydrologie. Les modèles
hydrologiques distribués sont capables de prendre en compte l’hétérogénéité des bassins versants,
mais on ne sait toujours pas dans quelle mesure les variations dans la représentation des échelles
spatio-temporelles, dans ces modèles, entraînent une incertitude sur les simulations. De plus, la
question de la valeur ajoutée d’une discrétisation spatio-temporelle plus fine doit être étudiée
davantage. La présente thèse aborde ces sujets dans le contexte de la simulation des écoulements,
de la projection des crues et de la régionalisation des paramètres des modèles hydrologiques.

Tous les bassins versants étudiés dans cette thèse sont situés dans la partie sud de la province de
Québec, au Canada. Cette recherche repose sur l’utilisation de deux modèles hydrologiques
distribués et à base physiques avec différents degrés de complexité (Hydrotel et WaSiM). Pour
la simulation et la projection des inondations, les modèles sont calibrés en considérant quatre
niveaux différents de spatialisation de l’information physiographique et des paramètres des
modèles hydrologiques. Les données du projet ClimEx sont corrigées pour des pas de temps
de 3 et 24 heures en utilisant la méthode de correction de biais multivariée n-dimensionnelle
(MBCn), et utilisées comme entrées dans les modèles hydrologiques pour projeter le débit sur la
période 1991-2100.

Les résultats montrent que la variation de la résolution temporelle n’a que des impacts mineurs
sur l’incertitude des simulations en conditions historiques, et que son impact dépend du choix
du modèle hydrologique. Le modèle le plus sophistiqué (WaSim) présente une plus grande
incertitude. Quant à la variation de la discrétisation spatiale, elle peut entraîner des incertitudes
pour les bassins versants à faible pente ou comportant des zones accidentées.

En ce qui concerne la projection des crues, en affinant l’échelle temporelle, les résultats montrent
que la fréquence et l’amplitude des débits extrêmes en été augmentent dans le futur. De plus, le
choix du modèle hydrologique pour la projection des débits de crues est plus important pour les
grands bassins versants. Enfin, il n’existe pas de patron caractéristique concernant l’incertitude
liée à la résolution spatiale et à la taille du bassin versant. Cependant, cela affecte la direction et
le niveau de signifitaction des tendances observées pour les débits extrêmes dans les simulations.

Cette thèse propose et teste également une méthode de régionalisation basée sur les forêts
aléatoires (RF). Elle est appliquée aux paramètres d’Hydrotel à différentes échelles spatio-
temporelles. Les résultats montrent que la technique de régionalisation proposée est plus
performante pour des pas de temps plus courts. De plus, les paramètres régionalisés sont
spatialement cohérents. En fin de compte, l’utilisation de descripteurs des bassins versant ayant
une meilleure représentativité spatiale entraîne une amélioration (de plus de 10%) pour les
simulations avec un pas de temps de 24 heures.



VIII

Mots-clés: modèles distribués, discrétisation spatio-temporelle, simulation d’inondations,
régionalisation



Multi-Scale Streamflow Simulation

Siavash POURYOUSEFI MARKHALI

ABSTRACT

Scale issues represent an unsolved problem in hydrological sciences. Distributed hydrological
models are capable of accounting for catchment heterogeneity, but it remains unclear to what
extent the variations in the representation of spatio-temporal resolution in these models leads
to uncertainty in the simulations. Moreover, the added value of more refined spatio-temporal
discretization is also unclear. The present thesis addresses these topics in the context of
streamflow simulation, flood projection and regionalization of model parameters .

All catchments studied in this thesis are located in Southern Quebec, Canada . This research
uses two process-based distributed hydrological models with different degrees of complexity
(Hydrotel and WaSiM). For the flood simulation and projection, the models are calibrated with
four different levels of spatial discretization of physiographic data and in models’ parameters.
The climate extreme project (ClimEx) dataset is bias corrected for 3- and 24-hour time-steps
using the n-dimensional multivariate bias correction method (MBCn), and used as inputs to the
hydrological models to project streamflow over the 1991-2100 period.

The results show that the variation of temporal resolution has only minor impacts on the
uncertainty of historical simulations, and the impact depends on the choice of the model.
The more sophisticated model (WaSim) has a larger uncertainty. As for varying the spatial
discretization, it can cause uncertainties for catchments with low slopes or uneven areas.

Regarding flood projection, by refining the temporal scale, the results show that both the
frequency and amplitude of extreme summer-fall flow increases in the future. Moreover, the
choice of hydrological model for flood projection is more important for larger catchments.
Finally, no distinct pattern exists regarding the uncertainty related to the spatial resolution and
catchment size. However, this affects the direction and significance of the trends observed for
extreme flow in the simulations.

This thesis also proposes and tests a regionalization method based on random forests (RF). It is
applied to the parameters of Hydrotel at different spatio-temporal resolutions. The results show
that the proposed regionalization technique performs better for shorter time-steps. Moreover,
the regionalized parameters are spatially consistent. In the end, using catchment descriptors
that have a better spatial representativity results in an improvement (more than 10%) in the
simulations using a 24h time-step.

Keywords: distributed models, spatio-temporal discretization, flood simulation, regionalization
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INTRODUCTION

Flooding is the most frequent natural disaster in the world. It is estimated that 43 % of

total natural disasters and 47 % of total climatic disasters are related to floods (Kundzewicz

et al., 2019a). In terms of humanitarian costs, the fatality of river floods in the last century

amounts to 7 million people, and since 1985, 2.3 billion people, directly or indirectly, have been

affected by floods (Gaur, Gaur & Simonovic, 2018). In terms of economic losses, the annual

average costs directly related to flooding events are estimated to US $ 104 billion (for Disaster

Reduction. Secretariat, 2015). The cost of floods due to the rise of temperature by 1.5◦ relative

to the baseline of 1976-2005 are projected to significantly increase with the order of 2 and 3 for

human and economic losses respectively (Dottori et al., 2018).

Three major interconnected components and their related processes define flood risk, namely

flood hazard, exposure, and vulnerability (Barendrecht, Viglione & Blöschl, 2017; Vorogushyn

et al., 2018; Di Baldassarre et al., 2015). Flood hazard is the hydro-climate processes causing

floods. Exposure is the elements, including the human population and infrastructures, that are at

risk of being impacted by floods. Vulnerability is the degree to which the components at risk

are sensitive to floods (for Disaster Reduction. Secretariat, 2015). Historical records have shown

that flood damage has been increasing in recent decades because of land use change such as

urbanization, and the population growth. Such developments resulted in elevated human and

infrastructure exposure to floods and, consequently, rising vulnerability. Databases of natural

disasters (e.g. Floods & Floods, 2004) show increasing economic costs due to floods across

different spatial scales. Expressed by a percentage of Gross Domestic Product (GDP), the annual

economic losses attributed to hydrological risks in terms of hazard and exposure is around 0.1 to

1 % of GDP depending on the level of development of countries (Field, Barros, Stocker & Dahe,

2012; Kreibich et al., 2017). However, yearly exposure and costs associated to flood hazards

in some countries reach more than 10 percent of the GDP (e.g., India, Bangladesh, Vietnam,
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and Cambodia). In absolute terms, US and China spend more than 10 billion USD per year to

confront the losses inflicted by floods (Kundzewicz et al., 2014).

Canada, on average, spends one to 2 billion CAD per year to cope with flood risk and its conse-

quences. This makes flooding the costliest natural disaster throughout the country(Oubennaceur,

Chokmani, Nastev, Lhissou & El Alem, 2019). In the past decade, Canada has been hit by

multiple floods, particularly in urban areas (e.g., Montreal in 2012, Calgary in 2013, Toronto

in 2005, 2013, and British Columbia in 2021). Over the recent decade, Quebec has witnessed

multiple floods due to a combination of snowmelt and rainfall (Buttle et al., 2016). Vast areas

of the province were flooded, causing damage to infrastructures, isolation of properties, and

evacuation of thousands of residents.

Analyzing some key streamflow indices shows an increasing trend of streamflow across northern

regions and a decreasing trend across southern regions of Canada (Burn & Elnur, 2002). In

addition, the long-term projection of streamflow in the future shows a change in timing of the

peak, magnitude, and frequency of floods across different regions of Canada (Leduc et al.,

2019; Martel, 2019). These results suggest that the pattern of flooding is changing in Nordic

catchments. These catchments are prone to two types of flood events: spring floods due to

snowmelt and summer-fall floods associated with intense short-duration rainfalls. Climate

change is expected to attenuate spring floods and amplify summer-fall floods in magnitude and

frequency (Donat, Lowry, Alexander, O’Gorman & Maher, 2016). Studies show that the rise of

temperature increases the probability of intense short-duration rainfall at sub-daily time-scales,

which can translate into more extreme flows and potential floods for small to medium catchments,

with a relatively short concentration time (Westra et al., 2014). Consequently, it is possible that

these catchments will become more vulnerable to summer-fall floods.

Future flood risks are typically evaluated using a hydroclimatic modeling chain, which includes

global climate models (GCMs), downscaling and/or post-processing of climate model outputs,
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and hydrological models. GCMs project climate based on a series of Shared Socio Economic

Pathways(SSPs) . Their outputs require downscaling and/or post-processing to increase the

resolution of/bias correct the projections of the different climate variables. Hydrological models

are used to simulate streamflow and other hydrological variables(Merz et al., 2021). Each step

contributes to the total uncertainty, propagating top-down through the chain (Chen et al., 2019b).

Several studies have quantified the uncertainties corresponding with each step of this process

(e.g., Chen, Brissette, Poulin & Leconte, 2011; Poulin, Brissette, Leconte, Arsenault & Malo,

2011; Meresa & Romanowicz, 2017; Meresa et al., 2022). However, less attention has been

given to the uncertainty linked to representing the heterogeneity of the catchments with more or

less details. This is mainly because flood generation processes have not yet been completely

understood (Blöschl & Sivapalan, 1995). Non-linear and complex catchment responses across

different spatio-temporal resolution and lack of a scale-relevant theory complicate modeling

practices (Beven, 2010; Blöschl et al., 2013). The dearth of knowledge and the complexity

of hydrological processes further lead to a parameterization that is not scale-invariant (i.e.

sensitive to scale of modeling) with the parameters mostly lacking tangible physical meaning

(Samaniego, Kumar & Attinger, 2010; Samaniego et al., 2017).

The advance of computational power facilitates the use of sophisticated distributed process-based

Hydrological models to study fluxes and state variables in fine details across catchments (Sidle,

2021). This, however adds to the complexity of streamflow and flood simulations. Since

distributed models need information about the physiographic characteristics of the catchments,

the representation of catchment heterogeneity is an essential factor. The decision to represent

spatial heterogeneity in distributed models depends on the spatial discretization. The choice

should also be considered in conjunction with the temporal resolution. Regarding continuum-

based models, for example, a finer temporal resolution might demand higher spatial resolution

to satisfy the conditions required for computationally stable responses (Thober et al., 2019). In

addition, the catchment’s key topographic and physiographic features may substantially influence
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the hydrological short-term response. For instance, urbanization will increase imperviousness

and create complicated routing pathways (Cao et al., 2020a). The tendency to use coarser grids to

compensate for computational costs can eliminate important underlying information, alter model

parameterization, and produce different model responses, further increasing the uncertainty of

hydrological simulations. This issue should be seen in the context of climate change impact

assessment, where characterizing uncertainties associated with different modeling stages is

necessary to develop coherent policies and devise effective adaptation strategies (Kundzewicz

et al., 2019a).

The present thesis is an effort to understand the importance of spatio-temporal resolution in

simulating streamflow and floods with process-based distributed Hydrological models. This

thesis focuses on the three following topics which define the research objectives: (1) quantifying

the uncertainties linked to spatial heterogeneity of catchments in streamflow and flood simulations,

(2) performing multi-scale flood projections under future climate, and (3) evaluating the effect

of spatio-temporal resolution on streamflow regionalization. Multiple catchments with diverse

sizes and hydro-climatic regimes in the province of Quebec have been used to address these

topics. This thesis is a part of a Quebec-Bavarian collaboration to simulate climate extremes

(ClimEx).

The structure of the thesis is as follows. Chapter 1 provides a literature review associated

with the research problems and objectives. Chapter 2 summarizes the materials and methods.

Chapters 3 to 5 are formed of three journal articles addressing the three aforementioned research

objectives. Chapter 6 provides a general discussion to clarify the results. A conclusion highlights

the main findings and provides recommendations for future studies.



CHAPTER 1

LITERATURE REVIEW

This chapter presents a review of the existing literature relevant to the objectives of this thesis.

Section 1.1 gives a general review of flood generation mechanisms. Section 1.2 reviews the

components of climate change impact assessment modeling chain. Section 1.3 presents a

general overview of hydrological. Section 1.4 details the uncertainties involved in hydro-climatic

projections. Section 1.5 highlights the importance of choosing the appropriate spatio-temporal

scale in the context of hydrological. Finally, section 1.6 highlights the importance of scale in the

regionalization of hydrological models.

1.1 River Flood Generation

The Intergovernmental Panel of Climate Change Special Report of Extreme (IPCC SREX Field

et al., 2012) classifies floods into various types, including "river (fluvial) flood, flash flood, urban

flood, pluvial flood, coastal flood,", for which the climate forcing, mechanisms and governing

processes are different. Multiple climatic drivers can lead to river flood generation: prolonged

precipitation, intense rainfall, monsoon, snow melt, rain on snow, etc. The distinct interplay of

location, time of the year, and catchment condition are referred to as a flood regime. Spring

freshet, for example, is typical of Northern Europe and Quebec (Riboust & Brissette, 2016;

Blöschl et al., 2017; Sivapalan, Blöschl, Merz & Gutknecht, 2005). The principal driver of flood

events in Australia is intense short-duration rainfall (Ishak & Rahman, 2019). For Northwestern

Europe, prolonged rainfall in the winter and high soil moisture are the main flood drivers

(Bertola, Viglione, Lun, Hall & Blöschl, 2020; Kemter, Merz, Marwan, Vorogushyn & Blöschl,

2020). Extreme floods however contain surprising elements not necessarily related to a specific

flood regime; examples include: Typhoon tracks in Thailand 2011 (Petvirojchai & SaraPa, 2018),

atmospheric blocking in 1993 in Mississippi and in the 2011 Pakistan floods (Francis & Vavrus,

2012; Hong, Hsu, Lin & Chiu, 2011; Grams, Binder, Pfahl, Piaget & Wernli, 2014), as well as

atmospheric rivers that triggered extreme floods in various parts of the world (Merz et al., 2021).
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While climate drivers are the most important cause of floods, antecedent catchment conditions

can modulate the severity of the events. When catchment wetness is high, even a small amount

of precipitation can transform into direct surface runoff and generate flooding (Nakamura,

Lall, Kushnir, Robertson & Seager, 2013). Such a combination was observed in 2013 in

central Europe, when atmospheric anomalies generated prolonged precipitation that elevated

soil moisture. This provided favorable conditions for flooding with a modest rainfall (Nakamura

et al., 2013).

Physiographic characteristics also contribute to catchment response to climate drivers. Land

use change can influence catchment behavior for medium to small catchments. For instance,

catchments with a large proportion of agricultural lands have compact soil as a result of heavy

agricultural machinery operations. This leads to lower infiltration rate and direct contribution

of precipitation into flood (Keller, Sandin, Colombi, Horn & Or, 2019). In urban catchments,

in addition to low infiltration rate, the sewage network makes hydrological pathways shorter

and increases flow peaks (Miller & Hutchins, 2017). Deforestation also changes macropores’

structure, reduces permeability, and alters preferential flow pathways, leading to increasing flow

peaks (Gao et al., 2018). Land use change has only minor effects on large catchments, as studies

have shown that it may contribute to only a few more centimeters of peak water depth with

relatively smaller effect on large territories(Bronstert et al., 2007; Te Linde, Aerts & Kwadĳk,

2010). Moreover, land use can merely affect extreme floods in the case of near saturated soil,

where land cover has insignificant effects on flood generation (Rogger et al., 2017). However, the

relationship between flood and land use at different scales is complex and has not been studied

extensively.

Compared to land use, the impact of hydraulic structures and human intervention on peak flow is

better understood. In most cases, simple mass and momentum equations can be used to simulate

flood peaks (Horváth et al., 2020; Buttinger-Kreuzhuber, Horváth, Noelle, Blöschl & Waser,

2019). Dams typically reduce flood hazard by storing water in reservoirs (Volpi, Di Lazzaro,

Bertola, Viglione & Fiori, 2018; Mei, Van Gelder, Dai & Tang, 2017). For floods with large

return periods, the capacity to dampen the flood wave declines (Vorogushyn, Lindenschmidt,
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Kreibich, Apel & Merz, 2012; Volpi et al., 2018). Channel straightening affects the peak flow

in different ways. In local reaches, increasing channel capacity results in less frequent floodplain

inundation but has minimal effects on the peak. In downstream reaches, since the flood plain

storage has been removed, the limited dampening effect increases flood hazard (Blazejewski,

Pilarczyk & Przedwojski, 1995). This also depends on the flood magnitude. For small to

medium floods, channel straightening increases flood hazard downstream because the peak is

not modulated by the flood plain early on. However, for extreme floods, the activated floodplain

helps dampening flood wave (Blöschl, 2022b). Severe floods may cause damages to hydraulic

structures (i.e., dams, levees, etc.) and create unexpected events resulting in catastrophic costs

(Merz et al., 2021).

Human influence on streamflow is not limited to engineering works. Anthropogenic climate

change affects precipitation patterns, temperature, snow melt, etc. A recent meta-analysis by

(Merz et al., 2021) shows a positive future trend for flood hazards in many parts of the world,

including North America. Assessing future changes requires a modeling chain, starting from

SSPs, which are used as input for climate models. The output of climate models are then used to

force hydrological models (Hall et al., 2014). Climate projections can be obtained at different

scales, which helps to conduct impact assessment studies locally, regionally, or globally (Do

et al., 2020; Swain et al., 2020). The accuracy of these studies directly depends on how climate

models are capable of representing atmospheric processes at different scales (Blöschl, 2022b).

Several studies have shown that warming temperatures can result in extreme precipitation and

higher flood risks in the future. Similar to land use impact, the impact of climate change

should be studied separately for small and large catchments, because small catchments are more

sensitive to intense short-duration rainfall than large catchments (Blöschl, 2022a).

1.2 Climate Models

Global Climate Models (GCMs) consist of a dynamical core for solving the primitive equations

governing the atmosphere (e.g., mass, momentum, energy (Bjerknes, 1910)) across time and

space. The Coupled Model Intercomparison Project (CMIP) provides the outputs of several
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GCMs, for use in hydrological (or other) studies. The project includes CMIP3 (Meehl et al.,

2007), CMIP5 (Taylor, Stouffer & Meehl, 2012), and CMIP6 (O’Neill et al., 2016) phases,

for different scenarios (Gurney et al., 2022). CMIP3 was based on the generation of Special

Report on Emission Scenarios (SRES; Meehl et al., 2007), while the most recent CMIP5 and

CMIP6 experiments are based on Representative Concentration Pathways (RCPs). RCPs are

socio-economic pathway scenarios designed to represent anthropogonic climate forcings into

climate models. These scenarios are based on greenhouse gas concentration in the atmosphere

and expressed by the total radiative forcing (in 𝑊/𝑚2) by the year of 2100 (IPCC, 2014).

The main RCPs used for running the climate models are RCP2.6 (very low forcing), RCP4.5

(medium forcing), RCP6 (medium forcing), and RCP8.5 (very high forcing) (Van Vuuren

et al., 2011). Apart from RCPs, the Shared Socio-economic Pathways (SSPs) have recently

been developed for CMIP6 (Masson-Delmotte et al., 2021). These scenarios consider the

socio-economic developments, including Gross Domestic Product (GDP) growth, the rise of

population, education, Green House Gas (GHG) emission, technological development, etc.

These scenarios work in combination with RCPs to address the challenges regarding adaptation

and mitigation strategies (Wei et al., 2018).

Since the 1980s, climate models have moved towards the inclusion of more Earth processes and

sub-processes into a single framework called Earth System Models (ESMs Hill, DeLuca, Suarez,

Da Silva et al., 2004). These models are the product of coupled Atmospheric and Ocean GCM

(AOGCM) with other Earth system-related models such as Land-Surface Models (LSMs) and

Global Hydrological Models (GHMs). GCMs are computationally demanding. To overcome

this issue, the models are implemented on relatively coarse spatial grids (typically 100km) and

temporal resolution (typically daily)(Navarro-Racines, Tarapues, Thornton, Jarvis & Ramirez-

Villegas, 2020; Chen et al., 2011). As a result, the outputs of GCMs are not suitable for

experiments at regional or local scales and/or at sub-daily time scales (Chen et al., 2011). This

issue is particularly important for hydrologists, as most hydrological variables should be studied

at scales that are finer than those of GCMs (Szolgayova, Laaha, Blöschl & Bucher, 2014; Zhang,
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Viglione & Blöschl, 2022). This is typically resolved by downscaling the output of climate

models, which is discussed in the next sub-section.

1.2.1 Downscaling

Two major approaches have been proposed for downscaling: statistical and dynamical.

In dynamical downscaling, the GCM’s simulation is mapped to a specific region employing the

output of the latter model (e.g., winds, pressure, temperature, humidity etc.) as boundary condi-

tions for a high-resolution Regional Climate Model (RCM; Dickinson, Errico, Giorgi & Bates,

1989). RCMs are complete climate models but they have a higher topographic resolution,

and often more detailed land/water interfaces, land use/land cover than GCMs (Buonomo,

Jones, Huntingford & Hannaford, 2007; Vautard et al., 2021). The main advantage of dynamic

downscaling is that RCMs create meteorologically consistent climate variables and account for

complex climatic processes and their non-linear interactions (Williams, Erickson & Petrzelka,

2010). Yet RCMs are susceptible to uncertainty and biases such as overestimation of drizzling

and underestimation of extreme convective rainfall (Chen, Brissette, Chaumont & Braun, 2013;

Bresson, Laprise, Paquin, Thériault & de Elía, 2017; Maraun et al., 2010; Solman & Blázquez,

2019). It is a common practice to bias correct the output of RCMs (Faghih, Brissette & Sabeti,

2022)

Statistical downscaling seeks the relationship that maps large-scale climate simulation provided

by GCMs to observed local climate for a reference period, then projects it into the future (Wood,

Leung, Sridhar & Lettenmaier, 2004). The outputs of the GCM serve as a predictors for the

local climate (Martel, Mailhot, Brissette & Caya, 2018). Statistical downscaling methods

can be further divided into three categories: regression-based methods, weather typing, and

stochastic modeling (Trzaska & Schnarr, 2014). For regressions, a transfer function between

GCM (predictor) and observed data (predictant) is established. The choice of predictors and

transfer function is generally arbitrary and based on expert knowledge and process understanding.

Weather typing classifies similar patterns in the reference period for predictors, establishes
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a relationship between the predictor and predictant in the reference period, and applies it to

the future (Van Uytven, De Niel & Willems, 2020). In stochastic modeling, the parametric

distribution of the predictant is conditioned to the distribution of the predictors. The most

popular form of this method is the weather generator (Wilks, 1992; Chen, Chen & Guo, 2018).

1.2.2 Post-processing

The outputs of RCMs are susceptible to biases (Chen et al., 2019a). Here we briefly review the

most common bias correction approaches.

The Delta Approach consists in perturbing the observed precipitation and temperature using

appropriate coefficients (Teutschbein & Seibert, 2013). The perturbation coefficient for

temperature is the difference between the expected value for the future period and that of the

reference period in the GCM or RCM domain. For precipitation, a multiplicative coefficient

is used. This coefficient is the ratio of the expected value of the future period to the reference

period. The main advantage of this approach is its simplicity. The main disadvantage is that the

shape and type of the projected probability distribution remain the same as the historical one

(Willems, Ntegeka, Baguis & Roulin, 2010).

Quantile Mapping (QM) is a robust post-processing approach that compares the distribution of

historical and future variables. The differences between the quantiles of the two distributions is

used to correct the projections (Willems et al., 2010). In the case of precipitation, for example,

an empirical distribution is usually preferred, considering both wet days and dry days in its

construction (Chen et al., 2013). QM corrects both the bias and dispersion of the projected

distributions.

1.3 Hydrological modeling

Hydrological models have been classified into different categories based on their level of spatial

discretization (lumped vs. distributed), and description of physical processes (conceptual vs.

physical).
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Lumped models consider the catchment as homogeneous. These models typically solve

simple mass balance equations represented by parametric functions (Beven, 2010). They are

parsimonious, and usually the data related to the physiography of the catchment is not required

(Hrachowitz & Clark, 2017). Lumped models require minimal computational power, but their

application is limited to cases where the end result (streamflow at the outlet) is what matters.

HBV (Bergström et al., 1995), SUPERFLEX (Fenicia, Kavetski & Savenĳe, 2011) and GR4J

(Perrin, Michel & Andréassian, 2003) are examples of popular lumped models, even though they

can also be spatialized. This has been the case for HBV, for instance (Lindström, Johansson,

Persson, Gardelin & Bergström, 1997).

Distributed models account for the spatial heterogeneity of the catchments (Beven, 2011), with

more or less detailed spatial discretization. For instance, the level of spatial scale can be managed

by SWAT (Arnold, Srinivasan, Muttiah & Williams, 1998) and VIC (Liang, Lettenmaier,

Wood & Burges, 1994) but is limited to sub-catchment (i.e. semi-distributed) whereas MIKE-

SHE (Refsgaard & Storm, 1990) and HYDRUS-3D (Šimunek, van Genuchten & Šejna, 2008)

are grid-based, fully distributed. There exist mainly three approaches for spatial discretization:

1) the discretization of input data with fixed parameters; 2) the discretization of parameters only;

and 3) a combination of both approaches (Ajami, Gupta, Wagener & Sorooshian, 2004; Das,

Bárdossy, Zehe & He, 2008; Euser, Hrachowitz, Winsemius & Savenĳe, 2015). Distributed

models can be data and computationally-intensive, with a finer spatial resolution leading to an

increase in computational time (Bierkens, 2015).

Physics-based models attempt to solve the governing equations of hydrological processes

and describe fluxes and states and their complex relationships in heterogeneous catchment

media (Clark et al., 2017; Fatichi et al., 2016). Theoretically, physics-based models should

not need calibration, as their parameters should represent physical processes and catchment

characteristics. However, this is not truly the case and calibration is still needed. Scale issues

and catchment heterogeneities (e.g., soil, vegetation) are some of the factors that contribute

to parameter uncertainty in physics-based modeling. (Wagener, Wheater & Gupta, 2004). As

a result, identifying the parameters requires calibration of the model, which is data intensive
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and computationally demanding. MIKE-SHE (Refsgaard & Storm, 1990) and HYDRUS-3D

(Šimunek et al., 2008) are among this type of models.

Conceptual (or bucket-type) models represent hydrological processes through macro-scale

conceptualization (Hrachowitz et al., 2013) with a simple parametrization. In some cases, the

number of processes that these models take into account is limited (Clark et al., 2015). These

models are often but not exclusively implemented at the catchment or sub-catchment scales.

They are typically neither computationally demanding nor data intensive. HBV (Bergström et al.,

1995), GR4J (Perrin et al., 2003), mHM (Samaniego et al., 2010) and CEQEAU (St-Hilaire

et al., 2015b) belong to this category.

A typical procedure for implementing a hydrological model after selecting the structure is to

estimate parameter values using a systemic calibration against a portion of the observed data

(Wagener et al., 2001). The calibration procedure is based on finding a parameter set for which

the simulated streamflows corroborate as much as possible observed streamflows. This similarity

is measured by a metric, for instance the Nash–Sutcliffe efficiency (NSE Nash & Sutcliffe, 1970)

or the Kling Gupta efficiency (KGE; Gupta, Kling, Yilmaz & Martinez, 2009). There exist

many other metrics, and they can be selected according to the application. Calibration is an

iterative process that involves trying multiple parameter sets (Ajami et al., 2004). There exist

various optimization algorithms and goodness of fit measures in the literature. Dynamically

Dimensioned Search (DDS; Tolson & Shoemaker, 2007) and Shuffled Complex Evolution

Algorithm (SCEA; Duan, Gupta & Sorooshian, 1993) are amongst the most popular search

algorithms in hydrological modeling.

There often exist more than one acceptable solution (parameter set). This is referred to as

equifinality (Beven, 2006). Therefore, in practice, we are dealing with a range for each parameter

leading to parameter bounds instead of a unique answer (Wagener & Wheater, 2006). For impact

assessment, it is essential to report the uncertainty related to model parameters for a realistic

impact assessment .
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1.4 Uncertainty

Beven (2016) divided uncertainty into two broad categories: epistemic and aleatory uncertainty.

The former is generally due to a lack of understanding and can be reduced by acquiring new

knowledge. The latter, however, is owing to "the randomness of a phenomenon," which is not

reducible. The definition provided by the Intergovernmental Panel on Climate Change (Pachauri

et al., 2014) for uncertainty is "complete absence of information or presence of partial knowledge

or information or lack of consensus over known or knowable phenomenon." A lack of knowledge

or imperfect knowledge about the possible outcomes (e.g. climate change) leads to a less solid

basis for treating that phenomenon with probability theories (Foley, 2010). The phenomenon,

therefore, has to be studied by developing a series of plausible scenarios and accounting for

corresponding uncertainties.

The Earth’s climate is a complex system affected by a range of external forces (e.g., greenhouse

effect, solar radiation, celestial body collision, land-surface, volcanic eruption, etc.) along with

its internal variation (e.g., El Niño Southern Oscillations (ENSO), North Atlantic Oscillation

(NAO), Arctic Oscillation (AO), Atlantic Multidecadal Oscillation (AMO), Pacific Decadal

Oscillation (PDO), etc.). Such high complexity and degree of freedom are difficult to be

represented by climate models. In addition, the dynamic interaction between various processes

along with their feedback loops is yet to be studied and further reflected in models to adequately

represent the climate system (Kundzewicz & Stakhiv, 2010). Given current knowledge and

computational abilities, climate models are susceptible to a high degree of uncertainty.

The cascade of uncertainties in hydroclimatic modeling can be summarized as follows: 1) future

socio-economic development, 2) selection of greenhouse gas emission scenarios, 3) global

climate models (GCMs), 4) dynamical/statistical downscaling, 5) bias correction method, 6)

observational uncertainty of hydroclimatological data, 7) structural uncertainty of hydrological

model, and 8) parameterization of the hydrological model. The top-down approach of such a

modeling chain guarantees uncertainty propagation through the models as every stage inherits

the uncertainty introduced from the previous one.
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The chain of uncertainty begins with the uncertainty of future developments in terms of economy

and technology as well as population growth. As a result, prescribed scenarios for GHG

emissions have been proposed, which are based on two pioneering approaches: the first one

proposed by IPCC Special Report on Emission Scenarios – SRES (IPCC) and the second

one based on Representative Concentration Pathways (Meinshausen et al., 2011). Adopting

each scenario for simulation may produce an entirely different output leading to considerable

uncertainty, particularly for regional and local scales. Uncertainty of GHG scenarios further

depends on the horizon of simulations. The effect of scenarios on the short-term is smaller

compared to the distant future, as climate response in the short-term is heavily dependent on

historical GHG concentrations (Meinshausen et al., 2011).

Several GCMs have been developed and implemented, providing several projections for climate

statistics (e.g., Taylor et al., 2012). Different GCMs running with the same GHG scenarios can

provide divergent projections. Different models represent physical sub-processes differently,

including numerical methods and parameterizations (Chen et al., 2011; Chen, Brissette, Lucas-

Picher & Caya, 2017). Previous research results show that the contribution of inter-model

uncertainty outweighs other sources of uncertainty in hydroclimatic modeling (Minville,

Brissette & Leconte, 2008; Wilby & Harris, 2006).

Though GCMs are often recognized as the major source of uncertainty in impact assessment

studies, hydrological modeling uncertainty also needs to be considered (Chen et al., 2011).

Hydrological uncertainty stems from data (scarcity, measurement error, scale mismatch, aggre-

gation/disaggregation), the choice of hydrological model, and its parameterization (Kundzewicz

et al., 2018). Perhaps the most well-known hydrological uncertainty assessment framework

is the generalized likelihood uncertainty estimation (GLUE) (Beven & Binley, 1992; Setegn,

Srinivasan & Dargahi, 2008; Blasone et al., 2008; Uhlenbrook, Seibert, Leibundgut & Rodhe,

1999; Wechsler, 2007). The framework divides the whole possible parametric space into

behavioral and non-behavioral solutions by applying the condition of maximum likelihood of

simulation to observations. The choice of maximum likelihood function and the threshold to
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distinguish between behavioral and non-behavioral simulations are subjective, which has ensued

controversies regarding the adequacy of the framework (Clark, Kavetski & Fenicia, 2011)

In hydrology, the uncertainty linked to model structure is referred to as structural uncertainty

(Krysanova et al., 2018). Each hydrological model is a combination of several hypotheses and

algorithms (Euser et al., 2013; Clark et al., 2011). The choice of process description, numerical

method, spatial and temporal scales, as well as all choices involved in the classification

and representation of topography, soil type, vegetation, etc., are all included in structural

uncertainty (Krysanova et al., 2018). A multimodel approach allows for a simple and effective

way of characterizing structural uncertainty (Thiboult, Anctil & Boucher, 2016; Butts, Payne,

Kristensen & Madsen, 2004; Seiller, Anctil & Roy, 2017). The idea is simply to use an ensemble

of models, ideally very different in their representation of hydrological processes (Krueger et al.,

2010; Buytaert & Beven, 2011).

1.5 Modeling Scales

1.5.1 Temporal Scale

Theoretically, extreme rainfall depends on surface temperature. By increasing the temperature,

the Clausius-Clapeyron (CC) equation (Ivancic & Shaw, 2016) predicts that the capacity of

the atmosphere to accumulate moisture also increases (Kharin, Zwiers, Zhang & Hegerl, 2007;

Trenberth, Covey & Dai, 2018; Westra et al., 2014). The theory suggests that per 1◦𝐶 increase in

temperature, the saturation specific humidity of the air will increase by 7% , resulting in higher

available moisture for extreme precipitation (Pall, Allen & Stone, 2007). In practice, the scaling

is not linear (O’Gorman, 2015). Using observed available data from 1929-2017, Yin et al. (2018)

showed that three major consequences are associated to rising temperature: first, a monotonic

increase of extreme precipitation; second, a monotonic decrease of extreme precipitation; and

third, a hook-like behavior (Berg & Sheffield, 2018; Drobinski et al., 2020) with increasing

extreme precipitation up to a certain threshold of temperature and a decrease afterward. Higher

latitudes, including most of Canada, have either witnessed a monotonic increase of extreme
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precipitation corresponding with a rise in temperature or a hook-like structure with a threshold

temperature before which the extreme precipitation has been increased (Yin et al., 2018). Their

analyses regarding high flow further confirm that the hook-like structure is a dominant pattern

worldwide except for the tropics.

Rising temperature can further change the dominant pattern of rainfall from stratiform to

convective (Berg & Haerter, 2013). Since convective rainfall is inherently of short duration with

high intensity, it is expected that the contribution of this type of rainfall will be stronger than

in the past due to changing climate. While river flooding is mainly associated with extreme

precipitation on the daily time scale, extreme sub-daily rainfall often is the primary driver of

urban flooding or flooding in small and/or steep catchments. In addition, hourly rainfall is of

the main interest of engineering practice for the design of infrastructure, which necessitates

identifying the relationship between the rise of temperature and extreme precipitation (Alfieri

et al., 2017). Employing a time series of observed hourly rainfall from 1966-2013 over the

Australian Continent, Guerreiro et al. (2018) explored the effect of a warming climate on extreme

precipitation for both daily and sub-daily time scales. It has been found that the percentage of

change corresponding with the daily time-scale is in line with the CC-scaling curve. However, the

scaling factor for extreme sub-daily precipitation falls within 2CC and 3CC curves manifesting

the heightened sensitivity of hourly compared to extreme daily precipitation.

Translation of rainfall to flood is, however, a complex issue. One reason is the difference in the

definition of ’extreme’ for precipitation and flood. For precipitation, the 95 or 99 percentiles are

popular indices to calculate extremes. For floods, a much larger index is needed to satisfy the

constraints corresponding to the life-cycle of structures such as dams, levees, or bridges (Westra

et al., 2014). Such structures with a life-cycle reaching several decades should be designed

to stand the floods with at least a 100-year return period (Kuczera et al., 2006). Moreover,

the non-linear response of catchments toward forcing meteorological variables, which stem

from their size, geo-morphological characteristics, soil type, land cover, level of urbanization,

etc. is another reason that increases the ambiguity regarding the translation of extreme rainfall

into flood events (Bennett, Leonard, Deng & Westra, 2018). The size of the catchment is an
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important factor in determining the response of the catchment toward rainfall, as the time of

concentration for each catchment is highly correlated with its size. The time of concentration

is the duration in which the runoff generated from the most hydraulically remote part of the

catchment departs the outlet (Blöschl, 2022b). The time of concentration is often considered as

the critical duration of an extreme precipitation. This is the duration at which the largest flood is

assumed to accrue for a given rainfall.(Chow, Maidment & Mays, 1988; Brutsaert et al., 2005).

The critical time of catchments with a main channel of less than 100 km is generally less than a

day, making them sensitive to sub-daily rainfall duration (Sikorska, Viviroli & Seibert, 2018).

1.5.2 Spatial Scale

Spatio-temporal scale issues related to runoff generation is the subject of continuous debates

(Blöschl et al., 2019; Blöschl & Sivapalan, 1995). In their article about 23 unsolved problems in

hydrology (UPH), Blöschl et al. (2019) raised multiple questions that highlight the importance of

improving our understanding of hydrological processes at different time-space scales. Question

5 from the ’spatial variability and scaling’ category focuses on hydrological variables’ spatial

heterogeneity and homogeneity:’What causes spatial heterogeneity and homogeneity in runoff,

evaporation, subsurface water and material fluxes (carbon and other nutrients, sediments), and in

their sensitivity to their controls (e.g. snow fall regime, aridity, reaction coefficients)?’. Question

6 reflects on the hydrologic laws at the catchment scales and their variation with scales: ’What

are the hydrologic laws at the catchment scale and how do they change with scale?’. Further,

question 10 from the category ’variability of extremes’ highlights the link between catchment

heterogeneity (land cover/land use) and extreme runoff: ’Why are runoff extremes in some

catchments more sensitive to land-use/cover and geomorphic change than in others?’.

Scale issues are rooted in the aggregation procedure required to reduce the computational burden

in hydrological modeling (Gupta, Rodríguez-Iturbe & Wood, 2012; Sivapalan & Blöschl, 2017;

Blöschl, 2022a). However, scaling hydrological processes, from pore- to catchment-scale and

beyond, causes hydrological variability (Dooge, 1986). Based on Dooge (1986), variability can

be classified as organized simplicity, unorganized complexity, and organized complexity. The
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first and second forms can be resolved by mechanistic and probabilistic approaches, respectively.

The third form, into which most of hydrological problems fall, is difficult to resolve (Weinberg,

2001; Dooge, 1986; Freeze & Harlan, 1969). There is a debate on whether to consider variability

as uncertainty, in the sense that randomness is an inherent part of hydrological processes

or considering that it is a result of lack of knowledge, which by performing more accurate

measurements can be resolved in a deterministic manner (Western, Blöschl & Grayson, 2001;

Rajaram, 2016; Montanari & Koutsoyiannis, 2012; Rigon et al., 2022). Those philosophies give

rise to contrasting modeling approaches, i.e., deterministic or probabilistic, which highlights the

challenges to connect scales. Since flood generation processes and their linkage across scales

are key modeling concepts, they will be briefly discussed in the following.

At the pore scale (10−3m), gravity and capillarity are dominant forces determining water

movement (Jury & Horton, 2004). While these forces are well understood in theory, the

interaction between water and soil can become complex. Clay grains, for example, tend to

change size under wet and dry conditions, depending on their type and shape (Tessier, 1990;

Tuller & Or, 2003; Alaoui, Rogger, Peth & Blöschl, 2018). Changing size further causes the

emergence of cracks on the land surface. Cracks are pathways of preferential flow, which

increase infiltration and decrease local surface runoff (Blöschl et al., 2016). At the pore scale and

plot scale (1m), water movement through soil cannot be fully described by the well established

Richard’s equation. The equation is driven by a combination of the Darcy-Buckingham law

and continuity equation(Richards, 1931). Despite extensive use in hydrological modeling,

Richard’s equation has limits in the application for all types of soil (Blöschl, 2022a). Moreover,

laboratory studies have shown that water tends to bypass the soil matrix through macro-pores

(i.e., preferential flow); a runoff generation process that cannot be captured by this equation

(Flury, Flühler, Jury & Leuenberger, 1994; Zehe, Elsenbeer, Lindenmaier, Schulz & Blöschl,

2007). The generation process at the hillslope scale (100m) is different from the profile scale

(1m). The Hortonian infiltration excess is the dominant runoff generation process at the plot

scale. At the hillslope level, however, the spatial connectivity redistributes subsurface lateral
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flow and gives rise to saturation excess runoff generation process (Zehe, Blume & Blöschl, 2010;

Silasari, Parajka, Ressl, Strauss & Blöschl, 2017).

Runoff generation processes at the catchment scale are a subject of ongoing debates. There are

two conflicting approaches: The traditional approach is based on Freeze & Harlan (1969), which

focuses on explaining individual hillslope responses and combining them to reach the catchment

response. This is an upward approach that sees the catchment as an organized simplicity. The

other approach sees the catchment as an unorganized complexity, in which simply aggregating

micro-processes (here at hillslope or more minor scales) will not give an adequate explanation of

macro-processes (here catchment scale) (Sivapalan & Blöschl, 2015). This is because such an

approach fails to consider the evolutionary spatial patterns that develop surface and subsurface

drainage systems across scales (Blöschl, 2022a). One can take a catchment as an ecosystem

that is conditioned on wetness and available nutrients. The presence of life shapes patterns in

the catchment drainage system in a complex manner and produces a non-linear response that

cannot be resolved by mechanistic approaches (Savenĳe & Hrachowitz, 2017). Therefore, a

more holistic approach is needed to treat the catchment response, for example, by comparing

and contrasting multiple catchments and analyzing their responses (Sivapalan, 2003).

1.5.3 Representation of Scale in hydrological models

Recent progress in process conceptualization (Miyata et al., 2019; Sidle, Gomi, Usuga & Jarihani,

2017; Zehe & Blöschl, 2004), data acquisition through remote sensing and reanalyses techniques

can help improve representing spatio-temporal scale in hydrological modeling (Singh & Sinha,

2021; Jiang & Wang, 2019; Koci, Sidle, Jarihani & Cashman, 2020). Multiple datasets with fine

spatial and temporal scales have been developed to address this problem. The examples are Shuttle

Radar Topography Mission (SRTM), The Global Multi-resolution Terrain Elevation Data 2010

(GMTED2010- with spatial resolution of 7.5 arcseconds), and Moderate Resolution Imaging

Spectroradiometer (MODIS), which provide topographic, land use, and snow cover data with with

spatial scales of 250m to 1 km (Pham, Marshall, Johnson & Sharma, 2018; Danielson & Gesch,

2011). The European Centre for Medium-Range Weather Forecasts (ECMWF) proposed
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multiple reanalysis datasets (ERA-Interim, ERA5, ERA-Land), which include time-series of

climatic variables with fine spatial (10 km for ERA-Land) and temporal (hourly) resolutions

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5). These datasets can

incorporate the details of spatio-temporal variability in implementing of process-based distributed

hydrological models (Tarek, Brissette & Arsenault, 2020b).

The effect of spatial discretization on models’ response has been investigated for urban catchments.

It is shown that the changes in resolution of topographic information provided by digital

elevation models (DEMs), for instance, could reorient flow direction and flow accumulation

and alter the surface and channel routing schemes (Cao et al., 2020a; Krebs, Kokkonen,

Valtanen, Setälä & Koivusalo, 2014). Furthermore, altering soil texture and land cover modifies

imperviousness, Manning roughness coefficient, soil water content, etc., and reshapes the final

response in terms of both water generation and routing schemes (Cao, Ni, Qi & Liu, 2020b).

This might potentially determine the timing and magnitude of the flood. It is worth noting

that there is no consensus over the impact of additional information provided by high spatial

resolution on the estimation of high flows, as many studies show contradicting results (i.e.,

overestimation or underestimation of flood) by refining spatial resolution (Ichiba et al., 2018;

Warsta et al., 2017).

Over-land flow connectivity is another important scale-related issue that affects catchment

responses (Moore & Grayson, 1991; Jones, Swanson, Wemple & Snyder, 2000; Croke, Mockler,

Fogarty & Takken, 2005). Several studies have addressed the impact of flow connectivity

in water and nutrient transports across hillslope-riparian-river systems (Jencso, McGlynn,

Gooseff, Bencala & Wondzell, 2010; Sedell, Reeves, Hauer, Stanford & Hawkins, 1990; Pringle,

2001). Different methods have been proposed to incorporate connectivity into hydrological

models including contour line-based method (Moore & Grayson, 1991; Miyata et al., 2019),

topographic index methods (Detty & McGuire, 2010; Hallema, Moussa, Sun & McNulty,

2016), empirical approaches (López-Vicente et al., 2017; Koci et al., 2020), and graph theory

approach (Halverson & Fleming, 2015; Cossart & Fressard, 2017). In process-based distributed

hydrological models, surface connectivity is directly related to the resolution of topographic

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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and land cover data represented in the model. By changing the modeling scale, a degree of

variability corresponding with modeling parameters is expected to emerge. In fact, the choice of

spatio-temporal discretization can be seen as a form of aggregation over scale, which causes

variability in simulating hydrological variables.

Distributed grid-based models offer the opportunity to represent spatial heterogeneity if refined

data are available adequately. The major challenge, however, is the trade off between the

computational cost of implementing such models and the additional information the model

can provide by refining grids. Zhang & Montgomery (1994), for example, showed that by

increasing grid resolution higher than a specific threshold, the model response has marginally

been improved. Therefore, it is plausible to force the model with a coarse grid without risking

the elimination of necessary information. As a result, lower computational cost accompanied by

an adequately accurate response boosts the efficiency of the model. One way to avoid model

complication and maintain accuracy at the same time is the representation of subgrid spatial

variability through suitable parametrization (Clark et al., 2015). As such, surrogate information

of gridded data (land use, soil texture, topography) encapsulated in the parameters could be

transferred across regions and scales (Fatichi et al., 2016).

1.6 Regionalization

During the past two decades, parameter regionalization techniques have been used to facilitate

transfer of information across regions (Götzinger & Bárdossy, 2007; Hundecha & Bárdossy,

2004) and scales (Kumar, Samaniego & Attinger, 2013; Samaniego et al., 2010). In practice,

most of the regionalization techniques available in the literature use parameterization at the

catchment scale and overlook subgrid variability. This may cause problems in transferring

information across scales (Troy, Wood & Sheffield, 2008). Furthermore, using discrete classes

of catchment descriptors may create a discontinuous distribution of state variables and fluxes,

even though the streamflow is accurately simulated (Hundecha & Bárdossy, 2004).
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To address the above mentioned problems, Samaniego et al. (2010) and Kumar et al. (2013)

proposed a method to account for the variability below the modeling scale through a technique

called Multiscale Parameter Regionalization (MPR). In this technique, the finest available gridded

data is used to develop a regionalized transfer function, and an appropriate operator is employed

to upscale the transfer function to the modeling scale. The a priori relationships between

catchment descriptors and model parameters are developed using pedotransfer functions, which

are based on empirical evidence and expert knowledge. This technique is further embedded in

meseo-scale hydrological model and applied to broad variety of problems (Rakovec et al., 2016;

Baroni, Zink, Kumar, Samaniego & Attinger, 2017; Thober et al., 2019).

The fundamental feature of regionalization techniques, including MPR is to establish an a priori

relationship between parameters and catchment descriptors (Hundecha & Bárdossy, 2004).

However, the explicit relationship between model parameters and catchment descriptors is hard

to detect (Merz & Blöschl, 2004; Parajka et al., 2013) because the available data of catchment

descriptors are represented as an average or percentage of those particular descriptors over

the whole catchment (percentage of land use, average soil depth, etc.). As a result, catchment

descriptors are not thorough representatives of catchment heterogeneity (Merz, Tarasova & Basso,

2020). In addition, the scale of the study can determine which groups of catchment descriptors

are more important. For example, topography of the catchment could be a dominant descriptor at

the catchment scale (Von Freyberg, Radny, Gall & Schirmer, 2014) while climate characteristics

are more important at the regional scale (McGlynn & McDonnell, 2003).

The application of machine learning (ML) and deep learning (DL) in hydrology is rapidly

increasing. In terms of type, most of the studies in the past were limited to the multi-layer

perception (MLP) neural networks, and some used recurrent neural networks (RNN Abrahart

et al., 2012; Dawson & Wilby, 2001; Oyebode & Stretch, 2019). More recent studies have

focused on the application of DL or, more precisely, Long Short-Term Memory (LSTM)

network (Hochreiter & Schmidhuber, 1997), which is a special type of RNNs. LSTM has

shown promise in hydrological modeling and regionalization (e.g. Kratzert, Klotz, Brenner,

Schulz & Herrnegger, 2018; Kratzert et al., 2019a; Gauch et al., 2021a; Gauch, Mai & Lin,
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2021b; Ali, Ebrahimi, Ashiq, Alasta & Azari, 2022; Duan & Ullrich, 2021; Li et al., 2022; Mai,

Craig, Tolson & Arsenault, 2022a; Arsenault, Martel, Brunet, Brissette & Mai, 2022). ML and

DL can improve streamflow simulations and regionalization because they are typically trained

on large datasets of highly variable catchments (Arsenault et al., 2022). Despite their efficiency,

ML and DL have limited use in the operational forecast community due to their black box nature.

In parallel, the academic community continues to advance ML and DL applications, because

contrary to conceptual models, these models have more degrees of freedom to numerically

capture non-linear hydrological relationships (Nearing et al., 2020; Kratzert et al., 2019b). This

helps transferability and scaling of hydrological relationships (Sidle, 2021).

A combination of hydrological models and ML/DL is a way forward. ML techniques are well

suited to calculate the hydrological model parameters, for which a tangible physical relationship

is not available. The advantages of ML regionalization methods have been demonstrated in

the literature. Razavi & Coulibaly (2017) compared traditional methods with various forms of

Artificial Neural Network (ANN) and ML methods in identifying regionalized parameters of

a hydrological model for prediction in ungauged basins across Ontario. Their results showed

that a certain combination of non-linear data-driven methods and catchment classification could

potentially improve the performance of the model for PUB. Saadi, Oudin & Ribstein (2019)

used Random Forest (RF) and two other traditional methods to regionalize the parameters for

multiple urban and natural catchments across France and the US. Their results demonstrated

that the RF method outperforms the traditional methods in both urban and natural catchments.

Merz et al. (2020) developed Parameter Set Shuffling (PASS) method to develop a relationship

between catchment descriptors and parameters using RF. PASS was successfully applied on

multiple catchments in Germany to find consistent regionalized parameters over the country

using a large-scale distributed hydrological model.

Regarding the application of ML and DL in regionalization, there is a gap about the representation

of catchment heterogeneity and its importance for prediction in ungauged basins. The questions

such as how well ML methods perform at different spatio-temporal resolution; to what extent the

developed hydrological relationships between catchment descriptors and model parameters can
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be transferred across scales; and to what extent using more spatially representative catchments

helps improve the efficiency of the modeling have yet to be studied. Addressing these questions

using ML/DL techniques will potentially help improve our understanding of scale issues in

hydrological modeling.

1.7 Research Objectives and hypotheses

The main objective of this study is to assess the impact of spatial and temporal resolutions of

distributed (and physically based) hydrological models on the simulation of flows, in particular

summer-autumn floods. More specifically, three hypotheses will be examined:

1. The choice of level of spatio-temporal discretization alters model parameters, which leads

to an uncertainty in streamflow and flood simulation. By increasing catchment area, the

contribution of the choice of spatial scale and hydrological model in such uncertainty

increases, and that of time-step decreases.

2. For small catchments (< 500𝑘𝑚2), refining temporal resolution of simulation (from daily to

subdaily) increases the relative change (from reference to future) of extreme summer-fall

flow. Refining temporal resolution will not significantly affect projected extreme summer-fall

flow for large catchments (> 1000𝑘𝑚2).

3. There does exist relationships between model parameters and catchment descriptors that

can be approximated by the random forest (RF) method. The underlying information related

to catchment characteristics is transferable across scales through that approximation. Using

fine-scale (in time and space) catchment descriptors improves the skill of the regionalization

model.



CHAPTER 2

METHODOLOGY

This chapter provides a perspective on the methods and materials used in this research. The

details of the experimental design corresponding with the research hypotheses can be found in

chapters 3 to 5, and therefore, they are briefly addressed in this chapter.

2.1 Study Area

All catchments of this study are located in the Southern Quebec , Canada. The number of

catchments varies, depending on the hypotheses. For the first and second hypotheses, we

selected 6 and 4 catchments located in different hydrological regions of the province. Given

that the main theme of the present study is to investigate the relationship between size and the

spatio-temporal representation of the catchments in hydrological models, the main selection

criterion is to include different catchment sizes. The sizes range from less than 200 to more

than 3500 𝑘𝑚2. To verify the third hypothesis, we had to use the maximum possible number of

catchments to introduce them to the RF model. In that case, we used 171 catchments, all located

in southern Quebec. Figure 2.1 displays the catchments used in the experiment to verify the last

hypothesis.

2.2 Data

We employ ERA5 precipitation and temperature time series (Hersbach & Dee, 2016, ECMWF

ReAnalysis5;) to calibrate and validate the hydrological models. ERA5 is the fifth generation of

ECMWF reanalyses with a spatial resolution of 31km and hourly temporal resolution. ERA5

has shown a good performance when compared with observed gridded datasets (Tarek et al.,

2020b). Observed streamflow series are obtained from the Direction de l’Expertise Hydrique

(DEH) of the Ministère de l’Environnement et de la Lutte contre les changements climatiques

(MELCCC) for the 2000-2017 time period, with 24 and 3-hour time steps.
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Figure 2.1 Location of the catchments used in this study, more specifically in the
case of hypothesis 3. All catchments are located in Southern Quebec, Canada

ClimEx large ensemble (Leduc et al., 2019) dataset is used for projections. The dataset is a

50-member ensemble driven by a transient run of the second version of the Canadian Earth

System Model (CanESM2-LE at 200 km resolution; Swart et al., 2019). The RCP 8.5 scenario

was used to run the model for the period covering 1951-2100, resulting in 7500 years of data,

with hourly time steps and a 11◦ spatial resolution.

2.3 Experimental setup

Figure 2.2 displays the experimental setup. The first and second columns deal with the first two

hypotheses regarding the uncertainty linked to the spatio-temporal variability in the simulation

and projection of the streamflow for the present and future periods. The last column shows
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the random forest (RF) regionalization method associated with the third hypothesis. The first

step calibrates the models with different spatio-temporal resolutions and creates an ensemble

of simulations per catchment. This allows quantifying the uncertainties linked to catchment

heterogeneity. The second step bias corrects a 50-member ClimEx dataset and forces the

hydrological models to project streamflow in the 1991-2100 period at different spatio-temporal

resolution. This follows by frequency analyses to estimate the change of summer-fall flood in the

future and investigate the effects of spatio-temporal resolution, catchment size, and hydrological

model on the variability of simulations. The third part of this thesis uses the Random forest

method for the regionalization of a distributed hydrological model (Hydrotel) at different

spatio-temporal resolutions. The random forest model creates a relationship between model

parameters and catchment descriptors. This relationship is further applied to pseudo-ungauged

catchments for model confirmation. Nested catchments are further identified and modeled to

investigate parameter transferability of regionalization model across catchmnet, sub-catchment,

and RHHUs.

2.3.1 Calibration

We used dynamically dimensioned search (DDS Tolson & Shoemaker, 2007) to calibrate the

hydrological models (WaSiM and Hydrotel). DDS is a heuristic optimization algorithm that

searches for a good global solution in the n-dimensional surface of the model parameters and the

objective function. The algorithm relies on a user-specified budget of function evaluations. A

probability is dynamically adjusted to limit the number of dimensions being perturbed according

to the number of trials. This way, the number of trials can be determined based on available

computational power. In each trial, the parameters are perturbed by scaling a random selection

from a normal distribution with zero mean. The scale parameter is defined to allow the algorithm

to escape from poor local optima. The default value of the scaling parameter is 0.2. Lower

values can be used if a more refined search is required in the local region of the parameters (In

all cases, we used the scaling factor of 0.2, as recommended by the documentation).
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Figure 2.2 A brief schematic of the experimental design of this study

Multiple researches have used DDS to calibrate the parameters of hydrological models (e.g.,

Zhang, Srinivasan, Zhao & Liew, 2009; Arsenault, Poulin, Côté, Brissette et al., 2014; Behrouz,

Zhu, Matott & Rabideau, 2020; Darbandsari & Coulibaly, 2020). The algorithm has shown

a good performance when compared with other optimization algorithms such as the shuffled

complex evolution (Huot, Poulin, Audet & Alarie, 2019). The simplicity and performance of

DDS, as well as the user-specified budget, make the algorithm an optimal choice for calibrating

computationally-intensive process-based distributed models.

For calibration, a common practice is to use multiple objective functions or one function that

is a composition of multiple measures, such as the mean squared error (MSE), Nash–Sutcliffe

efficiency (NSE Nash & Sutcliffe, 1970), or Kling-Gupta efficiency (KGE Gupta et al., 2009).

NSE is, in fact, the MSE that is divided by the variance of the observation and subtracted

from 1. Being dimensionless and scaled between (∞ , 1], it is a suitable measure to compare
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model performances. For NSE, the modeling baseline is the observation mean. This is a

problem for highly seasonal hydrological variables such as streamflow in snow-dominated

basins (Schaefli & Gupta, 2007). There are also other known issues with the NSE, such as an

underestimation of bias and variability. To resolve these issues KGE, which is the Euclidean

distance in the Pareto front of the correlation coefficient (r), relative variability (𝛼), and a

measure for bias (𝛽) (Equation 2.1) was proposed (Gupta et al., 2009). This measure is a better

alternative to measuring model performances in snow-dominated catchments (for all calibration

runs, we used KGE as the objective function).

𝐾𝐺𝐸 = 1 −
√︃
(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (2.1)

2.3.2 Multivariate Bias Correction

The multivariate bias correction method is driven by N-dimensional probability density function

transform (N-PDF; Pitie, Kokaram & Dahyot, 2005). N-PDF is an image processing technique

for the transformation of information between two images. In this technique, the original

multi-variable matrices are rotated by a random orthogonal function, and the rotated variables’

marginal distribution are projected by quantile mapping. The extra rotation step linearly

combines the variables for mapping. The traditional univariate techniques do not consider the

dependency between multiple variables, which leads to inaccurate projections for impact studies

(Rocheta, Evans & Sharma, 2014). The algorithm repeats the rotations and mapping steps until

the distributions of the source and target datasets are the same. The MBCn algorithm (Cannon,

2018) adapts N-PDF for the bias correction of climate data following these steps: First, the

datasets are rotated based on Equations 2.2 to 2.4.

X̃[ 𝑗]
𝑆

= X[ 𝑗]
𝑆

R[ 𝑗] (2.2)
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X̃[ 𝑗]
𝑃

= X[ 𝑗]
𝑃

R[ 𝑗] (2.3)

X̃[ 𝑗]
𝑇

= X[ 𝑗]
𝑇

R[ 𝑗] (2.4)

where 𝑃, 𝑆, and𝑇 refer to climate model projection (future), climate model simulation (historical),

and observation (historical). X is the matrix of climate variables, R is the orthogonal rotation

matrix, and 𝑗 is the iteration number. The next step is quantile delta mapping (QDM). In

addition to mapping, the method treats the data points in the projections that lie outside the range

of the historical simulated dataset. This is important, especially for decadal or multi-decadal

projections with a strong climate change signal. The QDM transfer functions for temperature

are presented in Equations 2.5 and 2.6.

𝚫(𝑖) = 𝑥𝑃 (𝑖) − 𝐹−1
𝑆 (𝐹𝑃 (𝑥𝑃 (𝑖))) (2.5)

𝑥𝑃 (𝑖) = 𝐹−1
𝑇 (𝐹𝑃 (𝑥𝑃 (𝑖))) + 𝚫(𝑖) (2.6)

where 𝑥(𝑖) is 𝑖𝑡ℎ datapoint (here temperature), 𝑥(𝑖) is corrected data point, and 𝐹 and 𝐹−1 are

empirical cumulative distributions and their inverse functions. The final step is to perform an

inverse rotation according to Equations 2.7 to 2.9:

X[ 𝑗+1]
𝑆

= X̂[ 𝑗]
𝑆

R[ 𝑗−1] (2.7)

X[ 𝑗+1]
𝑃

= X̂[ 𝑗]
𝑃

R[ 𝑗−1] (2.8)
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X[ 𝑗+1]
𝑇

= X[ 𝑗]
𝑇

(2.9)

where �̂� is the matrix after applying QDM.These steps are repeated until the simulation (𝑋𝑆)

matrix matches the observation (𝑋𝑇 ) matrix. The MBCn algorithm takes an extra step to preserve

the trend by reordering the elements of the mapped matrix according to the ordinal rank of the

projection matrix (Cannon, Piani & Sippel, 2020).

2.4 Frequency Analyses

For the flood frequency analyses (chapter 3) from hydrological modelling using historical ERA5

data, we examined multiple distributions to fit the streamflow maxima. The Log-Pearson type

III distribution (Equation 2.10, Griffis & Stedinger (2007)) appeared to be the best fit for this

case study.

𝑓𝑄 (𝑞) =
1
|𝛽 | (

𝑙𝑛𝑞 − 𝜏
𝛽

)𝛼−1𝑒𝑥𝑝(− 𝑙𝑛𝑞 − 𝜏
𝛽

) (2.10)

where the Napierian logarithm of the random variable 𝑄 is 𝑋 , which has a Pearson type III

distribution, Γ(𝛼) is the complete gamma function, 𝛼 = 4
(𝛾𝑥)2

, 𝛽 =
(𝜎𝑥𝛾𝑥)

2 , and 𝜏 = 𝜇𝑥−2(𝜎𝑥/𝛾𝑥),

and 𝜇𝑥 , 𝜎𝑥 , and 𝛽𝑥 are the mean, standard deviation and skewness coefficient, respectively.

To estimate streamflow values for the summer-fall floods from hydrological modelling using

the ClimEx dataset (chapter 4), we pooled the large-ensemble streamflow annual maxima. The

underlying assumption for pooling is that the period under study is stationary (Martel, 2019).

We examined the trend at each data point using the Mann–Kendall test at a 95% confidence

level. For all the catchments, no significant trend has been observed for the future (2081-2100)

and historical (1991-2010) periods. In the next step, we sorted the long time series to create an

empirical cumulative distribution function and calculate flood with different return periods. The
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advantage of this method is to eliminate the uncertainty related to the choice of a parametric

distribution (Meresa & Romanowicz, 2017).
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Abstract

Quantifying the uncertainty linked to the degree to which the spatio-temporal variability of

the catchment descriptors (CDs), and consequently calibration parameters (CPs), represented

in the distributed hydrological models and its impacts on the simulation of flooding events

is the main objective of this paper. Here, we introduce a methodology based on ensemble

approach principles to characterize the uncertainties of spatio-temporal variations. We use

two distributed hydrological models (WaSiM and Hydrotel) and six catchments with different

sizes and characteristics, located in southern Quebec, to address this objective. We calibrate

the models across four spatial (100, 250, 500, 1000 m) and two temporal (3 hours and 24

hours) resolutions. Afterwards, all combinations of CDs-CPs pairs are fed to the hydrological

models to create an ensemble of simulations for characterizing the uncertainty related to the

spatial resolution of the modeling, for each catchment. The catchments are further grouped into

large (> 1000 km2), medium (between 500 and 1000 km2) and small (< 500 km2) to examine

multiple hypotheses. The ensemble approach shows a significant degree of uncertainty (over

100% error for estimation of extreme streamflow) linked to the spatial discretization of the

modeling. Regarding the role of catchment descriptors, results show that first, there is no

meaningful link between the uncertainty of the spatial discretization and catchment size, as

spatio-temporal discretization uncertainty can be seen across different catchment sizes. Second,
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the temporal scale plays only a minor role in determining the uncertainty related to spatial

discretization. Third, the more physically representative a model is, the more sensitive it is to

changes in spatial resolution. Finally, the uncertainty related to model parameters is larger than

that of catchment descriptors for most of the catchments. Yet, there are exceptions for which a

change in spatio-temporal resolution can alter the distribution of state and flux variables, change

the hydrologic response of the catchments, and cause large uncertainties.

3.1 Introduction

Understanding the spatio-temporal scale of the representation of hydrological processes, and

confronting the issue of scale mismatch within inter-connected hydrological units are two

major challenges in hydrological modeling (Blöschl & Sivapalan, 1995; Blöschl et al., 2019;

Fatichi et al., 2016; Beven, 2011). To better understand the complexity (heterogeneity) in

hydrological systems, which is present under continuous internal change (e.g., land use change)

and boundary conditions (e.g., changing climate), distributed hydrological models have been

used across different spatio-temporal scales (Addor et al., 2014; Blöschl, Reszler & Komma,

2008; Famiglietti & Wood, 1995; Kumar, Samaniego & Attinger, 2010; Kumar et al., 2013;

Merz & Blöschl, 2004; Wanders & Wada, 2015; Rakovec et al., 2016; Martel, Brissette & Poulin,

2020a; Thober et al., 2019). However, the models themselves suffer from inadequate simulation

of hydrological processes due to a lack of scale-relevant theories in catchment hydrology

(Samaniego et al., 2017; Blöschl & Sivapalan, 1995; Dooge, 1986; Peters-Lidard et al., 2017).

In fact, changes in the spatio-temporal discretization of the physiographical characteristics of

a catchment can alter the dynamic interactions between state variables and fluxes, resulting

in different model responses (e.g., Cao et al., 2020a; Krebs et al., 2014). Therefore, part of

the modeling uncertainty is due to the extent to which the physiographic characteristics of the

catchment are described, more or less finely, by the model. Such uncertainty is normally ignored

in practice, and is the focus of the present research. Specifically, we aim to quantify the relative

roles of the spatial resolution of the physiographic characteristics, as well as that of the model’s

parameters obtained by calibrating the model using different spatio-temporal representations of
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catchments. To this end, two different distributed hydrological models will be used, as well as

six catchments, all grouped into an ensemble-based approach (Krzysztofowicz, 2001), involving

16 simulations per model and per catchment.

Unlike to lumped models, which treat the whole catchment as a unique homogeneous area,

distributed models incorporate the spatial heterogeneity of the catchments. Depending on

the level of discretization, distributed models can be classified into two broad categories:

semi-distributed and fully distributed (Clark et al., 2015, 2017). In semi-distributed models, of

which SWAT (Arnold et al., 1998) and VIC (Liang et al., 1994) are two well-known examples,

the level of spatial discretization is limited to defining the number of Hydrological Response

Units (HRU). On the other hand, models such as WaSiM (Schulla & Jasper, 2007), MIKE-SHE

(Refsgaard, 1995) and HYDRUS-3D (Šimunek et al., 2008) are considered as fully distributed,

as instead, they discretize the catchment using grids, and the computation of the fluxes and state

variables is performed for each grid cell. Distributed models can also be viewed based on a

physical or conceptual representation of the processes. Physically based models attempt to solve

the conservation of mass, energy and momentum equations to represent hydrological processes

at micro-scale control volumes (Hrachowitz & Clark, 2017; Fatichi et al., 2016). MIKE-SHE

(Refsgaard, 1995) and HYDRUS-3D (Šimunek et al., 2008) are typical examples. Conceptual

models represent processes more simply, through macro-scale conceptualization(Clark et al.,

2017; Devia, Ganasri & Dwarakish, 2015). The distributed version of the HBV model (Bergström

et al., 1995), mHM (Samaniego et al., 2010) as well as CEQUEAU (St-Hilaire et al., 2015a) can

be placed in this category.

In flood forecasting, analyses of hydrological processes, or in climate change impact assessment

studies, the underlying assumption for implementing a specific model over different spatio-

temporal resolutions, is usually that the parameters are scale-invariant, ensuring the production

of similar states and fluxes regardless of the spatio-temporal resolution (Samaniego et al., 2017).

However, such assumption is questionable in the absence of scale-relevant theories for natural

catchments, as the heterogeneity of the system dominates the consistency needed across different

catchments to develop a general theory (Hrachowitz et al., 2013; Nearing et al., 2020). In fact,
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different hydrological processes that take place under different spatio-temporal scales at different

catchments highlight the “uniqueness of the place" (Beven, 2000), as opposed to the generality

of hydrological response. The problem is that the lack of such scale-relevant theories directly

affects modeling practices. Model parameters, for example, typically represent hydrological

processes that are either complex, or take place on a very small scale, or that are not yet well

understood (Pokhrel & Gupta, 2010; Barrios & Francés, 2012; Brynjarsdottir & OHagan, 2014).

In practice, for most cases, model parameters lack physical reality, as very often, there are

no tangible links between catchment attributes and parameters(Beven, 1995). Furthermore,

the dearth of knowledge regarding upscaling theories and their application in hydrological

modeling exacerbates the problem (Neuman, 1990; Kitanidis & VoMvoris, 1983). Therefore,

the parameters cannot be considered scale-invariant and the conditions of flux-matching across

diverse spatio-temporal scales cannot be satisfied with current knowledge (Wood, Sivapalan,

Beven & Band, 1988).

The randomness of hydrological processes, attributable to a lack of knowledge related to the

complexity of the system, can be addressed by replacing the deterministic results of modeling

with an ensemble of simulations using probabilistic or deterministic approaches (Dooge, 1986;

Beven, 2006; Nearing, Gupta & Crow, 2013; Nearing & Gupta, 2015; Nearing et al., 2020).

We suggest that the principles of ensemble simulations can also be useful in addressing the

uncertainty linked to the spatio-temporal variability of the physical descriptors of a catchment.

As such, an ensemble of simulations derived from variations of CDs-CPs resolutions can

be constructed for each catchment to quantify the uncertainties corresponding to the spatio-

temporal resolution of the modeling. While multiple studies focus on accounting for and

quantifying different sources of uncertainties in hydrological modeling, some include input data

uncertainty, structural uncertainty, parametric uncertainties, or a combination of the preceding

(e.g., Dixon & Earls, 2012; Faramarzi et al., 2013; Zhao et al., 2018; Poulin et al., 2011; Joseph,

Ghosh, Pathak & Sahai, 2018; Thiboult et al., 2016; Euser et al., 2013; Craig et al., 2020; Tarek,

Brissette & Arsenault, 2020a; Refsgaard, Van der Sluĳs, Brown & Van der Keur, 2006; Butts

et al., 2004), less attention has been directed towards the uncertainty related to spatio-temporal
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variability and how it impacts modeling. This may be attributable to a belief that such uncertainty

has but trivial impacts on the modeling. However, among the limited research works that have

been conducted in this context, Tegegne, Kim, Seo & Kim (2019) demonstrated that changing the

sub-basin spatial scale in the SWAT model has a small impact on the entire flow simulations, but

that a substantial sensitivity could be observed when reproducing more extreme flow quantiles.

Their study, however, was limited to varying the number of HRUs, as opposed to changing

the spatio-temporal discretization of the model’s parameters. Moreover, no mechanisms were

considered to account for the uncertainties related to spatio-temporal variability of the physical

descriptors of a catchment.

Varying the spatial resolution used to represent land use in the model might also lead to a range

of simulations, and therefore help to quantify the corresponding uncertainty. Distributed models

have widely been used to account for land use change across the globe (e.g., Singh et al., 2015;

Li et al., 2019; Yang, Long & Bai, 2019a; Tavangar, Moradi, Massah Bavani & Gholamalifard,

2019). In a series of papers (Breuer et al., 2009; Huisman et al., 2009; Viney et al., 2009;

Bormann, Breuer, Gräff, Huisman & Croke, 2009) under the project on ‘Assessing the impact

of land use change on hydrology by ensemble modeling (LUCHEM)’, an ensemble of 10

hydrological models were used, with a range of structural complexity. More recently, Chen et al.

(2019b) investigated parameter uncertainty stemming from land use change across different time-

scales. They used two distributed models and three land use scenarios to simulate streamflow

on a catchment located in China. Their results suggest that land use change does not have

substantial effects on runoff simulations, but a large range of uncertainty can be observed for

extreme streamflow values. It is worth noting that these research works focus on land use change

scenarios, while the impact of change of spatio-temporal resolution on the modeling and the

uncertainties are yet to be investigated.

The impact of spatial discretization on flood events has been investigated with a focus on urban

catchments (e.g., Cao et al., 2020a; Krebs et al., 2014; Zhou et al., 2017). It was found that

changes in resolution of the topographic information provided by digital elevation models

(DEM), for instance, could reorient the flow direction and flow accumulation, and alter surface
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and channel routing (Cao et al., 2020b). Furthermore, altering soil textures modifies the

imperviousness, the Manning coefficient, the soil water content, etc., in addition to reshaping

the final response in terms of both runoff generation and routing processes (Cao et al., 2020a).

Given the high degree of imperviousness and the complexity of surfaces in urban catchments,

changes in spatial resolution could affect the results of flood simulations, which may leave

such catchments more vulnerable to flooding events (Zhou et al., 2017). Furthermore, changes

in model response due to the degree to which the spatial heterogeneity of the catchment is

represented might potentially affect the simulation in terms of peak timing and magnitude

(Ichiba et al., 2018). However, there is still no consensus on the impacts of refining the spatial

resolution, as many studies show contradictory results, i.e., overestimation or underestimation of

extreme flows (Warsta et al., 2017).

While it has been shown that the choice of a particular level of spatio-temporal discretization on

streamflow simulation of urban catchments can affect the simulation of peak streamflow, less

focus has been given to similar issues for natural catchments. Still, the choice of a particular

spatio-temporal resolution can similarly impact the modelling of natural catchments, since any

variation of the land surface and slopes leads to a change in the time of concentration (Grimaldi,

Petroselli, Tauro & Porfiri, 2012). This translates in variation of time and magnitude of flooding

events. Such variations could also be important for climate change impact assessment studies,

particularly for snow dominated catchments. Due to a changing climate, flooding patterns are

shifting from spring to summer-fall (Kharin et al., 2018). While floods due to the spring freshet

are characteriezed by temporal scales covering several days, summer-fall flood events are usually

characterized by much shorter temporal scales (sub-daily), to which small catchments are more

sensitive (Yin et al., 2018; Donat et al., 2016). Consequently, depending on the catchment size,

the choice of a specific spatio-temporal discretization is important for accurate flood simulations

. Therefore, the choice of spatio-temporal discretizations in natural catchments needs to be

further investigated. The respective roles of catchment area and characteristics, the time step

of the simulation, as well as the model structure and parameters, are potentially important
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determinants of a hydrological model’s response, and this paper aims at investigating their roles.

More specifically, we propose to test the following hypotheses:

1. Larger catchments are susceptible to larger uncertainties in the simulation of streamflow,

when varying the spatial resolution of their physiographic characteristics.

2. Finer time steps introduce a higher degree of variability in the simulation, leading to

increased uncertainty in streamflow simulation.

3. The more finely distributed and physically realistic a model is, the more sensitive to changes

in spatial resolution it is.

4. The uncertainty related to model parameters is larger than that of catchments descriptors

(DEM resolution, land use, soil texture).

These hypotheses will be examined through multiple experiments performed using two distributed

models and six catchments of various sizes.The experiments will result in an ensemble of

simulations to be investigated per catchment and per model. The structure of the paper is

as follows. Section 3.2 provides details about the study area and the characteristics of the

selected catchments, a brief description of the models used for simulations and the details of the

experimental design. Results are presented in section 3.3 and discussed in section 3.4, taking one

specific catchment as a representative example. Finally, concluding remarks and perspectives

for future work are presented in section 3.5.

3.2 Method and Data

3.2.1 Study Area

Six catchments ranging from 100 km2 to more than 2500 km2 located in Quebec, Canada, are

selected for this study (see Figure 3.1). The selection procedure is based on the following

criteria: First, a broad range of catchment sizes should be covered to analyze the sensitivity of

hydrological responses to the catchment size. Second, catchments should not belong to the

same hydrological region, but rather, should be distributed across the territory (here the province

of Quebec). Third, at least 10 years of streamflow data for 24- and 3- hour time steps need to
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be available to fulfill the calibration and validation procedures. Table 3.1 describes the main

characteristics of the catchments used in this study, which are identified in Figure 3.1. The

catchments are sorted in descending order based on their area.
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Figure 3.1 Location of the catchments for this study, over the southern part of Quebec

Table 3.1 General information and characteristics of the catchments

Station Station Area Mean annual Mean annual Mean annual

Number Name (km2) precipitation streamflow temperature

(mm/yr) (m3/s) (◦C)

030905 Châteauguay 2492 1192.77 38.45 6.65

050135 Croche 1563 1139.36 30.70 2.74

023427 Chaudière 781 1208.65 16.47 3.72

030424 Aux Brochets 584 1329.34 10.52 6.23

023004 Boyer 191 1396.76 4.45 4.15

050812 Aux Pommes 97.8 1322.69 2.37 5.12
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3.2.2 Hydrometeorological data

The present study employs meteorological data (i.e. precipitation and temperature) extracted

from ERA5 (ECMWF ReAnalysis5) gridded dataset to force the hydrological models for the

historical time-period. Gridded reanalyses datasets are considered as an alternative to observed

historical meteorological data. Using such datasets allow to solve major flaws of observational

datasets, including missing data (particularly for higher resolutions), measurement errors, uneven

distributions, etc. (Tarek et al., 2020b). The European Centre for Medium-Range Weather

Forecasts (ECMWF) proposed multiple reanalysis datasets (ERA-Inerim, ERA5, ERA-Land),

which are widely used by hydro-climate modelers (Belmonte Rivas & Stoffelen, 2019; Wang,

Graham, Wang, Gerland & Granskog, 2019). ERA5 is the fifth generation of ECMWF reanalyses

of global climate products. The spatial resolution of ERA5 is 31km and the temporal resolution

is hourly. Currently, the dataset covers the period from 1979 to today, and is expected to be

updated to 1950 in the near future.

Observed streamflow series are obtained from the Direction de l’Expertise Hydrique (DEH) of

the Ministère de l’Environnement et de la Lutte contre les changements climatiques (MELCCC)

for the 2000-2017 time period, with daily and 3-hour time steps.

3.2.3 Hydrological models

3.2.3.1 WaSiM

The Water balance Simulation Model (WaSiM; Schulla & Jasper, 2007) is a process-based

model that operates on a raster (grid) system. Its submodels run each grid cell of a catchment for

each time step, providing the opportunity to use parallel computation algorithms based on the

OpenMP standard. The model represents hydrological processes through its submodel structure,

in which several options for interpolation, evapotranspiration, snow accumulation and melt,

interception, glacier model, silting-up, unsaturated zone including heat transfer, saturated zone,

surface discharge routing, and discharge routing including lakes and reservoirs are available.
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The distinguishable feature of WaSiM is its provision of options to calculate infiltration and

to represent water in the soil layers, with the calculation being more detailed than for most

surface hydrological models. Two methods can be used namely, the modified conceptual

Topmodel approach, and Richard’s Equations approach (or unsaturated zone model). Since the

second approach is more physically-based, we selected this version for simulations. The 1-D

Richards equation, which represents fluxes in the unsaturated zone, is represented by Equation

3.1 (Schulla & Jasper, 2007):

𝜕Θ

𝜕𝑡
=
𝜕𝑞

𝜕𝑧
=
𝜕

𝜕𝑧
(−𝑘 (Θ) 𝜕Ψ(Θ)

𝜕𝑧
) (3.1)

where Θ(𝑚3/𝑚3) is the water content, 𝑡 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠) is time, 𝑘 (𝑚/𝑠) is the hydraulic conductivity,

Ψ(𝑚) is the hydraulic head, 𝑞(𝑚/𝑠) is the flux, and 𝑧(𝑚) is the depth of the soil column. WaSiM

solves Equation 3.1 for multiple soil layers (the default is 30 layers for each type) of a grid cell

using the finite difference method.

The unsaturated zone model controls multiple hydrologic variables such as infiltration, exfiltration,

interflow, baseflow, real evapotranspiration, groundwater recharge, etc. Given the physical

approach adopted to represent the flux of water in soil, WaSiM leans towards physically-

based models. However, considering the simplified 1-D version of the continuity equation

(instead of 3-D), and the existence of other empirical elements in the submodels (e.g., potential

evapotranspiration) hinders the classification of the model among full physically-based distributed

models. Table 3.2 specifies the choices that were made for each submodel of WaSim and for

Hydrotel, which are described in the next sub section.

We calibrated 12 parameters: 7 for the infiltration model based on Richard’s equation, 2 for

evapotranspiration, 1 for the snow accumulation and melt model, and 2 for the spatial interpolation.

Those parameters were selected after a consultation with the team who develops and maintains

WaSim as well as from the WaSiM documentation. We set the remaining parameters to their

default values, as per recommendation of the WaSiM documentation (Schulla & Jasper, 2007).
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3.2.3.2 Hydrotel

Hydrotel is an HRU-based distributed model that is widely used operationally for flood forecasting

by the DEH (e.g., Martel et al., 2020a; Turcotte, Morse & Pelchat, 2020; Lucas-Picher et al.,

2020). The model adopts a mixture of physical, conceptual and empirical relationships to

represent hydrological processes. Like WaSiM, it provides multiple options for calculating the

hydrological processes of a catchment. The main particularity of Hydrotel is its compatibility

with GIS and remotely sensed data (Fortin et al., 2001a). Therefore, the model is capable of

representing the spatial variability and the topography of catchments through a digital elevation

model (DEM), soil texture maps and land use data through its components.

The model uses BV3C (Bilan Vertical 3 Couche) for soil modeling, which is specifically

developed for Hydrotel. In this approach, the soil column is divided into three layers: The

first layer is a surface layer that controls infiltration and is affected by surface evaporation; the

second layer is associated with interflow, and the third one controls the baseflow. For the whole

soil column, a moisture accounting equation is designed to represent macroprocesses of fluxes

(Fortin et al., 2001a). As a result, from a model classification perspective, the model leans

towards the group of conceptual, distributed models, even though Hydrotel comprises certain

physically-based elements related to surface and channel routing. Table 3.2 shows the submodels

of Hydrotel used in this study for simulations.

Hydrotel has 28 parameters, of which eleven were calibrated. This includes 3 parameters for the

infiltration and percolation submodel (BV3C), 6 for the snow accumulation and melt submodel,

1 for potential evapotranspiration, and one for the spatial interpolation (Thiessen polygons). The

remaining parameters were fixed based on previous studies from our group, from the current

practices at the government of Quebec (where Hydrotel is used operationally) and from the

available documentation (see Huot et al. (2019) for more details about the parameters).
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Table 3.2 The submodels employed to represent the hydrological processes in Hydrotel
and WaSiM

Submodels Hydrotel Wasim

Interpolation Thiessen polygons Thiessen polygons

Snow melt/accumulation Degree-Day Method Degree-Day Method

Potential evapotranspiration Hydro-Quebec Fortin et al. (2001b) Hamon Hamon (1961)

Real evapotranspiration after BV3C after Richards’ Eq.

Soil model BV3C Richards’ Eq.

Channel routing Kinematic Wave Eq. Kinematic Wave Eq.

It should be noted that we developed two types of configurations for the simulations with

Hydrotel, in order to allow the comparisons between a grid-based model (i.e., WaSiM) and an

HRU based model (i.e., Hydrotel). In the first configuration (referred to as Hydrotel1 hereafter),

we keep the number of HRUs constant, while the spatial resolution varies. Since the number

of HRUs are kept constant during this experiment, the model might show low sensitivity to

changes in spatial discretization. To rectify this, we introduced the Hydrotel2 experiment. In this

configuration, we adjust the number of HRUs to match the change in resolution. We manually

set the number of HRUs equal to the number of subbasins, which are automatically created for

WaSiM based on the spatial resolution of CDs. This configuration is referred to as Hydrotel2

hereafter.

3.2.4 Experimental plan

Figure 3.2 delineates the different steps of our methodology and the experiments designed

to answer the question posed in the introduction. The first column of the figure shows the

“Data Domain", comprised of forcings (precipitation-temperature), calibration data (observed

streamflow), and gridded Catchment Descriptors (CDs- e.g., DEM, land use, soil texture). For

CDs, the highest available resolution is 100 m and we used resampling and interpolation methods

to upscale the grids to 250 m, 500 m, and 1000 m resolutions. The second column, which is
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referred as “time domain" shows the time step of forcing and calibration data. For this project,

the subdaily time step is equal to 3 hours.

Regarding the third column titled “Calibration", as per usual, we split the time-series into

calibration and validation periods. The duration of both periods are equal unless there exists a

large part of missing data in between them that could reduce the accuracy of the calibration. In

such a case, we remove that specific year from the period of calibration or validation. It is worth

mentioning that the time-series of data related to winter streamflow in 3-hour time step is not

available, and as a result, we removed this part of the year from the analyses.

Figure 3.2 Schematic explanation for building ensemble of simulations and analyses



46

We used the Dynamically Dimensioned Search (DDS; Tolson & Shoemaker, 2007) algorithm to

calibrate the hydrological models. The DDS global approach to scale the search for parameters

based on the user-specified budget is an advantage compared to many other algorithms. In

addition, its global approach to perturb parameters at the beginning of the search, which then

narrows down the search space when the calibration procedure progresses, was shown effective

in the literature (e.g., Huot et al., 2019). Since most of the work for this study was carried

out in Matlab, the main function of DDS was also executed in Matlab. Multiple scripts were

developed to facilitate the communication between the models and the main DDS algorithm.

A 0.2 perturbation factor has been used for the optimization. Furthermore, the Kling-Gupta

Efficiency (KGE; Gupta et al., 2009) is adopted as the objective function for optimizations.

Compared to the Nash–Sutcliffe efficiency, KGE is more suitable to compare modeling skills

across various catchments and time-steps with multiple variability. Moreover, KGE provides a

more realistic view regarding the modeling efficiency for snow-dominated catchments (Gupta

et al., 2009). The KGE is computed using Equation 3.2.

𝐾𝐺𝐸 =

√︂
(𝑟 − 1)2 + (𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)2 + ( 𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)2 (3.2)

where 𝑟 is the linear correlation between observations and simulations, 𝜎𝑠𝑖𝑚 is the standard

deviation in observations, 𝜎𝑜𝑏𝑠 is the standard deviation in simulations, 𝜇𝑠𝑖𝑚 is the simulation

mean, and 𝜇𝑜𝑏𝑠 is the observation mean.

When the distributed models are fed and calibrated against streamflow at the outlet of the

catchment, several calibration parameter sets are obtained according to the spatio-temporal

discretization of the input data (forth and fifth columns titled “Parameter Resolution" and “CD

Resolution"). In the next step, all combinations of CPs-CDs are used to force both hydrological

models for simulations. With n = 4 different resolutions for each calibration, an ensemble of

n2 = 16 simulations is obtained for each model (i.e. WaSiM, Hydrotel1, and Hydrotel2) and

catchment.
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To explore the uncertainty due to the spatial discretization, we first separate the catchments based

on their surface areas to investigate the possible relations between discretization uncertainty

and catchment size. Catchments are separated into three categories: larger than 1000 m

(hereafter “large"), between 500 m and 1000 m (hereafter “medium"), and less than 500 m

(hereafter “small"). As shown in Table 3.1, each category comprises two catchments. To find

the variabilities corresponding with the change of spatial scales, we calculate the streamflow

quantiles (i.e. 𝑄10, 𝑄50, 𝑄90, and 𝑄95) per simulation for each catchment in 24- and 3-hour

time-scales separately (16 quantiles per model, catchment and time-step). Then we derive the

variance of flow quantiles divided by the corresponding observed flow quantile and standardized

them between zero and one. This enables us to compare the results among models, catchments

and time-steps. Second, we compare the efficiency of simulations in calibration and validation

across different spatio-temporal resolutions and explore the sensitivity of the efficiency of

simulations to the changes in the CPs’ and CDs’ resolution. Third, we apply extreme value theory

Coles, Bawa, Trenner & Dorazio (2001) to simulate flood events with different return periods

by fitting the Log-Pearson distribution to the annual flow maximas. We calculate summer-fall

floods with 5, 10, 20, and 50 years return periods for each simulation and calculate the relative

error in flood simulations according to Equation 3.3:

𝑒𝑇,𝑖 𝑗 =
𝑄𝑇𝑖 𝑗 −𝑄𝑇𝑜𝑏𝑠

𝑄𝑇𝑜𝑏𝑠
(3.3)

where e is the relative error of simulations, i is the CP resolution, j is the CD resolution, QT is

the magnitude of a flood event with return period 𝑇 , and obs represents the observation.

Given the 16 possible combinations of simulations, a range of relative error is obtained from

Equation 3.3 for a specific return period. This range can further be separated into uncertainties

corresponding to CPs and CDs according to Equations 3.4 and 3.5:

𝑀𝐷𝐸𝐶𝐷𝑇,𝑖 = | max(𝑒𝑇,𝑖𝑖, 𝑒𝑇,𝑖 𝑗 , ..., 𝑒𝑇,𝑖𝑛) − min(𝑒𝑇,𝑖𝑖, 𝑒𝑇,𝑖 𝑗 , ..., 𝑒𝑇,𝑖𝑛) | (3.4)
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𝑀𝐷𝐸𝐶𝑃𝑇, 𝑗 = | max(𝑒𝑇,𝑖 𝑗 , 𝑒𝑇, 𝑗 𝑗 , ..., 𝑒𝑇,𝑛 𝑗 ) − min(𝑒𝑇,𝑖 𝑗 , 𝑒𝑇, 𝑗 𝑗 , ..., 𝑒𝑇,𝑛 𝑗 ) | (3.5)

where 𝑀𝐷𝐸𝐶𝐷
𝑇,𝑖

is the Maximum Difference of Errors when the resolution of CPs is constant

and 𝑀𝐷𝐸𝐶𝑃
𝑇, 𝑗

is the Maximum Difference of Errors when the resolution of CDs is constant, for a

return period T. Following this approach, we can investigate the dominant source of uncertainty

(i.e., CDs or CPs) in the system. Also, this can potentially help verify if using the combination

of lower resolution CPs and higher resolution CDs could reduce the computational demand,

while maintaining a high level of detail in the simulations.

3.3 Results

This section is structured as follows: in section 3.3.1, mean annual hydrographs of simulations

are presented. Section 3.3.2 provides the results regarding spatial distribution of hydrological

variables. Section 3.3.3 gives the results related to the model efficiency (KGE of simulation)

and corresponding uncertainties. Section 3.3.4 provides analyses regarding the uncertainties of

extreme flows.

3.3.1 Annual Hydrographs

Figures 3.3 and 3.4 display the mean annual cycle of simulated and observed streamflows for

3- and 24-hour time steps. As discussed in section 3.2.4, for each catchment and model, 16

simulations are available, which is the combination of 4 sets of CP s and 4 CDs resolutions. The

figures show the entire period of calibration and validation. Furthermore, winter streamflow

has been removed for the 3-hour time step due to a lack of observation data. The results are

presented according to the catchment area: the top row shows larger catchments (> 1000 km)

whereas the bottom row shows smaller catchments (< 500 km). In Figure 3.3, WaSiM is used to

simulate streamflow. The uncertainty bounds in the figures demonstrate the sensitivity of the

model to variations of the spatial resolution. Such uncertainty can be found in most of the cases,

regardless of the catchment size and time step (3 hours or 24 hours). The Croche, Aux Brochets,
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and Boyer catchments, which show notable uncertainties, belong to the groups of large, medium

and small size catchments, respectively. Thus, no clear link between the size of the catchment

and the degree of uncertainty can be found in this study (hypothesis i). By contrast, the impact

of the time step on the uncertainty can be observed for the catchments mentioned above, as the

simulations with a 3-hour time step show wider uncertainty bounds (hypothesis ii).

Figure 3.3 Annual hydrographs of the selected catchments simulated by WaSiM and
compared to observed data. The modeling time-steps are 24 and 3 hours. The responses are
arranged according to the size of the catchments: large catchments (> 1000 km) are on the

top row; medium catchments (between 500 and 1000 km) are on the middle row; large
catchments (< 500 km) on the bottom row

Figure 3.4 shows the Hydrotel simulations, when the number of HRUs are kept constant

(Hydrotel1, see section 3.2.4). Compared to the WaSiM simulations, the model shows less

sensitivity to a changing spatial resolution (hypothesis iii). The only exception is the Aux Pommes

catchment, in which a large disparity between simulations can be observed. Furthermore, the

uncertainty bound is visible for the Croche catchments. Regarding the impact of time steps,
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unlike WaSiM, no systematic pattern emerged. For simulations with Hydrotel2, a slight widening

of the uncertainty bounds can be observed (Figure I-1 in the supplementary material).

Figure 3.4 Annual hydrographs of the selected catchments simulated by Hydrotel
(Hydrotel1) and compared to observed data. The modeling time-steps are 24 and 3 hours.

The responses are arranged according to the size of the catchments: large catchments
(> 1000 km) are on the top row; medium catchments (between 500 and 1000 km) are on the

middle row; large catchments (< 500 km) on the bottom row

Figure 3.5 shows the variance of the ensemble of simulations corresponding with different

streamflow quantiles per catchment and time-step. Having 6 variances (one per catchment), we

then calculated the mean and standard deviation (STD) of variances to facilitate the comparisons

between models. These values are located in the 7th and 8th rows of each subplot. According to

Figures 3.3 and 3.4, the results for catchments Aux Pommes simulated by Hydrotel and Boyer

simulated by WaSiM suggest that there are inconsistencies between parameters and catchment

descriptors for simulations with 100 m resolution, which results in poor efficiencies. Therefore,

we excluded the poor simulations for catchment Aux Pommes-Hydrotel (i.e. all combinations of
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𝐶𝑃100 and 𝐶𝐷100 except 𝐶𝑃100𝐶𝐷100). In addition, for Boyer-WaSiM we removed simulations

𝐶𝑃100𝐶𝐷250, 𝐶𝑃100𝐶𝐷500, 𝐶𝑃1000𝐶𝐷100 (the analyses regarding the poor simulations of the

Aux Pommes and Boyer catchments can be found in Section 3.4, Figures 3.15, and I-9).
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Figure 3.5 Standardized variance of ensemble of flow quantiles (Q10, Q50, Q90, and
Q95). For each subplot: Row 1-6 is the standardized variance of quantiles. Row 7 is the

mean and row 8 is the STD of the variances over all catchments

Regarding Hypothesis i (i.e. catchments size), these results show that the size of a catchment

does not play an important role in determining the uncertainty related to the level of spatial

discretization. Looking at 𝑔 for example, such uncertainty can be seen for Croche (a large

catchment), Aux Brochets (a medium catchment), and Boyer (a small catchment). Regarding
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Hypothesis ii (i.e. time-step of simulations), no pattern can be observed for Hydrotel1 and

Hydrotel2 comparing the results for 3- and 24-hour time-step. However, the variance of quantiles

for the 3-hour time-step is higher than that of 24-hour for WaSiM. A portion of this difference

might be explained by a lack of, or noisy streamflow observations for the 3-hour time-step (e.g.

catchment Boyer). We performed a Student t-test and a Wilcoxon rank sum test to find any

significant change in the variances when the time-step changes. The results of the tests show no

statically significant change. Finally, Figure 3.5 shows that the variance of the simulations is

higher for WaSiM than for Hydrotel2 and Hydrotel1 for most cases. In addition, Hydrotel1 shows

the lowest variance among the models. These observations support the validity of Hypothesis iii.

3.3.2 Spatial distribution of the hydrological variables

Figures 3.6 and 3.7 demonstrate the effects of different levels of spatial discretization on

the spatial distribution of actual evapotranspiration (AET), snow depth, and baseflow across

catchment Châteauguay simulated by WaSiM and Hydrotel1 respectively. Here we selected

four simulations for which catchment descriptors (CDs) and calibration parameters (CPs)

resolutions are identical (i.e. 𝐶𝑃100𝐶𝐷100, 𝐶𝑃250𝐶𝐷250, 𝐶𝑃500𝐶𝐷500, 𝐶𝑃1000𝐶𝐷1000- the

numbers represent resolution in 𝑚) to highlight the impact of spatial discretization. In Figure 3.6,

variability between the simulations with different spatial resolutions is visible for all variables.

For example, the distribution of 𝐶𝑃100𝐶𝐷100 for baseflow (3𝑟𝑑 row) shows a variability across

the catchment, which is reduced by increasing the scale. This is expected, as lowering the spatial

resolution smooths the topography of the catchment in the model, resulting in a more uniform

hydrologic response.

For Hydrotel1 simulations in Figure 3.7, the spatial variability across scales is less than that of

WaSiM. Considering the example of baseflow, a similar pattern of spatial distribution can be

seen for all simulations, regardless of the resolution. Figures 3.6 and 3.7 confirm the findings

of section 4.3.1, in which WaSiM shows a higher degree of sensitivity to changes of scale.

These results are in accordance with the third hypothesis. Further analyses regarding the spatial

distribution of AET can be found in supplemantery material (Figures I-2 and I-3 ).



53

5.02

5

4.98

4.96

4.94

U
T

M
 N

o
rt

h
in

g
 (

*
1
0

-6
)

CD
100

CP
100

CD
250

CP
250

CD
500

CP
500

CD
1000

CP
1000

0

1

2

3

4

A
E

T
 (

m
m

)

5.02

5

4.98

4.96

4.94

U
T

M
 N

o
rt

h
in

g
 (

*
1
0

-6
)

CD
100

CP
100

CD
250

CP
250

CD
500

CP
500

CD
1000

CP
1000

0

2

4

6

8

10

sn
o
w

 d
ep

th
 (

cm
)

5.4 5.6 5.8 6 6.2

UTM Easting (*10
-5

)

5.02

5

4.98

4.96

4.94

U
T

M
 N

o
rt

h
in

g
 (

*
1
0

-6
)

CD
100

CP
100

5.6 5.8 6 6.2

UTM Easting (*10
-5

)

CD
250

CP
250

5.6 5.8 6 6.2

UTM Easting (*10
-5

)

CD
500

CP
500

5.6 5.8 6 6.2

UTM Easting (*10
-5

)

CD
1000

CP
1000

0

1

2

3

b
as

ef
lo

w
 (

m
m

)
Figure 3.6 Spatial distribution of hydrological variables across different resolutions for
catchment Châteauguay simulated by WaSiM. First row: actual evapotranspitation (AET

(mm)); second row: snow depth (cm); and third row: baseflow (mm)
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Figure 3.7 Spatial distribution of hydrological variables across different resolutions for
catchment Châteauguay simulated by Hydrotel1. First row: actual evapotranspitation (AET

(mm)); second row: snow depth (cm); and third row: baseflow (mm)

3.3.3 General performance of the simulations

Figures 3.8 to 3.10 illustrate the performance of the simulations through calibration and validation

periods for the catchments, according to the Kling Gupta criterion. Here, we represent how the

efficiency of simulations varies following two sources of variability: a primary source, which is

caused by direct changes to the catchment descriptors; and a secondary source, which is caused
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by any change in the calibration parameters. However, the latter is itself caused by changing

the resolution of CDs. We assign a marker and a color to each simulation, which represent the

resolution of CDs and CPs respectively.

Figure 3.8 demonstrates the performance of the simulations by WaSiM. Although the number of

optimization trials is limited (150) due to the intensive computational demand of the model, the

efficiency is high (> 0.8) for most cases. Furthermore, as 𝑅2 values show, the model demonstrate

a robust performance for both the validation and calibration periods. It is notable that, except for

the Châteauguay and Chaudière catchments, the variability of KGE values is visible, as a result

of changes in resolution. In addition, no systematic pattern regarding the relationship between

catchment size and uncertainty can be identified. Interestingly, the maximum spread can be

seen in Boyer catchment, which is small (191 km2). In terms of temporal resolution, for most of

catchments, the simulations with a 3 hour time step display a slightly higher variability than

those with a 24-hour time step (Table I-1 in the supplementary material shows that this change

is not significant for most catchments).
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Figure 3.8 Efficiency of WaSiM in reproducing streamflow for the calibration and
validation periods. Here, CP and CD represent calibration parameters and catchment

descriptors respectively and the numbers assigned show the resolution in 𝑚

Figures 3.9 and 3.10 show the KGE of simulations by the Hydrotel1 and Hydrotel2 configurations,

where 500 optimization trials have been used for each case. In general, the efficiency of

simulations with Hydrotel is lower than with WaSiM (> 0.7), even though the number of

optimization trials for Hydrotel exceeds those of WaSiM. From another standpoint, in practice,
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if the computational power and time are limited, then a semi distributed model such as Hydrotel

which has a lower sensitivity to variations in spatial resolutions can be a good choice for

simulations (hypothesis iii). Nonetheless, according to 𝑅2 values, the models demonstrate a

robust performance for the calibration and validation periods. Furthermore, the Aux Pommes

catchment depicts a large variability in the spread of the simulations. Figures 3.9 and 3.10

reveal that a major drop in the performance often occurs when the highest resolution (100 m) of

CP (or CD) is combined with the lower resolution of CD (or CP, i.e. 100, 250, 500, 1000 m).

Remarkably, such a pattern holds for the WaSiM simulation of the Boyer catchment with a

3-hour time step in Figure 3.8, where a major decline in KGE is seen in simulations (blue). This

highlights the issue of compatibility between the resolution at which parameters are calibrated

and the resolution at which the model is simulated (This will be further explained in Section

3.4 and in the supplementary material). Comparing Figures 3.10 and 3.9, it can be seen that

the spread of the simulations is higher for Hydrotel2 than for Hydrotel1. This is an expected

outcome given the scheme used for Hydrotel2, in which the numbers of HRUs are changed in

accordance with the resolution of CDs .
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Figure 3.9 Efficiency of Hydrotel (Hydrotel1) in reproducing streamflow for the
calibration and validation periods. Here, CP and CD represent calibration parameters and

catchment descriptors respectively and the numbers assigned show the resolution in 𝑚
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Figure 3.10 The efficiency of Hydrotel (Hydrotel2) in reproducing streamflow for the
calibration and validation periods. Here, CP and CD represent calibration parameters and

catchment descriptors respectively and the numbers assigned show the resolution in 𝑚

Looking at Figures 3.8 to 3.10, no systematic pattern can be detected in terms of the impact of

variabilities corresponding to CDs or CPs. In some cases, the CDs are dominant (the markers

grouped together), while in others, CPs are dominant (colors grouped together) and for the

rest of the cases there is no clear pattern (hypothesis iv). The figures, however, reveal that the

best performance is not necessarily correlated with the highest possible resolutions of CDs
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and CPs. Indeed, the combinations of the lowest resolutions (𝐶𝑃1000 and 𝐶𝐷1000), which are

shown by black colors and asterisk shape markers, are among the top performing simulations.

This is important for practical applications, as using a combination of lower resolution CDs for

calibration and high resolution CDs for simulation could substantially reduce the computational

costs while maintaining the detail of simulations.

3.3.4 Uncertainty of extreme streamflows

Figures 3.11 to 3.13 show the relative error when the models are used to simulate floods with 5-,

10-, 20-, and 50-year return periods. We fitted the Log-Pearson distribution to the annual maxima

of the simulated and observed streamflows for the 2000-2017 period and extracted the flood

events corresponding to the return periods mentioned above. The spread of the boxplots show the

difference in relative error (Equations 3.3) of all simulations (i.e., for the ensemble of 16, which

is combination of CDs and CPs in each case) generated by changes in spatial resolution. Given

the nature of extreme events, which comprise streamflows with large magnitudes, the noticeable

spread of simulations shown in these figures highlights the importance of spatial discretization

for flood modeling. Figure 3.11 demonstrates the relative error of extreme events simulated by

WaSiM. In agreement with the previous observations, a spread can be detected across different

catchment sizes, (i.e. Croche, Aux Brochets, Aux Pommes) and a systematic relationship

between extreme flow and catchment size cannot be identified (hypothesis i). Moreover, there is

no significant relationship between the spread and the time step of the simulations.
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Figure 3.11 Relative error for the simulation of summer-fall floods with 5-, 10-, 20-, and
50-year return periods using WaSiM. QT represents a flood event with the specific return

periods

Figures 3.12 and 3.13 show the relative error of flood simulations produced by the Hydrotel1 and

Hydrotel2 configurations. The response of Hydrotel1 to extreme flow is similar to other figures

(i.e. annual hydrographs and KGE) discussed earlier. While the magnitude of error is higher

as compared to WaSiM, the model shows a smaller spread of relative errors (hypothesis iii).

Nonetheless, the spread of relative error is visible across different catchment sizes (Châteauguay,

Aux Brochets, and Aux Pommes), which refutes the possibility of a correlation between the

catchment size and the uncertainty of extreme flow (hypothesis i). However, the time step chosen

for the simulation is important, as the width of the boxplots corresponding to the 3-hour time

step is larger than for the 24-hour time step (hypothesis ii). Simulations with Hydrotel2 exhibit a

noticeably larger uncertainty for extreme streamflows as compared to Hydrotel1, particularly for
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the Châteauguay and Aux Brochets catchments. This is in line with the earlier observations

discussed in Figures 3.9 and 3.10, where the uncertainties corresponding to Hydrotel2 are

higher than for Hydrotel1 due to the change in the numbers of HRUs for Hydrotel2. Finally,

considering Figures 3.11 to 3.13, the return period does not appear to influence the uncertainty

of the simulations. Indeed, the spread of the simulations for different return periods is similar,

per catchment.
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Figure 3.12 Relative error for the simulation of summer-fall floods with 5-, 10-, 20-, and
50-year return periods using the Hydrotel1 configuration. QT represents a flood event with

a specific return period
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Figure 3.13 Relative error for the simulation of summer-fall floods with 5-, 10-, 20-, and
50-year return periods using the Hydrotel2 configuration. QT represents a flood event with

a specific return period

Figures 3.14, I-4, and I-4 illustrate a separation of the total uncertainty for extreme streamflows

into contributions from CDs and CPs. The separation procedure is carried out following section

3.2.4. In these figures, 𝑅𝑁 represents the resolution of simulations and 𝑄𝑇𝑁 represents the

return period. The vertical and horizontal axes are the Maximum Difference of relative Errors

(MDE) of CDs and CPs respectively, as defined in Equations 3.4 and 3.5.

Figure 3.14 depicts the results of simulations with WaSiM. For most catchments, the contribution

of CPs to the total uncertainty is larger than that of CDs. For instance, the MDE of CPs in

Châteauguay is between 0.1 to 0.2, while the MDE of CDs is around zero. The same pattern can

be seen for Croche, Chaudière, Aux Pommes (3 hour), and Boyer (3 hour). This, however, is not

the case for all catchments. For the Aux Brochets (3 and 24 hour) and Aux Pommes (24 hour)
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catchments the MDE corresponding to CDs is equal to or larger than that of CPs. The dominance

of MDE of CDs is evident, particularly for Aux Brochets (3 hour). The reasons for this behaviour

are explained in details in the supplementary material (Figures I-6-I-8). Interestingly, the Aux

Brochets (24 hours and 3 hours) and Aux Pommes (24 hour) catchments demonstrate the highest

range of uncertainty among all catchments. This highlights the importance of accounting for the

contribution of CDs to the total uncertainty of extreme streamflow simulations when dealing

with catchments that are sensitive to changes in resolution.
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Figure 3.14 Relative error for the simulation of summer-fall floods with 5-, 10-, 20-, and
50-year return periods using WaSiM. QT represents a flood with a specific return period.

For instance, QT5 is the flood magnitude corresponding to a 5-year return period. R
represents the resolution of CDs or CPs, in which the Maximum Error Difference (MDE) is

calculated

3.4 Discussion

In this paper we proposed a novel framework to determine the uncertainty corresponding with

catchment heterogeneity. The main objective of this paper is to determine the extent to which the
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representation of spatial scale in the modeling can affect the simulations of hydrological variables

when the catchment size, time-step of simulation, and the hydrological model vary. Lack of an

applicable framework to measure uncertainty of heterogeneity for computationally intensive

physically-based hydrological models was a major challenge. A normal procedure to account for

parametric uncertainty for example, is to sample from the acceptable range of model parameters,

perform multiple simulations, and accept the parameter sets that satisfy a certain criterion (e.g.

𝐾𝐺𝐸 > 0.7, Beven & Freer, 2001). Evidently, applying such procedure is infeasible for the

case of catchment heterogeneity. Moreover, the intensive computation of hydrological models

limits the implementation of multiple simulations with different resolutions. This issue was

dealt with by combining the parameters obtained per resolution with all available CD resolutions

and implementing the models per combination to create an ensemble of simulations as discussed

in Section 3.2.

To reduce the degree of incompatibility between scale of calibration parameters and catchment

descriptors, we maintained the maximum possible similarity between the drainage system

structure (stream network, routing channels, sub-catchments etc.) through modifying DEMs and

sensitivity analyses of the parameters of the topographic analysis softwares that create the setup

required for implementing WaSiM and Hydrotel respectively. We found that for the majority of

catchments, such a combination of CDs and CPs results in an acceptable efficiency. In other

words, the parameter sets solved for one scale could also be a potential candidate for simulations

with another scale. However, this should be said with caution, as mixing the scales might result

in poor efficiencies like those observed for Aux Pommes-Hydrotel and Boyer-WaSiM in Figures

3.8 to 3.10.

We discuss more in depth the behaviour of the Boyer catchment simulated by WaSiM at the

3-hour time-step, for which the ensemble of simulations shows a large uncertainty (Figure 3.3)

and the KGE displays variability (Figure 3.8). Note that a similar analysis regarding the response

of the Aux Pommes catchment simulated by Hydrotel can be found in the supplementary

material (Figure I-9). Figure 3.15 demonstrates the distribution of interflow (subplots a and

b) and slope (subplots d and e) for 100 𝑚 and 500 𝑚 resolutions simulated by WaSiM (3-hour
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time-step). Subplot c shows the values of interflow storage and potential evapotranspiration

(PET) parameters for different spatio-temporal resolutions. In addition, subplot f shows the

annual hydrograph of interflow for the outlet zone focusing on peak flow (mid-March to mid-

April).

Those figures indicate that two interconnected factors play a role in determining the model

behaviour for catchment Boyer. Comparing the spatial distribution of interflow in subplots a and

b of Figure 5, it appears that the interflow decreases when the spatial resolution is decreased in

the model. In addition, subplot c (Figure 3.15) shows a near 2-fold increase for the coefficient of

interflow storage (3-hour) when the spatial resolution is reduced from 100, to 250, 500, 1000 m.

A similar behaviour can be seen for the PET coefficient (3-hour) in subplot c. Although it

is difficult to fully explain the interactions between those parameters during the calibration

period, it seems that the effect of increasing interflow coefficient is balanced by increasing the

PET coefficient. For example, assigning a small value to the PET coefficient increases the soil

moisture, resulting in less interflow storage and vice versa. However, for the 24-hour time-step,

both parameters remain approximately constant (Note that even for the 24-hour time-step, a

correlation between PET and interflow storage coefficients across the scales is visible). One

reason for observing such marked variations in parameters for the 3-hour time-step roots in

the choice of the Hamon equation for the PET submodel, which is empirical and compatible

with daily time-step. A more physics-based option compatible with subdaily resolution is the

Penman-Monteith equation, but this requires a wide range of data that is not readily available for

this study and for many other sites in the world.

Figure 3.15 f demonstrates the mean annual hydrograph of interflow at the outlet of the Boyer

catchment, focusing on the peak flow from mid- March to mid- April at the 3-hour time-step.

Here, all combinations of simulations with𝐶𝑃100 (i.e. 𝐶𝑃100𝐶𝐷100,𝐶𝑃100𝐶𝐷250,𝐶𝑃100𝐶𝐷500,

𝐶𝑃100𝐶𝐷1000) are shown with larger line thickness. These simulations show higher peaks in

the ensemble compared to the other simulations. Since all simulations are driven from the same

parameter set (𝐶𝑃100), with low interflow storage (i.e. more saturated soil) a higher interflow

for those simulations is expected. Interestingly, by increasing the spatial scale of CDs, from
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100, to 250, 500, 1000 m, while keeping CP constant (i.e. CP=100), an increase of the peak

value of interflow is observable (see the thick lines in subplot f ). This behaviour could be

attributed to the spatial correlation between the slope of the catchment and the spatial distribution

of interflow. Comparing subplots a and b with d and e respectively shows that more marked

slopes induce lower interflow values and vice versa. Altering the slope by increasing the spatial

scale affects the drainage density of the catchment in the model. In fact, smoothing the slopes by

increasing the spatial scale of CDs causes a reduction in the drainage density, resulting in more

infiltration and the observed increase in interflow. This leads to an overestimation of streamflow

at the outlet of the catchment, as shown in Figure 3. Thus, a lower resolution of CDs combined

with 𝐶𝑃100 (i.e. 𝐶𝑃100𝐶𝐷250, 𝐶𝑃100𝐶𝐷500, 𝐶𝑃100𝐶𝐷1000) overall results in higher interflow

values for catchment Boyer, adding to the uncertainty attributable to the choice of resolution for

the spatial discretization (Figure 3.3) and the associated variability in KGE values (Figure 3.8).
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In terms of land use and topographic characteristics of the catchments (Table S2 in the

supplementary material), we cannot single out one major characteristic that is significantly

different from other catchments. A combination of multiple factors might affect the simulations.

For instance, agricultural land occupies a major portion of the surface area (66%). In addition,

the share of deciduous forest is 14%, which is the least among other catchments. On the one

hand, these numbers reveal major human intervention (agriculture and deforestation) throughout

the catchment, potentially affecting different hydrological processes that include PET, AET,

direct runoff, etc. On the other hand, the catchment generally has a low elevation and slope

accompanied with a high drainage density. Such topographic features are sensitive to changes in

spatial resolution, as shown for catchment Aux Brochets (Figures I-6-I-8). Catchment Boyer

also includes 5% bogland, which is the highest of all catchments, another factor that further

complicates its modeling.

As discussed in section 3.1, previous research addressing the uncertainty of heterogeneity by

focusing on variation of spatial resolution so far have mostly focused on urban catchments (e.g.,

Cao et al., 2020a; Krebs et al., 2014; Zhou et al., 2017; Ichiba et al., 2018; Warsta et al., 2017).

These catchments are typically very small with a high degree of imperviousness and therefore

have different behaviours than natural catchments. However, it is possible to compare results of

the present study with those of urban catchments. According to Ichiba et al. (2018) and Warsta

et al. (2017), changing spatio-temporal resolution of the urban distributed models results in over-

or under-estimation of streamflow, but a relationship between the direction of such a change

and spatial resolution cannot be determined. Similarly, our study showed that no pattern can be

detected regarding a general relationship between spatio-temporal representation of the modeling

and increase or decrease of streamflow. This can be explained by the fact that, each catchment

has a unique distribution of slope and land-use, to which the hydrological processes such as

interflow and AET have non-linear and complicated relationships such as what we showed in

Figures 3.15, I-6 to I-6. Therefore, it is difficult to estimate the direction of streamflow variation

based solely on the spatio-temporal resolution of the modeling.
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Out of the limited studies on natural catchments, the findings of Tegegne et al. (2019) are

partly comparable to our results regarding the Hydrotel configurations with varying numbers of

subbasins (i.e. Hydrotel1 and Hydrotel2). Based on their experiments, changing the number of

subbasins results in only minor effects on the simulation hydrographs, but it results in significant

uncertainty for different flow phases (i.e. different flow quantiles). Another related study in

this context by Chen et al. (2019b) has reached a similar conclusion that the impact of land-use

variation has no major effects on the simulated hydrographs but can change different flow

indices (i.e. minimum seven day or maximum daily flow). Similarly, our results show that the

spread of streamflow simulations is rather narrow for semi-distributed model in both Hydrotel

configurations (Figures 3.4 and I-2). Minor differences in the distribution of other hydrological

variables can be observed (Figure 3.7). Moreover, in terms of simulating extreme streamflow,

there is a significant amount of uncertainty for WaSiM, Hydrotel1 and Hydrotel2 simulations

across all catchments (Figures 3.11, 3.12, and 3.13).

The results from the simulations with the fully-distributed model (WaSiM) are not quite in

accordance with the above mentioned conclusions. We showed that using a fully-distributed

model with finer time-step leads to a larger spread of simulated hydrographs and significant

variation in the spatial distribution of AET, snow depth, and baseflow (Figures 3.3 and 3.6).

This demonstrates that the choice of spatio-temporal resolution for fully-distributed models

is a key factor in simulating streamflow and other state and flux variables. Therefore, a multi

spatio-temporal simulation method is required to account for the corresponding uncertainties.

It is worth noting that the aforementioned studies used semi-distributed models and did not

resort to multi spatio-temporal simulations, which is the approach used in this paper. Given that,

similar researches applying fully-distributed models in the context of assessing the uncertainty

linked to catchment heterogeneity are still very scarce.

3.5 Conclusion

We have explored the impact of spatio-temporal discretization to reproduce streamflow and

simulate flood events across six catchments located in Quebec (Canada) using two distributed
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hydrological models (i.e. WaSiM and Hydrotel including its two different configurations:

Hydrotel1, and Hydrotel2). We framed a hypothesis regarding the uncertainty of heterogeneity

and broke it down into four main aspects reiterated as follows: Changing the spatial resolution

of catchment descriptors generates uncertainty that can potentially impact flood simulations.

The catchment area, the modeling time step, and the model structure are the major components

used to determine the significance of such uncertainty. Based on the above results and analysis,

the following conclusions can be drawn:

1. There is no systematic link between the catchment size and the uncertainty corresponding to

the simulation of streamflow, so hypothesis 𝑖 is not verified for our experiment. Regardless

of the model used to reproduce streamflow, the uncertainty of heterogeneity has been

observed across different catchment sizes (see Figures 3.3, 3.4, I-1 and 3.5 and Table I-1).

Interestingly, smaller size catchments (Boyer and Aux Pommes) generate larger uncertainties

and larger variabilities in the modeling efficiency (see Figures 3.8 and 3.10), which refutes

the assumption that changing the spatial resolution mainly affects larger catchments.

2. The temporal resolution plays only a minor role in the determination of the uncertainty

related to spatial resolution, so hypothesis 𝑖𝑖 is also not clearly verified for our experiment.

WaSiM and Hydrotel2 showed that a 3-hour time step could moderately increase the

uncertainty bounds of simulations for most catchments (see Figures 3.3, 3.5, I-1 , and Table

I-1).

3. The model structure is an important driver of the uncertainty related to the spatial resolution

of simulations (hypothesis 𝑖𝑖𝑖 is verified for our experiment). WaSiM demonstrated a

sensitivity to changes in the spatio-temporal resolution of the simulations (See Figures 3.3,

3.4, 3.6, and 3.7). This was expected, given that the model solves Richards Equations for

each grid cell, associated with specific catchment descriptors. Hydrotel’s conceptualization

of infiltration, percolation and groundwater is less physically-based. In its default setting, it

cannot adequately capture the uncertainty related to spatial discretization unless change

is imposed by altering the number of HRUs (see Figures 3.4 ,3.5 ,I-1, and Table I-1).

Moreover, in terms of stability, the results from catchment Aux Pommes simulated by

Hydrotel (Figures 3.9, 3.10, and I-9) and Boyer simulated by WaSiM (Figures 3.8 and 3.15)
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show that both models have issues for certain combinations of CP and CD, resulting in over

or underestimation of streamflow and significant drop in efficiency.

4. Our attempt to separate the total spatio-temporal uncertainty into a portion attributable to

CDs and a portion attributable to CPs showed that the latter is the dominant contributor for

most of the catchments (hypothesis 𝑖𝑣-see Figures 3.14, I-4 and I-5). However, there are

catchments in which the change of CD resolution is as important or dominant (e.g., the Aux

Brochets, Boyer and Aux Pommes catchments in Figures I-6 to I-8, 3.15 and I-9). Based

on section 3.4 and the discussion under Figures I-6 to I-9, this might be due to changes in

the interactions of hydrological variables once the resolution of simulations is altered (see

Figure I-7). Such behavior is expected for relatively flat catchments, but that still includes

multiple small hillslopes and valleys (see Table I-2). Indeed, changing the resolution can

reduce the impact of an uneven topography, or even eliminate it completely, which can

result in an inconsistent hydrologic behaviour and response of the catchment (see Figures

3.15 and I-6 to I-9).

Given the dearth of credible publications addressing the impact of the uncertainty corresponding

to the resolution of simulations, many gaps and opportunities remain to be addressed in this line

of research. One major area of focus could be the adoption of more advanced physically-based

distributed hydrological models to explore the degree of uncertainty, particularly for extreme

streamflows. Another focus could be on identifying the key parameters and hydrological

processes that are mainly affected by spatio-temporal discretization change. Finally, using

a larger set of catchments with different physical characteristics could help provide a better

understanding of how they react to variations of the resolution of catchment descriptors. It could

also shed light on the importance of accounting for this uncertainty in streamflow simulations

and in the assessment of flood events.



CHAPTER 4

MULTI-SCALE FLOOD SIMULATIONS UNDER CLIMATE CHANGE SCENARIOS

Siavash P. Markhali1 , Annie Poulin1 , Marie-Amélie Boucher2

1 Department of Construction Engineering, École de technologie supérieure, 1100 Notre-Dame
West, Montréal, Québec, Canada H3C 1K3

2Civil and Building Engineering Department, Université de Sherbrooke, 2500 Bd de
l’Université, Sherbrooke, Québec,Canada J3X 1S1

Article submitted to « Water Resources Research », December 2022.

Section

This study focuses on quantifying the impact of the choice of spatio-temporal resolution and

hydrological models on the projection of extreme flow and their link to catchment size. We use

two process-based distributed hydrological models forced with a large-ensemble regional climate

model (50-member ClimEx dataset) over the 1990-2100 period at different spatio-temporal

resolution. The extreme summer-fall flow corresponding with each spatio-temporal resolution

was extracted by pooling the members together and computing the empirical cumulative

distribution function. The results show that by refining the time-step from daily to sub-daily,

the summer-fall extreme flow projected over the future period exceeds that of the reference

period for the small but not large catchments. By increasing the catchment size, the hydrological

model’s contribution to the variability of extreme flow increases. Moreover, the choice of spatial

resolution affects the extreme flow trend in terms of magnitude, significance, and direction. But

no pattern regarding the catchment size and spatial discretization variations exists.

4.1 Introduction

Flood hazard continues to threaten human life and inflict costs on infrastructures and urban

areas, as multiple devastating events have been reported in recent years around the world (Merz

et al., 2021). Accurate flood estimation remains a critical issue and the traditional stationary
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assumption employed by flood estimation methods, whether empirical or process-based, fails to

account for changing climate signal, leading to inaccurate estimations of exceeding probability of

peak flow (Blöschl et al., 2013; François, Schlef, Wi & Brown, 2019; Montanari & Koutsoyiannis,

2014). Moreover, a lack of knowledge regarding flood-generating processes at different scales

with complex and non-linear catchment responses in space and time complicates the estimation

of flood return period using process-based hydrological models (Beven, 2019; Blöschl, 2022b).

The present research aims to investigate how the discrete representation of catchments in

process-based distributed hydrological models can affect flood projection under climate change

scenarios. The study is conducted for snow-dominated Nordic catchments located in Canada.

Global warming is expected to increase the magnitude and frequency of extreme precip-

itation across different parts of the world (Min, Zhang, Zwiers & Hegerl, 2011; Westra,

Alexander & Zwiers, 2013; Alexander et al., 2006; Donat et al., 2013; Field et al., 2012; Masson-

Delmotte et al., 2021; Fowler et al., 2021; Martel, Brissette, Lucas-Picher, Troin & Arsenault,

2021). This projected increase can be attributed to the increase of water holding capacity of

the atmosphere: Based on Clausius–Clapeyron rate, the water holding capacity of atmosphere

increases by 7% per 1◦ increase of temperature (Molnar, Fatichi, Gaál, Szolgay & Burlando,

2015; Westra et al., 2014). This however cannot directly be translated into precipitation, as the

amount of available humidity required for precipitation complicates the relationship (Lochbihler,

Lenderink & Siebesma, 2017; Yin et al., 2018). Depending on moisture availability, warming

can cause intensification of convective storms with daily or sub-daily scales (Westra et al., 2014).

Considering that precipitation is an essential driver of flood events, different reactions from

small and large-scale catchments should be expected: for small catchments, the response time

is short and the maximum peak flow can be deduced from a storm with a duration equal

to the longest flow path in the catchment (Blöschl, 2022a). Given that the short period of

convective rainfall matches the residence time of small catchments, these catchments are the

most vulnerable to flooding from convective rainfall, which is expected to increase due to climate

change (Viglione & Blöschl, 2009; Viglione et al., 2016; Breinl, Lun, Müller-Thomy & Blöschl,

2021). Regarding large catchments of more than a thousand square kilometers, it is unlikely that
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a convective storm leads to a flooding event considering the larger storage capacity and longer

travel time (Contractor, Donat & Alexander, 2021). For Nordic snow-dominated catchments,

since global warming will likely reduce the amount of snow that accumulates, the magnitude of

the spring freshet is expected to diminish. However, even for those catchments, it is anticipated

that the frequency and magnitude of convection-driven summer-fall floods, to which small

catchments are sensitive, will increase (Donat et al., 2016).

High temporal resolution time series (hourly) of historical data to evaluate the trend of convective

storms and consequent floods are difficult to find. A common practice is therefore to use a

climate modeling chain and perform simulations at high spatio-temporal resolutions (e.g. Swain

et al., 2020; Do et al., 2020). Regional Climate Models (RCMs) offer such high-resolution time

series at a local scale (Mearns et al., 2017; Leduc et al., 2019). Moreover, the incorporation of

convective parameterization has enhanced their capability to capture convective storms Prein et al.

(2015); Mooney, Broderick, Bruyère, Mulligan & Prein (2017). More recently, large-ensemble

RCM datasets have received attention (Martel, Mailhot & Brissette, 2020b; Sanderson, Oleson,

Strand, Lehner & O’Neill, 2018; Aalbers, Lenderink, van Meĳgaard & van den Hurk, 2018).

Large-ensembles are generated by running RCMs several times, each time with slightly different

initial conditions (Deser, Knutti, Solomon & Phillips, 2012a; Deser, Phillips, Bourdette & Teng,

2012b). Multiple values are calculated per time-step, which eliminates the need to fit a parametric

distribution on the dataset to compute extreme flows (Martel et al., 2020b; Faghih et al., 2022).

Hydrological models are the last component of a hydro-climate modeling chain (Sidle, 2021).

Proportional to the growth of computational power, process-based hydrological models are

increasingly used for impact studies (Zhang, Nan, Yu, Zhao & Xu, 2018; Dembélé, Hrachowitz,

Savenĳe, Mariéthoz & Schaefli, 2020; Pandey, Khare, Kawasaki & Mishra, 2019; Duethmann,

Blöschl & Parajka, 2020; Zhong, He & Chen, 2018). These models solve the governing equations

of hydrological processes (with varying degrees of simplification) per grid cell. Distributed

models further use routing algorithms to direct accumulated water towards neighboring cells

until the basin outlet (Clark et al., 2015, 2017). The advantage of using distributed physics-based

hydrological models is to represent the topography, land use, and soil structure in the model,
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to obtain a detailed distribution of hydrological variables of the catchment (Refsgaard, 1995).

Therefore, these models are useful to study the internal dynamics of state and flux variables

(Golden & Knightes, 2011; Gebremicael, Mohamed & Van der Zaag, 2019; Sidle et al., 2017).

Scale issue is the subject of a long ongoing debate in the scientific community (Blöschl & Siva-

palan, 1995; Blöschl et al., 2019). Despite numerous types of research to understand runoff

generation processes, there are still unknowns about upscaling from profile scale (1m) to

catchment scale and beyond. For example, while the infiltration excess is the governing process

at profile-scale (Horton, 1933), the spatial connectivity of hydrological processes has a central

contribution in runoff generation at the hillslope scale (Dunne & Black, 1970; Noguchi, Tsub-

oyama, Sidle & Hosoda, 1999; Sidle, 2006). Moreover, the contribution of overland connectivity

in flow generation and sediment transport and their feedback loop add to the non-linearity

of runoff generation (Gomi, Sidle & Richardson, 2002; Jencso et al., 2010; López-Vicente

et al., 2017; Koci et al., 2020). The non-linearity from hillslope- to catchment scale is also

significant, as the traditional bottom-up Freeze & Harlan (1969) approach to linearly combine all

hillslopes so as to compute catchment response has been challenged. Dooge (1986), for example,

suggests that a catchment is an "organized complex system", in the sense that the development

of co-evolutionary surface and subsurface patterns contributes to catchment drainage and

runoff generation (Sivapalan & Blöschl, 2015; Savenĳe & Hrachowitz, 2017). Adapting the

bottom-up approach to these criticisms, there were efforts to combine the hillslope’s responses

by considering the spatio-temporal covariance of hydro-climate variables for flood simulations

(Woods & Sivapalan, 1999; Viglione, Chirico, Woods & Blöschl, 2010).

The spatio-temporal discretization of distributed models can potentially modify land-use and

soil structures and result in variations of hydraulic conductivity as well as surface and subsurface

hydrological connectivity (Beven, 2000). This can potentially lead to variations in the peak flow

or seasonal flow. Many studies have explored the effect of land-use change on streamflow (Singh

et al., 2015; Li et al., 2019; Yang et al., 2019a; Tavangar et al., 2019). Using more than one land

use scenario is a common approach to studying land use change impacts (Breuer et al., 2009;

Huisman et al., 2009; Viney et al., 2009; Bormann et al., 2009). The results show that land use
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change can increase/decrease the peak flow, depending on catchment size and/or soil structure.

Conversely, paired catchment studies have demonstrated that land-use changes can modify

mean seasonal streamflow but has minor effects on the peak flow (Brown, Zhang, McMahon,

Western & Vertessy, 2005). The effects of spatio-temporal discretization using process-based

models have rarely been investigated for natural catchments. Most previous studies concentrated

on urban catchments, with a high degree of impermeability and small size (e.g. Cao et al., 2020a;

Krebs et al., 2014; Zhou et al., 2017; Cao et al., 2020a). In this context, multiple studies have

shown that variation of spatio-temporal resolution can reorient flow direction and significantly

change the flow peak Zhou et al. (2017); Ichiba et al. (2018); Warsta et al. (2017).

Markhali, Poulin & Boucher (2022) have shown that the spatio-temporal discretization of a

catchment in a model can affect the representation of surface and subsurface hydrological

processes in that model and generate a significant variation in the distribution of hydrological

variables including streamflow. Such variations are most important in flat catchments or

catchments with considerable human intervention (i.e., agricultural lands). The present study

focuses on extreme summer-fall flow using a hydro-climate modeling chain. A range of

catchments with different surface areas (from below 200 𝑘𝑚 to more than 1500 𝑘𝑚2) are selected

to facilitate the investigation of the combined impacts of climate change and the spatio-temporal

discretization in the hydrological model. More specifically, we intend to verify the following

hypotheses for the catchments at hand:

1. For small catchments (< 500𝑘𝑚2), refining temporal resolution of simulation (from daily to

subdaily) increases the relative change (from reference to future) of extreme summer-fall

flow. Refining temporal resolution will not significantly affect projected extreme summer-fall

flow for large catchments (> 1000𝑘𝑚2).

2. The change in the spatio-temporal scale of modeling causes variability in the projection of

extreme flow. By increasing the catchment size, the contribution of hydrological model and

spatial scale in that variability increases, and that of the time-scale decreases.

The hypotheses will be examined by forcing two process-based distributed models with large-

ensemble simulated climate data. To examine the impact of spatio-temporal discretization, the
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simulations will be performed at different spatial (100, 250, 500, 1000 𝑚) and temporal scales

(3- and 24-hour time-steps). The structure of this research is as follows: Section 4.2 provides

a detailed explanation of the study area, available data, bias correction method, hydrological

models, and the experimental plan. Section 4.3 presents the results of the experiments, which

are discussed in Section 4.4. Section 4.5 provides concluding remarks and a suggestion for

future works.

4.2 Method and Data

4.2.1 Study Area

The study area includes four catchments located in southern Quebec, Canada (Figure 4.1). These

catchments range from less than 200 𝑘𝑚2 to more than 1500 𝑘𝑚2 and were selected from diverse

land use and hydrological regions. This helps evaluate catchment responses under climate

change based on their size and other characteristics, such as land-use and topography. Table 4.1

briefly describes catchments’ characteristics.
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Figure 4.1 Location of the catchments used in this study

Table 4.1 Area and average hydro-climatic characteristics of the catchments used in this
study for 2000-2017 period

Number Name Area(𝑘𝑚2) precipitation(𝑚𝑚/𝑦𝑟) streamflow (𝑚3/𝑠) temperature (◦𝐶)

050135 Croche 1563 1139.36 30.70 2.74

023427 Chaudière 781 1208.65 16.47 3.72

030424 Aux Brochets 584 1329.34 10.52 6.23

023004 Boyer 191 1396.76 4.45 4.15

4.2.2 Datasets

24- and 3-hour observed streamflow series were obtained from the Direction de l’Expertise

Hydrique (DEH) of the Ministère de l’Environnement et de la Lutte contre les changements
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climatiques (MELCCC) for 2000-2017. Regarding meteorological data, we used the ERA5

(ECMWF ReAnalysis5) gridded dataset to calibrate the hydrological models and simulate

streamflow for the present-day climate. (Tarek et al., 2020b) have shown that ERA5 provides an

accurate representation of meteorological conditions for catchments located in North America.

We also used the ClimEx large ensemble (e.g., Leduc et al., 2019). ClimEx is a 50-member

climate dataset, driven by dynamically downscaling the second version of the Canadian Earth

System Model large ensemble (CanESM2-LE; Swart et al., 2019), using the 5th generation of

the Canadian Regional Climate Model (CRCM5). The simulations are driven by the RCP 8.5

scenario for the period covering 1951-2100, with hourly time steps and a 11◦ spatial resolution.

4.2.3 Bias Correction

The MBCn (N-dimension multivariate bias correction) (Cannon, 2018) method was selected

to bias correct precipitation and temperature time-series extracted from ClimEx. MBCn is an

advanced quantile-mapping techniques (Meyer et al., 2019; Cannon et al., 2020). The method

transfers all characteristics of the distribution of observations to their simulation according to

the climate model. It maintains the trends of projections per quantile, which is essential to

accurately assess the impact of climate change (Faghih et al., 2022).

4.2.4 Hydrological models

The following section introduces the hydrological models that are used in this study. Both

models are distributed, process-based, and computationally intensive. However, they each have

their own methods of representing hydrological processes, and their approach to aggregate the

catchment response are also different.

4.2.4.1 WaSiM

WaSiM (Water balance Simulation Model) operates on a raster system (Schulla & Jasper, 2007).

The model structure comprises multiple sub-models (e.g., infiltration, evapotranspiration,
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snow accumulation and melt, unsaturated zone, etc.) that run on each grid cell and time-step,

providing the opportunity to use parallel computing. WaSiM offers two options for calculating

the infiltration and percolation: the Topmodel approach or Richard’s equation. The first approach

is a modified version of the conceptual model Topmodel, following Beven (1997). The second

approach is more physically-based and is the one used in this study. All the sub-models that are

selected for WaSiM are named in Table 4.2.

4.2.4.2 Hydrotel

Hydrotel is widely used in Quebec for research and operations (e.g., Martel et al., 2020a; Turcotte

et al., 2020; Lucas-Picher et al., 2020). In Hydrotel, the catchment is divided into Relatively

Homogeneous Hydrological Units (RHHUs) which are hillsopes and include integrated land use

class and river segment. Hydrotel is compatible with GIS and remotely-sensed data (Fortin et al.,

2001a). A mixture of physical, conceptual, and empirical relationships are used to represent

the hydrological processes, which makes Hydrotel slightly less physics-based than WaSiM. For

example, the vertical water balance and the representation of soil water content are computed

through a sub-routine called BV3C (Bilan Vertical à 3 Couches), which divides the soil column

into three layers and controls infiltration, interflow and baseflow, based on a semi-physical

moisture accounting equation (Fortin et al., 2001a). Like WaSiM, Hydrotel provides multiple

options for representing the hydrological processes of a catchment. Table 4.2 lists the submodels

that are used in this study.
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Table 4.2 The submodels used to represent the hydrological processes in Hydrotel and
WaSiM.

Submodels Hydrotel Wasim

Interpolation Thiessen polygons Thiessen polygons

Snow melt/accumulation Degree-Day Method Degree-Day Method

Potential evapotranspiration Hydro-Quebec Hamon (Hamon, 1961)

Real evapotranspiration BV3C Richards’ Eq.

Infiltration and percolation BV3C Richards’ Eq.

Channel routing Kinematic Wave Eq. Kinematic Wave Eq.

4.2.5 Experimental plan

4.2.5.1 Climate Data Processing

Figure 4.2 shows the experimental plan for this study. The panel on the top left, bounded by

the green dashed line, shows the details regarding climate data processing. The first step is the

extraction of the simulated and observed meteorological data (temperature and precipitation)

for the selected catchments. The reference period for the observed dataset (𝑅𝑒 𝑓 −𝑂𝑏𝑠) spans

from 1991 to 2010. ClimEx simulations are also split into reference (𝑅𝑒 𝑓 − 𝑆𝑖𝑚) and future

(𝐹𝑢𝑡 − 𝑆𝑖𝑚, 2011-2099) periods. In the next step, the 50-member ClimEx (i.e., 𝑅𝑒 𝑓 − 𝑆𝑖𝑚

and 𝐹𝑢𝑡 − 𝑆𝑖𝑚) are pooled together into one long time series per period. This pooling helps

to maintain the internal variability of the simulated climate data after bias correction. This

is because individual bias correction of each member eliminates the spread of simulations

and creates rather similar time series. While addressing internal variability is not among

the objectives of this research, maintaining that helps accurate calculation of extreme flows

(Faghih et al., 2022). The 𝑅𝑒 𝑓 − 𝑂𝑏𝑠 and 𝑅𝑒 𝑓 − 𝑆𝑖𝑚 datasets, which include precipitation

and temperature for both the reference and future periods, are further received by MBCn to

obtain correction factors based on multi-variate quantile mapping. A single set of correction
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factors was computed per calendar month and applied to the simulated climate data. The pooled

bias-corrected datasets are reversed back to the 50-member time series, ready to use as the inputs

of the hydrological models.

Figure 4.2 Schematic explanation of the experimental plan and methods

4.2.5.2 Hydrological Simulation

The hydrological models are calibrated with four spatial (100, 250, 500, 1000 𝑚) and two

temporal resolutions (3- and 24-hour). The datasets are split into calibration and validation

periods with equal duration. The Dynamically Dimensioned Search (DDS; Tolson & Shoemaker,

2007) with a 0.2 perturbation factor was used to calibrate the models. The DDS technique scales

the parameters search space according to a budget specified by the user. Given that both WaSiM

and Hydrotel are computationally intensive, this is an advantage over other search methods.

In addition, the efficiency of DDS with global parameter perturbations at the beginning and

narrowing down the search space by the end of the process has been confirmed in the literature

(e.g., Huot et al., 2019).

Based on the existing literature and following experts’ recommendations as well as the team

who develops and maintains WaSiM, 12 parameters were calibrated, including seven parameters
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that are involved with the unsaturated zone subroutine, two parameters linked to potential

evapotranspiration, one parameter for snow accumulation and melt, and two parameters for

spatial interpolation. The remaining parameters were left to their default values following the

WaSiM documentation (Schulla & Jasper, 2007). Regarding Hydrotel, of 28 model parameters,

11 were calibrated, and the others were left to their default values according to Hydrotel’s user

manual. Out of the 11 calibration parameters, three belong to vertical water balance, six to the

snow accumulation and melt routine, and one to the infiltration and interpolation components

(see Huot et al. (2019) for more details about the parameters).

The Kling-Gupta Efficiency criterion (KGE; Gupta et al., 2009) is the objective function for the

calibration of both WaSim and Hydrotel. Compared to other performance criteria, such as the

Nash–Sutcliffe efficiency (NSE), the KGE is a better choice as it gives more realistic results

for snow-dominated catchment efficiencies. This is because the observed mean is the baseline

model for NSE, and for the catchments with high seasonal variability, the measure tends to

overestimate modeling skill (e.g., snow melt streamflow; Gupta et al., 2009). Equation 4.1 was

used to calculate the KGE

𝐾𝐺𝐸 =

√︂
(𝑟 − 1)2 + (𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)2 + ( 𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)2 (4.1)

where 𝑟 is the linear correlation between observed and simulated streamflow values, 𝜎𝑠𝑖𝑚 is the

standard deviation of the observations, 𝜎𝑜𝑏𝑠 is the standard deviation of the simulation, 𝜇𝑠𝑖𝑚 is

the simulation mean, and 𝜇𝑜𝑏𝑠 is the observation mean.

After obtaining the parameters corresponding with the four spatial resolutions and two temporal

resolutions mentioned above, climate simulations from ClimEX were used as inputs to the

hydrological models for 1991 to 2099; as mentioned in the top right panel bounded with the red

dashed border in Figure 4.2.
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4.2.5.3 Analyses

The panel at the bottom of Figure 4.2, with a dashed orange border, shows the analyses and

experiments that were carried out to verify the two hypotheses which are the object of this

research. To verify the first hypothesis, extreme summer-fall flows are calculated for different

spatio-temporal simulations. The streamflow series were split into historical (1991-2010) and

far-future periods (2081-2100) to estimate the change of extreme flow under climate change. A

50-member ensemble of simulated streamflows obtained from forcing the hydrological models

with ClimEX was pooled together to create a time series comprising 1000 years of data (20

years × 50 members). This very large ensemble was created to estimate projected yearly extreme

flows without the need to fit a parametric distribution. The annual maximum summer-fall flows

(July-November) is extracted from the data and an empirical cumulative distribution function is

created for both periods (present-day and far future). This allows us to compare the distributions

of projected extreme flows in the historical and far-future periods for different combinations of

spatio-temporal discretizations (we have four spatial and two temporal resolution that amounts to

8 different combinations). The studied extreme flow values are based on the following percentiles

: 50, 90, 95 and 99 (representing 2-, 10-, 20- and 100-year return periods). The procedure

regarding pooling and extracting the extreme values is the same as in Martel et al. (2020a).

In order to verify the second hypothesis, we use variance decomposition Montgomery (2017) to

find the contribution of different factors in the total variance of the projected extremes. Variance

decomposition is a simple yet robust and widely applied method (e.g. Addor et al., 2014;

Meresa & Romanowicz, 2017; Wang, Huang, Fan & Li, 2020; Meresa et al., 2022). Equation

4.2 shows the application of the method in this study,

Δ𝑈𝑖, 𝑗 ,𝑘 = 𝐻𝑖 + 𝑆 𝑗 + 𝑇𝑘 + 𝐻𝑖 ∗ 𝑆 𝑗 + 𝐻𝑖 ∗ 𝑇𝑘 + 𝑆𝑖 ∗ 𝑇𝑘 + 𝜖 (4.2)

where Δ𝑈 is the total variance of projected extreme flow, 𝐻𝑖, 𝑆 𝑗 , and 𝑇𝑘 are different choices of

hydrological model, spatial resolution, and time-step, and 𝜖 represents a Gaussian white noise.
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To quantify the change in the streamflow when the spatial resolution varies, annual maximum

summer-fall flows were extracted per grid and the linear trends corresponding to those grids

were computed for the entire 1991-2100 period. The linear trend analysis has frequently been

used for quantifying the change in the climate variables (Barnes & Barnes, 2015; Zhuan et al.,

2018; Ding & Steig, 2013). Note that the non-linear quadratic and cubic polynomials produced

poor results for this case study. The widely used non-parametric Mann-Kendall trend test (Ali,

Kuriqi, Abubaker & Kisi, 2019) was also applied to identify the trend at a 0.05 significance

level. In this test, the null hypothesis (𝐻0) assumes no trend and the alternative hypothesis (𝐻1)

assumes the existence of a trend at a 0.05 significance level.

4.3 Results

4.3.1 Annual Hydrographs

Figures 4.3 and 4.4 show the annual simulated hydrographs for the reference and future periods

at 3- and 24-hour time-steps using WaSiM and Hydrotel for the Boyer and Croche catchments.

These catchments are the smallest and largest, respectively. In these figures, the ensemble of

streamflow simulations is based on the ClimEx dataset, for the 1990-2100 period with various

spatial resolutions for both hydrological models (100, 250, 500, and 1000𝑚). The median of

each ensemble is displayed as a solid line and the observed data is the dashed black line.

Figure 4.3, a) to d) show the WaSiM simulations with 3- and 24-hour time-steps for the Boyer

catchment. The observed data is located inside the spread of simulations and the timing of the

peaks is approximately the same for both the simulation and the observations (panels a and c).

However, the simulation underestimates the magnitude of the median peak flow. We also want

to assess how changing the spatial resolution would affect the simulation of low and high flows.

According to Figure 4.3, a) to d), the simulation of low flows is more sensitive to variations in

spatial scale than that of high flow. Moreover, this sensitivity also increases by refining the

time-step from 24- to 3-hour. Figure 4.3 e) to f) shows Hydrotel simulations. As for WaSim,

the observed value is located inside the ensemble’s spread (panels e and g). Moreover, the



87

ensemble’s median is closer to the observation than that of WaSiM simulations. With Hydrotel,

the simulation of high flows is more sensitive than the simulation of low flows to changes in

spatial resolution, which is the opposite behavior of WaSim. Again, this sensitivity to the change

of spatial resolution is higher for the 3-hour time-step than for the 24-hour time-step. Comparing

future ( panels a, c, e, g) and reference (panels b, d, f, h) periods, a forward shift of the spring

freshet from mid-April to mid-May with significantly lower amplitude can be seen, regardless

of the time-step and spatial resolution, for both Hydrotel and WaSim. Overall, WaSiM shows

higher sensitivity to changes in spatial resolution than Hydrotel, which is expected as the model

is fully distributed and more physically representative in terms of the vertical water budget in

the soil.

Figure 4.4 shows the result of the same exercise, but for the Croche catchment. Panels a) to d)

show WaSiM simulations with 3- and 24-hour time steps. Compared to Figure 4.3 for the Boyer

catchment, WaSiM (panels a and c) shows more skill, as the medians of all the simulations

follow the observations closely. In general, varying the spatial resolution has only minor effects

on these simulations, except for the simulations with a 3-hour time-step. Hydrotel’s simulations

(panels e to h) show an underestimation of peak streamflow when the ensemble median is

compared to the observations. This underestimation is larger for the simulations with a 24-hour

time-step than for the 3-hour time-step. In terms of spatial resolution, both WaSim and Hydrotel

are more sensitive to changing the spatial resolution when the time-step of the simulations is

finer. Comparing the future and reference periods, a significant attenuation in the magnitude of

the spring freshet and a backward shift in the timing of the peak can be observed for both models.

There is also a considerable increase in streamflow in the fall and winter months (November to

March) when comparing the present and future periods.

Overall, it is not clear from Figures 4.3 and 4.4, whether there exists a pattern regarding the

interaction between catchment size and the choice of hydrological model and spatio-temporal

resolution. However, each of these elements can distinctly alter the catchment responses.
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Figure 4.3 Ensemble of annual hydrographs forced by ClimEx dataset per resolution and
compared with observed streamflow (dashed black line) for the Boyer catchment. R and the
following number represent the spatial resolution in 𝑚, and MR with the following number

represents the median of the ensemble

4.3.2 Spatial distribution of the hydrological variables

Figure 4.5 shows the spatial distribution of actual evapotranspiration (AET) and snow depth (SD)

for the Croche catchment. To create this figure, mean annual AET and SD over the reference

and future periods were calculated and the relative change between those valuse were obtained.

The figure shows that by the end of the century (period 2081-2100), AET will increase by 5

to 10 % according to Hydrotel simulations (panels a to d) and 15 to 30% according to WaSiM
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Figure 4.4 Ensemble of annual hydrographs forced by ClimEx dataset per resolution and
compared with observed streamflow (dashed black line) for the Croche catchment. R and
the following number represent the spatial resolution of simulations in 𝑚, and MR with the

following number represents the median of that ensemble

simulations (panels e to h). A significant negative change in snow depth is observable, as by the

end of the century, the average amount of snow on the ground through the winter decreases by

around 40% to 50% according to WaSiM (panels m to p) and Hydrotel (panels i to l) simulations.

The considerable reduction of spring freshet between 2081-2100, as seen in Figure 4.4, is a

result of that reduction in snow depth. Since the amount of snow depth reduction in simulations

with Hydrotel is higher than in WaSiM (comparing the third and fourth rows in Figure 4.5), the

hydrographs produced by Hydrotlel (Figure 4.4: panels f and h) are more flattened than those

produce by WaSiM (Figure 4.4: panels b and d).



90

Figure 4.5 Percentage change of actual evapotranspiration (AET) and snow depth (SD)
from reference (1991-2010) to far-future (2081-2100) periods for the Croche catchment. R

and the following number represent the spatial resolution of simulations in 𝑚
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Changing spatial resolution affects the magnitude of change in the simulation of AET. According

to panels a to d and e to f (Figure 4.5), decreasing spatial resolution corresponds with around a 5

to 15% (depending on the hydrological model) increase of change in the AET. For snow depth,

changing spatial resolution has no considerable effect on the final results. No significant spatial

pattern has been detected for the distribution of AET across the catchment. For snow depth, both

models agree on projecting lower values for the southern part with lower altitude illustrating that

low-altitude regions are more sensitive to the effect of climate change than high-altitude regions.

4.3.3 Summer-fall extreme flow

Figure 4.6, shows the empirical cumulative distribution function of maximum summer-fall

flow simulated by WaSiM and Hydrotel for the reference and future periods per catchment and

resolution. The catchments are ordered in terms of size: the first row shows the results for the

smallest catchment and the last row shows the results for the largest. Each spatial resolution

is identified by a different color and the future and reference periods are shown in dashed

and solid lines respectively. The letters W and H represent WaSiM and Hydrotel respectively,

with subscript numbers that indicate the time-step of the simulation (e.g., 𝑊24 is the WaSiM

simulation with a 24-hour time-step.)

A pattern regarding the effect of catchment size and the choice of temporal resolution on the

change of extreme flow between the reference and future periods is observable. For small

catchments (Boyer and Aux Brochets), by refining the time-step of simulation, there are flow

quantiles from which the future extreme flow exceeds that of the reference. This is clearer for

WaSiM simulations in panels c) and g). For example, in panel c), when the spatial resolution

is 100 𝑚, future flows larger than a flood with a 2-year return period (i.e. non-exceedance

probability of 0.5) is larger than that of the reference. A similar pattern is also observable

for Hydrotel simulations of those catchments (i.e. 𝑑 and ℎ), even though not as clear as

WaSiM simulations. By increasing the catchment size (Chaudière and Croche), the graphs show

decreasing magnitude of extreme summer-fall flow between the reference and future periods

with the same return periods, regardless of temporal resolution. These observations are in
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Figure 4.6 Empirical cumulative distribution function (ECDF) of extreme summer-fall
flow for reference (ref-solid lines) and future (fut-dashed lines). R and the following number
represent the spatial resolution in 𝑚. W and H are simulations with WaSiM and Hydrotel,

respectively and their following numbers represent the temporal resolution in hour

accordance with the first hypothesis of this research. Note that the case of Boyer catchments is

complicated for very large return periods (>100-year), as even when the time-step of simulations

is 24 hours, the magnitude of a future flood with the same return period exceeds that of the

reference period (panels a and b).

For smaller catchments, by changing spatial resolution, the intersection point of future and

reference graphs significantly varies. For example, in panel g), with 1000 𝑚 spatial resolution,

the intersection point is equivalent to a flood with the magnitude of a 3-year return period, but
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when the spatial resolution is 100 𝑚, the intersection point is equivalent to a flood with the

magnitude of the 10-year return period. The difference between simulations caused by the

change of spatial resolution can also be seen in panels c, k, and o even though the differences

between those graphs are smaller. In all cases, whether the time-step of simulation is 3- or

24-hour, simulations by WaSiM have a higher sensitivity to the choice of spatial resolution

compared to Hydrotel. These differences illustrate the importance of the choice of spatial

resolution and hydrological model. However, no pattern regarding the catchment size and those

choices is observable (therefore the second hypothesis cannot be validated from these results).

It is worth mentioning that the counter intuitive appearance of near zero values corresponding

with extreme flows in this plot can be attributed to the members that significantly underestimate

streamflow simulation.

To further investigate the observations made regarding Figure 4.6, the relative change of extreme

flow for specific quantiles (i.e. flood with 2, 10, 20, and 100-year return periods) is driven and

presented in Figure 4.7. The results are again ordered according to catchment size. As can

be observed, the relative change increases when catchment size decreases. Comparing panels

b) and d) with panels a) and c) shows that the magnitude of such increase is higher for the

3-hour time-step than for the 24-hour time-step (in accordance with Hypothesis 1). Moreover,

for simulations with a 3-hour time-step, the number of pixels with a positive ratio is higher than

with a 24-hour time-step. This demonstrates that the simulated magnitude of flood events in the

future increase if a fine temporal resolution is used.

There is no clear pattern regarding the role of spatial resolution in determining the magnitude

and direction of change. However, the choice of resolution is not trivial as it can change the

magnitude or even direction of the relative change. The choice of model has also important

implications as the patterns for Hydrotel and WaSiM, particularly for 24-hour simulations, are

different. Comparing panels a) and c), Hydrotel produces more simulations with positive relative

change than WaSiM. Again these observations confirm the importance of the choice of spatial

resolution and hydrological models, but cannot validate the second hypotheses.



94

a) WaSiM simulations-24h

Boyer-CD100
Boyer-CD250
Boyer-CD500

Boyer-CD1000
Aux Brochets-CD100
Aux Brochets-CD250
Aux Brochets-CD500

Aux Brochets-CD1000
Chaudière-CD100
Chaudière-CD250
Chaudière-CD500

Chaudière-CD1000
Croche-CD100
Croche-CD250
Croche-CD500

Croche-CD1000

b) WaSiM simulations-3h

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

R
el

a
ti

v
e 

C
h

a
n

g
e 

R
a

ti
o

(-)

c) Hydrotel simulations-24h

R50 R90 R95 R99

Boyer-CD100
Boyer-CD250
Boyer-CD500

Boyer-CD1000
Aux Brochets-CD100
Aux Brochets-CD250
Aux Brochets-CD500

Aux Brochets-CD1000
Chaudière-CD100
Chaudière-CD250
Chaudière-CD500

Chaudière-CD1000
Croche-CD100
Croche-CD250
Croche-CD500

Croche-CD1000

d) Hydrotel simulations-3h

R50 R90 R95 R99

Figure 4.7 Relative change of summer-fall extreme flows (QT50,QT95,. . . ) ordered
according to catchment size and spatial resolution

4.3.4 Spatial trend

Figures 4.8 (Boyer) and 4.9 (Croche) show the spatial distribution of the trend for the maximum

annual summer-fall flow ,which presented as the percentage of mean annual summer-fall

streamflow. For spatial distribution, the simulated streamflow per WaSiM subwatershed is

extracted for the entire simulation period (1991-2100). In this figure, R represents the spatial

resolution in 𝑚, which is followed by the simulation time-step. The hatched area covers the

location where the trend is statistically significant at a 5% level ( 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 5%).

Figure 4.8 shows that a positive trend holds for all simulations with a 3-hour time-step (𝑎

to 𝑑), regardless of the spatial scale. Moreover, except for 𝑅250(3ℎ) (panel a), the trend is

significant across most of the catchments. A negative trend emerges across the catchment when

the time-step increases (panels e to h), except for the highest (finer) spatial resolution (i.e. 𝑒:
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Figure 4.8 Linear trend of the maximum summer-fall streamflow (median member of
ClimEx) for the Boyer catchment (all simulated by WaSiM) in terms of percentage of mean

summer-fall flow. R and the following number represent spatial resolution in 𝑚. The
hatched area covers the area for which the trend is significant at the 5% level according to

the Mann-Kendall test

𝑅250(24ℎ)) (hypothesis 1). Changing the spatial resolution has important implications here: the

average magnitude of the trend across the catchment varies from larger than +5 to more than +20

% for simulations with 3-hour time-step (panels a to d), and from around +3 to less than -10% of

that for daily simulations (panels e to h), illustrating large uncertainties in the projection of high

flow (hypothesis 2). There is no distinguishable pattern regarding the relationship between the

magnitude and direction of the trend and the spatial resolution.

For the Croche catchment, the spatial distribution of the linear trend is negative regardless of

the time step and the spatial resolution of the simulations (hypothesis 1). Similar to the Boyer



96
la

ti
tu

d
e

R
100

(3h)

-20

-15

-10

-5

0

5

10

15

20

L
in

e
a
r
 t

r
e
n

d
 o

f 
m

a
x
im

u
m

 s
u

m
m

e
r
-f

a
ll

 f
lo

w
 (

%
)

R
250

(3h) R
500

(3h) R
1000

(3h)

longitude

R
250

(24h)

longitude

R
1000

(24h)

longitude

R
500

(24h)

longitude

la
ti

tu
d

e

R
100

(24h)

Figure 4.9 Linear trend of the maximum summer-fall streamflow (median member of
ClimEx) for the Croche catchment (all simulated by WaSiM) in terms of percentage of

mean summer-fall flow. R and the following number represent spatial resolution in 𝑚. The
hatched area covers the area for which the trend is significant at the 5% level according to

the Mann-Kendall test

catchment, changing the spatial resolution of the simulations causes large uncertainties: the

magnitude of the trend varies from around -5 to -10 % of summer-fall streamflow for a 3-hour
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time-step (panels a to d), and from less than -5 to around -20 % for daily simulations (panels e to

h). Note that like the Boyer catchment, no pattern regarding a relationship between the spatial

resolution of simulation and the magnitude of the trend is distinguishable. It appears that by

changing the time-step from 3- to 24-hour, larger negative trend values (in terms of magnitude)

emerge, showing that the subdaily simulations even influence the trend for the large catchment.

The influence, however, is not large enough to change the direction of the trend (hypothesis 1).

Note that, unlike the Boyer catchment, the trends calculated for the 3-hour time-step are not

significant here.

Observations made in this section are in line with the first hypothesis, as refining the time-step

of simulation has mostly influenced the small catchment (i.e., Boyer: Figure 4.8) rather than

the large catchment (i.e., Croche: Figure 4.9). The second hypothesis cannot be confirmed or

rejected with the information provided here.

4.3.5 Analyse of Variance (ANOVA)

Figure 4.10 shows the variance decomposition of the relative change in the extreme summer-

fall flow into the contribution of spatial resolution, time-step, hydrological model, and their

combinations. Results for smaller catchments are shown on the top side and larger catchments

are on the bottom side. The spatial resolution has only a minor contribution to the changes for the

Boyer catchment. However, this contribution becomes significant when changing the resolution

is combined with other factors ( 19% of the variance results from changing the spatial resolution

and the hydrological model). For the Aux Brochets catchment, the spatial resolution has a larger

contribution to the total variance (15%). This is in line with the results from Figure 4.6, where

the change of spatial resolution created a large difference between simulations. Interestingly, by

increasing the catchment size from 584 𝑘𝑚2 (Aux Brochets) to 781 𝑘𝑚2 (Chaudière) and 1563

𝑘𝑚2 (Croche), the contribution of spatial scale in variability, first significantly drops (< 1%) and

then increases back to 14%. This clearly suggests a lack of a clear pattern between catchment

size and spatial scale (hypothesis 2 regarding spatial scale cannot be verified). The variance

obtained from changing the time step is important for all catchments. But similar to spatial
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scale, a clear relationship between catchment size and time-step cannot be found in this context

(hypothesis 2 regarding temporal scale cannot be verified). Changing the hydrological model

impacts the variance for the largest catchment (Croche) the most, and loses its contribution by

decreasing catchment size (Hypothesis 2 regarding the hydrological model can be verified). Note

that the combined effect of simultaneously changing the hydrological model and the temporal or

spatial resolution can be an important source of variability, but the combined effect of spatial

and temporal scale is not as important.

Figure 4.10 Decomposition of the variance for the relative change in summer-fall extreme
flows (average of 2, 10, 20, and 100 yr return periods) obtained by ANOVA
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4.4 Discussion

This study builds on our previous research (i.e., Markhali et al., 2022) in quantifying the

uncertainty linked to the spatio-temporal representation of catchments in hydrological models.

In this research, we did not implement the ensemble method by mixing and matching the

parameters and catchment descriptors with different resolutions, due to the computational costs

of simulating a large-ensemble of long-duration time series. In the previous study, we learned

that the uncertainty linked to the catchment heterogeneity is mostly sensitive to the choice of

hydrological model, in the sense that the more sophisticated model in terms of representation

of hydrological processes (i.e. WaSiM) creates larger uncertainties linked to the catchment

heterogeneity compared to less sophisticated model (i.e. Hydrotel).

We focused on quantifying the uncertainty in the projection of extreme summer-fall streamflow.

We separated catchments based on their surface area. This was necessary because the flood

generation mechanism for small and large catchments are different (Blöschl, 2022b). Small

catchments are more sensitive to the infiltration excess runoff, while large catchments are

sensitive to the saturation excess runoff (Blöschl, 2022a). The results showed that in fact there

are relations between the surface area and the choice of time-step and hydrological model in

the final response of the catchments: First, using a finer time-step in simulations resulting in a

statistically significant increase in the projection of summer-fall flood hazard in the future for the

small but not for the large catchment (Figures 4.8 and 4.9). Second, by increasing the catchment

area, the contribution of the choice of hydrological model in the uncertainty increased (Figure

4.10).

The individual contribution of spatial scale is smaller than the other two factors (it is between

1 to 15 % of the total uncertainty according to Figure 4.10). The question is, whether or not

variations of spatial scale should be considered in the simulation for flood projection. To answer

this question we investigate the response of the Boyer and Aux Brochets catchments to variation

of spatial resolution:
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Regarding the Boyer catchment, Figure 4.10 shows that the joint contribution of spatial resolution

and hydrological model in the variation of extreme summer-fall flow reaches up to 19%, which

is the highest among all catchments. Also, in Figure 4.8 e) for WaSim simulations, when the

spatial resolution is 100 𝑚, the trend is zero or positive across the catchment. However, by

lowering the resolution (panels g, h, i), the trend becomes negative. According to Markhali

et al. (2022), increasing the spatial resolution causes a nonlinear decrease in the coefficient

of interflow storage in WaSim for this catchment. This means that the saturation level of the

soil is significantly higher for simulation with a 100 𝑚 resolution compared to other choices

of spatial resolutions. Because of the high value of soil moisture for the simulations with a

100 𝑚 resolution and increasing convective rainfall in the future, there is a positive trend in the

simulation of high flow even if with a daily simulation time-step. By decreasing the resolution,

the interflow storage increases, leading to lower antecedent soil moisture and consequently a

negative trend for high flow in the 24-hour time step.

The Aux Brochets catchment shows the largest sensitivity to the spatio-temporal resolution in

flood projection (Figure 4.6). Coarsening the spatial resolution in WaSiM induces modifications

to the slopes of this catchment in the model, which in turn causes a reorientation of surface

and subsurface flows. This results in soil saturation in a portion of the catchment leading to

the outlet (Markhali et al., 2022). High antecedent soil moisture combined with convective

storms results in a rapid response of the catchment for simulations with low spatial but high

temporal resolutions. The significantly larger magnitude of flood for the simulations with a

3-hour time-step and a spatial resolution of 500 to 1000 𝑚 (the red and black lines in Figure 4.6

𝑏) could be attributed to the mechanism explained above. The decomposition of the variance for

this catchment in Figure 4.10 confirms that the contribution of the spatial scale individually or

together with the other factors explains 23% of the total variance, which is higher than two other

larger catchments.

Among all the catchments studied here, the Boyer catchment has the maximum human intervention

in terms of deforestation and agriculture (Markhali et al., 2022). Also, Aux Brochets is a flat

catchment with uneven areas (hills and valleys). This type of topography is more difficult to
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represent in hydrological models. Therefore, the model structure and the degree to which that

model reflects the details of topographic and land-use characteristics are important factors to

consider. This study suggests accounting for the variation of spatial resolution for flat catchments

or catchments with high agricultural lands if a distributed hydrological model with a high level

of sophistication in representing hydrological processes should be used.

The intensive computational demand of the two distributed process-based hydrological models

used in this research limits the number of catchments that could be included. There is an

opportunity to work towards generalizing the conclusions of this research by involving a higher

number of catchments, with different sizes and land uses. Moreover, adding more models

with various structures seems necessary to gain more in-depth knowledge about the effect of

the choice of process-based models in flood projection. Furthermore, the recent advances in

increasing the spatial and temporal resolution of RCMs are appealing to further investigate

the impact of spatio-temporal resolution in climate impact studies. Recent models with a

high spatial resolution (<4km) have shown promise in the simulation of convective-driven

rainfall (Lucas-Picher et al., 2021). The problem with using these models is the large storage

capacity required for storing data (Gutowski et al., 2020). Also, coupling them with distributed

hydrological models adds to the computational costs of the modeling. Further advancements in

computational power and data storage are required for the application of these models in impact

studies (Schär et al., 2020).

4.5 Conclusion

This study investigated the role of spatio-temporal resolution of simulations, the choice of

hydrological model, and the catchment size in determining the change of extreme summer-fall

flow in the future under climate change. A large-ensemble regional climate model simulation

(ClimEx) was bias corrected by multi-variate bias correction (MBCn) and coupled with two

distributed hydrological models (WaSiM and Hydrotel) to simulate streamflow over four

catchments with different sizes across Quebec. Simulations were conducted for different

spatial (100, 250, 500, 1000 𝑚) and temporal (24- and 3-hour time-steps) resolutions. Multiple
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experiments were conducted to reject/validate two main hypotheses: 1) For small catchments,

by increasing temporal resolution, the simulated extreme summer-fall flow in the future period

becomes larger than that of the reference period. 2) The change in the spatio-temporal scale

of modeling causes variability in the projection of extreme flow. By increasing the catchment

size, the contribution of the choice of hydrological model and spatial scale in that variability

increases, and that of the time-scale decreases.

The experiments show that:

1. A pattern regarding catchment size and temporal resolution exists: simulations with 3-hour

time-steps (Figures 4.6, 4.7, 4.8) predict that extreme summer-fall flow will increase in the

far-future for small catchments, regardless of model and spatial resolution. Therefore, the

first hypothesis is verified for this case study. Moreover, the choice of a simulation time

step is a major determinant in the variability of flood projection for small catchments and

by increasing catchment size, its influence decreases (Figure 4.10). As a result, part of

the second hypothesis concerning the relationship between temporal resolution and small

catchments is also verified for this case study.

2. For large catchments, the choice of spatial resolution has a larger contribution in the

simulation of extreme summer-fall flood (Figures 4.6 and 4.10). This however does not

exceed the contribution of the choice of time-step (Figure 4.10). Moreover, if the time-step

is 24-hour, it is likely that the spatial resolution changes the direction of the trend for small

catchments (Figures 4.8 and 4.9 and section 4.4). Therefore, part of the second hypothesis

concerning the impact of spatial resolution on large catchments cannot be verified here.

3. The choice of a hydrological model can be important for both small and large catchments.

It appears that by increasing the catchment’s size this choice becomes more important (e.g.,

Figure 4.8 and 4.10). Therefore, part of the second hypothesis regarding the impact of

the choice of a hydrological model on large catchments can be verified here. In all cases,

WaSiM shows a higher variance than Hydrotel for streamflow projections (Figure 4.6).
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Abstract

This study uses a machine learning technique (i.e., Random Forest) and a process-based

hydrological model for regionalization. The approach shows skill in simulating streamflow in

pseudo-ungauged catchments. We ran the model across different spatio-temporal resolutions

and investigated three hypotheses: (1) Finer time-step adds more information to the calibrated

parameters and improves the efficiency of the regionalization model. (2) The parameters

approximated by RF are spatially consistent and transferrable across the spatial scales. (3)

Refining the spatial resolution of catchment descriptors (CDs) will improve regionalization

skills. The results show that refining the time step significantly improves the modeling skill

(≈ 12% improvement at a significance level of 0.05). In addition, the regionalization model

maintains the spatial correlation between CDs and parameters. Finally, for simulations at a daily

time step, spatially refined CDs improve the regionalization skill (≈ 10% improvement).

5.1 Introduction

Process-based distributed hydrological models are suitable tools for understanding the complexity

of hydrological processes, which take place on heterogeneous media under ever-changing internal

(e.g. land use change) and boundary conditions (e.g. climate change) (Beven, 2011; Blöschl
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et al., 2019; Blöschl & Sivapalan, 1995; Fatichi et al., 2016). Corresponding with the evolution

of computational power, increasingly sophisticated distributed models have been applied across

various hydrological problems including flood forecasting, climate change impact assessment,

and analyses of hydrological processes at different spatio-temporal scales (e.g. Addor et al.,

2014; Blöschl et al., 2008; Kumar et al., 2013; Rakovec et al., 2016; Thober et al., 2019; Martel

et al., 2020a). However, for most process-based hydrological models, some parameters cannot

be directly determined and therefore, the generally accepted practice is to calibrate model

parameters using observed data (Fatichi et al., 2016). Still, in many locations, even in developed

countries, there is a lack of observed streamflow data (at the outlet or at internal locations of the

catchments), or it is unreliable due to various difficulties (e.g. inaccessibility of the location,

extreme weather conditions, vandalism etc.). (Sivapalan, 2003; Guo, Zhang, Zhang & Wang,

2021)

To stress the practical importance of this issue, the International Association of Hydrological

Sciences (IAHS) has declared the period of 2003-2012 to be the decade of prediction in ungauged

basins (PUB Sivapalan, 2003). The Model Parameter Estimation Experiment (MOPEX) project

(Duan et al., 2006) is another example of an international large-scale initiative on the topic

of regionalization. Even though this decade of PUB and the MOPEX project have fostered

significant progress (e.g. Razavi & Coulibaly, 2017; Hrachowitz et al., 2013; Parajka et al.,

2013), there still exists a need to improve regionalization techniques. The objective of any

regionalization technique is to find a relationship between a model parameters and catchment

characteristics, which can then be used to estimate the parameters for ungauged catchments.

This relationship can further be extrapolated to other modeling elements (i.e. catchments,

sub-catchments, hydrological response units).

In general, regionalization techniques can be classified into similarity-based methods (e.g. Van-

dewiele & Elias, 1995; Randrianasolo, Ramos & Andréassian, 2011; Samuel, Coulibaly & Met-

calfe, 2011; Yang, Magnusson & Xu, 2019b; Arsenault, Breton-Dufour, Poulin, Dallaire & Romero-

Lopez, 2019), and regression-based methods (e.g. Abdulla & Lettenmaier, 1997b; Wa-

gener & Wheater, 2006; Teutschbein, Grabs, Laudon, Karlsen & Bishop, 2018). The underlying
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assumption for similarity-based methods is that model parameters are transferable between

catchments with similar physical characteristics or on the basis of proximity; Yet, regression-

based methods rely on finding a relationship between catchment descriptions (CDs) and model

parameters (Razavi & Coulibaly, 2013, 2017; Guo et al., 2021)

In terms of procedure, Samaniego et al. (2010) classified the approaches into post regionalization

and simultaneous regionalization techniques. For post-regionalization, the links between the

parameters of a hydrological model and CDs are established after calibration over a set of reference

(gauged) catchments using multivariable predictor-predictant analyses such as regression. Those

links are further cross-validated over the test catchments (e.g. Abdulla & Lettenmaier, 1997a,a;

Parajka, Merz & Blöschl, 2005; Wagener & Wheater, 2006; Heuvelmans, Muys & Feyen, 2006).

For simultaneous regionalization, an a priori relationship between the parameters and the CDs is

assumed and takes the form of a transfer function. Then, the parameters of that function are

calibrated and coupled with the hydrological model. In this line of research, Hundecha & Bárdossy

(2004) used simultaneous regionalization techniques by defining functional relationships between

model parameters and catchment descriptors. Following up studies such as Götzinger & Bárdossy

(2007); Hundecha, Ouarda & Bárdossy (2008); Pokhrel, Gupta & Wagener (2008) and Troy

et al. (2008) applied similar strategies.

Regardless of the technique used for a specific regionalization problem, a loss of modeling

efficiency from calibration to regionalization is to be expected. This is because, first, a set

of calibration parameters can only be one solution among many for the calibration problem.

Therefore, using a specific set of model parameters out of all possible solutions might not

necessarily provide complete information for establishing the CDs-parameters relationship

required for regionalization (Saadi et al., 2019; Olden & Poff, 2003). Second, the conventional

time-space averaged catchment descriptors (e.g., mean temperature or precipitation, or mean

elevation over catchments) may contain only limited information, as these predictors do not

represent the spatial variability of soil type, land cover, and physiographic characteristics of

the catchments (Merz et al., 2020). As a result, a transfer function derived from such sets of
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predictors-predictands might not suitably explain the relationship between the parameters and

CDs (Kim & Kaluarachchi, 2008).

Another concern regarding regionalization is the a priori relationship assumed between model

parameters and CDs. These assumptions are typically based on process understanding, expert

knowledge, and empirical evidence (Hrachowitz et al., 2013). For example, Hundecha & Bárdossy

(2004) related parameters for snowmelt to land use, and evaporation to soil type and land use.

(Samaniego et al., 2010), assumed a more complex relationship between parameters and CDs

using pedotransfer functions. Such assumptions however are ambiguous. First, the link between

parameters and CDs is not clear in most cases (Merz & Blöschl, 2004). Second, there are

different catchment descriptors which are correlated (e.g., precipitation and physiographic data)

and provide similar degree of information, resulting in equal power of prediction (Merz et al.,

2020). Hence, the choice of CDs that control a specific parameter is not clear, making it difficult

to constrain parameters with hydrologically reasonable transfer functions.

Machine Learning (ML) techniques can learn multi-variable predictor-predictand relationships

(Shen, Chen & Laloy, 2021; Tyralis, Papacharalampous & Langousis, 2019). Having higher

degrees of freedom relative to traditional regionalization methods, ML techniques are capable

of detecting non-linear relationships between predictors and predictands through training over

large numbers of samples (Nearing et al., 2020). Thus, the need to constrain the parameters

with transfer functions, which is laborious and often ambiguous, can be eliminated (Merz

et al., 2020). ML has been used in hydrology mainly for prediction and benchmarking (Hsu,

Gupta & Sorooshian, 1995; Abramowitz, 2005; Best et al., 2015; Nearing, Mocko, Peters-Lidard,

Kumar & Xia, 2016; Kratzert et al., 2019a; Kratzert, Klotz, Hochreiter & Nearing, 2020).

Different clustering techniques have also been used for the purpose of catchment classification

occasionally, addressing PUB under the context of physical similarity (Papageorgaki & Nalbantis,

2016; Kanishka & Eldho, 2020). The dominant ML algorithm used in hydrology and water

resources sciences is the multi-layer perceptron (Shen, 2018).
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Despite its applications in the academic community, ML techniques have limited use in the

operational community Abrahart et al. (2012); Kirchner (2006). This is because of ML models’

“black box” nature, in which the internal processes between inputs and outputs remain hidden

or complex to track. Transparency and clarity are necessary for decision-making (Boucher,

Quilty & Adamowski, 2020; Rudin, 2019). Water managers prefer to have the “right answers”

for the “right reasons” to avoid unknown risks (Kirchner, 2006). One approach to close the gap

between these two communities is to use ML techniques in parallel with hydrological models.

This helps preserve the physical reality and interpretability of the modeling, while “the underlying

physical processes” that hydrological models cannot typically capture are approximated by

numerical ML techniques (Kasiviswanathan, He, Sudheer & Tay, 2016).

ML techniques are well suited to calculate the hydrological model parameters, for which a

tangible physical relationship is not available. Random forest (RF; Breiman, 2001), is a powerful

ML technique, which has found relatively limited use in hydrology (Tyralis et al., 2019). Some

examples include flood and drought analyses (Anderson, Lucas & Bonfils, 2018; Bachmair,

Svensson, Hannaford, Barker & Stahl, 2016; Muñoz, Orellana-Alvear, Willems & Célleri, 2018;

Sultana, Sieg, Kellermann, Müller & Kreibich, 2018), analyses of hydrological signature and

flow regime (Addor et al., 2018; Snelder et al., 2009; Balázs, Bíró, Dyke, Singh & Szabó,

2018). RF is a supervised learning method based on regression trees (Breiman, 2001). The

method belongs to the ensemble learning class, which uses bagging (bootstrap and aggregation),

decorrelation and randomization techniques (Tyralis et al., 2019). RF is interpretable to some

extent, as the algorithm is based on decision trees, in which the flow of information is trackable.

Additionally, RF is fast, stable, and it resists overfitting (Boulesteix, Janitza, Kruppa & König,

2012). The technique can handle small to large sample sizes even if the predictors are highly

correlated (Ziegler & König, 2014). Such properties are useful to regionalize hydrological

model parameters in the case of computationally intensive hydrological modeling.

The present research aims at the regionalization of a process-based distributed hydrological

model. Given that distributed models are sensitive to the heterogeneity of the system (Markhali
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et al., 2022), we study the effects of different temporal resolutions and their interaction with

spatial discretization in regionalization based on the following hypotheses:

I. Finer time-step adds more information to the calibrated parameters and improves the

efficiency of the regionalization model.

II. The parameters approximated by RF are spatially consistent and transferrable across the

spatial scales.

III. Refining the spatial resolution of CDs will improve the regionalization skill.

The structure of the paper is as follows: Section 5.2 introduces material and methods including

data, study area, and the methodologies used for calibration of hydrological model and building

RF model. Section 5.3 provides the results and discussion and Section 5.4 gives a summary and

the conclusions regarding our hypotheses.

5.2 Material and Methods

5.2.1 Hydrological model

Hydrotel, a semi -distributed and computationally intensive physics-based model, is used for

this research (Fortin et al., 2001a,b). The model is used by the Direction de l’Expertise Hydrique

(DEH) as part of their hydrological and flood forecasting system across the province of Quebec.

For spatial inputs, the model receives GIS-based gridded data including land cover, soil type, and

Digital Elevation Model (DEM) rasters as well as river network and lake polygons. The grids are

further aggregated into multiple Relatively Homogeneous Hydrological Units (RHHUs), which

are hillslopes . To represent the hydrological processes, the model offers options through various

submodels providing a flexibility to the modeling practice. As Figure 5.1 illustrates, Hydrotel

consists of six main submodels including interpolation of meteorological data, vertical water

budget, snow melt/accumulation, potential evapotranspiration, surface routing, and channel

routing. A mixture of empirical, conceptual, and physical relationships constitute the governing

equations to represent the processes and sub-processes. Overall, 27 parameters need to be

specified. Some of these parameters can be fixed for simulations using expert knowledge
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sensitivity analyses (Huot et al., 2019) . However, other parameters must be calibrated. The list

of the parameters calibrated in this study along with their descriptions are provided in Table 5.1.

Figure 5.1 Schematic presentation of the hydrological processes and sub-process
embedded in Hydrotel

5.2.2 Study Area and Data

We selected 171 catchments from the southern and eastern parts of the province of Quebec in

Canada. These catchments are selected among around 400 catchments available in the database

provided by the DEH (http://www.cehq.gouv.qc.ca/hydrometrie/historique_donnees/default.asp).

The database includes geographical coordinates and some physiographic information of the

catchments as well as observed discharge in daily and hourly time-steps. We eliminated

http://www.cehq.gouv.qc.ca/hydrometrie/historique_donnees/default.asp
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Table 5.1 Hydrotel’s calibrated parameters and their description

Parameter Description (unit) Submodel
L1 First layer thickness (m) vertical budget (BV3C)
L2 Second layer thickness (m) vertical budget (BV3C)
CR coefficient of recession (m/hour) vertical budget (BV3C)

MTD melt threshold deciduous (°C) snow melt/accumulation(degree-day)
MTN melt threshold non-forest (°C) snow melt/accumulation(degree-day)
MTC melt threshold coniferous (°C) snow melt/accumulation(degree-day)
MRD melt rate deciduous (mm/d per °C) snow melt/accumulation(degree-day)
MRN melt rate non-forest (mm/d per °C) snow melt/accumulation(degree-day)
MRC melt rate coniferous (mm/d per °C) snow melt/accumulation(degree-day)
CET coefficient of optimization (-) Potential evapotranspiration(Mcguiness)
TSR transition from snow to rain (°C) Interpolation (Thiessen polygons)

catchments for which all hydrometric stations have been closed prior to 1990, or those with

more than 40% of missing streamflow data in the calibration periods. Figure 5.2 demonstrates

the spatial distribution of the 171 catchments across the province of Quebec.

Observed gridded meteorological dataset (GC3h dataset- precipitation, and maximum and

minimum temperature from 1990-2018) produced by Ministère de l’Environnement et de la

Lutte aux Changements Climatiques by kriging the measurements from over 350 ground stations

on a 10km by 10km grid is used to produce the dataset over fixed grids. The fine spatio-temporal

resolution (3-hour temporal resolution and 10 km spatial resolution) of the dataset is an advantage

over similar products, as the resolution of the modeling is of the interests of the present study.

5.2.3 Experimental Setup

Figure 5.3 schematically demonstrates the methodology developed to test the hypotheses laid

out in the Introduction section. First, the hydrological model is calibrated over the selected

catchments for both 24- and 3- hours time-steps to obtain calibrated parameters. Afterwards,

the RF regionalization model is built using the calibrated parameters and CDs as training data

according to the first column of Figure 5.3: Building Random Forest (RF) Model. To test

hypothesis one, the outputs of the RF-based regionalization model are further used as inputs
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Figure 5.2 Distribution of the 171 catchments used in this study, located in the southern
part of Quebec

for Hydrotel to assess the accuracy of parameter estimation at « pretend » ungauged locations.

By « pretend » ungauged locations, we mean that even though those catchments are gauged,

we pretend that they are not, so as to verify the capacity of the parameters estimated using

the RF model to provide accurate streamflow simulations with Hydrotel. Finally, we use the

regionalization model in the specific context of nested catchments to evaluate model efficiency

for internal ungauged locations and examine hypotheses 2 and 3 according to the second column

of Figure 5.3: Test and Analyses. We discuss the details of the procedures in the following.
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Figure 5.3 Schematic description of the methodology for this project

5.2.4 Calibration

The dynamically dimensioned search algorithm (DDS; Tolson & Shoemaker, 2007) is used to

calibrate Hydrotel. Given that the procedure is computationally intensive, a set of 500 trials per

catchment using the Kling-Gupta Efficiency (KGE; Gupta et al., 2009) as the objective function

is fixed. The KGE was computed using Equation 5.1

𝐾𝐺𝐸 =

√︂
(𝑟 − 1)2 + (𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)2 + ( 𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)2 (5.1)
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where r is the linear correlation between observations and simulations, 𝜎𝑠𝑖𝑚 and 𝜇𝑠𝑖𝑚 are

respectively the standard deviation and mean of the simulated streamflows, whereas 𝜎𝑜𝑏𝑠 and

𝜇𝑜𝑏𝑠 are the standard deviation and mean of the observed streamflows.

The length of the calibration period varies between catchment depending on data availability. For

most catchments, this period covers 10 years, between 1990 and 2017 in line with the available

meteorological data (normally 2008-2017 unless the measurement of the streamflow stopped

before 2017). Yet there are few catchments for which either measurements stopped before 2000

or have recently resumed and therefore have less than 10 years of data. The mean (median)

KGE of calibration for 24-hour time-step is 0.81 (0.87) and for 3-hour time-step is 0.71 (0.84).

5.2.5 Catchment Descriptors

We define a set of catchment descriptors based on the existing literature (e.g., Arsenault et al.,

2014; Merz & Blöschl, 2004; Merz et al., 2020). These catchment descriptors can be classified

into four major groups. Table 5.2 presents the complete list of CDs used in this study along with

their description, units, and range among the 171 catchments.

5.2.6 Random Forest Model

The Random Forest (RF) algorithm is derived from decision trees. A decision tree model

divides the input space into a number of simple segments, typically using sequential binary

decision rules. Each decision splits the region into two (or more) nodes which are referred to

as leaves. The number of decision rules is referred to as the depth of a tree. The average (in

case of regression problems) or majority of votes (in case of classification problems) for each

segment determines the output of the model. Decision trees are intuitive, fast, and interpretable

(Bishop & Nasrabadi, 2006). But there are issues such as greediness (a tree getting trapped in

local optimum) and arbitrariness (sensitivity over early splits and over the data points) of the

algorithms that limit their applications (James, Witten, Hastie & Tibshirani, 2013).
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Table 5.2 List of catchment descriptors (CDs), their definition, group type and range
(minimum, average, and maximum)

CD definition group type min average maximum
AI aridity index (ETPM/PRM) meteorological 0.4 0.5 0.6

ETPM mean annual potential evaporation[mm] meteorological 403.8 528.7 640.5
PRM mean annual precipitation [mm] meteorological 886.6 1076.5 1372.5
TMM mean annual temperature [◦𝐶] meteorological 0.3 3.6 6.8
TMAX mean annual maximum temperature [◦𝐶] meteorological 1.6 4.9 8.1
TMIN mean annual minimum temperature [◦𝐶] meteorological -1.1 2.2 5.5
WR water (% of surface area) land cover 0.0 0.0 0.1
BS bare soil (% of surface area) land cover 0.0 0.0 0.2
DF deciduous forest (% of surface area) land cover 0.1 0.3 0.6
AL agriculture lands (% of surface area) land cover 0.0 0.2 0.9
CF coniferous forest (% of surface area) land cover 0.0 0.4 0.8
IR impermeable (% of surface area) land cover 0.0 0.0 0.8
BL bogland (% of surface area) land cover 0.0 0.0 0.4
WL wetland (% of surface area) land cover 0.0 0.0 0.2
SN sand (% of surface area) soil type 0.0 0.5 1.0
SL sandy loam (% of surface area)‘ soil type 0.0 0.4 1.0
SiL silt loam (% of surface area) soil type 0.0 0.0 0.7
CL clay loam (% of surface area) soil type 0.0 0.0 1.0
SA surface area [km²] topographical 2.8 1800.0 22113.1
DD drainage density [km/km²] topographical 0.0 0.3 2.3
LR lake ratio[km/km²] topographical 0.0 0.0 0.2

WTI wetness index topographical 7.1 8.6 11.0
MSLP mean slope topographical 0.5 6.8 21.3
MEL mean elevation topographical 20.4 344.7 858.4
CVEL lcoefficient of variation of elevation topographical 90.0 186.8 305.0
MASP median aspect topographical 7.1 8.6 11.0
LAT latitude [decimal degree] topographical 44.9 47.2 52.2
LON longitude [decimal degree] topographical -79.3 -71.6 -57.9

RF has been proposed to integrate out the effect of arbitrariness of decision trees. A RF is a

collection of decision trees and can handle both regression and classification problems. The

idea is to train multiple decision trees over multiple samples of the data and take the expectation

of that ensemble as the output. In order to create multiple samples of data, bagging, which is

a combination of bootstrap and aggregation, is used (Breiman, 2001). RF typically limits the

maximum number of input variables corresponding to individual decision trees to maximize

the variance of trees. Averaging over outputs of all trees therefore leads to reduction of the
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error related to the variance of models. For this research a regression RF model is employed to

approximate the hydrological model parameters

One drawback of ensemble tree-based models relative to a simple decision tree is the reduction of

interpretability. While the splitting procedure in decision trees is transparent and can demonstrate

the effect of each split in the space of input variables, it is difficult to interpret an ensemble of

trees. This, however, can be rectified by computing the relative importance of input variables.

We calculate the relative importance of input variables by recording the reduction of error

corresponding with each input variable of a decision tree and average them out over all decision

trees. As a result, a summary of the effect of input variables to approximate the model parameters

can be obtained. Section 5.3.2 details the relative importance of input variables (here CDs) and

the interpretability of the model.

5.2.7 Test and Analyses

For training the model (we use training for RF model and calibration for Hydrotel to distinguish

the two), the catchments with poor KGE in calibration are filtered out to guarantee the quality of

the training data. Furthermore, the catchments are randomly split into training and testing datasets

to evaluate the efficiency of the RF model. In the next step, the efficiency of regionalization for

both 24-hour and 3-hour time-steps are obtained for the test dataset to evaluate the first hypothesis.

The relative gap between the Hydrotel calibrated parameters and RF approximated parameters

is calculated by Equation 5.2. This measure helps compare the efficiency of the simulations

with 3- and 24-hour time-steps for validation of the first hypothesis. The comparisons are not

limited to this measure (Equation.5.2) and other statistical indices (mean, median, variance of the

distributions) are used for evaluation of the model efficiencies. Moreover, the two samples t-test

is employed to evaluate the statistical significance of the differences between 3- and 24-hour RF

and calibrated simulations.

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐺𝑎𝑝 =
(𝑚𝑒𝑑𝑖𝑎𝑛 𝑜 𝑓 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑖𝑒𝑠) − (𝑚𝑒𝑑𝑖𝑎𝑛 𝑜 𝑓 𝑅𝐹 𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑖𝑒𝑠)

𝑚𝑒𝑑𝑖𝑎𝑛 𝑜 𝑓 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦

(5.2)
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Finally, the 2nd and 3rd hypotheses are examined through the framework of nested catchments.

A nested catchment is a parent catchment, which is normally large, that comprises multiple

smaller catchments (or sub-catchments hereafter). The streamflow at different points inside the

catchment is measured. Therefore, it is possible to evaluate the regionalization technique at the

internal ungauged locations. There are three such catchments (i.e. Chaudière, Yamaska, and du

Nord) in the study areas.

Figure 5.4 and 5.5show the DEM and land-cover map of the (a) Yamaska, (b) du Nord, and

(c) Chaudière catchments. The Yamaska catchment includes five sub-catchments as can be

seen in Figure 5.4. In terms of topographic features, the catchment on average is mostly flat,

except its relatively moderate slope on the eastern side. In terms of land-cover (Figure 5.5 a),

the catchment is diverse: The western part of the catchment is covered by agricultural lands

while deciduous forest is the main feature of the central and eastern parts. There is also a rather

large lake in the forested area.

The du Nord catchment includes three sub-catchments. The maximum elevation is even lower

than for the Yamaska catchment, but the proportion of high altitude pixels (Figure 5.4) is higher.

Also, while the dominant land cover feature (Figure 5.5 b) is deciduous forest, a network of

coniferous, lake, impermeable, and agricultural areas give a degree of diversity to this catchment.

Chaudièreis is the parent catchment of two sub-catchments. The DEM of the catchment (Figure

5.4) shows the topography that is mostly flat except the steeped southern and eastern edges.

The dominant feature of land-cover (Figure 5.5 c) is forest, which is a mix of coniferous and

deciduous trees. Agricultural lands are also scattered across the central part and outlet of the

catchment. Megantic Lake can also be seen in the southern part.

We approximate the parameters with the RF model at different levels of spatial discretization for

nested catchments (i.e catchment level, sub-catchment level, and RHHU level) and investigate

their spatial consistency when the spatial resolution is refined (See section 5.3.3). To investigate

hypothesis II, the catchment descriptors at the RHHU level of discretization are extracted from

the nested catchments and plugged into the RF model to approximate parameters per RHHU.
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Figure 5.4 Digital elevation model and boundary of the nested catchments

Subsequently, the spatial consistency of the approximated parameters at the RHHU level is

evaluated by calculating the spatial correlation of the mean elevation (an example CD) and two
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Figure 5.5 land use map of the nested catchments. a: Yamaska, b: Du Nord, c: Chaudière

model parameters: L1 and MTN. Spearman correlation coefficient and least squares regression

are computed. These two criteria are further calculated for the catchment discretization level

and compared with the RHHU level to investigate if transferring parameters from the catchment

to RHHU discretization levels reproduces similar patterns. Note that, for calculating the spatial

correlation at the catchment level, the catchments included in the test dataset are used. Moreover,

a visual analysis of the parameters’ distribution at the RHHU and sub-catchment levels is

performed to highlight the hydrological realism of the parameter approximation at different
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levels of discretization (For this point we performed the tests on Yamaska, as this catchment

shows diversity according to Figure 5.5).

To investigate hypothesis III, we performed simulations with Hydrotel using the parameter sets

corresponding with different levels of discretization derived by RF for the nested catchments

(See section 5.3.4). Inline with the methodology devised to verify hypothesis II, we define

three levels of simulations. 1- Simulations with fully-distributed parameters (FDP), which

corresponds with approximation of parameters by RF at the RHHU level; 2- simulations with

semi-distributed parameters (SDP), which corresponds with approximation of parameters by RF

at the sub-catchment level; and 3- simulations with lumped parameters (LP), which corresponds

with approximation of the parameters by RF at the catchment level. The average efficiency of

these simulations over subcatchments are further compared for 3- and 24-hour time-steps to

highlight the sensitivity of the model over varying spatio-temporal discretization.

5.3 Results and Discussion

In this section the results are presented following this order: Section 5.3.1 provides the RF model

evaluation for 3- and 24-hour time-steps and compares it with the calibration results to investigate

hypothesis I. Section 5.3.2 evaluates the relative importance of CDs in the determination of

model parameters. Section 5.3.3 explores parameter transferability across scales to verify/refute

hypothesis II. Section 5.3.4 is dedicated to multiscale hydrological simulations and sensitivity

of the hydrological model to the spatial discretization to validate hypothesis III.

5.3.1 Model Evaluation

Figure 5.6 illustrates the results of simulations carried out with regionalized (RF) and calibrated

(Cal) parameters for 3- and 24-hour time-steps. Subplot a compares the empirical cumulative

distribution function (ECDF) of the modeling efficiencies. A summary of the statistics regarding

the ECDFs can be found in Table 5.3. The mean (median) of RF distributions for 24- and

3- hour time-steps are 0.68 (0.7) and 0.75 (0.76) respectively, evidencing an improvement of
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the simulations when a finer time-step is used. The 24-hour time-step training data has an

advantage over the 3-hour time-step for calibration in terms of efficiency: the mean (median)

of distributions for 24- and 3-hour time-steps are 0.88 (0.9) and 0.84 (0.85) respectively. As

expected from any regionalization techniques, there is a loss of efficiency from calibration to

regionalization. However, this relative gap (Eq 2) is considerably larger for 24-hour time-step

simulations (22%) than for the 3-hour time-step (12%). Furthermore, the standard deviation

(std) of 24-hour RF distributions is larger (std=0.12) than for 3-hour (std=0.07) time-step.

Figure 5.6 subplot b shows the distributions of RF and calibration parameters in 3- and 24-hour

time-steps. Here, the RF and calibrated parameters are jointly standardized between 0 and 1 to

facilitate the comparisons. As can be seen, the median of the RF and calibration distributions

are in close proximity for most of the cases particularly for mixed degree-day-energy balance

parameters (e.g. MTD to MRC), which demonstrates models successfully approximated the

median of the parameter distribution. However, the spread of calibration parameters is larger

than that of RF parameters and it seems that the regionalization technique tends to systematically

underestimate the spread of the parameters. Comparing the time-step of simulations, the

3-hour RF parameters (i.e. RF-3h) have a better approximation in terms of the median of the

corresponding calibration parameters (i.e. Cal-3h) than that of 24-hour time-step parameters

(e.g. the distance between the median of RF and calibration parameters for L1, L2, MRD, MRN,

and TSR is larger for 24-hour than that for 3-hour time-step) results in better simulations, which

is inline with the first hypothesis.

To explore the statistical significance of the differences between 24-hour and 3-hour simulations, a

two-sample t-test was used. In this test, the null hypothesis is that input vectors are independently

sampled from the same distribution (if input vectors are from different distributions the test

returns 1). The test was applied to the ECDFs of calibration (i.e. Cal-3h and Cal-24h in Figure

5.6 subplot a) and also to the ECDFs of RF (i.e. RF-3h and RF-24h in Figure 5.6 subplot a). The

goal is to investigate the existance of statically significant differences between ECDFs, which

could be attributed to RF simulations when the time-step changes. The results show that while

there are not any statistically significant differences regarding calibration-ECDFs, a significant
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Figure 5.6 Comparing calibration and regionalization simulations for the test dataset
(RF=Random Forest, Cal=Calibration). a) Distribution of the regionalization and

calibration KGE for 3-hour and 24-hour time-steps. b) Standardized distribution of
calibrated and approximated parameters for 3- and 24-hour time-steps respectively

difference at 5% level can be found in RF-ECDFs when the time-step of the simulations varies

from daily to sub-daily (Hypothesis I is verified for our case study).
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Table 5.3 The modeling efficiency (KGE values)
statistics calculated for the test dataset in 3- and 24-hour

time-steps (RF=Random Forest, Cal=Calibration).

Statistics RF-3h RF-24h Cal-3h Cal-24h
Mean 0.75 0.68 0.84 0.88

Median 0.76 0.70 0.85 0.90
Standard deviation 0.07 0.12 0.05 0.07

Null hypothesis (t-test) 1 0

5.3.2 Relative Importance of CDs

Figure 5.7 demonstrates the relative importance of CDs to approximate two selected parameters

(L1 and MTN) for 24-hour and 3-hour time-steps respectively. Those parameters are considered

to be representatives of the vertical water budget and snow melt/accumulation in Hydrotel. As

can be seen, no distinct group of features (i.e. meteorological CDs, topographic CDs, soil

type CDs, land use CDs) controls parameter approximation. For both parameters, the groups

of meteorological (first six, AI to TMIN) and topographic (last 10, SA to LON) data have

similar weights. This is expected as these two groups should be correlated with one another

(Merz & Blöschl, 2004; Merz et al., 2020). Furthermore, Figure 5.7 shows that land-cover

features (WR to WL) are important, particularly for approximating MTN, which is responsible

for snow accumulation and melt. The soil type (SN to CL) shows a lesser degree of importance

to determine the parameters. This might be due to the rather uniform soil texture of the study

area (based on Table 5.2, the median of SiL and CL is zero, showing that the soil type of

the catchments is rather homogeneous with the dominance of sand and sandy loam). The

most important individual features are elevation-related input variables (MEL, CVEL, MASP),

mean annual precipitation and temperature (PRM, TMM), and the percentage of coniferous or

deciduous forests (CF, DF).

According to Figure 5.7, no systematic pattern relating CDs to parameters can be found. In fact,

the weights of many CDs are unexpectedly high in relation to some parameter (e.g. LON to

determine L2). This might be related to equifinality and identifiability in the calibration process.
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Figure 5.7 Relative importance of predictor features in parameters approximated by
RF for simulations with 3-hour time-step

Indeed, it is possible that there exists more than one good parameter set for each catchment, in

particular when model calibration is based on a single type of observation (streamflow) which

might not be enough to constrain the optimization problem. If so, the parameter set used for a

given catchment in the training of the RF model is nothing but a possibility from a sample of

many other possibilities, not to mention the possible interrelations between the model parameters.

This of course could induce uncertainty in the training of the RF model. Furthermore, the

multivariate nature of calibration may cause an inter-correlation of parameters. Therefore, it is

expected that a CD that controls a specific parameter affects many unrelated parameters due to
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the correlation between parameters. These observations support the conclusion from Section 5.1

that it is difficult or improbable to constrain the parameters to an a priori relationship to be used

as a transfer function because some information may remain hidden to the system and reduce

the performance of the regionalization model.

5.3.3 Transferring Parameters Across Scales

To test the transferability of RF approximated parameters from the catchment scale to the RHHU,

we explore the existence of consistent spatial correlation between CDs and parameters across

different levels of discretization. Accordingly, the spatial correlation between the selected

parameters in Section 5.3.2 (i.e. L1 and MTN) and mean elevation was calculated. Mean

elevation was selected, as it is among the leading predictor features controlling approximation

of RF parameters according to Figure 5.7.

Figure 5.8shows the results for the spatial correlation between mean elevation and RF approxi-

mated parameters at different levels of spatial discretization. Figure 5.8 a to e presents the spatial

correlation between parameters and mean elevation for the test dataset with 24- and 3-hour

time-steps at the catchment level (CL) ( for CL resolution, catchments belonging to the test

dataset as discussed in Section 5.8 were used). Figure 5.8 e to p shows the spatial correlation

between parameters and mean elevation at the RHHU level (RL) for three selected catchments

(Chaudière, Yamaska, and Du Nord) as discussed in Section 5.2.

Figure 5.8 a shows that the L1 parameter is positively correlated to the mean elevation (cr=0.5)

at the catchment level for the 24-hour time-step. Similarly, Figure 5.8 e, i, and m, shows positive

correlation coefficient at the RHHU level, and the values are similar to those obtained at the

catchment level. Particularely, the Yamaska and Du Nord catchments (Figure 5.8 i and m) show

higher degree of similarity to the catchment level (Figure 5.8 a) in terms of the magnitude of

correlation coefficient and the least squares regression line (drawn in red). Regarding the 3-hour

time-step for L1 (Figure 5.8 b, f, j, n), there are larger differences in the magnitude and even

direction of the correlation coefficient between catchment and RHHU levels than that of 24-hour
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Figure 5.8 Spatial correlation of RF approximated parameters (L1 :first layer
thickness and MTN : melt threshold non-forest) and elevation: a to d- Catchment Level
(CL) parameter resolution; e to p- RHHU Level (RL) parameter resolution. Ch, Ya,

and DN represent Chaudière, Yamaska, and Du Nord catchments respectively. The red
line shows the least squares regression line

time-step. Interestingly, the spatial correlation at the catchment level is 0.32 in Figure 5.8 b,

while Yamaka shows a 0.18 correlation coefficient in the opposite direction according to Figure
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5.8 j. This might be due to the rather lower importance of mean elevation as CD for determining

L1 at the 3-hour time-step than that of the 24-hour time-step according to Figure 5.7.

Figure 5.8 c, d, g, h, k, l, o, p shows that there is a high negative correlation between MTN

and mean elevation regardless of the level of discretization, catchment, or time-step of the

simulations. Also, the least squares regression line is similar for all cases. The reason for

such similarity is the high degree of importance of the mean elevation (MEL) to determine

parameters, as evidenced in Figure 5.7.

To further explore the transferability of parameters across scales, Figures 5.9 illustrates the

distribution of RF-estimated parameters at the 24-hour time-step (L1 and MTN) across the

Yamaska catchment at the RHHU and sub-catchment levels. Comparing Figure 5.9 a and c

with Figure 5.5 a, there is an impact of the presence of agricultural lands on the distribution

of the parameters. Notably, the distinct increase in the magnitude of L1 at the western side of

the catchment (Figure 5.9a) matches the agricultural area in Figure 5.5 a, evincing a direct link

between land cover and parameter distribution at the RHHU discretization level. Yet the effect

of agricultural land on the L1 distribution at the sub-catchment level (Figure 5.9 b) cannot be

directly observed due to lower resolution of the simulation than that for RHHU level, which

leads to the spatially averaged values for L1 over the sub-catchments.

A similar pattern is visible regarding the MTN distribution: a smooth transition from west to

east at the RHHU level (Figure 5.9 c), in contrast with an abrupt transition of MTN in the eastern

side of the catchment at the sub-catchment level (Figure 5.9 d). In panels c and d, the distribution

of MTN appears mainly controlled by the distribution of elevation (i.e. higher elevation leads

to a lower MTN) according to Figure 5.4 (Yamaska), which is consistent with Figures 5.7 (i.e.

high degree of importance for mean elevation) and 8 k (i.e. high negative correlation between

MTN and mean elevation).

Figures 5.8 and 5.9 show that the distribution of parameters at the RHHU level is spatially

consistent, in the sense that a spatial correlation between variation of CDs and parameters is

observable. Therefore, RF-approximated parameters can reasonably reflect the characteristics of
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Figure 5.9 Distribution of RF approximated parameters (L1 and MTN) in 24-hour
time-step across the Yamaska catchment at RHHU (subplots a and c) and sub-catchment

(subplots b and d) discretization levels

the catchments at finer resolutions even if the resolution of the training data is coarse (Hypothesis

II). In the next section, we will verify if using more spatially representative CDs has any benefit

in terms of efficiency of the regionalization scheme (Hypothesis III).

5.3.4 Multi-Scale Simulation

Figure 5.10 shows the average KGE of all nested catchments for different discretization levels.

Figure 5.10 a and b show the mean KGE of simulations for Chaudière subcatchment; Figure 5.10

c and d show the mean KGE of simulations for the Yamaska subcatchments; and Figure 5.10

Subplots e and f show the mean KGE of simulations for the du Nord subcatchments, all for 3-hour
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and 24-hour time-steps respectively. The average efficiencies show consistent improvement as

the number of distributed parameters increases at the 24-hour time-step (Figure 5.10 a, c, and e).

The efficiency for Yamaska (Figure 5.10 c) shows the greatest improvement (12%) followed by

du Nord (6%- Figure 5.10 e) and Chaudière (4%- Figure 5.10 a). This is expected as Yamaska is

the most heterogeneous catchment, with a distinguishable transition from forest to agricultural

lands (Hypothesis III is verified for those catchments at the 24-hour time step). Therefore,

simulations with fully distributed parameters helps better represent catchment heterogeneity

leading to an increase in model skill for the Yamaska catchment .

Figure 5.10 Average efficiency of RF simulations for each nested catchment at
different levels of parameter discretization: Fully Distributed Parameters (FDP), Semi

Distributed Parameters (SDP), and Lumped Parameters (LP)
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No pattern can be detected regarding 3-hour time-step simulations, even for the most diverse

catchment in terms of land cover types (Yamaska). This observation is in line with the

results presented in Figure 5.8, at least for the L1 parameter. The spatial correlations between

this parameter and the mean elevation at different levels of the spatial discretization is less

consistent for the 3-hour time-step than for the 24-hour time-step. The results suggest that such

inconsistency in transferring L1 from the catchment to RHHU level is a potential cause for the

lack of improvement in modeling efficiency at the 3-hour time-step when the spatial resolution

is refined. This premise however cannot be verified here as there are multiple parameters and

catchment descriptors involved in the estimation of parameters at different levels of discretization.

In the following we analyze the hydrograph of the Yamaska catchment at 3- and 24-hour

time-steps to investigate the impact of the choice of time step.

Figure 5.11 shows the mean annual streamflow at the outlet of the Yamaska catchment with 24-

and 3-hour time-steps. Here, the streamflow is reproduced at different levels of discretization and

compared with observed streamflow. For clarity, a segment of the hydrograph from mid-May

to early June is selected and enlarged. Figure 5.11 a, shows a lag between simulations with

lumped parameters (red) and simulations with semi- and fully-distributed parameters (green and

blue respectively).Using spatially distributed parameters improves the simulation by removing

this lag. For 3-hour simulations, the lag between the lumped parameters simulations, and the

others has been considerably reduced due to the finer temporal resolution. Therefore, using

RF-approximate parameters at the RHHU and sub-catchment levels has limited potential to

improve the simulations when the temporal resolution is fine (Hypothesis III is not verified for

this case study, with 3-hour simulations).
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Figure 5.11 Mean annual hydrograph for the Yamaska catchment

5.4 Conclusion

In this paper, we used a ML technique (i.e., RF) in conjunction with a process-based hydrological

model for regionalization. The approach showed skill in simulating streamflow in pseudo-

ungauged catchments (Figure 5.6 ). We further ran the model across different spatio-temporal

resolutions and investigated three hypotheses: (I) Finer time-step adds more information to

the calibrated parameters and improves the efficiency of the regionalization model. (II) The

parameters approximated by RF are spatially consistent and transferrable across the spatial
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scales. (III) Refining the spatial resolution of CDs will improve the regionalization skill. The

summary and conclusion about each hypothesis are the following:

1. Refining the time-step of the regionalization shows that simulations at a 3-hour time-step

outperform a 24-hour time step (Figure 5.6). The two samples’ t-test confirmed its statistical

significance at a 5% significance level (table 5.3). Therefore, the results verify hypothesis I

for this case study.

2. Approximating the parameters at different discretization levels (catchment, sub-catchment,

and RHHU) shows that the parameters are spatially consistent. Figure 5.8 shows that

the regionalization model maintains the spatial correlation between CDs and parameters.

Furthermore, Figure 5.9 shows that the spatial distributions of the model parameters reflect

the variation of topographic and land cover characteristics. Therefore, the results verify

hypothesis II for this case study.

3. Figure 5.10 shows that using spatially refined CDs at daily time-step improves the regional-

ization skill, depending on the degree to which the catchment is heterogeneous (i.e., higher

skill for more heterogeneous catchments). However, a clear pattern once the time-step

is 3-hour has not been found (Figures 5.10 and 5.11). Hence, the results cannot verify

hypothesis III.





CHAPTER 6

GENERAL DISCUSSION

This research suggests three general hypotheses defined under an umbrella objective, which is to

quantify the impact of the spatio-temporal representation in distributed hydrological models.

The hypotheses are as follows:

1. The choice of level of spatio-temporal discretization alters model parameters, which leads

to uncertainty in streamflow and flood simulation. By increasing catchment area, the

contribution of the choice of spatial scale and hydrological model in such uncertainty

increases, and that of time-step decreases.

2. For small catchments (< 500𝑘𝑚2), refining temporal resolution of simulation (from daily to

subdaily) increases the relative change (from reference to future) of extreme summer-fall

flow. Refining temporal resolution will not significantly affect projected extreme summer-fall

flow for large catchments (> 1000𝑘𝑚2).

3. There does exist relationships between model parameters and catchment descriptors that

can be approximated by the random forest method. The underlying information related to

catchment characteristics is transferable across scales through that approximation. Using

fine-scale (in time and space) catchment descriptors improves the skill of the regionalization

model.

This chapter provides a general discussion of the key findings of this research to link the results

presented in chapters 3 to 5. Each hypothesis will be discussed individually. This is followed by

specifying the study’s limits, future work recommendations, and a brief summary.

6.1 Uncertainty linked to heterogeneity

Spatial resolution- The results presented in Chapters 3 and 4 suggest that there is uncertainty

linked to the spatial resolution. This is in line with the studies focusing on peak flow simulation

of urban catchments (Cao et al., 2020a; Ichiba et al., 2018; Warsta et al., 2017). This uncertainty

can be seen in simulation of low, high, and extreme flow (Figures 3.5, 3.11 to 3.13), extreme
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flow projection (Figures 4.6 and 4.10), and other hydrological variables such as AET, snow

depth, and base flow (Figures 3.6 and 3.7). This uncertainty has no correlation with catchment

size (Figures 3.3,3.4,3.5). Several factors are included in the modeling behavior once the spatial

resolution is altered. In two examples (catchments Aux Brochets and Boyer), using different

spatial resolutions changed the spatial distribution of different hydrological variables and affects

the final streamflow response at the outlet (See Appendix I and Section3.4). Such response

might be a result of their relatively flat surfaces with a large portion of farmlands (see Table I-2).

Hydrological model- The choice of hydrological model is important in determining the spatio-

temporal variability. Figure 3.5 shows a wider spread for WaSiM than that for Hydrotel. Moreover,

Figure 4.10 shows that the choice of model contributes largely to the variability of simulated

summer-fall extreme flow. For Hydrotel, grids are aggregated to create hydrological response

units (HRU). Such aggregation can eliminate spatial information like surface connectivity and

subsurface variability. Unlike Hydrotel, in WaSiM, the hydrological processes are computed at

the scale of the raw spatial resolution of the inputs (i.e., land use matrix, DEM, and soil type

matrix), without any aggregation to generate simulation units. As a result, spatial resolution

variation creates a larger variability for simulations with WaSiM than for Hydrotel. While the

response of more sophisticated process-based models is expected to be more realistic, there is no

guarantee for a better simulation by these models (Seiller et al., 2017; McDonnell et al., 2007;

Beven, 2000; Savenĳe, 2009; Clark et al., 2011). Comparing WaSiM and Hydrotel, at least

in streamflow simulations, the higher level of model complexity for WaSiM leads to a larger

uncertainty corresponding to spatio-temporal discretization, with no significant benefit in terms

of modeling skill.

Time-scale- Based on the results presented in chapter 3, the temporal scale has only a minor role

in the amount of uncertainty linked to catchment heterogeneity (Figures 3.5 and 3.8 to 3.10).

Changing the time-step from 24- to 3-hour creates a larger variability, particularly for WaSiM

simulations, which could be attributed to the more complex structure of WaSiM compared to

Hydrotel. Contrary to the present time, the contribution of time-step in the variability of extreme

flow in the future is considerable. This will be further explained in the next section.
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6.2 Extreme flow projection

Based on Figures 4.3 to 4.4, global warming will reduce spring freshet peak flow (up to 60%

decrease by the period 2081-2100, Figure 4.5). For summer-fall extreme flow, the results show

an increase in magnitude in the future for small catchments, regardless of spatial resolution

(Figures 4.6 and 4.7). As discussed in chapter 1, such a change is attributed to the increasing

water-holding capacity of the atmosphere due to atmospheric warming and available humidity

because of increased actual evapotranspiration (Yin et al., 2018; Westra et al., 2014).

Based on Figures 4.6 and 4.7, for subdaily simulations, there is a pattern regarding catchment

size and the magnitude of change of extreme summer-fall flow. By decreasing catchment

size, the magnitude of the extreme summer-fall flow increases by around 50%, and for large

catchments, it decreases. The reason can be attributed to the shorter residence time of water

in small catchments, and the spatial distribution of convective events that cover the whole

area of such catchments at once . For larger catchments, convective rainfall is hardly relevant

(Blöschl, 2022b). Given the average rise of AET (30% increase, Figure 4.5), the catchment

wetness is already at the lower level leading to lower magnitudes of flooding in the future for

large catchments. While this is true that the same conditions (i.e., higher AET) exist for small

catchments, the flood mechanism for short-duration rainfalls is infiltration excess (as apposed

to saturation excess for large catchments), for which soil wetness before intense rainfall is not

relevant (Blöschl, 2022a).

6.3 Multi-scale regionalization

Chapter 5 suggests that the knowledge from gauged catchments can be transferred to ungauged

catchments using a random forest regionalization model. In this context, using refined temporal

resolution (3-hour time-step) showed a significant improvement in regionalization skill compared

to daily time-step (Figure 5.6). In addition, the information can be transferred across spatial

scales, i.e., from low resolution to high resolution. As a result, a parameter set can be obtained

per HRU, which in turn enables launching simulations in a fully distributed mode. The results
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show a benefit to using more spatially representative catchment descriptors for daily simulations

(Figure 5.10).

Different groups of predictors are used (including meteorological, land cover, soil type, and

topographic predictors) to approximate distributed hydrological model parameters. Comparing

relative importance of these groups, no specific pattern emerged (Figure 5.7). However, the

weights for each group are different. Soil type predictors have a lower importance compared to

other groups. This is not in line with the results of Merz et al. (2020), in which no significant

advantage over predictor groups was observed. The reason could be two-fold. Either the soil

type of the study area is not diverse enough to influence catchment response, or the hydrological

model is not sensitive enough to the soil type. Figure 6.1 shows the distribution of all predictors,

which are separated by vertical black lines based on their own groups. In the column related to

the soil type predictors, narrow distributions with outlier values are detectable for silt (SL) and

clay (CL), showing a lack of diversity regarding soil type. Meteorological, topographic, and

land cover predictors have wider distributions than soil predictors, which have greater powers to

approximate hydrological model parameters based on Figure 5.7.

6.4 Recommendations for future studies

The limits of this research are as follows: first, the hypotheses are examined over a limited

number of catchments located in Quebec, Canada. Therefore, the results cannot be extrapolated

to locations with different climate conditions or flood regimes. Second, due to the considerable

computational costs of calibration and simulation of the process-based hydrological models, the

number of catchments studied is inevitably limited. The results are valid for these case studies,

and adding other catchments may change these results. Third, we used one large-ensemble

regional climate model for flood projections. Given that climate models are a major source of

uncertainty in the projections, adding more models may change the projection results. Fourth,

the uncertainty regarding observational data and using different datasets for calibration and bias

correction were not considered.
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Figure 6.1 Distribution of catchment descriptors (predictors)
used for regionalization

The main issue in dealing with the application of process-based distributed hydrological models

is their computational costs. While dramatic progress regarding computational power has been

achieved in the last few decades, using these models still seems a daunting task. For example,

calibration of a single catchment with a complex model like WaSiM may take weeks, if not

months, even if high speed CPUs are used. Surrogate models can be a solution to this problem.

Multiple approaches exist to create surrogate models for reducing the modeling cost. One

approach is to use "low-fidelity" models to represent the original or "high-fidelity" model. The

"high-fidelity" is the most accurate and desirable option of the modeling, and the "low-fidelity"

model is a cheaper alternative to that option with adequate accuracy (Razavi, Tolson & Burn,

2012; Huot, 2019).
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In this study, we proposed a method to create an ensemble of simulations for process-based

models. The method consists in using a combination of different parameter resolutions (obtained

from calibration) and catchment descriptors resolutions. The results show that parameters

are transferable across scales for simulations. In this sense, the parameters calibrated from a

low-resolution scale, i.e., the "low-fidelity" model, can be used for a high-resolution simulation,

i.e., the "high-fidelity" model. This resulted in a sharp decrease in the computational time of the

calibration. Figure 6.2 shows how coarsening spatial scale can significantly reduce the run-time

for an 8-year simulation of the Aux Brochets catchment (a medium catchment) with WaSiM. In

this figure, 𝑅 with a number represent the spatial resolution in 𝑚2 used for calibration, with a

3-hour (3h in the figure) or 24-hour (24h) time step. Note that this approach can be recommended

for large catchments (> 500𝑘𝑚2) as it may cause distortion in simulations for small catchments

according to Figures 3.8 to 3.10.

Investigating the impact of spatio-temporal scale in conjunction with the structural uncertainty is

a potential research topic. This research suggests that the choice of hydrological model is essential

in determining the variability of simulations with different spatio-temporal resolution. While

multiple papers have investigated structural uncertainty (e.g. Seiller et al., 2017; Chlumsky, Mai,

Craig & Tolson, 2021; Gupta & Govindaraju, 2019), they have not focused on spatio-temporal

issues, for instance how increasing the model’s complexity interacts with the uncertainty linked

to the catchment heterogeneity.

Another opportunity for future works is using Convection Permitting Regional Climate Models

(CPRCM) to overcome the shortcomings of the current RCMs in the projection of sub-daily

rainfall. CPRCMs are high-resolution climate models (<4km spatial resolution and sub-hourly

temporal scale), enabling the representation of deep convective process, which is a significant

cause of uncertainty in climate modeling (Ban, Schmidli & Schär, 2014; Foley, 2010; Ban

et al., 2021). The added value of using CPRCMs in impact studies for the research requiring

high resolution, (e.g. flash flood projection or impact assessment of urban catchments) has

been demonstrated (Lucas-Picher et al., 2021). Moreover, models’ high spatial and temporal

resolutions provide the opportunity to investigate further the impact of spatio-temporal resolution
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Figure 6.2 Comparing the run-time of simulations with
WaSiM at different spatial scales for the Aux Brochets

catchment

regarding the uncertainty linked to catchment heterogeneity. Since a large storage capacity

is required to store the dataset, the use of such models is still limited to local and decadal

projections. It is predicted that this restriction will be relieved during the next decade, which

opens the avenue for multi-decadal and regional impact studies (Gutowski et al., 2020; Schär

et al., 2020).

Finally, the work of Kratzert et al. (2018, 2019b) on Long Short-Term Memory (LSTM) neural

networks opens an exciting avenue for the application of deep learning in hydrology. Recent

studies have shown that LSTM neural networks can outperform traditional conceptual-based

and process-based hydrological models in terms of streamflow forecasting (Arsenault et al.,

2022; Mai et al., 2022a). In addition, LSTM shows minimal loss of efficiency when applied to



140

ungauged catchments (Arsenault et al., 2022). In general, the application of deep learning and

specifically LSTM can significantly improve the shortcomings of simulation and forecasting

in ungauged basins (Arsenault et al., 2022). To address the black box nature of statistical

learning methods, the 5th chapter of this thesis successfully tested a combination of RF and a

process-based hydrological model. Such approach can be used for other applications of LSTM

in hydrological modeling, given a large dataset is available. As such, the underlying physical

processes that cannot be captured by the hydrological models, can be approximated by pure

numerical models such as machine learning and deep learning.



CONCLUSION AND RECOMMENDATIONS

The 2021-2022 IPCC report accumulated extensive evidence corresponding with the impacts of

climate change around the world (Masson-Delmotte et al., 2021). It is estimated that flooding

patterns will be altered for snow-dominated catchments. This necessitates accurate flood

simulation to devise coherent adaptation and mitigation policies. Hydrological models have

gained more importance in climate change impact assessment studies as the final link of the

hydro-climate modeling chain. With the continuous progress in computational power, the

application of process-based distributed hydrological models has dramatically increased over the

recent years. However, scale issues, which can be summarized in nonlinear catchment responses

at different spatial and temporal scales, make it challenging to provide an accurate representation

of physical processes in hydrological models. The present research aimed at quantifying the

impacts of the spatio-temporal scale of modeling in streamflow simulation, flood projection, and

regionalization using process-based distributed hydrological models. In the next paragraphs,

research hypotheses are restated (in bold text) followed by the related conclusions. Finally,

practical recommendations are proposed.

1. Hypothesis 1: The choice of a level of spatio-temporal discretization alters model pa-

rameters, which leads to uncertainty in streamflow and flood simulation. By increasing

catchment area, the contribution of the choice of spatial scale and hydrological model

in such uncertainty increases, and that of time-step decreases. Chapter 3 proposed

a new approach to create an ensemble of simulations by changing the spatio-temporal

resolution of the model. The results show that there exists uncertainty corresponding

with the heterogeneity of the catchments in the simulation of low, high, and extreme flow

in the historical period. The study concludes that (1) there is no pattern regarding the

catchment size and the uncertainty linked to heterogeneity. (2) Refining the time step of the

modeling has only a minor impact on increasing the variance of the simulation ensemble

in historical time period. (3) The more sophisticated model in terms of representation of
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hydrology processes demonstrates more sensitivity to the spatio-temporal scale. Chapter

4 confirms that (1) there is no evidence of a relationship between the catchment size and

spatio-temporal scale in the variability of flood projections (i.e. in the future time periods).

(2) By increasing catchment size, the contribution of the hydrological model to the variance

of simulations increases. Overall, the first part of the hypothesis regarding the existence of

uncertainty linked to the spatio-temporal scale can be verified for this case study. But there

is no evidence of the existence of a link between that uncertainty and catchment size.

2. Hypothesis 2: For small catchments (< 500𝑘𝑚2), refining temporal resolution of

simulation (from daily to subdaily) increases the relative change (from reference to

future) of extreme summer-fall flow. Refining temporal resolution will not significantly

affect projected extreme summer-fall flow for large catchments (> 1000𝑘𝑚2). Chapter

4 confirms that, contrary to large catchments, by refining the time-step in modeling small

catchments, the magnitude of extreme summer-fall flow in the future exceeds the reference

period and the relative change is higher compared to daily simulations. Therefore, hypothesis

2 is verified for this case study.

3. Hypothesis 3: There do exist relationships between model parameters and catchment

descriptors that can be approximated by the random forest method. The underlying

information related to catchment characteristics is transferable across scales through

that approximation. Using fine-scale (in time and space) catchment descriptors

improves the skill of the regionalization model. Chapter 5 investigates the third hypothesis

by building a random forest based regionalization method, which is a combination of a

distributed model and machine learning. The method estimates the parameters of Hydrotel

from the physiographical and meteorological characteristics of gauged catchments. The

results support the third hypothesis, as the information regarding catchment characteristics

captured in the model parameters in gauged catchments can be transferred to pseudo-

ungauged catchments. Moreover, using a refined time scale for regionalization significantly
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reduced the loss of efficiency between calibrated parameters and those obtained from

regionalization. Additionally, using a nested catchment framework, the results suggest that

the information can be transferred from low-resolution lumped catchment to high-resolution

RHHUs. In this regard, if more spatially representative catchment descriptors are used

(fully distributed model), the regionalization skill is improved for the 24-hour time-step but

not the 3-hour time-step.

Overall, this study demonstrates the importance of representing spatio-temporal resolution in

process-based hydrological models for accurate streamflow simulation, regionalization, and

flood projection. This allows us to direct more attention to scale issues and focus on variation

of hydrological variables over scale. This should be seen especially in light of emerging

high-resolution climate models, in which their resolution is about to close (or surpass) the gap

between spatial resolution of climate and gridded data. This effort, therefore, may result in a

more realistic streamflow projection in the future and improve our ability for decision-making in

the face of climate change. The main practical recommendations from this thesis are:

• Multi-scale simulation should be considered while using a sophisticated process-based

model, especially for flat catchments or catchments with a large portion of farmlands. Given

that the contribution of the model in the variance of simulations increases by the catchment

size, multi-model simulation for large catchments is recommended.

• Refining time-step from daily to subdaily causes a significant increase in the flood projections

for small catchments. Subdaily time-step should be considered for impact studies on small

catchments.

• Random forest can be used as a powerful tool for regionalization. The method shows

promise in regionalization when when the number of catchments are limited. Contrary to

artificial neural network and deep learning, random forest is not entirely "black box" and

the relationships between model parameters and catchment descriptors are interpretable.
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This helps better identifying important catchment characteristics and remove those with less

importance in approximating model parameters.

• This thesis suggests that refining the temporal scale significantly improves regionalization

skills and should be considered in practice.

• Using refined catchment descriptors should be considered for regionalization of a distributed

model in daily simulations. This might help improve the regionalization skill particularly for

more diverse catchments in terms of topography and land use.



APPENDIX I

SUPPLEMENTARY MATERIAL

Figure I-1 shows the Hydrotel2 annual hydrograph simulations when the number of HRUs

varies. In general, a slight widening of the uncertainty bounds can be observed, manifesting a

higher sensitivity of the Hydrotel2 set-up to changes in spatial resolution as compared to the

Hydrotel1 simulations. Table I-1 shows the statistics of model efficiencies. KGE values are

Figure-A I-1 Annual hydrographs of the selected catchments simulated by Hydrotel
(Hydrotel2) and compared to observed data. The modeling time-steps are 24 and 3 hours.

The responses are arranged according to the size of the catchments: large catchments
(>1000 𝑘𝑚2) are on the top row; medium-sized catchments (between 500 and 1000 𝑘𝑚2)

are on the middle row; small catchments (<500 𝑘𝑚2) are on the bottom row

consistent between validation and calibration periods for all model-catchment pairs for both 3-

and 24-hour time-steps. For the majority of cases, the STD of the KGE for 3-hour is higher than

for the 24-hour time-step. The Wilcoxon rank sum test was used to investigate the statistical

significance of this change in KGE, with the null hypothesis being that the two ensembles are
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equal at the default 5% significance level. The bold numbers in the last two columns of Table

I-1 indicate that the change between the two distributions is significant (i.e. p-value<0.05). As

can be seen, a few catchments show a significant change in the efficiency between the 24- and

3-hour time-step. Moreover, comparing the STD of models, no significant differences between

them can be observed.

Table-A I-1 Land use and topographic characteristics of the catchments

Catchment Characteristics Boyer Chaudière Aux Brochets Châteauguay Croche Aux Pommes
water (% of surface area) 0.01 0.05 0.02 0.01 0.05 0.01

bare soil (% of surface area) 0.01 0.02 0.00 0.01 0.06 0.02
deciduous forest (% of surface area) 0.14 0.48 0.34 0.21 0.34 0.29
agriculture lands (% of surface area) 0.66 0.04 0.45 0.47 0.00 0.31
coniferous forest (% of surface area) 0.08 0.33 0.13 0.03 0.46 0.25

impermeable (% of surface area) 0.03 0.02 0.03 0.03 0.01 0.06
bog land (% of surface area) 0.06 0.02 0.00 0.01 0.04 0.04
wetland (% of surface area) 0.01 0.04 0.03 0.03 0.03 0.02

sand (% of surface area) 0.56 0.04 0.50 0.01 0.75 1.00
sandy loam (% of surface area) 0.44 0.96 0.45 0.61 0.25 0.00
silt loam (% of surface area) 0.00 0.00 0.00 0.08 0.00 0.00
clay loam (% of surface area) 0.00 0.00 0.05 0.30 0.00 0.00
drainage density [km/km²] 0.38 0.38 0.42 0.32 0.33 0.27

lake ratio[km/km²] 0.00 0.05 0.01 0.00 0.01 0.00
wetness index 9.96 8.53 9.26 10.38 8.03 9.60
mean slope 1.59 7.68 3.65 1.13 7.30 2.46

mean elevation 119.52 541.71 134.01 76.11 385.20 133.60
coefficient of variation of elevation 0.41 0.24 0.54 0.91 0.18 0.44

median aspect 275.00 173.00 231.00 179.00 177.00 188.00
latitude [decimal degree] 46.75 45.45 45.05 45.15 48.10 46.75

longitude [decimal degree] -70.95 -70.90 -72.90 -73.95 -72.60 -71.60

We used the empirical orthogonal function (EOF) for decomposing the signal of AET in

time and space for WaSiM and Hydrotel1 at Châteauguay (24-hour time-step). The results

are shown in Figures I-2 and I-3. Figure I-2 shows the dominant spatio-temporal pattern of

AET for different spatial resolutions at the monthly time scale (2001-2017), according to a

principal component analysis (PCA). In this figure, the left column represents the leading

spatial distribution characteristic of EOF, and the right column shows the temporal variation

of the principal component (PC). For all resolutions, the explained variance by the leading

component is larger than 98%. Therefore, we ignored the impact of other components with

small contributions in the mode of variability. Distributions of EOF across the catchment at

different scales show a large difference in the magnitude of simulations with different scales.
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For simulations with a resolution of 100m2, for example, the magnitude of the first mode of

AET is near zero and rather uniform across the catchment. By increasing the scale to 1000 𝑚,

the magnitude of the EOF increases (in terms of absolute value) and more variability across the

catchment can be seen. On the other hand, a high degree of oscillation in time is visible for the

100 𝑚 resolution compared to 1000 𝑚.
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Figure-A I-2 The first mode of empirical orthogonal function (EOF) and
corresponding principal component (PC1) derived for the Châteauguay catchment

simulated by WaSiM
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Figure I-2 shows EOF and PC components of AET simulated by Hydrotel1 at Châteauguay

(24-hour time-step). The experienced variance of the leading EOF is more than 96%. Similar to

WaSiM, a large difference in terms of the magnitude of EOF can be seen across scales. Similarly,

the magnitude of simulations with 100 𝑚 is near zero, and by increasing the scale, the absolute

value of EOF increases. Regardless of the magnitude of the EOF, a similar pattern in the

spatial distribution of EOF can be seen across scales. The pattern is more visible comparing the

simulations 250, 500, and 1000 𝑚 resolutions. This pattern resembles the spatial pattern of AET

in Figure 3.7. Regarding PCs, the behavior of Hydrotel1 simulations is similar to WaSiM: a

high amplitude of oscillation when the resolution is the high and low amplitude of oscillation by

decreasing the resolution. However, the temporal variability is lower than for WaSiM in terms

of amplitude. Moreover, the PCs of Hydrotel1 show a higher frequency compared to WaSiM.

Figures I-4 and I-5 illustrates a separation of the total uncertainty for extreme streamflows

into contributions from CDs and CPs using Hydrotel1 and Hydrotel2, respectively. Figure I-4

illustrates the decomposition of uncertainty for extreme streamflows simulated by Hydrotel1.

The magnitude of MDE for both CDs and CPs is limited compared to WaSiM. Likewise, the

MDE of CPs is larger in most cases, except for the Aux Brochets catchment with a 3-hour time

step and the Aux Pommes catchment. In general, Hydrotel2 (Figure I-5) simulations show

larger MDEs than Hydrotel1 (Figure I-5) simulations. Also, the number of cases in which the

dominant source of uncertainty is CDs is increased (compared to WaSiM) as the Châteauguay

and Aux Brochets catchments show larger MDEs across the vertical axis (note that the MDEs of

CDs calculated for QT50 for Aux Brochets-3 hour are larger than 1, and have been removed

for the sake of consistency in comparisons). As Figure I-5 shows, the range of uncertainties

corresponding to these two catchments is substantially larger than for other catchments, in which

the dominant source of uncertainty is CPs.

As discussed in Figures 3.14, I-4 to I-5, the dominant cause of uncertainty in the simulation of

extreme streamflow relates to CPs resolution for most of the catchments. There are exceptions

in which the dominant source of uncertainty in the simulation of those extreme values can be

attributed to changes in the resolution of CDs. Catchments such as Aux Brochets, Aux Pommes,
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Figure-A I-3 The first mode of empirical orthogonal function (EOF) and
corresponding principal component (PC1) derived for the Châteauguay catchment

simulated by Hydrtel1

and Châteauguay, are among these cases. From this list, the Aux Brochets (3-hour) catchment

demonstrates the highest level of dominance of CDs, regardless of the model or configuration

used for simulations. To explore the reason for the observed sensitivity, we used simulations

from WaSiM, as this model offers further insights regarding the changes in state variables and

fluxes across the catchment.



150

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

M
a

x
 e

rr
o

r 
d

if
fe

re
n

ce
 o

f 
C

D
s Châteauguay-24hr

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Châteauguay-3hr

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Croche-24hr

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Croche-3hr

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

M
a

x
 e

rr
o

r 
d

if
fe

re
n

ce
 o

f 
C

D
s Chaudière-24hr

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Chaudière-3hr

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Aux Brochets-24hr

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Aux Brochets-3hr

0 0.2 0.4 0.6 0.8 1

Max error difference of CPs

0

0.2

0.4

0.6

0.8

1

M
a

x
 e

rr
o

r 
d

if
fe

re
n

ce
 o

f 
C

D
s Boyer-24hr

R100,QT5

R100,QT10

R100,QT20

R100,QT50

R250,QT5

R250,QT10

R250,QT20

R250,QT50

R500,QT5

R500,QT10

R500,QT20

R500,QT50

R1000,QT5

R1000,QT10

R1000,QT20

R1000,QT50

0 0.2 0.4 0.6 0.8 1

Max error difference of CPs

0

0.2

0.4

0.6

0.8

1
Boyer-3hr

0 0.2 0.4 0.6 0.8 1

Max error difference of CPs

0

0.2

0.4

0.6

0.8

1
Aux Pommes-24hr

0 0.2 0.4 0.6 0.8 1

Max error difference of CPs

0

0.2

0.4

0.6

0.8

1
Aux Pommes-3hr

Figure-A I-4 Relative errors for the simulation of summer-fall floods with 5-, 10-, 20-, and
50-year return periods using the Hydrotel1 configuration. QT represents a flood with a

specific return period. For instance, QT5 is the flood magnitude corresponding to a 5-year
return period. R represents the resolution of CDs or CPs, in which the Maximum Error

Difference (MED) is calculated

Figure I-6 shows the distribution of average groundwater levels across the catchment. In each

column, the resolution of CPs is constant, while the resolution of CDs is changing. By coarsening

the resolution, a major increase in groundwater level near the outlet of the catchment (located in

the north-western part) can be observed. For instance, the distribution of groundwater across the

catchment in subplots a and e is similar, and it changes for subplots i and m. This change in the
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Figure-A I-5 Relative errors for the simulation of summer-fall floods with 5-, 10-, 20-, and
50-year return periods using the Hydrotel2 Configuration. QT represents a flood with a

specific return period. For instance, QT5 is the flood magnitude corresponding to a 5-year
return period. R represents the resolution of CDs or CPs, in which the Maximum Error

Difference (MED) is calculated

distribution of groundwater across the catchment can also be seen for other CP resolutions (e.g.,

b, f, j, n, etc.).

To explore further, we selected the groundwater distribution results for 100 and 500 𝑚 CDs as

representative of high and low-resolution catchment descriptors. We compared them with the

distribution of slopes across the catchment. Figure I-7 shows the average groundwater level
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Figure-A I-6 Distribution of groundwater elevation across the Aux Brochets
catchment for different resolutions for a 3-hour time step

(bottom row) and slope (top row) within the catchment. Subplot c (CD 100 𝑚) shows that the

maximum groundwater level can be found in the middle part of the catchment. Nevertheless,

for subplot d (CD 500 𝑚), most of the groundwater accumulates in the downstream part of the

catchment. This can be explained by looking at the top row showing the slope distribution. In
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subplot a (100𝑚 resolution), there are small-scale hillslopes and valleys, which spatially correlate

with the maximum groundwater level in the middle of the catchment. These uneven areas that

retain groundwater at specific parts of the catchment disappeared during the interpolation for

500 𝑚 CDs (subplot b), resulting in an accumulation of groundwater downstream.
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Figure-A I-7 Comparison of slopes (top) and groundwater elevation (bottom) for the
Aux Brochets catchment (3 hr) simulated by WaSiM

Figure I-8 illustrates the catchment response at the outlet and at Reach1 (or R1 subbasin) for the

spring freshet of 2008. R1 is located right before the outlet in the downstream area. Here, the

dashed lines represent direct runoff from the subbasins, and the solid lines show the simulated

streamflow at the 3-hour time step. In both subbasins, the catchment responses reproduced by
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the 500m2 resolution demonstrate considerable fluctuations, particularly for the R1 subbasin.

The reason for this is that the water table is very close to the surface in this area, and this reduces

the damping effect of interflow and baseflow down to near zero. As a result, any change in the

meteorological forcing translates into a direct flow and a corresponding rapid reaction of the

catchment in the R1 subbasin. The fluctuations further transfer and commensurately affect the

streamflow at the outlet of the catchment. In fact, changes in the resolution of CDs alter the

magnitude and timing of the peak flow, regardless of the variations of CPs. Such behavior can

explain the dominance of CDs over CPs in Figures 3.13, I-5, and I-6 for the Aux Brochets (3hr)

catchment.
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Figure-A I-8 Routed discharge (Q100, Q500) and direct runoff (R100, R500) of 100
and 500 m2 CD resolutions simulated by WaSiM for the outlet and Reach 1 (R1 is the
reach located in the downstream area next to the outlet of the catchment) for the Aux

Brochets catchment for a 3-hour time step
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As discussed in Figures 3.8-3.10, certain poor simulations of Hydrotel for the Aux Pommes

(3- and 24-hours) catchment are probably due to the incompatibility between the resolutions

of CDs and CPs. Here we further analyze the catchment response to explore the reason for

such incompatibility. Figure I-9, subplots a and b demonstrate the relative change of spatially

averaged hydrological variables to the simulation CP100CD100. Subplot a shows the change

in all combinations of CP100 (i.e. CP100CD250, CP100CD500, CP100CD1000) and subplot

b shows the change in all the combinations of CD100 (i.e. CD100CP250, CD100CP500,

CD100CP1000). Subplot c of Figure I-9 shows the mean annual hydrograph for all combinations

of simulations for a 24-hour time-step. In this subplot, the lines for the simulations with CP100

or CD100 are thicker and separated with blue and red colors, respectively.

Figure I-9 panel a shows that when CP100 is kept constant and CD varies, lateral flow undergoes

a significant change (particularly for the case of CP100CD1000). Lateral flow is the flow on sub

catchments (vertical simulation units) towards the river (Fortin et al., 2001a), which is simulated

using the kinematic wave equation. According to this equation A I-1, the lateral flow depends

on the slope of the cell and on Manning’s coefficient, both of which are sensitive to variations in

land use and DEM.

ℎ = [ 𝑛

1.49
√
𝑆0

]3/5𝑅3/5 (A I-1)

In A I-1, R is lateral flow from cell to cell (𝑚2𝑠−1); h is flow depth (m); n is Manning’s roughness

coefficient; S0 is the slope of the cell.

By increasing the scale of CDs, the change of slope and \or Manning’s coefficient causes a

significant increase of lateral flow, resulting in an overestimation of streamflow in the spring and

summer-fall periods according to subplot c (the blue lines).

Figure I-9 panel b shows that the average spatial distribution of variables is mostly influenced by

ETPfor constant CD. In this case, the variation of the scale of the calibration parameter shows

incompatibility with the scale of the CDs leading to an increase of ETP to 5 to 6 times higher
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Figure-A I-9 Analyses of catchment Aux pommes by Hydrotel2 at a 24-hour time-step : a)
spatially averaged hydrological variables for constant CP100 and variable CDs; b) spatially

averaged hydrological variables for constant CD100 and varied CPs; c) annual cycle
hydrograph at the outlet

than the original value for simulation CD100CP100. As a result, a decrease in the values of

other hydrological variables (i.e., lateral flow, snow cover, base flow, and interflow) results in the

underestimation of flow for the red lines.

Similar to the Boyer catchment simulated by WaSiM (Figure 3.15), Aux Pommes’ characteristics

in Table I-2 do not show distinct properties to help justify the catchment’s unique response with

regards to modeling options. Apart from having the smallest surface area, Aux Pommes has
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the highest impermeability (6%) and the lowest drainage density (27 𝑘𝑚/𝑘𝑚2). Additionally,

this catchment has a uniform soil type (sand with low Manning’s roughness). All these factors

trigger the sensitivity of the catchment towards the change of CDs.

Table-A I-2 Table S1- Mean and Variance of KGE of all spatial simulations in 3- and
24-hour time-step for validation and calibration periods. a- The results under STD of KGE
is a summation of KGEs’ standard deviations in validation and calibration. b-The results of
the Wilcoxon rank sum test to evaluate the change of ensemble of KGEs from 24- to 3- hour

time-step for calibration and validation periods. Bold values show that the change is
significant. *Inconsistent simulations were removed

models catchments
Mean of KGE STD of KGE𝑎 Wilcoxon rank sum test𝑏

cal-24h val-24h cal-3h val-3h 24h 3h p-value (cal) p-value (val)

WaSiM

Châteauguay 0.8 0.76 0.81 0.81 0.04 0.02 0 0

Croche 0.86 0.85 0.85 0.82 0.09 0.13 0.72 0.51

Chaudière 0.82 0.77 0.82 0.77 0.03 0.04 0.19 0.64

Aux Brochets 0.75 0.73 0.71 0.7 0.07 0.09 0 0.16

Boyer* 0.74 0.75 0.64 0.6 0.14 0.37 0.05 0.02

Aux Pommes 0.83 0.79 0.89 0.78 0.04 0.05 0 0.53

Hydrotel1

Châteauguay 0.78 0.62 0.8 0.73 0.02 0.02 0 0

Croche 0.86 0.79 0.88 0.76 0.15 0.07 0.4 0.05

Chaudière 0.78 0.72 0.74 0.73 0.07 0.08 0.01 0.38

Aux Brochets 0.69 0.66 0.71 0.7 0.03 0.06 0.05 0

Boyer 0.76 0.69 0.73 0.68 0.03 0.09 0 0.81

Aux Pommes* 0.78 0.68 0.78 0.71 0.04 0.04 0.91 0.01

Hydrotel2

Châteauguay 0.74 0.6 0.76 0.7 0.11 0.09 0.11 0

Croche 0.84 0.77 0.83 0.74 0.16 0.18 0.56 0.1

Chaudière 0.75 0.7 0.74 0.73 0.1 0.12 0.27 0.18

Aux Brochets 0.65 0.62 0.65 0.66 0.04 0.07 0.34 0

Boyer 0.74 0.69 0.72 0.67 0.04 0.07 0.02 0.69

Aux Pommes* 0.78 0.68 0.78 0.71 0.04 0.04 0.91 0.01
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Table-A I-3 Number of RHHUs for Hydotel 1 and Hydrotel 2 simulations as well as
number of rows and columns for WaSiM simulations

Catchment Resolution (m) RHHUs
(Hydrotel 1)

RHHUs
(Hydrotel 2)

Cloumns
(WaSiM)

Rows
(WaSiM)

Châteauguay

100 206 133 684 794

250 204 97 273 318

500 183 56 137 159

1000 153 33 69 80

Croche

100 117 87 389 862

250 115 55 155 345

500 113 26 78 173

1000 92 17 39 87

Chaudière

100 97 41 393 438

250 88 30 158 176

500 81 20 79 89

1000 78 9 40 45

Aux Brochets

100 55 27 311 366

250 52 18 125 147

500 51 13 63 74

1000 50 7 32 37

Boyer

100 17 7 175 222

250 16 5 70 89

500 15 5 35 45

1000 13 3 18 23

Aux Pommes

100 3 5 139 164

250 1 3 56 66

500 1 1 29 33

1000 1 1 14 17
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Table-A I-4 Average annual precipitation (Pr) and mean temperature (Temp) for reference
(ref, 2001-2020) and future (fut, 2081-2100) periods. The last column shows the number of

ClimEx data-points inside the catchments

Catchment Pr-fut (mm) Pr-ref (mm) Temp-fut (◦C) Temp (◦C) # Datapoints

Châteauguay 1135.1 1075.7 10.0 5.0 63

Croche 1129.5 1094.3 8.4 3.2 48

Chaudière 1195.9 1129.9 8.8 3.9 42

Aux Brochets 1174.3 1119.8 9.6 4.8 20

Boyer 1232.6 1199.1 10.2 5.0 6

Aux Pommes 1137.5 1101.4 8.5 3.3 4
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