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Optimisation de la consommation d’électricité utilisant un système de stockage d’énergie
thermique et un système de stockage d’énergie par batterie dans les bâtiments intelligents

Zohreh ROSTAMNEZHAD

RÉSUMÉ

En raison de la consommation d’électricité variable dans les bâtiments pendant la journée, les

systèmes de stockage d’énergie (SSE) sont utilisés pour stocker l’énergie et la restituer aux

heures de pointe pour réaliser l’écrêtage de la charge de pointe, afin d’économiser les coûts,

fournir la demande de la charge et augmenter la qualité de l’alimentation ainsi que la stabilité.

Cependant, compte tenu de la capacité limitée des SSE et de leurs diverses contraintes, il est

difficile de répondre entièrement aux critères d’écrêtement des pointes de charge déterminés par

les compagnies d’électricité. La nouveauté de la présente thèse est l’utilisation d’un système de

stockage d’énergie thermique (SSET) parallèlement au stockage d’énergie par batterie (SSEB)

pour compenser les limitations des SSEB et définir la charge/décharge optimale des SSE par des

approches d’optimisation.

L’unité de gestion de l’énergie proposée utilise un système de stockage d’énergie thermique

(SSET) et un système de stockage d’énergie par batterie (SSEB) pour stocker l’énergie en

période creuse et la décharger en période de pointe. Le programme de charge/décharge optimal

de TESS et BESS a une grande importance dans la réalisation d’un écrêtage complet de la charge

de pointe. Par conséquent, les horaires de charge/décharge de SSET et SSEB sont formulés

comme un problème d’optimisation. Dans un premier temps, l’optimisation par essaims de

particules (PSO) est utilisée afin d’obtenir un horaire optimal en raison de son efficacité et de son

temps de calcul. L’approche mathématique est également appliquée pour prouver la convexité

du problème et l’unicité de la solution. Dans un deuxième temps, pour valider la solution

optimale obtenue par PSO, l’apprentissage par renforcement (RL) est employé et les résultats

sont comparés. Dans ce contexte, le problème d’optimisation est formulé comme un processus

de décision de Markov puis résolu par la méthode d’apprentissage Q. Pour assurer la fiabilité

et la stabilité de l’alimentation, tous les types de charges, y compris les charges électriques

branchées et thermiques sont considérées et supportées par les SSE pendant les périodes de

pointe. De plus, pour modéliser les composants et les charges du bâtiment, la modélisation en

boîte grise est adoptée.

L’efficacité des méthodes proposées est démontrée en utilisant la consommation électrique réelle

d’un bâtiment du campus. Les résultats montrent que les méthodes sont capables de définir les

horaires de charge/décharge des SSE de façon optimale afin de réduire les coûts tout réduisant la

capacité du SSEB.

Mots-clés: Gestion de l’énergie, Essaims de particule, apprentissage par renforcement, Système

de stockage d’énergie thermique, Système de stockage d’énergie par batterie.





Optimization of Electricity Consumption Using Thermal and Battery Energy Storage
Systems in Smart Buildings

Zohreh ROSTAMNEZHAD

ABSTRACT

Due to the variable electricity consumption pattern in buildings during the day, energy storage

systems (ESS) are considered to be employed to store the energy and release it in peak hours to

achieve peak load shaving, save cost, provide the demand load, and increase the power quality and

stability. However, based on the limited capacity of ESSs and their limitations, it is challenging

to meet peak load shaving criteria determined by utility companies. The novelty of this thesis

is the employment of thermal energy storage system (TESS) alongside battery energy storage

system (BESS) to compensate for BESS limitations and define the optimal charging/discharging

schedule of TESS and BESS by optimization approaches.

The proposed power management unit uses a thermal energy storage system (TESS) and a battery

energy storage system (BESS) to store the energy in off-peak periods and discharge it in high

load demands. The optimal charging/discharging schedule of TESS and BESS has an important

role in achieving complete peak load shaving. Therefore, the charging/discharging schedules of

TESS and BESS are formulated as an optimization problem. In the first framework, particle

swarm optimization (PSO) is employed to obtain the optimal schedule due to its computational

time efficiency. The mathematical approach is also applied to prove the convexity of the problem

and the uniqueness of the solution. In the second framework and to validate the optimal solution

by PSO, reinforcement learning (RL) is employed and results are compared. In this context,

the optimization problem is formulated as Markov decision process (MDP) and then solved by

Q-learning algorithm. To provide power reliability and stability, all types of loads including

electrical plugged and thermal loads are considered to be supported by ESS during peak periods.

Moreover, to model the building components and loads, grey-box modeling is adopted. The

efficacy of the proposed framework is demonstrated by using real electric power consumption

data of a campus building. Results show these proposed frameworks are capable of defining

optimal charging/discharging of ESSs, saving cost, compensating for BESS limitations, and

reducing its capacity.

Keywords: Power management, particle swarm optimization, reinforcement learning, thermal

energy storage, battery energy storage.
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INTRODUCTION

The growing power demand in residential and commercial buildings is a serious issue. Commer-

cial and residential buildings consume a significant amount of 40% and 30% of total energy in

the U.S. and Canada, respectively (Energy Information, 2012). The electricity consumption

profile in buildings is variable during a day (Rahman, Srikumar & Smith, 2018) and this feature

intensifies meeting electricity demand during peak hours. Besides, consuming electricity in peak

hours is costly for end-users. Hence, peak load shaving is needed to smooth the consumption

pattern and reduce the electric power consumption in peak hours. Energy storage system has

an important potential to achieve peak load shaving by the reduction of the electrical energy

consumption during peak load demand, compensating the irregular generation patterns of

renewable energies, and enhancing the power quality and reliability. In this context, energy

storage system is charged during off peak hours and releases the energy in peak times to attain

peak load shaving in the smart buildings. Each storage technology has specific limitations and

requisites such as low energy density, high investment cost, very high self- discharge, small

to medium range of capacity for short time intervals. Battery energy storage as a primary

technology to be employed for peak load shaving. It is the practical option in terms of efficiency,

capability of charging and discharging in short time intervals and ease of installation. However,

battery energy storage system has relatively low life cycling times and high investment costs

including expenses related to its capacity which motivate to consider another energy storage in

parallel with batteries to gain more benefits.

In this sense, this thesis aims to focuses on achieving peak load shifting through the deployment

of TESS in parallel with BESS in the building. The optimal schedules for charging/discharging of

TESS and BESS are formulated as an optimization problem and solved through the optimization

process to attain peak load shifting and reduce BESS capacity. First, particle swarm optimization

is employed to obtain the optimal schedule of energy storage system. Then reinforcement

learning is employed to address the optimization problem and derive the optimal operation
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of energy storage system. To achieve complete peak load shaving, all loads in the building

including electrical plugged loads and thermal loads are considered to be supported by ESS

during peak periods. Moreover, TESS is allowed to use the waste heat produced in the HVAC

system. Therefore, the electrical boiler role, which has a significant electricity consumption, can

be reduced. Therefore, employing TESS leads to shave part of peaks and consequently reduce

the BESS capacity in the smart building.



CHAPTER 1

RESEARCH PROBLEM

1.1 Research Background

Extensive use of electricity has changed the face of the world, and it has influenced literally

every aspect of people’s lives in a way that one cannot imagine life without it. The growing need

for more electricity is gradually outpacing production, so limited energy sources, generation,

management and especially consumption patterns of energy have received more attention.

Buildings play an undeniable role in electric power consumption. It is essential to enhance the

energy efficiency of buildings to decrease the amount of consumption by using proper control

strategies in heating and conditioning systems. The major energy usage in buildings dedicates to

heating, ventilation, and air conditioning (HVAC) systems (almost 50%) (Saloux & Candanedo,

2018) and (Afram, Janabi-Sharifi, Fung & Raahemifar, 2017). Space heating individually, can

consume up to 60% of total energy in countries with extreme weather conditions such as Canada

(Afram et al., 2017).

Furthermore, a major issue in buildings is the large variation of loads in different hours of

day, especially peak times that leads to increase costs and high energy losses among many

other detriments. In terms of smoothing the consumption pattern, peak load shaving have been

proposed and many investigations have been conducted to address peak load shaving methods

including demand response programs, optimization and control strategies, and employing energy

storage systems (EESs). Among them, using energy storage system is considered as a feasible

solution to meet the specific needs and limitations in peak hours for buildings. There are different

methods for energy storage including mechanical, electrochemical, electrical, chemical, and

thermal energy storage (Luo, Wang, Dooner & Clarke, 2015). Among all, one of the most

extensively used ESS technologies in different domains (industry & domestic) is a rechargeable

battery energy storage system (BESS) that takes a relatively short time to be built and the place

of installation is much flexible. Another prominent ESS technology is thermal energy storage
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system (TESS). TESS is designed to keep heat or cold in a storage medium to keep it available

for later use, in various temperatures, place, or power conditions (Cabeza, Martorell, Miró,

Fernández & Barreneche, 2015). Consumers can reduce their energy consumption during peak

hours by shifting their energy usage from highly costed peak times to other times with low price

by storing the energy in off peak period and releasing the energy in peak times. Employing

energy storage system allows customers to simultaneously shave peak load and perform daily

activities as usual. Therefore, future research emphasizes on the proper application of EES for

peak shaving purpose.

To minimize the peak consumption (input from the grid) and achieve peak load shaving by using

ESS, it is necessary to develop an optimal schedule operation of HVAC system and ESS. The

charging and discharging schedule of the ESS are defined by employing optimization approaches

to optimize electric power consumption in peak hours and also reduce the cost. However,

obtaining the optimal operation of ESSs is challenging and not easy to implement. In this regard,

it is important to focus on defining an optimal operating strategy of ESS to gain more cost saving,

smooth the peak loads, and reduce the ESS capacity.

1.2 Research Motivation

Energy consumption is growing fast around the globe. Researchers in many fields are trying

hard to change the way energy is generated and consumed. Researchers and scientists have tried

to come up with new approaches such as renewable energy sources (RES) (Iqbal, Javaid, Iqbal,

Aslam, Khan, Abdul, Almogren & Alamri, 2018). To gain more benefits of renewable energy

sources and overcome the challenges of electricity transmission, renewable energy sources have

been applied in microgrid and buildings as an important source of consuming electricity.

Renewable energy sources have some intrinsic disadvantages such as their unpredictable nature

which is highly dependent on the specific season and time of day of generation. The other

more challenging problem associated with renewable energy sources is their slow dynamics,

which makes them unreliable energy sources to use in times of emergency situations. All these
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factors lead to a much higher need for flexibility in the power system for balancing the network.

Therefore, the implementation of appropriate technology to store the required energy for using

in demand times is essential to overcome the aforementioned challenges caused by the presence

of renewable energy sources in micro-girds.

As it has been mentioned, one of the significant continuous challenges of services is to maintain

a balance between electricity generation and demand. If the electricity generation system fails to

match the electricity demand accurately, instability, voltage fluctuation, and total blackouts will

possibly follow so that the power system will be influenced (Gajduk, Todorovski & Kocarev,

2014). So it is really important to track the consumption profile and meet the power electricity

demand.

Furthermore, the consumption profile is highly variable during a day, and a serious challenge in

power system management is to take care of the sudden increase in demand during the peak

load. The peak demand challenge is increasingly getting more serious due to the growth in

the number of end-users. Some European and North American countries have addressed this

problem by peak shaving methods. However, the continuous increase in demand will inevitably

lead to more power outages and raises the costs of electricity generation (Rahimi, Zarghami,

Vaziri & Vadhva, 2013), (Chua, Lim & Morris, 2016), (Joshi & Pindoriya, 2015).

Therefore, investigations have been conducted to address peak load shaving methods including

demand response management (Cichy, Beigelböck, Eder & Judex, 2016), integration of electric

vehicle (Wang & Wang, 2013), and using energy storage systems (Kalkhambkar, Kumar & Bhakar,

2016). One of the most effective strategies of peak load shaving is achieved through the process

of charging energy storage systems in off-peak periods and discharging in on-peak hours.

There are different methods for energy storage. Energy can be stored by different strategies

such as mechanical (Abdeltawab & Mohamed, 2016), battery energy storage system (BESS)

(Leadbetter & Swan, 2012), electrical (Chen, Cong, Yang, Tan, Li & Ding, 2009), chemical

(Niaz, Manzoor & Pandith, 2015), and thermal energy storage system (TESS)(Erdemir & Dincer,

2020). Each storage technology has specific limitations and requisites. For example, flywheels
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which is one of the important mechanical storage systems, have limitations including high

cost, low energy density, and mechanical fatigue (AL Shaqsi, Sopian & Al-Hinai, 2020). On

the other hand, pumped hydro energy storage (PHES) and compressed air energy storage

(CAES) have demerits related to environmental problems and high installation costs. Moreover,

superconducting magnetic energy storage (SMES) as another ESS is used with the battery to

store the energy. However, complicated design, expensive cost, and temperature sensitivity are

some of its main issues (Enescu, Chicco, Porumb & Seritan, 2020).

Among all, BESS is the practical candidate to achieve peak load shaving due to its efficiency,

charging/discharging in short time intervals and ease of installation to be used in buildings.

Nonetheless, BESS has relatively low life cycling time, high investment cost, and high mainte-

nance expenses which hinder its large-scale use. The expenses of BESS are mainly related to

installation cost, maintenance cost, and replacement cost which are affected by battery capacity,

lifetime, and rate of degradation of the battery. Therefore, the size of the battery requires specific

attention to prevent extra expenses (Hannan, Wali, Ker, Rahman, Mansor, Ramachandaramurthy,

Muttaqi, Mahlia & Dong, 2021). On the other hand, TESS is also a technique well suited for

being applied in buildings for energy management and saving the cost. TESS is designed to store

heat or cold in a storage medium for later usage at various temperatures and power conditions

(Cabeza et al., 2015). It is considered to provide the heating and cooling demand in buildings

and shave the peak in peak hours by storing the energy in off-peak hours and releasing it during

peak hours. Although, TESS has low environmental impact and greenhouse gas emissions, it

cannot satisfy the plugged load in buildings and needs to be in large scale units due to its low

heat capacities (Sarbu & Sebarchievici, 2018). Therefore, due to the mentioned advantages and

disadvantages of TESS and BESS, they can be considered to be employed alongside each other

to complement their mentioned limitations. Moreover, the simultaneous application of TESS

and BESS can lead to the reduction in BESS capacity and consequently save investment and

maintenance costs. Hence, based on the merits of TESS and BESS, this thesis mainly focuses

on achieving peak load shaving and reduction in BESS capacity by utilizing BESS and TESS as

the energy storage systems in an institutional building.



7

Although the peak shaving using ESSs is proposed and achieved through different researches,

the limitations of using batteries and TESS to compensate a large amount of peak load are not

considered. Peak load shaving is achieved by installing a very large tank or bank of batteries

which raises the high cost. In addition, based on limited capacity of ESSs, it is challenging

to meet peak load shaving criteria which utility companies determine. Furthermore, most of

the studies emphasize on using only one type of energy storage which leads to more cost and

expenses of installation and maintenance like employing a large-size of BESS. Moreover, since

defining an optimal operation schedule for simultaneous employment of TESS with BESS is a

complicated task, the previous works consider only thermal loads related to HVAC system, or

only plug loads (receptacle loads) like lights and computers for peak load shaving mechanism.

Besides, using rejected heat by building components such as chillers has significant benefits on

saving electricity and cost which is most often neglected.

These gaps are considered as motivations for this thesis to focus on achieving peak load shifting

through the deployment of TESS and BESS in the building. To achieve complete peak load

shaving, all loads in the building including electrical plugged loads and thermal loads are

considered to be supported by ESSs during peak periods. The optimal schedules for charging

and discharging of TESS and BESS are defined through the optimization process to attain peak

load shifting and reduce BESS capacity.

1.3 Research Objectives

The first objective: The main objective of this project is obtaining an appropriate strategy to

reduce electricity cost and minimize the peak of electric power consumption of a building in a

micro-grid. One way to reduce power demand is to use a procedure called peak load shaving, in

which some electrical loads are operated only during off-peak periods-when demand for, and

the cost of electricity are relatively low. As it is mentioned, one of the undeniable challenges

in micro-grid is to maintain a balance between electricity generation and demand. Several

problems such as instability and voltage fluctuation will occur if the balance between generation

and demand fails. Therefore, the objective has dedicated using the peak shaving approach in the
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system that can overcome some of the significant ongoing challenges mentioned in the previous

section. It has direct effects on benefits for the grid operator, the end-user and carbon emission

reduction.

The second objective: Integrating energy storage system to the grid is the potential strategy of

peak shaving. Among all ESSs, BESS is the practical candidate to achieve peak load shaving due

to its efficiency, charging/discharging in short time intervals, and ease of installation to be used in

buildings. However, the size of the battery should be determined accurately since a major portion

of BESS expenses is related to costs of installation, maintenance, and replacement, which are

proportional to battery capacity, lifetime, and rate of degradation of the battery. In this regards,

TESS is deployed in cooperation with BESS to reduce the capacity of the BESS, gain significant

cost benefit, and reduction in capital expenses. However, defining the charging/discharging

schedule of thermal energy storage and battery energy storage is considered as one of the main

challenges. Therefore, another objective is going to obtain the charging/discharging schedule of

ESSs with respect to threshold values of power electric consumption set by the main grid to

reduce the BESS capacity and shave the peak.

The third objective: Presence of chillers and boilers in the building makes it possible to take

advantage of the waste heat from one system to feed the other or store the energy to be used in a

proper time in order to minimize the electricity to produce the required heat. TESS is supplied

by the waste heat produced in the HVAC system. Benefiting from this approach, the electrical

boiler’s role in producing heat, which has a significant electricity consumption in peak hours,

is eliminated from the total electric power demand, leading to a reduction in BESS capacity.

Moreover, the solution of the optimization problem (charging/discharging operation of ESSs)

will then dictate a working schedule for the heat production system in the building. So the next

objective is allocated to optimize the operation of the system in order to minimize cost, eliminate

the boiler role, and produced required heat to store in energy storage system.
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1.4 Research Methodology

In this section, our methodologies to achieve the aforementioned objectives are presented.

Addressing the first objective: In buildings, peaks are mainly based on electrical devices such

as lights and computers (fixed loads) and thermal devices (shiftable loads) such as a boiler and

chillers supplied by the power grid. Peak load shaving mechanism should investigate different

scenarios to cover peaks in buildings due to using different types of ESSs. In this context, the

peak load shifting mechanism contains two main states: charging the ESS in off-peak hours

and discharging the ESS to supply load demand in peak periods. Discharging happens during

peak hours to minimize the electricity load demand from the power grid. The peak load shaving

mechanism for discharging TESS and BESS is investigated through three scenarios:

- In the first scenario, the great portion of the peak load is related to the shiftable load. Hence,

the priority is to use the TESS and discharge it to support the shiftable load.

- The second scenario happens when the peak load is corresponding to fixed load in the

building. In this scenario, BESS is deployed to fulfill the fixable load requirements.

- The third scenario which is the main focus of this thesis, indicates the peak load as the

combination of both fixable load and shiftable load. In this plan, TESS and BESS are used

to meet the demand and shave the peak.

Addressing the second objective: To achieve peak shaving, the load shifting should be attained

by optimization approach through deployment of TESS and BESS. The considered building

includes both shiftable load such as thermal load and fixed load like lighting and electronic

devices that are collected in each time interval. Both TESS and BESS have limited capacities

with the prespecified maximum value of charging and discharging rates, which are the cases

in practice. Utility companies penalize the building when the electricity usage passes the

predefined threshold. Bringing all together, the optimal rate of charging and discharging of ESS

is obtained maximum peak load shifting. Thus, the charging and discharging schedule, namely

operating schedule, of TESS and BESS is formulated by an optimization problem with respect to
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the constraints and limited capacity of ESS. Hence, firstly particle swarm optimization (PSO) is

employed to obtain the optimal schedule due to its computational time efficiency. Furthermore,

we formulate the problem as Markov decision process (MDP) and define the reward function,

environment state, and action. Then the model-free based reinforcement learning (RL) is

employed to achieve optimal charging/discharging rate of ESSs. The results of PSO and RL are

compared to show the effectiveness of proposed method to reduce the BESS capacity and attain

peak load shaving.

Addressing the third objective: It is necessary to obtain a reliable model to analyze and take

more benefits of using waste heat produced by the building components. Buildings contain

several mechanical, hydraulic and electrical components such as heat and mass transfer devices,

air handling equipment, air and liquid distributed systems, chillers, and boilers. Most of the time

the exact model of all the components of building cannot be obtained easily. Gray-box modeling

is an effective method for modeling when some HVAC processes are not clearly defined by

thermodynamic equations. This method is a combination of physics models (i.e., white-box

modeling) and data-driven models (i.e., black-box modeling). The relationship between inputs

and outputs of all the components of heating and cooling systems such as chillers, boilers, and

existing tanks is derived based on historical data and thermodynamic principles. Based on

thermodynamic principles, the rejected heat by chillers is calculated and considered to find the

demand load. Then, the mathematical models will be used to find the correlations between

produced heat and electrical consumption. Moreover, based on the recorded data of total

electricity consumption and calculated load demand of buildings, the system behavior during

peak hours and off peak hours will be defined and modeled. Therefore, an optimized working

schedule will be realized by considering all the interconnections and interactions among chillers,

storage tanks, and the electricity grid into our optimization problem.

1.5 Thesis Outline

The thesis is organized as follows: Chapter 1 outlines the research problem including the research

background, motivations, objectives, an overview of methodologies. Subsequently, in Chapter
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2, the state-of-the-art of the existing literature in this area of research is taken into account.

Chapter 3 introduces the modeling of the smart building including HVAC system, TESS, BESS,

and demand loads. Chapter 4 characterizes the optimization problem and address the optimal

solutions by using PSO. Following this, Chapter 5 presents the model free reinforcement learning

approach to solve the optimization problem. The optimization problem is modeled as MDP and

solved by Q-learning. The conclusion, and future work are illustrated in the final chapter.





CHAPTER 2

LITERATURE REVIEW

In recent years, one of the major issue in power systems is the increasing demand for electricity in

peak hours that leads to higher costs. This issue can be solved if consumers reduce their energy

consumption during peak hours by shifting their energy usage from costly peak hours to other

times with low price through peak load shaving mechanism. One of the most effective strategies

of the peak load shaving is the integration of energy storage systems into the grid. In this

technique, peak load shaving is achieved through the process of charging energy storage system

specifically thermal energy storage and battery energy storage when demand is low (off-peak

period) and discharging when demand is high. In this context, a bundle of parameters such

as technical constraints of the systems have to be considered. Achieving an optimal trade-off

among all parameters (e.g. charging and discharging schedule) of both energy storage systems

is a complicated task. Furthermore, various variables such as weather, instantaneous energy

price, and the irregular demand may affect the charging and discharging schedule of TESS and

BESS. Therefore, We aim to propose a promising optimization strategy to obtain an optimized

operation of ESSs to achieve the peak load shaving.

This chapter is dedicated to the literature review about modeling of the system, energy storage

systems, peak load shaving mechanism in microgrid and necessary tools that will be required in

future to pursue our research objectives.

2.1 Modeling of smart buildings

It is necessary to obtain a reliable model of the HVAC system to analyze and improve its control

system properly and obtain peak load shaving. HVAC systems contain complex structures which

consist of heat and mass transfer devices, thermal energy storage, air handling equipment and

air and liquid distributed systems. The existence of several mechanical, hydraulic and electrical

components makes the dynamics of HVAC plants nonlinear. HVAC modeling is dynamic,

nonlinear and very high order because of the physical features such as high-thermal-inertia, real
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lag time, uncertain disturbance factors, etc. of the system (Homod, 2013). HVAC and building

modeling is divided into three groups: physics-based (or white box/mathematical), data-driven

(or black box/inverse), and gray box (or hybrid) (Afroz, Shafiullah, Urmee & Higgins, 2018b).

2.1.1 Physics-based (white box) model

The white box model is based on the mathematical equations of the laws of energy and mass

balance, heat transfer, flow balance and momentum. The physics-based model requires a

specific assumption to be gained. This model is mainly used for prediction and analyzing

the performance of HVAC system components through simulation. It is usually applied into

systems with slow-moving temperature and humidity processes while it is better to use static

models for the fast dynamics of systems such as mixed air temperature and energy consumption

(Afram & Janabi-Sharifi, 2014a).

2.1.2 Data-driven (black box) model

Data-driven models can be obtained by collecting the data of system performance in different

situations. These models are established by defining a relationship between the input and output

variables using the mathematical techniques such as neural network and fuzzy logic systems.

The capability of black box models in HVAC systems has been investigated in different studies.

It has been proved that the most benefits of models can be achieved by using sufficient training

data (Zeng, Zhang & Kusiak, 2015). Black-box modeling technique consists of different types

of strategies to model the HVAC system which is given in Figure 2.1 (Afroz et al., 2018b).

2.1.3 Gray-box (hybrid) model

Gray box modeling is considered as the combination of physics models and data-driven models.

The primary structure of the model is designed by white box modeling, however, the parameters

of the model are driven by applying parameter estimation algorithms on the measured data of

the systems. Gray box is an effective method for modeling when some HVAC processes are not
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Figure 2.1 Classification of black box modeling technique

clearly defined by thermodynamic equations. Furthermore, the beneficial aspect of the gray-box

model is regarded for control and optimization applications when is expressed in a form of

transfer function or state space (Ghiaus, Chicinas & Inard, 2007).

The authors in (Ghiaus et al., 2007) established a hybrid model in a linear form to represent a

constant air volume which is able to improve the control function. To avoid coupling between

humidity and temperature, they developed the model based on the assumption that each element

changes only one variable. Therefore, they established separated elemental transfer functions.

A gray box modeling was developed in (Afram & Janabi-Sharifi, 2015a) for the residential

HVAC system. They investigated the effects of the existence of on/off controllers on the energy

consumption. One of the main drawbacks of their work is lack of thermal energy storage in their

modeling and more advance controllers such as MPC and PID.

The authors in (Vaghefi, Jafari, Zhu, Brouwer & Lu, 2016) developed a hybrid forecast model

from the physics-based and the data-driven model. Their model is capable of forecasting the
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optimal heating and cooling set point values. The combined forecast model was then applied to

an MPC framework to control heating and cooling set points that eventually reduced the total

energy and electricity cost and thermal discomfort penalty simultaneously. The weakness and

strength of three approaches of modeling is given in Table 2.1.

Table 2.1 The weakness and strength of three

approaches of modeling

Modeling
Technique

Weakness Strength Research Studies

White-box

model - Complex

- Consideration of as-

sumptions that they are

not realistic

- Requires some physi-

cal parameters

- Poor accuracy

- Requires less data

- Easy to generalize

- Easy to control and

optimize

(Ghiaus & Hazyuk,

2010)

(Scotton, Huang, Ah-

madi & Wahlberg,

2018)

(Afram & Janabi-

Sharifi, 2014a)

Black-box

model - Less flexible

- Requires a significant

data

- Depends on measure-

ment data of input and

output variables

- Simple

- No need to under-

stand the physics of

the systems

- Obtains undeniable

prediction accuracy

(Chen, Wang & Sre-

bric, 2015)

(Kusiak, Li & Tang,

2010)

(Afram & Janabi-

Sharifi, 2015c)

(Hou, Liu & Tian,

2017)

Gray-box

model - Accuracy depends on

data using to train the

model

- High accuracy

- Easy to generalize

- Comparatively less

complex

- Appropriate for con-

trol and optimization

(Afram & Janabi-

Sharifi, 2015b)

(Ghiaus et al., 2007)

(Vaghefi et al., 2016)
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2.2 Energy storage system

Converting energy from one form (mostly electrical energy) to another form which is able to be

stored in different ways, and then converting the stored energy back into electrical energy, lies in

the heart of the processes of energy storage system. Positive implications of ESS for the power

network, are:

(i) being useful in peak demand, (ii) enabling real-time energy management protocols, (iii)

compensating the irregular generation patterns of renewable energies, enhancing the power

quality and reliability, (iv) providing energy to remote and vehicle loads, (v) helping the

implementation of smart grids, (vi) being useful in the management of distributed/standby power

generation, (vii) diminishing the import of electrical energy during peak load demand (Nelson,

Balakrishnan & Murthy, 1999).

Grasping the details of energy supplies and the specific considerations of the end-user, is a

prerequisite of proper evaluation of ESS, which is a complicated subject matter. Altogether,

many actions should be coordinated in different domains of the energy system to make way for a

maximum extraction of the potential benefits of ESS.

Therefore, the criteria for an appropriate choice of method and technique of storing energy

should be emphasized. Based on the ideas of different experts, different criteria have been

classified and the principal issues that should be considered are: 1) energy resources at hand, 2)

specific need for energy and its respective application, 3) efficiency of the energy storage, 4)

foundation for energy storage, and other matters of importance. To categorize the numerous

technologies for energy storage, different methods have been proposed based on their functions,

response times, and suitable storage duration. ESS technologies based on the form of stored

energy are divided into mechanical, electrochemical, electrical, chemical and thermal energy

storage.
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Battery energy storage systems and thermal energy storage systems have gained fame and

importance recently and are also easily applied in practice. In Table 2.2 the drawbacks of some

common ESS for commercial building is given:

Table 2.2 Weakness of some ESS technologies

Technology Weaknesses
Pumped hydro power

- Low energy density

- Geographical restriction

- High investment cost

Compressed air energy storage system
- Certain geological restriction necessary

- High investment costs

- Low efficiency for adiabatic CAES (< 55%)

Flywheel
- Low energy density

- Very high self-discharge

- Safety reasons; crack, bearing failure, exter-

nal shocks

2.2.1 Thermal energy storage System (TESS)

The most desirable form of energy storage is the direct storage of electrical energy, but using

capacitors is only suited for capacity levels of small to medium range and for short time intervals.

The same limitation also applies to flywheels. There are specific limitations and requisites

associated with each storage technology discussed so far. For example, a pumped hydroelectric

energy storage requires two separate reservoirs with a desired difference in elevation between

the two. Furthermore, taking advantage of compressed air energy storage is only possible when

there is access to a very large cave to store high pressure air. Using fuel cells is also troublesome
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because of the need to store hydrogen and there are many complications associated with this

technique that need more research and investigation. Altogether, one can conclude that thermal

energy storage is a technique with the least requirements and limitations regarding the location

or other factors that greatly limit the use of other methods (Li & Chan, 2017).

TESS offers a very high potential for maximizing the efficiency of thermal equipment and

replacing many other energy storage techniques because of its economical advantages. The main

important factors to consider, when choosing a TESS system are: required storage period (e.g.

diurnal, seasonal), economic feasibility, and conditions of operation. Considering the research

trend about energy efficiency and conservation, TESS turns out to be a success among other

thermal technologies so far (Dincer, 2002).

- Advantages of TESS:

The advantageous performance offered by TESS is expressed in one or more of the following

ways:

• Increasing generation capacity:

The variability in demand allows for short time planning (e.g. diurnal) and producing

energy when less needed and using it when most needed. This enables smaller production

units to be able to respond to bigger consumers.

• Shift energy purchases to low-cost periods:

A TES system allows for an economically optimized purchase plan in which the consumer

buys electricity with the lowest cost and uses the energy when the prices are high.

• Increase system reliability:

By adding a storage system the consumer can reach a stable and continuous access to

power, so the reliability is increased (Dincer, 2002).

- TES Technologies:

• Water tank:
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Tank systems make use of heat transfer fluids as the main heat storage medium and store

the fluid medium in either one or two insulated tanks. The use of TES tanks in heating,

air-conditioning, and other applications have, in general, received increasing attention in

recent years and thermally stratified storage tanks have been used more, recently. The

important designs of tanks are two tank indirect system which require two heat transfer

fluids, two tank direct system with a single HTF that can perform with both solar field

HTF and for TESS and single tank thermocline systems that have a liquid heat transfer

fluid to be used in both solar field HTF and TESS. Investigation in this area has found out

that a single tank TESS can save up to 35% of capital cost. Tanks are usually made up of

stainless steel or reinforced concrete and covered by a thick insulation layer. They can

either be above ground or underground.

• Stratified Water Tank:

thermally stratified water tanks has been known as the prominent strategies to store energy

on daily scale. It is fully developed and has significant efficiency with low price. By means

of complex optimal control with stratified water tank, peak shaving, and load leveling will

be achieved as well as thermal comfort and reducing energy consumption (Yu, Huang,

Haghighat, Li & Zhang, 2015), (Saloux & Candanedo, 2018), (Saloux & Candanedo,

2019).

2.2.2 Battery Energy Storage system (BESS)

Batteries rely on different chemical systems to store electrochemical energy to make them suitable

for different applications (Afram & Janabi-Sharifi, 2015a). One of the most extensively used ESS

technologies in different domains (industy & domestic) is rechargeable battery. Electrochemical

cells are connected in series or parallel in a BES system, and provide electricity and deliver a

specific voltage as a consequence of an electrochemical reaction. Each cell has two electrodes

(an anode and a cathode) with an electrolyte which can be at solid, liquid or ropy/viscous states

(Vaghefi et al., 2016), (Ghiaus & Hazyuk, 2010). Electrochemical reactions happen at the anode

and cathode at the same time during discharge and when the battery is being charged the reverse
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reactions happen by applying an external voltage to the two electrodes. Power quality, energy

management, ride-through power and transportation systems are just some among the many

applications of batteries. It takes a relatively short time to build a BES system (approximately

12 months) (Scotton et al., 2018). and the place of installation is very much flexible may it

be inside a building or in the vicinity of the place where such system is needed. The main

drawbacks associated with such systems are the relatively low cycling times and the high costs

of maintenance which hinder its extensive large-scale use (Mishra & Palanisamy, 2018).

- Lead–acid batteries:

The most extensively used rechargeable battery is the lead–acid battery. Lead–acid batteries

have a rapid response times, a small daily self-discharge rates (<0.3%), a relatively high

cycle efficiencies (63-90%) and low capital costs (50–600 $/kW h). However, there are still

limited installations around the world as large-scale EES, mainly due to their relatively low

cycling times (up to 2000), energy density (50–90Wh/L) and specific energy (25–50 Wh/kg).

In addition, they may perform poorly at low temperatures so a thermal management system

is normally needed, which naturally increases the associated costs (Ghiaus & Hazyuk, 2010),

(Mishra & Palanisamy, 2018).

- Lithium-ion (Li-ion) batteries:

The Li-ion battery is considered as a desirable option where the response time, small

dimension and/or weight of equipment are critical. Li-ion batteries also have high cycle

efficiencies, up to 97% . The main downsides are that the cycle DoD can influence the Li-ion

battery’s lifetime and the battery pack usually needs an on-board computer to control its

operation, which rises its net cost.

- Sodium–sulfur (NaS) batteries:

The NaS battery is considered as one of the most favorable options for high power ESS designs.

The main advantages of NaS batteries include relatively high energy densities, almost zero

daily self-discharge, higher rated capacity than other types of batteries (up to 244.8MWh) and

high pulse power capability. The battery utilizes inexpensive, non-toxic materials resulting



22

in high recyclability (99%). However, the limitations are high annual operating costs (80

$/kW/year) and an extra system needed to manage its operating temperature.

2.3 Optimization and control techniques in smart buildings

Due to the substantial increase in energy consumption in buildings, energy saving strategies have

got more attention in many countries. Statistical survey cleared that building energy consumption

in the EU was 37% of the final energy totals in 2004 and this number for the USA is 41% in

2010. The major energy usage dedicates to heating, ventilation, and air conditioning (HVAC)

systems (almost 50%) (Pérez-Lombard, Ortiz & Pout, 2008). Therefore, the development and

implementation of complex control techniques for HVAC systems have become a priority in

building energy management.

HVAC systems consist of many processes which is slow moving with time delays, and time-

varying internal and external disturbances act on the system. HVAC systems usually work under

varied operating condition. Besides, the price of energy is different and variable associated with

different areas. Hence, it is necessary to implement an appropriate control strategy to overcome

the mentioned challenges (Afram & Janabi-Sharifi, 2014b).

Due to the importance of control and optimization in HVAC systems, significant investigation

has been done. A cost-optimal solution based on demand response (DR) actions for a thermal

energy storage system with a ground source heat pump is defined for residential houses in a cold

climate by (Alimohammadisagvand, Jokisalo, Kilpeläinen, Ali & Sirén, 2016). They minimized

life cycle cost (LCC) of thermal energy storage joined with a ground source heat pump. They

defined the cost optimal size of thermal energy storage as well as its temperature set point. Then,

they evaluated the changing setpoint temperature of space heating and storage tank by three

control algorithms including a control algorithm based on real-time hourly electricity price

(HEP), a control algorithm based on previous HEP and a control algorithm based on future HEP.

The authors in (Bianchini, Casini, Vicino & Zarrilli, 2016) developed a predictive control

algorithm based on price–volume signals to have effects on their consumption pattern. They
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sent signals once or twice a day to identify a price of power consumption in case of being below

or above a specified maximum amount of energy to be consumed during hours.

Optimal operating strategy and cost optimization scheme for a micro grid has been presented

by using differential evolution algorithm (Vahedi, Noroozian & Hosseini, 2010). At the first

modeling based on some real manufactural data are conducted then the proposed cost function

takes into consideration the costs of the emissions CO2 as well as the operation and maintenance

costs. The battery storage is used for storing excess energy. The optimization is designed to

minimize the cost function of the system while constraining it to attain the customer demand

and safety of the system.

The authors in (Iqbal et al., 2018) proposed optimization schemes for reducing electricity cost

and minimizing peak to average ratio (PAR) with maximum user comfort (UC) in a smart home.

Firstly, the problem was mathematically formulated then optimized by grey wolf optimization

(GWO), binary particle swarm optimization (BPSO), genetic algorithm (GA) and wind-driven

optimization (WDO). Finally, three hybrid strategies for reducing electric price and peak to

average ratio were proposed. In addition, to achieve more reliable, efficient and stable operation,

a battery storage system was integrated.

The work in (Wu, Tazvinga & Xia, 2015) presented an optimal energy management model

for a grid-connected residential PV system and battery hybrid system. Their model optimized

the electricity cost by considering constraints such as power balance, solar output and battery

capacity limits. Their methods attained great cost saving and robust control performance. One

main drawback of their work is related to not considering users comfort. The authors in (Wang,

Huang, Wang, Li, Zhang & Tian, 2018) proposed operation optimization modeling for microgrid

considering distributed generation, environmental factors and demand response. One of the

main strengthens of their work is related to consideration of users comfort as well as reducing

the cost in demand response program. To solve this operational optimization problem, a genetic

algorithm is used to implement an objective function and DR scheduling strategy.
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The development and implementation of complex control techniques for HVAC systems are

important. To control the HVAC systems, there are three main groups including classical control

(On/Off, Rule-based controllers and PID), hard control (Robust Control, Optimal Control, Model

Predictive Control) and soft control (Fuzzy logic control, Neural network control). Figure 2.2

shows the three different categories of HVAC Control methods. Following, each strategy will be

explained in details.

Figure 2.2 Classification of control strategies in HVAC

2.3.1 Classical control

Classical controllers contain the most common control strategies including on/off control and

P, PI, and PID control. The on/ off controller uses an upper and lower threshold to adjust the

process within the given limits. The P, PI, and PID controllers use error dynamics and regulate

the controlled variable to achieve accurate control of the process (Taylor, House, Street, Wt,

Hvac, Systems, Lim, Rasmussen & Swaroop, 2011).

- Drawbacks:

Although the on/off controller is the most instinctive and easiest to implement, it is a

challenge to control HVAC processes with time delays. Because of the high thermal
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inertia of many HVAC processes, a process that is controlled using an on/off controller

and rule-based controllers displays large swings from the setpoints. Although the results

of the PID application is acceptable, but tuning the controller parameters is a major issue.

The performance of the controller reduces if the operating conditions vary from the tuning

conditions. Retuning or auto-tuning approaches for the PID controller can be time-consuming

and unacceptable (Salsbury, 2005).

2.3.2 Soft control

Soft control uses data to obtain the controllers. Two important controllers in this area are the

fuzzy logic controller and artificial neural network. Example of using FL is (Yu & Dexter, 2010)

investigation that the three levels hierarchical supervisory FL controller is designed to determine

the set point for lower level controllers. The defined operation modes are used for the water and

air subsystems. The artificial neural network is a feed-forward controller. It is mainly used for

modeling and prediction. It can be trained based on controller inputs and outputs to be used

instead of a conventional controller. The work in (Lee, Yeo & Kim, 2010) introduce a predictive

controller for a radiant floor heating system base on a neural network. They used multi-layer

perception to train the data.

- Drawbacks:

The implementation of FL control requires comprehensive knowledge of the plant operation

and its different states. ANN-based control design needs training data on a wide range of

operating conditions. These requirements may not be available for many systems.

2.3.3 Hard control

Hard control consists of gain scheduling control, nonlinear control, robust control, optimal

control and MPC. The robust controller works under time-varying disturbances and variation

in parameters. The work in (Anderson, Buehner, Young, Hittle, Anderson, Tu & Hodgson,

2008) used MIMO robust control for HVAC systems including supply air temperature and
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zone temperature control. Despise of robust control, the optimal control focuses on solving

an optimization problem to minimize a certain cost function. The main objectives of HVAC

systems are generally minimization of energy consumption and electric cost and maximization

of thermal comfort. Some prominent investigation has been done to gain the objectives. The

authors in (Greensfeldera, Henzea & Felsmannb, 2011) studied the optimal control of passive

building thermal storage with real time pricing program. They used active thermal storage

control coupled with passive thermal energy storage control to achieve the reduction in cost and

consumption.

- Drawbacks:

The implementation of optimal control and robust control require complex computational

burden. Moreover, they need the specification of additional parameters, which could be

difficult and impractical for integration in HVAC systems. Due to these challenges, MPC

is one of the most promising techniques because of its ability to constraint handling, and

slow-moving dynamic control, disturbance elimination, and integrate energy conservation

strategies into controller formulation.

2.4 Machine learning approaches in smart buildings

Due to challenges in developing a dynamic and mathematical model of the building and

considering all effective parameters on the behavior of heat and cooling systems, model-free

energy management systems are developed. In this context, machine learning approaches are

recently used in energy management field to predict the power consumption and optimize the

operation of the components of the micro-grid and smart grid. Machine learning focuses on the

use of historical data and algorithms to simulate and mimic the way of human learning process

and finally improves the accuracy to generate the exact model. Basically, the learning part of the

machine learning algorithm has three primary sections: a decision process, an error function

and a model optimization process.

- Decision Process:
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Machine learning algorithms use historical data as input to predict new output values and

estimate the pattern of the data.

- An error function:

The error function is needed to evaluate the prediction of the model and estimation of the

pattern of the data.

- A model optimization process:

In training process, the wight of the model are adjusted to increase the accuracy of the

prediction model and estimations. The optimization process and error function is repeated

until the desired accuracy is met.

Machine learning models are divided into three main categories:

- Supervised machine learning:

In supervised machine learning, labeled data-sets are used to train the algorithms for

prediction, estimation and classification of the data. Linear regression, logistic regression,

random forest, and support vector machine (SVM) are some models that used in supervised

machine learning.

- Unsupervised machine learning:

The error function is needed to evaluate the prediction of the model and estimation of the

pattern of the data. Neural networks, k-means clustering, and probabilistic clustering methods

are some algorithms that used in unsupervised machine learning.

- Semi-supervised learning:

Semi-supervised machine learning is combination of supervised machine learning and

unsupervised machine learning approaches.

- Drawbacks:
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The quality and quantity of data utilised for training heavily influences how well a machine

learning algorithm performs. The resulting model could be erroneous and biassed if the

data is biassed or incomplete. Moreover, machine learning models can sometimes be too

complex and may overfit the training data, meaning they perform well on the training data

but poorly on new, unseen data. Besides, some machine learning algorithms can require a

lot of computational resources, making them difficult to run on less powerful devices or in

real-time applications.

2.4.1 Reinforcement Learning

Reinforcement learning (RL) is the subsection of machine learning to make a sequence of

decisions to optimize and predict. RL mainly has five elements: agent, action, state, reward

function, environment as shown in Figure 2.3. At each time step, an agent takes an action 𝑎𝑡 on

an environment where the agent operates. The environment responses to the agent and provides

the feedback related to the action made by the agent in the form of a reward signal 𝑟𝑡+1 and

moves from the current state 𝑠𝑡 to the next state 𝑠𝑡+1. The main goal of the agent is to collect the

largest amount of the reward (𝑅𝑡) as follow (Sanchez Gorostiza & Gonzalez-Longatt, 2020):

𝑅𝑡 =
𝑁∑
𝑖=𝑡

𝛾𝑖𝑟𝑖, (2.1)

where 𝛾 is the discount factor. To maximize the reward, the agent needs an optimal policy 𝜋

which is an optimal strategy for the agent to map the current situation of the agent, state (𝑆𝑡), to

a probability distribution over the action. Therefore, in RL, the main goal is to define the agent

with an optimal policy that maximizes the total future rewards in the environment.

The problems in RL, are formulated as a Markov decision process (MDP). A MDP provides the

dynamics of the environment to observe the reactions of the environment to the action taken by

the agent at a given state. A MDP contains a transition function that given the current state of

the environment and an action, defines a probability of moving to any of the next states and

a reward function. Due to difficulties in defining the transition function for the environment,
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Figure 2.3 Illustration of reinforcement learning framework

model-free reinforcement learning is considered to estimate the optimal policy without using

the dynamics of the environment. The optimal policy is derived by considering a value function

as a function which evaluates a state (or an action taken in a state), for all states (Andrew, 1998).

2.5 Peak load shaving with energy storage systems in smart buildings

The electricity consumption profile in buildings is variable during a day (Rahman et al., 2018)

and this feature intensifies meeting electricity demand during peak hours. Besides, consuming

electricity in peak hours is costly for end-users. Hence, peak load shifting is needed to smooth

the consumption pattern and reduce the electric power consumption in peak hours.

Numerous methods have been proposed to perform peak load shifting including demand

response management (Alvarez, Agbossou, Cardenas, Kelouwani & Boulon, 2020; Cichy et al.,

2016; Lu, Hong & Yu, 2019; Shao, Ding, Siano & Lin, 2019) integration of electric vehicle

(Zhang, Tan & Gary Wang, 2018), and (Mahmud, Hossain & Ravishankar, 2019) optimization

and control strategies (Mehrizi-Sani, 2014; Morstyn, Hredzak & Agelidis, 2018; Zhai, Liu,

Zhang & Zhang, 2018), and using energy storage systems (Chen, Wang, Wang, Qian & Peng,

2020; Klein, Herkel, Henning & Felsmann, 2017; Kodaira, Jung & Han, 2020). Energy storage

system (ESS) has a significant potential to achieve peak load shaving due to the decrease of the
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electrical energy consumption during peak load demand, compensating the irregular generation

patterns of renewable energies, and enhancing the power quality and reliability. There are

different strategies to store energy such as mechanical (Abdeltawab & Mohamed, 2016), battery

Energy Storage (Leadbetter & Swan, 2012), electrical (Chen et al., 2009), chemical (Niaz et al.,

2015), and thermal energy storage (Erdemir & Dincer, 2020). Each storage technology has

specific limitations and requisites such as low energy density, high investment cost, very high

self-discharge, small to medium range of capacity for short time intervals. Among all, BESS is

the practical option in terms of efficiency, capability of charging and discharging in short time

intervals and ease of installation. However, battery energy storage system (BESS) has relatively

low life cycling times and high investment costs which hinder its large-scale use. A thermal

energy storage system (TESS) can be employed alongside BESS to compensate limitations of

BESS. TESS is designed to maintain heat or cold in a storage medium for later use, in various

temperatures, places, or power conditions (Cabeza et al., 2015).

2.5.1 Peak load shaving with battery energy storage system

The work in (Kodaira et al., 2020) derives the optimal operation schedule of battery energy

storage system to smooth peak by using prediction intervals. The optimal schedule of charging

and discharging of BESS is derived to reduce the probability of the highest future peak. In

(Leadbetter & Swan, 2012), the authors develop a model and define the optimal characteristic

of BESS to minimize the electricity consumption. BESS size for a typical house in different

regions of Canada is investigated and defined. The result shows how installing BESS can lead to

have peak load shaving and consequently reduce the expenses.

(Reihani, Motalleb, Ghorbani & Saad Saoud, 2016) study the efficacy of BESS to achieve peak

load shaving and load smoothing by the real-time control strategy and nonlinear programming

method. In this work, a rooftop Photo-Voltaic (PV) is considered to meet the building power

demand. Two approaches to forecast the demand load to have peak load shaving and smoothing

the demand profile are used including nonlinear programming methods (complex-valued

neural networks) and a real time control strategy (series-parallel forecasting). In (Ke, Ku, Ke,
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Chung & Chen, 2015), the authors develop the charging and discharging strategy for BESS to

balance the electricity consumption for peak and off-peak periods by using a probabilistic neural

network to predict the campus load and photovoltaic-generating capacity. Different sizes of

BESS are examined to define the feasible BESS size regarding the different size of PV to gain

more peak load shaving and benefits of PV. The authors in (Vedullapalli, Hadidi & Schroeder,

2019) propose a demand management algorithm by optimizing the operation of BESS and

heating ventilation air conditioning (HVAC) to minimize the electricity consumption in peak

hours. The thermal mass building and BESS are applied to store the energy in peak hours

and release the energy on off peak hours. In order to get more cost saving and shaving the

peak, the operation of HVAC is considered to be optimized to minimize the electric power

consumption in peak hours. All the HVAC modeling is done in EnergyPlus as one of the

powerful modeling software. The work in (Chua, Lim & Morris, 2017) proposed an approach

to obtaining the optimum size of BESS for commercial and industrial building is proposed to

optimal peak reduction. In their method, the historical load profiles of the customers are studied

based on the desired peak to be shaved. This approach let the customers select the optimized

size of energy storage regarding the cost saving of the peak shaving process at different tariff

schemes. A genetic algorithm-based ESS sizing for microgrids is presented in (Fossati, Galarza,

Martín-Villate & Fontán, 2015). They used energy management strategy based on fuzzy logic

system and genetic algorithm to shave the peak and define the optimal size of the BESS. The

authors in (Prasatsap, Kiravittaya & Polprasert, 2017) presents a strategy to obtain the optimal

capacity of BESS to have peak load shaving in university. They used the consumed electricity

data for both daily and annual scales. Based on the highest recorded demand, they define the

optimal energy capacity. Furthermore, two different approaches for managing the operating of

the energy storage system are considered which are time based and differentiated power criteria.

They demonstrated that both management strategies reduce the cost for both consumers and

utilities.
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2.5.2 Peak load shaving with thermal energy storage system

As it is described before, the main feature of thermal energy storage system (TESS) is shifting

load from peak time to off-peak hours. Implementation of TESS has significant economic effects

on electricity market structures. For all applications of TESS, there is the same basic principle:

charging (supply the energy to TESS), storing, and discharging (getting the energy back from

TESS. TES applications have many potential benefits for both customers and utilities. From

customers’ side, having a more efficient system and saving money are achievable. For utilities,

the demand can be spread through the whole day. So TESS is considered to reduce the peak of

electrical demand and high costs of electricity. This technology attracts more interest if cooling

and heating are also produced electrically like hot water, cooling and air-conditioning. One of

the remarkable applications of TESS is when it is combined with air conditioning reduction in

peak load and change in energy consumption for residential air conditioning is obtained based

on the model presented by (Upshaw, Rhodes & Webber, 2015). Here, TESS extracts heat from a

storage medium and provides a cooling capacity. This will reduce the refrigeration plant capacity

and leads to an optimized and efficient operation for most of its working time. TESS application

in Australian climate was analyzed for peak load shaving by (Rahman, Rasul & Khan, 2011).

The results show that up to 61% and 50% of the electricity cost can be cut by using full and

partial chilled storage systems.

In (Powell, Kim, Cole, Kapoor, Mojica, Hedengren & Edgar, 2016), a university campus is

considered and the dynamic optimization is applied to determine optimal time schedule of TESS

in peak hours to store and extract excess energy in order to reduce the fuel consumption and

energy cost. The energy systems in this study includes combine heat and power (CHP), district

heating, district cooling, and TESS. the work in (Rongxin, Douglas, Mary Ann & Klaus, 2015)

analyzed the two main types of TESSs: Full storage TESSs and partial storage TESSs, which

are designed to shift the entire cooling system load to the off-peak period and only a portion of

the cooling load off-peak, respectively. The plant supplies the ice tank in off-peak and stores the

energy, then it discharges over peak times. The important feature of the plant is its operation
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during summer and also the rest of the year. During summer it works as a partial storage system

and for the rest of the months, it operates as a full storage system.

Meanwhile, To balance the electrical energy supply and demand, the authors in (Erdemir & Dincer,

2020) study the effectiveness of employing TESS for shifting cooling and heating loads to

off-peak hours. In this study, it is considered that heating and cooling loads from HVAC system

are shifted from the electricity peak load periods to off-peak hours by thermal energy storage

systems. The authors in (Baniasadi, Habibi, Bass & Masoum, 2018) develop an optimal real-time

thermal energy management system (TEMS) to minimize energy consumption and achieve peak

load shifting while maintaining user comfort in the building. The proposed TEMS consists of

two TESSs including a water tank storage system and building thermal mass, and two online

closed-loop model predictive control (MPC) systems. The work in (Gholamibozanjani & Farid,

2020) employs phase change materials as TESS and price-based control systems to store the

solar energy during off-peak times and use it in a high demand period. the performance of

an office-size building in the presence of active air-PCM heat storage in combination with a

price-based control (using ON/OFF controller) for shifting both heating and cooling loads from

peak hours to off peak hours.

In (Verrilli, Srinivasan, Gambino, Canelli, Himanka, Del Vecchio, Sasso & Glielmo, 2017), the

authors propose a MPC system to define the operating schedule of a district heating power plant,

specifically TESS, to provide the demand load in peak hours. To handle the fluctuating demand,

the MPC uses forecasts and combines it with a constrained optimization problem. The objective

function reflects the cost, whereas the generator limits, TES dynamics, thermal loads, including

supply temperature, power plant layout, and reliability, are the constraints. The optimization

problem is modeled as a mixed-integer linear program with both continuous and logic variables.

2.5.3 Peak load shaving with TESS and BESS

A number of works consider both TESS and BESS to achieve peak load shaving. The work in

(Klein et al., 2017) compares BESS, water tank as TESS, fuel switch, and building thermal mass
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in terms of their improvements in handling the fluctuation in load, peak load shifting, efficiency

and implementation.

In (Bagheri Sanjareh, Nazari, Gharehpetian & Hosseinian, 2021), the authors present an energy

management scheme utilizing TESS and BESS to minimize the energy consumption and required

capacity of BESS. In this study, the optimal sizing of TESS and BESS is obtained. The work in

(Niu, Tian, Lu & Zhao, 2019) studies the flexibility potential of TESS and BESS in terms of

minimizing the operational cost.The cooling demand is forecast by an autoregressive model

with exogenous inputs, then a mixed integer linear model is formulated to optimize the dispatch

of building energy systems with minimal operating costs.

The authors in (Mohandes, Acharya, Moursi, Al-Sumaiti, Doukas & Sgouridis, 2020) present

an optimal sizing scheme of TESS, BESS and a photovoltaic system to provide the balance

between generation and demand, minimize the operational cost of microgrid components, and

achieve peak load shifting with respect to user comfort. The authors in (Nousdilis, Kontis,

Kryonidis, Christoforidis & Papagiannis, 2018), analyze the economic benefits of using BESS

in coordination with TESS in the nearly zero energy building environment.The proposed

model modeled the combined operation of photovoltaics, solar thermal generators, heat pump

generators, electrical and thermal storage devices. An optimization approach is applied to define

optimal size of the lithium-ion battery energy storage system.

Although in these papers, peak load shaving is achieved, the limitations of using batteries and

TESS to compensate a large amount of peak load are not considered (Ke et al., 2015; Reihani

et al., 2016; Vedullapalli et al., 2019). In addition, based on the limited capacity of ESSs, it

is challenging to meet peak load shaving criteria determined by utility companies (Niu et al.,

2019). Furthermore, most of the studies emphasize on using only one type of energy storage

(Verrilli et al., 2017), and considering only shiftable loads like thermal loads related to HVAC

system (Erdemir & Dincer, 2020), or fixed loads such as lights and computers (Ke et al., 2015)

since defining an optimal load shifting mechanism using TESS with BESS is a complicated task.

Besides, using waste heat produced by building components such as chillers has significant
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benefits on saving electricity and cost which is most often neglected (Mohandes et al., 2020)

and (Klein et al., 2017).

Table 2.3 summarizes the comparison of related works focusing on different applications of

TESS and BESS in buildings to achieve peak load shaving and reduce the BESS capacity.

Table 2.3 Discussion on related works in using BESS and TESS in buildings

Ref. TESS BESS
Shiftable

load

Fixed

load

Prediction

of load

BESS size

Reduction
Highlighted topic Research gap

(Erdemir & Dincer, 2020) � �
Investigation on effectiveness

of employing TESS for shifting

cooling and heating loads.

The share of fixed load demand

in peak hours has been neglected .

(Ke et al., 2015) � � �
Development of the charging,

discharging strategy for BESS.

The shiftable load demand

in peak hours has not been discussed

and the approach to define

the BESS capacity has been generalized

for a special case study.

(Vedullapalli et al., 2019) � � � �
Optimizing the operation

of BESS and HVAC

The constraints of BESS

have been not considered

including its size

which causes the high costs.

(Baniasadi et al., 2018) � � �
Employment of two online

closed-loop MPC systems

with different types of TESS.

The constrains of TESS

have not been clarified and

the peaks caused by fixed load

has not been addressed.

(Gholamibozanjani & Farid, 2020) � � �
Employment of phase change materials

as TESS and price-based control systems.

The optimization approach

to obtain the optimal amount of PCM

was not discussed due to

the high cost of PCM.

(Verrilli et al., 2017) � � �
Defining the operation schedule

of TESS through MPC system.

Two types of load including

curtailable and shiftable loads

were considered and the effects of

plugged loads in the building were missed.

(Niu et al., 2019) � � � � �
Minimizing the operational cost

through the flexibility potential of TESS and BESS.

The reduction of the BESS capacity

has not been investigated

while TESS was implemented in the building.

(Mohandes et al., 2020) � � � � �

Presenting a sizing scheme of EESs

and a photovoltaic system

and minimizing the operational cost

of microgrid components.

The waste heating and cooling energy

produced by HVAC system to

save more cost and energy has been neglected.

(Nousdilis et al., 2018) � � � �
Analyzed the economic benefits

of using BESS in coordination with TESS

in the nearly zero energy building environment

The optimization approach has not been discussed

and described extensively.

The optimal charging/discharging schedule

for EESs was not presented.

(Bagheri Sanjareh et al., 2021) � � � � �
Reduction in BESS capacity

by adding TESS

in isolated microgrid.

The obtained sizing for EESs

was constrained to a specific case study

and the optimization approach

has not been discussed.

2.5.4 Peak Load Shaving Using Machine Learning Approaches

Recent works in (Ahrarinouri, Rastegar & Seifi, 2021; Lu et al., 2019; Venayagamoorthy,

Sharma, Gautam & Ahmadi, 2016; Wang, Li, Ming & Wang, 2020; Yu, Xie, Xie, Zou, Zhang,

Sun, Zhang, Zhang & Jiang, 2020) have focused on using model-free approaches for energy

management systems.recent works in (Ahrarinouri et al., 2021; Lu et al., 2019; Venayagamoorthy

et al., 2016; Wang et al., 2020; Yu et al., 2020) have focused on using model-free approaches for

energy management systems. The authors in (Lu et al., 2019) proposed an energy management
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scheme based on multi-agent reinforcement learning and artificial neural network to minimize

the electricity cost while the users comfort has been maintained. The authors in (Yu et al.,

2020) proposed an optimal algorithm for scheduling HVAC systems in presence of ESS in

the smart home by using deep reinforcement learning (DRL). The work in (Ahrarinouri et al.,

2021) used multi-agent reinforcement learning (MARL) to optimize the operation schedule of

smart home components such as combined heat and power unit, a plug-in electric vehicle, solar

panels, and controllable electrical loads. This work reduced the energy consumption costs and

increase the calculation speed by using MARL. In (Venayagamoorthy et al., 2016), the authors

developed an intelligent dynamic energy management system (I-DEMS) to maximize reliability

and extend the battery life used in the building and maximize the users satisfaction. The authors

in (Wang et al., 2020) proposed an energy management system based on RL to demand response

management under the time of use tariff and reduce the total operating costs of the distribution

system operators.

Although all aforementioned studies tried to control and optimize the operations of components

of the smart building to obtain peak load shaving and saving costs, they have not considered

the simultaneous application of different types of energy storage systems in the building and

limitations of each EESs. Energy can be stored by different strategies such as mechanical

(Abdeltawab & Mohamed, 2016), battery energy storage system (BESS) (Leadbetter & Swan,

2012), electrical (Chen et al., 2009), chemical (Niaz et al., 2015), and thermal energy storage

system (TESS) (Erdemir & Dincer, 2020). Each storage technology has specific limitations

and requisites such as high installation costs, environmental problems, low energy density,

mechanical fatigue, and short discharge time. Among all, BESS has been considered as the main

ESS in most aforementioned papers due to its efficiency, charging/discharging in short time

intervals and ease of installation. However, it is worth to mention that BESS has relatively low

life cycling times and high investment costs which hinder its large-scale use and are neglected

in mentioned studies. Furthermore, the main issue in using ESSs in buildings is related to

defining the optimal schedule of charging/discharging when different electrical, heating and

cooling systems exist in the building to meet the demand and shave the peaks. Moreover, in
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the above-mentioned papers, only one type of load mainly plug load in the building has been

considered while the effects of other type of loads such as HVAC systems loads on defining the

optimal operation schedule of buildings components have been neglected.

In light of these gaps, this thesis focuses on achieving peak load shifting through the deployment

of TESS and BESS in the building. To achieve complete peak load shaving, all loads in the

building including electrical plugged loads and thermal loads are considered to be supported by

ESS during peak periods. To save cost and energy, TESS stores the waste heat produced by

chillers and deliver it to the building on peak hours. The optimal schedules for charging and

discharging of TESS and BESS are defined through the optimization process to attain peak load

shifting and reduce BESS capacity.





CHAPTER 3

SYSTEM MODELING

3.1 Power management unit modeling

The introduced framework of power management unit (PMU) is illustrated in Figure 3.1,

which consists of an HVAC system coupled with a TESS, BESS, loads and peak load shaving

mechanism. Components and loads are modeled using historical data and thermodynamic

principles known as grey-box modeling.

Grid load  
Main Grid Campus Building Load

Thermal Energy Storage 

Battery Energy Storage

Energy Management 
Unit (EMU)

Charging/Discharging  State of charge
 (            ) Demand load

(Electrical and 
thermal loads)  

BESSSOC

Charging/Discharging  State of charge 
(            )TESSSOC

Electricity price  

HVAC System

On/Off

Heating/Cooling 
load

Figure 3.1 Scheme of the campus in presence of PMU and

ESSs

Campus buildings generally contain mechanical, hydraulic and electrical components such as

heat and mass transfer devices, air handling equipment, air and liquid distributed systems, chillers,

and boilers. Developing a reliable model of the building components and loads is necessary to

analyze and implement a peak load shaving mechanism. In this context, physics-based (white-

box) model, grey-box model, and data-driven (black-box) model can be used to characterize a

reliable model. White-box and black-box models are established based on the accurate physical

knowledge and historical database of the system, respectively. White-box modeling needs a
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comprehensive understanding of all details and physics of building’s components, which are not

primarily available. On the other hand, the black-box model requires high data quality.

Grey-box modeling approach is an effective method for modeling complex systems that are

sophisticated to be described by thermodynamic equations (Afram, Fung, Janabi-Sharifi & Raa-

hemifar, 2018). This method is a combination of white-box and black-box models, which inherits

the advantages of both white-box and black-box models. The advantages of the grey-box model

are high capacity, easy to establish, comparatively less complex and suitable for control and

optimization applications (Vaghefi et al., 2016) rather than white-box modeling and black-box

modeling which are complex, less accurate and less flexible. The limitations and challenges

of using grey-box model are: lack of a unified software solution to obtain the model, the

presence of some approximations in the model, and its vague creation (Li, O’Neill, Zhang, Chen,

Im & DeGraw, 2021). Given that HVAC processes cannot be clearly modeled by thermodynamic

equations and are hard to be described by only data-modeling. Therefore, a method should be

adopted that can model the system by historical data and thermodynamic principles. Hence,

this thesis employs grey-box modeling due to its above-mentioned advantages to address the

challenges of modeling the sophisticated systems such as HVAC system. In this context, the

operational data of building components is recorded and arranged. Then, the relations between

inputs and outputs of heating and cooling systems such as chillers, boilers, and ESSs are derived

based on historical data and thermodynamic principles to establish a novel grey-box model of the

system. The considered building is a campus of a university located in Canada, which includes an

electric boiler with 98% efficiency, and a chiller with a cooling capacity of 703.3 kW, efficiency

0.447 kW/ton and COP 5 as shown in Figure 3.2. It is assumed that the HVAC system of the

building works properly. A water tank storage and a Lithium-Ion battery bank are considered for

TESS and BESS, respectively. The sample time to record the data is corresponding to 15 minutes.

The total building electricity consumption for each sample of the time interval is measured by

an electricity usage monitor and presented in Figure 3.3. The pattern of total electric power

consumption in building consists of fixed and shiftable loads. Fixed load accounts for 79.8% of

total electric power demand on average. Fixed load is related to electric devices such as lights,
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computers, and laboratories in building and measured by the metering devices in the campus

building. In contrast, shiftable load is associated with the electric power consumption of the

chiller and the electric boiler.

Water-Cooled Screw Chiller
200-300 Tons
703-1055 kW

R-134a

Electric Boiler
495 kW

Centrifugal Pumps

Figure 3.2 The electric boiler, chiller, and connected pumps

installed in the campus building

3.2 HVAC system

The considered HVAC system consists of a chiller, an electric boiler, a cooling tower, and water

pumps, as shown in Figure 3.4. The chiller, which consists of an evaporator, a compressor,

a thermal expansion valve, and a condenser, is responsible for providing cooling load in the

building. Two pumps are considered to supply cold water provided by the evaporator into the

building. The waste heat produced in the condenser, 𝑄𝐶𝑁𝐷 , is considered to feed TESS and

calculated as follow (Afroz, Shafiullah, Urmee & Higgins, 2018a):

�𝑄𝐶𝑁𝐷 = �𝑚𝐶𝑁𝐷𝐶𝑝 (𝑇𝐶𝑁𝐷𝑂𝑊 − 𝑇𝐶𝑁𝐷𝐼𝑊 ) (3.1)
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Figure 3.3 Total electric power load of the building for

January of 2019

where �𝑚𝐶𝑁𝐷 is the water flow rate in the condenser, 𝐶𝑝 is the water specific heat, 𝑇𝐶𝑁𝐷𝑂𝑊

and 𝑇𝐶𝑁𝐷𝐼𝑊 are the outlet and inlet water temperature from the condenser, respectively. The

relation between produced heat and electricity consumption of the chiller is interpolated by a

second-order function to obtain a grey-box model of electric power consumption by the chiller.

A cooling tower is generally considered to reject the waste heat produced by the condenser and

reduce the temperature of the water. In this work, we propose integrating the TESS into the

building to use the waste heat in the cooling tower to fill the water tank requirement in winter

time as shown in Figure 3.4. In this context, the valve of cooling tower is closed and produced

hot water in condenser moves toward water tank storage. Consequently, the energy is saved and

the electricity consumption related to the cooling tower and connected pumps is eliminated.

The electric boiler is considered as another major electricity consumer in the building, especially

in peak hours. The electricity cost to run the electric boiler with 98% efficiency is remarkable.

The heat provided by the boiler is calculated based on the thermodynamics principle as follow

(Farooq, Afram, Schulz & Janabi-Sharifi, 2015):

�𝑄𝐵 = �𝑚𝐵𝑊𝐶𝑝 (𝑇𝐵𝑂 − 𝑇𝐵𝐼) (3.2)
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where 𝑄𝐵 is the heat produced by boiler, �𝑚𝐵𝑊 represents the mass flow rate through the boiler,

𝑇𝐵𝑂 and 𝑇𝐵𝐼 are outlet temperature and inlet temperature in the boiler. Moreover, the electric

power consumption is obtained by historical measured data from previous years. Then the

relation between produced heat and consumed electricity is extracted by the grey-box model to

define the power consumption by boiler corresponding to required heat demand.
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Figure 3.4 Schematic of heating and cooling systems of the

campus

3.3 Thermal energy storage system

Water tanks are mainly used as TESS due to their high capacity to store energy in campus

buildings. In this study, the water tank is connected to the chiller and supplied by the produced

heat in the condenser of the chiller. The fully mixed water is assumed in the tank. Based on the

heat produced by chillers, the average inlet temperature of water in the insulated tank is 37◦C

after passing the pump. The characteristics of the proposed TESS are given in Table 3.1. The

heat stored in TESS by assuming the constant rates of mass water flow is presented as follow
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(Dincer & Rosen, 2002):

�𝑄𝑇𝐸𝑆𝑆 = �𝑚𝑇𝐸𝑆𝑆𝐶𝑝Δ𝑇𝑇𝐸𝑆𝑆 (3.3)

where �𝑄𝑇𝐸𝑆𝑆 is heat energy transferred to the TESS, �𝑚𝑇𝐸𝑆𝑆 is the mass flow rate of the hot

water provided by the condenser, and Δ𝑇𝑇𝐸𝑆𝑆 is the difference of temperature in condenser. The

tank operates in two modes, charging and discharging. The water tank is charged by the heat

produced in the condenser and discharged in peak hours to eliminate electricity consumption of

the electric boiler and their pumps.

3.4 Battery energy storage system

Li-ion battery in comparison with other types of batteries has high energy density, high efficiency,

and long cycle life. A bank of Li-ion batteries is considered to shave the peaks of fixed loads.

The characteristics of the BESS are given in Table 3.1. The following equation describes the

dynamics of the stored energy in battery (Dagdougui, Mary, Beraud-Sudreau & Dessaint, 2016):

𝐸𝐵𝐸𝑆𝑆 (𝑡) = (1 − 𝜎)𝐸𝐵𝑆𝑆 (𝑡 − 1) + 𝜅𝑥(𝑡)𝜏𝜂 (3.4)

where 𝐸𝐵𝑆𝑆 (𝑡) is the stored energy at time t, 𝜅𝑥(𝑡) is charging/discharging power, 𝜎 is the self-

discharge rate of the battery, 𝜏 is the time interval, and 𝜂 is the efficiency of discharging/charging

in BESS. If 𝜅𝑥(𝑡) < 0, the battery bank discharges the required load and if 𝜅𝑥(𝑡) > 0, the

battery is charged by the grid. The capacity of BESS is limited and is considered as one of the

constraints for the optimization problem.

3.5 Electric power consumption model and load profile

Buildings have different components that cause different types of loads including fixed and

shiftable loads (Ruzbahani, Rahimnejad & Karimipour, 2019). Fixed loads are related to

electricity consumption that cannot be shifted such as lights, computers, and electrical devices.

On the other hand, shiftable loads can be transferred from peak hours to another time. For

instance, electric boilers and chillers can be considered as shiftable loads. Dividing the total load
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Table 3.1 Characteristics of each ESSs

ESS description Value Unit

BESS Battery capacity without TESS 825 kWh

Battery capacity with TESS 475 kWh

Minimum State of Charge (SoC) 10 %

Maximum State of Charge (SoC) 95 %

Maximum charge/discharge of power 200 kW

Efficiency 90 %

TESS TESS capacity 2000 kWh

TESS temperature 37 ◦C

Heat loss per hour 0.002 ◦C

Efficiency 87.6 %

into these two categories simplifies the complexity of the problem. Hence, in this thesis, this

approach is employed. The total building electric power load consisting of fixed and shiftable

loads is acquired from an educational campus building. The framework of campus building

loads is given in Figure 3.5 which indicates the shiftable load, fixed load and total electric power

load.

Shiftable 
Load

Fixed Load

Thermal 
demand load ,CND BQ QCND ,

,CND BT,CND Bm ,,m

Electric Power 
Consumption Model 

(EPCM) 

Power 
meter 

Fixed 
Load

 Power Grid

Total electric
 power demand loads

Figure 3.5 An overview of different types of the electric

power loads in building

In addition to the main power meter that monitors the total electricity consumption of the

building containing shiftable and fixed loads, the submeter devices are also provided to measure

the electricity consumption of each component related to fixed load in the building. Hence,
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the summation of electricity consumption of the components measured by connected metering

devices determines the fixed load in the building. While the shiftable load is calculated by using

historical data and the thermodynamics principle. EPCM is considered for shiftable load to

estimate the electrical consumption based on the heat produced by the HVAC system as shown

in Figure 3.5. EPCM is also modeled based on the correlation between the heat rejected by

HVAC devices, �𝑄𝐶𝑁𝐷 calculated in (3.1) for chiller’s condenser and �𝑄𝐵 in (3.2) for boiler, and

historical electricity usage. Besides, the water flow rate in the HVAC system, chiller electricity

consumption, water temperatures in the chiller, the boiler electricity consumption, and water

temperatures in the boiler are all considered as required data to obtain shiftable load in EPCM.

3.5.0.1 Grey-box model

The grey-box model is employed to establish shiftable load and accomplish the EPCM as

shown in Figure 3.5. The grey-box modeling is mainly used due to lack of details and exact

information of the building’s components. As it is discussed, the grey-box modeling develops

the flexible model of complicated systems and loads such as chiller, boiler, and shiftable load

in the building. In this thesis, the mathematical and thermodynamics principles are used to

accomplish a white-box model and then the historical data is adopted to develop a black-box

model to create a grey-box model of the system. In this context, the applied thermodynamic

principles given in (3.1) and (3.2) are used to define the required heat rejected in the condenser

and boiler, respectively. To obtain this part of the model, the historical data of the water flow

rate in the HVAC system, water temperatures in the chiller, and water temperatures in the

boiler are collected and measured using Metasys® software with a time resolution 15 minutes.

Furthermore, the chiller and the boiler electricity consumption is measured by metering devices

in the building in 2018 and 2019 to develop the EPCM. It is worth mentioning that missing

values in our dataset is retrieved by replacing mean value when there are not outliers and using

linear interpolation in Matlab. To establish the grey-box model, the heat demand is calculated

through (3.1) and (3.2) and the relation between produced heat and required electricity load for

chiller and boiler is defined based on a polynomial curve fitting. The schematic of the grey-box
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model is presented in Figure 3.6. To execute the grey-box model, 80% of data is considered

for training and the rest is used for validation based on the Pareto principle. A second-order

polynomial function of required electric power for providing heat demand is adopted in EPCM.

The R-squared is 92.25%, which indicates the accuracy of the developed model.

Grey-box model

Water flow rate in chiller and boiler
Inlet and outlet water temperatures 
in chiller and boiler 

Chiller electricity consumption
 Boiler electricity consumption

Thermodynamic 
principles

Polynomial 
curve fitting

White-box model Black-box model

Figure 3.6 The schematic of grey-box model

Table 3.2 The share of fixed and shiftable loads in total

electric power consumption related to the second scenario

Loads
Power consumption

Power consumption

in peak hours

%∗ %∗

Scenario
Fixed load 77.67 81.41

Shiftable load 22.33 18.6
∗ Percentage of power consumption by shiftable and fixed loads

with respect to total electric power consumption

Fixed load is related to electric devices for January as shown in Figure 3.7. Shiftable load is

obtained based on EPCM which is presented in Figure 3.8. The total power consumption, fixed

load and shiftable load for one day are demonstrated in Figure 3.9 to clarify the the share of

each type of loads.
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Figure 3.7 Electrical fixed load for January of 2019
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Figure 3.8 Electricity consumption related to shiftable load

for January of 2019
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CHAPTER 4

PEAK LOAD SHAVING MECHANISM USING PARTICLE SWARM OPTIMIZATION

4.1 Peak Load Shaving Mechanism

In buildings, peaks are mainly caused by electrical devices such as lights, computers and thermal

devices. Since different types of ESSs are used in buildings, the peak load shaving mechanism

should be designed considering different scenarios to cover electricity consumption peaks. In this

context, the peak load shaving mechanism contains two main states: charging and discharging

the ESS. In charging, the produced waste heat in the chiller’s condenser charges TESS during

the day. Moreover, the chiller is run and consumes electricity to produce heat in the condenser

for charging the TESS until its maximum capacity during off-peak hours. Furthermore, BESS is

supplied by the power grid during off-peak hours. Charging in ESSs is performed considering

their maximum capacities and constraints.

The peak load shaving mechanism for discharging TESS and BESS is investigated through

different scenarios in PMU. One of these scenarios is when a significant portion of the peak

load is caused by the shiftable load. Hence, the priority is to use the TESS and discharge it

to serve the shiftable load. If the peak load exceeds the stored energy in TESS, then BESS is

engaged to shave the peak load. Another scenario happens when the peak load corresponds

to the fixed load in the building. In this scenario, BESS is employed to fulfill the fixed load

requirements. The final scenario, which is the main focus of this thesis, is when the peak load is

caused by both fixed and shiftable loads. In this case, TESS and BESS are used to meet the

demand and shave the peak. In this context, TESS and BESS are charged in off-peak hours

by provided heat in the condenser and main grid, respectively. Therefore, the total electric

power consumption in the off-peak period is increased to charge the EES with respect to the

electric power consumption threshold. Then, on peak times, TESS and BESS discharge the

heat and electric power, respectively, to satisfy the demand in the building. Therefore, by using
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the optimization approach, PMU defines the optimal operating schedule of TESS and BESS to

manage the shiftable and fixed loads, respectively.

4.2 Optimization Problem Formulation

A new PMU, which includes optimization and peak load shaving mechanisms, is proposed.

The considered campus building, which is equipped with TESS, BESS, and HVAC systems,

includes both shiftable and fixed loads that are collected for each time interval. Both TESS

and BESS have limited capacities (c), 0 ≤ c ≤ c𝑚𝑎𝑥 , with the prespecified maximum values

of charging/discharging rates as given in Table 5.1. To investigate the effectiveness of adding

TESS for reducing the BESS capacity, two capacities are considered for BESS as given in Table

5.1. When TESS is not employed, the considered capacity for BESS is 825 kWh to achieve

peak load shaving. This value will be reduced to 475 kWh when TESS is used as the second

EES in the building. On the other hand, the utility company penalizes the educational building

when the electricity usage exceeds a predetermined threshold 𝑇 . A penalty is imposed based on

the amount of electric power consumption in pick periods of each day. Therefore, the optimal

charging/discharging schedule of ESSs is needed to be defined by PMU to obtain maximum

peak load shaving considering the constraints. Then, PSO approach is applied to define the

optimal operating schedule of ESSs in PMU. The proposed PMU is detailed by a flowchart in

Figure 4.1. Peak load shaving mechanism, the mathematical formulation, the required financial

analysis are also given in the following sections.

4.2.1 Mathematical Formulation

The proposed PMU employs an optimization method to determine the optimal charging/dis-

charging schedule of ESSs to shave the peaks with respect to the constraints. In this context,

we aim to minimize the electric power consumption during peak periods while maintaining the

ESSs charged in off-peak hours. Moreover, the power consumption should not pass the threshold

since the utility company imposes a high penalty. Therefore, PMU should try to maintain the

electricity consumption near the threshold concerning the ESSs capacity conditions and the price
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Figure 4.1 Flowchart of the proposed PMU

policy. Taking all the above-mentioned points into account, the cost function of the operating

schedule as a function of charging/discharging rate, 𝑥, is derived as:

𝐺 (x) =
𝑁∑
𝑖=1

((𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖)𝑃𝑟 (𝑥𝑖))
2,

p = [𝑝1, ..., 𝑝𝑁 ], x = [𝑥1, ..., 𝑥𝑁 ],

(4.1)

where 𝑁 is the number of time intervals for a day, 𝑥 is the decision variable representing the

charging/discharging schedule, p denotes the electric power consumption of the building (kW),

𝑃𝑟 and 𝑇 represent the electricity price function and peak shaving threshold, respectively, and

𝜅 is the maximum amount of charging/discharging rate with respect to the efficiency of ESSs.

As (4.1) indicates the cost function of the operating schedule, the optimization problem is
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formulated as:

min
x

(𝐺 (x)) =
𝑁∑
𝑖=1

((𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖)𝑃𝑟 (x))2,

s.t.

− 1 ≤ 𝑥𝑖 ≤ 1,

0 ≤ 𝜐 + Z xᵀ𝜏 ≤ c,

(4.2)

where

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜅 0

𝜅 𝜅
...

...
. . .

𝜅 𝜅 . . . 𝜅

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐max

𝑐max

...

𝑐max

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝜐 is the initial energy stored in ESS (kWh), 𝑐max indicates the maximum capacity of

ESS (kWh), and 𝜏 as the time interval is fifteen minutes. The decision variable has a positive

and negative range that corresponds to the charging and discharging modes, respectively. The

second constraint expresses the allowable amount of energy that ESSs can store and deliver.

4.2.1.1 Convexity Of the Optimization Problem

To prove the convexity of the objective function, the second derivative of 𝐺 (𝑥) should be ≥ 0

for all 𝑥 in its interval. Our problem is a quadratic function with linear constraints. The first and

second derivative of the function is driven.

First derivation:

2

(
𝜅𝑃𝑟 (x) + (𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖)

𝜕𝑃𝑟 (x)
𝜕x

)
((𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖)𝑃𝑟 (x))

Second derivation:

4𝜅(𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖)
𝜕𝑃𝑟 (x)
𝜕x 𝑃𝑟 (x)
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It can be verified that the objective function of (4.2) and its feasible set are convex (Chi, Li & Lin,

2017) as long as 𝜕𝑃𝑟
𝜕𝑥𝑖

𝑃𝑟 (x) (𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖) ≥ 0,∀𝑖 ∈ B where B = {𝑖 ∈ N|0 ≤ 𝑖 ≤ 𝑁} 1.

It worth mentioning that based on (4.4), in case of (𝑝𝑖 + 𝜅𝑥𝑖) < 𝑇 then we have 𝜕𝑃𝑟
𝜕𝑥𝑖

𝑃𝑟 (x) (𝑝𝑖−𝑇 +

𝜅𝑥𝑖) = 0 and if (𝑝𝑖 + 𝜅𝑥𝑖) > 𝑇 then it will be 𝜕𝑃𝑟
𝜕𝑥𝑖

𝑃𝑟 (x) (𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖) = 𝜅𝛽2(𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖)
2 ≥ 0.

Hence, the problem is convex and the solution can be obtained by applying the Karush-

Kuhn-Tucker (KKT) conditions on the dual of (4.2). The dual function of (4.2) is derived

as:

𝑔(𝜆) = inf
x∈𝐷

𝐿 (x, 𝜆) = inf
x∈𝐷

[
𝑁∑
𝑖=1

((𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖)𝑃𝑟 (x))2+

𝑁∑
𝑘1=1

𝜆𝑘1
(𝜐 + z𝑖xᵀ.𝜏 − 𝑐𝑚𝑎𝑥) − 𝜆𝑁+𝑘1

(𝜐 + z𝑖xᵀ.𝜏)

− 𝜆2𝑁+𝑖 (𝑥𝑖 + 1) + 𝜆3𝑁+𝑖 (𝑥𝑖 − 1)

]
.

(4.3)

where

z1 =
[
𝜅 0 . . 0

]
,

z2 =
[
𝜅 𝜅 . . 0

]
,

.

z𝑁 =
[
𝜅 𝜅 𝜅 . 𝜅

]
.

In order to have finite 𝑔(𝜆), only one of the 𝜆𝑖, 𝜆𝑏𝑁+𝑖 , 𝜆2𝑁+𝑖 , 𝜆3𝑁+𝑖 can be equal zero. Applying

KKT conditions on (4.3) leads to:

1) 𝜆𝑖 (𝜐 + z𝑖xᵀ.𝜏 − 𝑐𝑚𝑎𝑥) = 0, which means that 𝜆𝑖 = 0 or 𝜐 + z𝑖xᵀ.𝜏 = 𝑐𝑚𝑎𝑥 .

2) 𝜆𝑁+𝑖 (𝜐 + z𝑖xᵀ.𝜏) = 0 , which means that 𝜆𝑁+𝑖 = 0 or (𝜐 = −z𝑖xᵀ.𝜏).

1 In the cases where
𝜕𝑃𝑟 (x)

𝜕x 𝑃𝑟 (x) (𝑝𝑖 −𝑇 + 𝜅𝑥𝑖) ≥ 0 does not hold, the convexity of the objective function

should be studied specifically.
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3) −𝜆2𝑁+𝑖 (𝑥𝑖 + 1) = 0, which means that 𝜆4𝑁+𝑖 = 0 or 𝑥𝑖 = −1.

4) 𝜆3𝑁+𝑖 (𝑥𝑖 − 1) = 0, which means that 𝜆5𝑁+𝑖 = 0 or 𝑥𝑖 = +1.

5)
(
2𝑃𝑟 (x) (𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖)

2 𝜕𝑃𝑟 (x)
𝜕𝑥𝑖

+ 𝜅(𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖)𝑃𝑟 (x))

+ 2
∑𝑁

𝑘1=1,𝑘1≠𝑖
(𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖)

2𝑃𝑟 (x) 𝜕𝑃𝑟 (x)
𝜕𝑥𝑖

+∑𝑁
𝑘2=1 (𝜆𝑘2

− 𝜆𝑁+𝑘2
) (z𝑖yi𝜏) − 𝜆2𝑁+𝑖 + 𝜆3𝑁+𝑖

)
= 0.

where yi = 𝜕xᵀ
𝜕𝑥𝑖

i.e.,
[
0 . . . 1 . . . 0

]ᵀ
.

Among all the critical points obtained by applying KKT conditions, only one is the optimal

solution with the lowest objective function value. Since (4.2) is a convex problem, it has a

unique solution. However, obtaining the solution as a function of electric power consumption of

the building is complicated since their change affects the KKT conditions. For a given set of

parameters, the solution of (4.2) can be obtained mathematically by solving KKT conditions.

However, in the case where the number of time intervals and decision variables are numerous,

the complexity is increased if using a mathematical approach such as decent gradient-based

techniques. Moreover, the mathematical approach cannot converge to the optimum solution when

the number of decision variables is enormous. Therefore, the metaheuristic approach, precisely

PSO, is adopted to solve our objective function due to simple implementation, computational

efficiency, and fast convergence (Parejo, Ruiz-Cortés, Lozano & Fernandez, 2012). The aim of

using the metaheuristic algorithm is to find the feasible solution in an acceptable timescale due

to high time intervals and decision variables.

4.2.2 Financial Analysis

The electricity price function 𝑃𝑟 in (4.1), (4.3), and (4.9) represents a price rate structure that

the utility company applies to charge the campus. This structure is based on an annual contract

with a minimum monthly billing demand between the building and the utility company. The

utility company charges the campus a high price when the electric power consumption excesses

the prespecified threshold. Therefore, to prevent being charged, the total electric power demand

of the building at any time is not supposed to cross the threshold specified by the main grid. The
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price rate structure is presented as

𝑃𝑟𝑖𝑐𝑒 = 𝑃𝑟 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛽, (𝑝𝑖 + 𝜅𝑥𝑖) < 𝑇

𝛽(𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖), (𝑝𝑖 + 𝜅𝑥𝑖) > 𝑇

(4.4)

where 𝛽 is the electric power price that is applied to the building . To solve the optimization

problem, (4.4) is used in (4.1). One can verify that
𝜕𝑃𝑟 (x)
𝜕x 𝑃𝑟 (x) (𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖) ≥ 0 holds for the

considered cost function. Thus, our considered problem is a convex problem.

4.2.3 Particle Swarm Optimization

PSO was presented for simulating the social behaviour of birds and fishes (Wang, Tan & Liu,

2017). In this scheme, the first step is to generate the initial population, called a swarm, of

candidate solution, named particles, which is obtained randomly. Each particle moves over

search space and has three main vectors: the current velocity vector, the best position vector of

all particles and its own best position vector. At each iteration of performing PSO, the velocity

and position of particle 𝑗 are updated as:

𝑉𝑖
𝑗 = 𝑤𝑉 𝑗𝑖−1 + 𝑐1𝑟1 [𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖−1

𝑗 ] + 𝑐2𝑟2 [𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖−1
𝑗 ], (4.5)

𝑋𝑖
𝑗 = 𝑋𝑖−1

𝑗 +𝑉𝑖
𝑗 𝑗 = 1, 2, . . . , 𝑀, (4.6)

where 𝑋𝑖
𝑗 and 𝑉𝑖

𝑗 is the position and velocity vectors of the particle 𝑗 at iteration 𝑖 of performing

PSO, respectively, 𝑃𝑏𝑒𝑠𝑡 represents the best position of individual particle for objective function,

and 𝐺𝑏𝑒𝑠𝑡 is the best position for all particles. One of the advantages of using PSO is that

there are only a few parameters to adjust and control such as cognitive factor, 𝑐1, social

factor, 𝑐2, inertia weight, 𝑤, random values range, 𝑥𝑖, swarm size, and max iteration. The

values of 𝑐1 = 𝑐2 = 1.49618 and 𝑤 = 0.7298 as optimization coefficients are based on (Van

Den Bergh & Engelbrecht, 2006). Then, the positions are evaluated by the PSO cost function and

the best position is determined. This process is repeated until the desired accuracy is obtained.

The principle of PSO is detailed in Figure 4.2.
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Update the best position and best cost  
Eq. (4.6), (4.9)

Apply penalty,
Eq. (4.7), (4.8) 

End
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Optimization 
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 is defined as an optimal solution 
Eq. (4.9)

bestG

Figure 4.2 Flowchart of PSO

The optimization problem with constraints can be solved by PSO through considering the

constraints as the penalties in the cost function. Thus, we define (4.7) for charging mode

(0 ≤ 𝑥𝑖 ≤ 1),

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛼1 |c − 𝑤 |, 𝑤 > c

0, otherwise.

(4.7)

and (4.8) for discharging mode (−1 ≤ 𝑥𝑖 < 0).

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛼2 | min(0, 𝑤) |, 𝑤 < 0

0, otherwise.

(4.8)
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where 𝑤 = (𝜐 + Z xᵀ𝜏) and indicates the amount of the stored energy in the ESSs. As a result,

the cost function of PSO is defined as:

min
x

(𝐺 (x)) =
𝑁∑
𝑖=1

((𝑝𝑖 − 𝑇 + 𝜅𝑥𝑖)𝑃𝑟 (x))2 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦2 (4.9)

to solve the optimization problem in (4.1).

- benefits of using PSO over other metaheuristic approaches:

Simplicity: PSO is a simple and easy-to-implement algorithm compared to other metaheuristic

approaches, such as Genetic Algorithms.

Fast convergence: PSO has been shown to converge quickly to a good solution, making it

useful for problems where time is a critical factor.

No requirement for derivative information: PSO does not require knowledge of the derivative

of the objective function, which makes it suitable for problems where the derivative is difficult

or impossible to compute.

Robustness: PSO has been shown to perform well on a wide range of optimization problems,

including those that are non-linear, non-convex, and multi-modal.

Ability to handle constraints: PSO can be easily modified to handle constraints, such as

inequality and equality constraints, which makes it useful for many real-world optimization

problems.

4.3 Optimization Results by PSO

The proposed PMU is employed to perform peak load shaving through the scenario that mainly

happens on the university campus. The considered scenario indicates the peak load as the

combination of both fixed and shiftable loads. In this context, TESS and BESS are employed to

meet the demand for peak load shaving. The metaheuristic optimization approach is used to

solve (4.2) and define the optimal operating schedule of TESS and BESS to manage the shiftable

and fixed loads, respectively.
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The implementation of PSO is done using Matlab. The considered data-set is for 15 minutes

intervals for 24 hours, and the optimization is done at the beginning of the day for 24 hours.

Therefore, there are ninety-six decision variables (charging/discharging rates) in the optimization

problem. The optimal solution using the PSO algorithm is obtained within an acceptable time.

The time elapsed to complete an optimization considering 1000 iterations with 1000 swarm

size is approximately 106 seconds. In comparison, gradient-based algorithms such as Fmincon

function of Matlab failed to converge to the optimal solution.

- Scenario

In this plan, TESS and BESS are employed to satisfy the demand and achieve peak load shaving

when peak load is a combination of fixed and shiftable loads. Firstly, we considered BESS as

the only ESS for peak load shaving. Figure 4.3 demonstrates peak load shaving achieved by

using only BESS for one day in January 2019 based on samples of 15 minutes. Peak shaving

is achieved in the building by using the high capacity of BESS, 825 kWh. Using high BESS

capacity causes more maintenance and replacement expenses due to battery life cycle limitation

and degradation. TESS is added in parallel with BESS to compensate for BESS limitations and

reduce its capacity.

Figure 4.4 demonstrates the electric power consumption obtained by the peak load shaving

mechanism using TESS and BESS in the building. When the electric power consumption is

lower than the threshold (off-peak period), the TESS and BESS are charged and electric power

consumption is increased up to the threshold level. This figure shows when electric power

consumption passes the threshold (peak periods), TESS and BESS deliver the demand load to

shave the peak and the electric power consumption is decreased significantly after peak load

shaving. Moreover, by integrating the TESS, the capacity for BESS is reduced to 475 kWh

that causes less expenses and maintenance. It is worth noting that using simply BESS with the

capacity 475 kWh is insufficient to provide complete peak load shaving, as shown in Figure 4.4.

Therefore, the need to use TESS in parallel with BESS is getting increased.
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Figure 4.3 Peak load shaving using only BESS with capacity

825 kWh in January 2019
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Figure 4.4 Peak load shaving by using BESS and TESS

versus using only BESS with capacity 475 kWh for January of

2019

The effect of considering different capacities for BESS on peak load shaving is shown in

Figure 4.5. In the case of having different capacities for BESS, the optimization problem

defines feasible peak load shaving due to the capacities limitation. It can be concluded that the

proposed optimization problem can define the peak load shaving with different capacities of
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ESSs. However, to attain complete peak load shaving, the proper capacity for the BESS is 475

kWh that can be used in parallel with the TESS.

0 10 20 30 40 50 60 70
Sample

200

250

300

350

400

450

E
le

ct
ri

c 
po

w
er

 c
on

su
m

pt
io

n 
(k

W
)

Total electric power consumption
BESS capacity=350 kWh
BESS capacity=375 kWh
BESS capacity=400 kWh
BESS capacity=450 kWh
BESS capacity=475 kWh
Peak load shaving threshold

Figure 4.5 Peak load shaving for different capacities of BESS

for a day of January of 2019

The optimal charging/discharging schedule of BESS obtained by PSO is presented in Figure 4.6.

The decision variable range, which indicates the rate of charging/discharging of BESS, is shown

by the left axis of the picture. Positive values are related to charging and the negative numbers

express the discharging of BESS. The right axis depicts the pattern of fixed electric power usage

before and after peak load shaving. The result demonstrates that PSO can determine the optimal

charging/discharging schedule for BESS to reduce peak load.

To show the effectiveness of the proposed approach, we compare the performance of PSO

with heuristic rule-based and a gradient-based method to define optimal operation schedule

of ESSs. Heuristic rule based (HRB) is considered as a problem-dependent solution strategy

(Naghavipour, Soon, Idris, Namvar, Salleh & Gani, 2022). To evaluate HRB approach, we

consider the rules: if 𝜐 = c𝑚𝑎𝑥 then, 𝑥𝑖 = 0, 𝑤𝑖+1 = c𝑚𝑎𝑥 and 𝑝𝑛𝑒𝑤𝑖 = 𝑝𝑖. When 𝑝𝑖 < 𝑇 and

𝑤𝑖 < c𝑚𝑎𝑥 , then 𝑥𝑖 = (c𝑚𝑎𝑥 − 𝑤𝑖)/𝜅, 𝑤𝑖+1 = (1 − 𝜎) 𝑤𝑖 + 𝜅𝑥𝑖𝜏 and 𝑝𝑛𝑒𝑤𝑖 = 𝑝𝑖 + 𝑤𝑖+1 − 𝑤𝑖.

However, if 𝑝𝑛𝑒𝑤𝑖 > 𝑇 then 𝑤𝑖+1 = min{c𝑚𝑎𝑥, 𝑤𝑖 +𝑇 − 𝑝𝑖}. On the other hand, when 𝑝𝑖 > 𝑇 and

𝜐 + 𝜅 𝑥ᵀ𝑖 𝜏 ≥ 𝑝𝑖 − 𝑇 then, 𝑥𝑖 = (𝑝𝑖 − 𝑇)/𝜅, 𝑝𝑛𝑒𝑤𝑖 = 𝑝𝑖 − 𝜅 𝑥ᵀ𝑖 𝜏, and 𝑤𝑖+1 = (1 − 𝜎) 𝑤𝑖 + 𝜅𝑥𝑖𝜏𝜂.
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Figure 4.6 Optimal charging/discharging schedule of BESS

by PSO

Where 𝑝𝑖 > 𝑇 and 0 ≤ 𝜐 + 𝜅 𝑥ᵀ𝑖 𝜏 ≥ 𝑝𝑖 −𝑇 , 𝑥𝑖 = 𝑤𝑖/𝜅 then, 𝑝𝑛𝑒𝑤𝑖 = 𝑝𝑖 − 𝜅 𝑥ᵀ𝑖 𝜏, and 𝑤𝑛𝑒𝑤
𝑖+1

= 47.5

kWh. The performance of HRB and PSO to shave the peak is demonstrated in Figure 4.7.

Results are compared assuming both TESS and BESS are employed to compensate for shiftable

and fixed loads of a day. It can be observed that PSO derives the optimal solution to achieve peak

load shaving and smooths the electric power consumption pattern with respect to the constraints

within 106 seconds. In contrast, electric power consumption is not maintained in allowable

range and the constraints are not fully met by HRB. Although HRB offers fast solutions to

solve the problem, the results, in general, are not reliable as optimal solutions for the complex

problem with high number of decision variables. Furthermore, we aim to compare our results

with a gradient-based method, Fmincon function of Matlab. However, due to high number of

the decision values and time intervals, Fmincon could not converge to the optimal solution.

Therefore, the comparison of results shows that PSO is suitable and effective to determine the

optimal charging/discharging schedule of ESS.
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Figure 4.7 Optimal charging/discharging schedule obtained

by PSO and heuristic rule-based approach

4.3.1 Robustness of the proposed PSO optimization approach

To investigate the robustness of the proposed metaheuristic approach, three different days

are considered. Since PSO is a random search algorithm based on population evolution, the

algorithm is repeated one hundred times for each day to show the similarity in the solutions under

different runs. Furthermore, the statistical information, including the best value, mean value,

median, and standard deviations (SD), are calculated for obtained best costs of each day. The

mean value, median, and SD demonstrate the distribution of the best values over hundred runs to

express the robustness and reliability of the proposed approach. Moreover, the effectiveness and

robustness of the proposed method are also studied by observing the algorithm’s performance

in achieving maximum peak load shaving while different electric power consumption patterns

are applied. In addition, the performance of the proposed algorithm under various initial SOC

for BESS is investigated to evaluate the robustness and sensitivity. To compare and test the

performance of the algorithm, the considered initial capacity values for TESS and BESS are 50%

of total capacity, and the same maximum iterative number and population size are applied using

MATLAB on an Intel(R) Xeon(R) CPU E3-1225 v6 @ 3.30GHz computer with 16.0 GB RAM.



65

In Table 4.1, the best solution, statistical information, and percentage of peak shaving computed

by PSO algorithm are presented. It can be seen that the optimization algorithm attains acceptable

and approximately similar results in different runs for three days. When the metaheuristic

algorithm results are almost similar in different runs, the low value of SD represents the

robustness of the algorithm (Meng, Li, Wang, Sait & Yıldız, 2021). It can be seen that SD is

obtained less than 1 for all cases, which consequently justifies the robustness of the approach.

Furthermore, the values of peak load shaving with TESS in Table 4.1 present the effectiveness

of the proposed approach and TESS’s role in achieving the maximum peak load shaving.

Moreover, Figure 4.8 shows the box plot of distributions of best solutions achieved by PSO

for three different days. Box plot contains five parts: median as the middle value of the

data, first quartile, third quartile, minimum, and maximum (Babura, Adam, Abdul Samad,

Fitrianto & Yusif, 2018). It is shown that the box plot is short and in the same range, which states

that the results are distributed near the median value, and proves the reliability and robustness of

the proposed algorithm over different runs.

Furthermore, the convergence plot is presented in Figure 4.9 that expresses the convergence rate

of the objective function over 1000 iterations to reach the best solution for three considered days.

Results show that PSO determines the best acceptable solution in an acceptable time within 106

seconds.

In addition, Figure 4.10 represents the electric power consumption of building when varying

initial SOC including 0%, 25%, 50%, 75%, and 100% of full capacity are considered for

BESS. It can be observed that the proposed approach achieves the best acceptable performance

under different initial SOC. The optimal charging/discharging schedule is successfully defined

considering the initial capacities and constraints. Therefore, it can be justified that the proposed

algorithm is robust to different electric power consumption patterns and varying initial SOC for

ESS.
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Table 4.1 statistical information and peak load shaving

achieved by PSO for three different days in January

Information
Case I

8th day

Case II

15th day

Case III

23th day

Best value 289.7191 287.4177 292.3048

Mean 290.3078 288.07 292.61

Median 290.2830 287.98 292.58

SD 0.4012 0.4307 0.1908

Time (s) 106 106 106

Peak load shaving

without TESS (%)
65.82 28.34 33.28

Peak load shaving

with TESS (%)
94.86 92.08 92.25
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Figure 4.8 Box plots of distributions of best global value

obtained by PSO for three days in January

4.3.2 Potential of implementing the proposed approach for real-time platforms

The main focus of this thesis is to employ TESS alongside BESS to reduce the required BESS’s

capacity and achieve complete peak load shaving. The proposed method is based on an off-line

optimization problem. For off-line applications, the historical data are used in PMU and

the optimization problem is solved by PSO by considering ninety-six decision variables for

twenty-four hours-ahead with fifteen minutes time intervals.
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Figure 4.9 Convergence plot of proposed metaheuristic

approach for three different days in January
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Figure 4.10 Peak load shaving obtained by PSO with

considering different initial SOC for BESS

To implement the proposed approach in real-time platforms, the load forecasting approach is

required to estimate the future load demand in a building (Dagdougui, Bagheri, Le & Dessaint,

2019; Ji, Buechler & Rajagopal, 2020; Kong, Dong, Jia, Hill, Xu & Zhang, 2019). In this thesis,

the perfect forecasting is considered due to assuming the same consumption pattern for the
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future and the same days of previous years. In this regard, to implement the proposed approach

in a real-time application, the estimated demand loads derived by prediction approaches can be

used instead of historical data to obtain the optimal charging/discharging schedule of TESS and

BESS in the building. In the case of considering a short-term load forecasting for 12 samples

ahead which is equal to three hours-ahead, the computational time of the optimization approach

is 62 seconds since the decision variables are twelve. It is worth to be mentioned that the time

to complete the optimization algorithm for 24 hours-ahead with 96 variables is 106 seconds

which is significantly less than the length of the time interval between two samples which is 15

minutes. Therefore, the proposed approach overcomes the computational burden and can be

implemented in a real-time platform with a reliable short-term prediction. Moreover, due to the

robustness and simplicity of PSO, and its dealing with a large number of decision variables, the

proposed approach can be considered as a prominent approach to be employed in both off-line

and real-time applications to define the optimal charging/discharging of ESSs.

In the next chapter, the proposed approach will be extended to develop a PMU framework

capable of implementing in on-line platforms. We intend to employ machine learning specifically

model-free reinforcement learning to enhance the accuracy of results and reduce the capacity of

the BESS as well as achieving peak load shaving. In addition, real-time optimization method to

define the optimal charging/discharging schedule of ESS in real-time platform is investigated.



CHAPTER 5

PEAK LOAD SHAVING MECHANISM USING REINFORCEMENT LEARNING

5.1 Optimization Problem Formulation

The building can take advantage of ESS for peak load shaving. As it is shown in Figure 5.1

, a PMU is designed to find an optimal policy to optimize the charging/discharging schedule

of ESSs based on the pricing information provided by the utility company with respect to the

threshold load (Rostamnezhad & Dessaint, 2023). Therefore, the load that should be supplied

by the grid as grid load 𝑧𝑡 is represented as follows:

𝑧𝑡 = 𝑚𝑎𝑥(𝑙𝑐, 𝑙𝑡 + 𝑞𝐸𝑆𝑆,𝑡) (5.1)

where 𝑙𝑐 is the allowable value of load defined by the utility company, 𝑞𝐸𝑆𝑆,𝑡 is related to the

charging/discharging schedule of ESSs such as TESS and BESS, and 𝑙𝑡 is the electric power

consumption of the smart building. The changes in the electric power load demand during a day

raise the need for ESSs to supply the required load for peak load shifting to smooth the profile.

To achieve peak load shaving properly, the load demand of the building is divided into shiftable

and fixed loads which are related to the electric power demand load for the HVAC system and

plug-in loads, respectively. Fixed load has a significant portion of total electric power demand.

This load is measured by the metering devices in the building and related to electric devices such

as lights, computers, and laboratories. Shiftable load is calculated by using historical data and

the thermodynamics principle. It is obtained by defining the correlation between the operation

of HVAC devices and electrical usage.

The fixed and shiftable loads are collected at each time interval. The day is discretized based on

the sampling time intervals, represented by Δ𝑡. The models for TESS and BESS are explained

to derive the constraints and dynamics of the system.
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Figure 5.1 Illustration of power management framework

using thermal and battery energy storage systems

5.1.1 Mathematical Formulation

The aim of optimization is to define the optimal rate of charging/discharging of ESSs in the

smart building. The system cost consists of the electric power consumption of the building at

𝑡th time interval, the electricity price and peak load shaving threshold based on the grid policy.

Thus, the cost given system state 𝑠𝑡 and action taken 𝑎𝑡 can be written as

𝑔(𝑠𝑡 , 𝑎𝑡) = P𝑡 × 𝑧𝑡 (5.2)

where 𝑞𝑖,𝑡 represents the charging/discharging schedule of each ESSs, 𝑙𝑡 denotes the electric

power consumption of the building, P𝑡 and 𝑙𝑐 represent the electricity price function and constant

load supplied by the utility company, respectively. Here, P𝑡 as price function is given as follows:

P𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛽, (𝑙𝑡 + 𝑞𝑖,𝑡) < 𝑙𝑐

𝛽(𝑙𝑡+𝑞𝑖,𝑡−𝑙𝑐)
𝑙𝑐

+ 𝛽, (𝑙𝑡 + 𝑞𝑖,𝑡) > 𝑙𝑐

(5.3)

where 𝛽 is power cost determined by utility company. It is worth to mention that the capacity

of BESS is limited and is considered as one of the constraints for the optimization problem as

formulated in equation (5.4).
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𝑆𝑂𝐶𝑚𝑖𝑛
𝐵𝐸𝑆 ≤ 𝑆𝑂𝐶𝐵𝐸𝑆,𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥

𝐵𝐸𝑆

𝑞𝑚𝑖𝑛𝐵𝐸𝑆 ≤ 𝑞𝐵𝐸𝑆,𝑡 ≤ 𝑞𝑚𝑎𝑥
𝐵𝐸𝑆

(5.4)

where, 𝐶𝐵𝐸𝑆, 𝑆𝑂𝐶
𝑚𝑖𝑛
𝐵𝐸𝑆, 𝑆𝑂𝐶

𝑚𝑎𝑥
𝐵𝐸𝑆, 𝑞

𝑚𝑖𝑛
𝐵𝐸𝑆,and 𝑞𝑚𝑎𝑥

𝐵𝐸𝑆, represent the capacity of BESS, the minimum

and maximum limit of the state of charge (SOC), and minimum and maximum power rate of

charging and discharging, respectively. Furthermore, the charging/discharging rate of the water

tank is limited between maximum and minimum rate, denoted by 𝑞𝑚𝑎𝑥
𝑇𝐸𝑆 and 𝑞𝑚𝑖𝑛𝑇𝐸𝑆, respectively.

Besides, the capacity of the water tank, is constrained by the maximum value, 𝑐𝑚𝑎𝑥 , as given by

(5.5)

𝑞𝑚𝑖𝑛𝑇𝐸𝑆 ≤ 𝑞𝑇𝐸𝑆,𝑡 ≤ 𝑞𝑚𝑎𝑥
𝑇𝐸𝑆,

0 ≤ 𝐶𝑖𝑛𝑖𝑡
𝑇𝐸𝑆 + 𝑞𝑇𝐸𝑆,𝑡Δ𝑡 ≤ 𝐶𝑚𝑎𝑥

𝑇𝐸𝑆,
(5.5)

where, 𝐶𝑚𝑎𝑥
𝑇𝐸𝑆 and 𝐶𝑖𝑛𝑖𝑡

𝑇𝐸𝑆 represent the maximum capacity and the initial capacity, respectively.

5.2 Power Management Unit Model Using MDP

Various investigations have been done to deal with defining the optimal charging/discharging

schedule of the buildings components and energy management system such as numerical methods

and soft computing techniques. However, traditional approaches such as linear programming

(Riffonneau, Bacha, Barruel & Ploix, 2011) have a problem adapting to unpredictable load profiles

and need an exact mathematical model of the system. Moreover, metaheuristic approaches such

as PSO, are mostly employed in solving the power management problems (Badawy & Sozer,

2017). However, these approaches need separate algorithms for forecasting and prediction to

deal with sudden changes in the environment. Besides, the learning component is not considered

in these methods. Thus, for every new change in loads, they need optimization iterations which

are computationally expensive (Arwa & Folly, 2020).

RL algorithms can be trained for general loads without requiring an accurate model of the

system and environment. Therefore, they are considered to deal with the aforementioned gaps

and employed significantly in recent investigations. Unlike other optimization approaches, using
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artificial neural networks (ANN) in RL algorithms named deep learning is capable of providing

accurate predictions without the need for a separate forecasting model.

Based on literature review, RL consists of five elements: agent, action, state, reward function,

environment. The problems in RL, are formulated as a Markov decision process (MDP). A

MDP provides the dynamics of the environment to observe the reactions of the environment to

the action taken by the agent at a given state. A MDP contains a transition function that given

the current state of the environment and an action, defines a probability of moving to any of the

next states and a reward function. Due to difficulties in defining the transition function for the

environment, model-free reinforcement learning is considered to estimate the optimal policy

without using the dynamics of the environment. The optimal policy is derived by considering a

value function which evaluates a state (or an action taken in a state), for all states.

5.2.1 Problem formulation with MDP

Following the previous research studies (Giaconi, Gunduz & Poor, 2018; Shateri, Messina,

Piantanida & Labeau, 2020; Sun, Lampe & Wong, 2018), the problem of finding an optimum

policy for PMU can be formulated as a MDP. A MDP is obtained by a state space 𝑆, an action

space 𝐴(𝑠) related to 𝑠 ∈ 𝑆, the environment dynamics 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) and 𝑟 (𝑠𝑡 , 𝑎𝑡) as the reward

function when an action is taken in the state 𝑠𝑖 (𝑡) (Richardson, Thomson & Infield, 2008).

5.2.1.1 State Space and Action Space

In this study, a finite horizon time model is considered that is expressed by 𝑡 ∈ 𝑇 . The total

energy storage systems, 𝑊 , including TESS and BESS are employed for peak load shaving. The

state vector of TESS and BESS at time 𝑡 is represented by 𝜙𝑇𝐸𝑆,𝑡 and 𝜙𝐵𝐸𝑆,𝑡 , respectively. Thus,

the state vector related to total ESSs is given by 𝜙𝑡 = {𝜙𝑇𝐸𝑆, 𝜙𝐵𝐸𝑆}. The state vector of building

demand load expressed by 𝑙𝑡 is 𝑠𝑡 = [𝑙𝑡 , 𝜙𝑡] ∈ 𝑆 at time 𝑡. It should be noted that 𝑆 denotes the

state space. Moreover, the state vector related to BESS is shown by 𝜙𝐵𝐸𝑆,𝑡 = 𝑆𝑂𝐶𝐵𝐸𝑆,𝑡 at time 𝑡.

For TESS, 𝜙𝑇𝐸𝑆,𝑡 = 𝑆𝑇𝐸𝑆,𝑡 is indicated the state vector at time t.
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The actions that PMU should take to define the optimal policy are expressed by the rate of

charging/discharging of electric power for ESSs as 𝑎𝑡 = [𝑞𝑇𝐸𝑆,𝑡 , 𝑞𝐵𝐸𝑆,𝑡] at time 𝑡 with respect to

the ESSs constraints. The 𝑞𝑖,𝑡 for both TESS and BESS has a positive range and negative range

that correspond to the charging and discharging states, respectively.

5.2.1.2 System Dynamics

After defining the state vectors and actions, the next step is to obtain the system state transition

probability. We assume the building demand load transition probabilities between states 𝑠𝑡 and

𝑠𝑡+1 is independent from actions 𝑎𝑡 based on a Markov chain. Thus, the environment transition

probability 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) when action 𝑎𝑡 is taken can be rewrite as follows:

𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) = 𝑝(𝑙𝑡+1, 𝜙𝑡+1 |𝑙𝑡 , 𝜙𝑡 , 𝑎𝑡) =

𝑝(𝑙𝑡+1 |𝑙𝑡 , 𝜙𝑡 , 𝑎𝑡)𝑝(𝜙𝑡+1 |𝑙𝑡 , 𝜙𝑡 , 𝑎𝑡) =

𝑝(𝜙𝑡+1 |𝜙𝑡, 𝑎𝑡)𝑝(𝑙𝑡+1 |𝑙𝑡)

(5.6)

For TESS, the environment transition probabilities are assumed to not be affected by action

𝑞𝑇𝐸𝑆,𝑡 as well as the amount of energy stored in TESS as 𝑆𝑇𝐸𝑆 based on Markov chain. Therefore,

its transition probabilities with respect to constraints of TESS can be expressed as:

𝑝𝜙𝑇𝐸𝑆,𝑡+1 |𝜙𝑇𝐸𝑆,𝑡 ,𝑞𝑇𝐸𝑆,𝑡
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝𝑆𝑇𝐸𝑆,𝑡+1 |𝑆𝑇𝐸𝑆,𝑡

, if (5.4), (5.5) hold

0, otherwise.

(5.7)

For BESS the environment transition probabilities for BESS is given by following:

𝑝𝜙𝐵𝐸𝑆,𝑡+1 |𝜙𝐵𝐸𝑆,𝑡 ,𝑞𝐵𝐸𝑆,𝑡
=⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑝𝑆𝑂𝐶𝐵𝐸𝑆,𝑡+1 |𝑆𝑂𝐶𝐵𝐸𝑆,𝑡
, if (5.4) hold

0, otherwise.

(5.8)
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Here, we consider an assumption that environment transition probabilities is independent of

action 𝑞𝐵𝐸𝑆,𝑡 and 𝑆𝑂𝐶𝐵𝐸𝑆 of BESS.

5.2.1.3 Reward Function

The aim of optimization is to define the optimal rate of charging/discharging of ESSs in the

smart building. The system cost consists of the electric power consumption of the building at

𝑡th time interval, the electricity price and peak load shaving threshold based on the grid policy.

Thus, the cost given system state 𝑠𝑡 and action taken 𝑎𝑡 can be written as

𝑔(𝑠𝑡 , 𝑎𝑡) = P𝑡 × 𝑧𝑡 (5.9)

where 𝑞𝑖,𝑡 represents the charging/discharging schedule of each ESSs, 𝑙𝑡 denotes the electric

power consumption of the building, P𝑡 and 𝑙𝑐 represent the electricity price function and constant

load supplied by the utility company, respectively. Here, P𝑡 as price function is given as follows:

P𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛽, (𝑙𝑡 + 𝑞𝑖,𝑡) < 𝑙𝑐

𝛽(𝑙𝑡+𝑞𝑖,𝑡−𝑙𝑐)
𝑙𝑐

+ 𝛽, (𝑙𝑡 + 𝑞𝑖,𝑡) > 𝑙𝑐

(5.10)

The cost function at time 𝑡 given system state 𝑠𝑡 and action taken 𝑎𝑡 is defined as follows:

𝑐(𝑠𝑡 , 𝑎𝑡) = 𝑔(𝑠𝑡 , 𝑎𝑡). 𝑡 ∈ 𝑇 (5.11)

One of the most important components of MDP is the reward function. Reward function based

on the MDP framework should be maximized. Therefore, we rewrite the (5.9) to define the

objective function based on reward as follow:

𝑐(𝑠𝑡 , 𝑎𝑡) = −𝑟 (𝑠𝑡 , 𝑎𝑡) = 𝑔(𝑠𝑡 , 𝑎𝑡). 𝑡 ∈ 𝑇 (5.12)
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where 𝑟 (𝑠𝑡 , 𝑎𝑡) represents the reward and the minus is considered based on the reward framework

which is maximization.

5.3 Power Management Algorithm Using Q-Learning

In this section, the solution for solving the MDP and finding the optimal policy for PMU is

demonstrated. Due to the dynamic environment and difficulties to define and approximate

the transition probability model for the environment of MDP, a model-free learning algorithm

to obtain the solution for the objective problem is presented. In this context, Q-learning is

considered as the main candidate to solve the MDP with unknown transition probabilities due to

its simplicity (Andrew, 1998).

5.3.1 Q-Learning Algorithm

The Q-Learning (QL) as a tabular RL method is used to learn the optimal state-action value

function 𝑄∗. The best action 𝑎𝑡 at state 𝑠𝑡 is obtained through maximizing 𝑄∗. The QL updates

the Q function by taking an action 𝑎𝑡 at the sate 𝑠𝑡 through some policy 𝜋(𝑠𝑡 , 𝑎𝑡) as follow

(Andrew, 1998):

Δ𝑄(𝑠𝑡 , 𝑎𝑡) = 𝛼 [𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾 max𝑄(𝑠𝑡+1, 𝑎𝑡) −𝑄(𝑠𝑡 , 𝑎𝑡)] , (5.13)

where 𝛼 ∈ [0, 1] represents the learning rate. This parameter should be chosen properly due to

its important role in transferring the information from current 𝑄 value of 𝑎𝑡 at 𝑠𝑡 and 𝑐(𝑠𝑡 , 𝑎𝑡) to

the observed state 𝑠𝑡+1 and 𝑐(𝑠𝑡+1, 𝑎𝑡). During the learning phase, the QL algorithm is updated

through the 𝜖-greedy policy. The PMU updates the Q-function by taking an action randomly

with probability 𝜖 and, then the action with probability 1-𝜖 is taken to maximize the Q-value. To

gain more benefits of taking other actions, the QL explores the action space, while QL exploits

the learned Q-function which is known as the exploration-exploitation dilemma. Therefore, to

start learning, the PMU initializes the Q-function by following 𝜖-greedy policy to move forward

to next state and update Q-function. This step is repeated until the end of the episode, when the
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Q-function converges to 𝑄∗ with probability one. The optimal action based on optimal policy is

determined for all time intervals. The QL process is presented precisely in Algorithm 5.1.

Algorithm 5.1 Q-learning algorithm

1: Initialize Q-function value and set the learning and weighting parameters.

2: for number of episodes do
3: Define the electricity cost information P𝑡 , 𝑡 ∈ 𝑇 .

4: Set the initial state 𝑠1 = [𝑆𝑇𝐸𝑆,1, 𝑆𝑂𝐶𝐵𝐸𝑆,1, 𝑙1].
5: for 𝑡 = 1, . . . , 𝑇 do
6: Observe the state 𝑠𝑡 = [𝑆𝑇𝐸𝑆,𝑡 , 𝑆𝑂𝐶𝐵𝐸𝑆,𝑡].

7: Select feasible action 𝑎𝑡 using 𝜖−greedy algorithm.

8: Calculate reward 𝑟 (𝑠𝑡 , 𝑎𝑡) from equation (5.12).

9: Update the next state 𝑠𝑡+1 based on (5.5) and (5.4).

10: Update the Q-function by minimizing (5.13).

11: 𝑡 = 𝑡 + 1

12: end for
13: end for

5.4 Optimization Results by RL

This thesis considers the electricity consumption of campus in a university located in Canada.

The electric power consumption of a campus is divided into two categories: fixed load and

shiftable load (Ruzbahani et al., 2019). Shiftable load is related to HVAC systems that can be

shifted from peak to off-peak hours in the building. In contrast, fixed load is electric power

consumption by lights, laboratory, computers, etc. which cannot be shifted. Figure 5.2 represents

the average percentages of shiftable and fixed distribution in total electric power consumption

and in peak hours. It can be seen that although the amount of fixed load is significant, the share

of shiftable load in peak hours and total electric consumption cannot be neglected. Hence,

this thesis considers both loads for achieving peak load shaving. In this context, fixed load is

measured by smart metering devices and shiftable load is calculated based on the thermodynamic

principles and the historical data of consuming electricity by HVAC systems for winter time in

the smart building.
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The HVAC system includes an electric boiler with 98% efficiency, and a chiller with a cooling

capacity of 703.3 kW, efficiency 0.447 kW/ton and COP 5. To store the energy, a water tank

storage and a Lithium-Ion battery bank are considered for TESS and BESS, respectively. The

characteristics of the considered TESS and BESS are presented in Table 5.1.

Table 5.1 Characteristics of each ESSs

ESS description Value Unit

BESS

Battery capacity with TESS 475 kWh

Minimum State of Charge (SoC) 10 %

Maximum State of Charge (SoC) 95 %

Maximum charge/discharge of power 200 kW

Efficiency 90 %

TESS

TESS capacity 2000 kWh

TESS temperature 37 ◦C

Heat loss per hour 0.002 ◦C

Efficiency 87.6 %

78%

22%

81%

19%

Fixed load

Shiftable load

(a) (b)

Figure 5.2 Power Consumption distribution of Fixed and

shiftable loads in: (a) total electric power consumption, (b)

peak hours

In this thesis, the data set is recorded with sample time Δ𝑡 =15 minutes and an episode is

obtained over a day. The data set consists of 31 vectors related to the days of a month with

the length of 96 which is related to samples in a day. The power load threshold determined

by the utility company is 𝑙𝑐 = 330 kW. The electricity price function P𝑡 in (5.9) represents a
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price rate structure that the utility company applies to charge the campus which is expressed by

(5.10). This structure is based on an annual contract with a minimum monthly billing demand

between the building and the utility company. The off-peak price, 𝛽 is about $13 per kW and the

campus is charged by the utility company with a high price when the electric power consumption

excesses the determined threshold.

Moreover, the total number of 20K episodes are used with a learning factor 𝛼 = 0.4 and a

discount factor 𝛾 = 0.88 based on (5.13). The resolution to converge to the solution is considered

to be 5. Therefore, according to the definition of state 𝑠𝑡 and tabular RL, the Q-function is a

table with size 380×96×800 which indicates the state space related to 𝜙𝑇𝐸𝑆,𝑡 and 𝜙𝐵𝐸𝑆,𝑡 , number

of the samples, and action space related to 𝑎𝑡 , respectively. The optimal solution using the

model-free RL is obtained within an acceptable time. The time elapsed to complete a Q-table

considering 20K iterations, is approximately 104 seconds.

Due to considering all loads in the building, TESS and BESS are responsible to compensate for

peaks caused by shiftable and fixed loads, respectively. The power electric consumption related

to fixed load and the performance of RL to achieve peak load shaving using BESS is presented

in Figure 5.3. The initial capacity of BESS is considered to be half of the maximum capacity. It

can be seen that BESS is charged to its maximum capacity, then starts discharging to achieve

peak load shaving and follows the pattern of the peaks.

The optimal charging/discharging schedule of BESS to store and release the energy during one

day in winter is shown in Figure 5.4. In each state, based on the threshold and BESS SOC,

an action is taken to gain the maximum reward with respect to satisfy the problem constraints.

Positive values expresses charging and the negative numbers are related to the discharging of

BESS which are obtained by QL.

The main focus of this thesis is to use BESS and TESS in parallel to achieve more benefits in

cost saving and reducing the BESS capacity. TESS is considered to meet the shiftable load

demand and satisfy the heating demand in peak hours. Therefore, a part of the peak would be

compensated by TESS that leads to have reduction in BESS capacity. Figure 5.5 represents the
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Figure 5.3 Electric power consumption in presence of BESS

by using RL
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Figure 5.4 The charging/discharging schedule of BESS

defined by RL

peak load shaving related to shiftable load using TESS and employing RL when initial capacity

is half of its maximum capacity. It can be seen that shiftable load with load threshold, 80 kW, is

completely shaved with TESS by using RL while it has up-and-down pattern.
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Figure 5.5 Electric power consumption in presence of TESS

by using RL

Besides, the charging/discharging schedule for TESS obtained by Q-Learning is demonstrated

in Figure 5.6. Positive values and negative numbers express the charging and discharging of

TESS, respectively. The result shows that RL is able to define the optimal schedule for TESS to

shave peaks of the shiftable load while the pattern has significant disturbances.
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Figure 5.6 The charging/discharging schedule of TESS

defined by RL
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Finally, Figure 5.7 presents the total power consumption in the building and peak load shaving

obtained by employing RL in PMU and simultaneously usage of TESS and BESS. The initial

capacity of BESS and TESS are considered to be 50% of their total capacity. Therefore PMU

starts charging ESSs until their capacity is getting full. Then, based on peaks, the ESSs are

discharging the energy to achieve complete peak load shaving. It can be seen that QL is able to

obtain optimal charging/discharging to achieve peak load shaving while two types of EESs with

different characteristics are employed at the same time in the building.
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Figure 5.7 Peak load shaving for total power consumption

using BESS and TESS and RL

5.5 Comparison RL Results with PSO Results

PSO is recognized as an effective approach to solve optimization problems in energy and power

management units (Rostamnezhad, Mary, Dessaint & Monfet, 2023). To validate the result

obtained by RL, PSO is employed to achieve peak load shaving as one of the powerful approaches

of optimizing. Figure 5.8 demonstrates the peak load shaving achieved by using PSO and

simultaneously application of TESS and BESS in the smart building. Moreover, the optimal

charging/discharging schedule of BESS and TESS obtained by PSO is presented in Figure 5.9

and Figure 5.10, respectively. The amount of charging/discharging of ESSs is presented by the
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left axis of the picture. Positive values are related to charging and the negative numbers express

the discharging of ESSs. The right axis in Figure 5.9 demonstrates the fixed electric power

usage before and after peak load shaving using BESS and PSO. In Figure 5.10, the right axis

represents the shiftable load and peak load shaving obtained by TESS and PSO.

The performance of RL to obtained the optimal charging /discharging schedule for BESS and

TESS shown in Figure 5.4 and Figure 5.6 are similar to the optimal operation schedule for

BESS and TESS obtained by PSO given in Figure 5.9 and Figure 5.10, respectively. The

initial capacities for BESS and TESS are considered 50% of their maximum capacity in both

optimization approaches. As can be seen, optimization results by RL in Figure 5.7 and PSO

in Figure 5.8 are quite similar. In charging, both algorithms charge EESs to their maximum

capacities. PMU is discharging EESs during peak period times and achieves peak load shaving

by using PSO and RL in the smart building. Therefore, the performance of RL is validated by

results provided by PSO.
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Figure 5.8 Peak load shaving for total power consumption

using BESS and TESS and PSO

It is worth mentioning that the PSO is highly dependent on the environment model while the

model-free RL operates independently. Furthermore, PSO has a tendency to get stuck in local
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Figure 5.9 Optimal operation of BESS to shave peaks related

to the fixed load by PSO
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Figure 5.10 Optimal charging/discharging schedule of TESS

to shave peaks related to the shiftable load by PSO

optimal solutions especially for large-size problems and it is complicated to obtain an accurate

solution (Lin, Lian, Gu & Jiao, 2014). In contrast, the result obtained by QL as a tabular RL

is considered as a global optimal solution when the convexity of the optimization problem is
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proven. Therefore, for large-scale optimization problems such as our problem, RL is more

effective and reliable.



CONCLUSION AND RECOMMENDATIONS

Résumé

In this thesis, a comprehensive framework of power management unit has been proposed to have

peak load shaving in a campus building. The proposed scheme has employed TESS and BESS as

two prominent ESS to attain peak load shaving. The optimal charging/ discharging schedule of

TESS and BESS has been formulated as an optimization problem. The convexity of the problem

and the uniqueness of the solution have been proved by the mathematical optimization approach.

Firstly, the optimization problem has been solved by using PSO and the optimal operation of

ESSs have been defined. Then, in order to use RL, the optimization problem has been formulated

as a Markov decision process and the reward function, environment state, and action have been

defined. To evaluate the performance of the RL, the optimal charging/discharging schedule

of EESs with the same initial conditions has been obtained by PSO. To assess the proposed

method, HVAC components, BESS, TESS, and loads have been modeled by grey-box modeling.

In order to improve the efficiency of the ESSs, the building load is divided into shiftable and

fixed loads that are supported by TESS and BESS, respectively. Results have expressed that

integrating TESS into the campus reduces the capacity of the battery by 42.2% and compensates

for the power consumption in peak hours. Therefore, it can be concluded that it is not profitable

only using BESS in institutional buildings. Moreover, RL and PSO can be considered as a

potential candidate to be employed in large-size optimization problems to define the global

optimal solution. Results have shown the effectiveness of RL and PSo in achieving complete

peak load shaving when different types of ESSs are employed in smart buildings. The outcome

of this work can also be utilized in different buildings to shift loads and smooth the peak.

As for future work, the proposed approach will be extended to develop a PMU framework capable

of forecasting short-term loads to be implemented in on-line platforms. Furthermore, we intend

to employ machine learning based methods to enhance the accuracy of results, considering the
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demand load prediction, and reduce the capacity of the BESS as well as achieving peak load

shaving. In addition, real-time optimization methods to define the optimal charging/discharging

schedule of ESS in real-time platform is deserved to be investigated.
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