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Simulation multi-échelle du débit des cours d’eau
Siavash POURYOUSEFI MARKHALI

RESUME

Les questions d’échelle représentent un probléme non résolu en hydrologie. Les modeles
hydrologiques distribués sont capables de prendre en compte 1’hétérogénéité des bassins versants,
mais on ne sait toujours pas dans quelle mesure les variations dans la représentation des échelles
spatio-temporelles, dans ces modeles, entrainent une incertitude sur les simulations. De plus, la
question de la valeur ajoutée d’une discrétisation spatio-temporelle plus fine doit €tre étudiée
davantage. La présente these aborde ces sujets dans le contexte de la simulation des écoulements,
de la projection des crues et de la régionalisation des parametres des modeles hydrologiques.

Tous les bassins versants étudi€s dans cette theése sont situés dans la partie sud de la province de
Québec, au Canada. Cette recherche repose sur I’utilisation de deux modeles hydrologiques
distribués et a base physiques avec différents degrés de complexité (Hydrotel et WaSiM). Pour
la simulation et la projection des inondations, les modeles sont calibrés en considérant quatre
niveaux différents de spatialisation de 1’information physiographique et des parametres des
modeles hydrologiques. Les données du projet ClimEx sont corrigées pour des pas de temps
de 3 et 24 heures en utilisant la méthode de correction de biais multivariée n-dimensionnelle
(MBChn), et utilisées comme entrées dans les modeles hydrologiques pour projeter le débit sur la
période 1991-2100.

Les résultats montrent que la variation de la résolution temporelle n’a que des impacts mineurs
sur I’incertitude des simulations en conditions historiques, et que son impact dépend du choix
du modele hydrologique. Le modele le plus sophistiqué (WaSim) présente une plus grande
incertitude. Quant a la variation de la discrétisation spatiale, elle peut entrainer des incertitudes
pour les bassins versants a faible pente ou comportant des zones accidentées.

En ce qui concerne la projection des crues, en affinant 1’échelle temporelle, les résultats montrent
que la fréquence et I’amplitude des débits extrémes en été augmentent dans le futur. De plus, le
choix du modele hydrologique pour la projection des débits de crues est plus important pour les
grands bassins versants. Enfin, il n’existe pas de patron caractéristique concernant 1’incertitude
liée a la résolution spatiale et a la taille du bassin versant. Cependant, cela affecte la direction et
le niveau de signifitaction des tendances observées pour les débits extrémes dans les simulations.

Cette these propose et teste également une méthode de régionalisation basée sur les foréts
aléatoires (RF). Elle est appliquée aux parametres d’Hydrotel a différentes échelles spatio-
temporelles. Les résultats montrent que la technique de régionalisation proposée est plus
performante pour des pas de temps plus courts. De plus, les parametres régionalisés sont
spatialement cohérents. En fin de compte, 1’utilisation de descripteurs des bassins versant ayant
une meilleure représentativité spatiale entraine une amélioration (de plus de 10%) pour les
simulations avec un pas de temps de 24 heures.



VIII

Mots-clés: modeles distribués, discrétisation spatio-temporelle, simulation d’inondations,
régionalisation



Multi-Scale Streamflow Simulation
Siavash POURYOUSEFI MARKHALI

ABSTRACT

Scale issues represent an unsolved problem in hydrological sciences. Distributed hydrological
models are capable of accounting for catchment heterogeneity, but it remains unclear to what
extent the variations in the representation of spatio-temporal resolution in these models leads
to uncertainty in the simulations. Moreover, the added value of more refined spatio-temporal
discretization is also unclear. The present thesis addresses these topics in the context of
streamflow simulation, flood projection and regionalization of model parameters .

All catchments studied in this thesis are located in Southern Quebec, Canada . This research
uses two process-based distributed hydrological models with different degrees of complexity
(Hydrotel and WaSiM). For the flood simulation and projection, the models are calibrated with
four different levels of spatial discretization of physiographic data and in models’ parameters.
The climate extreme project (ClimEXx) dataset is bias corrected for 3- and 24-hour time-steps
using the n-dimensional multivariate bias correction method (MBCn), and used as inputs to the
hydrological models to project streamflow over the 1991-2100 period.

The results show that the variation of temporal resolution has only minor impacts on the
uncertainty of historical simulations, and the impact depends on the choice of the model.
The more sophisticated model (WaSim) has a larger uncertainty. As for varying the spatial
discretization, it can cause uncertainties for catchments with low slopes or uneven areas.

Regarding flood projection, by refining the temporal scale, the results show that both the
frequency and amplitude of extreme summer-fall flow increases in the future. Moreover, the
choice of hydrological model for flood projection is more important for larger catchments.
Finally, no distinct pattern exists regarding the uncertainty related to the spatial resolution and
catchment size. However, this affects the direction and significance of the trends observed for
extreme flow in the simulations.

This thesis also proposes and tests a regionalization method based on random forests (RF). It is
applied to the parameters of Hydrotel at different spatio-temporal resolutions. The results show
that the proposed regionalization technique performs better for shorter time-steps. Moreover,
the regionalized parameters are spatially consistent. In the end, using catchment descriptors
that have a better spatial representativity results in an improvement (more than 10%) in the
simulations using a 24h time-step.

Keywords: distributed models, spatio-temporal discretization, flood simulation, regionalization
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INTRODUCTION

Flooding is the most frequent natural disaster in the world. It is estimated that 43 % of
total natural disasters and 47 % of total climatic disasters are related to floods (Kundzewicz
et al., 2019a). In terms of humanitarian costs, the fatality of river floods in the last century
amounts to 7 million people, and since 1985, 2.3 billion people, directly or indirectly, have been
affected by floods (Gaur, Gaur & Simonovic, 2018). In terms of economic losses, the annual
average costs directly related to flooding events are estimated to US $ 104 billion (for Disaster
Reduction. Secretariat, 2015). The cost of floods due to the rise of temperature by 1.5° relative
to the baseline of 1976-2005 are projected to significantly increase with the order of 2 and 3 for

human and economic losses respectively (Dottori et al., 2018).

Three major interconnected components and their related processes define flood risk, namely
flood hazard, exposure, and vulnerability (Barendrecht, Viglione & Bloschl, 2017; Vorogushyn
et al., 2018; Di Baldassarre et al., 2015). Flood hazard is the hydro-climate processes causing
floods. Exposure is the elements, including the human population and infrastructures, that are at
risk of being impacted by floods. Vulnerability is the degree to which the components at risk
are sensitive to floods (for Disaster Reduction. Secretariat, 2015). Historical records have shown
that flood damage has been increasing in recent decades because of land use change such as
urbanization, and the population growth. Such developments resulted in elevated human and
infrastructure exposure to floods and, consequently, rising vulnerability. Databases of natural
disasters (e.g. Floods & Floods, 2004) show increasing economic costs due to floods across
different spatial scales. Expressed by a percentage of Gross Domestic Product (GDP), the annual
economic losses attributed to hydrological risks in terms of hazard and exposure is around 0.1 to
1 % of GDP depending on the level of development of countries (Field, Barros, Stocker & Dahe,
2012; Kreibich et al., 2017). However, yearly exposure and costs associated to flood hazards

in some countries reach more than 10 percent of the GDP (e.g., India, Bangladesh, Vietnam,



and Cambodia). In absolute terms, US and China spend more than 10 billion USD per year to

confront the losses inflicted by floods (Kundzewicz et al., 2014).

Canada, on average, spends one to 2 billion CAD per year to cope with flood risk and its conse-
quences. This makes flooding the costliest natural disaster throughout the country(Oubennaceur,
Chokmani, Nastev, Lhissou & El Alem, 2019). In the past decade, Canada has been hit by
multiple floods, particularly in urban areas (e.g., Montreal in 2012, Calgary in 2013, Toronto
in 2005, 2013, and British Columbia in 2021). Over the recent decade, Quebec has witnessed
multiple floods due to a combination of snowmelt and rainfall (Buttle e al., 2016). Vast areas
of the province were flooded, causing damage to infrastructures, isolation of properties, and

evacuation of thousands of residents.

Analyzing some key streamflow indices shows an increasing trend of streamflow across northern
regions and a decreasing trend across southern regions of Canada (Burn & Elnur, 2002). In
addition, the long-term projection of streamflow in the future shows a change in timing of the
peak, magnitude, and frequency of floods across different regions of Canada (Leduc et al.,
2019; Martel, 2019). These results suggest that the pattern of flooding is changing in Nordic
catchments. These catchments are prone to two types of flood events: spring floods due to
snowmelt and summer-fall floods associated with intense short-duration rainfalls. Climate
change is expected to attenuate spring floods and amplify summer-fall floods in magnitude and
frequency (Donat, Lowry, Alexander, O’Gorman & Mabher, 2016). Studies show that the rise of
temperature increases the probability of intense short-duration rainfall at sub-daily time-scales,
which can translate into more extreme flows and potential floods for small to medium catchments,
with a relatively short concentration time (Westra et al., 2014). Consequently, it is possible that

these catchments will become more vulnerable to summer-fall floods.

Future flood risks are typically evaluated using a hydroclimatic modeling chain, which includes

global climate models (GCMs), downscaling and/or post-processing of climate model outputs,



and hydrological models. GCMs project climate based on a series of Shared Socio Economic
Pathways(SSPs) . Their outputs require downscaling and/or post-processing to increase the
resolution of/bias correct the projections of the different climate variables. Hydrological models
are used to simulate streamflow and other hydrological variables(Merz et al., 2021). Each step
contributes to the total uncertainty, propagating top-down through the chain (Chen et al., 2019b).
Several studies have quantified the uncertainties corresponding with each step of this process
(e.g., Chen, Brissette, Poulin & Leconte, 2011; Poulin, Brissette, Leconte, Arsenault & Malo,
2011; Meresa & Romanowicz, 2017; Meresa et al., 2022). However, less attention has been
given to the uncertainty linked to representing the heterogeneity of the catchments with more or
less details. This is mainly because flood generation processes have not yet been completely
understood (Bloschl & Sivapalan, 1995). Non-linear and complex catchment responses across
different spatio-temporal resolution and lack of a scale-relevant theory complicate modeling
practices (Beven, 2010; Bloschl ef al., 2013). The dearth of knowledge and the complexity
of hydrological processes further lead to a parameterization that is not scale-invariant (i.e.
sensitive to scale of modeling) with the parameters mostly lacking tangible physical meaning

(Samaniego, Kumar & Attinger, 2010; Samaniego et al., 2017).

The advance of computational power facilitates the use of sophisticated distributed process-based
Hydrological models to study fluxes and state variables in fine details across catchments (Sidle,
2021). This, however adds to the complexity of streamflow and flood simulations. Since
distributed models need information about the physiographic characteristics of the catchments,
the representation of catchment heterogeneity is an essential factor. The decision to represent
spatial heterogeneity in distributed models depends on the spatial discretization. The choice
should also be considered in conjunction with the temporal resolution. Regarding continuum-
based models, for example, a finer temporal resolution might demand higher spatial resolution
to satisfy the conditions required for computationally stable responses (Thober et al., 2019). In

addition, the catchment’s key topographic and physiographic features may substantially influence



the hydrological short-term response. For instance, urbanization will increase imperviousness
and create complicated routing pathways (Cao et al., 2020a). The tendency to use coarser grids to
compensate for computational costs can eliminate important underlying information, alter model
parameterization, and produce different model responses, further increasing the uncertainty of
hydrological simulations. This issue should be seen in the context of climate change impact
assessment, where characterizing uncertainties associated with different modeling stages is
necessary to develop coherent policies and devise effective adaptation strategies (Kundzewicz

et al., 2019a).

The present thesis is an effort to understand the importance of spatio-temporal resolution in
simulating streamflow and floods with process-based distributed Hydrological models. This
thesis focuses on the three following topics which define the research objectives: (1) quantifying
the uncertainties linked to spatial heterogeneity of catchments in streamflow and flood simulations,
(2) performing multi-scale flood projections under future climate, and (3) evaluating the effect
of spatio-temporal resolution on streamflow regionalization. Multiple catchments with diverse
sizes and hydro-climatic regimes in the province of Quebec have been used to address these
topics. This thesis is a part of a Quebec-Bavarian collaboration to simulate climate extremes

(ClimEX).

The structure of the thesis is as follows. Chapter 1 provides a literature review associated
with the research problems and objectives. Chapter 2 summarizes the materials and methods.
Chapters 3 to 5 are formed of three journal articles addressing the three aforementioned research
objectives. Chapter 6 provides a general discussion to clarify the results. A conclusion highlights

the main findings and provides recommendations for future studies.



CHAPTER 1

LITERATURE REVIEW

This chapter presents a review of the existing literature relevant to the objectives of this thesis.
Section 1.1 gives a general review of flood generation mechanisms. Section 1.2 reviews the
components of climate change impact assessment modeling chain. Section 1.3 presents a
general overview of hydrological. Section 1.4 details the uncertainties involved in hydro-climatic
projections. Section 1.5 highlights the importance of choosing the appropriate spatio-temporal
scale in the context of hydrological. Finally, section 1.6 highlights the importance of scale in the

regionalization of hydrological models.

1.1 River Flood Generation

The Intergovernmental Panel of Climate Change Special Report of Extreme (IPCC SREX Field
et al.,2012) classifies floods into various types, including "river (fluvial) flood, flash flood, urban
flood, pluvial flood, coastal flood,", for which the climate forcing, mechanisms and governing
processes are different. Multiple climatic drivers can lead to river flood generation: prolonged
precipitation, intense rainfall, monsoon, snow melt, rain on snow, etc. The distinct interplay of
location, time of the year, and catchment condition are referred to as a flood regime. Spring
freshet, for example, is typical of Northern Europe and Quebec (Riboust & Brissette, 2016;
Bloschl et al., 2017; Sivapalan, Bloschl, Merz & Gutknecht, 2005). The principal driver of flood
events in Australia is intense short-duration rainfall (Ishak & Rahman, 2019). For Northwestern
Europe, prolonged rainfall in the winter and high soil moisture are the main flood drivers
(Bertola, Viglione, Lun, Hall & Bloschl, 2020; Kemter, Merz, Marwan, Vorogushyn & Bloschl,
2020). Extreme floods however contain surprising elements not necessarily related to a specific
flood regime; examples include: Typhoon tracks in Thailand 2011 (Petvirojchai & SaraPa, 2018),
atmospheric blocking in 1993 in Mississippi and in the 2011 Pakistan floods (Francis & Vavrus,
2012; Hong, Hsu, Lin & Chiu, 2011; Grams, Binder, Pfahl, Piaget & Wernli, 2014), as well as

atmospheric rivers that triggered extreme floods in various parts of the world (Merz et al., 2021).



While climate drivers are the most important cause of floods, antecedent catchment conditions
can modulate the severity of the events. When catchment wetness is high, even a small amount
of precipitation can transform into direct surface runoff and generate flooding (Nakamura,
Lall, Kushnir, Robertson & Seager, 2013). Such a combination was observed in 2013 in
central Europe, when atmospheric anomalies generated prolonged precipitation that elevated
soil moisture. This provided favorable conditions for flooding with a modest rainfall (Nakamura

et al.,2013).

Physiographic characteristics also contribute to catchment response to climate drivers. Land
use change can influence catchment behavior for medium to small catchments. For instance,
catchments with a large proportion of agricultural lands have compact soil as a result of heavy
agricultural machinery operations. This leads to lower infiltration rate and direct contribution
of precipitation into flood (Keller, Sandin, Colombi, Horn & Or, 2019). In urban catchments,
in addition to low infiltration rate, the sewage network makes hydrological pathways shorter
and increases flow peaks (Miller & Hutchins, 2017). Deforestation also changes macropores’
structure, reduces permeability, and alters preferential flow pathways, leading to increasing flow
peaks (Gao et al., 2018). Land use change has only minor effects on large catchments, as studies
have shown that it may contribute to only a few more centimeters of peak water depth with
relatively smaller effect on large territories(Bronstert et al., 2007; Te Linde, Aerts & Kwadijk,
2010). Moreover, land use can merely affect extreme floods in the case of near saturated soil,
where land cover has insignificant effects on flood generation (Rogger et al., 2017). However, the
relationship between flood and land use at different scales is complex and has not been studied

extensively.

Compared to land use, the impact of hydraulic structures and human intervention on peak flow is
better understood. In most cases, simple mass and momentum equations can be used to simulate
flood peaks (Horvéth et al., 2020; Buttinger-Kreuzhuber, Horvath, Noelle, Bloschl & Waser,
2019). Dams typically reduce flood hazard by storing water in reservoirs (Volpi, Di Lazzaro,
Bertola, Viglione & Fiori, 2018; Mei, Van Gelder, Dai & Tang, 2017). For floods with large

return periods, the capacity to dampen the flood wave declines (Vorogushyn, Lindenschmidt,



Kreibich, Apel & Merz, 2012; Volpi et al., 2018). Channel straightening affects the peak flow
in different ways. In local reaches, increasing channel capacity results in less frequent floodplain
inundation but has minimal effects on the peak. In downstream reaches, since the flood plain
storage has been removed, the limited dampening effect increases flood hazard (Blazejewski,
Pilarczyk & Przedwojski, 1995). This also depends on the flood magnitude. For small to
medium floods, channel straightening increases flood hazard downstream because the peak is
not modulated by the flood plain early on. However, for extreme floods, the activated floodplain
helps dampening flood wave (Bloschl, 2022b). Severe floods may cause damages to hydraulic
structures (i.e., dams, levees, etc.) and create unexpected events resulting in catastrophic costs

(Merz et al., 2021).

Human influence on streamflow is not limited to engineering works. Anthropogenic climate
change affects precipitation patterns, temperature, snow melt, etc. A recent meta-analysis by
(Merz et al., 2021) shows a positive future trend for flood hazards in many parts of the world,
including North America. Assessing future changes requires a modeling chain, starting from
SSPs, which are used as input for climate models. The output of climate models are then used to
force hydrological models (Hall ez al., 2014). Climate projections can be obtained at different
scales, which helps to conduct impact assessment studies locally, regionally, or globally (Do
et al., 2020; Swain et al., 2020). The accuracy of these studies directly depends on how climate
models are capable of representing atmospheric processes at different scales (Bloschl, 2022b).
Several studies have shown that warming temperatures can result in extreme precipitation and
higher flood risks in the future. Similar to land use impact, the impact of climate change
should be studied separately for small and large catchments, because small catchments are more

sensitive to intense short-duration rainfall than large catchments (Bloschl, 2022a).

1.2 Climate Models

Global Climate Models (GCMs) consist of a dynamical core for solving the primitive equations
governing the atmosphere (e.g., mass, momentum, energy (Bjerknes, 1910)) across time and

space. The Coupled Model Intercomparison Project (CMIP) provides the outputs of several



GCMs, for use in hydrological (or other) studies. The project includes CMIP3 (Meehl et al.,
2007), CMIP5 (Taylor, Stouffer & Meehl, 2012), and CMIP6 (O’Neill et al., 2016) phases,
for different scenarios (Gurney et al., 2022). CMIP3 was based on the generation of Special
Report on Emission Scenarios (SRES; Meehl et al., 2007), while the most recent CMIP5 and
CMIP6 experiments are based on Representative Concentration Pathways (RCPs). RCPs are
socio-economic pathway scenarios designed to represent anthropogonic climate forcings into
climate models. These scenarios are based on greenhouse gas concentration in the atmosphere
and expressed by the total radiative forcing (in W/m?) by the year of 2100 (IPCC, 2014).
The main RCPs used for running the climate models are RCP2.6 (very low forcing), RCP4.5
(medium forcing), RCP6 (medium forcing), and RCP8.5 (very high forcing) (Van Vuuren
et al., 2011). Apart from RCPs, the Shared Socio-economic Pathways (SSPs) have recently
been developed for CMIP6 (Masson-Delmotte et al., 2021). These scenarios consider the
socio-economic developments, including Gross Domestic Product (GDP) growth, the rise of
population, education, Green House Gas (GHG) emission, technological development, etc.
These scenarios work in combination with RCPs to address the challenges regarding adaptation

and mitigation strategies (Wei et al., 2018).

Since the 1980s, climate models have moved towards the inclusion of more Earth processes and
sub-processes into a single framework called Earth System Models (ESMs Hill, DeLuca, Suarez,
Da Silva et al., 2004). These models are the product of coupled Atmospheric and Ocean GCM
(AOGCM) with other Earth system-related models such as Land-Surface Models (LSMs) and
Global Hydrological Models (GHMs). GCMs are computationally demanding. To overcome
this issue, the models are implemented on relatively coarse spatial grids (typically 100km) and
temporal resolution (typically daily)(Navarro-Racines, Tarapues, Thornton, Jarvis & Ramirez-
Villegas, 2020; Chen et al., 2011). As a result, the outputs of GCMs are not suitable for
experiments at regional or local scales and/or at sub-daily time scales (Chen et al., 2011). This
issue is particularly important for hydrologists, as most hydrological variables should be studied

at scales that are finer than those of GCMs (Szolgayova, Laaha, Bloschl & Bucher, 2014; Zhang,



Viglione & Bloschl, 2022). This is typically resolved by downscaling the output of climate

models, which is discussed in the next sub-section.

1.2.1 Downscaling

Two major approaches have been proposed for downscaling: statistical and dynamical.

In dynamical downscaling, the GCM’s simulation is mapped to a specific region employing the
output of the latter model (e.g., winds, pressure, temperature, humidity etc.) as boundary condi-
tions for a high-resolution Regional Climate Model (RCM; Dickinson, Errico, Giorgi & Bates,
1989). RCMs are complete climate models but they have a higher topographic resolution,
and often more detailed land/water interfaces, land use/land cover than GCMs (Buonomo,
Jones, Huntingford & Hannaford, 2007; Vautard et al., 2021). The main advantage of dynamic
downscaling is that RCMs create meteorologically consistent climate variables and account for
complex climatic processes and their non-linear interactions (Williams, Erickson & Petrzelka,
2010). Yet RCMs are susceptible to uncertainty and biases such as overestimation of drizzling
and underestimation of extreme convective rainfall (Chen, Brissette, Chaumont & Braun, 2013;
Bresson, Laprise, Paquin, Thériault & de Elia, 2017; Maraun et al., 2010; Solman & Bldzquez,
2019). It is a common practice to bias correct the output of RCMs (Faghih, Brissette & Sabeti,
2022)

Statistical downscaling seeks the relationship that maps large-scale climate simulation provided
by GCMs to observed local climate for a reference period, then projects it into the future (Wood,
Leung, Sridhar & Lettenmaier, 2004). The outputs of the GCM serve as a predictors for the
local climate (Martel, Mailhot, Brissette & Caya, 2018). Statistical downscaling methods
can be further divided into three categories: regression-based methods, weather typing, and
stochastic modeling (Trzaska & Schnarr, 2014). For regressions, a transfer function between
GCM (predictor) and observed data (predictant) is established. The choice of predictors and
transfer function is generally arbitrary and based on expert knowledge and process understanding.

Weather typing classifies similar patterns in the reference period for predictors, establishes
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a relationship between the predictor and predictant in the reference period, and applies it to
the future (Van Uytven, De Niel & Willems, 2020). In stochastic modeling, the parametric
distribution of the predictant is conditioned to the distribution of the predictors. The most

popular form of this method is the weather generator (Wilks, 1992; Chen, Chen & Guo, 2018).

1.2.2 Post-processing

The outputs of RCMs are susceptible to biases (Chen et al., 2019a). Here we briefly review the

most common bias correction approaches.

The Delta Approach consists in perturbing the observed precipitation and temperature using
appropriate coeflicients (Teutschbein & Seibert, 2013). The perturbation coefficient for
temperature is the difference between the expected value for the future period and that of the
reference period in the GCM or RCM domain. For precipitation, a multiplicative coefficient
is used. This coefficient is the ratio of the expected value of the future period to the reference
period. The main advantage of this approach is its simplicity. The main disadvantage is that the
shape and type of the projected probability distribution remain the same as the historical one

(Willems, Ntegeka, Baguis & Roulin, 2010).

Quantile Mapping (QM) is a robust post-processing approach that compares the distribution of
historical and future variables. The differences between the quantiles of the two distributions is
used to correct the projections (Willems et al., 2010). In the case of precipitation, for example,
an empirical distribution is usually preferred, considering both wet days and dry days in its
construction (Chen et al., 2013). QM corrects both the bias and dispersion of the projected

distributions.

1.3 Hydrological modeling

Hydrological models have been classified into different categories based on their level of spatial
discretization (lumped vs. distributed), and description of physical processes (conceptual vs.

physical).
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Lumped models consider the catchment as homogeneous. These models typically solve
simple mass balance equations represented by parametric functions (Beven, 2010). They are
parsimonious, and usually the data related to the physiography of the catchment is not required
(Hrachowitz & Clark, 2017). Lumped models require minimal computational power, but their
application is limited to cases where the end result (streamflow at the outlet) is what matters.
HBV (Bergstrom et al., 1995), SUPERFLEX (Fenicia, Kavetski & Savenije, 2011) and GR4J
(Perrin, Michel & Andréassian, 2003) are examples of popular lumped models, even though they
can also be spatialized. This has been the case for HBV, for instance (Lindstrém, Johansson,

Persson, Gardelin & Bergstrom, 1997).

Distributed models account for the spatial heterogeneity of the catchments (Beven, 2011), with
more or less detailed spatial discretization. For instance, the level of spatial scale can be managed
by SWAT (Arnold, Srinivasan, Muttiah & Williams, 1998) and VIC (Liang, Lettenmaier,
Wood & Burges, 1994) but is limited to sub-catchment (i.e. semi-distributed) whereas MIKE-
SHE (Refsgaard & Storm, 1990) and HYDRUS-3D (Simunek, van Genuchten & Sejna, 2008)
are grid-based, fully distributed. There exist mainly three approaches for spatial discretization:
1) the discretization of input data with fixed parameters; 2) the discretization of parameters only;
and 3) a combination of both approaches (Ajami, Gupta, Wagener & Sorooshian, 2004; Das,
Bardossy, Zehe & He, 2008; Euser, Hrachowitz, Winsemius & Savenije, 2015). Distributed
models can be data and computationally-intensive, with a finer spatial resolution leading to an

increase in computational time (Bierkens, 2015).

Physics-based models attempt to solve the governing equations of hydrological processes
and describe fluxes and states and their complex relationships in heterogeneous catchment
media (Clark et al., 2017; Fatichi et al., 2016). Theoretically, physics-based models should
not need calibration, as their parameters should represent physical processes and catchment
characteristics. However, this is not truly the case and calibration is still needed. Scale issues
and catchment heterogeneities (e.g., soil, vegetation) are some of the factors that contribute
to parameter uncertainty in physics-based modeling. (Wagener, Wheater & Gupta, 2004). As

a result, identifying the parameters requires calibration of the model, which is data intensive



12

and computationally demanding. MIKE-SHE (Refsgaard & Storm, 1990) and HYDRUS-3D

(Simunek et al., 2008) are among this type of models.

Conceptual (or bucket-type) models represent hydrological processes through macro-scale
conceptualization (Hrachowitz et al., 2013) with a simple parametrization. In some cases, the
number of processes that these models take into account is limited (Clark et al., 2015). These
models are often but not exclusively implemented at the catchment or sub-catchment scales.
They are typically neither computationally demanding nor data intensive. HBV (Bergstrom et al.,
1995), GR4J (Perrin et al., 2003), mHM (Samaniego et al., 2010) and CEQEAU (St-Hilaire
et al., 2015b) belong to this category.

A typical procedure for implementing a hydrological model after selecting the structure is to
estimate parameter values using a systemic calibration against a portion of the observed data
(Wagener et al., 2001). The calibration procedure is based on finding a parameter set for which
the simulated streamflows corroborate as much as possible observed streamflows. This similarity
is measured by a metric, for instance the Nash—Sutcliffe efficiency (NSE Nash & Sutcliffe, 1970)
or the Kling Gupta efficiency (KGE; Gupta, Kling, Yilmaz & Martinez, 2009). There exist
many other metrics, and they can be selected according to the application. Calibration is an
iterative process that involves trying multiple parameter sets (Ajami et al., 2004). There exist
various optimization algorithms and goodness of fit measures in the literature. Dynamically
Dimensioned Search (DDS; Tolson & Shoemaker, 2007) and Shuffled Complex Evolution
Algorithm (SCEA; Duan, Gupta & Sorooshian, 1993) are amongst the most popular search

algorithms in hydrological modeling.

There often exist more than one acceptable solution (parameter set). This is referred to as
equifinality (Beven, 2006). Therefore, in practice, we are dealing with a range for each parameter
leading to parameter bounds instead of a unique answer (Wagener & Wheater, 2006). For impact
assessment, it is essential to report the uncertainty related to model parameters for a realistic

impact assessment .
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14 Uncertainty

Beven (2016) divided uncertainty into two broad categories: epistemic and aleatory uncertainty.
The former is generally due to a lack of understanding and can be reduced by acquiring new
knowledge. The latter, however, is owing to "the randomness of a phenomenon," which is not
reducible. The definition provided by the Intergovernmental Panel on Climate Change (Pachauri
et al., 2014) for uncertainty is "complete absence of information or presence of partial knowledge
or information or lack of consensus over known or knowable phenomenon." A lack of knowledge
or imperfect knowledge about the possible outcomes (e.g. climate change) leads to a less solid
basis for treating that phenomenon with probability theories (Foley, 2010). The phenomenon,
therefore, has to be studied by developing a series of plausible scenarios and accounting for

corresponding uncertainties.

The Earth’s climate is a complex system affected by a range of external forces (e.g., greenhouse
effect, solar radiation, celestial body collision, land-surface, volcanic eruption, etc.) along with
its internal variation (e.g., El Nifio Southern Oscillations (ENSO), North Atlantic Oscillation
(NAO), Arctic Oscillation (AO), Atlantic Multidecadal Oscillation (AMO), Pacific Decadal
Oscillation (PDO), etc.). Such high complexity and degree of freedom are difficult to be
represented by climate models. In addition, the dynamic interaction between various processes
along with their feedback loops is yet to be studied and further reflected in models to adequately
represent the climate system (Kundzewicz & Stakhiv, 2010). Given current knowledge and

computational abilities, climate models are susceptible to a high degree of uncertainty.

The cascade of uncertainties in hydroclimatic modeling can be summarized as follows: 1) future
socio-economic development, 2) selection of greenhouse gas emission scenarios, 3) global
climate models (GCMs), 4) dynamical/statistical downscaling, 5) bias correction method, 6)
observational uncertainty of hydroclimatological data, 7) structural uncertainty of hydrological
model, and 8) parameterization of the hydrological model. The top-down approach of such a
modeling chain guarantees uncertainty propagation through the models as every stage inherits

the uncertainty introduced from the previous one.
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The chain of uncertainty begins with the uncertainty of future developments in terms of economy
and technology as well as population growth. As a result, prescribed scenarios for GHG
emissions have been proposed, which are based on two pioneering approaches: the first one
proposed by IPCC Special Report on Emission Scenarios — SRES (IPCC) and the second
one based on Representative Concentration Pathways (Meinshausen et al., 2011). Adopting
each scenario for simulation may produce an entirely different output leading to considerable
uncertainty, particularly for regional and local scales. Uncertainty of GHG scenarios further
depends on the horizon of simulations. The effect of scenarios on the short-term is smaller
compared to the distant future, as climate response in the short-term is heavily dependent on

historical GHG concentrations (Meinshausen et al., 2011).

Several GCMs have been developed and implemented, providing several projections for climate
statistics (e.g., Taylor et al., 2012). Different GCMs running with the same GHG scenarios can
provide divergent projections. Different models represent physical sub-processes differently,
including numerical methods and parameterizations (Chen et al., 2011; Chen, Brissette, Lucas-
Picher & Caya, 2017). Previous research results show that the contribution of inter-model
uncertainty outweighs other sources of uncertainty in hydroclimatic modeling (Minville,

Brissette & Leconte, 2008; Wilby & Harris, 2006).

Though GCMs are often recognized as the major source of uncertainty in impact assessment
studies, hydrological modeling uncertainty also needs to be considered (Chen et al., 2011).
Hydrological uncertainty stems from data (scarcity, measurement error, scale mismatch, aggre-
gation/disaggregation), the choice of hydrological model, and its parameterization (Kundzewicz
et al., 2018). Perhaps the most well-known hydrological uncertainty assessment framework
is the generalized likelihood uncertainty estimation (GLUE) (Beven & Binley, 1992; Setegn,
Srinivasan & Dargahi, 2008; Blasone et al., 2008; Uhlenbrook, Seibert, Leibundgut & Rodhe,
1999; Wechsler, 2007). The framework divides the whole possible parametric space into
behavioral and non-behavioral solutions by applying the condition of maximum likelihood of

simulation to observations. The choice of maximum likelihood function and the threshold to
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distinguish between behavioral and non-behavioral simulations are subjective, which has ensued

controversies regarding the adequacy of the framework (Clark, Kavetski & Fenicia, 2011)

In hydrology, the uncertainty linked to model structure is referred to as structural uncertainty
(Krysanova et al., 2018). Each hydrological model is a combination of several hypotheses and
algorithms (Euser et al., 2013; Clark et al., 2011). The choice of process description, numerical
method, spatial and temporal scales, as well as all choices involved in the classification
and representation of topography, soil type, vegetation, etc., are all included in structural
uncertainty (Krysanova et al., 2018). A multimodel approach allows for a simple and effective
way of characterizing structural uncertainty (Thiboult, Anctil & Boucher, 2016; Butts, Payne,
Kristensen & Madsen, 2004; Seiller, Anctil & Roy, 2017). The idea is simply to use an ensemble
of models, ideally very different in their representation of hydrological processes (Krueger et al.,

2010; Buytaert & Beven, 2011).

1.5 Modeling Scales

1.5.1 Temporal Scale

Theoretically, extreme rainfall depends on surface temperature. By increasing the temperature,
the Clausius-Clapeyron (CC) equation (Ivancic & Shaw, 2016) predicts that the capacity of
the atmosphere to accumulate moisture also increases (Kharin, Zwiers, Zhang & Hegerl, 2007,
Trenberth, Covey & Dai, 2018; Westra et al., 2014). The theory suggests that per 1°C increase in
temperature, the saturation specific humidity of the air will increase by 7% , resulting in higher
available moisture for extreme precipitation (Pall, Allen & Stone, 2007). In practice, the scaling
is not linear (O’ Gorman, 2015). Using observed available data from 1929-2017, Yin et al. (2018)
showed that three major consequences are associated to rising temperature: first, a monotonic
increase of extreme precipitation; second, a monotonic decrease of extreme precipitation; and
third, a hook-like behavior (Berg & Sheffield, 2018; Drobinski et al., 2020) with increasing
extreme precipitation up to a certain threshold of temperature and a decrease afterward. Higher

latitudes, including most of Canada, have either witnessed a monotonic increase of extreme
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precipitation corresponding with a rise in temperature or a hook-like structure with a threshold
temperature before which the extreme precipitation has been increased (Yin et al., 2018). Their
analyses regarding high flow further confirm that the hook-like structure is a dominant pattern

worldwide except for the tropics.

Rising temperature can further change the dominant pattern of rainfall from stratiform to
convective (Berg & Haerter, 2013). Since convective rainfall is inherently of short duration with
high intensity, it is expected that the contribution of this type of rainfall will be stronger than
in the past due to changing climate. While river flooding is mainly associated with extreme
precipitation on the daily time scale, extreme sub-daily rainfall often is the primary driver of
urban flooding or flooding in small and/or steep catchments. In addition, hourly rainfall is of
the main interest of engineering practice for the design of infrastructure, which necessitates
identifying the relationship between the rise of temperature and extreme precipitation (Alfieri
et al., 2017). Employing a time series of observed hourly rainfall from 1966-2013 over the
Australian Continent, Guerreiro et al. (2018) explored the effect of a warming climate on extreme
precipitation for both daily and sub-daily time scales. It has been found that the percentage of
change corresponding with the daily time-scale is in line with the CC-scaling curve. However, the
scaling factor for extreme sub-daily precipitation falls within 2CC and 3CC curves manifesting

the heightened sensitivity of hourly compared to extreme daily precipitation.

Translation of rainfall to flood is, however, a complex issue. One reason is the difference in the
definition of ’extreme’ for precipitation and flood. For precipitation, the 95 or 99 percentiles are
popular indices to calculate extremes. For floods, a much larger index is needed to satisfy the
constraints corresponding to the life-cycle of structures such as dams, levees, or bridges (Westra
et al., 2014). Such structures with a life-cycle reaching several decades should be designed
to stand the floods with at least a 100-year return period (Kuczera et al., 2006). Moreover,
the non-linear response of catchments toward forcing meteorological variables, which stem
from their size, geo-morphological characteristics, soil type, land cover, level of urbanization,
etc. is another reason that increases the ambiguity regarding the translation of extreme rainfall

into flood events (Bennett, Leonard, Deng & Westra, 2018). The size of the catchment is an
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important factor in determining the response of the catchment toward rainfall, as the time of
concentration for each catchment is highly correlated with its size. The time of concentration
is the duration in which the runoff generated from the most hydraulically remote part of the
catchment departs the outlet (Bloschl, 2022b). The time of concentration is often considered as
the critical duration of an extreme precipitation. This is the duration at which the largest flood is
assumed to accrue for a given rainfall.(Chow, Maidment & Mays, 1988; Brutsaert et al., 2005).
The critical time of catchments with a main channel of less than 100 km is generally less than a

day, making them sensitive to sub-daily rainfall duration (Sikorska, Viviroli & Seibert, 2018).

1.5.2 Spatial Scale

Spatio-temporal scale issues related to runoff generation is the subject of continuous debates
(Bloschl et al., 2019; Bloschl & Sivapalan, 1995). In their article about 23 unsolved problems in
hydrology (UPH), Bloschl et al. (2019) raised multiple questions that highlight the importance of
improving our understanding of hydrological processes at different time-space scales. Question
5 from the ’spatial variability and scaling’ category focuses on hydrological variables’ spatial
heterogeneity and homogeneity:”What causes spatial heterogeneity and homogeneity in runoff,
evaporation, subsurface water and material fluxes (carbon and other nutrients, sediments), and in
their sensitivity to their controls (e.g. snow fall regime, aridity, reaction coefficients)?’. Question
6 reflects on the hydrologic laws at the catchment scales and their variation with scales: >"What
are the hydrologic laws at the catchment scale and how do they change with scale?’. Further,
question 10 from the category ’variability of extremes’ highlights the link between catchment
heterogeneity (land cover/land use) and extreme runoft: *Why are runoff extremes in some

catchments more sensitive to land-use/cover and geomorphic change than in others?’.

Scale issues are rooted in the aggregation procedure required to reduce the computational burden
in hydrological modeling (Gupta, Rodriguez-Iturbe & Wood, 2012; Sivapalan & Bloschl, 2017;
Bloschl, 2022a). However, scaling hydrological processes, from pore- to catchment-scale and
beyond, causes hydrological variability (Dooge, 1986). Based on Dooge (1986), variability can

be classified as organized simplicity, unorganized complexity, and organized complexity. The
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first and second forms can be resolved by mechanistic and probabilistic approaches, respectively.
The third form, into which most of hydrological problems fall, is difficult to resolve (Weinberg,
2001; Dooge, 1986; Freeze & Harlan, 1969). There is a debate on whether to consider variability
as uncertainty, in the sense that randomness is an inherent part of hydrological processes
or considering that it is a result of lack of knowledge, which by performing more accurate
measurements can be resolved in a deterministic manner (Western, Bloschl & Grayson, 2001;
Rajaram, 2016; Montanari & Koutsoyiannis, 2012; Rigon et al., 2022). Those philosophies give
rise to contrasting modeling approaches, i.e., deterministic or probabilistic, which highlights the
challenges to connect scales. Since flood generation processes and their linkage across scales

are key modeling concepts, they will be briefly discussed in the following.

At the pore scale (10~>m), gravity and capillarity are dominant forces determining water
movement (Jury & Horton, 2004). While these forces are well understood in theory, the
interaction between water and soil can become complex. Clay grains, for example, tend to
change size under wet and dry conditions, depending on their type and shape (Tessier, 1990;
Tuller & Or, 2003; Alaoui, Rogger, Peth & Bloschl, 2018). Changing size further causes the
emergence of cracks on the land surface. Cracks are pathways of preferential flow, which
increase infiltration and decrease local surface runoff (Bloschl ez al., 2016). At the pore scale and
plot scale (1m), water movement through soil cannot be fully described by the well established
Richard’s equation. The equation is driven by a combination of the Darcy-Buckingham law
and continuity equation(Richards, 1931). Despite extensive use in hydrological modeling,
Richard’s equation has limits in the application for all types of soil (Bloschl, 2022a). Moreover,
laboratory studies have shown that water tends to bypass the soil matrix through macro-pores
(i.e., preferential flow); a runoff generation process that cannot be captured by this equation
(Flury, Fliihler, Jury & Leuenberger, 1994; Zehe, Elsenbeer, Lindenmaier, Schulz & Bloschl,
2007). The generation process at the hillslope scale (100m) is different from the profile scale
(1m). The Hortonian infiltration excess is the dominant runoff generation process at the plot

scale. At the hillslope level, however, the spatial connectivity redistributes subsurface lateral
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flow and gives rise to saturation excess runoff generation process (Zehe, Blume & Bloschl, 2010;

Silasari, Parajka, Ressl, Strauss & Bloschl, 2017).

Runoff generation processes at the catchment scale are a subject of ongoing debates. There are
two conflicting approaches: The traditional approach is based on Freeze & Harlan (1969), which
focuses on explaining individual hillslope responses and combining them to reach the catchment
response. This is an upward approach that sees the catchment as an organized simplicity. The
other approach sees the catchment as an unorganized complexity, in which simply aggregating
micro-processes (here at hillslope or more minor scales) will not give an adequate explanation of
macro-processes (here catchment scale) (Sivapalan & Bloschl, 2015). This is because such an
approach fails to consider the evolutionary spatial patterns that develop surface and subsurface
drainage systems across scales (Bloschl, 2022a). One can take a catchment as an ecosystem
that is conditioned on wetness and available nutrients. The presence of life shapes patterns in
the catchment drainage system in a complex manner and produces a non-linear response that
cannot be resolved by mechanistic approaches (Savenije & Hrachowitz, 2017). Therefore, a
more holistic approach is needed to treat the catchment response, for example, by comparing

and contrasting multiple catchments and analyzing their responses (Sivapalan, 2003).

153 Representation of Scale in hydrological models

Recent progress in process conceptualization (Miyata et al., 2019; Sidle, Gomi, Usuga & Jarihani,
2017; Zehe & Bloschl, 2004), data acquisition through remote sensing and reanalyses techniques
can help improve representing spatio-temporal scale in hydrological modeling (Singh & Sinha,
2021; Jiang & Wang, 2019; Koci, Sidle, Jarihani & Cashman, 2020). Multiple datasets with fine
spatial and temporal scales have been developed to address this problem. The examples are Shuttle
Radar Topography Mission (SRTM), The Global Multi-resolution Terrain Elevation Data 2010
(GMTED2010- with spatial resolution of 7.5 arcseconds), and Moderate Resolution Imaging
Spectroradiometer (MODIS), which provide topographic, land use, and snow cover data with with
spatial scales of 250m to 1 km (Pham, Marshall, Johnson & Sharma, 2018; Danielson & Gesch,
2011). The European Centre for Medium-Range Weather Forecasts (ECMWF) proposed
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multiple reanalysis datasets (ERA-Interim, ERAS, ERA-Land), which include time-series of
climatic variables with fine spatial (10 km for ERA-Land) and temporal (hourly) resolutions
(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5). These datasets can
incorporate the details of spatio-temporal variability in implementing of process-based distributed

hydrological models (Tarek, Brissette & Arsenault, 2020b).

The effect of spatial discretization on models’ response has been investigated for urban catchments.
It is shown that the changes in resolution of topographic information provided by digital
elevation models (DEMs), for instance, could reorient flow direction and flow accumulation
and alter the surface and channel routing schemes (Cao et al., 2020a; Krebs, Kokkonen,
Valtanen, Setilid & Koivusalo, 2014). Furthermore, altering soil texture and land cover modifies
imperviousness, Manning roughness coeflicient, soil water content, etc., and reshapes the final
response in terms of both water generation and routing schemes (Cao, Ni, Qi & Liu, 2020b).
This might potentially determine the timing and magnitude of the flood. It is worth noting
that there is no consensus over the impact of additional information provided by high spatial
resolution on the estimation of high flows, as many studies show contradicting results (i.e.,
overestimation or underestimation of flood) by refining spatial resolution (Ichiba et al., 2018;

Warsta et al., 2017).

Over-land flow connectivity is another important scale-related issue that affects catchment
responses (Moore & Grayson, 1991; Jones, Swanson, Wemple & Snyder, 2000; Croke, Mockler,
Fogarty & Takken, 2005). Several studies have addressed the impact of flow connectivity
in water and nutrient transports across hillslope-riparian-river systems (Jencso, McGlynn,
Gooseff, Bencala & Wondzell, 2010; Sedell, Reeves, Hauer, Stanford & Hawkins, 1990; Pringle,
2001). Different methods have been proposed to incorporate connectivity into hydrological
models including contour line-based method (Moore & Grayson, 1991; Miyata et al., 2019),
topographic index methods (Detty & McGuire, 2010; Hallema, Moussa, Sun & McNulty,
2016), empirical approaches (Lopez-Vicente et al., 2017; Koci et al., 2020), and graph theory
approach (Halverson & Fleming, 2015; Cossart & Fressard, 2017). In process-based distributed

hydrological models, surface connectivity is directly related to the resolution of topographic
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and land cover data represented in the model. By changing the modeling scale, a degree of
variability corresponding with modeling parameters is expected to emerge. In fact, the choice of
spatio-temporal discretization can be seen as a form of aggregation over scale, which causes

variability in simulating hydrological variables.

Distributed grid-based models offer the opportunity to represent spatial heterogeneity if refined
data are available adequately. The major challenge, however, is the trade off between the
computational cost of implementing such models and the additional information the model
can provide by refining grids. Zhang & Montgomery (1994), for example, showed that by
increasing grid resolution higher than a specific threshold, the model response has marginally
been improved. Therefore, it is plausible to force the model with a coarse grid without risking
the elimination of necessary information. As a result, lower computational cost accompanied by
an adequately accurate response boosts the efficiency of the model. One way to avoid model
complication and maintain accuracy at the same time is the representation of subgrid spatial
variability through suitable parametrization (Clark et al., 2015). As such, surrogate information
of gridded data (land use, soil texture, topography) encapsulated in the parameters could be

transferred across regions and scales (Fatichi et al., 2016).

1.6 Regionalization

During the past two decades, parameter regionalization techniques have been used to facilitate
transfer of information across regions (Gotzinger & Bardossy, 2007; Hundecha & Bardossy,
2004) and scales (Kumar, Samaniego & Attinger, 2013; Samaniego et al., 2010). In practice,
most of the regionalization techniques available in the literature use parameterization at the
catchment scale and overlook subgrid variability. This may cause problems in transferring
information across scales (Troy, Wood & Sheffield, 2008). Furthermore, using discrete classes
of catchment descriptors may create a discontinuous distribution of state variables and fluxes,

even though the streamflow is accurately simulated (Hundecha & Bardossy, 2004).
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To address the above mentioned problems, Samaniego et al. (2010) and Kumar et al. (2013)
proposed a method to account for the variability below the modeling scale through a technique
called Multiscale Parameter Regionalization (MPR). In this technique, the finest available gridded
data is used to develop a regionalized transfer function, and an appropriate operator is employed
to upscale the transfer function to the modeling scale. The a priori relationships between
catchment descriptors and model parameters are developed using pedotransfer functions, which
are based on empirical evidence and expert knowledge. This technique is further embedded in
meseo-scale hydrological model and applied to broad variety of problems (Rakovec et al., 2016;

Baroni, Zink, Kumar, Samaniego & Attinger, 2017; Thober et al., 2019).

The fundamental feature of regionalization techniques, including MPR is to establish an a priori
relationship between parameters and catchment descriptors (Hundecha & Bardossy, 2004).
However, the explicit relationship between model parameters and catchment descriptors is hard
to detect (Merz & Bloschl, 2004; Parajka et al., 2013) because the available data of catchment
descriptors are represented as an average or percentage of those particular descriptors over
the whole catchment (percentage of land use, average soil depth, etc.). As a result, catchment
descriptors are not thorough representatives of catchment heterogeneity (Merz, Tarasova & Basso,
2020). In addition, the scale of the study can determine which groups of catchment descriptors
are more important. For example, topography of the catchment could be a dominant descriptor at
the catchment scale (Von Freyberg, Radny, Gall & Schirmer, 2014) while climate characteristics

are more important at the regional scale (McGlynn & McDonnell, 2003).

The application of machine learning (ML) and deep learning (DL) in hydrology is rapidly
increasing. In terms of type, most of the studies in the past were limited to the multi-layer
perception (MLP) neural networks, and some used recurrent neural networks (RNN Abrahart
et al., 2012; Dawson & Wilby, 2001; Oyebode & Stretch, 2019). More recent studies have
focused on the application of DL or, more precisely, Long Short-Term Memory (LSTM)
network (Hochreiter & Schmidhuber, 1997), which is a special type of RNNs. LSTM has
shown promise in hydrological modeling and regionalization (e.g. Kratzert, Klotz, Brenner,

Schulz & Herrnegger, 2018; Kratzert et al., 2019a; Gauch et al., 2021a; Gauch, Mai & Lin,
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2021b; Ali, Ebrahimi, Ashiq, Alasta & Azari, 2022; Duan & Ullrich, 2021; Li et al., 2022; Mai,
Craig, Tolson & Arsenault, 2022a; Arsenault, Martel, Brunet, Brissette & Mai, 2022). ML and
DL can improve streamflow simulations and regionalization because they are typically trained
on large datasets of highly variable catchments (Arsenault et al., 2022). Despite their efficiency,
ML and DL have limited use in the operational forecast community due to their black box nature.
In parallel, the academic community continues to advance ML and DL applications, because
contrary to conceptual models, these models have more degrees of freedom to numerically
capture non-linear hydrological relationships (Nearing et al., 2020; Kratzert et al., 2019b). This

helps transferability and scaling of hydrological relationships (Sidle, 2021).

A combination of hydrological models and ML/DL is a way forward. ML techniques are well
suited to calculate the hydrological model parameters, for which a tangible physical relationship
is not available. The advantages of ML regionalization methods have been demonstrated in
the literature. Razavi & Coulibaly (2017) compared traditional methods with various forms of
Artificial Neural Network (ANN) and ML methods in identifying regionalized parameters of
a hydrological model for prediction in ungauged basins across Ontario. Their results showed
that a certain combination of non-linear data-driven methods and catchment classification could
potentially improve the performance of the model for PUB. Saadi, Oudin & Ribstein (2019)
used Random Forest (RF) and two other traditional methods to regionalize the parameters for
multiple urban and natural catchments across France and the US. Their results demonstrated
that the RF method outperforms the traditional methods in both urban and natural catchments.
Merz et al. (2020) developed Parameter Set Shuffling (PASS) method to develop a relationship
between catchment descriptors and parameters using RF. PASS was successfully applied on
multiple catchments in Germany to find consistent regionalized parameters over the country

using a large-scale distributed hydrological model.

Regarding the application of ML and DL in regionalization, there is a gap about the representation
of catchment heterogeneity and its importance for prediction in ungauged basins. The questions
such as how well ML methods perform at different spatio-temporal resolution; to what extent the

developed hydrological relationships between catchment descriptors and model parameters can
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be transferred across scales; and to what extent using more spatially representative catchments

helps improve the efficiency of the modeling have yet to be studied. Addressing these questions

using ML/DL techniques will potentially help improve our understanding of scale issues in

hydrological modeling.

1.7

Research Objectives and hypotheses

The main objective of this study is to assess the impact of spatial and temporal resolutions of

distributed (and physically based) hydrological models on the simulation of flows, in particular

summer-autumn floods. More specifically, three hypotheses will be examined:

1.

The choice of level of spatio-temporal discretization alters model parameters, which leads
to an uncertainty in streamflow and flood simulation. By increasing catchment area, the
contribution of the choice of spatial scale and hydrological model in such uncertainty
increases, and that of time-step decreases.

For small catchments (< 500km?), refining temporal resolution of simulation (from daily to
subdaily) increases the relative change (from reference to future) of extreme summer-fall
flow. Refining temporal resolution will not significantly affect projected extreme summer-fall
flow for large catchments (> 1000km?).

There does exist relationships between model parameters and catchment descriptors that
can be approximated by the random forest (RF) method. The underlying information related
to catchment characteristics is transferable across scales through that approximation. Using
fine-scale (in time and space) catchment descriptors improves the skill of the regionalization

model.



CHAPTER 2

METHODOLOGY

This chapter provides a perspective on the methods and materials used in this research. The
details of the experimental design corresponding with the research hypotheses can be found in

chapters 3 to 5, and therefore, they are briefly addressed in this chapter.

2.1 Study Area

All catchments of this study are located in the Southern Quebec , Canada. The number of
catchments varies, depending on the hypotheses. For the first and second hypotheses, we
selected 6 and 4 catchments located in different hydrological regions of the province. Given
that the main theme of the present study is to investigate the relationship between size and the
spatio-temporal representation of the catchments in hydrological models, the main selection
criterion is to include different catchment sizes. The sizes range from less than 200 to more
than 3500 km?. To verify the third hypothesis, we had to use the maximum possible number of
catchments to introduce them to the RF model. In that case, we used 171 catchments, all located
in southern Quebec. Figure 2.1 displays the catchments used in the experiment to verify the last

hypothesis.

2.2 Data

We employ ERAS precipitation and temperature time series (Hersbach & Dee, 2016, ECMWF
ReAnalysis5;) to calibrate and validate the hydrological models. ERAS is the fifth generation of
ECMWEF reanalyses with a spatial resolution of 31km and hourly temporal resolution. ERAS
has shown a good performance when compared with observed gridded datasets (Tarek et al.,
2020b). Observed streamflow series are obtained from the Direction de 1’Expertise Hydrique
(DEH) of the Ministere de I’Environnement et de la Lutte contre les changements climatiques

(MELCCC) for the 2000-2017 time period, with 24 and 3-hour time steps.
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Figure 2.1 Location of the catchments used in this study, more specifically in the
case of hypothesis 3. All catchments are located in Southern Quebec, Canada

ClimEx large ensemble (Leduc et al., 2019) dataset is used for projections. The dataset is a
50-member ensemble driven by a transient run of the second version of the Canadian Earth
System Model (CanESM2-LE at 200 km resolution; Swart et al., 2019). The RCP 8.5 scenario
was used to run the model for the period covering 1951-2100, resulting in 7500 years of data,

with hourly time steps and a 11° spatial resolution.

23 Experimental setup

Figure 2.2 displays the experimental setup. The first and second columns deal with the first two
hypotheses regarding the uncertainty linked to the spatio-temporal variability in the simulation

and projection of the streamflow for the present and future periods. The last column shows
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the random forest (RF) regionalization method associated with the third hypothesis. The first
step calibrates the models with different spatio-temporal resolutions and creates an ensemble
of simulations per catchment. This allows quantifying the uncertainties linked to catchment
heterogeneity. The second step bias corrects a 50-member ClimEx dataset and forces the
hydrological models to project streamflow in the 1991-2100 period at different spatio-temporal
resolution. This follows by frequency analyses to estimate the change of summer-fall flood in the
future and investigate the effects of spatio-temporal resolution, catchment size, and hydrological
model on the variability of simulations. The third part of this thesis uses the Random forest
method for the regionalization of a distributed hydrological model (Hydrotel) at different
spatio-temporal resolutions. The random forest model creates a relationship between model
parameters and catchment descriptors. This relationship is further applied to pseudo-ungauged
catchments for model confirmation. Nested catchments are further identified and modeled to
investigate parameter transferability of regionalization model across catchmnet, sub-catchment,

and RHHUs.

2.3.1 Calibration

We used dynamically dimensioned search (DDS Tolson & Shoemaker, 2007) to calibrate the
hydrological models (WaSiM and Hydrotel). DDS is a heuristic optimization algorithm that
searches for a good global solution in the n-dimensional surface of the model parameters and the
objective function. The algorithm relies on a user-specified budget of function evaluations. A
probability is dynamically adjusted to limit the number of dimensions being perturbed according
to the number of trials. This way, the number of trials can be determined based on available
computational power. In each trial, the parameters are perturbed by scaling a random selection
from a normal distribution with zero mean. The scale parameter is defined to allow the algorithm
to escape from poor local optima. The default value of the scaling parameter is 0.2. Lower
values can be used if a more refined search is required in the local region of the parameters (In

all cases, we used the scaling factor of 0.2, as recommended by the documentation).
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Figure 2.2 A brief schematic of the experimental design of this study

Multiple researches have used DDS to calibrate the parameters of hydrological models (e.g.,
Zhang, Srinivasan, Zhao & Liew, 2009; Arsenault, Poulin, C6té, Brissette et al., 2014; Behrouz,
Zhu, Matott & Rabideau, 2020; Darbandsari & Coulibaly, 2020). The algorithm has shown
a good performance when compared with other optimization algorithms such as the shuffled
complex evolution (Huot, Poulin, Audet & Alarie, 2019). The simplicity and performance of
DDS, as well as the user-specified budget, make the algorithm an optimal choice for calibrating

computationally-intensive process-based distributed models.

For calibration, a common practice is to use multiple objective functions or one function that
is a composition of multiple measures, such as the mean squared error (MSE), Nash—Sutcliffe
efficiency (NSE Nash & Sutcliffe, 1970), or Kling-Gupta efficiency (KGE Gupta et al., 2009).
NSE is, in fact, the MSE that is divided by the variance of the observation and subtracted

from 1. Being dimensionless and scaled between (o , 1], it is a suitable measure to compare
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model performances. For NSE, the modeling baseline is the observation mean. This is a
problem for highly seasonal hydrological variables such as streamflow in snow-dominated
basins (Schaefli & Gupta, 2007). There are also other known issues with the NSE, such as an
underestimation of bias and variability. To resolve these issues KGE, which is the Euclidean
distance in the Pareto front of the correlation coeflicient (r), relative variability («), and a
measure for bias (8) (Equation 2.1) was proposed (Gupta et al., 2009). This measure is a better
alternative to measuring model performances in snow-dominated catchments (for all calibration

runs, we used KGE as the objective function).

KGE =1-J(r— 1)+ (@ =172+ (8- 1)’ @.1)

2.3.2 Multivariate Bias Correction

The multivariate bias correction method is driven by N-dimensional probability density function
transform (N-PDF; Pitie, Kokaram & Dahyot, 2005). N-PDF is an image processing technique
for the transformation of information between two images. In this technique, the original
multi-variable matrices are rotated by a random orthogonal function, and the rotated variables’
marginal distribution are projected by quantile mapping. The extra rotation step linearly
combines the variables for mapping. The traditional univariate techniques do not consider the
dependency between multiple variables, which leads to inaccurate projections for impact studies
(Rocheta, Evans & Sharma, 2014). The algorithm repeats the rotations and mapping steps until
the distributions of the source and target datasets are the same. The MBCn algorithm (Cannon,
2018) adapts N-PDF for the bias correction of climate data following these steps: First, the

datasets are rotated based on Equations 2.2 to 2.4.

</ — xUIRL]
XU = xVIRY (2.2)
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where P, S, and T refer to climate model projection (future), climate model simulation (historical),
and observation (historical). X is the matrix of climate variables, R is the orthogonal rotation
matrix, and j is the iteration number. The next step is quantile delta mapping (QDM). In
addition to mapping, the method treats the data points in the projections that lie outside the range
of the historical simulated dataset. This is important, especially for decadal or multi-decadal
projections with a strong climate change signal. The QDM transfer functions for temperature

are presented in Equations 2.5 and 2.6.

A(i) = xp(i) = Fg' (Fp(xp(i)) (2.5

2p(i) = Fp ' (Fp(xp(i))) + A() (2.6)

where x (i) is i'" datapoint (here temperature), £(i) is corrected data point, and F and F~! are
empirical cumulative distributions and their inverse functions. The final step is to perform an

inverse rotation according to Equations 2.7 to 2.9:

ng’“” - XE”RU_]] 2.7)
L+ _ gL
XL+ = XUIRL™ (2.8)
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XU+ _ xl] (2.9)

where X is the matrix after applying QDM.These steps are repeated until the simulation (X)
matrix matches the observation (X7) matrix. The MBCn algorithm takes an extra step to preserve
the trend by reordering the elements of the mapped matrix according to the ordinal rank of the

projection matrix (Cannon, Piani & Sippel, 2020).

24 Frequency Analyses

For the flood frequency analyses (chapter 3) from hydrological modelling using historical ERAS
data, we examined multiple distributions to fit the streamflow maxima. The Log-Pearson type
III distribution (Equation 2.10, Griffis & Stedinger (2007)) appeared to be the best fit for this

case study.

_ Lt ng-7oy,  Ing-t
fo(@) = Tz (—5—=)"exp(-—

) (2.10)

where the Napierian logarithm of the random variable Q is X, which has a Pearson type III

(,yi)Z’ﬁ = (O-x27X) H andT = /‘lx _Z(O'x/Yx),

and u,, oy, and B, are the mean, standard deviation and skewness coefficient, respectively.

distribution, I' (@) is the complete gamma function, @ =

To estimate streamflow values for the summer-fall floods from hydrological modelling using
the ClimEx dataset (chapter 4), we pooled the large-ensemble streamflow annual maxima. The
underlying assumption for pooling is that the period under study is stationary (Martel, 2019).
We examined the trend at each data point using the Mann—Kendall test at a 95% confidence
level. For all the catchments, no significant trend has been observed for the future (2081-2100)
and historical (1991-2010) periods. In the next step, we sorted the long time series to create an

empirical cumulative distribution function and calculate flood with different return periods. The
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advantage of this method is to eliminate the uncertainty related to the choice of a parametric

distribution (Meresa & Romanowicz, 2017).
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Abstract

Quantifying the uncertainty linked to the degree to which the spatio-temporal variability of
the catchment descriptors (CDs), and consequently calibration parameters (CPs), represented
in the distributed hydrological models and its impacts on the simulation of flooding events
is the main objective of this paper. Here, we introduce a methodology based on ensemble
approach principles to characterize the uncertainties of spatio-temporal variations. We use
two distributed hydrological models (WaSiM and Hydrotel) and six catchments with different
sizes and characteristics, located in southern Quebec, to address this objective. We calibrate
the models across four spatial (100, 250, 500, 1000 m) and two temporal (3 hours and 24
hours) resolutions. Afterwards, all combinations of CDs-CPs pairs are fed to the hydrological
models to create an ensemble of simulations for characterizing the uncertainty related to the
spatial resolution of the modeling, for each catchment. The catchments are further grouped into
large (> 1000 km?), medium (between 500 and 1000 km?) and small (< 500 km?) to examine
multiple hypotheses. The ensemble approach shows a significant degree of uncertainty (over
100% error for estimation of extreme streamflow) linked to the spatial discretization of the
modeling. Regarding the role of catchment descriptors, results show that first, there is no
meaningful link between the uncertainty of the spatial discretization and catchment size, as

spatio-temporal discretization uncertainty can be seen across different catchment sizes. Second,
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the temporal scale plays only a minor role in determining the uncertainty related to spatial
discretization. Third, the more physically representative a model is, the more sensitive it is to
changes in spatial resolution. Finally, the uncertainty related to model parameters is larger than
that of catchment descriptors for most of the catchments. Yet, there are exceptions for which a
change in spatio-temporal resolution can alter the distribution of state and flux variables, change

the hydrologic response of the catchments, and cause large uncertainties.

3.1 Introduction

Understanding the spatio-temporal scale of the representation of hydrological processes, and
confronting the issue of scale mismatch within inter-connected hydrological units are two
major challenges in hydrological modeling (Bloschl & Sivapalan, 1995; Bloschl et al., 2019;
Fatichi et al., 2016; Beven, 2011). To better understand the complexity (heterogeneity) in
hydrological systems, which is present under continuous internal change (e.g., land use change)
and boundary conditions (e.g., changing climate), distributed hydrological models have been
used across different spatio-temporal scales (Addor et al., 2014; Bloschl, Reszler & Komma,
2008; Famiglietti & Wood, 1995; Kumar, Samaniego & Attinger, 2010; Kumar et al., 2013;
Merz & Bloschl, 2004; Wanders & Wada, 2015; Rakovec et al., 2016; Martel, Brissette & Poulin,
2020a; Thober et al., 2019). However, the models themselves suffer from inadequate simulation
of hydrological processes due to a lack of scale-relevant theories in catchment hydrology
(Samaniego et al., 2017; Bloschl & Sivapalan, 1995; Dooge, 1986; Peters-Lidard et al., 2017).
In fact, changes in the spatio-temporal discretization of the physiographical characteristics of
a catchment can alter the dynamic interactions between state variables and fluxes, resulting
in different model responses (e.g., Cao et al., 2020a; Krebs et al., 2014). Therefore, part of
the modeling uncertainty is due to the extent to which the physiographic characteristics of the
catchment are described, more or less finely, by the model. Such uncertainty is normally ignored
in practice, and is the focus of the present research. Specifically, we aim to quantify the relative
roles of the spatial resolution of the physiographic characteristics, as well as that of the model’s

parameters obtained by calibrating the model using different spatio-temporal representations of
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catchments. To this end, two different distributed hydrological models will be used, as well as
six catchments, all grouped into an ensemble-based approach (Krzysztofowicz, 2001), involving

16 simulations per model and per catchment.

Unlike to lumped models, which treat the whole catchment as a unique homogeneous area,
distributed models incorporate the spatial heterogeneity of the catchments. Depending on
the level of discretization, distributed models can be classified into two broad categories:
semi-distributed and fully distributed (Clark et al., 2015, 2017). In semi-distributed models, of
which SWAT (Arnold et al., 1998) and VIC (Liang et al., 1994) are two well-known examples,
the level of spatial discretization is limited to defining the number of Hydrological Response
Units (HRU). On the other hand, models such as WaSiM (Schulla & Jasper, 2007), MIKE-SHE
(Refsgaard, 1995) and HYDRUS-3D (Simunek et al., 2008) are considered as fully distributed,
as instead, they discretize the catchment using grids, and the computation of the fluxes and state
variables is performed for each grid cell. Distributed models can also be viewed based on a
physical or conceptual representation of the processes. Physically based models attempt to solve
the conservation of mass, energy and momentum equations to represent hydrological processes
at micro-scale control volumes (Hrachowitz & Clark, 2017; Fatichi et al., 2016). MIKE-SHE
(Refsgaard, 1995) and HYDRUS-3D (Simunek e al., 2008) are typical examples. Conceptual
models represent processes more simply, through macro-scale conceptualization(Clark et al.,
2017; Devia, Ganasri & Dwarakish, 2015). The distributed version of the HBV model (Bergstrom
et al., 1995), mHM (Samaniego et al., 2010) as well as CEQUEAU (St-Hilaire et al., 2015a) can

be placed in this category.

In flood forecasting, analyses of hydrological processes, or in climate change impact assessment
studies, the underlying assumption for implementing a specific model over different spatio-
temporal resolutions, is usually that the parameters are scale-invariant, ensuring the production
of similar states and fluxes regardless of the spatio-temporal resolution (Samaniego et al., 2017).
However, such assumption is questionable in the absence of scale-relevant theories for natural
catchments, as the heterogeneity of the system dominates the consistency needed across different

catchments to develop a general theory (Hrachowitz et al., 2013; Nearing et al., 2020). In fact,
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different hydrological processes that take place under different spatio-temporal scales at different
catchments highlight the “uniqueness of the place" (Beven, 2000), as opposed to the generality
of hydrological response. The problem is that the lack of such scale-relevant theories directly
affects modeling practices. Model parameters, for example, typically represent hydrological
processes that are either complex, or take place on a very small scale, or that are not yet well
understood (Pokhrel & Gupta, 2010; Barrios & Francés, 2012; Brynjarsdottir & OHagan, 2014).
In practice, for most cases, model parameters lack physical reality, as very often, there are
no tangible links between catchment attributes and parameters(Beven, 1995). Furthermore,
the dearth of knowledge regarding upscaling theories and their application in hydrological
modeling exacerbates the problem (Neuman, 1990; Kitanidis & VoMvoris, 1983). Therefore,
the parameters cannot be considered scale-invariant and the conditions of flux-matching across
diverse spatio-temporal scales cannot be satisfied with current knowledge (Wood, Sivapalan,

Beven & Band, 1988).

The randomness of hydrological processes, attributable to a lack of knowledge related to the
complexity of the system, can be addressed by replacing the deterministic results of modeling
with an ensemble of simulations using probabilistic or deterministic approaches (Dooge, 1986;
Beven, 2006; Nearing, Gupta & Crow, 2013; Nearing & Gupta, 2015; Nearing et al., 2020).
We suggest that the principles of ensemble simulations can also be useful in addressing the
uncertainty linked to the spatio-temporal variability of the physical descriptors of a catchment.
As such, an ensemble of simulations derived from variations of CDs-CPs resolutions can
be constructed for each catchment to quantify the uncertainties corresponding to the spatio-
temporal resolution of the modeling. While multiple studies focus on accounting for and
quantifying different sources of uncertainties in hydrological modeling, some include input data
uncertainty, structural uncertainty, parametric uncertainties, or a combination of the preceding
(e.g., Dixon & Earls, 2012; Faramarzi et al., 2013; Zhao et al., 2018; Poulin et al., 2011; Joseph,
Ghosh, Pathak & Sahai, 2018; Thiboult et al., 2016; Euser et al., 2013; Craig et al., 2020; Tarek,
Brissette & Arsenault, 2020a; Refsgaard, Van der Sluijs, Brown & Van der Keur, 2006; Butts

et al., 2004), less attention has been directed towards the uncertainty related to spatio-temporal
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variability and how it impacts modeling. This may be attributable to a belief that such uncertainty
has but trivial impacts on the modeling. However, among the limited research works that have
been conducted in this context, Tegegne, Kim, Seo & Kim (2019) demonstrated that changing the
sub-basin spatial scale in the SWAT model has a small impact on the entire flow simulations, but
that a substantial sensitivity could be observed when reproducing more extreme flow quantiles.
Their study, however, was limited to varying the number of HRUs, as opposed to changing
the spatio-temporal discretization of the model’s parameters. Moreover, no mechanisms were
considered to account for the uncertainties related to spatio-temporal variability of the physical

descriptors of a catchment.

Varying the spatial resolution used to represent land use in the model might also lead to a range
of simulations, and therefore help to quantify the corresponding uncertainty. Distributed models
have widely been used to account for land use change across the globe (e.g., Singh et al., 2015;
Li et al., 2019; Yang, Long & Bai, 2019a; Tavangar, Moradi, Massah Bavani & Gholamalifard,
2019). In a series of papers (Breuer et al., 2009; Huisman et al., 2009; Viney et al., 2009;
Bormann, Breuer, Griff, Huisman & Croke, 2009) under the project on ‘Assessing the impact
of land use change on hydrology by ensemble modeling (LUCHEM)’, an ensemble of 10
hydrological models were used, with a range of structural complexity. More recently, Chen et al.
(2019b) investigated parameter uncertainty stemming from land use change across different time-
scales. They used two distributed models and three land use scenarios to simulate streamflow
on a catchment located in China. Their results suggest that land use change does not have
substantial effects on runoff simulations, but a large range of uncertainty can be observed for
extreme streamflow values. It is worth noting that these research works focus on land use change
scenarios, while the impact of change of spatio-temporal resolution on the modeling and the

uncertainties are yet to be investigated.

The impact of spatial discretization on flood events has been investigated with a focus on urban
catchments (e.g., Cao et al., 2020a; Krebs et al., 2014; Zhou et al., 2017). It was found that
changes in resolution of the topographic information provided by digital elevation models

(DEM), for instance, could reorient the flow direction and flow accumulation, and alter surface
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and channel routing (Cao et al., 2020b). Furthermore, altering soil textures modifies the
imperviousness, the Manning coefficient, the soil water content, etc., in addition to reshaping
the final response in terms of both runoff generation and routing processes (Cao et al., 2020a).
Given the high degree of imperviousness and the complexity of surfaces in urban catchments,
changes in spatial resolution could affect the results of flood simulations, which may leave
such catchments more vulnerable to flooding events (Zhou et al., 2017). Furthermore, changes
in model response due to the degree to which the spatial heterogeneity of the catchment is
represented might potentially affect the simulation in terms of peak timing and magnitude
(Ichiba et al., 2018). However, there is still no consensus on the impacts of refining the spatial
resolution, as many studies show contradictory results, i.e., overestimation or underestimation of

extreme flows (Warsta et al., 2017).

While it has been shown that the choice of a particular level of spatio-temporal discretization on
streamflow simulation of urban catchments can affect the simulation of peak streamflow, less
focus has been given to similar issues for natural catchments. Still, the choice of a particular
spatio-temporal resolution can similarly impact the modelling of natural catchments, since any
variation of the land surface and slopes leads to a change in the time of concentration (Grimaldi,
Petroselli, Tauro & Porfiri, 2012). This translates in variation of time and magnitude of flooding
events. Such variations could also be important for climate change impact assessment studies,
particularly for snow dominated catchments. Due to a changing climate, flooding patterns are
shifting from spring to summer-fall (Kharin et al., 2018). While floods due to the spring freshet
are characteriezed by temporal scales covering several days, summer-fall flood events are usually
characterized by much shorter temporal scales (sub-daily), to which small catchments are more
sensitive (Yin et al., 2018; Donat et al., 2016). Consequently, depending on the catchment size,
the choice of a specific spatio-temporal discretization is important for accurate flood simulations
. Therefore, the choice of spatio-temporal discretizations in natural catchments needs to be
further investigated. The respective roles of catchment area and characteristics, the time step

of the simulation, as well as the model structure and parameters, are potentially important



39

determinants of a hydrological model’s response, and this paper aims at investigating their roles.

More specifically, we propose to test the following hypotheses:

1. Larger catchments are susceptible to larger uncertainties in the simulation of streamflow,
when varying the spatial resolution of their physiographic characteristics.

2. Finer time steps introduce a higher degree of variability in the simulation, leading to
increased uncertainty in streamflow simulation.

3. The more finely distributed and physically realistic a model is, the more sensitive to changes
in spatial resolution it is.

4. The uncertainty related to model parameters is larger than that of catchments descriptors

(DEM resolution, land use, soil texture).

These hypotheses will be examined through multiple experiments performed using two distributed
models and six catchments of various sizes.The experiments will result in an ensemble of
simulations to be investigated per catchment and per model. The structure of the paper is
as follows. Section 3.2 provides details about the study area and the characteristics of the
selected catchments, a brief description of the models used for simulations and the details of the
experimental design. Results are presented in section 3.3 and discussed in section 3.4, taking one
specific catchment as a representative example. Finally, concluding remarks and perspectives

for future work are presented in section 3.5.

3.2 Method and Data

3.2.1 Study Area

Six catchments ranging from 100 km? to more than 2500 km? located in Quebec, Canada, are
selected for this study (see Figure 3.1). The selection procedure is based on the following
criteria: First, a broad range of catchment sizes should be covered to analyze the sensitivity of
hydrological responses to the catchment size. Second, catchments should not belong to the
same hydrological region, but rather, should be distributed across the territory (here the province

of Quebec). Third, at least 10 years of streamflow data for 24- and 3- hour time steps need to
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be available to fulfill the calibration and validation procedures. Table 3.1 describes the main

characteristics of the catchments used in this study, which are identified in Figure 3.1. The

catchments are sorted in descending order based on their area.
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Figure 3.1 Location of the catchments for this study, over the southern part of Quebec
Table 3.1 General information and characteristics of the catchments
Station Station Area | Mean annual | Mean annual | Mean annual
Number Name (km?) | precipitation | streamflow | temperature
(mm/yr) (m?/s) §®)
030905 | Chateauguay | 2492 1192.77 38.45 6.65
050135 Croche 1563 1139.36 30.70 2.74
023427 Chaudiere 781 1208.65 16.47 3.72
030424 | Aux Brochets | 584 1329.34 10.52 6.23
023004 Boyer 191 1396.76 4.45 4.15
050812 | Aux Pommes | 97.8 1322.69 2.37 5.12
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3.2.2 Hydrometeorological data

The present study employs meteorological data (i.e. precipitation and temperature) extracted
from ERAS (ECMWF ReAnalysis5) gridded dataset to force the hydrological models for the
historical time-period. Gridded reanalyses datasets are considered as an alternative to observed
historical meteorological data. Using such datasets allow to solve major flaws of observational
datasets, including missing data (particularly for higher resolutions), measurement errors, uneven
distributions, etc. (Tarek et al., 2020b). The European Centre for Medium-Range Weather
Forecasts (ECMWF) proposed multiple reanalysis datasets (ERA-Inerim, ERAS, ERA-Land),
which are widely used by hydro-climate modelers (Belmonte Rivas & Stoffelen, 2019; Wang,
Graham, Wang, Gerland & Granskog, 2019). ERAS is the fifth generation of ECMWF reanalyses
of global climate products. The spatial resolution of ERAS is 31km and the temporal resolution
is hourly. Currently, the dataset covers the period from 1979 to today, and is expected to be

updated to 1950 in the near future.

Observed streamflow series are obtained from the Direction de 1’Expertise Hydrique (DEH) of
the Ministere de I’Environnement et de la Lutte contre les changements climatiques (MELCCC)

for the 2000-2017 time period, with daily and 3-hour time steps.

3.2.3 Hydrological models

3.23.1 WaSiM

The Water balance Simulation Model (WaSiM; Schulla & Jasper, 2007) is a process-based
model that operates on a raster (grid) system. Its submodels run each grid cell of a catchment for
each time step, providing the opportunity to use parallel computation algorithms based on the
OpenMP standard. The model represents hydrological processes through its submodel structure,
in which several options for interpolation, evapotranspiration, snow accumulation and melt,
interception, glacier model, silting-up, unsaturated zone including heat transfer, saturated zone,

surface discharge routing, and discharge routing including lakes and reservoirs are available.
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The distinguishable feature of WaSiM is its provision of options to calculate infiltration and
to represent water in the soil layers, with the calculation being more detailed than for most
surface hydrological models. Two methods can be used namely, the modified conceptual
Topmodel approach, and Richard’s Equations approach (or unsaturated zone model). Since the
second approach is more physically-based, we selected this version for simulations. The 1-D
Richards equation, which represents fluxes in the unsaturated zone, is represented by Equation

3.1 (Schulla & Jasper, 2007):
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where ©(m?>/m?) is the water content, ¢(seconds) is time, k(m/s) is the hydraulic conductivity,
W (m) is the hydraulic head, g(m/s) is the flux, and z(m) is the depth of the soil column. WaSiM
solves Equation 3.1 for multiple soil layers (the default is 30 layers for each type) of a grid cell

using the finite difference method.

The unsaturated zone model controls multiple hydrologic variables such as infiltration, exfiltration,
interflow, baseflow, real evapotranspiration, groundwater recharge, etc. Given the physical
approach adopted to represent the flux of water in soil, WaSiM leans towards physically-
based models. However, considering the simplified 1-D version of the continuity equation
(instead of 3-D), and the existence of other empirical elements in the submodels (e.g., potential
evapotranspiration) hinders the classification of the model among full physically-based distributed
models. Table 3.2 specifies the choices that were made for each submodel of WaSim and for

Hydrotel, which are described in the next sub section.

We calibrated 12 parameters: 7 for the infiltration model based on Richard’s equation, 2 for
evapotranspiration, 1 for the snow accumulation and melt model, and 2 for the spatial interpolation.
Those parameters were selected after a consultation with the team who develops and maintains
WaSim as well as from the WaSiM documentation. We set the remaining parameters to their

default values, as per recommendation of the WaSiM documentation (Schulla & Jasper, 2007).
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3.2.3.2 Hydrotel

Hydrotel is an HRU-based distributed model that is widely used operationally for flood forecasting
by the DEH (e.g., Martel et al., 2020a; Turcotte, Morse & Pelchat, 2020; Lucas-Picher et al.,
2020). The model adopts a mixture of physical, conceptual and empirical relationships to
represent hydrological processes. Like WaSiM, it provides multiple options for calculating the
hydrological processes of a catchment. The main particularity of Hydrotel is its compatibility
with GIS and remotely sensed data (Fortin ef al., 2001a). Therefore, the model is capable of
representing the spatial variability and the topography of catchments through a digital elevation

model (DEM), soil texture maps and land use data through its components.

The model uses BV3C (Bilan Vertical 3 Couche) for soil modeling, which is specifically
developed for Hydrotel. In this approach, the soil column is divided into three layers: The
first layer is a surface layer that controls infiltration and is affected by surface evaporation; the
second layer is associated with interflow, and the third one controls the baseflow. For the whole
soil column, a moisture accounting equation is designed to represent macroprocesses of fluxes
(Fortin et al., 2001a). As a result, from a model classification perspective, the model leans
towards the group of conceptual, distributed models, even though Hydrotel comprises certain
physically-based elements related to surface and channel routing. Table 3.2 shows the submodels

of Hydrotel used in this study for simulations.

Hydrotel has 28 parameters, of which eleven were calibrated. This includes 3 parameters for the
infiltration and percolation submodel (BV3C), 6 for the snow accumulation and melt submodel,
1 for potential evapotranspiration, and one for the spatial interpolation (Thiessen polygons). The
remaining parameters were fixed based on previous studies from our group, from the current
practices at the government of Quebec (where Hydrotel is used operationally) and from the

available documentation (see Huot et al. (2019) for more details about the parameters).
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Table 3.2  The submodels employed to represent the hydrological processes in Hydrotel

and WaSiM
Submodels Hydrotel Wasim
Interpolation Thiessen polygons Thiessen polygons
Snow melt/accumulation Degree-Day Method Degree-Day Method

Potential evapotranspiration | Hydro-Quebec Fortin ez al. (2001b) | Hamon Hamon (1961)

Real evapotranspiration after BV3C after Richards’ Eq.
Soil model BV3C Richards’ Eq.
Channel routing Kinematic Wave Eq. Kinematic Wave Eq.

It should be noted that we developed two types of configurations for the simulations with
Hydrotel, in order to allow the comparisons between a grid-based model (i.e., WaSiM) and an
HRU based model (i.e., Hydrotel). In the first configuration (referred to as Hydrotell hereafter),
we keep the number of HRUs constant, while the spatial resolution varies. Since the number
of HRUs are kept constant during this experiment, the model might show low sensitivity to
changes in spatial discretization. To rectify this, we introduced the Hydrotel2 experiment. In this
configuration, we adjust the number of HRUs to match the change in resolution. We manually
set the number of HRUs equal to the number of subbasins, which are automatically created for
WaSiM based on the spatial resolution of CDs. This configuration is referred to as Hydrotel2

hereafter.

3.24 Experimental plan

Figure 3.2 delineates the different steps of our methodology and the experiments designed
to answer the question posed in the introduction. The first column of the figure shows the
“Data Domain", comprised of forcings (precipitation-temperature), calibration data (observed
streamflow), and gridded Catchment Descriptors (CDs- e.g., DEM, land use, soil texture). For
CDs, the highest available resolution is 100 m and we used resampling and interpolation methods

to upscale the grids to 250 m, 500 m, and 1000 m resolutions. The second column, which is
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referred as “time domain" shows the time step of forcing and calibration data. For this project,

the subdaily time step is equal to 3 hours.

Regarding the third column titled “Calibration”, as per usual, we split the time-series into

calibration and validation periods. The duration of both periods are equal unless there exists a

large part of missing data in between them that could reduce the accuracy of the calibration. In

such a case, we remove that specific year from the period of calibration or validation. It is worth

mentioning that the time-series of data related to winter streamflow in 3-hour time step is not

available, and as a result, we removed this part of the year from the analyses.
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We used the Dynamically Dimensioned Search (DDS; Tolson & Shoemaker, 2007) algorithm to
calibrate the hydrological models. The DDS global approach to scale the search for parameters
based on the user-specified budget is an advantage compared to many other algorithms. In
addition, its global approach to perturb parameters at the beginning of the search, which then
narrows down the search space when the calibration procedure progresses, was shown effective
in the literature (e.g., Huot et al., 2019). Since most of the work for this study was carried
out in Matlab, the main function of DDS was also executed in Matlab. Multiple scripts were
developed to facilitate the communication between the models and the main DDS algorithm.
A 0.2 perturbation factor has been used for the optimization. Furthermore, the Kling-Gupta
Efficiency (KGE; Gupta et al., 2009) is adopted as the objective function for optimizations.
Compared to the Nash—Sutcliffe efficiency, KGE is more suitable to compare modeling skills
across various catchments and time-steps with multiple variability. Moreover, KGE provides a
more realistic view regarding the modeling efficiency for snow-dominated catchments (Gupta

et al., 2009). The KGE is computed using Equation 3.2.

KGE:\/(r—1)2+(?ﬂ—1)2+(m—1)2 3.2)
obs

Hobs

where r is the linear correlation between observations and simulations, o;,, is the standard
deviation in observations, o, 1s the standard deviation in simulations, g, is the simulation

mean, and u,p, is the observation mean.

When the distributed models are fed and calibrated against streamflow at the outlet of the
catchment, several calibration parameter sets are obtained according to the spatio-temporal
discretization of the input data (forth and fifth columns titled “Parameter Resolution" and “CD
Resolution"). In the next step, all combinations of CPs-CDs are used to force both hydrological
models for simulations. With n = 4 different resolutions for each calibration, an ensemble of
n? = 16 simulations is obtained for each model (i.e. WaSiM, Hydrotell, and Hydrotel2) and

catchment.
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To explore the uncertainty due to the spatial discretization, we first separate the catchments based
on their surface areas to investigate the possible relations between discretization uncertainty
and catchment size. Catchments are separated into three categories: larger than 1000 m
(hereafter “large"), between 500 m and 1000 m (hereafter “medium"), and less than 500 m
(hereafter “small"). As shown in Table 3.1, each category comprises two catchments. To find
the variabilities corresponding with the change of spatial scales, we calculate the streamflow
quantiles (i.e. @10, 950, 090, and Q95) per simulation for each catchment in 24- and 3-hour
time-scales separately (16 quantiles per model, catchment and time-step). Then we derive the
variance of flow quantiles divided by the corresponding observed flow quantile and standardized
them between zero and one. This enables us to compare the results among models, catchments
and time-steps. Second, we compare the efficiency of simulations in calibration and validation
across different spatio-temporal resolutions and explore the sensitivity of the efficiency of
simulations to the changes in the CPs” and CDs’ resolution. Third, we apply extreme value theory
Coles, Bawa, Trenner & Dorazio (2001) to simulate flood events with different return periods
by fitting the Log-Pearson distribution to the annual flow maximas. We calculate summer-fall
floods with 5, 10, 20, and 50 years return periods for each simulation and calculate the relative

error in flood simulations according to Equation 3.3:

OT;ij — QT,ps

3.3
QTobs ( )

er,ij =

where e is the relative error of simulations, i is the CP resolution, j is the CD resolution, QT is

the magnitude of a flood event with return period 7', and obs represents the observation.

Given the 16 possible combinations of simulations, a range of relative error is obtained from
Equation 3.3 for a specific return period. This range can further be separated into uncertainties

corresponding to CPs and CDs according to Equations 3.4 and 3.5:

MDE%) = |max(eri, er,ij, .--» €T,in) — MIN(er i, €rij, ..., €T,in) | (3.4)
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MDE%IJJ = | max(eT,,-j, eT,jj, cees eT,nj) - min(eTJ-j, eT,jj, cees eT,nj)l (35)

where M DE% ? is the Maximum Difference of Errors when the resolution of CPs is constant
and M DE%’; is the Maximum Difference of Errors when the resolution of CDs is constant, for a
return period 7. Following this approach, we can investigate the dominant source of uncertainty
(i.e., CDs or CPs) in the system. Also, this can potentially help verify if using the combination
of lower resolution CPs and higher resolution CDs could reduce the computational demand,

while maintaining a high level of detail in the simulations.

3.3 Results

This section is structured as follows: in section 3.3.1, mean annual hydrographs of simulations
are presented. Section 3.3.2 provides the results regarding spatial distribution of hydrological
variables. Section 3.3.3 gives the results related to the model efficiency (KGE of simulation)
and corresponding uncertainties. Section 3.3.4 provides analyses regarding the uncertainties of

extreme flows.

3.3.1 Annual Hydrographs

Figures 3.3 and 3.4 display the mean annual cycle of simulated and observed streamflows for
3- and 24-hour time steps. As discussed in section 3.2.4, for each catchment and model, 16
simulations are available, which is the combination of 4 sets of CP s and 4 CDs resolutions. The
figures show the entire period of calibration and validation. Furthermore, winter streamflow
has been removed for the 3-hour time step due to a lack of observation data. The results are
presented according to the catchment area: the top row shows larger catchments (> 1000 km)
whereas the bottom row shows smaller catchments (< 500 km). In Figure 3.3, WaSiM is used to
simulate streamflow. The uncertainty bounds in the figures demonstrate the sensitivity of the
model to variations of the spatial resolution. Such uncertainty can be found in most of the cases,

regardless of the catchment size and time step (3 hours or 24 hours). The Croche, Aux Brochets,
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and Boyer catchments, which show notable uncertainties, belong to the groups of large, medium
and small size catchments, respectively. Thus, no clear link between the size of the catchment
and the degree of uncertainty can be found in this study (hypothesis i). By contrast, the impact
of the time step on the uncertainty can be observed for the catchments mentioned above, as the

simulations with a 3-hour time step show wider uncertainty bounds (hypothesis ii).
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Figure 3.3 Annual hydrographs of the selected catchments simulated by WaSiM and
compared to observed data. The modeling time-steps are 24 and 3 hours. The responses are
arranged according to the size of the catchments: large catchments (> 1000 km) are on the

top row; medium catchments (between 500 and 1000 km) are on the middle row; large

catchments (< 500 km) on the bottom row

Figure 3.4 shows the Hydrotel simulations, when the number of HRUs are kept constant
(Hydrotell, see section 3.2.4). Compared to the WaSiM simulations, the model shows less
sensitivity to a changing spatial resolution (hypothesis iii). The only exception is the Aux Pommes
catchment, in which a large disparity between simulations can be observed. Furthermore, the

uncertainty bound is visible for the Croche catchments. Regarding the impact of time steps,
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unlike WaSiM, no systematic pattern emerged. For simulations with Hydrotel2, a slight widening

of the uncertainty bounds can be observed (Figure I-1 in the supplementary material).
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Figure 3.4 Annual hydrographs of the selected catchments simulated by Hydrotel
(Hydrotell) and compared to observed data. The modeling time-steps are 24 and 3 hours.
The responses are arranged according to the size of the catchments: large catchments
(> 1000 km) are on the top row; medium catchments (between 500 and 1000 km) are on the
middle row; large catchments (< 500 km) on the bottom row

Figure 3.5 shows the variance of the ensemble of simulations corresponding with different
streamflow quantiles per catchment and time-step. Having 6 variances (one per catchment), we
then calculated the mean and standard deviation (STD) of variances to facilitate the comparisons
between models. These values are located in the 7th and 8th rows of each subplot. According to
Figures 3.3 and 3.4, the results for catchments Aux Pommes simulated by Hydrotel and Boyer
simulated by WaSiM suggest that there are inconsistencies between parameters and catchment
descriptors for simulations with 100 m resolution, which results in poor efficiencies. Therefore,

we excluded the poor simulations for catchment Aux Pommes-Hydrotel (i.e. all combinations of
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CP1po and CDgp except CP19oCD1¢p). In addition, for Boyer-WaSiM we removed simulations

CP100C D250, CP10oC D500, CP1000C D100 (the analyses regarding the poor simulations of the

Aux Pommes and Boyer catchments can be found in Section 3.4, Figures 3.15, and I-9).
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Figure 3.5 Standardized variance of ensemble of flow quantiles (Q10, Q50, Q90, and
Q95). For each subplot: Row 1-6 is the standardized variance of quantiles. Row 7 is the
mean and row 8 is the STD of the variances over all catchments

Regarding Hypothesis i (i.e. catchments size), these results show that the size of a catchment

does not play an important role in determining the uncertainty related to the level of spatial

discretization. Looking at g for example, such uncertainty can be seen for Croche (a large

catchment), Aux Brochets (a medium catchment), and Boyer (a small catchment). Regarding
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Hypothesis ii (i.e. time-step of simulations), no pattern can be observed for Hydrotell and
Hydrotel2 comparing the results for 3- and 24-hour time-step. However, the variance of quantiles
for the 3-hour time-step is higher than that of 24-hour for WaSiM. A portion of this difference
might be explained by a lack of, or noisy streamflow observations for the 3-hour time-step (e.g.
catchment Boyer). We performed a Student t-test and a Wilcoxon rank sum test to find any
significant change in the variances when the time-step changes. The results of the tests show no
statically significant change. Finally, Figure 3.5 shows that the variance of the simulations is
higher for WaSiM than for Hydrotel2 and Hydrotell for most cases. In addition, Hydrotell shows

the lowest variance among the models. These observations support the validity of Hypothesis iii.

3.3.2 Spatial distribution of the hydrological variables

Figures 3.6 and 3.7 demonstrate the effects of different levels of spatial discretization on
the spatial distribution of actual evapotranspiration (AET), snow depth, and baseflow across
catchment Chateauguay simulated by WaSiM and Hydrotell respectively. Here we selected
four simulations for which catchment descriptors (CDs) and calibration parameters (CPs)
resolutions are identical (i.e. CP1poCD109, CP250CD250, CPs00C D500, CP1oooCD1000- the
numbers represent resolution in m) to highlight the impact of spatial discretization. In Figure 3.6,
variability between the simulations with different spatial resolutions is visible for all variables.
For example, the distribution of CP1990CD oo for baseflow (3" row) shows a variability across
the catchment, which is reduced by increasing the scale. This is expected, as lowering the spatial
resolution smooths the topography of the catchment in the model, resulting in a more uniform

hydrologic response.

For Hydrotell simulations in Figure 3.7, the spatial variability across scales is less than that of
WaSiM. Considering the example of baseflow, a similar pattern of spatial distribution can be
seen for all simulations, regardless of the resolution. Figures 3.6 and 3.7 confirm the findings
of section 4.3.1, in which WaSiM shows a higher degree of sensitivity to changes of scale.
These results are in accordance with the third hypothesis. Further analyses regarding the spatial

distribution of AET can be found in supplemantery material (Figures I-2 and I-3 ).
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3.3.3

General performance of the simulations

Figures 3.8 to 3.10 illustrate the performance of the simulations through calibration and validation

periods for the catchments, according to the Kling Gupta criterion. Here, we represent how the

efficiency of simulations varies following two sources of variability: a primary source, which is

caused by direct changes to the catchment descriptors; and a secondary source, which is caused
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by any change in the calibration parameters. However, the latter is itself caused by changing
the resolution of CDs. We assign a marker and a color to each simulation, which represent the

resolution of CDs and CPs respectively.

Figure 3.8 demonstrates the performance of the simulations by WaSiM. Although the number of
optimization trials is limited (150) due to the intensive computational demand of the model, the
efficiency is high (> 0.8) for most cases. Furthermore, as R? values show, the model demonstrate
a robust performance for both the validation and calibration periods. It is notable that, except for
the Chateauguay and Chaudiere catchments, the variability of KGE values is visible, as a result
of changes in resolution. In addition, no systematic pattern regarding the relationship between
catchment size and uncertainty can be identified. Interestingly, the maximum spread can be
seen in Boyer catchment, which is small (191 km?). In terms of temporal resolution, for most of
catchments, the simulations with a 3 hour time step display a slightly higher variability than
those with a 24-hour time step (Table I-1 in the supplementary material shows that this change

is not significant for most catchments).
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Figure 3.8 Efficiency of WaSiM in reproducing streamflow for the calibration and
validation periods. Here, CP and CD represent calibration parameters and catchment
descriptors respectively and the numbers assigned show the resolution in m

Figures 3.9 and 3.10 show the KGE of simulations by the Hydrotel1 and Hydrotel2 configurations,

where 500 optimization trials have been used for each case. In general, the efficiency of

simulations with Hydrotel is lower than with WaSiM (> 0.7), even though the number of

optimization trials for Hydrotel exceeds those of WaSiM. From another standpoint, in practice,
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if the computational power and time are limited, then a semi distributed model such as Hydrotel
which has a lower sensitivity to variations in spatial resolutions can be a good choice for
simulations (hypothesis iii). Nonetheless, according to R? values, the models demonstrate a
robust performance for the calibration and validation periods. Furthermore, the Aux Pommes
catchment depicts a large variability in the spread of the simulations. Figures 3.9 and 3.10
reveal that a major drop in the performance often occurs when the highest resolution (100 m) of
CP (or CD) is combined with the lower resolution of CD (or CP, i.e. 100, 250, 500, 1000 m).
Remarkably, such a pattern holds for the WaSiM simulation of the Boyer catchment with a
3-hour time step in Figure 3.8, where a major decline in KGE is seen in simulations (blue). This
highlights the issue of compatibility between the resolution at which parameters are calibrated
and the resolution at which the model is simulated (This will be further explained in Section
3.4 and in the supplementary material). Comparing Figures 3.10 and 3.9, it can be seen that
the spread of the simulations is higher for Hydrotel2 than for Hydrotell. This is an expected
outcome given the scheme used for Hydrotel2, in which the numbers of HRUs are changed in

accordance with the resolution of CDs .
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Looking at Figures 3.8 to 3.10, no systematic pattern can be detected in terms of the impact of
variabilities corresponding to CDs or CPs. In some cases, the CDs are dominant (the markers
grouped together), while in others, CPs are dominant (colors grouped together) and for the
rest of the cases there is no clear pattern (hypothesis iv). The figures, however, reveal that the

best performance is not necessarily correlated with the highest possible resolutions of CDs
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and CPs. Indeed, the combinations of the lowest resolutions (CPggp and CD1¢gg), which are
shown by black colors and asterisk shape markers, are among the top performing simulations.
This is important for practical applications, as using a combination of lower resolution CDs for
calibration and high resolution CDs for simulation could substantially reduce the computational

costs while maintaining the detail of simulations.

3.34 Uncertainty of extreme streamflows

Figures 3.11 to 3.13 show the relative error when the models are used to simulate floods with 5-,
10-, 20-, and 50-year return periods. We fitted the Log-Pearson distribution to the annual maxima
of the simulated and observed streamflows for the 2000-2017 period and extracted the flood
events corresponding to the return periods mentioned above. The spread of the boxplots show the
difference in relative error (Equations 3.3) of all simulations (i.e., for the ensemble of 16, which
is combination of CDs and CPs in each case) generated by changes in spatial resolution. Given
the nature of extreme events, which comprise streamflows with large magnitudes, the noticeable
spread of simulations shown in these figures highlights the importance of spatial discretization
for flood modeling. Figure 3.11 demonstrates the relative error of extreme events simulated by
WaSiM. In agreement with the previous observations, a spread can be detected across different
catchment sizes, (i.e. Croche, Aux Brochets, Aux Pommes) and a systematic relationship
between extreme flow and catchment size cannot be identified (hypothesis i). Moreover, there is

no significant relationship between the spread and the time step of the simulations.
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50-year return periods using WaSiM. QT represents a flood event with the specific return
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Figures 3.12 and 3.13 show the relative error of flood simulations produced by the Hydrotell and
Hydrotel2 configurations. The response of Hydrotell to extreme flow is similar to other figures
(i.e. annual hydrographs and KGE) discussed earlier. While the magnitude of error is higher
as compared to WaSiM, the model shows a smaller spread of relative errors (hypothesis iii).
Nonetheless, the spread of relative error is visible across different catchment sizes (Chéateauguay,
Aux Brochets, and Aux Pommes), which refutes the possibility of a correlation between the
catchment size and the uncertainty of extreme flow (hypothesis i). However, the time step chosen
for the simulation is important, as the width of the boxplots corresponding to the 3-hour time
step is larger than for the 24-hour time step (hypothesis i1). Simulations with Hydrotel2 exhibit a

noticeably larger uncertainty for extreme streamflows as compared to Hydrotell, particularly for
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the Chateauguay and Aux Brochets catchments. This is in line with the earlier observations
discussed in Figures 3.9 and 3.10, where the uncertainties corresponding to Hydrotel2 are
higher than for Hydrotell due to the change in the numbers of HRUs for Hydrotel2. Finally,
considering Figures 3.11 to 3.13, the return period does not appear to influence the uncertainty

of the simulations. Indeed, the spread of the simulations for different return periods is similar,

per catchment.
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Figure 3.12 Relative error for the simulation of summer-fall floods with 5-, 10-, 20-, and
50-year return periods using the Hydrotell configuration. QT represents a flood event with
a specific return period



63

Chéteauguay-24hr

Chéateauguay-3hr

Croche-24hr

Croche-3hr

0.5

Relative Error
(=)

= 2 &5 &

0.5

-0.5

g5 E

0.5

= £ & L

0.5

= & O &

QT5 QT10 QT20 QTS50
Chaudiére-24hr

1
QT5 QT10 QT20 QTS50

Chaudiere-3hr

QT5 QT10 QT20 QTS50
Aux Brochets-24hr

QT5 QT10 QT20 QTS50
Aux Brochets-3hr
T

0.5

Relative Error
<

-0.5

=
=
= _—=

-0.5

0.5

%E‘
=

-0.5

0.5

5 B

1 €L

D 5

-0.5

0.5

550 H

L

1
QT5 QT10 QT20 QTS50

0.5

-0.5

Relative Error
(—)

QT5 QT10 QT20 QTS50

1
QT5 QT10 QT20 QTS50

1
QT5 QT10 QT20 QTS50

Boyer-24hr ’ Boyer-3hr Aux Pommes-24hr Aux Pommes-3hr
0.5 0.5 0.5
0 or = T 0
= = = 7 O 0= 5 5 8
F o= =5 = = |5+ t 0t 050 -
1 1 1 1
QT5 QT10 QT20 QTS50 QT5 QT10 QT20 QTS50 QT5 QT10 QT20 QT50 QT5 QT10 QT20 QT50

Return Period

Return Period

Return Period

Return Period

Figure 3.13 Relative error for the simulation of summer-fall floods with 5-, 10-, 20-, and
50-year return periods using the Hydrotel2 configuration. QT represents a flood event with
a specific return period

Figures 3.14, I-4, and I-4 illustrate a separation of the total uncertainty for extreme streamflows

into contributions from CDs and CPs. The separation procedure is carried out following section

3.2.4. In these figures, RN represents the resolution of simulations and QT N represents the

return period. The vertical and horizontal axes are the Maximum Difference of relative Errors

(MDE) of CDs and CPs respectively, as defined in Equations 3.4 and 3.5.

Figure 3.14 depicts the results of simulations with WaSiM. For most catchments, the contribution

of CPs to the total uncertainty is larger than that of CDs. For instance, the MDE of CPs in

Chateauguay is between 0.1 to 0.2, while the MDE of CDs is around zero. The same pattern can

be seen for Croche, Chaudiere, Aux Pommes (3 hour), and Boyer (3 hour). This, however, is not

the case for all catchments. For the Aux Brochets (3 and 24 hour) and Aux Pommes (24 hour)
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catchments the MDE corresponding to CDs is equal to or larger than that of CPs. The dominance
of MDE of CDs is evident, particularly for Aux Brochets (3 hour). The reasons for this behaviour
are explained in details in the supplementary material (Figures I-6-1-8). Interestingly, the Aux
Brochets (24 hours and 3 hours) and Aux Pommes (24 hour) catchments demonstrate the highest
range of uncertainty among all catchments. This highlights the importance of accounting for the
contribution of CDs to the total uncertainty of extreme streamflow simulations when dealing

with catchments that are sensitive to changes in resolution.
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Figure 3.14 Relative error for the simulation of summer-fall floods with 5-, 10-, 20-, and
50-year return periods using WaSiM. QT represents a flood with a specific return period.

For instance, QTS5 is the flood magnitude corresponding to a 5-year return period. R

represents the resolution of CDs or CPs, in which the Maximum Error Difference (MDE) is
calculated

34

Discussion

In this paper we proposed a novel framework to determine the uncertainty corresponding with

catchment heterogeneity. The main objective of this paper is to determine the extent to which the
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representation of spatial scale in the modeling can affect the simulations of hydrological variables
when the catchment size, time-step of simulation, and the hydrological model vary. Lack of an
applicable framework to measure uncertainty of heterogeneity for computationally intensive
physically-based hydrological models was a major challenge. A normal procedure to account for
parametric uncertainty for example, is to sample from the acceptable range of model parameters,
perform multiple simulations, and accept the parameter sets that satisfy a certain criterion (e.g.
KGE > 0.7, Beven & Freer, 2001). Evidently, applying such procedure is infeasible for the
case of catchment heterogeneity. Moreover, the intensive computation of hydrological models
limits the implementation of multiple simulations with different resolutions. This issue was
dealt with by combining the parameters obtained per resolution with all available CD resolutions
and implementing the models per combination to create an ensemble of simulations as discussed

in Section 3.2.

To reduce the degree of incompatibility between scale of calibration parameters and catchment
descriptors, we maintained the maximum possible similarity between the drainage system
structure (stream network, routing channels, sub-catchments etc.) through modifying DEMs and
sensitivity analyses of the parameters of the topographic analysis softwares that create the setup
required for implementing WaSiM and Hydrotel respectively. We found that for the majority of
catchments, such a combination of CDs and CPs results in an acceptable efficiency. In other
words, the parameter sets solved for one scale could also be a potential candidate for simulations
with another scale. However, this should be said with caution, as mixing the scales might result
in poor efficiencies like those observed for Aux Pommes-Hydrotel and Boyer-WaSiM in Figures

3.8 to 3.10.

We discuss more in depth the behaviour of the Boyer catchment simulated by WaSiM at the
3-hour time-step, for which the ensemble of simulations shows a large uncertainty (Figure 3.3)
and the KGE displays variability (Figure 3.8). Note that a similar analysis regarding the response
of the Aux Pommes catchment simulated by Hydrotel can be found in the supplementary
material (Figure 1-9). Figure 3.15 demonstrates the distribution of interflow (subplots a and

b) and slope (subplots d and e) for 100 m and 500 m resolutions simulated by WaSiM (3-hour
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time-step). Subplot ¢ shows the values of interflow storage and potential evapotranspiration
(PET) parameters for different spatio-temporal resolutions. In addition, subplot f shows the
annual hydrograph of interflow for the outlet zone focusing on peak flow (mid-March to mid-

April).

Those figures indicate that two interconnected factors play a role in determining the model
behaviour for catchment Boyer. Comparing the spatial distribution of interflow in subplots a and
b of Figure 5, it appears that the interflow decreases when the spatial resolution is decreased in
the model. In addition, subplot ¢ (Figure 3.15) shows a near 2-fold increase for the coefficient of
interflow storage (3-hour) when the spatial resolution is reduced from 100, to 250, 500, 1000 m.
A similar behaviour can be seen for the PET coeflicient (3-hour) in subplot c. Although it
is difficult to fully explain the interactions between those parameters during the calibration
period, it seems that the effect of increasing interflow coefficient is balanced by increasing the
PET coeflicient. For example, assigning a small value to the PET coefficient increases the soil
moisture, resulting in less interflow storage and vice versa. However, for the 24-hour time-step,
both parameters remain approximately constant (Note that even for the 24-hour time-step, a
correlation between PET and interflow storage coefficients across the scales is visible). One
reason for observing such marked variations in parameters for the 3-hour time-step roots in
the choice of the Hamon equation for the PET submodel, which is empirical and compatible
with daily time-step. A more physics-based option compatible with subdaily resolution is the
Penman-Monteith equation, but this requires a wide range of data that is not readily available for

this study and for many other sites in the world.

Figure 3.15 f demonstrates the mean annual hydrograph of interflow at the outlet of the Boyer
catchment, focusing on the peak flow from mid- March to mid- April at the 3-hour time-step.
Here, all combinations of simulations with CPgg (i.e. CP190CD 199, CP100C D250, CP190C D500,
CP100CDp00) are shown with larger line thickness. These simulations show higher peaks in
the ensemble compared to the other simulations. Since all simulations are driven from the same
parameter set (C Pjoo), with low interflow storage (i.e. more saturated soil) a higher interflow

for those simulations is expected. Interestingly, by increasing the spatial scale of CDs, from
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100, to 250, 500, 1000 m, while keeping CP constant (i.e. CP=100), an increase of the peak

value of interflow is observable (see the thick lines in subplot f). This behaviour could be

attributed to the spatial correlation between the slope of the catchment and the spatial distribution

of interflow. Comparing subplots a and b with d and e respectively shows that more marked

slopes induce lower interflow values and vice versa. Altering the slope by increasing the spatial

scale affects the drainage density of the catchment in the model. In fact, smoothing the slopes by

increasing the spatial scale of CDs causes a reduction in the drainage density, resulting in more

infiltration and the observed increase in interflow. This leads to an overestimation of streamflow

at the outlet of the catchment, as shown in Figure 3. Thus, a lower resolution of CDs combined

with CP1gg (i.e. CP190C D259, CP19oC D500, CP100CD1000) overall results in higher interflow

values for catchment Boyer, adding to the uncertainty attributable to the choice of resolution for

the spatial discretization (Figure 3.3) and the associated variability in KGE values (Figure 3.8).
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In terms of land use and topographic characteristics of the catchments (Table S2 in the
supplementary material), we cannot single out one major characteristic that is significantly
different from other catchments. A combination of multiple factors might affect the simulations.
For instance, agricultural land occupies a major portion of the surface area (66%). In addition,
the share of deciduous forest is 14%, which is the least among other catchments. On the one
hand, these numbers reveal major human intervention (agriculture and deforestation) throughout
the catchment, potentially affecting different hydrological processes that include PET, AET,
direct runoff, etc. On the other hand, the catchment generally has a low elevation and slope
accompanied with a high drainage density. Such topographic features are sensitive to changes in
spatial resolution, as shown for catchment Aux Brochets (Figures I-6-1-8). Catchment Boyer
also includes 5% bogland, which is the highest of all catchments, another factor that further

complicates its modeling.

As discussed in section 3.1, previous research addressing the uncertainty of heterogeneity by
focusing on variation of spatial resolution so far have mostly focused on urban catchments (e.g.,
Cao et al., 2020a; Krebs et al., 2014; Zhou et al., 2017; Ichiba et al., 2018; Warsta et al., 2017).
These catchments are typically very small with a high degree of imperviousness and therefore
have different behaviours than natural catchments. However, it is possible to compare results of
the present study with those of urban catchments. According to Ichiba et al. (2018) and Warsta
et al. (2017), changing spatio-temporal resolution of the urban distributed models results in over-
or under-estimation of streamflow, but a relationship between the direction of such a change
and spatial resolution cannot be determined. Similarly, our study showed that no pattern can be
detected regarding a general relationship between spatio-temporal representation of the modeling
and increase or decrease of streamflow. This can be explained by the fact that, each catchment
has a unique distribution of slope and land-use, to which the hydrological processes such as
interflow and AET have non-linear and complicated relationships such as what we showed in
Figures 3.15, I-6 to I-6. Therefore, it is difficult to estimate the direction of streamflow variation

based solely on the spatio-temporal resolution of the modeling.
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Out of the limited studies on natural catchments, the findings of Tegegne et al. (2019) are
partly comparable to our results regarding the Hydrotel configurations with varying numbers of
subbasins (i.e. Hydrotell and Hydrotel2). Based on their experiments, changing the number of
subbasins results in only minor effects on the simulation hydrographs, but it results in significant
uncertainty for different flow phases (i.e. different flow quantiles). Another related study in
this context by Chen et al. (2019b) has reached a similar conclusion that the impact of land-use
variation has no major effects on the simulated hydrographs but can change different flow
indices (i.e. minimum seven day or maximum daily flow). Similarly, our results show that the
spread of streamflow simulations is rather narrow for semi-distributed model in both Hydrotel
configurations (Figures 3.4 and I-2). Minor differences in the distribution of other hydrological
variables can be observed (Figure 3.7). Moreover, in terms of simulating extreme streamflow,
there is a significant amount of uncertainty for WaSiM, Hydrotell and Hydrotel2 simulations

across all catchments (Figures 3.11, 3.12, and 3.13).

The results from the simulations with the fully-distributed model (WaSiM) are not quite in
accordance with the above mentioned conclusions. We showed that using a fully-distributed
model with finer time-step leads to a larger spread of simulated hydrographs and significant
variation in the spatial distribution of AET, snow depth, and baseflow (Figures 3.3 and 3.6).
This demonstrates that the choice of spatio-temporal resolution for fully-distributed models
is a key factor in simulating streamflow and other state and flux variables. Therefore, a multi
spatio-temporal simulation method is required to account for the corresponding uncertainties.
It is worth noting that the aforementioned studies used semi-distributed models and did not
resort to multi spatio-temporal simulations, which is the approach used in this paper. Given that,
similar researches applying fully-distributed models in the context of assessing the uncertainty

linked to catchment heterogeneity are still very scarce.

3.5 Conclusion

We have explored the impact of spatio-temporal discretization to reproduce streamflow and

simulate flood events across six catchments located in Quebec (Canada) using two distributed
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hydrological models (i.e. WaSiM and Hydrotel including its two different configurations:

Hydrotell, and Hydrotel2). We framed a hypothesis regarding the uncertainty of heterogeneity

and broke it down into four main aspects reiterated as follows: Changing the spatial resolution

of catchment descriptors generates uncertainty that can potentially impact flood simulations.

The catchment area, the modeling time step, and the model structure are the major components

used to determine the significance of such uncertainty. Based on the above results and analysis,

the following conclusions can be drawn:

1.

There is no systematic link between the catchment size and the uncertainty corresponding to
the simulation of streamflow, so hypothesis 7 is not verified for our experiment. Regardless
of the model used to reproduce streamflow, the uncertainty of heterogeneity has been
observed across different catchment sizes (see Figures 3.3, 3.4, I-1 and 3.5 and Table I-1).
Interestingly, smaller size catchments (Boyer and Aux Pommes) generate larger uncertainties
and larger variabilities in the modeling efficiency (see Figures 3.8 and 3.10), which refutes
the assumption that changing the spatial resolution mainly affects larger catchments.

The temporal resolution plays only a minor role in the determination of the uncertainty
related to spatial resolution, so hypothesis ii is also not clearly verified for our experiment.
WaSiM and Hydrotel2 showed that a 3-hour time step could moderately increase the
uncertainty bounds of simulations for most catchments (see Figures 3.3, 3.5, I-1 , and Table
I-1).

The model structure is an important driver of the uncertainty related to the spatial resolution
of simulations (hypothesis iii is verified for our experiment). WaSiM demonstrated a
sensitivity to changes in the spatio-temporal resolution of the simulations (See Figures 3.3,
3.4, 3.6, and 3.7). This was expected, given that the model solves Richards Equations for
each grid cell, associated with specific catchment descriptors. Hydrotel’s conceptualization
of infiltration, percolation and groundwater is less physically-based. In its default setting, it
cannot adequately capture the uncertainty related to spatial discretization unless change
is imposed by altering the number of HRUs (see Figures 3.4 ,3.5 ,I-1, and Table I-1).
Moreover, in terms of stability, the results from catchment Aux Pommes simulated by

Hydrotel (Figures 3.9, 3.10, and I-9) and Boyer simulated by WaSiM (Figures 3.8 and 3.15)
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show that both models have issues for certain combinations of CP and CD, resulting in over
or underestimation of streamflow and significant drop in efficiency.

Our attempt to separate the total spatio-temporal uncertainty into a portion attributable to
CDs and a portion attributable to CPs showed that the latter is the dominant contributor for
most of the catchments (hypothesis iv-see Figures 3.14, I-4 and I-5). However, there are
catchments in which the change of CD resolution is as important or dominant (e.g., the Aux
Brochets, Boyer and Aux Pommes catchments in Figures I-6 to 1-8, 3.15 and I-9). Based
on section 3.4 and the discussion under Figures I-6 to 1-9, this might be due to changes in
the interactions of hydrological variables once the resolution of simulations is altered (see
Figure I-7). Such behavior is expected for relatively flat catchments, but that still includes
multiple small hillslopes and valleys (see Table I-2). Indeed, changing the resolution can
reduce the impact of an uneven topography, or even eliminate it completely, which can
result in an inconsistent hydrologic behaviour and response of the catchment (see Figures

3.15 and I-6 to I-9).

Given the dearth of credible publications addressing the impact of the uncertainty corresponding

to the resolution of simulations, many gaps and opportunities remain to be addressed in this line

of research. One major area of focus could be the adoption of more advanced physically-based

distributed hydrological models to explore the degree of uncertainty, particularly for extreme

streamflows. Another focus could be on identifying the key parameters and hydrological

processes that are mainly affected by spatio-temporal discretization change. Finally, using

a larger set of catchments with different physical characteristics could help provide a better

understanding of how they react to variations of the resolution of catchment descriptors. It could

also shed light on the importance of accounting for this uncertainty in streamflow simulations

and in the assessment of flood events.
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Section

This study focuses on quantifying the impact of the choice of spatio-temporal resolution and
hydrological models on the projection of extreme flow and their link to catchment size. We use
two process-based distributed hydrological models forced with a large-ensemble regional climate
model (50-member ClimEx dataset) over the 1990-2100 period at different spatio-temporal
resolution. The extreme summer-fall flow corresponding with each spatio-temporal resolution
was extracted by pooling the members together and computing the empirical cumulative
distribution function. The results show that by refining the time-step from daily to sub-daily,
the summer-fall extreme flow projected over the future period exceeds that of the reference
period for the small but not large catchments. By increasing the catchment size, the hydrological
model’s contribution to the variability of extreme flow increases. Moreover, the choice of spatial
resolution affects the extreme flow trend in terms of magnitude, significance, and direction. But

no pattern regarding the catchment size and spatial discretization variations exists.

4.1 Introduction

Flood hazard continues to threaten human life and inflict costs on infrastructures and urban
areas, as multiple devastating events have been reported in recent years around the world (Merz

et al., 2021). Accurate flood estimation remains a critical issue and the traditional stationary
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assumption employed by flood estimation methods, whether empirical or process-based, fails to
account for changing climate signal, leading to inaccurate estimations of exceeding probability of
peak flow (Bloschl et al., 2013; Frangois, Schlef, Wi & Brown, 2019; Montanari & Koutsoyiannis,
2014). Moreover, a lack of knowledge regarding flood-generating processes at different scales
with complex and non-linear catchment responses in space and time complicates the estimation
of flood return period using process-based hydrological models (Beven, 2019; Bloschl, 2022b).
The present research aims to investigate how the discrete representation of catchments in
process-based distributed hydrological models can affect flood projection under climate change

scenarios. The study is conducted for snow-dominated Nordic catchments located in Canada.

Global warming is expected to increase the magnitude and frequency of extreme precip-
itation across different parts of the world (Min, Zhang, Zwiers & Hegerl, 2011; Westra,
Alexander & Zwiers, 2013; Alexander et al., 2006; Donat et al., 2013; Field et al., 2012; Masson-
Delmotte et al., 2021; Fowler et al., 2021; Martel, Brissette, Lucas-Picher, Troin & Arsenault,
2021). This projected increase can be attributed to the increase of water holding capacity of
the atmosphere: Based on Clausius—Clapeyron rate, the water holding capacity of atmosphere
increases by 7% per 1° increase of temperature (Molnar, Fatichi, Gaal, Szolgay & Burlando,
2015; Westra et al., 2014). This however cannot directly be translated into precipitation, as the
amount of available humidity required for precipitation complicates the relationship (Lochbihler,
Lenderink & Siebesma, 2017; Yin et al., 2018). Depending on moisture availability, warming

can cause intensification of convective storms with daily or sub-daily scales (Westra et al., 2014).

Considering that precipitation is an essential driver of flood events, different reactions from
small and large-scale catchments should be expected: for small catchments, the response time
is short and the maximum peak flow can be deduced from a storm with a duration equal
to the longest flow path in the catchment (Bloschl, 2022a). Given that the short period of
convective rainfall matches the residence time of small catchments, these catchments are the
most vulnerable to flooding from convective rainfall, which is expected to increase due to climate
change (Viglione & Bloschl, 2009; Viglione et al., 2016; Breinl, Lun, Miiller-Thomy & Bloschl,

2021). Regarding large catchments of more than a thousand square kilometers, it is unlikely that



75

a convective storm leads to a flooding event considering the larger storage capacity and longer
travel time (Contractor, Donat & Alexander, 2021). For Nordic snow-dominated catchments,
since global warming will likely reduce the amount of snow that accumulates, the magnitude of
the spring freshet is expected to diminish. However, even for those catchments, it is anticipated
that the frequency and magnitude of convection-driven summer-fall floods, to which small

catchments are sensitive, will increase (Donat et al., 2016).

High temporal resolution time series (hourly) of historical data to evaluate the trend of convective
storms and consequent floods are difficult to find. A common practice is therefore to use a
climate modeling chain and perform simulations at high spatio-temporal resolutions (e.g. Swain
et al., 2020; Do et al., 2020). Regional Climate Models (RCMs) offer such high-resolution time
series at a local scale (Mearns et al., 2017; Leduc et al., 2019). Moreover, the incorporation of
convective parameterization has enhanced their capability to capture convective storms Prein et al.
(2015); Mooney, Broderick, Bruyere, Mulligan & Prein (2017). More recently, large-ensemble
RCM datasets have received attention (Martel, Mailhot & Brissette, 2020b; Sanderson, Oleson,
Strand, Lehner & O’Neill, 2018; Aalbers, Lenderink, van Meijgaard & van den Hurk, 2018).
Large-ensembles are generated by running RCMs several times, each time with slightly different
initial conditions (Deser, Knutti, Solomon & Phillips, 2012a; Deser, Phillips, Bourdette & Teng,
2012b). Multiple values are calculated per time-step, which eliminates the need to fit a parametric

distribution on the dataset to compute extreme flows (Martel et al., 2020b; Faghih et al., 2022).

Hydrological models are the last component of a hydro-climate modeling chain (Sidle, 2021).
Proportional to the growth of computational power, process-based hydrological models are
increasingly used for impact studies (Zhang, Nan, Yu, Zhao & Xu, 2018; Dembélé, Hrachowitz,
Savenije, Mariéthoz & Schaefli, 2020; Pandey, Khare, Kawasaki & Mishra, 2019; Duethmann,
Bloschl & Parajka, 2020; Zhong, He & Chen, 2018). These models solve the governing equations
of hydrological processes (with varying degrees of simplification) per grid cell. Distributed
models further use routing algorithms to direct accumulated water towards neighboring cells
until the basin outlet (Clark ez al., 2015, 2017). The advantage of using distributed physics-based

hydrological models is to represent the topography, land use, and soil structure in the model,
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to obtain a detailed distribution of hydrological variables of the catchment (Refsgaard, 1995).
Therefore, these models are useful to study the internal dynamics of state and flux variables

(Golden & Knightes, 2011; Gebremicael, Mohamed & Van der Zaag, 2019; Sidle et al., 2017).

Scale issue is the subject of a long ongoing debate in the scientific community (Bloschl & Siva-
palan, 1995; Bloschl ef al., 2019). Despite numerous types of research to understand runoff
generation processes, there are still unknowns about upscaling from profile scale (Im) to
catchment scale and beyond. For example, while the infiltration excess is the governing process
at profile-scale (Horton, 1933), the spatial connectivity of hydrological processes has a central
contribution in runoff generation at the hillslope scale (Dunne & Black, 1970; Noguchi, Tsub-
oyama, Sidle & Hosoda, 1999; Sidle, 2006). Moreover, the contribution of overland connectivity
in flow generation and sediment transport and their feedback loop add to the non-linearity
of runoff generation (Gomi, Sidle & Richardson, 2002; Jencso et al., 2010; Lépez-Vicente
et al., 2017; Koci et al., 2020). The non-linearity from hillslope- to catchment scale is also
significant, as the traditional bottom-up Freeze & Harlan (1969) approach to linearly combine all
hillslopes so as to compute catchment response has been challenged. Dooge (1986), for example,
suggests that a catchment is an "organized complex system", in the sense that the development
of co-evolutionary surface and subsurface patterns contributes to catchment drainage and
runoff generation (Sivapalan & Bloschl, 2015; Savenije & Hrachowitz, 2017). Adapting the
bottom-up approach to these criticisms, there were efforts to combine the hillslope’s responses
by considering the spatio-temporal covariance of hydro-climate variables for flood simulations

(Woods & Sivapalan, 1999; Viglione, Chirico, Woods & Bloschl, 2010).

The spatio-temporal discretization of distributed models can potentially modify land-use and
soil structures and result in variations of hydraulic conductivity as well as surface and subsurface
hydrological connectivity (Beven, 2000). This can potentially lead to variations in the peak flow
or seasonal flow. Many studies have explored the effect of land-use change on streamflow (Singh
etal.,2015; Li et al., 2019; Yang et al., 2019a; Tavangar et al., 2019). Using more than one land
use scenario is a common approach to studying land use change impacts (Breuer ef al., 2009;

Huisman et al., 2009; Viney et al., 2009; Bormann et al., 2009). The results show that land use
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change can increase/decrease the peak flow, depending on catchment size and/or soil structure.
Conversely, paired catchment studies have demonstrated that land-use changes can modify
mean seasonal streamflow but has minor effects on the peak flow (Brown, Zhang, McMahon,
Western & Vertessy, 2005). The effects of spatio-temporal discretization using process-based
models have rarely been investigated for natural catchments. Most previous studies concentrated
on urban catchments, with a high degree of impermeability and small size (e.g. Cao et al., 2020a;
Krebs et al., 2014; Zhou et al., 2017; Cao et al., 2020a). In this context, multiple studies have
shown that variation of spatio-temporal resolution can reorient flow direction and significantly

change the flow peak Zhou et al. (2017); Ichiba et al. (2018); Warsta et al. (2017).

Markhali, Poulin & Boucher (2022) have shown that the spatio-temporal discretization of a
catchment in a model can affect the representation of surface and subsurface hydrological
processes in that model and generate a significant variation in the distribution of hydrological
variables including streamflow. Such variations are most important in flat catchments or
catchments with considerable human intervention (i.e., agricultural lands). The present study
focuses on extreme summer-fall flow using a hydro-climate modeling chain. A range of
catchments with different surface areas (from below 200 km to more than 1500 km?) are selected
to facilitate the investigation of the combined impacts of climate change and the spatio-temporal
discretization in the hydrological model. More specifically, we intend to verify the following
hypotheses for the catchments at hand:

1. For small catchments (< 500km?), refining temporal resolution of simulation (from daily to
subdaily) increases the relative change (from reference to future) of extreme summer-fall
flow. Refining temporal resolution will not significantly affect projected extreme summer-fall
flow for large catchments (> 1000km?).

2. The change in the spatio-temporal scale of modeling causes variability in the projection of
extreme flow. By increasing the catchment size, the contribution of hydrological model and

spatial scale in that variability increases, and that of the time-scale decreases.

The hypotheses will be examined by forcing two process-based distributed models with large-

ensemble simulated climate data. To examine the impact of spatio-temporal discretization, the
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simulations will be performed at different spatial (100, 250, 500, 1000 m) and temporal scales
(3- and 24-hour time-steps). The structure of this research is as follows: Section 4.2 provides
a detailed explanation of the study area, available data, bias correction method, hydrological
models, and the experimental plan. Section 4.3 presents the results of the experiments, which
are discussed in Section 4.4. Section 4.5 provides concluding remarks and a suggestion for

future works.

4.2 Method and Data

4.2.1 Study Area

The study area includes four catchments located in southern Quebec, Canada (Figure 4.1). These
catchments range from less than 200 km? to more than 1500 km? and were selected from diverse
land use and hydrological regions. This helps evaluate catchment responses under climate
change based on their size and other characteristics, such as land-use and topography. Table 4.1

briefly describes catchments’ characteristics.
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Figure 4.1 Location of the catchments used in this study

Table 4.1 Area and average hydro-climatic characteristics of the catchments used in this
study for 2000-2017 period

Number Name Area(km?) precipitation(mm/yr) | streamflow (m3/s) temperature (°C)
050135 Croche 1563 1139.36 30.70 2.74
023427 Chaudiere 781 1208.65 16.47 3.72
030424 | Aux Brochets 584 1329.34 10.52 6.23
023004 Boyer 191 1396.76 4.45 4.15

4.2.2 Datasets

24- and 3-hour observed streamflow series were obtained from the Direction de 1’Expertise

Hydrique (DEH) of the Ministere de 1I’Environnement et de la Lutte contre les changements
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climatiques (MELCCC) for 2000-2017. Regarding meteorological data, we used the ERAS
(ECMWF ReAnalysisS) gridded dataset to calibrate the hydrological models and simulate
streamflow for the present-day climate. (Tarek et al., 2020b) have shown that ERAS provides an
accurate representation of meteorological conditions for catchments located in North America.
We also used the ClimEx large ensemble (e.g., Leduc et al., 2019). ClimEx is a 50-member
climate dataset, driven by dynamically downscaling the second version of the Canadian Earth
System Model large ensemble (CanESM2-LE; Swart et al., 2019), using the 5th generation of
the Canadian Regional Climate Model (CRCM5). The simulations are driven by the RCP 8.5

scenario for the period covering 1951-2100, with hourly time steps and a 11° spatial resolution.

4.2.3 Bias Correction

The MBCn (N-dimension multivariate bias correction) (Cannon, 2018) method was selected
to bias correct precipitation and temperature time-series extracted from ClimEx. MBCn is an
advanced quantile-mapping techniques (Meyer et al., 2019; Cannon et al., 2020). The method
transfers all characteristics of the distribution of observations to their simulation according to
the climate model. It maintains the trends of projections per quantile, which is essential to

accurately assess the impact of climate change (Faghih et al., 2022).

4.24 Hydrological models

The following section introduces the hydrological models that are used in this study. Both
models are distributed, process-based, and computationally intensive. However, they each have
their own methods of representing hydrological processes, and their approach to aggregate the

catchment response are also different.

424.1 WaSiM

WaSiM (Water balance Simulation Model) operates on a raster system (Schulla & Jasper, 2007).

The model structure comprises multiple sub-models (e.g., infiltration, evapotranspiration,



81

snow accumulation and melt, unsaturated zone, etc.) that run on each grid cell and time-step,
providing the opportunity to use parallel computing. WaSiM offers two options for calculating
the infiltration and percolation: the Topmodel approach or Richard’s equation. The first approach
1s a modified version of the conceptual model Topmodel, following Beven (1997). The second
approach is more physically-based and is the one used in this study. All the sub-models that are

selected for WaSiM are named in Table 4.2.

4.24.2 Hydrotel

Hydrotel is widely used in Quebec for research and operations (e.g., Martel ez al., 2020a; Turcotte
et al., 2020; Lucas-Picher et al., 2020). In Hydrotel, the catchment is divided into Relatively
Homogeneous Hydrological Units (RHHUSs) which are hillsopes and include integrated land use
class and river segment. Hydrotel is compatible with GIS and remotely-sensed data (Fortin et al.,
2001a). A mixture of physical, conceptual, and empirical relationships are used to represent
the hydrological processes, which makes Hydrotel slightly less physics-based than WaSiM. For
example, the vertical water balance and the representation of soil water content are computed
through a sub-routine called BV3C (Bilan Vertical a 3 Couches), which divides the soil column
into three layers and controls infiltration, interflow and baseflow, based on a semi-physical
moisture accounting equation (Fortin et al., 2001a). Like WaSiM, Hydrotel provides multiple
options for representing the hydrological processes of a catchment. Table 4.2 lists the submodels

that are used in this study.
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Table 4.2  The submodels used to represent the hydrological processes in Hydrotel and

WaSiM.
Submodels Hydrotel Wasim
Interpolation Thiessen polygons Thiessen polygons

Snow melt/accumulation Degree-Day Method | Degree-Day Method

Potential evapotranspiration Hydro-Quebec Hamon (Hamon, 1961)
Real evapotranspiration BV3C Richards’ Eq.
Infiltration and percolation BV3C Richards’ Eq.
Channel routing Kinematic Wave Eq. | Kinematic Wave Eq.

4.2.5 Experimental plan

4.2.5.1 Climate Data Processing

Figure 4.2 shows the experimental plan for this study. The panel on the top left, bounded by
the green dashed line, shows the details regarding climate data processing. The first step is the
extraction of the simulated and observed meteorological data (temperature and precipitation)
for the selected catchments. The reference period for the observed dataset (Re f — Obs) spans
from 1991 to 2010. ClimEx simulations are also split into reference (Re f — Sim) and future
(Fut — Sim, 2011-2099) periods. In the next step, the 50-member ClimEx (i.e., Ref — Sim
and Fut — Sim) are pooled together into one long time series per period. This pooling helps
to maintain the internal variability of the simulated climate data after bias correction. This
is because individual bias correction of each member eliminates the spread of simulations
and creates rather similar time series. While addressing internal variability is not among
the objectives of this research, maintaining that helps accurate calculation of extreme flows
(Faghih et al., 2022). The Ref — Obs and Re f — Sim datasets, which include precipitation
and temperature for both the reference and future periods, are further received by MBCn to

obtain correction factors based on multi-variate quantile mapping. A single set of correction
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factors was computed per calendar month and applied to the simulated climate data. The pooled
bias-corrected datasets are reversed back to the 50-member time series, ready to use as the inputs

of the hydrological models.
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Figure 4.2 Schematic explanation of the experimental plan and methods

4.2.5.2 Hydrological Simulation

The hydrological models are calibrated with four spatial (100, 250, 500, 1000 m) and two
temporal resolutions (3- and 24-hour). The datasets are split into calibration and validation
periods with equal duration. The Dynamically Dimensioned Search (DDS; Tolson & Shoemaker,
2007) with a 0.2 perturbation factor was used to calibrate the models. The DDS technique scales
the parameters search space according to a budget specified by the user. Given that both WaSiM
and Hydrotel are computationally intensive, this is an advantage over other search methods.
In addition, the efficiency of DDS with global parameter perturbations at the beginning and
narrowing down the search space by the end of the process has been confirmed in the literature

(e.g., Huot et al., 2019).

Based on the existing literature and following experts’ recommendations as well as the team

who develops and maintains WaSiM, 12 parameters were calibrated, including seven parameters
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that are involved with the unsaturated zone subroutine, two parameters linked to potential
evapotranspiration, one parameter for snow accumulation and melt, and two parameters for
spatial interpolation. The remaining parameters were left to their default values following the
WaSiM documentation (Schulla & Jasper, 2007). Regarding Hydrotel, of 28 model parameters,
11 were calibrated, and the others were left to their default values according to Hydrotel’s user
manual. Out of the 11 calibration parameters, three belong to vertical water balance, six to the
snow accumulation and melt routine, and one to the infiltration and interpolation components

(see Huot et al. (2019) for more details about the parameters).

The Kling-Gupta Efficiency criterion (KGE; Gupta et al., 2009) is the objective function for the
calibration of both WaSim and Hydrotel. Compared to other performance criteria, such as the
Nash—Sutcliffe efficiency (NSE), the KGE is a better choice as it gives more realistic results
for snow-dominated catchment efficiencies. This is because the observed mean is the baseline
model for NSE, and for the catchments with high seasonal variability, the measure tends to
overestimate modeling skill (e.g., snow melt streamflow; Gupta et al., 2009). Equation 4.1 was

used to calculate the KGE

KGE:\/(r—1)2+(M—1)2+(“ﬂ—1)2 @.1)

Tobs Mobs

where r is the linear correlation between observed and simulated streamflow values, o, 1S the
standard deviation of the observations, o, is the standard deviation of the simulation, g, is

the simulation mean, and p,s is the observation mean.

After obtaining the parameters corresponding with the four spatial resolutions and two temporal
resolutions mentioned above, climate simulations from ClimEX were used as inputs to the
hydrological models for 1991 to 2099; as mentioned in the top right panel bounded with the red
dashed border in Figure 4.2.
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4.2.5.3 Analyses

The panel at the bottom of Figure 4.2, with a dashed orange border, shows the analyses and
experiments that were carried out to verify the two hypotheses which are the object of this
research. To verify the first hypothesis, extreme summer-fall flows are calculated for different
spatio-temporal simulations. The streamflow series were split into historical (1991-2010) and
far-future periods (2081-2100) to estimate the change of extreme flow under climate change. A
50-member ensemble of simulated streamflows obtained from forcing the hydrological models
with ClimEX was pooled together to create a time series comprising 1000 years of data (20
years X 50 members). This very large ensemble was created to estimate projected yearly extreme
flows without the need to fit a parametric distribution. The annual maximum summer-fall flows
(July-November) is extracted from the data and an empirical cumulative distribution function is
created for both periods (present-day and far future). This allows us to compare the distributions
of projected extreme flows in the historical and far-future periods for different combinations of
spatio-temporal discretizations (we have four spatial and two temporal resolution that amounts to
8 different combinations). The studied extreme flow values are based on the following percentiles
: 50, 90, 95 and 99 (representing 2-, 10-, 20- and 100-year return periods). The procedure

regarding pooling and extracting the extreme values is the same as in Martel et al. (2020a).

In order to verify the second hypothesis, we use variance decomposition Montgomery (2017) to
find the contribution of different factors in the total variance of the projected extremes. Variance
decomposition is a simple yet robust and widely applied method (e.g. Addor et al., 2014;
Meresa & Romanowicz, 2017; Wang, Huang, Fan & Li, 2020; Meresa et al., 2022). Equation

4.2 shows the application of the method in this study,

AUi’j,k:Hi+Sj+Tk+Hi*Sj+Hi*Tk+Si*Tk+E (42)

where AU is the total variance of projected extreme flow, H;, S;, and T} are different choices of

hydrological model, spatial resolution, and time-step, and € represents a Gaussian white noise.
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To quantify the change in the streamflow when the spatial resolution varies, annual maximum
summer-fall flows were extracted per grid and the linear trends corresponding to those grids
were computed for the entire 1991-2100 period. The linear trend analysis has frequently been
used for quantifying the change in the climate variables (Barnes & Barnes, 2015; Zhuan et al.,
2018; Ding & Steig, 2013). Note that the non-linear quadratic and cubic polynomials produced
poor results for this case study. The widely used non-parametric Mann-Kendall trend test (Ali,
Kuriqi, Abubaker & Kisi, 2019) was also applied to identify the trend at a 0.05 significance
level. In this test, the null hypothesis (Hy) assumes no trend and the alternative hypothesis (H1)

assumes the existence of a trend at a 0.05 significance level.

4.3 Results

4.3.1 Annual Hydrographs

Figures 4.3 and 4.4 show the annual simulated hydrographs for the reference and future periods
at 3- and 24-hour time-steps using WaSiM and Hydrotel for the Boyer and Croche catchments.
These catchments are the smallest and largest, respectively. In these figures, the ensemble of
streamflow simulations is based on the ClimEx dataset, for the 1990-2100 period with various
spatial resolutions for both hydrological models (100, 250, 500, and 1000m). The median of

each ensemble is displayed as a solid line and the observed data is the dashed black line.

Figure 4.3, a) to d) show the WaSiM simulations with 3- and 24-hour time-steps for the Boyer
catchment. The observed data is located inside the spread of simulations and the timing of the
peaks is approximately the same for both the simulation and the observations (panels a and c).
However, the simulation underestimates the magnitude of the median peak flow. We also want
to assess how changing the spatial resolution would affect the simulation of low and high flows.
According to Figure 4.3, a) to d), the simulation of low flows is more sensitive to variations in
spatial scale than that of high flow. Moreover, this sensitivity also increases by refining the
time-step from 24- to 3-hour. Figure 4.3 e) to f) shows Hydrotel simulations. As for WaSim,

the observed value is located inside the ensemble’s spread (panels e and g). Moreover, the
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ensemble’s median is closer to the observation than that of WaSiM simulations. With Hydrotel,
the simulation of high flows is more sensitive than the simulation of low flows to changes in
spatial resolution, which is the opposite behavior of WaSim. Again, this sensitivity to the change
of spatial resolution is higher for the 3-hour time-step than for the 24-hour time-step. Comparing
future ( panels a, c, e, g) and reference (panels b, d, f, h) periods, a forward shift of the spring
freshet from mid-April to mid-May with significantly lower amplitude can be seen, regardless
of the time-step and spatial resolution, for both Hydrotel and WaSim. Overall, WaSiM shows
higher sensitivity to changes in spatial resolution than Hydrotel, which is expected as the model
is fully distributed and more physically representative in terms of the vertical water budget in

the soil.

Figure 4.4 shows the result of the same exercise, but for the Croche catchment. Panels a) to d)
show WaSiM simulations with 3- and 24-hour time steps. Compared to Figure 4.3 for the Boyer
catchment, WaSiM (panels a and c¢) shows more skill, as the medians of all the simulations
follow the observations closely. In general, varying the spatial resolution has only minor effects
on these simulations, except for the simulations with a 3-hour time-step. Hydrotel’s simulations
(panels e to h) show an underestimation of peak streamflow when the ensemble median is
compared to the observations. This underestimation is larger for the simulations with a 24-hour
time-step than for the 3-hour time-step. In terms of spatial resolution, both WaSim and Hydrotel
are more sensitive to changing the spatial resolution when the time-step of the simulations is
finer. Comparing the future and reference periods, a significant attenuation in the magnitude of
the spring freshet and a backward shift in the timing of the peak can be observed for both models.
There is also a considerable increase in streamflow in the fall and winter months (November to

March) when comparing the present and future periods.

Overall, it is not clear from Figures 4.3 and 4.4, whether there exists a pattern regarding the
interaction between catchment size and the choice of hydrological model and spatio-temporal

resolution. However, each of these elements can distinctly alter the catchment responses.
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Figure 4.3 Ensemble of annual hydrographs forced by ClimEx dataset per resolution and

compared with observed streamflow (dashed black line) for the Boyer catchment. R and the

following number represent the spatial resolution in m, and MR with the following number
represents the median of the ensemble

4.3.2 Spatial distribution of the hydrological variables

Figure 4.5 shows the spatial distribution of actual evapotranspiration (AET) and snow depth (SD)
for the Croche catchment. To create this figure, mean annual AET and SD over the reference
and future periods were calculated and the relative change between those valuse were obtained.
The figure shows that by the end of the century (period 2081-2100), AET will increase by 5

to 10 % according to Hydrotel simulations (panels a to d) and 15 to 30% according to WaSiM
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Figure 4.4 Ensemble of annual hydrographs forced by ClimEx dataset per resolution and

compared with observed streamflow (dashed black line) for the Croche catchment. R and

the following number represent the spatial resolution of simulations in m, and MR with the
following number represents the median of that ensemble

simulations (panels e to h). A significant negative change in snow depth is observable, as by the
end of the century, the average amount of snow on the ground through the winter decreases by
around 40% to 50% according to WaSiM (panels m to p) and Hydrotel (panels i to 1) simulations.
The considerable reduction of spring freshet between 2081-2100, as seen in Figure 4.4, is a
result of that reduction in snow depth. Since the amount of snow depth reduction in simulations
with Hydrotel is higher than in WaSiM (comparing the third and fourth rows in Figure 4.5), the
hydrographs produced by Hydrotlel (Figure 4.4: panels f and h) are more flattened than those
produce by WaSiM (Figure 4.4: panels b and d).
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Changing spatial resolution affects the magnitude of change in the simulation of AET. According
to panels a to d and e to f (Figure 4.5), decreasing spatial resolution corresponds with around a 5
to 15% (depending on the hydrological model) increase of change in the AET. For snow depth,
changing spatial resolution has no considerable effect on the final results. No significant spatial
pattern has been detected for the distribution of AET across the catchment. For snow depth, both
models agree on projecting lower values for the southern part with lower altitude illustrating that

low-altitude regions are more sensitive to the effect of climate change than high-altitude regions.

4.3.3 Summer-fall extreme flow

Figure 4.6, shows the empirical cumulative distribution function of maximum summer-fall
flow simulated by WaSiM and Hydrotel for the reference and future periods per catchment and
resolution. The catchments are ordered in terms of size: the first row shows the results for the
smallest catchment and the last row shows the results for the largest. Each spatial resolution
is identified by a different color and the future and reference periods are shown in dashed
and solid lines respectively. The letters W and H represent WaSiM and Hydrotel respectively,
with subscript numbers that indicate the time-step of the simulation (e.g., W»4 is the WaSiM

simulation with a 24-hour time-step.)

A pattern regarding the effect of catchment size and the choice of temporal resolution on the
change of extreme flow between the reference and future periods is observable. For small
catchments (Boyer and Aux Brochets), by refining the time-step of simulation, there are flow
quantiles from which the future extreme flow exceeds that of the reference. This is clearer for
WaSiM simulations in panels c¢) and g). For example, in panel c¢), when the spatial resolution
is 100 m, future flows larger than a flood with a 2-year return period (i.e. non-exceedance
probability of 0.5) is larger than that of the reference. A similar pattern is also observable
for Hydrotel simulations of those catchments (i.e. d and &), even though not as clear as
WaSiM simulations. By increasing the catchment size (Chaudiere and Croche), the graphs show
decreasing magnitude of extreme summer-fall flow between the reference and future periods

with the same return periods, regardless of temporal resolution. These observations are in
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Figure 4.6 Empirical cumulative distribution function (ECDF) of extreme summer-fall
flow for reference (ref-solid lines) and future (fut-dashed lines). R and the following number
represent the spatial resolution in m. W and H are simulations with WaSiM and Hydrotel,

respectively and their following numbers represent the temporal resolution in hour

accordance with the first hypothesis of this research. Note that the case of Boyer catchments is
complicated for very large return periods (>100-year), as even when the time-step of simulations
is 24 hours, the magnitude of a future flood with the same return period exceeds that of the

reference period (panels a and b).

For smaller catchments, by changing spatial resolution, the intersection point of future and
reference graphs significantly varies. For example, in panel g), with 1000 m spatial resolution,

the intersection point is equivalent to a flood with the magnitude of a 3-year return period, but
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when the spatial resolution is 100 m, the intersection point is equivalent to a flood with the
magnitude of the 10-year return period. The difference between simulations caused by the
change of spatial resolution can also be seen in panels c, k, and o even though the differences
between those graphs are smaller. In all cases, whether the time-step of simulation is 3- or
24-hour, simulations by WaSiM have a higher sensitivity to the choice of spatial resolution
compared to Hydrotel. These differences illustrate the importance of the choice of spatial
resolution and hydrological model. However, no pattern regarding the catchment size and those

choices is observable (therefore the second hypothesis cannot be validated from these results).

It is worth mentioning that the counter intuitive appearance of near zero values corresponding
with extreme flows in this plot can be attributed to the members that significantly underestimate

streamflow simulation.

To further investigate the observations made regarding Figure 4.6, the relative change of extreme
flow for specific quantiles (i.e. flood with 2, 10, 20, and 100-year return periods) is driven and
presented in Figure 4.7. The results are again ordered according to catchment size. As can
be observed, the relative change increases when catchment size decreases. Comparing panels
b) and d) with panels a) and c) shows that the magnitude of such increase is higher for the
3-hour time-step than for the 24-hour time-step (in accordance with Hypothesis 1). Moreover,
for simulations with a 3-hour time-step, the number of pixels with a positive ratio is higher than
with a 24-hour time-step. This demonstrates that the simulated magnitude of flood events in the

future increase if a fine temporal resolution is used.

There is no clear pattern regarding the role of spatial resolution in determining the magnitude
and direction of change. However, the choice of resolution is not trivial as it can change the
magnitude or even direction of the relative change. The choice of model has also important
implications as the patterns for Hydrotel and WaSiM, particularly for 24-hour simulations, are
different. Comparing panels a) and c), Hydrotel produces more simulations with positive relative
change than WaSiM. Again these observations confirm the importance of the choice of spatial

resolution and hydrological models, but cannot validate the second hypotheses.
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Figure 4.7 Relative change of summer-fall extreme flows (QT50,QT95,. . .) ordered
according to catchment size and spatial resolution

4.3.4 Spatial trend

Figures 4.8 (Boyer) and 4.9 (Croche) show the spatial distribution of the trend for the maximum
annual summer-fall flow ,which presented as the percentage of mean annual summer-fall
streamflow. For spatial distribution, the simulated streamflow per WaSiM subwatershed is
extracted for the entire simulation period (1991-2100). In this figure, R represents the spatial
resolution in m, which is followed by the simulation time-step. The hatched area covers the

location where the trend is statistically significant at a 5% level ( p — value < 5%).

Figure 4.8 shows that a positive trend holds for all simulations with a 3-hour time-step (a
to d), regardless of the spatial scale. Moreover, except for Rys0(3/) (panel a), the trend is
significant across most of the catchments. A negative trend emerges across the catchment when

the time-step increases (panels e to h), except for the highest (finer) spatial resolution (i.e. e:
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Figure 4.8 Linear trend of the maximum summer-fall streamflow (median member of
ClimEXx) for the Boyer catchment (all simulated by WaSiM) in terms of percentage of mean
summer-fall flow. R and the following number represent spatial resolution in m. The
hatched area covers the area for which the trend is significant at the 5% level according to
the Mann-Kendall test

R»50(24h)) (hypothesis 1). Changing the spatial resolution has important implications here: the
average magnitude of the trend across the catchment varies from larger than +5 to more than +20
% for simulations with 3-hour time-step (panels a to d), and from around +3 to less than -10% of
that for daily simulations (panels e to h), illustrating large uncertainties in the projection of high
flow (hypothesis 2). There is no distinguishable pattern regarding the relationship between the

magnitude and direction of the trend and the spatial resolution.

For the Croche catchment, the spatial distribution of the linear trend is negative regardless of

the time step and the spatial resolution of the simulations (hypothesis 1). Similar to the Boyer
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Figure 4.9 Linear trend of the maximum summer-fall streamflow (median member of
ClimEXx) for the Croche catchment (all simulated by WaSiM) in terms of percentage of
mean summer-fall flow. R and the following number represent spatial resolution in m. The
hatched area covers the area for which the trend is significant at the 5% level according to
the Mann-Kendall test

catchment, changing the spatial resolution of the simulations causes large uncertainties: the

magnitude of the trend varies from around -5 to -10 % of summer-fall streamflow for a 3-hour
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time-step (panels a to d), and from less than -5 to around -20 % for daily simulations (panels e to
h). Note that like the Boyer catchment, no pattern regarding a relationship between the spatial
resolution of simulation and the magnitude of the trend is distinguishable. It appears that by
changing the time-step from 3- to 24-hour, larger negative trend values (in terms of magnitude)
emerge, showing that the subdaily simulations even influence the trend for the large catchment.
The influence, however, is not large enough to change the direction of the trend (hypothesis 1).
Note that, unlike the Boyer catchment, the trends calculated for the 3-hour time-step are not

significant here.

Observations made in this section are in line with the first hypothesis, as refining the time-step
of simulation has mostly influenced the small catchment (i.e., Boyer: Figure 4.8) rather than
the large catchment (i.e., Croche: Figure 4.9). The second hypothesis cannot be confirmed or

rejected with the information provided here.

4.3.5 Analyse of Variance (ANOVA)

Figure 4.10 shows the variance decomposition of the relative change in the extreme summer-
fall flow into the contribution of spatial resolution, time-step, hydrological model, and their
combinations. Results for smaller catchments are shown on the top side and larger catchments
are on the bottom side. The spatial resolution has only a minor contribution to the changes for the
Boyer catchment. However, this contribution becomes significant when changing the resolution
is combined with other factors ( 19% of the variance results from changing the spatial resolution
and the hydrological model). For the Aux Brochets catchment, the spatial resolution has a larger
contribution to the total variance (15%). This is in line with the results from Figure 4.6, where
the change of spatial resolution created a large difference between simulations. Interestingly, by
increasing the catchment size from 584 km? (Aux Brochets) to 781 km? (Chaudiére) and 1563
km? (Croche), the contribution of spatial scale in variability, first significantly drops (< 1%) and
then increases back to 14%. This clearly suggests a lack of a clear pattern between catchment
size and spatial scale (hypothesis 2 regarding spatial scale cannot be verified). The variance

obtained from changing the time step is important for all catchments. But similar to spatial
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scale, a clear relationship between catchment size and time-step cannot be found in this context
(hypothesis 2 regarding temporal scale cannot be verified). Changing the hydrological model
impacts the variance for the largest catchment (Croche) the most, and loses its contribution by
decreasing catchment size (Hypothesis 2 regarding the hydrological model can be verified). Note
that the combined effect of simultaneously changing the hydrological model and the temporal or
spatial resolution can be an important source of variability, but the combined effect of spatial

and temporal scale is not as important.

Boyer Aux Brochets
59, 4% 19% 13% 10%

1%

g, 15% 7%

11%

20%

34%
Chaudiére Croche

16% 4% 6% 1%

<1%

2%719;, 3%

<1%

32% 47%

47%

Il spatial resolution

I time-step

[ hydrology model

[ Ispatial resolution & time-step

[ Ispatial resolution & hydrology model
I time-step & hydrology model

B Error

Figure 4.10 Decomposition of the variance for the relative change in summer-fall extreme
flows (average of 2, 10, 20, and 100 yr return periods) obtained by ANOVA
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4.4 Discussion

This study builds on our previous research (i.e., Markhali ef al., 2022) in quantifying the
uncertainty linked to the spatio-temporal representation of catchments in hydrological models.
In this research, we did not implement the ensemble method by mixing and matching the
parameters and catchment descriptors with different resolutions, due to the computational costs
of simulating a large-ensemble of long-duration time series. In the previous study, we learned
that the uncertainty linked to the catchment heterogeneity is mostly sensitive to the choice of
hydrological model, in the sense that the more sophisticated model in terms of representation
of hydrological processes (i.e. WaSiM) creates larger uncertainties linked to the catchment

heterogeneity compared to less sophisticated model (i.e. Hydrotel).

We focused on quantifying the uncertainty in the projection of extreme summer-fall streamflow.
We separated catchments based on their surface area. This was necessary because the flood
generation mechanism for small and large catchments are different (Bloschl, 2022b). Small
catchments are more sensitive to the infiltration excess runoff, while large catchments are
sensitive to the saturation excess runoff (Bloschl, 2022a). The results showed that in fact there
are relations between the surface area and the choice of time-step and hydrological model in
the final response of the catchments: First, using a finer time-step in simulations resulting in a
statistically significant increase in the projection of summer-fall flood hazard in the future for the
small but not for the large catchment (Figures 4.8 and 4.9). Second, by increasing the catchment
area, the contribution of the choice of hydrological model in the uncertainty increased (Figure

4.10).

The individual contribution of spatial scale is smaller than the other two factors (it is between
1 to 15 % of the total uncertainty according to Figure 4.10). The question is, whether or not
variations of spatial scale should be considered in the simulation for flood projection. To answer
this question we investigate the response of the Boyer and Aux Brochets catchments to variation

of spatial resolution:
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Regarding the Boyer catchment, Figure 4.10 shows that the joint contribution of spatial resolution
and hydrological model in the variation of extreme summer-fall flow reaches up to 19%, which
is the highest among all catchments. Also, in Figure 4.8 e) for WaSim simulations, when the
spatial resolution is 100 m, the trend is zero or positive across the catchment. However, by
lowering the resolution (panels g, h, 1), the trend becomes negative. According to Markhali
et al. (2022), increasing the spatial resolution causes a nonlinear decrease in the coefficient
of interflow storage in WaSim for this catchment. This means that the saturation level of the
soil 1s significantly higher for simulation with a 100 m resolution compared to other choices
of spatial resolutions. Because of the high value of soil moisture for the simulations with a
100 m resolution and increasing convective rainfall in the future, there is a positive trend in the
simulation of high flow even if with a daily simulation time-step. By decreasing the resolution,
the interflow storage increases, leading to lower antecedent soil moisture and consequently a

negative trend for high flow in the 24-hour time step.

The Aux Brochets catchment shows the largest sensitivity to the spatio-temporal resolution in
flood projection (Figure 4.6). Coarsening the spatial resolution in WaSiM induces modifications
to the slopes of this catchment in the model, which in turn causes a reorientation of surface
and subsurface flows. This results in soil saturation in a portion of the catchment leading to
the outlet (Markhali et al., 2022). High antecedent soil moisture combined with convective
storms results in a rapid response of the catchment for simulations with low spatial but high
temporal resolutions. The significantly larger magnitude of flood for the simulations with a
3-hour time-step and a spatial resolution of 500 to 1000 m (the red and black lines in Figure 4.6
b) could be attributed to the mechanism explained above. The decomposition of the variance for
this catchment in Figure 4.10 confirms that the contribution of the spatial scale individually or
together with the other factors explains 23% of the total variance, which is higher than two other

larger catchments.

Among all the catchments studied here, the Boyer catchment has the maximum human intervention
in terms of deforestation and agriculture (Markhali et al., 2022). Also, Aux Brochets is a flat

catchment with uneven areas (hills and valleys). This type of topography is more difficult to
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represent in hydrological models. Therefore, the model structure and the degree to which that
model reflects the details of topographic and land-use characteristics are important factors to
consider. This study suggests accounting for the variation of spatial resolution for flat catchments
or catchments with high agricultural lands if a distributed hydrological model with a high level

of sophistication in representing hydrological processes should be used.

The intensive computational demand of the two distributed process-based hydrological models
used in this research limits the number of catchments that could be included. There is an
opportunity to work towards generalizing the conclusions of this research by involving a higher
number of catchments, with different sizes and land uses. Moreover, adding more models
with various structures seems necessary to gain more in-depth knowledge about the effect of
the choice of process-based models in flood projection. Furthermore, the recent advances in
increasing the spatial and temporal resolution of RCMs are appealing to further investigate
the impact of spatio-temporal resolution in climate impact studies. Recent models with a
high spatial resolution (<4km) have shown promise in the simulation of convective-driven
rainfall (Lucas-Picher ef al., 2021). The problem with using these models is the large storage
capacity required for storing data (Gutowski et al., 2020). Also, coupling them with distributed
hydrological models adds to the computational costs of the modeling. Further advancements in
computational power and data storage are required for the application of these models in impact

studies (Schér et al., 2020).

4.5 Conclusion

This study investigated the role of spatio-temporal resolution of simulations, the choice of
hydrological model, and the catchment size in determining the change of extreme summer-fall
flow in the future under climate change. A large-ensemble regional climate model simulation
(ClimEx) was bias corrected by multi-variate bias correction (MBCn) and coupled with two
distributed hydrological models (WaSiM and Hydrotel) to simulate streamflow over four
catchments with different sizes across Quebec. Simulations were conducted for different

spatial (100, 250, 500, 1000 m) and temporal (24- and 3-hour time-steps) resolutions. Multiple
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experiments were conducted to reject/validate two main hypotheses: 1) For small catchments,

by increasing temporal resolution, the simulated extreme summer-fall flow in the future period

becomes larger than that of the reference period. 2) The change in the spatio-temporal scale

of modeling causes variability in the projection of extreme flow. By increasing the catchment

size, the contribution of the choice of hydrological model and spatial scale in that variability

increases, and that of the time-scale decreases.

The experiments show that:

1.

A pattern regarding catchment size and temporal resolution exists: simulations with 3-hour
time-steps (Figures 4.6, 4.7, 4.8) predict that extreme summer-fall flow will increase in the
far-future for small catchments, regardless of model and spatial resolution. Therefore, the
first hypothesis is verified for this case study. Moreover, the choice of a simulation time
step is a major determinant in the variability of flood projection for small catchments and
by increasing catchment size, its influence decreases (Figure 4.10). As a result, part of
the second hypothesis concerning the relationship between temporal resolution and small
catchments is also verified for this case study.

For large catchments, the choice of spatial resolution has a larger contribution in the
simulation of extreme summer-fall flood (Figures 4.6 and 4.10). This however does not
exceed the contribution of the choice of time-step (Figure 4.10). Moreover, if the time-step
is 24-hour, it is likely that the spatial resolution changes the direction of the trend for small
catchments (Figures 4.8 and 4.9 and section 4.4). Therefore, part of the second hypothesis
concerning the impact of spatial resolution on large catchments cannot be verified here.
The choice of a hydrological model can be important for both small and large catchments.
It appears that by increasing the catchment’s size this choice becomes more important (e.g.,
Figure 4.8 and 4.10). Therefore, part of the second hypothesis regarding the impact of
the choice of a hydrological model on large catchments can be verified here. In all cases,

WaSiM shows a higher variance than Hydrotel for streamflow projections (Figure 4.6).
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Abstract

This study uses a machine learning technique (i.e., Random Forest) and a process-based
hydrological model for regionalization. The approach shows skill in simulating streamflow in
pseudo-ungauged catchments. We ran the model across different spatio-temporal resolutions
and investigated three hypotheses: (1) Finer time-step adds more information to the calibrated
parameters and improves the efficiency of the regionalization model. (2) The parameters
approximated by RF are spatially consistent and transferrable across the spatial scales. (3)
Refining the spatial resolution of catchment descriptors (CDs) will improve regionalization
skills. The results show that refining the time step significantly improves the modeling skill
(= 12% improvement at a significance level of 0.05). In addition, the regionalization model
maintains the spatial correlation between CDs and parameters. Finally, for simulations at a daily

time step, spatially refined CDs improve the regionalization skill (= 10% improvement).

5.1 Introduction

Process-based distributed hydrological models are suitable tools for understanding the complexity
of hydrological processes, which take place on heterogeneous media under ever-changing internal

(e.g. land use change) and boundary conditions (e.g. climate change) (Beven, 2011; Bloschl
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et al., 2019; Bloschl & Sivapalan, 1995; Fatichi et al., 2016). Corresponding with the evolution
of computational power, increasingly sophisticated distributed models have been applied across
various hydrological problems including flood forecasting, climate change impact assessment,
and analyses of hydrological processes at different spatio-temporal scales (e.g. Addor et al.,
2014; Bloschl et al., 2008; Kumar et al., 2013; Rakovec et al., 2016; Thober et al., 2019; Martel
et al., 2020a). However, for most process-based hydrological models, some parameters cannot
be directly determined and therefore, the generally accepted practice is to calibrate model
parameters using observed data (Fatichi ef al., 2016). Still, in many locations, even in developed
countries, there is a lack of observed streamflow data (at the outlet or at internal locations of the
catchments), or it is unreliable due to various difficulties (e.g. inaccessibility of the location,
extreme weather conditions, vandalism etc.). (Sivapalan, 2003; Guo, Zhang, Zhang & Wang,

2021)

To stress the practical importance of this issue, the International Association of Hydrological
Sciences (IAHS) has declared the period of 2003-2012 to be the decade of prediction in ungauged
basins (PUB Sivapalan, 2003). The Model Parameter Estimation Experiment (MOPEX) project
(Duan et al., 20006) is another example of an international large-scale initiative on the topic
of regionalization. Even though this decade of PUB and the MOPEX project have fostered
significant progress (e.g. Razavi & Coulibaly, 2017; Hrachowitz et al., 2013; Parajka et al.,
2013), there still exists a need to improve regionalization techniques. The objective of any
regionalization technique is to find a relationship between a model parameters and catchment
characteristics, which can then be used to estimate the parameters for ungauged catchments.
This relationship can further be extrapolated to other modeling elements (i.e. catchments,

sub-catchments, hydrological response units).

In general, regionalization techniques can be classified into similarity-based methods (e.g. Van-
dewiele & Elias, 1995; Randrianasolo, Ramos & Andréassian, 2011; Samuel, Coulibaly & Met-
calfe, 2011; Yang, Magnusson & Xu, 2019b; Arsenault, Breton-Dufour, Poulin, Dallaire & Romero-
Lopez, 2019), and regression-based methods (e.g. Abdulla & Lettenmaier, 1997b; Wa-
gener & Wheater, 2006; Teutschbein, Grabs, Laudon, Karlsen & Bishop, 2018). The underlying
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assumption for similarity-based methods is that model parameters are transferable between
catchments with similar physical characteristics or on the basis of proximity; Yet, regression-
based methods rely on finding a relationship between catchment descriptions (CDs) and model

parameters (Razavi & Coulibaly, 2013, 2017; Guo et al., 2021)

In terms of procedure, Samaniego et al. (2010) classified the approaches into post regionalization
and simultaneous regionalization techniques. For post-regionalization, the links between the
parameters of a hydrological model and CDs are established after calibration over a set of reference
(gauged) catchments using multivariable predictor-predictant analyses such as regression. Those
links are further cross-validated over the test catchments (e.g. Abdulla & Lettenmaier, 1997a,a;
Parajka, Merz & Bloschl, 2005; Wagener & Wheater, 2006; Heuvelmans, Muys & Feyen, 2006).
For simultaneous regionalization, an a priori relationship between the parameters and the CDs is
assumed and takes the form of a transfer function. Then, the parameters of that function are
calibrated and coupled with the hydrological model. In this line of research, Hundecha & Bardossy
(2004) used simultaneous regionalization techniques by defining functional relationships between
model parameters and catchment descriptors. Following up studies such as Gotzinger & Bardossy
(2007); Hundecha, Ouarda & Bérdossy (2008); Pokhrel, Gupta & Wagener (2008) and Troy

et al. (2008) applied similar strategies.

Regardless of the technique used for a specific regionalization problem, a loss of modeling
efficiency from calibration to regionalization is to be expected. This is because, first, a set
of calibration parameters can only be one solution among many for the calibration problem.
Therefore, using a specific set of model parameters out of all possible solutions might not
necessarily provide complete information for establishing the CDs-parameters relationship
required for regionalization (Saadi et al., 2019; Olden & Poft, 2003). Second, the conventional
time-space averaged catchment descriptors (e.g., mean temperature or precipitation, or mean
elevation over catchments) may contain only limited information, as these predictors do not
represent the spatial variability of soil type, land cover, and physiographic characteristics of

the catchments (Merz et al., 2020). As a result, a transfer function derived from such sets of
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predictors-predictands might not suitably explain the relationship between the parameters and

CDs (Kim & Kaluarachchi, 2008).

Another concern regarding regionalization is the a priori relationship assumed between model
parameters and CDs. These assumptions are typically based on process understanding, expert
knowledge, and empirical evidence (Hrachowitz et al., 2013). For example, Hundecha & Béardossy
(2004) related parameters for snowmelt to land use, and evaporation to soil type and land use.
(Samaniego et al., 2010), assumed a more complex relationship between parameters and CDs
using pedotransfer functions. Such assumptions however are ambiguous. First, the link between
parameters and CDs is not clear in most cases (Merz & Bloschl, 2004). Second, there are
different catchment descriptors which are correlated (e.g., precipitation and physiographic data)
and provide similar degree of information, resulting in equal power of prediction (Merz et al.,
2020). Hence, the choice of CDs that control a specific parameter is not clear, making it difficult

to constrain parameters with hydrologically reasonable transfer functions.

Machine Learning (ML) techniques can learn multi-variable predictor-predictand relationships
(Shen, Chen & Laloy, 2021; Tyralis, Papacharalampous & Langousis, 2019). Having higher
degrees of freedom relative to traditional regionalization methods, ML techniques are capable
of detecting non-linear relationships between predictors and predictands through training over
large numbers of samples (Nearing et al., 2020). Thus, the need to constrain the parameters
with transfer functions, which is laborious and often ambiguous, can be eliminated (Merz
et al., 2020). ML has been used in hydrology mainly for prediction and benchmarking (Hsu,
Gupta & Sorooshian, 1995; Abramowitz, 2005; Best et al., 2015; Nearing, Mocko, Peters-Lidard,
Kumar & Xia, 2016; Kratzert et al., 2019a; Kratzert, Klotz, Hochreiter & Nearing, 2020).
Different clustering techniques have also been used for the purpose of catchment classification
occasionally, addressing PUB under the context of physical similarity (Papageorgaki & Nalbantis,
2016; Kanishka & Eldho, 2020). The dominant ML algorithm used in hydrology and water

resources sciences is the multi-layer perceptron (Shen, 2018).
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Despite its applications in the academic community, ML techniques have limited use in the
operational community Abrahart ez al. (2012); Kirchner (2006). This is because of ML models’
“black box” nature, in which the internal processes between inputs and outputs remain hidden
or complex to track. Transparency and clarity are necessary for decision-making (Boucher,
Quilty & Adamowski, 2020; Rudin, 2019). Water managers prefer to have the “right answers”
for the “right reasons” to avoid unknown risks (Kirchner, 2006). One approach to close the gap
between these two communities is to use ML techniques in parallel with hydrological models.
This helps preserve the physical reality and interpretability of the modeling, while “the underlying
physical processes” that hydrological models cannot typically capture are approximated by

numerical ML techniques (Kasiviswanathan, He, Sudheer & Tay, 2016).

ML techniques are well suited to calculate the hydrological model parameters, for which a
tangible physical relationship is not available. Random forest (RF; Breiman, 2001), is a powerful
ML technique, which has found relatively limited use in hydrology (Tyralis et al., 2019). Some
examples include flood and drought analyses (Anderson, Lucas & Bonfils, 2018; Bachmair,
Svensson, Hannaford, Barker & Stahl, 2016; Mufoz, Orellana-Alvear, Willems & Célleri, 2018;
Sultana, Sieg, Kellermann, Miiller & Kreibich, 2018), analyses of hydrological signature and
flow regime (Addor et al., 2018; Snelder et al., 2009; Balazs, Bir6, Dyke, Singh & Szabd,
2018). RF is a supervised learning method based on regression trees (Breiman, 2001). The
method belongs to the ensemble learning class, which uses bagging (bootstrap and aggregation),
decorrelation and randomization techniques (Tyralis et al., 2019). RF is interpretable to some
extent, as the algorithm is based on decision trees, in which the flow of information is trackable.
Additionally, RF is fast, stable, and it resists overfitting (Boulesteix, Janitza, Kruppa & Konig,
2012). The technique can handle small to large sample sizes even if the predictors are highly
correlated (Ziegler & Konig, 2014). Such properties are useful to regionalize hydrological

model parameters in the case of computationally intensive hydrological modeling.

The present research aims at the regionalization of a process-based distributed hydrological

model. Given that distributed models are sensitive to the heterogeneity of the system (Markhali
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et al., 2022), we study the effects of different temporal resolutions and their interaction with

spatial discretization in regionalization based on the following hypotheses:

I.  Finer time-step adds more information to the calibrated parameters and improves the
efficiency of the regionalization model.

II. The parameters approximated by RF are spatially consistent and transferrable across the
spatial scales.

III. Refining the spatial resolution of CDs will improve the regionalization skill.

The structure of the paper is as follows: Section 5.2 introduces material and methods including
data, study area, and the methodologies used for calibration of hydrological model and building
RF model. Section 5.3 provides the results and discussion and Section 5.4 gives a summary and

the conclusions regarding our hypotheses.

5.2 Material and Methods

5.2.1 Hydrological model

Hydrotel, a semi -distributed and computationally intensive physics-based model, is used for
this research (Fortin et al., 2001a,b). The model is used by the Direction de I’Expertise Hydrique
(DEH) as part of their hydrological and flood forecasting system across the province of Quebec.
For spatial inputs, the model receives GIS-based gridded data including land cover, soil type, and
Digital Elevation Model (DEM) rasters as well as river network and lake polygons. The grids are
further aggregated into multiple Relatively Homogeneous Hydrological Units (RHHUs), which
are hillslopes . To represent the hydrological processes, the model offers options through various
submodels providing a flexibility to the modeling practice. As Figure 5.1 illustrates, Hydrotel
consists of six main submodels including interpolation of meteorological data, vertical water
budget, snow melt/accumulation, potential evapotranspiration, surface routing, and channel
routing. A mixture of empirical, conceptual, and physical relationships constitute the governing
equations to represent the processes and sub-processes. Overall, 27 parameters need to be

specified. Some of these parameters can be fixed for simulations using expert knowledge
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sensitivity analyses (Huot et al., 2019) . However, other parameters must be calibrated. The list

of the parameters calibrated in this study along with their descriptions are provided in Table 5.1.

RHHIL
MIX OF DEGREE-DA
AND ENERGY BUDG FLOW ROUTING:
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BV3C: INTERPOLATION OF
3 LAYER " METEO. DATA:
VERTICAL THIESSEN'S
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e FLow
<7 DIRECTIONS
DIGITAL /
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Figure 5.1 Schematic presentation of the hydrological processes and sub-process
embedded in Hydrotel

5.2.2 Study Area and Data

We selected 171 catchments from the southern and eastern parts of the province of Quebec in
Canada. These catchments are selected among around 400 catchments available in the database
provided by the DEH (http://www.cehq.gouv.qc.ca’hydrometrie/historique_donnees/default.asp).
The database includes geographical coordinates and some physiographic information of the

catchments as well as observed discharge in daily and hourly time-steps. We eliminated
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Table 5.1 Hydrotel’s calibrated parameters and their description

Parameter Description (unit) Submodel

L1 First layer thickness (m) vertical budget (BV3C)

L2 Second layer thickness (m) vertical budget (BV3C)

CR coefficient of recession (m/hour) vertical budget (BV3C)
MTD melt threshold deciduous (°C) snow melt/accumulation(degree-day)
MTN melt threshold non-forest (°C) snow melt/accumulation(degree-day)
MTC melt threshold coniferous (°C) snow melt/accumulation(degree-day)
MRD melt rate deciduous (mm/d per °C) snow melt/accumulation(degree-day)
MRN melt rate non-forest (mm/d per °C) | snow melt/accumulation(degree-day)
MRC melt rate coniferous (mm/d per °C) snow melt/accumulation(degree-day)
CET coeflicient of optimization (-) Potential evapotranspiration(Mcguiness)
TSR transition from snow to rain (°C) Interpolation (Thiessen polygons)

catchments for which all hydrometric stations have been closed prior to 1990, or those with
more than 40% of missing streamflow data in the calibration periods. Figure 5.2 demonstrates
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