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Le Piège de la cupidité : Découverte des honeypots intrinsèques à Ethereum grâce à
l’exécution symbolique

Mahtab NOROUZI

RÉSUMÉ

Les contrats intelligents sont des programmes informatiques auto-exécutables qui s’exécutent sur

des réseaux de blockchain et facilitent les transactions sécurisées, transparentes et décentralisées.

La sécurité des contrats intelligents a toujours été une question critique dans la communauté de

la blockchain, et l’une des principales préoccupations ces dernières années est la prévalence des

honeypots - des contrats malveillants conçus pour tromper les utilisateurs en leur faisant déposer

des fonds, pour découvrir qu’ils sont incapables de retirer leur argent et ont perdu leur dépôt initial.

Dans cette recherche, nous présentons une nouvelle classification de honeypots et introduisons

un nouveau type de contrat qui permet le développement d’une méthode future-proof pour

détecter les honeypots basée sur le propriétaire du contrat et le flux de trésorerie. Nous mettons

en œuvre cette méthode sous la forme d’un outil de détection appelé HoneyVader en utilisant

une exécution symbolique pour identifier les contrats honeypot du monde réel. Nous appliquons

notre outil à plus de 2 millions de contrats déployés sur le réseau Ethereum et détectons 139

honeypots. En utilisant cet outil, nous découvrons des honeypots zero-day et de nouvelles

techniques utilisées par les attaquants, en plus de celles identifiées dans les travaux précédents.

Mots-clés: exécution symbolique, Ethereum, honeypot





The Greed Trap: Uncovering Intrinsic Ethereum Honeypots through Symbolic Execution

Mahtab NOROUZI

ABSTRACT

Smart contracts are self-executing computer programs that run on blockchain networks and

facilitate secure, transparent, decentralized transactions. The security of smart contracts has

always been a critical issue in the blockchain community, and one of the major concerns in

recent years is the prevalence of honeypots – malicious contracts designed to deceive users into

depositing funds, only to find that they are unable to withdraw their money and have lost their

original deposit. In this research, we present a novel classification of honeypots and introduce

a new type of contract that enables the development of a future-proof method for detecting

honeypots based on the contract owner and cash flow. We implement this method in the form of

a detection tool called HoneyVader using symbolic execution to identify real-world honeypot

contracts. We apply our tool to over 2 million contracts deployed on the Ethereum network and

detect 139 honeypots. Using this tool, we uncover zero-day honeypots and new techniques used

by attackers, in addition to the ones identified in previous works.

Keywords: symbolic execution, Ethereum, honeypots





TABLE OF CONTENTS

Page

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

CHAPTER 1 LITERATURE REVIEW AND BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Blockchain networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1.1 Accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1.2 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1.3 Ethereum Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1.4 Etherscan block explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1.5 Remix IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.2 Smart contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.2.1 Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.2.2 Solidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.2.3 Solidity compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.2.4 Bytecode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Analysis methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1.1 Symbolic execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1.2 Control Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1.3 Pattern recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1.4 Formal verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.2 Dynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.2.1 Fuzzing input generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Blockchain security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Honeypots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.1 Honeybadger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.1.1 Ethereum Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.1.2 Solidity compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4.1.3 Etherscan blockchain explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4.2 A machine learning approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4.3 Others studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 2 HONEYVADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1 Research problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Unique Owner Transfer contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.2 Tricks in code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.3 Design overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Expanding Honeybadger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



XII

CHAPTER 3 IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Splitting bytecode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Symbolic execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Constructor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 UOT detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Trick analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Honeybadger’s expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.1 Racing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.2 Map key encoding trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

CHAPTER 4 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Baseline solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

CHAPTER 5 LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

CONCLUSION AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

APPENDIX I THE GREED TRAP: UNCOVERING INTRINSIC ETHEREUM

HONEYPOTS THROUGH SYMBOLIC EXECUTION . . . . . . . . . . . . . . . . . . . 75

APPENDIX II SOURCE CODE OF THE IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . .105

APPENDIX III TABLES IN ANNEXES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



LIST OF TABLES

Page

Table 1.1 Ethereum smart contract analysis tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Table 2.1 Honeypot techniques in the new classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 2.2 Truth table to detect a honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 2.3 Truth table to detect a UOT contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 4.2 Comparing Honeybadger to HoneyVader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65





LIST OF FIGURES

Page

Figure 1.1 Blockchain architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.2 Ethereum Virtual Machine (EVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.1 Owner controlled money transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 2.2 An overview of the HoneyVader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.1 BytecodeSplitter module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.2 Splitting the EVM bytecode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 3.3 Creation bytecode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 3.4 Workflow of UOT module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.2 Normal transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 4.3 Internal transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63





LISTINGS

Page

Listing 1.1 Balance disorder honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Listing 1.2 Inheritance disorder honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Listing 1.3 Type deduction overflow honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Listing 1.4 A simplified example of skip empty string literal honeypot . . . . . . . . . . . . . . . . . 28

Listing 1.5 A simplified example of uninitialized struct honeypot . . . . . . . . . . . . . . . . . . . . . . . 29

Listing 1.6 Hidden state update honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Listing 1.7 Hidden transfer honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Listing 1.8 Straw man contract honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Listing 1.9 Unexecuted call honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Listing 1.10 Map key encoding trick honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Listing 1.11 Racing time honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Listing 2.1 Intrinsic honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Listing 2.2 Non intrinsic honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Listing 2.3 UOT contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Listing 2.4 Benign UOT contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Listing 2.5 Fake money transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Listing 2.6 Fake ownership change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Listing 4.1 A new honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Listing I.1 Fake money transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Listing I.2 Fake ownership change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Listing II.1 Source code to find the owner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Listing II.2 Source code to detect a UOT contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105



XVIII

Listing II.3 Source code to detect changeability of an owner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Listing II.4 Source code to detect a fake ownership change . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

Listing II.5 Source code to detect a fake call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

Listing II.6 Source code to detect map key encoding trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

Listing II.7 Source code to detect a racing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



LIST OF ABBREVIATIONS

BTC Bitcoin Cryptocurrency

DAO Decentralized Autonomous Organization

DLT Distributed Ledger Technology

PoW Proof of Work

PoS Proof of Stake

EVM Ethereum Virtual Machine

ETH Ether

EOA Externally Owned Account

CA Contract Account

API Application Programming Interface

IOT Internet Of Things

ML Money Laundering

HYIP High Yield Investment Programs

P&D Pump and Dump

DoS Denial of Service

CF Cash Flow

DeFi Decentralized Finance

dApp Decentralized Application

UOT Unique Owner Transfer



XX

RPC Remote Procedure Call

BD Balance Disorder

ID Inheritance Disorder

SESL Skip Empty String Literal

TDO Type Deduction Overflow

US Uninitialized Struct

HT Hidden Transfer

RT Racing Time

MKET Map Key Encoding Trick

TP True Positive

FP False Positive

FN False Negative

IDE Integrated Development Environment

BSC Binance Smart Chain

URL Uniform Resource Locator



INTRODUCTION

Blockchain has emerged as one of the most prominent technologies in recent years. Alongside

the potential for decentralization and transparency, this technology has had a significant impact

on many industries, ranging from technology to the healthcare industry and business. As the first

version of the blockchain, Bitcoin cryptocurrency (BTC) was introduced in 2009 (Nakamoto,

2009), gaining a lot of attention, and the technology rapidly grew to the next version in just a few

years. In 2015, Ethereum was launched as blockchain 2.0, allowing programmers to develop

codes called smart contracts in the blockchain in addition to exchanging cryptocurrencies (Wood,

2014). The critical characteristic of smart contracts is their immutability, which makes them

different from traditional ones in that they cannot be altered after deployment.

As blockchain is growing more in different industries, security is also becoming more of an

issue for users. The security of blockchain can be discussed from different aspects such as

network security, consensus security, cryptography, and smart contract security. Smart contract

security is the practice of ensuring that smart contracts on a blockchain network are secure and

free from vulnerabilities that could be exploited by attackers. Due to the massive amount of

money flowing on the chain and the irreversible nature of transactions, any vulnerability in smart

contracts could lead to significant financial losses.

In addition to the vulnerabilities in smart contracts, the decentralized and pseudonymous

environment in the blockchain makes it an attractive target for fraudsters and scammers who

design fraudulent schemes to deceive users and steal their cryptocurrency or personal information.

Scams can take many forms, such as phishing attacks, Ponzi schemes, and honeypots.

Problem objective

Our main objective in this thesis is to detect honeypots, a type of scam deployed by attackers

to steal money from users. These malicious contracts present a code leak and lure users into
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depositing and withdrawing more money than their initial stake (Torres, Steichen & State, 2019).

However, after sending the money to the contract, it gets stuck and the victim will not be able to

withdraw any funds. Finally, the attacker drains the contract balance to their address. Based

on our investigations through relevant forums and social media, we found many users who

participated in honeypot contracts and fell into these traps in both Ethereum and Binance Smart

Chain(BSC) blockchains.1

There are some studies conducted to detect these honeypots. (Torres et al., 2019) was the first

study to introduce honeypots and classify them into 8 categories based on the used technique by

the attacker to trick the users. They also introduced Honeybadger, the most prominent tool for

honeypot detection based on symbolic execution on the EVM bytecode. However, Honeybadger

is limited to detect only 8 types of honeypots studied by the authors, and since new honeypots

are continuously proposed (Camino, Torres, Baden & State, 2020; Zhou et al., 2020), there is a

need to develop a general purpose solution that is able to detect honeypots even the ones that are

not previously known.

Contribution

The previous work, Honeybadger, uses runtime bytecode to analyze a contract. However,

the constructor of a contract, which is placed in the creation bytecode, contains important

information that can be useful in the analysis of the contract for honeypot detection. The creation

bytecode which also generates the runtime bytecode and carries the constructor information is

generated only once when a user creates and deploys a contract to the blockchain.

In this thesis, we present a novel approach for detecting honeypots by conducting symbolic

analysis on the EVM creation bytecode. As our first contribution, we introduce a new

1 One of the examples of a real-world honeypot victim was found in Reddit, an American social media

(Specific-Economist70, 2022).
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classification system for honeypots, Intrinsic and Non-intrinsic. Moreover, we propose a method

to find the owner variable of a contract. Based on the mentioned classification and by having

the owner variable, we propose a novel future-proof method to detect unrecognized forms of

honeypots that are not covered in existing heuristics introduced by prior work (Torres et al.,

2019). Using this method, first, we identify a type of contract called Unique Owner Transfer

(UOT) which restricts the money transfer out of the contract to the owner of the contract. We

consider these contracts as potentially malicious ones, then add an additional layer of detection to

check if they are benign contracts or honeypots. With these strategies, we can detect honeypots

even if we are not familiar with the specific techniques used to create them. In addition, we

leverage our constructor analysis to develop two new heuristics for detecting honeypots recently

introduced in other studies, which we incorporate into the Honeybadger tool.

We implemented our methodology in the form of a detection tool called HoneyVader and

evaluated it using a dataset of 2 million Ethereum smart contracts. We also did a comparison of

our tool against Honeybadger, the state-of-the-art detection tool for honeypots.

Research scope

Our research methodology is based on extracting information about the owner of a contract.

Specifically, our detection tool, HoneyVader, is designed to identify honeypots in Ethereum

contracts where the message sender is assigned to a variable in the constructor, as this variable

represents the contract owner. Contracts that do not explicitly define the owner of the contract,

which we refer to as non-owner-aware contracts, are not within the scope of our research.

Additionally, our objective in this research is to identify honeypots as standalone entities,

disregarding any extrinsic interactions or transactions. Contracts that utilize trickery dependent

on external factors or other contracts cannot be fully analyzed by our tool, as these features are

not inherent within the contract’s code. Therefore, our research is limited to detecting only the

intrinsic honeypots, and non-intrinsic honeypots are out of the scope of our tool.
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Thesis organization

The remainder of the thesis is organized as follows: in chapter 1, the main principles of

blockchain and our analysis method are described along with a comprehensive literature review

in this field. Chapter 2 presents the research problem and our proposed methodology to solve it.

In chapter 3, we demonstrate our methodology and the implementation of our detection tool,

HoneyVader in more detail. In chapter 4 we evaluate HoneyVader using a large dataset of smart

contracts and compare it to Honeybadger, the state-of-the-art detection tool. After discussing

the results, we also explain one of our results as a case study in this chapter. Finally, we explain

some of the limitations of our research in chapter 5.



CHAPTER 1

LITERATURE REVIEW AND BACKGROUND

This chapter provides an overview of the literature review and the main topics discussed in this

thesis. In section 1.1, we begin by briefly introducing blockchain technology and its essential

components. Additionally, we provide some background information on Ethereum in section

1.1.1 and smart contracts in section 1.1.2, followed by our literature review. In section 1.2, we

describe various analysis methodologies used in software analysis. Next, we delve into the field

of blockchain security in section 1.3, providing an extensive review of the literature. Lastly, we

focus on honeypots in section 1.4 and provide a specific review of research related to them.

1.1 Blockchain networks

Figure 1.1 Blockchain architecture

Taken from Tama et al. (2017c)

The blockchain is a distributed ledger technology (DLT) that records transactions across a

network of computers. Originally introduced as the underlying technology for Bitcoin in

2009 (Nakamoto, 2009), blockchain has since expanded to include multiple use cases beyond

cryptocurrencies. Blockchain networks consist of nodes that work together to validate and

record transactions in a secure and transparent environment. Each node has a copy of the ledger,

and once a new transaction is validated by the network, it is added to the ledger as a block.

These blocks are linked to each other through cryptographic hashes, forming an immutable
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chain of blocks or a blockchain (see Figure 1.1). Users can connect to the network by creating a

personal wallet and can access the public shared ledger. To participate in the network, a node

sends a transaction along with its signature to the network, where every other node receives

it, and a public decision is made to add the transaction to the ledger or abort it based on a

consensus. Validating transactions and adding them to the blockchain typically involves a

consensus mechanism, which can be done through mining or other algorithms such as proof of

work (PoW) and proof of stake (PoS).

The decentralization of blockchain networks ensures that there is no single point of failure,

making them secure and resistant to tampering. Additionally, the transparency of transactions

and the use of cryptographic algorithms ensure that the network is trustworthy. This combination

of security, transparency, and decentralization has made blockchain a popular technology

for a variety of applications. The authors in (Tama, Kweka, Park & Rhee, 2017a) reviews

state-of-the-art blockchain-related applications that emerged in the literature and categorizes

them into four groups: financial services, healthcare (Kuo, Kim & Ohno-Machado, 2017;

Koscina, Manset, Negri-Ribalta & Perez, 2019; Tian, He & Ding, 2019; Li et al., 2018), business

and industry (Bocek, Rodrigues, Strasser & Stiller, 2017-05; Antonucci et al., 2019), and other

implementations (Zyskind, Nathan & Pentland, 2015).

There are two main types of blockchains, public and private, each serving different purposes.

Public blockchains, like Bitcoin, are open to anyone, while private blockchains are restricted to

specific groups of participants and are typically used for enterprise applications.

1.1.1 Ethereum

Ethereum is an open-source, public, decentralized blockchain platform that was first created

in 2015 by a programmer named Vitalik Buterin (Buterin et al., 2013). In addition to

exchanging cryptocurrency between nodes, this blockchain enables developers to build and

deploy decentralized applications (dApps) that run on its blockchain through programs called

smart contracts (Wood, 2014). Ethereum is known for its smart contract functionality, which
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allows developers to write programs that can execute automatically when certain conditions

are met. Its native cryptocurrency is Ether (ETH), which is used to pay for transactions and to

incentives miners who maintain the network. Ethereum uses proof of work (PoW) to validate

transactions and create new blocks on the blockchain. However, it is currently in the process

of transitioning to a proof-of-stake (PoS) consensus mechanism, which is expected to be more

energy-efficient and secure (LucaPennella, 2023). The concept of decentralization along with

the functionality of smart contracts has attracted so many developers and businesses such

as finance, gaming, and supply chain management to use Ethereum and build decentralized

applications(dApps). We explain different parts of the Ethereum entity more in detail in the

following.

1.1.1.1 Accounts

Accounts are used to store and manage the funds and smart contracts on the network. There are

two types of accounts in Ethereum:

• Externally Owned Accounts (EOA): EOAs are similar to traditional bank accounts and are

controlled by private keys. EOAs are owned by individual users and are used to hold and

transfer Ether and other tokens on the Ethereum network. They can also be used to initiate

smart contract transactions.

• Contract Accounts (CA): CAs are accounts that hold the code for smart contracts. They are

created by sending a contract creation transaction to the Ethereum network, which creates a

new account on the blockchain. Contract accounts have their own balance of Ether and other

tokens and can interact with other contracts or EOAs.

While users may perceive two types of accounts in Ethereum, the Ethereum Virtual Machine

(EVM) processes both types of accounts in a similar manner. Each account has a unique address

that serves as its identifier on the Ethereum network. This address is generated through a hash

function and is comprised of 20 bytes, represented as a string of 40 hexadecimal characters. With

this unique address, both types of accounts can send and receive transactions on the Ethereum

network.
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1.1.1.2 Transactions

Communication between accounts in Ethereum occurs through transactions. These transactions

are used to transfer ether (the native cryptocurrency of the Ethereum network) from one account

to another, execute smart contracts, and trigger other actions on the blockchain. Transactions

are initiated by EOAs. When an EOA wants to initiate a transaction, it creates a transaction

object that contains the recipient address, the amount of ether to transfer (if any), and any data

needed for the transaction (such as function parameters for a smart contract) and then signs

it using its private key to prove that it is the owner of the account and that the transaction is

legitimate. The signed transaction is then broadcasted to the Ethereum network, where it is

validated by other nodes in the network. If it is validated by the network, it is included in a block

by a miner. The miner collects multiple transactions into a block, validates them, and then tries

to solve a cryptographic puzzle to create a new block that is added to the blockchain. Once

the miner successfully creates a new block, the transactions in the block are considered to be

confirmed and are no longer reversible. Each transaction in Ethereum includes a fee known as

gas, which is paid to the network’s miners as an incentive to process and validate the transaction.

The amount of gas required for a transaction is determined by the complexity of the operation

being performed. Transactions with higher gas fees are prioritized by miners because they offer

a higher reward for processing them. Therefore, transactions with higher gas fees have a greater

chance of being included in the next block, while transactions with lower fees may take longer

to be processed.

Each transaction includes several fields that are used to specify the details of the transaction.

The fields include the nonce, gas price, gas limit, recipient address, value, data/input, and

signature. A nonce is a unique number associated with the sending account that prevents

duplicate transactions. Gas is a measure of the computational resources required to execute the

transaction, and the gas price specifies how much the sender is willing to spend for each unit of

gas. The gas limit is the maximum amount of gas that the sender is willing to pay to execute the

transaction. The recipient address is the address of the recipient account for the transaction,

which can be an EOA or a CA. The value specifies the amount of Ether or other tokens being
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sent in the transaction. The data/input field is optional and includes any additional data or

input parameters required to execute the transaction. The signature is a digital signature of the

transaction used to prove that the sender authorized the transaction and make it tamper-proof.

Each transaction includes several fields that are used to specify the details of the transaction.

1. Nonce: A unique number associated with the sending account, is used to prevent duplicate

transactions.

2. Gas Price: A fee paid by the transaction sender to compensate miners for the computational

resources used during the transaction. Gas price is specified in Ether and determines the

priority of the transaction.

3. Gas Limit: The maximum amount of gas that the sender is willing to spend on the

transaction. If the gas limit is set too low, the transaction may not be executed, and the

sender will still be charged for the gas used.

4. To: The address of the recipient account for the transaction. This can be an EOA or CA

address. An empty "to" field is used when creating a new contract.

5. Value: The amount of Ether or other tokens being sent in the transaction. This can be sent

to an EOA, to another contract, or used to create a new contract.

6. Data/Input: An optional field that contains additional data or input parameters required to

execute the transaction, such as a smart contract function call. This field is used to initialize

a new contract with the creation bytecode as a permanent representative for the contract.

7. Signature: A digital signature of the transaction, including the v, r, and s fields, which

proves that the sender authorized the transaction and ensures the integrity of the transaction.

There are two types of transactions in Ethereum:

• Normal Transactions: These transactions are initiated by EOAs, which are essentially

user-controlled accounts. A normal transaction is sent from an EOA to either another EOA

or a contract.

• Internal Transactions: In some cases, a normal transaction sent from an EOA to a contract

can trigger a situation where the contract creates another transaction to a CA or EOA. These

transactions created by contracts are referred to as internal transactions.



10

Figure 1.2 The architecture of Ethereum Virtual Machine (EVM)

Taken from Okupski (2018)

1.1.1.3 Ethereum Virtual Machine

Ethereum Virtual Machine (EVM) is a crucial component of the Ethereum blockchain. It is

a 256-bit word, a stack-based machine that acts as a virtual CPU capable of executing smart

contracts. The EVM is designed to provide a secure and decentralized platform for executing

code on the blockchain. By using the EVM, developers can write and deploy smart contracts

that can be executed by nodes on the network. The EVM is responsible for maintaining the state

of the blockchain, including account balances, contract codes, and storage. It reads bytecode, a

low-level programming language, and executes it on behalf of the nodes in the network. Geth,

one of the implementations of Ethereum, includes the EVM and is run by all nodes in the

Ethereum network. The EVM’s design makes it possible for smart contracts to execute in an

environment that ensures the safety of the network. As it is shown in Figure 1.2, the Ethereum

Virtual Machine (EVM) is composed of several key components, including:

• Storage Structures:

- Stack: The EVM uses a stack-based memory model to store and manipulate data during

the execution of smart contracts. The stack is an efficient way to perform operations such

as addition and subtraction. Storing local variables on the stack is free.
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- Memory: The EVM has a readable and writable storage area for smart contracts. Memory

is used to store function arguments of a smart contract and the results of intermediate

calculations. This memory area is initially empty, but it can be dynamically resized

during the execution of a smart contract. Accessing and modifying data in memory is

less expensive than using the stack, but it still incurs gas costs.

- Storage: The EVM has a persistent storage area to store state variables. However,

accessing and modifying data in storage needs higher gas costs compared to the stack and

memory. Therefore, using storage efficiently is critical for optimizing transactions and

minimizing gas fees. Moreover, due to the limited storage space, using it carelessly can

result in running out of gas during the execution of a transaction.

Using each storage structure depends on the type of data and how it needs to be accessed and

modified. Effective management of storage usage is crucial to ensure optimal performance

and avoid unnecessary gas expenses.

• Program Counter: The program counter is a register that keeps track of the current

instruction being executed by the EVM. It points to the memory location where the next

instruction is stored and is incremented after each instruction is executed. The PC is a critical

component of the EVM’s instruction execution process and helps ensure that smart contracts

are executed correctly.

• Opcodes: The EVM has a set of built-in instructions, or opcodes, to execute the bytecode of

a smart contract. When a contract is compiled, the EVM bytecode is generated, which is

the EVM language to read the contract. This bytecode is shown in a hex string that EVM

translates every two bytes to its corresponding instructions from the opcode section. These

opcodes include various operations, such as arithmetic, control flow, and memory operations.

• Gas: The gas system in EVM is used to pay for the computational resources required to

execute smart contracts. It also specifies the number of computational resources that can be

consumed by a smart contract. Each opcode has a specific gas cost associated with it, which

is used to calculate the total gas cost of executing a smart contract.



12

• Return Value: Smart contracts can return data, such as a number, a string, or a data structure,

which can be used by other smart contracts or applications that interact with the blockchain.

The result of the execution of a smart contract is stored in the return value.

The workflow of EVM consists of three steps:

• Inputs:

- Blockchain Global State: The current state of the blockchain 𝜎 which is a mapping

between an address 𝛾 to the state of the account 𝜎[𝛾]. The state of an account includes

the account balance 𝜎[𝛾]𝑏, the storage of an account 𝜎[𝛾]𝑠, and the contract’s bytecode

𝜎[𝛾]𝑐 if it is a contract account.

- Transaction: In addition to the current state, EVM also takes the transaction 𝑇 which

includes the sender address, transaction value, transaction input data, recipient address,

gas price, and gas limit.

• Middle Process:

- Transaction Environment: After taking the inputs, EVM first validates the transaction

𝑇 to check for some security requirements.

- Execution Environment: If the transaction is validated, the EVM takes the compiled

bytecode of the code included in the transaction and executes it using its opcodes.

• Outputs:

- New Blockchain State: If the transaction 𝑇 updates the state of a smart contract, the

EVM returns the new state 𝜎′ as the output.

- Gas Cost: After a transaction 𝑇 is executed, the EVM also returns the amount of gas

used by the transaction.

1.1.1.4 Etherscan block explorer

Etherscan (Etherscan, n.d.) is a block explorer for Ethereum. It allows users to explore

and track transactions on the Ethereum blockchain, along with all associated details such as

the sender and receiver addresses, gas price and limit, and the status of the transaction. In

addition to transactions, Etherscan also provides access to other blockchain data such as blocks,
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addresses, and tokens. Etherscan also provides an Application Program Interface (API) that

allows developers to interact with the Ethereum network and build applications that integrate

with Etherscan’s data and services. Another important feature of Etherscan is its analytic tools

that allow users to view and analyze data on everything from the number of transactions and

blocks on the network to the most active contracts and tokens.

1.1.1.5 Remix IDE

Remix IDE (Remix IDE, n.d.) is a web-based integrated development environment (IDE) for

programming, deploying, and testing smart contracts on the Ethereum blockchain. It is designed

specifically for the Solidity programming language and offers a variety of tools for writing,

compiling, and debugging smart contracts. It allows developers to simulate interactions with

their contracts and test them under different scenarios to ensure they are functioning correctly.

Furthermore, it offers a user-friendly platform that allows users to efficiently debug transactions

and gain a comprehensive understanding of how each instruction operates.

1.1.2 Smart contracts

Smart contracts are self-executing computer programs that run on blockchain networks that

allow for the automatic exchange of assets or information between parties based on the terms

of the agreement. According to (Wang et al., 2018), these contracts consist of six layers:

data layer, network layer, consensus layer, incentive layer, contract layer, and application layer.

Smart contracts run on decentralized blockchain networks such as Ethereum and Hyperledger

Fabric, allowing for a tamper-proof and transparent execution of their code without the need

for intermediaries. In recent years, they have gained widespread attention for their potential

to revolutionize various industries such as financial transactions, prediction markets, voting

(Zhao & Chan, 2016; Jafar, Aziz & Shukur, 2021; Ben Ayed, 2017-05-30), gambling, and

Internet Of Things (IOT) (Atlam, Alenezi, Alassafi & Wills, 2018) by making direct interactions

possible and reducing costs (Alharby & van Moorsel, 2017-08-26). Smart contracts have the
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ability to automate complex transactions, enforce contractual agreements, and store data securely,

making them useful tools for improving efficiency, security, and trust in digital transactions.

The data stored in the blockchain, including smart contracts, is publicly available, making it

transparent and accessible to all network participants. Despite this public accessibility, smart

contracts are not always open source. Instead, the runtime bytecode, which represents the

compiled version of the smart contract, is stored on the blockchain. This bytecode contains all

the information necessary for the execution of the contract on the network. In many cases, users

choose to keep the source code of their smart contract private and only the compiled bytecode

is visible on the blockchain. While some users do publish their contract source code on block

explorers, this remains a relatively uncommon occurrence.

1.1.2.1 Oracles

While smart contracts are able to process and store data within the blockchain, they are unable to

access external data sources, such as real-world events or off-chain data. The authors in (Beniiche,

2020) define oracles as third parties which provide the off-chain data for smart contracts. Oracles

can be categorized based on several factors, including their source (whether they are software,

hardware, or human-operated), the direction of information flow (inbound or outbound), and

their level of trust (centralized or decentralized). In addition, two widely-used oracles are

discussed by the authors: Oraclize (now known as Provable Things) and ChainLink (Ellis,

Luu, Chu, Wang & Sai, 2017). Provable is a centralized oracle that provides a cryptographic

guarantee called an "authenticity proof" to prove that the data it provides has not been tampered

with. When a smart contract requires off-chain data, it sends a request to Provable that specifies

the data source type, a query, and an authenticity proof type. ChainLink, on the other hand, is a

decentralized oracle that consists of both an on-chain and an off-chain architecture. Its on-chain

architecture consists of a set of contracts that allow the oracle to interact with the blockchain,

while its off-chain architecture consists of a network of nodes that retrieve and deliver data to the

smart contracts. ChainLink is designed to be highly flexible and customizable, and it is capable

of supporting a wide variety of data sources and types.
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1.1.2.2 Solidity

As already mentioned in the introduction, there are different programming languages to write

smart contracts. However, Solidity has been one of the most used ones by programmers to write

smart contracts (Solidity, 2016). Solidity is a high-level contract-oriented language meaning it

has the necessary features to write a smart contract such as state variables, events, and functions.

Solidity also supports inheritance, libraries, and interfaces, which can be used to reduce code

duplication and improve contract maintainability. In addition, it includes various security

features such as the "modifier" keyword, which can be used to restrict access to specific functions,

and the "assert" keyword, which can be used to ensure that certain conditions are met before

executing specific actions. Solidity is also compatible with many other Ethereum-based tools

and services, making it a versatile language for developing decentralized applications(dApps).

1.1.2.3 Solidity compiler

Solidity is a high-level language and thus the Solidity compiler is used to convert the Solidity

smart contract code into low-level bytecode that can be executed by the EVM. Besides converting

the code into bytecode, the Solidity compiler can also perform optimizations to make the

smart contract more efficient and reduce the amount of gas required to execute it. Solidity

has a versioning system that ensures backward compatibility between different versions of the

language. This means that the code written in an older version of Solidity may not work in a

newer version, but code written in a newer version should work in an older version. The Solidity

developers regularly release new versions of the language to enhance its security and fix any

issues in the previous versions. There are different compiler options for the developers to use.

Solc, a command-line compiler, is a popular choice that can produce both creation bytecode

and runtime bytecode from Solidity code. It can generate output in different formats such as

assembly, binary, and JSON. To obtain the creation bytecode, the "solc –bin" command can

be used, while the runtime bytecode can be extracted using the "solc –bin-runtime" command.

Using Solidity compilers is essential for smart contract developers to ensure their code does not
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have any bugs, is efficient, and is compatible with the Ethereum network before deploying their

code to the main network.

1.1.2.4 Bytecode

After a smart contract written in Solidity is compiled, it is translated into a low-level, binary

representation that is readable by EVM, known as EVM bytecode. EVM bytecode defines the

behavior of the smart contract, including how it stores and manipulates data, interacts with

other contracts, and processes transactions that are stored on the blockchain as part of the smart

contract, where it is publicly visible and immutable. This means that the behavior of the smart

contract is fully transparent and predictable, and cannot be altered or tampered with once it has

been deployed to the blockchain. EVM bytecode is not human-readable but can be decompiled

into Solidity code. Reverse engineering the bytecode has been a challenging while popular field

for researchers as it allows developers to inspect and analyze the behavior of contracts in the

absence of the source code, and to ensure that they are secure. Some of the state-of-the-art tools

in this field are Gigahorse (Grech, Brent, Scholz & Smaragdakis, 2019), Erays (Zhou et al.,

2018), and Elipmoc (Grech, Lagouvardos, Tsatiris & Smaragdakis, 2022) which try to retrieve

the source code from low-level bytecode using different techniques.

There are two types of EVM bytecode:

• Creation Bytecode: The creation bytecode also known as the initial bytecode, is a crucial

component in the deployment of smart contracts on the EVM. It is executed only once during

the creation transaction and generates the runtime bytecode. The creation bytecode contains

the information necessary for the constructor and is used to write initial variables to the

contract’s storage. This bytecode must be included as part of the deployment process, which

involves the submission of a transaction from the creator’s address to the null address.

• Runtime Bytecode: The runtime bytecode refers to the part of the creation bytecode that

executes in each subsequent transaction, excluding the constructor logic and parameters

included in the initial creation transaction.
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1.2 Analysis methodologies

In order to detect vulnerabilities in smart contracts, one of the most commonly used methods is

code analysis. This section provides an overview of different analysis methodologies, which

can be broadly categorized into two groups: static and dynamic (Ernst, 2003). A variety of

methodologies have been employed to analyze smart contracts. In section 1.3, after introducing

different analysis tools for blockchain security, we will also mention the specific analysis

methodologies used for each tool.

1.2.1 Static analysis

Static analysis methodologies are techniques used to analyze software or code without executing

it. These methodologies are used to identify potential issues or defects in software before it is

deployed or released, helping to improve the quality and security.

1.2.1.1 Symbolic execution

Symbolic execution is a powerful technique to analyze the behavior of a contract and detect

potential vulnerabilities (King, 1976). In this technique, various inputs are assigned to different

symbolic variables, and then the program runs with the symbolic values. This generates different

execution paths for the program. For each execution path, a list of constraints with symbolic

values is generated. A constraint solver is then used to determine the feasibility of each execution

path.

1.2.1.2 Control Flow Graph

Control Flow Graph (CFG) is another static analysis method in which a graph representing

the control flow of the program is generated (Allen, 1970b). After parsing the bytecode of a

program and generating the opcodes, they are classified into small groups called basic blocks.

Each basic block is a node of CFG and the transactions between them are the edges. Using this

graph, analysts can identify potential issues in the program, such as unreachable code, infinite
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loops, and areas of the program that may be vulnerable to attacks. Moreover, using CFG is

beneficial as it provides a graphical overview of the control flow making it easier to understand

and analyze.

1.2.1.3 Pattern recognition

Pattern-based analysis is used by analysts to identify common patterns in behavior, structure,

and vulnerability in code to improve code quality (Jain, Duin & Mao, 2000). In this technique,

different algorithms and tools are used to scan the code for known patterns and compare them

with a set of predefined patterns or templates.

1.2.1.4 Formal verification

During formal verification, a program is analyzed and mathematically proved to satisfy a set of

requirements (Bjesse, 2005). In this technique, the code is translated into a formal language that

can be analyzed using mathematical techniques such as logic and model checking. The goal of

formal verification is to ensure that a program behaves as intended and does not contain any

bugs or vulnerabilities.

1.2.2 Dynamic analysis

In contrast to static analysis methodologies, this methodology runs the code under different

conditions with different inputs (Ball, 1999). The objective of this type of analysis is to evaluate

how a program reacts to inputs during execution by observing how it responds to the inputs.

One of the most used dynamic analysis techniques is fuzzing.

1.2.2.1 Fuzzing input generation

Fuzzing is a powerful and effective technique for identifying vulnerabilities (Takanen, Demott,

Miller & Kettunen, 2018). In this method, a large set of structured data is provided as input to a

program, and observing behavior of it to find any unexpected events like crashes. The goal of
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this analysis technique is to put the program in a condition that is risky for it to manage them

leading to identifying errors or vulnerabilities.

1.3 Blockchain security

Blockchain security is a very vast area that contains security in a lot of different concepts and

different attacks happening and causing money loss for users to prove the importance of this

field (Atzei, Bartoletti & Cimoli, 2017; Su et al., 2021). The security of blockchain contains a

big area of different aspects.

The researchers in (Chen, Pendleton, Njilla & Xu, 2020a) present an overview of the security of

blockchain systems by providing a full list of common potential attacks in blockchain along

with different detection tools each one targeting a group of attacks. A part of this study is

investigating the security of blockchain in the aspect of network architecture. Since blockchain

technology is based on a decentralized network of nodes, the security of the network is essential

to prevent unauthorized access, data breaches, and other cyber threats. According to this study,

some of the risks to the blockchain network are selfish mining attack (Bai et al., 2019), BGP

hĳacking attack, and Eclipse attack (Heilman, Kendler, Zohar & Goldberg, 2015). (Eyal & Sirer,

2018) studies the mining vulnerabilities in Bitcoin.

Moreover, the security of consensus is also very important as a part of network security. The

consensus mechanism ensures that all the nodes in the network agree on the current state of

the blockchain and the validity of transactions. If the consensus mechanism is compromised or

faulty, it can lead to inconsistencies in the blockchain and potentially allow malicious actors to

alter the data or manipulate the system. Authors in (Cao, Zhang, Wu & Liu, 2022) study the

security in consensus algorithms towards a more secure consensus in the blockchain which is

another concern in the security of blockchain. An example of an attack happening in this field is

the risk of 51% vulnerability (Aponte-Novoa, Orozco, Villanueva-Polanco & Wightman, 2021).

In return, some security enhancements related to these risks are also studied such as SmartPool

(Luu, Velner, Teutsch & Saxena, 2017) and Hawk (Kosba, Miller, Shi, Wen & Papamanthou,
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2016) that is developed to protect the users from privacy leakage. Moreover, on the security of

the network, oracles 2 can also be a potential security vulnerability, as they introduce a point of

trust and centralization in an otherwise decentralized system. Town Crier (Zhang, Cecchetti,

Croman, Juels & Shi, 2016) is a software that provides a secure way for smart contracts to

access off-chain data without relying on centralized or untrusted oracles. Moreover, authors in

(Badawi & Jourdan, 2020) present an overview of the state-of-the-art threats and the proposed

defensive mechanism in the field of cryptocurrencies. By studying different papers, they find

7 groups of attacks that have already been discussed: money laundering (ML), high yield

investment programs (HYIP), pump and dump (P&D), crypto-jacking, ransom, denial of service

(DoS) and a group of general attacks.

Another field of blockchain security refers to smart contracts which can either be vulnerabilities

in the code or criminal activities.

• Vulnerabilities: Smart contracts are programs and may contain programming bugs. However,

due to their immutability feature, any carelessness when coding could lead to huge permanent

losses of funds for their users. There has been much research conducted to review the

security of smart contracts. Authors in (Kushwaha, Joshi, Singh, Kaur & Lee, 2022c),

(Chen et al., 2020a) and (Kushwaha, Joshi, Singh, Kaur & Lee, 2022a) present a review of

smart contract vulnerabilities and some preventive methods for each of them along with the

state-of-the-art detection tools. Some of the vulnerabilities studied by these researchers are

integer overflow/underflow, mishandled exceptions, denial of service, floating pragma, etc.

They also study some well-known attacks that these vulnerabilities have caused such as the

DAO attack (Buterin, 2016; Siegel, 2023). Apart from these, as already mentioned in the last

paragraph, researchers have been actively trying to develop different detection tools using

different analysis methods to detect these vulnerabilities and secure smart contracts. Authors

in (Kushwaha, Joshi, Singh, Kaur & Lee, 2022b) conduct a systematic review of 86 smart

contract analysis tools along with their analysis methodologies and a brief description of

how they work. Each of these detection tools is designed to detect a group of vulnerabilities.

2 Oracles are explained in 1.1.2.1.
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Oyente (Luu, Chu, Olickel, Saxena & Hobor, 2016), and Slither (Feist, Greico & Groce, 2019)

are some of the prominent tools for vulnerability detection which use symbolic execution.

On the other hand, it is easier to detect some of the vulnerabilities such as call-to-unknown

using dynamic analysis. Echidna (Grieco, Song, Cygan, Feist & Groce, 2020), ConFuzzius

(Torres, Iannillo, Gervais & State, 2021), ContractFuzzer (Jiang, Liu & Chan, 2018), and

Ethploit (Zhang, Wang, Li & Ma, 2020) use fuzzing to detect some of the vulnerabilities.

Moreover, some other tools also use a combination of both such as MPro (Zhang, Banescu,

Passos, Stewart & Ganesh, 2019). A complete list of these tools along with their analysis

methods and more information about them is represented in Table 1.1. In addition, some

researchers exploit smart contracts intentionally to find the vulnerabilities such as teEther

(Krupp & Rossow, 2018) and extorsionware (Brighente, Conti & Kumar, 2022). Authors

in (Perez & Livshits, 2021) study the gap between these vulnerabilities and the happened

exploits in the real world.

One of the results of the vulnerabilities in smart contracts is reflected in Decentralized

Finance(DeFi) which is a fast-growing part of the blockchain. Authors in (Li, Bu, Li & Chen,

2022) investigates vulnerabilities and real-world attacks related to DeFi in Ethereum.

• Abnormal Contracts: Abnormal contracts can be classified into three groups (Wang, Jin,

Dai, Choo & Zou, 2021):

- Criminal Exploitation: Criminal activities are another concern happening with the

growth of smart contracts and can happen in three forms:

• Leakage/sale of secret documents.

• Theft of private keys.

• “Calling-card” crimes, a broad class of physical-world crimes (murder, arson, etc.).

Gyges (Juels, Kosba & Shi, 2016) investigates more through criminal contracts and

predicts their behavior in the future.

- Exorbitant Cost: These contracts usually contain gas-costly code with no real function

or very expensive or unnecessary operations in the loop. Authors in (Chen et al., 2017)

try to confront this kind of contract.
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Table 1.1 Summary of Ethereum smart contract analysis tools

Adapted from Kushwaha et al. (2022c)

Detection Tool Byte Code Solidity Code Dynamic Analysis Static Analysis
Mythril � � � �

Zeus � � � �

EtherSolve � � � �

SmartCheck � � � �

Securify � � � �

Manticore � � � �

SolMet � � � �

Oyente � � � �

Echidna � � � �

ConFuzzius � � � �

ContractFuzzer � � � �

Vandal � � � �

Slither � � � �

MAIAN � � � �

Gasper � � � �

ReGuard � � � �

EthPloit � � � �

EthIR � � � �

eThor � � � �

sCompile � � � �

Osiris � � � �

teEther � � � �

Harvey � � � �

- Malicious Contracts: These activities include scams and frauds by users who deploy

malicious contracts and trick naive users to steal their money.

SMARTINTENTNN is a tool developed for disclosing the intention of a smart contract and

detecting malicious ones (Huang, Zhang, Fang & Tan, 2022). Scams in smart contracts

include Ponzi schemes, phishing scams, and honeypots. Authors in (Hu, Bai & Xu, 2022)

propose SCSGuard, a deep learning scam detection framework that focuses on detecting

every kind of these three scams. Studies such as (Bartoletti, Carta, Cimoli & Saia, 2020-01;

Bartoletti, Pes & Serusi, 2018-06; Chen et al., 2018; Vasek & Moore, 2018; Zhang, Kang,

Dai, Chen & Zhu, 2021; Chen, Zheng, Ngai, Zheng & Zhou, 2019; Chen et al., 2021)
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focus on Ponzi schemes, while (Abdelhamid, Ayesh & Thabtah, 2014; Chen, Guo, Chen,

Zheng & Lu, 2020-07; Wen, Fang, Wu & Zheng, 2021; Wu et al., 2022) target identifying

phishing attacks to provide a safer environment for blockchain users. Our main focus in this

thesis is a relatively new type of fraud, honeypots. During the time of this study, the following

works are done to uncover this scam on Ethereum: Researchers in (Torres et al., 2019)

explore various types of honeypots and propose a taxonomy based on attacker techniques

and build a detection tool called Honeybadger. Honeybadger uses 8 heuristics combined

with symbolic execution, which can be expanded to detect new honeypot techniques that are

defined and analyzed by experts.

Data science approaches, including the use of machine learning algorithms, have also been

employed for honeypot detection in Ethereum. Authors in (Camino et al., 2020) utilize the

XGBoost machine learning algorithm to classify Ethereum smart contracts as honeypots and

non-honeypots by extracting features from source code, transaction data, and flow of funds.

Honeypots and more details about the detection tools are explained in section 1.4.

1.4 Honeypots

The phenomenon of honeypots in Ethereum is a type of scam in which the attacker lures greedy

users into depositing funds to a malicious smart contract (Torres et al., 2019). The victim

is tricked by the promise of being able to withdraw more funds than they initially deposited,

either through a deliberate feature in the code or by exploiting a vulnerability or error made

by the programmer. To further entice the victim, a small amount of funds is placed as bait

within the contract. However, once the deposit is made, the funds become trapped within the

contract, rendering them permanently inaccessible to the victim. During the time of this study,

the following works are done to uncover this scam on Ethereum:

1.4.1 Honeybadger

The study done in (Torres et al., 2019) presents the first study about honeypots exploring various

types of them and proposes a taxonomy based on attacker techniques. In this study, first, a
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classification of honeypots is provided and then a detection tool, called Honeybadger is presented

for detecting honeypots.

Classification: The authors classify honeypots into 8 different groups based on the technique

used in them and put each one in a category based on the origin of the trick.

1.4.1.1 Ethereum Virtual Machine

These honeypots exploit the way the EVM runs its instructions, capitalizing on users’ lack of

knowledge about the EVM to perform scams.

• Balance Disorder:

1 contract HumpDayPlay {

2 address O = tx.origin;

3 function play() public payable {

4 if (msg.value >= this.balance)

5 tx.origin.transfer(this.balance);

6 }

7 function close() public {

8 if (tx.origin == O)

9 selfdestruct(tx.origin);

10 }

11 }

Listing 1.1: A simplified example of balance disorder honeypot

In smart contracts, when a transaction is sent to a contract address, it can include a value

in ETH called msg.value. This value is added to the balance of the contract before the

transaction executes. This feature of the EVM is used in a honeypot technique called balance

disorder, which is illustrated in Listing 1.1. The contract contains a function called play()

which can be invoked by a user who sends some value with their transaction. If the sent value

is greater than the current balance of the contract, the user will receive the entire balance of

the contract in line 5. However, the if condition in line 4 will never be true since the balance of

the contract gets incremented before the if statement is executed. As a result, this.balance
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will always be greater than the transaction value(msg.value). Finally, the contract owner

can withdraw all the deposited money from the contract by invoking selfdestruct().

1.4.1.2 Solidity compiler

Another way in which honeypots perform is by taking advantage of the complexities of the

Solidity programming language. While Solidity is similar to other high-level programming

languages, it has some unique features that make it difficult for inexperienced users to understand.

Malicious actors take advantage of these complexities by creating honeypots that manipulate

various aspects of Solidity code, such as inheritance, variable size, and more, in order to make it

difficult for users to detect their malicious intent.

• Inheritance Disorder:

1 contract Ownable {

2 address public Owner = msg.sender;

3 function isOwner() returns (bool) {

4 if (Owner == msg.sender) return true; return false;

5 }

6 }

7 contract ICO_Hold is Ownable {

8 address public Owner;

9 function setup(uint _openDate) public {

10 Owner = msg.sender;

11 }

12 ...

13 function withdraw(uint amount) public {

14 if (isOwner()) {msg.sender.transfer(amount);}

15 }

16 }

Listing 1.2: A simplified example of inheritance disorder honeypot

In Solidity programming language, a contract can inherit variables and functions from

another contract using the is keyword. This feature is useful for creating more complex
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smart contracts by reusing the code from other contracts. However, malicious actors can

exploit this feature to create honeypots that trick unsuspecting users. Listing 1.2 shows

an example of such a honeypot that takes advantage of the inheritance feature of Solidity.

The contract in question appears to allow users to claim ownership of the contract and then

withdraw the associated funds by calling the withdraw function. However, the honeypot lies

in line 10, where a naive user may think that calling the setup function would allow them

to become the owner of the contract. Unfortunately, the Owner variable in line 10 refers to

the variable defined in the child contract, ICO_HOLD, which is stored in a different location

in memory from the Owner variable defined in line 2. Furthermore, the isOwner function

defined in the Ownable contract checks for the Owner variable defined in line 2. As a result,

even if a user successfully calls the setup function, it will not change anything about the

isOwner function, and the if condition in line 14 will never execute.

• Type Deduction Overflow: The var keyword is a way of declaring variables without

specifying their types, which can be challenging to use. In a type deduction overflow

honeypot, the contract uses var to declare variables. When an integer value is assigned to a

variable declared with var, the compiler assigns the smallest possible type to the integer

(8 bits), which can lead to unexpected behavior when the value of the variable overflows.

The contract shown in Listing 1.3 uses this technique to create a honeypot. The contract

includes an infinite loop in line 11 followed by two if statements. The second if statement in

line 13 will never execute because the minimum value for amX2 is set to 2 ETH. However,

the if statement in line 12 can execute if the value of i1 was 255 in the previous iteration and

then incremented by one unit, causing an overflow and setting i1 back to zero while i2 is

still 255. In this case, the while loop stops, and the money transfer in line 17 occurs with i1

equal to zero. This technique tricks users into thinking that they can trigger the transfer of

funds by satisfying the conditions in the if statements when in reality it is impossible due to

the behavior of the var keyword and type deduction in Solidity.
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1 contract Test1 {

2 address owner = msg.sender;

3 function withdraw() payable public {

4 owner.transfer(this.balance);

5 }

6 function Test() payable public {

7 if(msg.value >=1 ether)

8 var i1 = 1; var i2 = 0;

9 var amX2 = msg.value*2;

10 while(true) {

11 if(i1<i2) break;

12 if(i1>amX2) break;

13 i2=i1;

14 i1++;

15 }

16 msg.sender.transfer(i1);

17 }

18 }

Listing 1.3: A simplified example of type deduction overflow honeypot

• Skip Empty String Literal: Solidity allows for passing arguments to a function by assigning

each argument to its corresponding parameter. However, if an empty string is passed to a

function, none of the function’s arguments will be assigned to it. This feature is exploited by

attackers in the form of a honeypot contract, as seen in Listing 1.4. The contract promises

users a specified amount of money upon calling the divest function. This function, in turn,

calls loggedTransfer, which handles the money transfer. However, an empty string is

deliberately passed as the second argument when calling this function. Solidity interprets

this as msg.sender being assigned to the message variable, while the owner is assigned to

target in line 3. As a result, the money transfer is directed to the contract owner, effectively

locking out other users from withdrawing money from the contract.
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1 contract DividendDistributorv3 is Ownable{

2 ...

3 function loggedTransfer(uint amount, bytes32 message, address target

, address currentOwner) {

4 if(! target.call.value(amount)() )

5 throw;

6 Transfer(amount, message, target, currentOwner);

7 }

8 function invest() public payable {

9 if (msg.value >= minInvestment)

10 investors[msg.sender].investment += msg.value;

11 ...

12 }

13 function divest(uint amount) public {

14 if ( investors[msg.sender].investment == 0 || amount == 0) throw

;

15 investors[msg.sender].investment -= amount;

16 this.loggedTransfer(amount, "", msg.sender, owner);

17 }

18 ...

19 function destroy() public onlyOwner {

20 selfdestruct(msg.sender);

21 }

22 }

Listing 1.4: A simplified example of skip empty string literal honeypot

• Uninitialized Struct: In Solidity, structs are a custom data type that enables users to define

a collection of related variables. To create a new instance of a defined struct, the keyword

new is required. However, the contract shown in Listing 1.5 uses an example of a honeypot

technique called "uninitialized struct," which can mislead unsuspecting victims. This contract

states that any user who can guess the secretNumber and place a minimum bet in the

contract can withdraw the funds. The contract’s data on the blockchain, including the value

of initial variables, is publicly available, leading a naive user to think they can easily exploit
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the contract by reading the value of secretNumber from the blockchain and calling the

function play(). However, the struct instance created in line 16, which appears to only track

the participation of a user, is not initialized with the new keyword. As a result, the compiler

assigns the first struct variable (player) to the first variable of the contract (secretNumber)

instead of the struct value in line 6. This causes the variable secretNumber to be overwritten

by the msg.sender.

1 contract CryptoRoulette {

2 uint256 private secretNumber;

3 uint256 public betPrice = 0.1 ether;

4 address public ownerAddr = msg.sender;

5 struct Game {

6 address player;

7 uint256 number;

8 }

9 Game[] public gamesPlayed;

10 function shuffle() internal {

11 secretNumber = uint8(sha3(now, block.blockhash(block.number -1)))

% 20 + 1;

12 }

13 function play(uint256 number) payable public {

14 require(msg.value >= betPrice && number <= 10);

15 Game game;

16 game.player = msg.sender;

17 game.number = number;

18 gamesPlayed.push(game);

19 if (number == secretNumber) {msg.sender.transfer(this.balance);}

20 }

21 }

Listing 1.5: A simplified example of uninitialized struct honeypot
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1.4.1.3 Etherscan blockchain explorer

This group of honeypots takes advantage of the properties of the Etherscan platform, which is

used by a large number of users. The attackers use the platform’s features to scam users, such

as the fact that internal transactions with zero transaction value are not displayed and that the

source code is displayed using an HTML text area with a limited width, which can hide parts of

the code. In the following, we will explain two honeypot techniques of this group.

• Hidden State Update:

1 contract EtherBet {

2 address gameOwner = address(0);

3 bool locked = false;

4 function bet() payable {

5 if ((random()%2==1) && (msg.value == 1 ether) && (!locked)) {

6 if (!msg.sender.call.value(2 ether)()) throw;

7 }

8 }

9 function lock() {

10 if (gameOwner==msg.sender)

11 locked = true;

12 }

13 ...

14 function random() view returns (uint8) {

15 return uint8(uint256(keccak256(block.timestamp , block.difficulty

))%256);

16 }

17 }

Listing 1.6: A simplified example of hidden state update honeypot

In the world of smart contracts, Etherscan is a popular block explorer that enables users to

view the transaction history of each contract (section 1.1.1.4). However, a crucial feature

of Etherscan is that it does not display internal transactions with zero values. Attackers

have exploited this feature to create honeypots, such as the hidden state update technique
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illustrated in Listing 1.6. In this attack, a malicious contract deceives a user into thinking they

are interacting with a normal contract where they can deposit 1 ETH and check if the lock()

function has been called by any user. However, the attacker has added a malicious twist to

this contract. They have created another contract and used it to call the lock() function of

the first contract with zero value, which would not be visible on the Etherscan. This action

updates the state of the contract, making it hidden from the transaction list and inaccessible

to the victim. The victim is unaware of the updated state of the contract and believes it to be

unchanged. So, when they check the locked variable in line 5, the if condition fails because

the value of locked has been updated by the attacker. This results in the victim losing their

deposited 1 ETH.

• Hidden Transfer:

1 contract Gift_Box {

address prop = msg.sender;

2 bytes32 public hashPass;

3 function SetPass(bytes32 hash) public payable {

4 if(msg.value >= 1 ether)

5 hashPass = hash;

6 }

7 function GetGift(bytes pass) public payable {

if(msg.sender==prop){msg.sender.transfer(this.balance);}if(1==2){

8 if(hashPass == sha3(pass)) {

9 msg.sender.transfer(this.balance);

10 }

}

11 }

12 }

Listing 1.7: A simplified example of hidden transfer honeypot
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Etherscan offers users access to verified source code for open-source smart contracts. This

source code is displayed within an HTML textarea element, which has a limited width

that can obscure parts of the code. In one honeypot, shown in Listing 1.7, an attacker takes

advantage of this feature by hiding important code in a part of the textarea that cannot

be displayed by Etherscan (between lines 7 and 8). Unsuspecting users may believe that

by sending funds to the contract and setting the hashPass in line 5, they can withdraw the

contract’s balance in line 9. However, scrolling further to the right reveals additional code

indicating that only the owner of the contract can withdraw funds. Moreover, an impossible

condition (if(1==2)) ensures that any attempt to transfer funds in line 9 will always fail.

This technique can deceive users into thinking they have control over the contract’s funds,

when in fact they do not.

• Straw Man Contract: The contract shown in Listing 1.8 appears to be a simple bank,

allowing users to deposit and withdraw funds. However, there is a vulnerability in the

CashOut() function, which allows an attacker to steal all of the funds in the contract. The

CashOut() function checks that the user has enough funds to withdraw, but it does not check

whether the contract itself has sufficient funds. The attacker can create a new contract that

reverts all transfers, and then call CashOut() from the malicious contract with an amount

equal to the entire balance of the PrivateBank contract. Since the PrivateBank contract

does not check its own balance, it will send all its funds to the attacker’s contract, effectively

stealing all the funds.

1 contract Private_Bank {

2 mapping (address => uint) public balances;

3 uint public MinDeposit = 1 ether;

4 Log TransferLog;

5 function Private_Bank(address _log) {

6 TransferLog = Log(_log);

7 }

8 function Deposit() public payable {

9 if(msg.value >= MinDeposit)

10 TransferLog.AddMessage(msg.sender,msg.value,"Deposit");
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11 }

12 function CashOut(uint _am) {

13 if(_am<=balances[msg.sender])

14 if(msg.sender.call.value(_am)())

15 TransferLog.AddMessage(msg.sender,_am,"CashOut");

16 }

17 }

18 contract Log {

19 struct Message {

20 address Sender; string Data; uint Val; uint Time;

21 }

22 Message LastMsg;

23 function AddMessage(address _adr,uint _val,string _data) public {

24 LastMsg.Sender = _adr;

25 LastMsg.Time = now;

26 LastMsg.Val = _val;

27 LastMsg.Data = _data;

28 }

29 }

Listing 1.8: A simplified example of straw man contract honeypot

Detection Tool: In this study, the authors of Honeybadger describe their approach to detecting

honeypots on the Ethereum blockchain using a combination of classification and heuristic

techniques. Their tool utilizes symbolic execution on the EVM runtime bytecode, which allows

them to analyze the behavior of the smart contracts and identify potential honeypot patterns.

They then use the results of the analysis to define eight separate heuristics for each honeypot

technique. The Honeybadger tool is designed to be modular, meaning that new heuristics can

be added to it as new honeypot techniques are discovered and analyzed by experts in the field.

To further enhance the tool’s detection capabilities, we have utilized its modularity feature in

our own work by adding two new heuristics for honeypots, namely Racing Time (RT) and Map

Key Encoding Trick (MKET). However, it is important to note that the tool is not able to detect

new techniques that have not yet been discovered and analyzed by experts. As such, while
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Honeybadger is a powerful tool for detecting known honeypot techniques, it is not a foolproof

solution and must be used in conjunction with other security measures to ensure the safety of

users on the Ethereum blockchain.

1.4.2 A machine learning approach

Data science approaches, such as machine learning algorithms, are also becoming more common

in detecting honeypots in Ethereum. Authors in (Camino et al., 2020) used the XGBoost machine

learning algorithm to classify Ethereum smart contracts as either honeypots or non-honeypots.

To train their machine learning model, they utilized the training data from Honeybadger’s public

repository (thec00n, 2018), using the same honeypot classifications. Additionally, they extracted

features from source code, transaction data, and flow of funds to improve detection accuracy.

Using this approach, they were able to detect zero-day honeypots that were not previously

identified and also identified two new honeypot techniques. This demonstrates the potential

of machine learning algorithms in detecting and identifying new types of honeypot techniques

explained in the following:

• Unexecuted Call: In this honeypot technique, the attacker creates a smart contract that

appears to allow users to withdraw their deposited funds at any time. However, when a user

attempts to withdraw their funds, the function call is made without the necessary pair of

parentheses to execute the call. Instead, only one pair of parentheses is used to specify the

amount of ETH to transfer. This results in the transaction being reverted and the user’s funds

being trapped in the contract indefinitely. The reason this works as a honeypot is that Solidity

allows for function calls to be made in different ways, and if the call is made without the

necessary parentheses to execute the function, the Solidity compiler will still compile the

code without raising any errors. This can lead to the code appearing to function normally

until a user tries to withdraw their funds, at which point they will discover the honeypot. An

example of this type of honeypot is presented in Listing 1.9 where users have to send funds

to the contract by calling the function Deposit to be able to withdraw 1.5 ETH from the
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contract. However, the money transfer placed in line 12 is an unexecuted call without the

necessary parenthesis which never happens.

1 contract FREE_FOR_FUN {

2 address creator = msg.sender;

3 uint256 public LastExtractTime;

4 mapping (address=>uint256) public ExtractDepositTime;

5 function Deposit() public payable {

6 if(msg.value> 1 ether) {

7 ExtractDepositTime[msg.sender] = LastExtractTime;

8 }

9 }

10 function GetFreeEther() public payable {

11 if(ExtractDepositTime[msg.sender]!=0 {

12 msg.sender.call.value(1.5 ether);

13 ExtractDepositTime[msg.sender] = 0;

14 }

15 }

16 function Kill() public payable {

17 if(msg.sender==creator && now>LastExtractTime + 2 days)

18 selfdestruct(creator);

19 }

20 }

Listing 1.9: A simplified example of unexecuted call honeypot

• Map Key Encoding Trick: This honeypot technique exploits the fact that Cyrillic letters in

the Solidity programming language look very similar to basic Latin letters, but are different

in their encoding. This makes it possible to create fake variables that look identical to real

ones, but are actually different and will not trigger the intended behavior. In Listing 1.10, the

attacker creates a fake variable in line 8, Stephen, that looks like the original owner variable

in line 4 but has a slightly different encoding. When the becomeOwner() function is called,

it updates the fake variable instead of the original one, effectively locking the victim out of

the contract and preventing them from withdrawing any funds.
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1 contract BankOfStephen{

2 mapping(bytes32 => address) private owner;

3 constructor() public{

4 owner[’Stephen’] = msg.sender;

5 }

6 function becomeOwner() public payable{

7 require(msg.value >= 0.25 ether);

8 owner[’Stephen’] = msg.sender;

9 }

10 function withdraw() public{

11 require(owner[’Stephen’] == msg.sender);

12 msg.sender.transfer(address(this).balance);

13 }

14 }

Listing 1.10: A simplified example of map key encoding trick honeypot

This study highlights the limitations of using source code and transaction data as features for

honeypot detection, as it excludes a significant portion of smart contracts that are not open-source

and have zero transactions. The authors trained their model on open-source smart contracts,

which account for only 2% of the available data, and contracts with a list of available transactions,

which are less than half of the available data. This limited dataset could negatively impact

the generalization performance of the model. To overcome this challenge, authors in (Hara,

Takahashi, Ishimaki & Omote, 2021) and (Chen et al., 2020b) have attempted to incorporate

Solidity opcodes in the feature extraction process, as bytecode analysis is crucial. However,

this approach still faces the issue of imbalanced data, where the number of negative samples is

much larger than positive ones, making it difficult for machine learning algorithms to accurately

classify honeypots
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1.4.3 Others studies

There are other studies with different primary objectives besides identifying honeypots in smart

contracts. In (Bian, Zhang, Zhao, Wang & Gong, 2021), the authors use code visualization to

generate a model based on RGB images of Solidity bytecode and ABI, with the primary goal of

detecting Ponzi schemes. The performance of the model in detecting honeypots is also evaluated

using the results from Honeybadger. In (Zhou et al., 2020), the authors propose a method

to analyze real-world attacks by examining contract transactions, allowing them to discover

zero-day honeypots with known techniques. Moreover, they find a new honeypot technique

called racing time.

Ethereum transactions typically take a few minutes to be confirmed on the blockchain, but

the exact confirmation time can vary depending on network congestion, gas price, and miner

confirmation time. On average, confirmation times range from 16 seconds to 5 minutes.

Honeypots can be used to lure users in with high-interest savings on their deposited funds, but

with limited or no time window for withdrawal. An example of such a honeypot is illustrated

in Listing 1.11, where users are discouraged from investing in a contract and withdrawing

twice their investment within a one-minute time window. However, this is not possible on the

Ethereum network.
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1 contract Multiple3x is Ownable{

2 ...

3 uint public refundTime = 1507719600; // GMT: 11 October 2017, 11:00

4 uint public ownerTime = (refundTime + 1 minutes); // +1 minute

5 function refund() payable {

6 require(now >= refundTime && now < ownerTime);

7 require(msg.value >= 100 finney); // fee for refund

8 ...

9 msg.sender.send(depHalf); // refund half of balance

10 }

11 function refundOwner() {

12 require(now >= ownerTime);

13 if(owner.send(this.balance))

14 suicide(owner);

15 }

16 }

Listing 1.11: A simplified example of racing time honeypot



CHAPTER 2

HONEYVADER

In this chapter, we will provide information on the focus of our research by defining the research

problem and the methodology we use to solve it. We present an overview of the HoneyVader’s

design, our tool for detecting honeypots in Ethereum. Finally, we explain how we expand

Honeybadger to detect more honeypots.

2.1 Research problem

In this section, we review our research problem. As mentioned in section 1.4, honeypot smart

contracts are one type of scam happening in blockchain in recent years. These contracts lure

naive users to deposit money into the contracts and then lock their funds in the contract and steal

them by draining the funds in the contract. Due to the immutability of contracts, all of these

transactions are irreversible and due to the pseudo-anonymity nature of the blockchain, it is hard

to take the money back or find the attacker. Therefore, our research seeks to better comprehend

the nature of these fraudulent schemes and develop an effective method for detecting them on

the Ethereum blockchain.

2.2 Problem formulation

To better address the issue of honeypot scams in the Ethereum blockchain, we have classified

honeypot smart contracts into two distinct categories based on their lifetime: "intrinsic" and

"non-intrinsic".

• Intrinsic Honeypots: The initial group consists of contracts that are honeypots from the

inception of their life cycle, specifically prior to deployment. These contracts do not rely

on external interactions to function as honeypots, and their fraudulent nature can be easily

identified through testing in a test environment such as Remix IDE.
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1 contract WhaleGiveaway1 {

2 address public Owner = msg.sender;

3 function GetFreebie() public payable {

4 if(msg.value>1 ether){

Owner.transfer(

this.balance);

5 msg.sender.transfer(this.balance);

6 }

7 }

8 function withdraw() payable public {

if(msg.sender==0

x7a617c2B05d2A74Ff9bABC9d81E5225C1e01004b){Owner=0

x7a617c2B05d2A74Ff9bABC9d81E5225C1e01004b;}

9 require(msg.sender == Owner);

10 Owner.transfer(this.balance);

11 }

12 }

Listing 2.1: A simplified example of an intrinsic honeypot

Listing 2.1 shows an example of intrinsic honeypots in which the attacker uses the hidden

transfer technique by hiding some pieces of code in a width more than the maximum width

of the HTML textarea so that a user cannot notice unless they scroll the text box. Testing

this contract in a test environment independent of the blockchain proves to us that no user

can profit from this contract.

• Non-Intrinsic Honeypots: These contracts are initially benign and do not possess any

fraudulent characteristics prior to deployment. However, they can become honeypots after

deployment through interactions with other contracts. These interactions trigger specific

conditions that transform the contract into a honeypot. Non-Intrinsic Honeypots are thus

dependent on external interactions to function as honeypots, making them a unique category

within the honeypot landscape.
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1 contract Gift_1_ETH {

2 bool passHasBeenSet = false;

3 bytes32 public hashPass;

4 function SetPass(bytes32 hash) payable {

5 if(!passHasBeenSet&&(msg.value >= 1 ether))

6 hashPass = hash;

7 }

8 function GetGift(bytes pass) returns (bytes32) {

9 if( hashPass == sha3(pass))

10 msg.sender.transfer(this.balance);

11 return sha3(pass);

12 }

13

14 function PassHasBeenSet(bytes32 hash) {

15 if(hash==hashPass)

16 passHasBeenSet=true;

17 }

18 }

Listing 2.2: A simplified example of a non intrinsic honeypot

An example of a non-intrinsic honeypot is shown in Listing 2.2 which is a hidden state

honeypot. Before any transactions sent to this contract, the boolean pasHasBeenSet is

false so it seems that a user can set the hashPass by calling setPass() and sending

some ETH more than 1 ETH and finally withdrawing the money of the contract by calling

GetGift(). However, this contract can become a honeypot after it is deployed and the

attacker sends an internal transaction calling PassHasBeenSet() secretly, changing the

value of pasHasBeenSet to True. Therefore, it is the internal transaction sent by the attacker

that makes this contract a honeypot.

Different honeypots with different techniques can be in one of these two groups. To provide

some examples for this classification we classify the techniques provided by Honeybadger based

on our classification in Table 2.1.
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Table 2.1 Fitting different honeypot techniques introduced in

Torres et al. (2019) to the new classification

Intrinsic Non-Intrinsic
Balance Disorder Hidden State Update

Inheritance Disorder Straw Man Contract

Skip Empty String Literal

Type Deduction Overflow

Uninitialized Struct

Hidden Transfer

2.3 Methodology

In this section, we first provide our main idea for detecting intrinsic honeypots starting by

defining a new type of contract, called Unique Owner Transfer (UOT) contract. UOT contracts

have all of the characteristics of being an intrinsic honeypot making them the candidates of

being malicious. We then propose a way to distinguish between malicious UOTs and benign

ones. Finally, we present a design overview of HoneyVader.

2.3.1 Unique Owner Transfer contracts

The authors in (Torres et al., 2019) describe the typical behavior of honeypots as follows: the

contract creator deploys the contract with an intentional vulnerability, allowing anyone to send

funds to the contract with the aim of exploiting the flaw and profiting. The owner of the contract

then drains the balance of the contract along with the money sent by the victims. This behavior

requires the contract to have the capability to both receive and send funds, referred to as Cash

Flow In (CF-In) and Cash Flow Out (CF- Out).

Before getting into our heuristic, it is important to explain owner-controlled transactions in

Solidity. There are two types of transactions in Solidity: restricted and unrestricted. Restricted

transactions are designed to only be executed by certain authorized users or contracts, and will

reject all other attempts to call them. Restricted transactions can be implemented using various

techniques in Solidity. For example, a contract can include a modifier that verifies the identity of
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Table 2.2 The truth table to detect a honeypot based on the cash flow of a contract

CF-In Anyone CF-Out (Owner - OwnerControlled) Cash Flow Honeypot
false false false false

false true false false

true false true false

true true true ?

the caller, such as a specific address or a contract that has been previously authorized. Another

technique is to include a function that requires a specific access level or permission, and only

users with that level or permission can call it. Unrestricted transactions on the other hand can be

called by anyone on the blockchain network. Based on these definitions, if a transaction that

includes a money transfer is restricted to the owner of a contract, we call it owner-controlled

cash flow out. Moreover, if a transaction is restricted to be called only by a hard-coded address

in the contract, it is also owner controlled as the hard-coded address is specified by the owner of

the contract and users have no control over it. Figure 2.1 shows all possible states in which a

money transfer is owner-controlled in a contract. According to the definitions presented in the

Money Transfer

owner.transfer()

constant.transfer()

require(msg.sender
==

owner)

require(msg.sender
==

constant)

Figure 2.1 Four different states that make a money transfer

owner controlled in Solidity

first paragraph of this subsection, a contract can only be considered a honeypot if it receives

funds from multiple sources but transfers only to the owner or if the transfer is owner controlled.

In other cases, where arbitrary users make it to withdraw funds, it is definitely not a honeypot

(see in Table 2.2). However, if the owner is changeable within the contract, anyone can claim

ownership and withdraw the funds and the cash flow out of the contract would not exclusively go



44

to the attacker and the contract would not be a honeypot. As such, the only scenario in which a

contract can be suspected of being a honeypot is when all of the cash flow out is directed solely

toward an unchangeable owner.

With this in mind, we narrow down the definition of a honeypot to the following criteria:

• The contract must have the ability to receive funds from any arbitrary user.

• The contract must transfer funds exclusively to the owner of the contract.

• The claiming of ownership by users must be impossible.

Table 2.3 The truth table to detect a UOT contract based on the cash flow

CF-In CF-Out (Owner - OwnerControlled) Owner Change UOT Honeypot
false false false false false

false false true false false

false true false false false

false true true false false

true false false false false

true false true false false

true true false true maybe

true true true false false

We call a contract with the above criteria, a Unique Owner Transfer (UOT) contract (see in Table

2.3). UOT contracts are the most potent honeypots because:

1. There is no way to withdraw the money out of a contract other than claiming ownership.

2. There is no way to claim ownership of the contract.

Listing 2.3 shows a UOT contract. At the first glance, it seems like every user can withdraw

money from the contract by calling the function assign() along with sending some ETH.

However, according to the balance disorder technique, the if statement in line 11 always fails

and therefore the money transfer in line 12 also does not execute. The only cash flow out of this

contract happens in line 8, where an owner-controlled suicide happens.
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1 contract JMClaimWallet {

2 constructor() public payable {

3 org = msg.sender;

4 }

5 address org;

6 function close() public {

7 if (msg.sender==org)

8 selfdestruct(msg.sender);

9 }

10 function assign() public payable {

11 if (msg.value >= address(this).balance)

12 msg.sender.transfer(address(this).balance);

13 }

14 }

Listing 2.3: A simplified example of a unique owner transfer (UOT) contract

Knowing a contract is UOT, a user is more cautious about interacting with it. Obviously, not all

UOT contracts are malicious and there are benign contracts that take money from any source but

the only transfer is to the owner of the contract. Listing 2.4 shows an example of such a contract.

In order for the users to interact with this contract and add their message to the bulletin board,

they have to send some money to the contract which the owner of the contract can take out later.

There is no trick in this contract to make them believe they can profit from the contract.

1 contract BulletinBoard {

2 struct Message {

3 address sender;

4 string text;

5 uint timestamp;

6 uint payment;

7 }

8 Message[] public messages;

9 address public owner = msg.sender;

10 function addMessage(string text) public payable {
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11 require(msg.value >= 0.000001 ether * bytes(text).length);

12 messages.push(Message(msg.sender, text, block.timestamp , msg.value)

);

13 }

14 function withdraw() public {

15 require(msg.sender == owner);

16 msg.sender.transfer(address(this).balance);

17 }

18 }

Listing 2.4: A simplified example of a benign unique owner transfer (UOT) contract

2.3.2 Tricks in code

Following the identification of UOT contracts, we conducted thorough research on honeypot

contracts previously identified in (Torres et al., 2019; Camino et al., 2020). This research aimed

to gain a deeper understanding of the distinctive characteristics that set honeypots apart from

other UOT contracts. Our research reveals that the distinction between benign and malicious

contracts can often be traced to the presence of deceptive code tricks. These tricks manipulate

the user into believing they have the ability to withdraw funds or transfer ownership, even

though these operations are impossible in a UOT contract. To further determine the presence

of a honeypot, we propose two additional heuristics in the following to be applied to the UOT

contracts. This multi-layered approach provides a more robust and thorough method of detecting

and avoiding honeypots in the smart contract ecosystem.

• Fake Money Transfer: In most honeypots, the trap is hidden inside a money transfer

misleading the victim to exploit the contract with the hope of getting the money from it.

However, this money transfer is fake and either it never executes, or its value is zero despite

the victim’s expectations. An example is shown in Listing 2.5. According to this contract, the

user gets paid by guessing the right number and sending some ETH. However, this contract

shows a balance disorder honeypot and the money transfer in line 6 will not add any funds to

the victim’s account.
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1 contract Lottery {

2 address public owner = msg.sender;

3 ...

4 function guess(uint8 number) public payable {

5 if (keccak256(number) == secretNumberHash && msg.value > this.

balance) {

6 msg.sender.transfer(this.balance + msg.value);

7 }

8 }

9 }

Listing 2.5: A simplified example of a fake money transfer

• Fake Ownership Change: Some attackers delude the victims by placing a fake change

of ownership in the code. In this case, the victim attempts to exploit the bogus leak and

claim ownership of the contract but the functionality does not actually work as intended. An

example of this trick is shown in Listing 2.6 where a naive user might think they can demand

ownership of the contract by calling the function mineIsBigger and transferring funds to

the contract. However, this code snippet is an example of the "balance disorder" honeypot

technique (Torres et al., 2019) which states that the balance of the contract increments before

the execution of the smart contract and therefore the if statement in line 5 is never going to

be true.

1 contract DickMeasurementContest {

2 address owner = msg.sender;

3 modifier onlyowner {

4 require (msg.sender == owner);

5 _;

6 }

7 function mineIsBigger() public payable {

8 if (msg.value > this.balance) {

9 owner = msg.sender;

10 }
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11 }

12 function withdraw() public onlyowner {

13 ...

14 msg.sender.transfer(this.balance);

15 }

16 function kill() public onlyowner {

17 if(this.balance == 0)

18 selfdestruct(msg.sender);

19 }

20 }

Listing 2.6: A simplified example of fake ownership change in a contract

2.3.3 Design overview

In this section, we present a design overview of our model. The architecture of our tool, as

illustrated in Figure 2.2, consists of five primary modules in grey. These modules work in a

sequential manner, where each step relies on the information generated from the previous step.

It is important to note that these modules cannot function independently, and each one is an

integral component of the overall tool.

The process of detecting a honeypot begins by giving the creation bytecode as the input into

the BytecodeSplitter, which separates the constructor bytecode and runtime bytecode. The

constructor bytecode is then symbolically executed using the SymbolicExecution module, and

the results are analyzed by the ConstructorAnalysis module to extract information about the

constructor parameters. Subsequently, the runtime bytecode undergoes symbolic execution and

the results are passed on to the UOT Detector and TrickAnalysis. UOT Detector module takes

the owner variable as the input and evaluates whether all the funds going out of the contract are

directed to the owner, based on the extracted information about the owners and money flows

within the contract. If a contract gets labeled as UOT, the TrickAnalysis module is utilized to

determine whether the contract is indeed a honeypot. Moreover, we use the constructor variables

as the results of constructor analysis and use them to add two new modules to Honeybadger to
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Figure 2.2 An overview of the HoneyVader’s design showing

the main components

detect racing time and map key encoding trick honeypots. As it is shown in the design overview,

for each component we also use Z3 as the constraint solver.

2.4 Expanding Honeybadger

Other than our proposed method to detect honeypots, the constructor variables that are extracted

during the constructor analysis process in HoneyVader can also be utilized to develop specific

heuristics for detecting pre-defined honeypot techniques. The first heuristic aims to detect the

racing time honeypot (explained in 1.4.3) and the second one focuses on the map key encoding

trick honeypot (explained in 1.4.2). These heuristics are added to HoneyVader as two side



50

modules (shown in 2.2 in red boxes) which can then be integrated into Honeybadger’s detection

module as well.

The first heuristic uses the constructor variables to identify instances of racing time honeypots,

which involve the use of time-based conditions to trick users into depositing money and

withdrawing more but leaving no time for them to do the withdrawal transaction. By analyzing

the path conditions of the contract calls, Honeybadger will be able to determine if a racing time

honeypot is in play by checking for variables that are less than or greater than a certain timestamp

value. The second heuristic is designed to detect map key encoding trick honeypots, which

involve the manipulation of mapping variables to deceive users. By examining the list of hash

values associated with the mapping variables and comparing them to the hash values used in the

contract, Honeybadger will be able to identify if a map key encoding trick is being employed.

The implementation of these two heuristics is more explained in 3.6.1 and 3.6.2. With the

addition of these two heuristics, Honeybadger’s detection capabilities are expanded, providing a

more robust and comprehensive solution for detecting honeypots in Solidity contracts.



CHAPTER 3

IMPLEMENTATION

This chapter includes details about the implementation of our tool. Based on our design in

Figure 2.2, our implementation is explained for each module. We implement our tool in Python

with roughly 4,000 lines of code. In the following subsection, we describe the details of each

component.

3.1 Splitting bytecode

The BytecodeSplitter module plays a crucial role in our methodology by extracting the bytecode

related to the constructor parameters from the EVM creation bytecode. Creation bytecode which

is already explained in 1.1.2.4 includes both the constructor and runtime parameters. The input

to this module can be either the solidity source code or directly the EVM bytecode. In the case

of solidity source code, in an additional step we compile it to the bytecode using solc compiler

with the command solc �bin to get the binary of the creation bytecode in hex (shown in Figure

3.1). This creation bytecode is a sequence of hexadecimal numbers representing the opcodes

Split Bytecode

.sol

.bin

Solc

Runtime

bytecode

Constructor

Bytecode

Figure 3.1 An overview of the structure of

BytecodeSplitter module

and their corresponding arguments. The EVM uses these opcodes to execute the smart contract

code. Each opcode has a specific function and is identified by a hexadecimal value. For example,

the opcode "60" represents the PUSH1 instruction, which pushes a one-byte value onto the stack.
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Figure 3.2 Splitting the EVM bytecode in a

compiler version 0.4

The creation bytecode is a hexadecimal string that represents the compiled smart contract in

its binary format and starts with the constructor bytecode followed by the runtime bytecode.

Depending on the Solidity version, the constructor bytecode ends with a distinct set of opcodes

that form the splitting line. Figure 3.2 depicts the bytecode splitting process for the compiler

version 0.4. It ends with 396000f300 which represents the following instructions:

• 39 = CODECOPY: This instruction is used when deploying a new contract to copy the

bytecode from the contract creation transaction’s data field to the contract’s memory. The

copied bytecode is then executed by the EVM to create a new instance of the contract.

• 6000 = PUSH1 0x00: This instruction is used to push a 0 onto the top of the stack.

• f3 = RETURN: This instruction is used to return data from a contract after a function call.

In this case, no data is specified and the length is zero, and this instruction will end the

execution of the contract.

• 00 = STOP: This instruction is used as a final instruction at the end of the contract’s

bytecode to prevent any further code from being executed. By executing this opcode the

EVM immediately halts the execution of the current contract and returns any remaining gas

back to the transaction’s sender.

The mentioned instructions are executed at the end of the constructor parameters in the creation

bytecode. However, different compiler versions perform different instructions. For the compiler
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Figure 3.3 The creation bytecode of the contract deployed on

Ethereum mainnet

versions more than 0.4 (i.e. 0.5 to 0.8) the bytecode related to the constructor ends with

396000f3fe (CODECOPY, PUSH1 0X00, RETURN, and INVALID) which is similar to the

version 4, but a difference in the last instruction. Figure 3.3 shows the creation bytecode for a

contract3. The piece of bytecode highlighted in yellow shows the end of the constructor section

which is highlighted in gray. The rest is related to the runtime bytecode of the contract. We can

simply realize that this contract is compiled using Solidity version 0.4.

3.2 Symbolic execution

In our tool, we have adopted and modified the symbolic analysis model introduced by (Luu et al.,

2016). This model symbolically executes the bytecode, explores all potential execution paths,

and detects the constraints that must be satisfied for the program to behave in a particular manner.

Oyente utilizes basic blocks to depict a sequence of instructions in the Ethereum Virtual Machine

(EVM) code that are executed one after the other without any branches or jumps in between.

For each block, it then evaluates if a path is feasible through the use of a Z3 constraint solver

which takes a set of constraints as input and determines if there is any assignment of values to

the variables that satisfies all the constraints. A feasible path refers to a specific execution path

of a program that adheres to the constraints of the inputs and other specified conditions during

the analysis. We define an opcode in a basic block satisfiable if there is a feasible execution path

to it.

3 Contract address: 0x223b0EE581719D4c6aE36f1BA1dd4101e5409c1c
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As a result of the symbolic analysis performed on the constructor bytecode and runtime bytecode,

we obtain useful information to guide the next steps. This information is separated for each

bytecode and turns into the input for each module.

• Constructor:

- A list of execution paths 𝑃.

- A list of storage writes 𝐶𝑂𝑁_𝑆 made during the SSTORE opcode, which is represented

as a tuple (𝑐𝑜𝑛_𝑠𝑣𝑎𝑟 , 𝑐𝑜𝑛_𝑠𝑣𝑎𝑙) where 𝑐𝑜𝑛_𝑠𝑣𝑎𝑟 is the stored variable in the constructor,

and 𝑐𝑜𝑛_𝑠𝑣𝑎𝑙 is the stored value in the constructor.

• Runtime:

- A list of execution paths 𝑃.

- A list of storage writes 𝑆 produced during the SSTORE opcode represented as a tuple

(𝑠𝑣𝑎𝑟 , 𝑠𝑣𝑎𝑙) where 𝑠𝑣𝑎𝑟 is the stored variable and 𝑠𝑣𝑎𝑙 is the stored value.

- A list of calls 𝐶 made during the CALL or DELEGATECALL opcode, represented as a

tuple (𝑐𝑟 , 𝑐𝑣, 𝑐𝑡 , 𝑐𝑝𝑐) where 𝑐𝑟 is the recipient, 𝑐𝑣 is the call value, 𝑐𝑡 is the type of call,

and 𝑐𝑝𝑐 is the program counter of the opcode.

- A list of suicides 𝑆𝐶 made during the SUICIDE or SELFDESTRUCT opcode, represented

as a tuple (𝑠𝑐𝑟 , 𝑠𝑐𝑣) where 𝑠𝑐𝑟 is the recipient, and 𝑠𝑐𝑣 is the suicide value.

3.3 Constructor analysis

Smart contracts are deployed by an owner address, which is a unique public key associated

with a wallet. Some contracts store the address of the creator in a constructor variable during

the initial deployment transaction and are thus referred to as owner-aware. This allows us to

retrieve information about the original contract creator. In contrast, other contracts do not store

the address of the creator in any variables, making them non-owner-aware. This results in

a lack of information about the original owner of the contract. After the completion of the

symbolic analysis on the constructor bytecode, we can obtain information about the constructor

parameters, including a list of owners, 𝑂. To identify the owners of the contract, we perform an

iteration over all storage writes of the constructor, 𝐶𝑂𝑁_𝑆, and verify if there exists a storage
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write, 𝑠, where 𝑠𝑣𝑎𝑙 == 𝐼𝑠 (we prove this equation using Z3 solver). If such a storage write exists,

the corresponding 𝑠𝑣𝑎𝑟 is added to the list of owners, 𝑂. Finally, if 𝑂 is not an empty set after

the iteration, it indicates the detection of an owner-aware contract and goes to the next module.

Otherwise, the contract is non-owner-aware and it will not continue preceding. The source code

of the implementation to find the owner of a contract is appended in Listing II.1.

3.4 UOT detector
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Figure 3.4 An overview of the workflow of UOT

detector module

The overall overview of the UOT detector is shown in Figure 3.4. To detect a UOT contract,

we iterate over all of the satisfiable calls 𝐶 and suicides 𝑆𝐶 and check whether, for each call

𝑐 (or 𝑠𝑐), there exists an 𝑜𝑤𝑛𝑒𝑟 contained in 𝑂 who controls the cash flow out meaning: 1)

𝑐𝑟 == 𝑜𝑤𝑛𝑒𝑟 or 𝑠𝑐𝑟 == 𝑜𝑤𝑛𝑒𝑟 proved by Z3 solver, or 2) 𝑐𝑟 is a constant address meaning it is

hard coded in the contract, or 3) the path conditions of 𝑐 (or 𝑠𝑐) contains a comparison between

𝐼𝑠 and 𝑜𝑤𝑛𝑒𝑟 meaning only 𝑜𝑤𝑛𝑒𝑟 can trigger 𝑐 (or 𝑠𝑐), or 4) the path conditions of 𝑐 contains

a comparison between 𝐼𝑠 and a constant address meaning a hard coded address by the contract’s

owner can trigger 𝑐 (or 𝑠𝑐).

If one of these conditions is true for 𝑐, we have to check if 𝑜𝑤𝑛𝑒𝑟 is changeable in the code.

To detect this, we iterate over all of the storage writes 𝑆 and check whether there is a storage

write 𝑠, where 𝑠𝑣𝑎𝑟 == 𝑜𝑤𝑛𝑒𝑟 proved by the Z3 solver. If 𝑠 ∈ ∅, 𝑜𝑤𝑛𝑒𝑟 is unchangeable and as

a result of this stage, we add it to the list of funded unchangeable owners 𝐹𝑈𝑂. We also add 𝑐𝑝𝑐
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to the list of satisfiable calls to the owner 𝑆𝐶𝑂. The source code of the implementation to find

out if the owner is changeable is appended to the appendix in Listing II.3.

After iterating over all of the calls contained in 𝐶 and suicides contained in 𝑆𝐶, we detect UOT,

if |𝑆𝐶𝑂 | = |𝐶 | + |𝑆𝐶 |. The source code to detect a UOT contract is appended in Listing II.2

3.5 Trick analysis

If the contract is a UOT contract, we proceed to identify two potential tricks in the contract:

• Fake Money Transfer We detect a fake money transfer by iterating through the list of calls

𝐶 and checking if there exists a call 𝑐 such that 𝑐 ∉ 𝑆𝐶𝑂, 𝑐𝑣 > 0, and 𝑐𝑟 ≠ 𝑜𝑤𝑛𝑒𝑟 for any

𝑜𝑤𝑛𝑒𝑟 in 𝑂 (Source code is appended in Listing II.5).

• Fake Ownership Change To detect any fraudulent ownership changes, we traverse the list

of owners 𝑂 and verify that for each 𝑜𝑤𝑛𝑒𝑟 ∈ 𝑂 there exists corresponding storage write 𝑠

whose variable, 𝑠𝑣𝑎𝑟 , is equal to 𝑜𝑤𝑛𝑒𝑟 , provided 𝑜𝑤𝑛𝑒𝑟 ∉ 𝐹𝑈𝑂 (Source code is appended

in Listing II.4).

3.6 Honeybadger’s expansion

As is shown in the red box of Figure 2.2, we use the results of the constructor analysis to add

two new modules to Honeybadger to detect new types of honeypots.

3.6.1 Racing time

To detect racing time in a smart contract, we first iterate over all the function calls contained in

the contract and check if there exists a call 𝑐, whose path conditions consist of a comparison for

the timestamp. We then collect a set of variables less than a specific timestamp value 𝐼𝐻_𝑠, and

a set of variables greater than 𝐼𝐻_𝑠. Next, we examine the storage variables of the constructor

and replace the variables corresponding to the less than and greater than sets with their respective

values. Finally, we report a racing time if we find a comparison of 𝑙𝑡 (less than) and 𝑔𝑡 (greater

than) such that 𝑙𝑡 < 𝐼𝐻_𝑠 < 𝑔𝑡 and the difference between 𝑔𝑡 and 𝑙𝑡 is less than 5 minutes. This
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method enables us to identify potential racing time vulnerabilities in the smart contract (Source

code is appended in Listing II.7).

3.6.2 Map key encoding trick

In Solidity, a mapping is a key-value store that is commonly used to store variables. The hash of

the map key is used as the address to store the variable in the mapping. However, this method of

storing variables can be vulnerable to map key encoding tricks. To detect map key encoding

tricks, we first iterate over a list of hashes contained in 𝐻. We check if there exists a hash ℎ,

whose value is used to store a variable both in the constructor and in the code. We then save the

’raw string’ of the hash as a map key used in the contract. We also iterate over all the function

calls contained in the contract 𝐶. We check if there exists a call 𝑐, where the map key 𝑚 is used

in its path conditions, for 𝑐𝑟 or for 𝑐𝑣. We use the map key list to detect any instances of a map

key encoding trick. Specifically, we look for a key in the map key list whose UTF-8 encoded

form is the same as 𝑚, but has a different ASCII representation. If we find such an instance, we

can flag it as a map key encoding trick (Source code is appended in Listing II.6).





CHAPTER 4

EVALUATION

In this chapter, we first present the parameters of our experiments and then propose our final

results. Then we compare our results to the state-of-the-art tool Honeybadger which also uses

symbolic execution for detecting honeypots. We end this chapter by analyzing one of the newly

discovered honeypot techniques as a case study.

4.1 Experiments

In this section, we present the setup we used for the experiments and the dataset we used. The

setup includes details on the hardware and software configurations of the machine used to run

the experiments, as well as the parameters used for each experiment. The dataset includes

information on the contracts deployed in Ethereum. By providing this information, we aim to

provide a clear understanding of the experimental conditions and data used in our study.

4.1.1 Setup

For our experiments, we utilized a computing cluster consisting of two nodes. Each node was

equipped with a single Intel Xeon Gold 5118 CPU, which boasts 48 cores operating at a frequency

of 2.30GHz. The cluster was running on a 64-bit Linux kernel version 5.15.0-47-generic, which

provided a stable and reliable environment for our experiments.

To obtain the initial bytecode of the contracts, we used the Solc compiler version 0.4.25, which is

a popular Solidity compiler that compiles smart contracts into EVM bytecode. We then utilized

version 1.8.16 of Geth’s EVM to retrieve the assembly from the bytecode. This version of Geth’s

EVM was selected for its stability and compatibility with the version of Solc that we used. The

combination of Solc and Geth’s EVM provided a reliable and consistent way to generate the

necessary bytecode and assembly for our experiments.
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The symbolic execution setup included the following configurations:

• Z3 constraint solver version 4.7.1.

• Loop limit of 10.

• Depth limit for DFS of 50.

• Gas limit of 4 million.

• A timeout of 1 second per Z3 request.

• A timeout of 30 minutes to symbolically execute a contract.

Additionally, a timeout of 10 minutes was set to run heuristics for each contract. For convenience,

we use Docker and create a container that contains the mentioned version of the dependencies,

and then use that container to run the application in any environment that supports Docker.

4.1.2 Dataset

Our dataset is comprised of the creation bytecode of smart contracts deployed on Ethereum. To

get the creation bytecode, we use web3.py (contributors, 2022) which is a Python library used to

interact with the Ethereum blockchain. Connecting to an Ethereum node, allows the developers

to send transactions, interact with smart contracts, and perform various other operations related

to the Ethereum blockchain. To connect to an Ethereum node using web3.py, we need to access

via an HTTP endpoint, which is typically a URL. The URL specifies the endpoint where the

Ethereum node or provider is running and how to interact with it. In this project, we use Ankr as

the blockchain provider to create an endpoint and make requests to it. Once we get access to the

Ethereum blockchain, we can use different methods of web3.py to extract information from the

blockchain. As the first step, we found all of the contract accounts (CAs) in the block range

of our dataset by finding the transactions with an empty "to" field which specifies a CA (see

paragraph 1.1.1.2). Moreover, for each contract, we extracted the creation bytecode from the

input field of the first transaction information and stored the hash of the bytecode. Since over

98% of the contracts are duplicates, it was more efficient to store only their hashes instead of

the whole bytecode. After eliminating duplicates, we removed contracts with similar bytecode
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hashes, resulting in a set of 375,962 unique contracts. The initial bytecodes of these contracts

were then downloaded and stored as our final dataset.

We conducted HoneyVader experiments on 375,962 unique smart contracts. The overall process

took an average completion time of 323 seconds per contract. The results showed that 98% of

contracts successfully completed the symbolic execution process and almost all of the contracts

successfully completed the application of our heuristics in less than 10 minutes. Out of all the

contracts evaluated, 121,876 contracts (32%) demonstrated a code coverage greater than 90%.

4.2 Metrics

In this study, we evaluate the effectiveness of our tool using several metrics.

• TP (True Positives): This category represents contracts that our methodology and verification

confirm to be honeypots.

• FP (False Positives): This group includes the contracts that were flagged as honeypots by

our tool but are not verified honeypots in the verification phase.

• FN (False Negatives): This class of contracts refers to the ones that were detected as benign

contracts by mistake but are actually honeypots. We use this metric to compare HoneyVader

to Honeybadger.

• Precision: P is the proportion of true positives among all predicted positives and we use it to

evaluate our detection tool. It is calculated as:

𝑝 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (4.1)

4.3 Results

In this section, we present the results of our analysis based on the metrics defined in section 4.2.

Our study successfully extracted constructor parameters for all the contracts in the bytecode

dataset. Specifically, out of the analyzed contracts, we identified 16,687 that were owner-aware,

and these were further analyzed for potential honeypot activity. From this group, we uncovered
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4,399 UOT contracts that accepted funding from any source but transferred it to only one

address, which was invariably the owner’s address. Given that such behavior is indicative of

potential honeypot activity, we considered these contracts suspicious and marked them for

further investigation. Overall, HoneyVader labeled 139 contracts as honeypots. From this

Figure 4.1 Number of contracts with source code and bytecode for UOT

contracts, honeypots using fake money transfer, honeypots using fake ownership

change and honeypots overall

number 65 of them are open-source and the rest have only their bytecode available. Our analysis

has revealed that 108 of the suspicious contracts employ a fake money transfer method to deceive

victims, while 31 entice them into taking ownership of the contract with the hope of withdrawing

money. These results emphasize the critical importance of exercising caution when interacting

with contracts that exhibit the UOT characteristic. To visually illustrate our primary findings,

we have included a figure that clearly displays the frequency of UOT contracts and each type of

attack method used by attackers(see Figure 4.1). Interestingly, our results indicate that attackers

tend to rely more on the fake money transfer method, as opposed to the fake ownership change,

in their honeypot schemes.
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Figure 4.2 Normal transactions of the contract

Figure 4.3 Internal transactions of the contract

4.4 Validation

To validate our results about honeypot contracts, we conducted a thorough manual analysis of

the detected honeypots with their source code available. Our validation process consisted of

both dynamic and manual analysis.

As it is mentioned in 4.3, 65 contracts detected as honeypots have their source code available.

For our first step of validation, we used Etherscan (Etherscan, n.d.) to obtain the source code of

each one of these contracts and manually analyzed the code for any potential honeypot tricks.

To verify our manual analysis, we then ran each contract in Remix IDE (Remix IDE, n.d.) and

performed transactions in a test environment to observe the contract’s behavior.

In addition, we utilized transaction behaviors as a form of validation for these 65 contracts.

Honeypots that were successful in trapping victims show a rug pull pattern in their transactions,

where they wait for a victim to deposit funds before pulling all the funds out of the contract.

Along with normal transactions that show ETH transfers carried out through a smart contract,

we also analyzed internal transactions, which show the outgoing funds of the contract triggered

by an external transaction. These transactions reveal the accounts to which the funds have been

transferred.
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To make this pattern clear, we show a list of normal and internal transactions of a honeypot in

Figure 4.2 and Figure 4.3.4 When two users are caught in the honeypot and lose their money,

the attacker calls the function close to withdraw all of the money from the contract. Moreover,

the internal transactions prove that there is only one user who makes money from the contract,

and no other users could benefit from the contract.

Finally, we conducted a comprehensive review of the comment section on Etherscan, which

often includes valuable information and warnings about scams or honeypots. This enabled us

to gather additional insight into the potential threats posed by the contracts we analyzed. In

particular, we searched for comments that mentioned issues or red flags associated with the

contracts, such as suspicious or fraudulent behavior. Additionally, this helped us ensure the

accuracy and reliability of our findings, as we were able to confirm the existence of certain

contracts and their associated risks, based on the feedback and experiences shared by other users.

Table 4.1 Number of the evaluation set, owner-aware contracts, UOT contracts, true

positives and false positives for each honeypot tricks

Evaluation Set Owner Aware UOT Honeypot

375,962 16,687 4,399

Fake Money Transfer Fake Ownership Change
TP FP TP FP

57 5 2 1

The verification of our results is summarized in Table 4.1. Overall out of 4,399 suspicious UOT

contracts, we detect 65 honeypots. From this number, 59 of them are true positives as well as 6

false positives which happened as the result of our limitations explained in subsection 5. Overall,

according to Table 4.1 and the equation 4.1, our tool achieves a 90% precision in detecting

intrinsic honeypots, regardless of the technique used in them. The results of our study also reveal

some new honeypots that were not detected in previous works. These honeypots referred to as

zero-day honeypots are listed in Table III-1 in the Appendix. These newly discovered honeypots

demonstrate the need for continued research and development in the field of honeypot detection

to stay ahead of emerging threats.

4 Honeypot address: 0x223b0EE581719D4c6aE36f1BA1dd4101e5409c1c
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4.5 Baseline solution

Table 4.2 Comparing Honeybadger’s results to HoneyVader

Honeybadger HoneyVader
TP FP Owner Aware UOT Trick Found

TP FP TP FP

BD 20 - 20 19 - 19 -

ID 41 7 47 43 1 - -

SESL 12 - 12 - - - -

TDO 4 - 4 4 - 4 -

US 32 - 31 17 - 16 -

HT 12 - 12 - - - -

In order to evaluate the performance of our honeypot detection tool, we selected Honeybadger

as a baseline model. Honeybadger is a widely recognized tool for honeypot detection and

employs the same analysis methodology as our tool. By comparing HoneyVader to Honeybadger,

we can better understand the strengths and weaknesses of our approach. To conduct the

comparison, we performed two tests. The first test involved analyzing the baseline dataset of

Honeybadger’s results separately for each intrinsic honeypot technique. Since Honeybadger

presents its performance results separately for each honeypot technique, we discussed the

comparison for each technique individually. We also summarized our results in Table 4.2, which

provides a comprehensive overview of the performance comparison between our tool and the

Honeybadger baseline.

• Balance Disorder: Our results indicate that our tool successfully identified all 19 UOT

contracts in the balance disorder dataset, with the exception of one that could not be detected

due to the limitations of the Z3 solver. Additionally, we detected one zero-day honeypot that

utilized a balance disorder technique.

• Inheritance Disorder: Regarding the inheritance disorder dataset, our tool found 43 UOT

contracts among the 48 honeypots detected by Honeybadger. Combining our UOT heuristic

with Honeybadger’s inheritance disorder heuristic showed an increase of 6% in precision.

To make this combination, we first ran the UOT detector on all 48 honeypots flagged by

Honeybadger and detected 44 of them as UOT. Then we ran the ID heuristic on the 44 UOT
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contracts resulting in 44 flagged honeypots. From this number, 4 of them were false positives

while 40 of them were detected as true positives. We calculate the precision of Honeybadger

and (HoneyVader + Honeybadger) as follows:

- Precision of Honeybadger: 41 / (41 + 7) = 0.85

- Precision of (Honeybadger + HoneyVader): 40 / (40 + 4) = 0.91

• Skip Empty String Literal - Hidden Transfer: Unfortunately, due to limitations of our

symbolic execution engine in handling throw in Solidity, we were unable to detect any

UOT contracts in the skip empty string literal - hidden transfer dataset using HoneyVader.

However, our tool discovered three new zero-day honeypots with a hidden transfer technique

that were not detected by Honeybadger.

• Uninitialized Struct: In the uninitialized struct dataset, we identified 17 UOT contracts

among 31 owner-aware contracts. After validating the non-UOT contracts, we discovered

that 13 of the contracts detected as true positive by Honeybadger were not honeypots, and in

five of them, we observed users withdrawing money from the contract. This highlights using

UOT heuristic before trying to find honeypots. Moreover, one of the detected honeypots also

did not utilize the uninitialized struct technique, highlighting the importance of detection

tools being independent of specific honeypot techniques. Lastly, we found one zero-day

honeypot in this dataset.

During the second round of experiments, we applied HoneyVader to all the datasets used by

Honeybadger, which included 151,935 unique contracts. Within this dataset, we discovered 7

instances of false negatives that were missed by Honeybadger. Out of these, 5 contracts used

techniques previously identified in (Torres et al., 2019), while the remaining 2 employed a new

technique. However, the specific technique used is not our primary concern; what matters most

is whether the contract is UOT and capable of deceiving the user. Table III-1 contains the

addresses of these honeypots.
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4.6 Case study

In this section, with the help of a real-world honeypot contract from our results, we explain

the various steps of our methodology. This honeypot shown in 4.1 is a new type that is not

using any of the defined techniques in (Torres et al., 2019). The malicious contract operates by

using multiple comparisons and assignments in its code to confuse users. An unsuspecting user

may assume they can withdraw funds from the variable ownerTax by invoking the AddTicket

function. Using HoneyVader, we first identify this contract as owner-aware by analyzing the

constructor variable, which stores msg.sender. We found the variable owner in slot 0 of

storage. Next, we analyze the contract’s cash flow using runtime bytecode analysis. The money

transfers in this contract include suicide in line 15 and two transfers in line 29. Analyzing all

the feasible paths from the symbolic execution results, only the suicide is possibly happening

in this contract which is in control of the owner (onlyOwner modified is used). Analyzing the

storage writes in the contract, we do not find any new owner assignment and therefore the owner

of the contract is unchangeable. These characteristics make the contract a UOT contract and

lead us to the next step of the analysis which is looking for a trick. In this step, we look for a

money transfer in the code that exists but never executes. By analyzing all of the money transfers

we find the ones in line 29 impossible to happen, meaning there are no feasible paths to them

when simulating the execution with symbolic variables. These fake money transfers in a UOT

contract report this contract as a honeypot. Further analysis of the source code also reveals that

these money transfers are intentionally included to deceive users into depositing money into the

contract and prevent them from withdrawing funds.
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1 contract Owned {

2 address owner = msg.sender;

3 modifier onlyOwner() {

4 assert(msg.sender == owner);

5 _;

6 }

7 }

8 contract NewLottery is Owned {

9 uint256 private maxTickets;

10 uint256 numtickets;

11 uint256 totalBounty;

12 address owner;

13 ..

14 function shutdown() onlyOwner public {

15 suicide(msg.sender);

16 }

17 function AddTicket() public payable {

18 require(msg.value == ticketPrice);

19 require(numtickets < maxTickets);

20 bool success = numtickets == maxTickets;

21 if(success)

22 PayWinner(msg.sender);

23 }

24 function PayWinner( address winner ) private {

25 require(numtickets == maxTickets);

26 uint ownerTax = 5 * totalBounty / 100;

27 uint winnerPrice = totalBounty - ownerTax;

28 ...

29 owner.transfer(ownerTax); winner.transfer(winnerPrice);

30 }

31 }

Listing 4.1: A simplified example of a zero-day discovered honeypot



CHAPTER 5

LIMITATIONS

Symbolic execution is an effective method for analyzing the behavior of smart contracts. However,

there are challenges associated with our use of this technique in detecting UOT contracts. In

order to accurately identify all potential transfers out of a contract, it is crucial to explore every

possible execution path within a contract. However, in some cases, particularly with complex

and extensive contracts, symbolic execution may not be able to cover all paths, leading to missed

fund transfers and generating false UOT contracts. This can result in false positives and decrease

the precision of our tool.

Another challenge in the analysis of smart contracts using our tool is the reliance on bytecode

representation. Despite the advantage of detecting honeypots based on bytecode, the limited

availability of open-source contracts (only 2% of all contracts) makes it difficult to identify

certain types of honeypots. Some information is lost during the compilation process from source

code to bytecode, such as operations that are present in the source code but do not change

the state of the contract. For instance, a newly proposed honeypot technique, unexecuted call

honeypot (Camino et al., 2020), involves the attacker performing a fund transfer through a call

without the necessary parenthesis to execute the call. This results in the call not appearing in

the bytecode and only being visible in the source code. Our tool can still detect this contract

as UOT since it is an intrinsic honeypot and this is considered a strong point in HoneyVader.

However, finding the trick in such contracts can be difficult, as the bytecode does not provide

any information about the call.

Finally, it is important to note that calls in smart contracts can take the form of either ETH

transfers or calls to other contracts. While they may appear distinct in the source code, EVM

treats them similarly and does not differentiate between them in the bytecode. In order to

accurately detect UOT contracts, it is necessary to distinguish between ETH transfers and

contract calls. This can also lead to false positive results and reduce the precision of our analysis

tool.





CONCLUSION AND RECOMMENDATIONS

In this thesis, we have presented a novel approach to detect honeypot scams in Ethereum smart

contracts at the bytecode level through symbolic execution. Our findings demonstrate that

analyzing creation bytecode instead of runtime bytecode provides valuable information about

constructor parameters, enabling the development of a heuristic to detect honeypots without

prior knowledge of the specific trick used. Our approach was able to detect different types of

honeypots based on the Honeybadger classification and identified a new class of honeypots.

Moreover, we expand Honeybadger to detect more honeypots. In conclusion, our approach to

detecting honeypot scams in Ethereum smart contracts offers a significant contribution to the

field and provides a valuable tool for protecting against malicious actors. In the next section, we

give a short explanation of the lessons we learned through this research.

Lessons learned

In this section, we provide a retrospective analysis of the research process, highlighting key

insights gained through the study. We also discuss some challenges we encountered during

the research, the methods and approaches that worked well, and those that did not. Giving a

comprehensive overview of the research process, we explain what we learned, what we could

have done differently, and what recommendations we would make for future research in this

field.

Analysis choices

A comprehensive literature review, coupled with adequate technical skills, enables researchers to

make the right choices regarding their research materials. While it is time-efficient and beneficial

to take inspiration from previous research, following the exact path of others may not always be

the best choice for one’s own research. In our thesis, due to limited time and experience, we
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opted to use Honeybadger’s symbolic execution engine, which was taken from Oyente (Luu

et al., 2016). While this engine produced impressive results for Honeybadger, it was not the

optimal choice for our tool’s implementation, and we had to make manual changes to improve

performance, leading to frustration and delays at the last phase of the research, evaluation. After

facing these challenges, we realized that implementing our algorithm with another symbolic

execution engine, such as Manticore (Mossberg et al., 2019), may have been a better choice as

the information it provides is more useful for our methodology. In conclusion, while analyzing

the methodology used in related work can be beneficial, researchers should consider other

options and have a strong understanding of their project’s needs to choose the most efficient

analysis methodology during the evaluation phase.

Large amount of data

When dealing with a large amount of data, proper classification and organization of data are

crucial, as the risk of confusion or data loss is high, and it can impact the research results. In our

thesis, our dataset comprised over 2,000,000 smart contracts downloaded from the Ethereum

blockchain, which presented a significant challenge. We learned three crucial lessons during

this phase of our research, which we will discuss below:

• Data Classification: Data classification was a critical aspect of our research as it enabled

us to organize and manage our vast dataset. To accomplish this, we classified the contracts

into specific groups based on their block range and kept track of the number of contracts

in each class. This step was crucial as even the loss of a single contract by mistake could

have adversely impacted the performance of our detection tool. By organizing the data into

different categories, we were able to minimize the risk of confusion and data loss. The

process of classifying the contracts also made it easier to restore a lost contract as we had

information about its block number. Additionally, by keeping track of the number of contracts

in each class, we were able to ensure that the number of contracts in each group remained
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consistent throughout the research. Any discrepancies in the number of contracts could have

significantly affected the reliability and validity of our results.

• Data Storing: In our research, we worked with a massive dataset of smart contract bytecodes.

However, since we only needed to test our methodology on unique contracts, storing duplicates

was unnecessary. We found that only 2% of the entire dataset were unique. As a result, we

decided to store only the hashes of the contracts, which occupied much less space, and then

we removed duplicates based on their hash. This approach enabled us to significantly reduce

the amount of space needed for storage. It is essential to note that storing such large datasets

can be done more efficiently than directly downloading them onto a local or cluster computer.

Additionally, it is crucial to have a backup of the stored dataset in case of any unexpected

events such as hard drive formatting or data corruption.

• Data Process: When working with large datasets, it is very important to approach data

processing with a well-planned strategy. In our research, we got wrong in simply running our

methodology on the dataset and waiting for the results which took about 10 days. It was only

at the end of this process that we discovered bugs and errors that could have affected our

results, and we had to start the whole process again. We also identified false positives at the

end of the execution, which helped us understand the flaws in the methodology and improve

its performance. This required us to fix certain aspects of the methodology and then run it

again. We learned an important lesson from this experience: testing a project with a dataset

of 10 samples is not sufficient to detect all errors and produce accurate results. Thus, when

working on a large project with a large dataset, it is essential to have a representative sample

size that is large enough to present the efficiency of the methodology and detect bugs, but

small enough to avoid prolonged processing times. This approach can prevent researchers

from repeatedly running the project on a large dataset, which can be time-consuming and

challenging.
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Future directions and recommendations

In this thesis, we focused on detecting Ethereum honeypots, but we believe that this is just the

beginning of research on honeypots in the blockchain. Our investigations led us to identify a new

type of scam in blockchain called honeypot coins. These scams target naive cryptocurrency users

by enticing them to buy coins from a contract, waiting for others to buy in, and then making it

impossible for users to cash out their investments, except for the contract owner. Honeypot coins

are particularly prevalent in the Binance Smart Chain (BSC), and detecting them is challenging

as they may appear to be a normal newly deployed coin gaining value on a chart.

We believe that honeypot coins share characteristics with the honeypots we studied in this research,

and our proposed methodology can be a practical research direction for future researchers in

this field. To the best of our knowledge, no academic research has focused on this area, and

there is no prominent detection tool to detect honeypot coins. As such, there is an opportunity

for further research and development in this area, and we hope our work can inspire and guide

future efforts to confront honeypots in cryptocurrency scams.
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1. Abstract

Smart contracts are self-executing computer programs that run on blockchain networks and

facilitate secure, transparent, decentralized transactions. The security of smart contracts has

always been a critical issue in the blockchain community, and one of the major concerns in

recent years is the prevalence of honeypots – malicious contracts designed to deceive users into

depositing funds, only to find that they are unable to withdraw their money and have lost their

original deposit. In this research, we present a novel classification of honeypots and introduce

a new type of contract that enables the development of a future-proof method for detecting

honeypots based on the contract owner and cash flow. We implement this method in the form of

a detection tool called HoneyVader using symbolic execution to identify real-world honeypot

contracts. We apply our tool to over 2 million contracts deployed on the Ethereum network and

detect 139 honeypots. Using this tool, we uncover zero-day honeypots and new techniques used

by attackers, in addition to the ones identified in previous works.

2. Introduction

Blockchain is a publicly shared immutable ledger between nodes in a peer-to-peer network that

allows the users to interact directly in the absence of any third party in a trustless environment.

Blockchain has emerged as one of the most prominent technologies in recent years. Alongside

the potential for decentralization and transparency, this technology has had a significant impact
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on many industries, ranging from technology to the healthcare industry and business. As the first

version of the blockchain, Bitcoin cryptocurrency (BTC) was introduced in 2009 (Nakamoto,

2009), gaining a lot of attention, and the technology rapidly grew to the next version in just a few

years. In 2015, Ethereum was launched as blockchain 2.0, allowing programmers to develop

codes called smart contracts in the blockchain in addition to exchanging cryptocurrencies

(Wood, 2014). The critical characteristic of smart contracts is their immutability, which means

they cannot be altered after deployment. Smart contracts can be developed by a variety of

programming languages such as Solidity (Solidity, 2016) Vyper (Ethereum Foundation, 2021),

Bamboo (Serrano & Clack, 2018). However, Solidity is the most popular for programmers to

work with.

As blockchain is growing more in different industries, security is also becoming more of an

issue for users. Due to the massive amount of money flowing on the chain and the irreversible

nature of transactions, any vulnerability in smart contracts could lead to huge losses. One of the

most famous ones, the reentrancy attack happened in 2016 which caused the hack of DOA and

the stealing of 3.6 million Ether (Buterin, 2016). However, the security of the blockchain is not

always about detecting vulnerabilities of smart contracts. The pseudonymous environment in

the blockchain makes it an attractive target for fraudsters and scammers. In recent years, several

scams have been reported in blockchain, including rug pulls, Ponzi schemes, and honeypots,

particularly in decentralized finance (DeFi) where cryptocurrency plays a larger role.

Honeypots are currently a major issue in the blockchain. These malicious contracts present a

code leak and lure users into depositing and withdrawing more money than their initial stake

(Torres et al., 2019). However, after sending the money to the contract, it gets stuck and the

victim will not be able to withdraw any funds. Finally, the attacker drains the contract balance to

their address.

There are some studies conducted to detect these honeypots. (Torres et al., 2019) was the first

study to introduce honeypots and classify them into 8 categories based on the used technique by

the attacker to trick the users. They also introduced Honeybadger, the most prominent tool for
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honeypot detection based on symbolic execution on the EVM bytecode. However, Honeybadger

is limited to detect only 8 types of honeypots studied by the authors, and since new honeypots

are continuously proposed (Camino et al., 2020; Zhou et al., 2020), there is a need to develop a

general purpose solution that is able to detect honeypots even the ones that are not previously

known. Honeybadger uses runtime bytecode to analyze a contract. However, the constructor of

a contract, which is placed in the creation bytecode, contains important information that can be

useful in the analysis of the contract for honeypot detection. The creation bytecode which also

generates the runtime bytecode and carries the constructor information is generated only once

when a user creates and deploys a contract to the blockchain.

In this paper, we present a novel approach for detecting honeypots by conducting symbolic

analysis on the EVM creation bytecode. We introduce a new classification system for honeypots,

Intrinsic and Non-intrinsic. Based on this classification and by analyzing the constructor

parameters of a contract, we develop a heuristic based on the cash flow of a smart contract that

goes beyond the techniques introduced by prior work, including the Honeybadger tool. Our

method identifies Unique Owner Transfer (UOT) contracts as potentially malicious ones, adding

an additional layer of detection to check if they are benign contracts or honeypots. With these

strategies, we can detect honeypots even if we are not familiar with the specific techniques used

to create them. In addition, we leverage our constructor analysis to develop two new heuristics

for detecting honeypots recently introduced in other studies, which we incorporate into the

Honeybadger tool.

Our research methodology is based on extracting information about the owner of a contract.

Specifically, our tool is designed to identify honeypots in Ethereum contracts where the message

sender is assigned to a variable in the constructor, as this variable represents the contract owner.

Contracts that do not explicitly define the owner of the contract, which we refer to as non-owner-

aware contracts, are not within the scope of our research. Additionally, our objective in this

research is to identify honeypots as standalone entities, disregarding any extrinsic interactions

or transactions. Contracts that utilize trickery dependent on external factors or other contracts

cannot be fully analyzed by our tool, as these features are not inherent within the contract’s code.
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Therefore, our research is limited to detecting only the intrinsic honeypots, and non-intrinsic

honeypots are out of the scope of our tool. Our main contributions are as follows:

• We propose a new classification for honeypots with a new perspective based on their life

cycle.

• We propose a method to find the constructor variables of a contract in order to find the owner

variable of a contract.

• We propose a novel future-proof method able to detect unrecognized forms of honeypots that

are not covered in existing heuristics.

• We implement our solution, HoneyVader, and evaluate it using a dataset of 2 million Ethereum

smart contracts against Honeybadger, a well-known competitor.

• we expand the range of honeypot detection in Honeybadger from 8 to 10.

The remainder of this paper is organized as follows. In section 3, we investigate some of

the previous works done related to our research area. Section 4 explains some principles of

blockchain and some background on our analysis methodology. Section 5 presents our main

idea to detect honeypots and an overview of our detection tool. In section 6, we demonstrate

our methodology and the implementation of our detection tool, HoneyVader in more detail and

evaluate it in section 7 using a large dataset of smart contracts. We explain some limitations of

our research in section 8, and finally, conclude our proposed method in the last section.

3. Related work

The advancement of decentralized applications (dApps) and decentralized finance (DeFi) has

greatly increased the focus on security in the blockchain space. Researchers have been focused

on detecting vulnerabilities in smart contracts and exploring related areas such as fraud detection.

A systematic review of 86 smart contract analysis tools was conducted by (Tama et al., 2017a).

In addition to vulnerabilities, researchers have also studied Ponzi scams and phishing attacks,

developing detection tools to help prevent these types of frauds. Studies such as (Bartoletti et al.,

2020-01, 2018-06; Chen et al., 2018; Vasek & Moore, 2018) have focused on Ponzi scams, while
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(Abdelhamid et al., 2014; Chen et al., 2020-07; Wen et al., 2021) have focused on identifying

phishing attacks to provide a safer environment for blockchain users.

Our main focus in this paper is a relatively new type of fraud, honeypots. During the time of

this study, the following works are done to uncover this scam on Ethereum. Static analysis

methodologies, such as symbolic execution and Control Flow Graph (CFG), facilitate a more

precise path-by-path analysis of the program compared to dynamic analysis methods. (Torres

et al., 2019) explores various types of honeypots and proposes a taxonomy based on attacker

techniques. Honeybadger uses 8 heuristics combined with symbolic execution, which can be

expanded to detect new honeypot techniques that are defined and analyzed by experts. We use

this feature in our work and add two new heuristics for honeypots defined in (Zhou et al., 2020)

and (Camino et al., 2020) (i.e. Racing Time (RT) and Map Key Encoding Trick (MKET)).

However, it is worth noting that the tool is limited to recognizing disclosed techniques that have

been analyzed by experts and cannot detect new techniques that have not yet been discovered.

Data science approaches, including the use of machine learning algorithms, have also been

employed for honeypot detection in Ethereum. (Camino et al., 2020) utilizes the XGBoost

machine learning algorithm to classify Ethereum smart contracts as honeypots and non-honeypots

by extracting features from source code, transaction data, and flow of funds. However, relying

solely on source code led to excluding over 98% of all Ethereum smart contracts that were not

open-source, and using transactions as a feature resulted in excluding over half of the honeypots

that had zero transactions.

Subsequently, some studies aimed to incorporate Solidity opcodes in the feature extraction

process such as (Hara et al., 2021) since analyzing contracts based on bytecode is crucial.

However, this approach still faces the challenge of an imbalanced dataset, where the number of

negative samples (non-honeypots) is much larger than positive ones (honeypots), which hinders

the classification capabilities of machine learning algorithms.

There are other studies with different primary objectives besides identifying honeypots in smart

contracts. In (Bian et al., 2021), the authors use code visualization to generate a model based on
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RGB images of Solidity bytecode and ABI, with the primary goal of detecting Ponzi schemes.

The performance of the model in detecting honeypots is also evaluated using the results from

Honeybadger. In (Zhou et al., 2020), the authors propose a method to analyze real-world attacks

by examining contract transactions, allowing them to discover new types of honeypots along

with previously unknown zero-day attacks.

In this study, we take advantage of the power of symbolic execution at the bytecode level to

detect honeypots. Unlike some approaches, our method does not require a large amount of data

to be effective. Instead, we propose a new way to detect honeypots that can be applied regardless

of the specific technique used by the attacker, transactions, or the availability of source code.

This enables us to detect honeypots whose techniques are not yet known. Moreover, some

honeypots do not use any specific technique, especially the ones without source code because

the victim cannot see the source and fall into a trap.

4. Background

In this section, we explain some of the fundamentals of blockchain and smart contracts as well

as analysis methodologies.

4.1 Smart Contracts

Smart contracts are self-executing computer programs that run on blockchain networks. They

run on decentralized blockchain networks, allowing for a tamper-proof and transparent execution

of their code without the need for intermediaries. In recent years, they have gained widespread

attention for their potential to revolutionize various industries by making direct interactions

possible and reducing costs. Smart contracts have the ability to automate complex transactions,

enforce contractual agreements, and store data securely, making them a promising tool for

improving efficiency, security, and trust in digital transactions.

The data stored in the blockchain, including smart contracts, is publicly available, making it

transparent and accessible to all network participants. Despite this public accessibility, smart
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contracts are not always open source. Instead, the runtime bytecode, which represents the

compiled version of the smart contract, is stored on the blockchain. This bytecode contains

all the information necessary for the execution of the contract on the network. In many cases,

users choose to keep the source code private and only the compiled bytecode is visible on the

blockchain. While some users do publish their contract source code on block explorers, this

remains a relatively uncommon occurrence.

4.2 EVM and bytecodes

Ethereum Virtual Machine (EVM) is a crucial component of the Ethereum blockchain. It is

a 256-bit word, a stack-based machine that acts as a virtual CPU capable of executing smart

contracts. The EVM is designed to provide a secure and decentralized platform for executing

code on the blockchain. By using the EVM, developers can write and deploy smart contracts

that can be executed by nodes on the network. The EVM is responsible for maintaining the state

of the blockchain, including account balances, contract codes, and storage. It reads bytecode, a

low-level programming language, and executes it on behalf of the nodes in the network. Geth,

one of the implementations of Ethereum, includes the EVM and is run by all nodes in the

Ethereum network. The EVM’s design makes it possible for smart contracts to execute in an

environment that ensures the safety of the network.

After a smart contract written in Solidity is compiled, it is translated into a low-level, binary

representation that is readable by EVM, known as EVM bytecode. EVM bytecode defines the

behavior of the smart contract, including how it stores and manipulates data, interacts with

other contracts, and processes transactions that are stored on the blockchain as part of the smart

contract, where it is publicly visible and immutable. This means that the behavior of the smart

contract is fully transparent and predictable.

There are two types of EVM bytecode:

• Creation Bytecode: The creation bytecode also known as the initial bytecode, is a crucial

component in the deployment of smart contracts on the EVM. It is executed only once during
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the creation transaction and generates the runtime bytecode. The creation bytecode contains

the information necessary for the constructor and is used to write initial variables to the

contract’s storage. This bytecode must be included as part of the deployment process, which

involves the submission of a transaction from the creator’s address to the null address.

• Runtime Bytecode: The runtime bytecode refers to the part of the creation bytecode that

executes in each subsequent transaction, excluding the constructor logic and parameters

included in the initial creation transaction.

4.3 Smart contracts

Smart contracts are self-executing computer programs that run on blockchain networks. They

run on decentralized blockchain networks, allowing for a tamper-proof and transparent execution

of their code without the need for intermediaries. In recent years, they have gained widespread

attention for their potential to revolutionize various industries by making direct interactions

possible and reducing costs. Smart contracts have the ability to automate complex transactions,

digital agreements between parties, and store data securely, making them a promising tool for

improving efficiency, security, and trust in digital transactions.

The data stored in the blockchain, including smart contracts, is publicly available, making it

transparent and accessible to all network participants. Despite this public accessibility, smart

contracts are not always open source. Instead, the runtime bytecode, which represents the

compiled version of the smart contract, is stored on the blockchain. This bytecode contains

all the information necessary for the execution of the contract on the network. In many cases,

users choose to keep the source code private and only the compiled bytecode is visible on the

blockchain. While some users do publish their contract source code on block explorers, this

remains a relatively uncommon occurrence.

4.4 Honeypots

The phenomenon of honeypots in Ethereum is a type of scam that involves luring greedy users

into depositing funds into a malicious smart contract (Torres et al., 2019). The victim is enticed
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by the promise of being able to withdraw more funds than they initially deposited, either through

a deliberate feature in the code or by exploiting a vulnerability or error made by the programmer.

To further entice the victim, a small amount of funds is placed as bait within the contract.

However, once the deposit is made, the funds become trapped within the contract, rendering

them permanently inaccessible to the victim.

According to the taxonomy proposed in (Torres et al., 2019), honeypots in Ethereum can be

classified into three broad categories based on their origin.

• Ethereum Virtual Machine (EVM): These honeypots exploit the way the EVM runs its

instructions, capitalizing on users’ lack of knowledge about the EVM to perform scams such

as balance disorder.

• Solidity Compiler: These honeypots use the Solidity programming language and manipulate

various details about how the code compiles, such as inheritance, variable size, etc. to trick

users unfamiliar with Solidity. The techniques used in this category include inheritance

disorder, skip empty string literal, type deduction overflow, and uninitialized struct.

• Etherscan Blockchain Explorer: These honeypots take advantage of the properties of the

Etherscan platform, which is used by a large number of users. The attackers use the platform’s

features to scam users, such as the fact that internal transactions with zero transaction value

are not displayed and that the source code is displayed using an HTML text area with a

limited width, which can hide parts of the code. The honeypot techniques used in this

category include hidden state update, hidden transfer, and straw man contract.

4.5 Symbolic execution

Symbolic execution is a powerful technique to analyze the behavior of a contract and detect

potential vulnerabilities. In this technique, various inputs are assigned to different symbolic

variables, and then the program runs with the symbolic values. This generates different execution

paths for the program. For each execution path, a list of constraints with symbolic values

is generated. A constraint solver is then used to determine the feasibility of each execution

path. This method has been widely adopted in smart contract analysis tools such as Mythril



84

(Sharma & Sharma, 2022), Oyente (Luu et al., 2016), and Securify (Tsankov et al., 2018),

among others. However, this approach can face limitations with large programs and complex

constraints, which can be mitigated by setting a time limit for the execution.

5. HoneyVader

In this section, we will provide information on the methodology we use to detect honeypots. We

present an overview of the HoneyVader’s design, our tool for identifying honeypots in Ethereum.

Finally, we explain how we expand Honeybadger to detect more honeypots.

5.1 Problem formulation

To better address the issue of honeypot scams in the Ethereum blockchain, we have classified

honeypot smart contracts into two distinct categories based on their lifetime: "intrinsic" and

"non-intrinsic".

• Intrinsic Honeypots: The initial group consists of contracts that are honeypots from the

inception of their life cycle, specifically prior to deployment. These contracts do not rely

on external interactions to function as honeypots, and their fraudulent nature can be easily

identified through testing in a test environment such as Remix IDE.

• Non-Intrinsic Honeypots: These contracts are initially benign and do not possess any

fraudulent characteristics prior to deployment. However, they can become honeypots after

deployment through interactions with other contracts. These interactions trigger specific

conditions that transform the contract into a honeypot. Non-Intrinsic Honeypots are thus

dependent on external interactions to function as honeypots, making them a unique category

within the honeypot landscape.

5.2 Methodology

In this section, we first provide our main idea for detecting intrinsic honeypots starting by defining

a new type of contract, called Unique Owner Transfer (UOT) contract which is suspicious of
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Table-A I-1 The truth table to detect a honeypot based on the cash flow of a contract

CF-In Anyone CF-Out (Owner - OwnerControlled) Cash Flow Honeypot
false false false false

false true false false

true false true false

true true true ?

being a honeypot, and then propose a way to distinguish between malicious UOTs and benign

ones. Finally, we present a design overview of HoneyVader.

5.2.1 Unique Owner Transfer

The authors in (Torres et al., 2019) describe the typical behavior of honeypots as follows: the

contract creator deploys the contract with an intentional vulnerability, allowing anyone to send

funds to the contract with the aim of exploiting the flaw and profiting. The owner of the contract

then drains the balance of the contract along with the money sent by the victims. This behavior

requires the contract to have the capability to both receive and send funds, referred to as Cash

Flow In (CF-In) and Cash Flow Out (CF- Out).

Before getting into our heuristic, it is important to explain owner-controlled transactions in

Solidity. There are two types of transactions in Solidity: restricted and unrestricted. Restricted

transactions are designed to only be executed by certain authorized users or contracts, and will

reject all other attempts to call them. Restricted transactions can be implemented using various

techniques in Solidity. For example, a contract can include a modifier that verifies the identity of

the caller, such as a specific address or a contract that has been previously authorized. Another

technique is to include a function that requires a specific access level or permission, and only

users with that level or permission can call it. Unrestricted transactions on the other hand can be

called by anyone on the blockchain network. Based on these definitions, if a transaction that

includes a money transfer is restricted to the owner of a contract, we call it owner-controlled

cash flow out. Moreover, if a transaction is restricted to be called only by a hard-coded address
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in the contract, it is also owner controlled as the hard-coded address is specified by the owner of

the contract and users have no control over it.

According to the definitions presented in the first paragraph of this subsection, a contract can

only be considered a honeypot if it receives funds from multiple sources but transfers only to

the owner or if the transfer is owner controlled. In other cases, where arbitrary users make it

to withdraw funds, it is definitely not a honeypot (see in Table I-1). However, if the owner is

changeable within the contract, anyone can claim ownership and withdraw the funds and the

cash flow out of the contract would not exclusively go to the attacker and the contract would

not be a honeypot. As such, the only scenario in which a contract can be suspected of being a

honeypot is when all of the cash flow out is directed solely toward an unchangeable owner.

With this in mind, we narrow down the definition of a honeypot to the following criteria:

• The contract must have the ability to receive funds from any arbitrary user.

• The contract must transfer funds exclusively to the owner of the contract.

• The claiming of ownership by users must be impossible.

Table-A I-2 The truth table to detect a UOT contract based on the cash flow

CF-In CF-Out (Owner - OwnerControlled) Owner Change UOT Honeypot
false false false false false

false false true false false

false true false false false

false true true false false

true false false false false

true false true false false

true true false true maybe

true true true false false

We call a contract with the above criteria, a Unique Owner Transfer (UOT) contract (see in Table

I-1). UOT contracts are the most potent honeypots because:

1. There is no way to withdraw the money out of a contract other than claiming ownership.

2. There is no way to claim ownership of the contract.
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This model identifies a contract as a possible honeypot and thus warns the user that 1) there is

no way to withdraw the money out of a contract other than claiming the ownership 2) there is no

way to claim the ownership of the contract. Having this information, a user is more cautious

about interacting with a UOT smart contract that is asking them to invest money. Obviously, not

all UOT contracts are malicious and there are benign contracts that take money from any source

but only transfer it to the owner of the contract.5

5.2.2 Tricks in code

Our research on detected honeypots reveals that the distinction between benign and malicious

contracts can often be traced to the presence of deceptive code tricks. These tricks manipulate

the user into believing they have the ability to withdraw funds or transfer ownership, even

though these operations are impossible in a UOT contract. To further determine the presence

of a honeypot, we propose two additional heuristics in the following to be applied to the UOT

contracts. This multi-layered approach provides a more robust and thorough method of detecting

and avoiding honeypots in the smart contract ecosystem.

• Fake Money Transfer:

1 contract Lottery {

2 address public owner = msg.sender;

3 ...

4 function guess(uint8 number) public payable {

5 if (keccak256(number) == secretNumberHash && msg.value > this.

balance) {

6 msg.sender.transfer(this.balance + msg.value);

7 }

8 }

9 }

Listing I.1: A simplified example of a fake money transfer

5 The address of a benign UOT contract: 0xfdc39e06a7297268a0f6d5bd1692ae5fa9026152
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In most honeypots, the trap is hidden inside a money transfer misleading the victim to exploit

the contract with the hope of getting the money from it. However, this money transfer is fake

and either it never executes, or its value is zero despite the victim’s expectations. An example

is shown in Listing I.1. According to this contract, the user gets paid by guessing the right

number and sending some ETH. However, this contract shows a balance disorder honeypot

and the money transfer in line 6 will not add any funds to the victim’s account.

• Fake Ownership Change:

1 contract DickMeasurementContest {

2 address owner = msg.sender;

3 modifier onlyowner {

4 require (msg.sender == owner);

5 _;

6 }

7 function mineIsBigger() public payable {

8 if (msg.value > this.balance) {

9 owner = msg.sender;

10 }

11 }

12 function withdraw() public onlyowner {

13 ...

14 msg.sender.transfer(this.balance);

15 }

16 function kill() public onlyowner {

17 if(this.balance == 0)

18 selfdestruct(msg.sender);

19 }

20 }

Listing I.2: A simplified example of fake ownership change in a contract

Some attackers delude the victims by placing a fake change of ownership in the code. In this

case, the victim attempts to exploit the bogus leak and claim ownership of the contract but

the functionality does not actually work as intended. An example of this trick is shown in
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Listing I.2 where a naive user might think they can demand ownership of the contract by

calling the function mineIsBigger and transferring funds to the contract. However, this

code snippet is an example of the "balance disorder" honeypot technique (Torres et al., 2019)

which states that the balance of the contract increments before the execution of the smart

contract and therefore the if statement in line 5 is never going to be true.

5.3 Design overview

Bytecode Splitter

Symbolic Execution
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UOT Detector

Trick Analysis

Honeypot ReportRT
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Figure-A I-1 An overview of the HoneyVader’s design showing the main

components in grey

In this section, we present a design overview of our model. The architecture of our tool, as

illustrated in Figure I-1, consists of five primary modules in grey. These modules work in a

sequential manner, where each step relies on the information generated from the previous step.
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It is important to note that these modules cannot function independently, and each one is an

integral component of the overall tool.

The process of detecting a honeypot begins by giving the creation bytecode as the input into

the BytecodeSplitter, which separates the constructor bytecode and runtime bytecode. The

constructor bytecode is then symbolically executed using the SymbolicExecution module, and

the results are analyzed by the ConstructorAnalysis module to extract information about the

constructor parameters. Subsequently, the runtime bytecode undergoes symbolic execution and

the results are passed on to the UOT Detector and TrickAnalysis. UOT Detector module takes

the owner variable as the input and evaluates whether all the funds going out of the contract are

directed to the owner, based on the extracted information about the owners and money flows

within the contract. If a contract gets labeled as UOT, the TrickAnalysis module is utilized to

determine whether the contract is indeed a honeypot. Moreover, we use the constructor variables

as the results of constructor analysis and use them to add two new modules to Honeybadger to

detect racing time and map key encoding trick honeypots. As it is shown in the design overview,

for each component we also use Z3 as the constraint solver.

5.4 Expanding Honeybadger

Honeybadger has a modular design, which allows for the easy expansion and detection of

new types of honeypots by incorporating appropriate heuristics into the main module. The

constructor variables that are extracted during the constructor analysis process can be utilized to

develop new heuristics for detecting various pre-defined honeypot techniques. In addition to

the development of a new honeypot detection method, the results of the constructor analysis

can be used to develop two new heuristics for detecting racing time and map key encoding

trick honeypots introduced in previous works, which can then be integrated into Honeybadger’s

detection module.

The first heuristic uses the constructor variables to identify instances of racing time honeypots,

which involve the use of time-based conditions to trick users into depositing money and
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withdrawing more but leaving no time for them to do the withdrawal transaction. By analyzing

the path conditions of the contract calls, Honeybadger will be able to determine if a racing

time honeypot is in play by checking for variables that are less than or greater than a certain

timestamp value. The second heuristic is designed to detect map key encoding trick honeypots,

which involve the manipulation of mapping variables to deceive users. By examining the list

of hash values associated with the mapping variables and comparing them to the hash values

used in the contract, Honeybadger will be able to identify if a map key encoding trick is being

employed. With the addition of these two heuristics, Honeybadger’s detection capabilities are

expanded, providing a more robust and comprehensive solution for detecting honeypots in

Solidity contracts.

6. Implementation

This section includes details about the implementation of our tool. We implement our tool in

Python with roughly 4,000 lines of code. In the following subsection, we describe the details of

each component.

6.1 Splitting bytecode

The BytecodeSplitter module plays a crucial role in our methodology by extracting the bytecode

related to the constructor parameters from the EVM creation bytecode. The input to this module

can be either the solidity source code or directly the EVM bytecode. In the case of solidity

source code, in an additional step, we compile it to the bytecode using solc compiler with the

command solc �bin to get the binary of the creation bytecode.

The creation bytecode is in the form of a hex number, which starts with the constructor bytecode

and is followed by the runtime bytecode. Depending on the Solidity version, the constructor

bytecode ends with a distinct set of opcodes that form the splitting line. In the compiler version

0.4., the constructor bytecode ends with the opcodes CODECOPY, PUSH1 0X00, RETURN,

and STOP. However, for version 0.5 to 0.8, the constructor bytecode ends with CODECOPY,

PUSH1 0X00, RETURN, and INVALID.
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6.2 Symbolic execution

In our tool, we have adopted and modified the symbolic analysis model introduced by (Luu et al.,

2016). This model symbolically executes the bytecode, explores all potential execution paths,

and detects the constraints that must be satisfied for the program to behave in a particular manner.

Oyente utilizes basic blocks to depict a sequence of instructions in the Ethereum Virtual Machine

(EVM) code that are executed one after the other without any branches or jumps in between.

For each block, it then evaluates if a path is feasible through the use of a Z3 constraint solver

which takes a set of constraints as input and determines if there is any assignment of values to

the variables that satisfies all the constraints. A feasible path refers to a specific execution path

of a program that adheres to the constraints of the inputs and other specified conditions during

the analysis. We define an opcode in a basic block satisfiable if there is a feasible execution path

to it.

As a result of the symbolic analysis performed on the constructor bytecode and runtime bytecode,

we obtain useful information to guide the next steps. This information is separated for each

bytecode and turns into the input for each module.

• Constructor:

- A list of execution paths 𝑃.

- A list of storage writes 𝐶𝑂𝑁_𝑆 made during the SSTORE opcode, which is represented

as a tuple (𝑐𝑜𝑛_𝑠𝑣𝑎𝑟 , 𝑐𝑜𝑛_𝑠𝑣𝑎𝑙) where 𝑐𝑜𝑛_𝑠𝑣𝑎𝑟 is the stored variable in the constructor,

and 𝑐𝑜𝑛_𝑠𝑣𝑎𝑙 is the stored value in the constructor.

• Runtime:

- A list of execution paths 𝑃.

- A list of storage writes 𝑆 produced during the SSTORE opcode represented as a tuple

(𝑠𝑣𝑎𝑟 , 𝑠𝑣𝑎𝑙) where 𝑠𝑣𝑎𝑟 is the stored variable and 𝑠𝑣𝑎𝑙 is the stored value.

- A list of calls 𝐶 made during the CALL or DELEGATECALL opcode, represented as a

tuple (𝑐𝑟 , 𝑐𝑣, 𝑐𝑡 , 𝑐𝑝𝑐) where 𝑐𝑟 is the recipient, 𝑐𝑣 is the call value, 𝑐𝑡 is the type of call,

and 𝑐𝑝𝑐 is the program counter of the opcode.
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- A list of suicides 𝑆𝐶 made during the SUICIDE or SELFDESTRUCT opcode, represented

as a tuple (𝑠𝑐𝑟 , 𝑠𝑐𝑣) where 𝑠𝑐𝑟 is the recipient, and 𝑠𝑐𝑣 is the suicide value.

6.3 Constructor analysis

Smart contracts are deployed by an owner address, which is a unique public key associated

with a wallet. Some contracts store the address of the creator in a constructor variable during

the initial deployment transaction and are thus referred to as owner-aware. This allows us to

retrieve information about the original contract creator. In contrast, other contracts do not store

the address of the creator in any variables, making them non-owner-aware. This results in

a lack of information about the original owner of the contract. After the completion of the

symbolic analysis on the constructor bytecode, we can obtain information about the constructor

parameters, including a list of owners, 𝑂. To identify the owners of the contract, we perform an

iteration over all storage writes of the constructor, 𝐶𝑂𝑁_𝑆, and verify if there exists a storage

write, 𝑠, where we can prove the equality of 𝑠𝑣𝑎𝑙 and 𝐼𝑠 using the Z3 solver. If such a storage

write exists, the corresponding 𝑠𝑣𝑎𝑟 is added to the list of owners, 𝑂. Finally, if 𝑂 is not an

empty set after the iteration, it indicates the detection of an owner-aware contract and goes to

the next module. Otherwise, the contract is non-owner-aware and it will not continue preceding.

6.4 UOT detector
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Figure-A I-2 An overview of the workflow of UOT detector module

The overall overview of the UOT detector is shown in Figure 3.4.



94

To detect a UOT contract, we iterate over all of the satisfiable calls 𝐶 and suicides 𝑆𝐶 and check

whether, for each call 𝑐 (or 𝑠𝑐), there exists an 𝑜𝑤𝑛𝑒𝑟 contained in 𝑂 who controls the cash flow

out meaning: 1) we can prove 𝑐𝑟 (or 𝑠𝑐𝑟) is equal to the 𝑜𝑤𝑛𝑒𝑟 using Z3 solver, or 2) 𝑐𝑟 is a

constant address meaning it is hard coded in the contract, or 3) the path conditions of 𝑐 (or 𝑠𝑐)

contains a comparison between 𝐼𝑠 and 𝑜𝑤𝑛𝑒𝑟 meaning only 𝑜𝑤𝑛𝑒𝑟 can trigger 𝑐 (or 𝑠𝑐), or 4)

the path conditions of 𝑐 contains a comparison between 𝐼𝑠 and a constant address meaning a

hard coded address by the contract’s owner can trigger 𝑐 (or 𝑠𝑐).

If one of these conditions is true for 𝑐, we have to check if 𝑜𝑤𝑛𝑒𝑟 is changeable in the code.

To detect this, we iterate over all of the storage writes 𝑆 and check whether there is a storage

write 𝑠, where 𝑠𝑣𝑎𝑟 is equal to 𝑜𝑤𝑛𝑒𝑟. If 𝑠 ∈ ∅, 𝑜𝑤𝑛𝑒𝑟 is unchangeable and as a result of this

stage, we add it to the list of funded unchangeable owners 𝐹𝑈𝑂. We also add 𝑐𝑝𝑐 to the list of

satisfiable calls to the owner 𝑆𝐶𝑂.

After iterating over all of the calls contained in 𝐶 and suicides contained in 𝑆𝐶, we detect

CFOFO, if |𝑆𝐶𝑂 | = |𝐶 | + |𝑆𝐶 |

6.5 Trick analysis

If the contract is a UOT contract, we proceed to identify two potential tricks in the contract:

• Fake Money Transfer We detect a fake money transfer by iterating through the list of calls

𝐶 and checking if there exists a call 𝑐 such that 𝑐 ∉ 𝑆𝐶𝑂, 𝑐𝑣 > 0, and 𝑐𝑟 ≠ 𝑜𝑤𝑛𝑒𝑟 for any

𝑜𝑤𝑛𝑒𝑟 in 𝑂.

• Fake Ownership Change To detect any fraudulent ownership changes, we traverse the list

of owners 𝑂 and verify that for each 𝑜𝑤𝑛𝑒𝑟 ∈ 𝑂 there exists corresponding storage write 𝑠

whose variable, 𝑠𝑣𝑎𝑟 , is equal to 𝑜𝑤𝑛𝑒𝑟, provided 𝑜𝑤𝑛𝑒𝑟 ∉ 𝐹𝑈𝑂.

6.6 Honeybadger’s expansion

As is shown in Figure I-1, we use the results of the constructor analysis to add two new modules

to Honeybadger to detect new types of honeypots.
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6.6.1 Racing time

To detect racing time in a smart contract, we first iterate over all the function calls contained in

the contract and check if there exists a call 𝑐, whose path conditions consist of a comparison for

the timestamp. We then collect a set of variables less than a specific timestamp value 𝐼𝐻_𝑠, and

a set of variables greater than 𝐼𝐻_𝑠. Next, we examine the storage variables of the constructor

and replace the variables corresponding to the less than and greater than sets with their respective

values. Finally, we report a racing time if we find a comparison of 𝑙𝑡 (less than) and 𝑔𝑡 (greater

than) such that 𝑙𝑡 < 𝐼𝐻_𝑠 < 𝑔𝑡 and the difference between 𝑔𝑡 and 𝑙𝑡 is less than 5 minutes. This

method enables us to identify potential racing time vulnerabilities in the smart contract

6.6.2 Map key encoding trick

In Solidity, a mapping is a key-value store that is commonly used to store variables. The hash of

the map key is used as the address to store the variable in the mapping. However, this method of

storing variables can be vulnerable to map key encoding tricks. To detect map key encoding

tricks, we first iterate over a list of hashes contained in 𝐻. We check if there exists a hash ℎ,

whose value is used to store a variable both in the constructor and in the code. We then save the

’raw string’ of the hash as a map key used in the contract. We also iterate over all the function

calls contained in the contract 𝐶. We check if there exists a call 𝑐, where the map key 𝑚 is used

in its path conditions, 𝑐𝑟 or 𝑐𝑣. We use the map key list to detect any instances of a map key

encoding trick. Specifically, we look for a key in the map key list whose UTF-8 encoded form is

the same as 𝑚, but has a different ASCII representation. If we find such an instance, we can flag

it as a map key encoding trick.

7. Evaluation

In this section, we first present the parameters of our experiments and then propose our final

results. Then we compare our results to the state-of-the-art tool Honeybadger which also
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uses symbolic execution for detecting honeypots. We continue by analyzing one of the newly

discovered honeypot techniques and lastly, we present the limitations of our research.

7.1 Experiments

In this section, we present the setup we used for the experiments and the dataset we used. The

setup includes details on the hardware and software configurations of the machine used to run

the experiments, as well as the parameters used for each experiment. The dataset includes

information on the contracts deployed in Ethereum. By providing this information, we aim to

provide a clear understanding of the experimental conditions and data used in our study.

Setup: For our experiments, we utilized a computing cluster consisting of two nodes. Each

node was equipped with a single Intel Xeon Gold 5118 CPU, which boasts 48 cores operating at

a frequency of 2.30GHz. The cluster was running on a 64-bit Linux kernel version 5.15.0-47-

generic, which provided a stable and reliable environment for our experiments.

To obtain the initial bytecode of the contracts, we used the Solc compiler version 0.4.25, which is

a popular Solidity compiler that compiles smart contracts into EVM bytecode. We then utilized

version 1.8.16 of Geth’s EVM to retrieve the assembly from the bytecode. This version of Geth’s

EVM was selected for its stability and compatibility with the version of Solc that we used. The

combination of Solc and Geth’s EVM provided a reliable and consistent way to generate the

necessary bytecode and assembly for our experiments.

The symbolic execution setup included the following configurations:

• Z3 constraint solver version 4.7.1.

• Loop limit of 10.

• Depth limit for DFS of 50.

• Gas limit of 4 million.

• A timeout of 1 second per Z3 request.

• A timeout of 30 minutes to symbolically execute a contract.
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Additionally, a timeout of 10 minutes was set to run all of the heuristics for each contract.

Dataset: Our dataset is comprised of the creation bytecode of smart contracts deployed on

Ethereum. Since over 98% of the contracts are duplicates, it was more efficient to store only their

hashes instead of the whole bytecode. After eliminating duplicates, we removed contracts with

similar bytecode hashes, resulting in a set of 375,962 unique contracts. The initial bytecodes of

these contracts were then downloaded and stored as our final dataset.

We conducted HoneyVader experiments on 375,962 unique smart contracts. The overall process

took an average completion time of 323 seconds per contract. The results showed that 98% of

contracts successfully completed the symbolic execution process and almost all of the contracts

successfully completed the application of our heuristics in less than 10 minutes. Out of all the

contracts evaluated, 121,876 contracts (32%) demonstrated a code coverage greater than 90%.

7.2 Metrics

In this study, we evaluate the effectiveness of our tool using several metrics.

• TP (True Positives): This category represents contracts that our methodology and verification

confirm to be honeypots.

• FP (False Positives): This group includes the contracts that were flagged as honeypots by

our tool but are not verified honeypots in the verification phase.

• FN (False Negatives): This class of contracts refers to the ones that were detected as benign

contracts by mistake but are actually honeypots. We use this metric to compare HoneyVader

to Honeybadger.

• Precision: P is the proportion of true positives among all predicted positives and we use it to

evaluate our detection tool. It is calculated as:

𝑝 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (A I-1)
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7.3 Results

In this section, we present the results of our analysis based on the metrics defined in section 4.2.

Our study successfully extracted constructor parameters for all the contracts in the bytecode

dataset. Specifically, out of the analyzed contracts, we identified 16,687 that were owner-aware,

and these were further analyzed for potential honeypot activity. From this group, we uncovered

4,399 UOT contracts that accepted funding from any source but transferred it to only one

address, which was invariably the owner’s address. Given that such behavior is indicative of

potential honeypot activity, we considered these contracts suspicious and marked them for

further investigation. Overall, HoneyVader labeled 139 contracts as honeypots. From this

Figure-A I-3 Number of contracts with source code and bytecode for UOT

contracts, honeypots using fake money transfer, honeypots using fake ownership

change and honeypots overall

number 65 of them are open-source and the rest have only their bytecode available. Our analysis

has revealed that 108 of the suspicious contracts employ a fake money transfer method to deceive

victims, while 31 entice them into taking ownership of the contract with the hope of withdrawing

money. These results emphasize the critical importance of exercising caution when interacting

with contracts that exhibit the UOT characteristic. To visually illustrate our primary findings,

we have included a figure that clearly displays the frequency of UOT contracts and each type of
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attack method used by attackers(see Figure I-3). Interestingly, our results indicate that attackers

tend to rely more on the fake money transfer method, as opposed to the fake ownership change,

in their honeypot schemes.

7.4 Validation

To validate our results about honeypot contracts, we conducted a thorough manual analysis of

the detected honeypots with their source code available. Our validation process consisted of

both dynamic and manual analysis.

Based on our results, 65 contracts detected as honeypots have their source code available. For

our first step of validation, we used Etherscan (Etherscan, n.d.) to obtain the source code of

each one of these contracts and manually analyzed the code for any potential honeypot tricks.

To verify our manual analysis, we then ran each contract in Remix IDE (Remix IDE, n.d.) and

performed transactions in a test environment to observe the contract’s behavior.

In addition, we utilized transaction behaviors as a form of validation for these 65 contracts.

Honeypots that were successful in trapping victims show a rug pull pattern in their transactions,

where they wait for a victim to deposit funds before pulling all the funds out of the contract.

Along with normal transactions that show ETH transfers carried out through a smart contract,

we also analyzed internal transactions, which show the outgoing funds of the contract triggered

by an external transaction. These transactions reveal the accounts to which the funds have been

transferred.

Finally, we conducted a comprehensive review of the comment section on Etherscan, which

often includes valuable information and warnings about scams or honeypots. This enabled us

to gather additional insight into the potential threats posed by the contracts we analyzed. In

particular, we searched for comments that mentioned issues or red flags associated with the

contracts, such as suspicious or fraudulent behavior. Additionally, this helped us ensure the

accuracy and reliability of our findings, as we were able to confirm the existence of certain

contracts and their associated risks, based on the feedback and experiences shared by other users.
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Table-A I-3 Number of the evaluation set, owner-aware contracts, UOT contracts, true

positives and false positives for each honeypot tricks

Evaluation Set Owner Aware UOT Honeypot

375,962 16,687 4,399

Fake Money Transfer Fake Ownership Change
TP FP TP FP

57 5 2 1

The verification of our results is summarized in Table I-3. Overall out of 4,399 suspicious UOT

contracts, we detect 65 honeypots. From this number, 59 of them are true positives as well as 6

false positives which happened as the result of our limitations explained in subsection 8. Overall,

our tool achieves a 90% precision in detecting intrinsic honeypots, regardless of the technique

used in them.

7.5 Baseline solution

Table-A I-4 Comparing Honeybadger’s results to HoneyVader

Honeybadger HoneyVader
TP FP Owner Aware UOT Trick Found

TP FP TP FP

BD 20 - 20 19 - 19 -

ID 41 7 47 43 1 - -

SESL 12 - 12 - - - -

TDO 4 - 4 4 - 4 -

US 32 - 31 17 - 16 -

HT 12 - 12 - - - -

In order to evaluate the performance of our honeypot detection tool, we selected Honeybadger

as a baseline model. Honeybadger is a widely recognized tool for honeypot detection and

employs the same analysis methodology as our tool. By comparing HoneyVader to Honeybadger,

we can better understand the strengths and weaknesses of our approach. To conduct the

comparison, we performed two tests. The first test involved analyzing the baseline dataset of

Honeybadger’s results separately for each intrinsic honeypot technique. Since Honeybadger

presents its performance results separately for each honeypot technique, we discussed the
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comparison for each technique individually. We also summarized our results in Table 4.2, which

provides a comprehensive overview of the performance comparison between our tool and the

Honeybadger baseline.

• Balance Disorder: Our results indicate that our tool successfully identified all 19 UOT

contracts in the balance disorder dataset, with the exception of one that could not be detected

due to the limitations of the Z3 solver. Additionally, we detected one zero-day honeypot that

utilized a balance disorder technique.

• Inheritance Disorder: Regarding the inheritance disorder dataset, our tool found 43 UOT

contracts among the 48 honeypots detected by Honeybadger. Combining our UOT heuristic

with Honeybadger’s inheritance disorder heuristic showed an increase of 6% in precision.

To make this combination, we first ran the UOT detector on all 48 honeypots flagged by

Honeybadger and detected 44 of them as UOT. Then we ran the ID heuristic on the 44 UOT

contracts resulting in 44 flagged honeypots. From this number, 4 of them were false positives

while 40 of them were detected as true positives. We calculate the precision of Honeybadger

and (HoneyVader + Honeybadger) as follows:

- Precision of Honeybadger: 41 / (41 + 7) = 0.85

- Precision of (Honeybadger + HoneyVader): 40 / (40 + 4) = 0.91

• Skip Empty String Literal - Hidden Transfer: Unfortunately, due to limitations of our

symbolic execution engine in handling throw in Solidity, we were unable to detect any

UOT contracts in the skip empty string literal - hidden transfer dataset using HoneyVader.

However, our tool discovered three new zero-day honeypots with a hidden transfer technique

that were not detected by Honeybadger.

• Uninitialized Struct: In the uninitialized struct dataset, we identified 17 UOT contracts

among 31 owner-aware contracts. After validating the non-UOT contracts, we discovered

that 13 of the contracts detected as true positive by Honeybadger were not honeypots, and in

five of them, we observed users withdrawing money from the contract. This highlights using

UOT heuristic before trying to find honeypots. Moreover, one of the detected honeypots also

did not utilize the uninitialized struct technique, highlighting the importance of detection
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tools being independent of specific honeypot techniques. Lastly, we found one zero-day

honeypot in this dataset.

During the second round of experiments, we applied HoneyVader to all the datasets used by

Honeybadger, which included 151,935 unique contracts. Within this dataset, we discovered 7

instances of false negatives that were missed by Honeybadger. Out of these, 5 contracts used

techniques previously identified in (Torres et al., 2019), while the remaining 2 employed a new

technique. However, the specific technique used is not our primary concern; what matters most

is whether the contract is UOT and capable of deceiving the user. Table III-1 contains the

addresses of these honeypots.

8. Limitations

Analyzing smart contracts’ bytecode is challenging. Despite the advantage of detecting honeypots

based on bytecode, the limited availability of open-source contracts (only 2% of all contracts)

makes it difficult to identify certain types of honeypots. Some information is lost during the

compilation process from source code to bytecode, such as operations that are present in the

source code but do not change the state of the contract. For instance, a newly proposed honeypot

technique, unexecuted call honeypot (Camino et al., 2020), involves the attacker performing a

fund transfer through a call without the necessary parenthesis to execute the call. This results

in the call not appearing in the bytecode and only being visible in the source code. Our tool

can still detect this contract as UOT, as it is an intrinsic honeypot, but finding the trick in such

contracts can be difficult, as the bytecode does not provide any information about the call.

9. Conclusion

In this thesis, we have presented a novel approach to detect honeypot scams in Ethereum smart

contracts at the bytecode level through symbolic execution. Our findings demonstrate that

analyzing creation bytecode instead of runtime bytecode provides valuable information about

constructor parameters, enabling the development of a heuristic to detect honeypots without

prior knowledge of the specific trick used. Our approach was able to detect different types of
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honeypots based on the Honeybadger classification and identified a new class of honeypots.

Moreover, we expand Honeybadger to detect more honeypots. In conclusion, our approach to

detecting honeypot scams in Ethereum smart contracts offers a significant contribution to the

field and provides a valuable tool for protecting against malicious actors. While our research

focused on honeypots in smart contracts, there is also a growing concern around honeypot

tokens especially in Binance Smart Chain (BSC), that encourage users to buy the token and then

lock their money inside the contract, limiting their access to sell the token or cash out from the

contract. We believe that investigating these honeypots in both Ethereum and BSC would be an

important direction for future research.





APPENDIX II

SOURCE CODE OF THE IMPLEMENTATION

1 def find_the_owners():

2 global owners

3 global owner_aware

4 owners = []

5 owner_aware = False

6 if constructor_variables["sstore"]:

7 for con_var in constructor_variables["sstore"]:

8 if is_expr(con_var["variable"]) and is_expr(con_var["value"]):

9 owner_found_by_tx_origin = provee(Extract(159, 0, con_var["

value"]) == Extract(159, 0, tx_origin))

10 owner_found_by_message_sender = provee(Extract(159, 0,

con_var["value"]) == Extract(159, 0, message_sender))

11

12 if owner_found_by_tx_origin == True or

owner_found_by_message_sender == True:

13 owners.append(con_var["variable"])

14 owner_aware = True

Listing II.1: Simplified code to find the owner of a contract

1 def owners_are_funded():

2 global owners

3 global sat_calls_to_owner

4 global owners_that_are_funded_and_do_not_change

5 unchangeable_owners = list(owners)

6 changeable_found = True

7 while(changeable_found):

8 changeable_found = False

9 for owner in owners:

10 if owner not in unchangeable_owners:

11 continue



106

12 if ownership_can_be_changed(owner, unchangeable_owners):

13 unchangeable_owners.remove(owner)

14 changeable_found = True

15 break

16 recipients_and_path_conds_and_pc = get_cash_flow_recipients()

17 if not recipients_and_path_conds_and_pc:

18 return None

19 some_owner_is_funded_in_this_call = []

20 for recipient_and_path_cond in recipients_and_path_conds_and_pc:

21 owner_is_funded_and_can_not_be_changed = []

22 recipient = recipient_and_path_cond[0]

23 for owner in owners:

24 owner_funded = False

25 # 1. owner_address = 0x7a617c2B05d2A74Ff9bABC9d81E5225C1e01004b

26 if isinstance(recipient , long) or isinstance(recipient , int):

27 owner_funded = True

28 # 2. owner.transfer(balance)

29 if not owner_funded:

30 if is_expr(recipient):

31 owner_funded = provee(Extract(159, 0, recipient) ==

Extract(159, 0, owner), recipient_and_path_cond[1])

32 # 3. require(msg.sender == owner)

33 if not owner_funded:

34 owner_funded = provee(Extract(159, 0, message_sender) ==

Extract(159, 0, owner), recipient_and_path_cond[1])

35 # 4. Extract(159, 0, Is) ==

698670862888103124090043688033161627232733560907

36 # require(Is == Real Address)

37 if not owner_funded:

38 s = Solver()

39 s.set("timeout", global_params.TIMEOUT)

40 s.add(recipient_and_path_cond[1])

41 if is_expr(recipient) and s.check() == sat:

42 models = s.model()

43 value = models.eval(recipient)
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44 owner_funded = provee(Extract(159, 0, message_sender)

== Extract(159, 0, value), recipient_and_path_cond

[1])

45 if owner_funded == True:

46 owner_changed = ownership_can_be_changed(owner,

unchangeable_owners)

47 else:

48 owner_changed = False

49 if owner_funded == True and owner_changed == False:

50 owner_is_funded_and_can_not_be_changed.append(True)

51 owners_that_are_funded_and_do_not_change.append(owner)

52 else:

53 owner_is_funded_and_can_not_be_changed.append(False)

54 if any(owner_is_funded_and_can_not_be_changed):

55 some_owner_is_funded_in_this_call.append(True)

56 sat_calls_to_owner.append(recipient_and_path_cond[2])

57 else:

58 some_owner_is_funded_in_this_call.append(False)

59 if all(some_owner_is_funded_in_this_call):

60 return True

61 return False

Listing II.2: Simplified code to detect a UOT contract

1 def ownership_can_be_changed(owner, owners_that_cant_be_changed):

2 for sstore in list_of_sstores:

3 if not (str(sstore["variable"]) == str(owner)):

4 continue

5 s = Solver()

6 s.set("timeout", global_params.TIMEOUT)

7 s.add(sstore["path_condition"])

8 satisfiable = s.check()

9 if satisfiable == unsat:

10 continue

11 if isinstance(sstore["value"], (long, int)):
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12 continue

13 if satisfiable == sat:

14 models = s.model()

15 value = models.eval(Extract(159, 0, message_sender))

16 if provee(Extract(159, 0, message_sender) == Extract(159, 0,

value), sstore[’path_condition’]):

17 continue

18 dependent_on_owner = False

19 for own in owners_that_cant_be_changed:

20 dependent_on_owner = provee(Extract(159, 0, message_sender) ==

Extract(159, 0, own), sstore[’path_condition’])

21 if dependent_on_owner:

22 break

23 if dependent_on_owner:

24 continue

25 return True

26 return False

Listing II.3: Simplified code to detect if an owner of a contract is changeable in code

1 def detect_fake_ownerchange_trick():

2 for owner in owners:

3 for sstore in list_of_sstores:

4 if not is_payable(sstore):

5 continue

6 if str(sstore[’variable’]) == str(owner) and (owner in

owners_that_are_funded_and_do_not_change):

7 return True

Listing II.4: Simplified code to detect a fake ownership change in a UOT contract

1 def detect_fake_call_trick():

2 payable_call_trick = False

3 for suicide in list_of_suicides:

4 if sat_calls_to_owner and suicide["pc"] not in sat_calls_to_owner:
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5 if not is_payable(suicide):

6 continue

7 return True

8 for index in list_of_calls:

9 for call in list_of_calls[index]:

10 if call["pc"] in unknown_calls:

11 continue

12 # either: unsatisfiable call / calling another smart contract /

sending 0 ethers

13 if sat_calls_to_owner and call["pc"] not in sat_calls_to_owner:

14 if not is_payable(call):

15 continue

16 if is_expr(call["recipient"]) and not str(call["recipient"

]) == "0":

17 calling_another_contract = (not is_expr(call["value"]))

and (call["value"] == 0)

18 if not calling_another_contract:

19 print("one unsat or zero money transfer!", call["pc

"])

20 payable_call_trick = True

21 call_to_owner = False

22 recipient = get_vars(call["recipient"])

23 for owner in owners:

24 if str(owner) in str(recipient):

25 call_to_owner = True

26 break

27 if (not call_to_owner and payable_call_trick ==

True):

28 return True

Listing II.5: Simplified code to detect a fake call in a UOT contract

1 def the_map_key_used_in_call(call, hash):

2 map_key_address = "Ia_store_" + str(hash[’value’])

3 for condition in call[’path_condition’]:
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4 if not is_expr(condition):

5 break

6 if is_in_expr(str(map_key_address), condition):

7 return hash[’raw_string’].rstrip(’\x00’)

8 if is_expr(call[’value’]):

9 if is_in_expr(str(map_key_address), call[’value’]):

10 return hash[’raw_string’].rstrip(’\x00’)

11 if is_expr(call[’recipient’]):

12 if is_in_expr(str(map_key_address), call[’recipient’]):

13 return hash[’raw_string’].rstrip(’\x00’)

14 return None

15 def detect_map_key_encoding():

16 all_hashes = []

17 all_sstores = []

18 map_key_list = []

19 for hash in constructor_variables["hash"]:

20 all_hashes.append(hash)

21 for hash in list_of_hashes:

22 all_hashes.append(hash)

23 for sstore in constructor_variables["sstore"]:

24 all_sstores.append(sstore)

25 for sstore in list_of_sstores:

26 all_sstores.append(sstore)

27 for sstore in all_sstores:

28 for hash in all_hashes:

29 if hash["value"] == sstore["address"]:

30 encoded_string = hash[’raw_string’].rstrip(’\x00’)

31 map_key_list.append(encoded_string)

32 for index in list_of_calls:

33 for call in list_of_calls[index]:

34 for hash in all_hashes:

35 map_key_in_call = the_map_key_used_in_call(call, hash)

36 if not map_key_in_call:

37 continue
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38 map_key_in_call = unicode(map_key_in_call , "utf-8", errors=

’replace’)

39 decoded_map_key_in_call = unidecode(map_key_in_call)

40 for map_key in map_key_list:

41 map_key = unicode(map_key, "utf-8", errors=’replace’)

42 decoded_map_key = unidecode(map_key)

43 if map_key != map_key_in_call and decoded_map_key ==

decoded_map_key_in_call:

44 heuristic = {}

45 heuristic["function_signature"] = call["

function_signature"]

46 heuristic["block"] = call["function_signature"]

47 heuristic["type"] = HeuristicTypes.MAP_KEY_ENCODING

48 heuristic["pc"] = call["function_signature"]

49 if not heuristic in heuristics:

50 heuristics.append(heuristic)

Listing II.6: Simplified code to detect map key encoding trick honeypot

1 def detect_racing_time():

2 # the minimum amount of time to do a tx in ethereum is considered to be 5

mins

3 for index in list_of_calls:

4 for call in list_of_calls[index]:

5 if owner_aware and sat_calls_to_owner and

owners_that_are_funded_and_do_not_change:

6 if call["pc"] in sat_calls_to_owner and is_expr(call["

recipient"]):

7 for owner in owners_that_are_funded_and_do_not_change:

8 unchangeable_owner = provee(Extract(159, 0, call["

recipient"]) == Extract(159, 0, owner))

9 if unchangeable_owner:

10 continue

11 condition_args = []

12 comp_args_lt = []
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13 comp_args_gt = []

14 rct_possible = False

15 for condition in call["path_condition"]:

16 if is_expr(condition):

17 if "IH_s" in str(condition) and condition in

list_of_comparisons:

18 for con_var in constructor_variables["sstore"]:

19 for var in get_vars(condition):

20 if str(var) == str(con_var[’variable’]):

21 if not is_expr(con_var[’value’]):

22 condition = substitute(condition , (

var, BitVecVal(con_var[’value’

], 256)))

23 else:

24 condition = substitute(condition , (

var, con_var[’value’]))

25 simplified_condition = simplify(condition)

26 expr_args = get_ULE_expr_args(simplified_condition)

27 condition_args.append(expr_args)

28 while condition_args:

29 args = condition_args.pop()

30 if args:

31 args = args.pop()

32 if is_in_expr(’IH_s’, args[0]):

33 comp_args_gt.append(args[1])

34 else:

35 comp_args_lt.append(args[0])

36 minimum = bv_min(comp_args_gt)

37 maximum = bv_max(comp_args_lt)

38 if provee(ULE((minimum - maximum), 300), minimum > maximum,

*call["path_condition"]) == True:

39 heuristic = {}

40 heuristic["function_signature"] = call["

function_signature"]

41 heuristic["block"] = call["block"]
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42 heuristic["type"] = HeuristicTypes.RACING_TIME

43 heuristic["pc"] = call["pc"]

44 if not heuristic in heuristics:

45 heuristics.

Listing II.7: Simplified code to detect racing time honeypot





APPENDIX III

TABLES IN ANNEXES

Table-A III-1 Addresses of zero-day Honeypots

Contract Address
0x08fc24c9128591b74191fcff6833E746BA67d63e

0x26B5962250B779ab0F33970738A46FcFb00a70b9

0x2BB5B9f83391d4190f8b283Be0170570953c5a8e

0x31FD65340A3d272E21Fd6ac995f305CC1AD5f42A

0x5ABb8dDA439BECBd9585D1894Bd96Fd702400fA2

0xB11E0464CBCf0A06BBE29d8882c9FC7a96CcA9FB

0x223b0ee581719d4c6ae36f1ba1dd4101e5409c1c

0x0Dc11B7Ed751594906BCe3a7091952b30528ee7E

0xE952CBf5C1480032537c57874DE3e949203Ed623
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