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Modèles de régression profonde pour la reconnaissance d’expressions spatio-temporelles
d’expression dans les vidéos

Gnana Praveen RAJASEKHAR

RÉSUMÉ

La reconnaissance des expressions (RE) est un problème difficile dans le domaine de l’informa-

tique affective, qui joue un rôle important dans la compréhension automatique des expressions

et des émotions humaines. La reconnaissance des expressions peut être formulée autant comme

un problème de classification que de régression. Bien que l’identification automatique des

expressions exprimée comme un problème de régression joue un rôle crucial dans de nombreuses

applications de santé, telles que l’estimation des niveaux de douleur et de fatigue, elle reste

relativement peu explorée par rapport à la classification des expressions. La détection du

niveau de fatigue est largement utilisée dans un certain nombre d’applications telles que la

conduite autonome, les soins de santé et l’engagement des employés. Dans le même ordre

d’idée, l’évaluation automatique du niveau de douleur a une valeur diagnostique potentielle

importante pour les personnes telles que les nourrissons, les jeunes enfants et les personnes

souffrant de troubles de la communication ou de troubles neurologiques. On a constaté que la

fatigue est synchrone avec la douleur, une fatigue élevée étant associée à une douleur élevée, ce

qui peut être constaté par la corrélation des scores analogiques visuels (VAS) de la fatigue et de

la douleur. Cependant, l’expression de la douleur se produit sur une période plus courte, alors

que la fatigue se manifeste sur une période plus longue.

Dans cette thèse, nous nous sommes principalement concentrés sur le développement de modèles

profonds (DL) pour la reconnaissance des expressions basée sur la régression en tirant parti

des relations spatio-temporelles ainsi que des modalités audio et visuelles disponibles dans

les enregistrements vidéos. Les problèmes de régressions posent certains défis, tels que la

capture de subtiles variations relatives à l’intensité des expressions entre deux images contiguës,

les variations entre les individus et les conditions de capture, l’entraînement des modèles DL

avec des vidéos faiblement étiquetées, la fusion efficace des modalités audio et visuelles, etc.

Afin de d’amoindrir les effets de ces défis, nous nous concentrons sur le développement de

modèles DL pour deux problèmes : (1) l’adaptation au domaine dans un contexte d’entrainement

faiblement supervisée (WSDA) dans un problème d’estimation de l’intensité de la douleur, et (2)

la fusion audio-visuelle (A-V) pour la reconnaissance dimensionnelle des émotions appliquée à

la reconnaissance dimensionnelle des émotions.

Dans un premier temps, nous avons présenté une revue détaillée des approches d’apprentissage

faiblement supervisé (WSL) dans le contexte de l’analyse du comportement facial. Afin de

fournir une revue complète du domaine, nous avons également inclus l’utilisation des unités

d’action (UA) en plus des expressions pour la classification et l’analyse du comportement facial.

Nous avons également ajouté des unités d’action (UA) aux expressions pour les problèmes de

régression. En particulier, nous avons fourni une taxonomie des méthodes existantes basées

sur des scénarios WSL ainsi que leurs forces et limites respectives. Un examen des ensembles
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de données largement utilisés, des protocoles expérimentaux et des résultats expérimentaux

sont également présentés et discutés. Enfin, notre analyse critique de ces méthodes permet de

mieux comprendre les directions de recherche potentielles pour exploiter les données faiblement

étiquetées dans le cadre de l’analyse du comportement facial. Cette revue conclut que les

méthodes WSL sont prometteuses pour gérer les données faiblement étiquettés dans les bases de

données contenant des expressions faciales obtenus à partir de scénarios réels mais qu’elles ne

sont pas suffisament explorées dans la littérature. Il y a par conséquent beaucoup de place pour

améliorer la performance de l’ER faciale à partir de données faiblement annotées.

La deuxième contribution propose un nouveau modèle de DL pour l’adaptation de domaine,

avec régression ordinale (WSDA-OR) afin d’estimer l’intensité de la douleur et de la fatigue

dans des enregistrements vidéos, le tout dans un problème de régression. L’adaptation au

domaine a été largement exploré afin d’atténuer les problèmes dus aux changements de domaines,

principalement causés par des conditions de captures différentes entre les données utilisées pour

l’entrainement (en laboratoire) et en production. Dans ce travail, l’adaptation au domaine est

exploitée pour adapter un modèle DL à différentes personnes et conditions d’enregistrement dans

le contexte où les vidéos sont faiblement annotées. Contrairement aux modèles WSL de pointe

utilisés pour l’estimation de l’intensité de la douleur dans les vidéos, le modèle proposé renforce

la relation ordinale entre les niveaux d’intensité de la douleur des séquences cibles en même

temps que la cohérence temporelle sur plusieurs images consécutives. En particulier, il apprend

des représentations de caractéristiques qui sont à la fois discriminantes et invariantes par rapport

au domaine en intégrant l’apprentissage d’instances multiples avec l’apprentissage contradictoire,

où des étiquettes gaussiennes sont utilisées pour représenter efficacement les étiquettes ordinales

faibles au niveau des séquences du domaine cible. Les résultats expérimentaux sur les ensembles

de données UNBC-McMaster, BIOVID et Fatigue (private) indiquent que l’approche proposée

peut améliorer significativement les performances lorsque comparée aux modèles de pointe, ce

qui permet d’atteindre une plus grande précision dans la localisation de la douleur.

En troisième lieu, un modèle d’attention croisée est proposé pour la fusion A-V pour la

reconnaissance dimensionnelle des émotions basée sur les modalités faciales et vocales. La

plupart des méthodes de pointe pour la fusion A-V reposent sur des réseaux récurrents

ou des mécanismes d’attention conventionnels qui n’exploitent pas efficacement la nature

complémentaire des modalités A-V. Dans ce travail, la relation complémentaire entre les

modalités A-V est explorée afin d’extraire les caractéristiques saillantes, ce qui permet une

prédiction précise des valeurs continues de valence et d’excitation. Les résultats expérimentaux

sur RECOLA et Affwild2 indiquent que notre modèle de fusion A-V inter-attentionnel fournit

une solution rentable qui peut surpasser les approches les plus récentes.

Les travaux décrits dans cette thèse indiquent clairement que l’adaptation efficace des modèles

DL avec des vidéos faiblement étiquetées montre une amélioration significative par rapport aux

méthodes de pointe précédentes dans le contexte de l’estimation des niveaux de douleur et de

fatigue. En outre, ce travail a montré que l’exploitation de la relation complémentaire entre

les modalités A-V joue un rôle crucial dans la fusion efficace des modalités dans le domaine

de la reconnaissance dimensionnelle des émotions. Ce travail montre en outre qu’exploiter la
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complémentarité entre les modalités A et V est un axe de recherche prometteur. L’approche inter-

attentionnelle conjointe proposée pourrait également être améliorée en utilisant des mécanisme

de porte ("gating") pour efficacement modéliser les relations intra et intermodales. De plus,

l’approche proposée est plus résiliente lorsqu’une modalité n’est pas disponible.

Mots-clés: apprentissage en profondeur, apprentissage à instances multiples, adaptation

domaine, évaluation de la douleur, fusion audiovisuelle, reconnaissance dimensionnelle des

émotions, modèles d’attention





Deep regression models for spatio-temporal expression recognition in videos

Gnana Praveen RAJASEKHAR

ABSTRACT

Automatic expression recognition (ER) is a challenging problem in the field of affective

computing, playing an important role in human behavior understanding in, e.g., human-computer

interaction, sociable robots, and driver assistance. ER can be formulated as the problem of

classification or regression of expressions. Though regression of expressions plays a crucial role

in many healthcare applications, such as estimating pain and fatigue levels, it remains relatively

less explored compared to the classification of expressions. Fatigue detection is widely used in

applications such as autonomous driving and employee engagement. Similarly, automatic pain

assessment has an important potential diagnostic value for infants, young children, and people

with communicative or neurological impairments. Fatigue is synchronous with pain, where high

fatigue is associated with high pain, which can be found with the correlation of Visual Analog

Scores (VASs) of fatigue and pain. Often pain expressions happen over a shorter period of time,

while fatigue happens over a longer duration.

Some of the major challenges in dealing with regression of expressions are subtle variations

across individuals, ambiguity across the contiguous frames pertinent to the intensities of

expressions, identity bias, and sensor capture conditions. Moreover, most deep learning (DL)

models demand a huge amount of data with annotations, which requires a lot of human support

with domain expertise. Therefore, leveraging DL models for the regression of expressions with

limited annotations remains to be a major bottleneck. Although audio-visual fusion is expected

to outperform the unimodal performance, failing to efficiently leverage the complementary

relationship across the audio and visual modalities often results in poor performance. This

Thesis focus on the development of DL models for two problems: (1) weakly supervised domain

adaptation (WSDA) for estimating the levels of pain and fatigue and (2) audio-visual (A-V)

fusion for dimensional emotion recognition.

As a first contribution, a detailed review of weakly supervised learning (WSL) approaches is

presented for facial behavior analysis. To provide a comprehensive review, action units (AUs),

which is defined by the fundamental actions of individual facial movements or a group of facial

movements, are also included along with expressions for both classification and regression.

In particular, a taxonomy of methods in the literature for different WSL scenarios has been

provided, along with their respective strengths and limitations. A review of widely used public

datasets, experimental protocols, and experimental results is also provided for the evaluation of

these state-of-the-art methods. Finally, our critical analysis of these methods provides insight

into the potential research directions to leverage weakly-labeled data for facial behavior analysis.

This review concludes that although WSL methods are promising in handling the weak labels of

facial expressions in real-world scenarios, they are not effectively explored in the literature, and

there is much room for advancing the state-of-the-art facial ER performance given data with

weak annotations.
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As a second contribution, a novel DL model for WSDA with ordinal regression (WSDA-OR) is

proposed to estimate the levels of pain and fatigue from videos. DA has been widely explored

to alleviate the problem of domain shifts that typically occur between video data captured

across various source (laboratory) and target (operational) domains. In this work, WSDA is

leveraged to adapt a DL model to different persons and capture conditions when the videos are

weakly annotated. Contrary to prior state-of-the-art WSL models for estimating pain intensity in

videos, the proposed model enforces the ordinal relationship among the pain intensity levels

of the target sequences along with the temporal coherence of multiple consecutive frames. In

particular, it learns discriminant and domain-invariant feature representations by integrating

multiple-instance learning with deep adversarial DA, where soft Gaussian labels are used to

efficiently represent weak ordinal sequence-level labels from the target domain. Experimental

results on UNBC-McMaster, BIOVID, and Fatigue (private) datasets indicate that our proposed

approach can significantly improve performance over state-of-the-art models, allowing us to

achieve a greater pain localization accuracy.

As a third contribution, a joint cross-attention model is proposed for A-V fusion in dimensional

ER based on facial and vocal modalities. Most state-of-the-art methods for A-V fusion rely

on recurrent networks or conventional attention mechanisms that do not effectively leverage

the complementary nature of A-V modalities. In this work, the complementary relationship

across A-V modalities is effectively explored to extract the salient features, allowing for accurate

prediction of continuous values of valence and arousal. Experimental results on RECOLA and

Affwild2 indicate that our joint cross-attentional A-V fusion model provides a cost-effective

solution that can outperform state-of-the-art approaches.

The work described in this Thesis indicates that efficiently adapting DL models with weakly

labeled videos shows significant improvement over prior state-of-the-art methods for estimating

pain and fatigue levels. This work shows that there is much room to further improve the proposed

WSDA model to leverage the potential of DL models for unsupervised domain adaptation for

the regression of expressions. This work has further shown that leveraging the complementary

relationship across A and V modalities is a promising research direction for effective AV

fusion. The proposed joint cross-attentional approach can also be further improved using gating

mechanisms for effective modeling of intra and intermodal relationships as well as to handle

corrupted modalities.

Keywords: deep learning, multiple instance learning, domain adaptation, pain assessment,

audio-visual fusion, dimensional emotion recognition, attention models
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INTRODUCTION

Affective computing is an emerging research area, which deals with the study and development of

systems that can recognize, interpret, and simulate human emotions. This area is interdisciplinary,

spanning computer science, psychology, and cognitive science to understand the emotional

state of an individual (Calvo, D’Mello, Gratch & Kappas, 2015). Human emotions can often

be conveyed through various modalities such as face, voice, text, physiology, etc. Of all the

modalities, facial and vocal expressions are the predominant contact-free channels, which carry

a complementary relationship with each other (Shivappa, Trivedi & Rao, 2010). Expressions

indicate the emotions being felt i.e., expressions display a wide range of modulations across face

and voice but human emotions are limited (Matsumoto & Hwang, 2011). Emotions represent

high-level information about the mood of the person, while expressions convey low-level

information about the emotions being expressed. Expression Recognition (ER) plays a crucial

Figure 0.1 Examples of primary universal emotions. From left to right: neutral, happy,

sad, fear, anger, surprise, disgust

Adapted from Compound facial expressions of emotion database Du et al. (2014)

role in the automatic understanding of human emotions. It is used to assess the affective health

or emotional state of individuals such as anger, fatigue, depression, pain, motivation, and stress

in health care, e-learning, security, etc. Recognizing expressions is a challenging problem

in real-world scenarios as human expressions are often diverse in nature across individuals

(Green & Guo, 2018), cultures (Chen & Jack, 2017), and sensor capture conditions (Kong, Suresh,

Soh & Ong, 2021). Ekman and Fries conducted a cross-cultural study on facial expressions,
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Figure 0.2 Ordinal pain intensity levels

Adapted from UNBC-McMaster database Lucey et al. (2011)

showing that there are six basic universal emotions across human ethnicity and cultures – Anger,

Disgust, Fear, Happiness, Sadness, and Surprise (Ekman & Friesen, 1976) as shown in Figure

0.1. Subsequently, Contempt has been added to these basic emotions (Matsumoto, 1992). Given

the simplicity of discrete or categorical representation, these seven prototypical emotions are the

most widely used categorical model for the classification of emotions.

Though emotion classification was widely explored, ER has also been formulated as a regression

problem to model the wide range of human expressions. In the case of regression, ER can be

further categorized as the problem of ordinal regression or dimensional regression. Ordinal

regression deals with the estimation of discrete ordinal or intensity levels of expressions such as

pain intensity levels, depression levels, etc. as shown in Figure 0.2. Dimensional regression

is the task of estimating the wide range of expressions on a continuous scale of valence and

arousal as shown in Figure 0.3. Valence reflects the wide range of emotions in the dimension of

pleasantness, from being negative (sad) to positive (happy). In contrast, arousal spans a range

of intensities from passive (sleepiness) to active (high excitement). Dimensional modeling of

emotions is more challenging than the categorical or ordinal case since it is difficult to obtain a

continuous scale of annotations compared to discrete emotions. Given the continuous range
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Figure 0.3 Dimensional emotion recognition in

valence-arousal space

Taken from Praveen et al. (2023a)

of emotions, the annotations tend to be more noisy and ambiguous compared to the tasks of

ordinal regression and classification.

ER systems can be divided into two main categories: image-based ER and video-based

ER. In recent years, the development of ER systems has evolved from systems that perform

image analysis under controlled laboratory conditions to video-based recognition under more

challenging real-world scenarios. In image-based ER, only the spatial information is used to

encode the image, whereas video-based ER exploits both the spatial and temporal relationship

across the contiguous frames to obtain the feature representations. Leveraging the temporal

dynamics of the evolution of expressions plays a pivotal role in developing a robust ER system

for videos.

With the advancement of deep learning (DL) architectures, there has been significant progress in

the performance of audio (A) and visual (V) recognition systems. One of the major advantages of

DL models is end-to-end training, where the features and the classifier/regressor can be trained
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together in an end-to-end fashion. This helps to execute the feature learning by itself without

the need to explicitly hand-engineer the features. Since features are learned automatically

depending on the task at hand, it helps to obtain more robust features tailor-made for the specific

task at hand and thereby results in a high level of accuracy. Inspired by their performance,

several approaches have been proposed in recent years for video-based ER using CNNs (Gavade,

Bhat & Pujari, 2021; Li, Wen & Qiu, 2023) and Vision Transformers (ViTs) (Chaudhari, Bhatt,

Krishna & Mazzeo, 2022; Ma, Sun & Li, 2021). They have shown significant improvement over

the classical ML methods, which rely on hand-crafted feature extraction and classifier/regressor

(Noor et al., 2020; Abdulrahman & Eleyan, 2015). However, the performance of these DL

models is constrained by the quality and quantity of representative annotated data. The need

for a large amount of data acquisition demands the requirement of annotations. The labeling

process of such training data demands much human support with strong domain expertise for the

expressions. Moreover, the labeling process is highly vulnerable to the ambiguity of expressions

due to the bias induced by domain experts. This Thesis focuses on developing robust and

accurate DL models for video-based ER that perform regression based on weakly-labeled or

unlabeled video data.

0.1 Motivation

ER has been widely used in many applications, such as estimating customer or student motivation

and engagement levels in business or education settings respectively (Yang, Wang, Peng & Qiao,

2018), detecting fatigue and stress levels for driver assistance applications (Qiang Ji, Zhiwei

Zhu & Lan, 2004), and assessing the level of depression or pain in healthcare (Tavakolian,

Bordallo Lopez & Liu, 2020). ER systems for automatic estimation of fatigue or pain are

relevant in the healthcare domain. Fatigue is a subjective feeling of tiredness reported by

the patient rather than an objective one, which can be observed externally. It can be caused

due to mental or physical stress that prevents a person from being able to function normally
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Figure 0.4 Facial expressions of pain (left) and no pain (right)

Taken from Bellantonio et al. (2017)

(Adão Martins, Annaheim, Spengler & Rossi, 2021). Even though fatigue is quite common in

many cases and alleviated by periods of rest, it is the most prevalent and primary symptom for

most diseases, especially neurological disorders. Similarly, pain is also subjective in nature,

usually self-reported by patients, either through clinical inspection, on a linear scale from 0 (no

pain) to 10 (severe pain), or using the Visual Analog Scale (VAS) (Martinez, Rudovic & Picard,

2017). However, self-reported pain assessment is vulnerable to bias induced by the individual’s

perception of pain as shown in Figure 0.4. In general, pain and fatigue are highly related to each

other, and coexist as primary symptoms of many diseases, which helps to diagnose and alleviate

the intensity of major health problems in advance. Hence, in clinical applications, automatic

detection of fatigue or pain has an immense need as it will be tedious to monitor the patients

manually for a longer duration. Unlike images, videos carry a lot more information pertinent
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to subtle expressions across the spatial and temporal dimensions. Though frames pertinent to

fatigue exist for a longer duration, expressions related to pain occur only for fewer frames in the

video. Many frames will be neutral in videos of pain expressions, which results in imbalanced

data and poses a major challenge in leveraging the performance of DL models. Given the limited

amount of relevant data, designing an ER system remains a challenging task as it will be difficult

to capture the wide range of variations among subjects as well as sensor capture conditions. In

addition to that, it requires experts for labeling, and the obtained labels are highly vulnerable to

label ambiguity due to the bias induced by domain experts. Often only partial or weak labeling

information is provided for the data e.g., video tags, as it involves costly manual intervention

and high complexity to obtain labels for entire data.

Another challenging problem is to effectively fuse multiple modalities in order to achieve

robust performance for ER. A-V fusion is one of the promising research directions, which can

outperform unimodal performances by leveraging the complementary relationship across each

other. For instance, the A modality can be leveraged to estimate the emotional state when the

facial modality is missing due to pose, blur, low illumination, etc. Similarly, during silent regions

in the A modality, the rich information in the V modality can be leveraged. Though A-V fusion

has been widely explored in literature (Tzirakis, Trigeorgis, Nicolaou, Schuller & Zafeiriou,

2017; Schoneveld, Othmani & Abdelkawy, 2021), efficiently capturing the complementary

relationship across the A and V modalities for ER remains to be a challenging problem, which

is crucial for effective A-V fusion to develop a robust ER system that outperforms unimodal

performances. Therefore, this Thesis explores DL models for video-based ER to leverage the

rich spatiotemporal information based on A and V modalities captured in videos for estimating

pain and fatigue levels. Specifically, this Thesis focuses on the development of DL models for

two problems in video-based ER.
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Firstly, the problem of expression intensity estimation is explored in the framework of weakly

supervised learning (WSL) to address the complex process of labeling data, while still leveraging

the potential of state-of-the-art DL architectures. Specifically, video-based pain intensity

estimation has been addressed in the context of multiple instance learning (MIL) (Sikka,

Dhall & Bartlett, 2014). Obtaining annotations for all the frames in the videos requires much

human support with strong domain expertise, which is difficult to obtain in real-time environments.

Moreover, the labeling process is highly vulnerable to the ambiguity of expressions, especially

when labels are intensities, due to the bias induced by the domain experts. Therefore, there is a

growing demand for the development of automatic pain estimation systems to ensure effective

treatment and ongoing care. Given the cost and challenges of annotating data, techniques for

WSL are very appealing as they allow exploiting of weak labels to train DL models. WSL can

be applied in scenarios involving incomplete supervision, inexact supervision, and ambiguous

or inaccurate supervision (Zhou, 2018). The inexact supervision scenario is relevant to our

application, where training data sets only require global annotations for an entire video, or

periodically for video sequences. MIL is one of the widely used approaches for inexact

supervision (Carbonneau, Cheplygina, Granger & Gagnon, 2018). However, existing MIL-based

approaches for automatic pain intensity estimation are based on traditional ML approaches due

to the lack of sufficient data as facial expressions pertinent to pain are sparse in nature. They fail

to leverage the potential of DL models to improve the performance of pain intensity estimation

with weak annotations. This Thesis explores the prospect of training DL models with limited

annotations using MIL as well as adapting DL models to different operational capture conditions

through weakly supervised domain adaptation. Though MIL is used for both bag-level and

instance-level prediction, our primary focus is on instance-level prediction for pain localization

in videos.

Second, the problem of fusing A and V modalities is explored for dimensional ER, where human

emotions are estimated in the valence-arousal space. Multiple modalities often provide diverse
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and comprehensive information, which is not available in individual modalities. Therefore,

effectively fusing the A and V modalities is expected to outperform the performance of individual

modalities. Most of the existing approaches (Tzirakis et al., 2017; Schoneveld et al., 2021;

Ortega, Cardinal & Koerich, 2019) in the literature that combines facial and vocal channels

for dimensional ER focus on intra-modal relationships for multi-modal feature representations.

Although inter-modal relationships play a crucial role in capturing the complementary relationship

across the modalities, it is not effectively explored in the literature. In recent years, few approaches

(Tzirakis, Chen, Zafeiriou & Schuller, 2021; Parthasarathy & Sundaram, 2021) have explored to

capture the inter-modal relationships based on cross-modal attention of A and V modalities using

transformers. By leveraging the cross-modal interactions across the modalities, transformers

based on cross-modal attention has made significant improvement over the prior approaches, that

focus only on intra-modal relationships. However, they are limited by their ability to effectively

capture both inter-modal complementary relationship as well as intra-modal relationships among

A and V modalities to improve the fusion performance over that of uni-modal approaches. This

Thesis seeks to develop DL models that can leverage complementary relationships across A and

V modalities, while still retaining the intra-modal relationships to improve the performance of

the system.

0.2 Research Objectives and Contributions

Following the challenges and limitations highlighted above, the objective of this research is

to develop DL models for expression behavior analysis in videos. Specifically, two research

directions have been explored pertinent to pain localization through weakly labeled domain

adaptation, and attention-based A-V fusion for dimensional ER. The main contributions of this

Thesis are summarized as follows:

1) A comprehensive survey of weakly supervised learning models for facial behavior

analysis: First, an exhaustive survey on WSL models for facial behavior analysis has been
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provided including facial expressions and action units. This work investigates and highlights the

research gaps in the literature along with potential research directions to develop robust models

for facial behavior analysis. Effectively leveraging the deep models by capturing the relevant

data with weak annotations was shown to significantly improve the performance of the system.

Further details can be found in Chapter 2. This resulted in our first contribution along with the

detailed findings of our comprehensive survey on existing methods in the following paper:

• R Gnana Praveen, Patrick Cardinal, Eric Granger "Weakly Supervised Learning for Facial

Behavior Analysis: A Review" IEEE Transactions on Affective Computing (TAC), 2022

(Under Review).

2) Automatic pain localization using weakly labeled videos with domain adaptation: Most

of the approaches in the literature fails to leverage the efficacy of DL models due to the lack

of relevant training data, limited annotations, etc. Though few approaches have exploited DL

models with fully supervised learning for pain localization in videos, developing prediction

models with weak labels using DL models was found to be a challenging problem. The second

contribution of this Thesis is to investigate the prospect of using DL models with domain

adaptation to build robust prediction models for weakly labeled videos of video-level annotations.

To achieve this goal, weakly supervised domain adaptation (WSDA) has been presented, which

also helps to deal with variations in operational capture conditions. The proposed framework of

WSDA has been applied for pain localization using weakly labeled videos. Experimental results

on UNBC-McMaster, Biovid, and Fatigue data sets significantly outperforms the state-of-the-art

models, resulting in greater pain localization accuracy. Further details can be found in Chapter

3. The second contribution resulted in the following papers:

• R Gnana Praveen, Eric Granger, Patrick Cardinal "Deep Weakly Supervised Domain

Adaptation for Pain Localization in Videos" IEEE International Conference on Automatic

Face and Gesture Recognition (FG), 2020.
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• R Gnana Praveen, Eric Granger, Patrick Cardinal "Deep domain adaptation with ordinal

regression for pain assessment using weakly-labeled videos" Image and Vision Computing,

vol 110, pp 104167, 2021.

3) Audiovisual fusion for dimensional emotion recognition: Conventional approaches

to A-V fusion rely on recurrent networks or conventional attention mechanisms that do not

effectively leverage the complementary nature of A-V modalities. Even though transformer

models are explored to capture the inter-modal relationships using cross-modal attention, they

are limited by their ability to leverage the intra-modal relationships. Most of these approaches

fail to effectively capture both the inter-modal and intra-modal relationships across the A and V

modalities. This led to the third contribution to investigate the prospect of effectively exploiting

the complementary relationship across A and V modalities to improve the performance of the

system. It has been found that efficiently capturing the complementary relationship across A

and V modalities significantly improves the performance of the system. To capture the A-V

relationships effectively, a joint cross-attentional fusion model is proposed for dimensional

ER. Experimental results indicate that the joint cross-attentional A-V fusion model provides a

cost-effective solution that can outperform state-of-the-art approaches, even when the modalities

are noisy or absent. Further details can be found in Chapter 4. The third contribution resulted in

the following papers:

• R Gnana Praveen, Eric Granger, Patrick Cardinal "Cross Attentional Audio-Visual Fusion

for Dimensional Emotion Recognition" IEEE International Conference on Automatic Face

and Gesture Recognition (FG), 2021.

• R Gnana Praveen, Patrick Cardinal, Eric Granger "Audio-Visual Fusion for Dimensional

Emotion Recognition Using Joint Cross-Attention" IEEE Transactions on Biometrics,

Behavior, and Identity Science (TBIOM), 2023.

• R Gnana Praveen, Wheidima Carneiro de Melo, Nasib Ullah, Haseeb Aslam, Osama Zeeshan,

Théo Denorme, Marco Pedersoli, Alessandro L. Koerich, Simon Bacon, Patrick Cardinal,
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Eric Granger; "A Joint Cross-Attention Model for Audio-Visual Fusion in Dimensional

Emotion Recognition" IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, 2022.

• R. Gnana Praveen, Patrick Cardinal, Eric Granger "Recursive Joint Attention for audio-

visual fusion in regression-based emotion recognition," 48th IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2023.

The full list of publications that resulted from this research can be found in Appendix II.

0.3 Thesis Outline

Figure 0.5 presents an overview of the organization of this Thesis. Chapter 1 provides the

background on ER from videos, related to facial behavior analysis in videos as well as A-V

fusion for dimensional ER. A detailed review of relevant works on facial behavior analysis in

videos and A-V fusion for dimensional ER has been presented, followed by limitations of the

literature. Chapter 2 provides a comprehensive review of WSL models for facial behavior

analysis. This chapter briefly introduces the framework of WSL and its relevance for facial

behavior analysis. The literature on facial behavior analysis in videos as well as images is

rigorously analyzed with weak annotations. Finally, the research gaps in the literature are

highlighted with new potential research directions. This work corresponds to the paper "Weakly

Supervised Learning for Facial Behavior Analysis: A Review" which was submitted to IEEE

Transactions on Affective Computing (TAC). Chapter 3 then introduces a new method for

WSDA to adapt DL models for automatic pain localization in videos using weakly labeled

videos. This work corresponds to the paper "Deep domain adaptation with ordinal regression

for pain assessment using weakly-labeled videos" published in the Image and Vision Computing

(IVC) journal. Chapter 4 introduces our framework of A-V fusion for dimensional ER based on

videos. This work seeks to develop DL models that leverage the inter-modal relationships across
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Figure 0.5 Organization of this Thesis. The arrows indicate the dependencies between the

chapters and appendices

the A and V modalities and showed significant improvement over the existing approaches. This

work corresponds to the paper "Audio-Visual Fusion for Dimensional Emotion Recognition

Using Joint Cross-Attention" which has been published in the IEEE Transactions on Biometrics,

Behaviour, and Identity Science (BIOM) journal. Appendix I presents recurrent joint attention

for A-V fusion in regression-based ER, which relies on recursive fusion and LSTMs to further

improve the joint cross-attentional model for A-V fusion. Chapter 5 summarizes the major

contributions of this dissertation and discusses its limitations along with potential future research
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directions. The computational complexity of the proposed Joint Cross Attentional (JCA) A-V

fusion model is provided in Appendix II. Finally, Appendix III provides the list of publications,

obtained during this Ph.D. study.





CHAPTER 1

BACKGROUND ON EXPRESSION RECOGNITION

This chapter introduces the basic concepts of video-based ER. In this Thesis, we focus on DL

models for ER using facial expressions as the visual modality, and vocal expressions as the audio

modality.

1.1 Machine Learning Models

Machine Learning (ML) is the automation of the learning process of machines without human

intervention. In simple words, it is nothing but imitating human intelligence in machines so that

they can be able to perform tasks without being explicitly programmed for any specific task. In

recent days, ML has been found to be so pervasive that we use it in most of our daily activities

even without our knowledge. The process of automation is achieved using data, through which a

model can be trained and used to make predictions on new data. Therefore, the performance of

the ML system depends on the training model, which in turn relies on the quality of the data.

The advancement of computing capabilities in handling huge data has fostered the deployment

of ML systems in real-time applications. Depending on the availability of labels, ML systems

are broadly classified into three categories: Supervised Learning, Unsupervised Learning, and

Weakly Supervised Learning.

• Supervised Learning: The data is provided with their desired labels, where the training

model is developed by reducing the error between the actual targets with the predicted ones.

Some of the most widely used supervised learning approaches are Support Vector Machines

(SVM), Linear regression, etc.

• Unsupervised learning: The data is not provided with corresponding labels. So it finds

the commonalities among the unlabeled input data and estimates the hidden pattern in the

structure of the data. Since it is difficult to obtain labeled data in many cases, unsupervised

learning was found to be highly valuable in analyzing the hidden patterns of the data and

for efficient data clustering and representation. Some of the commonly used unsupervised

techniques are k-means clustering, Hierarchical Cluster Analysis, etc.
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• Weakly Supervised Learning: It refers to the class of ML algorithms, where the data is

provided with partial or noisy labels. The training model is developed using partial or noisy

labels without the actual labels. Some of the widely used WSL approaches are Multiple

Instance Learning (MIL), Active Learning, etc. The category of WSL models is discussed in

detail in Section 1.5.

The core idea of ML models is to learn the patterns underlying the data. ML algorithms can be

broadly classified into two major categories based on the mode of learning from data: Traditional

ML approaches and Deep ML approaches as shown in Figure 1.1.

Figure 1.1 Demonstration of (a) Traditional Machine Learning and (b) Deep Learning

Taken from Wang et al. (2018)

1.1.1 Traditional ML Approaches

Traditional ML belongs to the class of approaches, where the features are hand-engineered

and the prediction models of classification or regression are trained separately. In traditional

ML approaches, the features are chosen by subject experts, and the underlying patterns of

the features are learned by the chosen prediction model. Traditional ML models often work

better with small data captured under constrained environments. Since the features are directly
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hand-engineered and the prediction models are decoupled from the features, the traditional ML

models are deterministic and easier to interpret. Training the prediction models of traditional ML

algorithms is not very expensive and takes less training time as they are decoupled from feature

learning. Some of the widely used traditional ML algorithms are Support Vector Machine

(SVM) (Cortes & Vapnik, 1995), Adaboost, Logistic Regression, and Random Forests. SVM is

one of the most widely used supervised learning algorithms before the DL era. The basic idea

of SVM is to estimate the hyperplane, which can separate the data points of different classes.

The parameters of the hyperplane are optimized and learned by maximizing the distance of

the hyperplane to the nearest data points of different classes. These nearest data points are

termed "support vectors" as they support determining the decision boundary. Due to their robust

performance and ability to be generalized in high-dimensional spaces, several variants have been

subsequently proposed and successfully explored for several applications in computer vision,

speech processing, and NLP. SVMs have also been explored along with deep features and found

to be promising for several applications (Tang, 2013).

Another class of traditional ML models widely explored in the literature is ensemble learning,

where the idea is to combine the predictions of multiple models to produce an optimal estimation.

Of all the ensemble learning models, two major classes of ensemble learning models are bagging

and boosting. Bagging refers to bootstrap aggregating, which involves a diverse group of

individual learners by varying the amount of training data based on bootstrap sampling (sampling

with replacement). Decision trees belong to the class of bagging, out of which random forests

(Breiman, 2001) is the most widely used technique in the literature due to the low correlation and

diverse nature of the base learners (trees). Random Forests is a variant of the tree-based model,

where the basic idea is to leverage a large number of relatively uncorrelated and diverse models

(trees) to produce ensemble predictions that are more accurate than individual predictions.

The idea of bagging is also explored along with SVMs, where multiple SVMs are trained

independently and the outputs are combined via majority voting (Kim, Pang, Je, Kim & Bang,

2002).
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On the other hand, boosting relies on a set of weak learners, where the weak learners are

combined progressively in a sequential fashion to form a strong learner. Some of the most

popular boosting techniques are Adaboost (Freund & Schapire, 1996) and Gradient Boosting

(Friedman, 2001), which has been successfully used across different domains (Viola & Jones,

2001; Nguyen, Ng & Nguyen, 2012). Adaboost explores a greedy approach by iteratively

adjusting the weights based on the misclassified points to minimize the training error. Gradient

boosting extends this idea by generalizing this framework using arbitrary differential loss function

while Adaboost minimizes exponential loss function.

Apart from the above-mentioned approaches, there are also other successfully used traditional

ML algorithms such as Naive Bayes Classifier, Logistic Regression, etc. Even though traditional

ML algorithms are found to be successful in many domains, they often fail to capture the

complex patterns underlying the distribution of data in real-world environments. Due to the

shallow learning of prediction models, they tend to get saturated in limited performance, despite

the availability of huge amounts of data. Moreover, the features need to be chosen by domain

experts to reduce the complexity of data and make patterns visible for the learning algorithms

to work. Due to the shallow learning of features, the performance of the prediction models is

constrained by the limited learning capability of the feature representations.

1.1.2 Deep ML Approaches

In recent days, with the advancement of DL models, several DL-based techniques were found to

be quite promising in handling complex real-world problems. The advancement of computing

power and availability of massive amounts of data have revolutionized the advancement of

neural networks over the past few years, drastically outperforming the traditional ML models

in several domains. One of the major advantages of DL models is the ability to automatically

learn feature representations, tailor-made for the specific task at hand. By learning the features

in a cascaded fashion, DL models are able to obtain deeper feature representations, which

can effectively capture complex data patterns in real-world conditions, resulting in drastic

improvement in system performance. Another major advantage of DL models is the adaptability
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and generalization capability of the features to novel tasks using transfer learning, where the

pre-trained models can be fine-tuned and adapted to novel datasets or tasks. Moreover, DL

models are highly scalable i.e., they can leverage the massive amounts of available data, yielding

better feature representations to improve the performance of the system.

The major breakthrough in the field of DL has been achieved by AlexNet (Krizhevsky,

Sutskever & Hinton, 2012), which has drastically improved the performance of the system on

ImageNet ILSVRC challenge (Russakovsky et al., 2015). Since then, a lot of researchers have

explored the potential of DL models, significantly improving the performance of DL systems, by

advancing the DL architectures, optimization techniques as well as loss functions. Inspired by

the performance of AlexNet (Krizhevsky et al., 2012), several variants of CNN architectures

such as VGG (Simonyan & Zisserman, 2015), ResNet (He et al., 2016), Inception (Szegedy et al.,

2015) are proposed in computer vision and achieved great results surpassing the performance

of humans. The 2D CNN architectures have also been further extended to 3D CNNs (Tran,

Bourdev, Fergus, Torresani & Paluri, 2015) to learn the spatiotemporal patterns and showed

improvement in video-based applications.

Another widely used architecture to capture the temporal patterns in DL is the LSTM (Hochre-

iter & Schmidhuber, 1997) (a variant of RNNs), which learns the temporal patterns based

on recurrent connections. Although 3D CNNs are efficient in capturing short-term temporal

dynamics, they fail to capture long-term temporal patterns due to the computational complexity

of 3D CNNs. On the other hand, LSTMs are effective in capturing long-term patterns using

recurrent connections. Recently, transformers (Vaswani et al., 2017) have replaced LSTMs to

capture the temporal context of sequence patterns, which is a major breakthrough in the field of

NLP. Following the success of transformers in NLP, it has gradually evolved achieving good

results in other fields also. For instance, vision transformers (Dosovitskiy et al., 2021) have been

widely explored in computer vision applications, achieving state-of-the-art results. Despite the

rapid advancement of DL systems in various domains, it is often constrained by the availability

of massive amounts of data and computational resources.
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1.2 Expression Recognition Systems

Figure 1.2 Block diagram of an Audio-Visual (A-V) Expression Recognition (ER) system.

In this case, the system relies on facial expressions (visual modality) and vocal expressions

(audio modality), and feature-level A-V fusion

Automatic recognition of emotions is an important task that facilitates natural interaction

between humans and machines. Depending on the type of labels, emotion recognition can be

formulated as a discrete classification problem (e.g., a person eliciting happy or sad emotions),

or as a continuous regression problem (e.g. continuous values of valence and arousal). Though

classification conveys the type of emotion being expressed, it fails to capture the wide range of

emotions on a finer granularity. Valence and arousal are widely used for estimating emotion

intensities in the continuous domain, where valence spans a wide range of emotions from sad to

happy, and arousal reflects the energy or intensity of the emotions. Although human emotions

can be expressed through various modalities such as the face, text, voice, and physiological

signals, vocal and facial modalities are the predominant contact-free channels through which

they can be efficiently expressed. There are four major building blocks to develop an automatic

recognition system for ER, as shown in Figure 1.2.
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1.2.1 Preprocessing

Visual modality: Face detection is the first and foremost step of an end-to-end ER system.

The objective is to localize and extract the face region in the video frames. One of the most

widely used approaches for face detection prior to the DL era is the Viola-Jones face detector

(Viola & Jones, 2001), which used Ada-boost classifiers with Haar features to build a cascaded

structure. With the advancement of DL architectures, several approaches have been proposed

for face detection and significantly improved the performance of the system. (Li, Lin, Shen,

Brandt & Hua, 2015) introduced a CNN-based calibration stage to improve the localization

accuracy and also operates at multiple resolutions. This approach has been further extended

by (Zhang, Zhang, Li & Qiao, 2016) by formulating face detection as well as alignment in a

joint learning framework. They further improved the system by leveraging carefully designed

cascaded architecture and an online hard-sampling mining strategy. Inspired by the performance

of R-CNN models (Ren, He, Girshick & Sun, 2015) for object detection, (Jiang & Learned-Miller,

2017) explored faster-RCNN (Ren et al., 2015) for face detection and achieved state-of-the-art

results. Following the success of Faster-RCNN for face detection, several subsequent works

(Wu, Yin, Wang & Xu, 2019; Sun, Wu & Hoi, 2018b) have been proposed using R-CNNs and

showed significant improvement. Given the detected face, face alignment also plays a key role

in extracting robust features to reduce the scale and in-plane rotation. One of the widely used

approaches for face alignment is based on facial landmarks.

Most of the works based on facial landmarks employ cascaded regression (Lv, Shao, Xing,

Cheng & Zhou, 2017; Sun, Wang & Tang, 2013; Zhang, Shan, Kan & Chen, 2014a) or RNNs

(Trigeorgis, Snape, Nicolaou, Antonakos & Zafeiriou, 2016; Xiao et al., 2016) to progressively

refine the predictions of landmark coordinates. In contrast to cascaded regression, (Newell,

Yang & Deng, 2016) designed a stacked hourglass network to estimate the landmarks based on heat

maps and showed great success. This idea has been further explored by many subsequent works

(Huang, Deng, Shen, Zhang & Ye, 2020; Yang, Liu & Zhang, 2017; Wang, Bo & Fuxin, 2019)

and greatly improved the performance of the system. Contrary to landmark-based approaches,

some of the works (Hayat, Khan, Werghi & Goecke, 2017; Zhong, Chen & Huang, 2017)
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have explored spatial transformer networks (Jaderberg, Simonyan, Zisserman & kavukcuoglu,

2015) to optimize the face alignment along with face representation in a joint framework.

Illumination and contrast variations are other challenging factors that can result in large intra-

class variances, especially in unconstrained environments. Histogram Equalization is widely

used for normalizing the variations in illumination and contrast by increasing the global contrast

of the images. Various filtering-based approaches such as homomorphic filtering, Difference-

of-Gaussian (DoG) filtering are also explored for effective face normalization. Finally, all the

detected faces have to be normalized to a standard image size for effective feature representation.

Audio modality: Prepossessing the speech signal is an initial step for the development of any

speech-based application. It suppresses the silence regions and noise in the signal such as

background noise, cross-talk, etc, and amplifies the significant regions of the speech signal

i.e., voiced segments for efficient feature extraction (Deb & Dandapat, 2019a). The first step

is sampling, which is the process of converting the analog signal to a digital signal. Typically,

sampling is performed by taking the discrete samples of the signal corresponding to the

frequencies which is more than twice the maximum frequency of the signal, which is called the

Nyquist rate. Since most of the sounds produced by the speech signal correspond to the range of

100 Hz - 4KHz, the sampling rate of the speech signal is considered to be 8KHz, which is twice

the maximum frequency of the signal (4 KHz).

Pre-Emphasis is the process of enhancing the high-frequency components and decreasing

the amplitude of low-frequency components. It is observed that high-frequency components

carry significant information about the speech signal which corresponds to the voiced regions

compared to the low-frequency components. It improves the overall signal-to-noise ratio of the

signal and balances the magnitude of the frequency spectrum as low-frequency components

have higher magnitudes compared to high-frequency components. Typically, pre-emphasis is

carried out using a first-order filter for filtering operation. In recent days, pre-emphasis does not

have significant importance in modern systems with the advancement of computing capabilities

and can be replaced with simple normalization.
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Normalization is primarily used to control the variations in the speech signal. In general,

normalization is carried out using the energy of the signal, which is useful for phoneme

discrimination. The objective is to discard unwanted energy variations of the speech signal due

to background noise, different loudness levels in multiple speakers, etc. The most prevalent

approach is to normalize the cepstral coefficients of the speech signal, which carries the energy

of the signal. This is known as ’Cepstral Mean Normalization’, which simply subtracts the mean

of each coefficient from all the frames. In addition to cepstral mean normalization, there are

also several other efficient approaches for the normalization of speech signals. Since speech

signals are highly stochastic in nature, it will be difficult to analyze the entire signal as a whole,

which led to the requirement of the segmentation of the speech signal as it is assumed to be

stationary within a short duration of the speech signal.

The short segment of the speech signal is also called as ’frame’. Typically the frame length of the

speech signal is considered to be 20 - 40 msec. If the frame length is much shorter, then we may

fail to get enough spectral estimates for efficient feature extraction. On the other hand, longer

segments of the speech signals will become stochastic, which will be difficult to analyze the

signal. Many windowing techniques have been proposed for framing speech signals. In practice,

these windowing operations will have a transient response at the borders of the windows. As

a consequence to handle the toning down of the edges, overlapping of the frames is generally

used for continuity of the speech signal during reconstruction. Otherwise, the reconstructed or

unframed signal will be distorted. Conventionally the given speech signal is first segmented for

frequency domain representation (normally for 60 ms). Then the low-frequency components are

set to zero and the time domain samples of the signal are obtained by inverting the frequency

domain representation. Now windowing mechanism is used to focus only on the central part of

the speech segment and the borders of the segment are faded away. Generally, the Hamming

window is used, which has a nice property of summation of the magnitude to unity when 50%

of overlapping among the frames is considered. This phenomenon of considering overlapping

windows and reconstruction of the speech signal by summing the overlapped windows is called

the Overlap-add method.
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1.2.2 Feature Extraction

Visual modality: Facial expressions in videos involve both appearance and temporal dynamics of

video sequences. Efficient modeling of the spatial and temporal dynamics of the video sequences

plays a crucial role in extracting robust features, which in turn improves the overall system

performance. The spatiotemporal features capture the dynamic information of the appearance

of faces across the frames of the video. Some of the conventional approaches for dynamic

representation are based on local spatiotemporal features such as LBP-TOP (Zhao & Pietikainen,

2007), HOG-TOP (Chen, Chen, Chi & Fu, 2014), etc. Conventional hand-crafted features tend to

be very local in nature and thereby dominated by the patterns of the nearest neighbor. They offer

promising results in a constrained environment but fail to perform well in uncontrolled real-time

environments. On the other hand, features learned from DL architectures learn non-locally

by a series of nonlinear transformations and capture the high-level features of the image in a

hierarchical fashion. Since the features are data-driven and learned automatically without any

prior knowledge, they are quite robust in handling the challenges in uncontrolled environments.

The feature extraction process is fully automatic and data-driven without any human intervention,

which is a major breakthrough for its intensive use in many applications. Since most of the

conventional features are found in local descriptors, they can be visualized as the initial layers of

the DL architecture as they represent local features.

A simple way to obtain spatiotemporal features is by aggregating frame-level features such as the

average or maximum of frame-level of features (Bargal, Barsoum, Ferrer & Zhang, 2016). Some

of the works also explored matrix-based models such as eigenvector and covariance matrices

for aggregation (Liu et al., 2014). Recurrent Neural Networks (RNN) are the most widely

used approach for capturing temporal information in various fields such as computer vision,

natural language processing, speech processing, etc. Long Short-Term Memory (LSTM) is a

special type of RNN explicitly designed to solve issues with long-term dependency problems

such as gradient vanishing and exploding problems using short-term memory. The classic

backpropagation through time (BPTT) is used to train the LSTM network. LSTM is extensively

used for modeling sequential images for two major advantages. First, LSTM models are more
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flexible in fine-tuning end-to-end when integrated with other deep networks such as CNN. In

many approaches, LSTM has been used in combination with CNN to capture the effective latent

appearance representation along with temporal dynamics (Kim, Baddar, Jang & Ro, 2019).

Second, LSTM does not depend on the length of the inputs as it can support both fixed-length

and variable-length inputs or outputs.

Another widely used approach for capturing the facial dynamics of videos are C3D network

(Tran et al., 2015), which simultaneously captures the spatial and temporal features. C3D-based

approaches (Fan, Lu, Li & Liu, 2016; Ouyang et al., 2017) are robust in capturing the short-term

temporal dynamics while CNN in combination with LSTM is efficient in capturing long-term

dynamics. Facial landmarks have also been explored to capture the dynamic variations of

facial expressions in consecutive frames using trajectories of facial landmarks (Yan et al., 2016;

Kim, Lee, Choi & Song, 2017). Another line of research for capturing temporal dynamics

in videos is based on cascaded networks or network ensembles. (Baccouche, Mamalet, Wolf,

Garcia & Baskurt, 2012) employed a convolutional sparse autoencoder to capture sparse and

shift-invariant features, followed by an LSTM classifier for temporal evolution. (Sun, Li, Huan,

Liu & Han, 2019a) proposed a multichannel network using CNN features and optical flow-

based features to capture temporal information and investigated three feature-fusion strategies:

score-average fusion, Support Vector Machine (SVM)-based fusion, and neural-network-based

fusion.

Audio modality: The aim of the feature extraction of the vocal signal is to obtain a compact and

efficient representation of the vocal signal. Typically, acoustic features can be broadly classified

into segmental features and suprasegmental features. (Schuller & Rigoll, 2009) provided a

comparative review of feature-wise comparison between segmental features and suprasegmental

features. Segmental features are the ones, which are estimated over a short duration of speech

signal using windowing techniques (typically for a duration of 10 - 30 ms). Most of the features

under this category are related to spectral characteristics and their derivatives such as Mel

Frequency Cepstral Coefficients (MFCC), Linear Predictive Cepstral Coefficients (LPCC),

etc. Some of the important features widely used in the literature for emotion recognition are
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MFCC (Korkmaz & Atasoy, 2015), LPCC (Chamoli, Semwal & Saikia, 2017), and perceptual

linear predictive coefficients (LPC) (Glodek et al., 2011). However, these conventional features

perform poorly in the case of speaker-independent emotion recognition.

Recently, new spectral features are introduced for speech emotion recognition that significantly

outperforms the conventional features (MFCC, LPCC, and PLP). (Tao, Liang, Zha, Zhang & Zhao,

2016) proposed spectral features based on local Hu moments of the Gabor-spectrogram and

showed that Hu moments provide an excellent measure to discriminate emotion. The spectral

features are promising to discriminate emotions and are highly correlated to the valence

dimension. On the other hand, suprasegmental features are derived from the segmental features

and are estimated over a large duration of the speech signal, typically 30-100 ms. Most of the

emotion-related features are computed at the suprasegmental level as it conveys paralinguistic

information better than segmental features. The features under this category are related to

prosodic features such as fundamental pitch frequency, energy, shimmer, speech rate, spectral

balance, spectral tilt, jitter, and normalized amplitude quotient. (Luengo, Navas & Hernáez,

2010) investigated the impact of prosody and spectral features and showed that spectral features

outperformed prosody features. However, combining prosody and spectral features is found to

be complementary to each other and improves the accuracy. The prosody features discriminate

well between the inter-valence and inter-arousal, whereas spectral features distinguish between

the intra-valence and intra-arousal. (Wu, Falk & Chan, 2011) proposed long-term spectro-

temporal representation based on auditory and modulation filter-banks, that capture both acoustic

frequency and temporal modulation frequency components.

The Short-Term Fourier Transform (STFT) overcomes the limitations of the conventional Fourier

transform, which is widely used for DL techniques for speech emotion recognition. However,

STFT fails to capture both time and frequency components as well as the spectro-temporal

representation of the entire speech (Shah Fahad, Ranjan, Yadav & Deepak, 2021). Therefore,

wavelet transform has been explored to extract the features as it highlights the instantaneous

changes in the spectral evolution for emotions. (Deb & Dandapat, 2019b) proposed multi-scale

amplitude features using wavelet decomposition and showed significant improvement in emotion
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recognition. Though wavelet-based features are found to be promising, selecting a suitable

wavelet plays a crucial role in effective emotion classification. Inspired by the production

of an emotional speech, where non-linear pressure is exerted at the vocal cords, nonlinear

features are explored. (Tamulevičius, Karbauskaitė & Dzemyda, 2017) introduced new features

based on fractal dimensions and showed the superiority of these features over traditional

features. Although emotion recognition using voice has been widely explored using conventional

handcrafted features such as MFCC and global features (Sethu, Epps & Ambikairajah, 2015),

there has been a significant improvement over the recent years with the introduction of DL

models.

Low-level descriptor (LLD) features are widely used as input to CNNs or LSTMs, or a

combination of both. However, it has been shown that spectrograms are found to carry

significant paralingual information about the affective state of a person (Ma et al., 2018b; Satt,

Rozenberg & Hoory, 2017). (Chen, He, Yang & Zhang, 2018) proposed a CNN-LSTM model

based on spectrograms and showed that delta and delta-delta log spectrograms preserve the

emotionally relevant information and reduce the impact of emotionally irrelevant factors such as

speaker identity, speaking style, and environments. (Sun, Chen, Xie & Gu, 2018a) explored

the fusion of both shallow and deep features and showed improvement over that of individual

features. (Ghosh, Laksana, Morency & Scherer, 2016) investigated the potential of transfer

learning from dimensional attributes (valence and arousal) to categorical emotions and stacked

autoencoder with RNN for emotion recognition. They have shown that a glottal spectrogram

performs better than a conventional spectrogram, which is encoded with a stacked autoencoder

and fed to RNN for classification.

1.2.3 Classification / Regression

After obtaining the refined feature vectors from the fusion model, A and V feature vectors

are concatenated or further fed to a fully connected layer to obtain joint representation. This

joint representation provides A-V feature representation, which is finally fed to the classifier or

regressor to obtain the final predictions of the task at hand. Some of the widely used traditional
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classifiers for A-V fusion of ER are SVM (Pérez Rosas, Mihalcea & Morency, 2013), HMM

(Zeng et al., 2007), etc. (Valstar et al., 2013) used a support vector regressor (SVR) to generate

the predictions of valence and arousal using the concatenated A-V feature representation. With

DL models, fully connected layers are used to obtain the predictions from the A-V feature

representation (Kuhnke, Rumberg & Ostermann, 2020). However, they do not effectively

capture semantic information relevant to emotion recognition. LSTM-based models are found

to be promising in efficiently capturing the relevant information, which in turn improves the

performance of the system. One of the primitive approaches for A-V fusion-based emotion

recognition was proposed by (Tzirakis et al., 2017), which used a 2-layer LSTM network to

obtain the predictions of valence and arousal from concatenated deep A-V features. (Schoneveld

et al., 2021) also explored LSTM model-based fusion and showed significant improvement in

system performance. Several works have also explored ER using RNN models for generating

the predictions of classifier or regressor (Caridakis et al., 2006; Karpouzis et al., 2007).

1.2.4 Audio-Visual Fusion

Typically, A-V fusion for emotion recognition can be achieved by three major strategies: decision-,

feature-, and model-level fusion (Wu, Lin & Wei, 2014) as shown in Figure 1.3. In decision-level

fusion (late fusion), multiple modalities are trained end-to-end independently, and then the

predictions obtained from the individual modalities are fused to obtain the final predictions.

Although decision-level fusion is easy to implement and requires less training, it neglects

the interactions across the individual modalities, thereby resulting in limited improvement

over uni-modal approaches. Conventionally, feature-level fusion (early fusion) is achieved by

concatenating the features of A and V modalities immediately after they are extracted, which

is further used for predicting the final outputs. Though feature-level fusion allows interaction

between the modalities at the low-level features, it fails to leverage the interactions (inter-modal

relationships) across the individual A and V modalities, thereby resulting in limited improvement

in performance (Wu et al., 2014). Model-level fusion is the most effective way to leverage the

complementary nature of the modalities to obtain comprehensive feature representations. A
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Figure 1.3 Fusion strategies of Audio-Visual (A-V) fusion model

summary of existing approaches based on A-V fusion models for ER is reviewed on 1.6.2 and

1.8.2.
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1.3 Deep Learning Models for Expression Recognition

This section presents state-of-the-art DL approaches for ER that have been proposed in the

framework of supervised learning.

1.3.1 Facial Expressions

Inspired by the performance of DL models, several approaches have been proposed for the analysis

of facial expressions, where recognition of facial expressions provides semantic information

over a short sequence of images. Since the temporal dynamics of facial expressions convey

significant information, several DL models have been leveraged to capture the temporal dynamics

of facial expressions in videos. This section provides DL-based approaches for the estimation of

expression intensity as well as pain and fatigue levels.

1.3.1.1 Expression Intensity Recognition

(Ren, Hu & Deng, 2017) explored CNN features in combination with the RankBoost algorithm

for expression intensity estimation. They generated sequential image pairs for the expression

sequence by considering the neutral and apex frames, where relative expression intensity is

estimated instead of the absolute intensity for every frame. They have used LeNet architecture

to extract CNN features and modified the RankBoost algorithm to obtain the relative expression

intensity. (Shiomi, Nomiya & Hochin, 2022) suggested two strategies for estimating the

expression class as well as expression intensity in an implicit and explicit fashion. They extracted

feature vectors based on facial movements and used a neural network structure to estimate the

expression class, followed by expression intensity. (Chen et al., 2022a) explored a framework to

estimate both the expression class as well as its intensity in a unified framework. They have

used label distribution learning to encode the expression intensity of each frame using linear

interpolation and Gaussian function, where a Siamese network is used to learn the expression

model using the label distribution as supervised information.
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(Zheng, Yang, Liu & Cui, 2020) explored facial expression intensity using CNNs and attention

mechanism, where a migration network is used to solve the problem of overfitting with small

data, and an attention mechanism is deployed to obtain robust facial features sensitive to

expression intensities. (Lee & Xu, 2003) explored cascaded neural networks and support

vector machines to model the relationship between the trajectories of facial feature points and

expression intensity levels. (Jaiswal, Egede & Valstar, 2018) used cumulative attributes with

a DL model as a two-stage cascaded network. In the first stage, original labels are converted

to cumulative attributes, and the CNN model is trained to output a cumulative attribute vector.

Next, a regression layer is used to convert the cumulative attribute vectors to real-valued output.

They have also evaluated the system with Euclidean loss and log loss and found that the latter

outperforms the former. (Kawashima, Nomiya & Hochin, 2021) investigated the prospect of

leveraging DL models for estimating facial expression intensity with small data and showed

that fine-tuning CNNs on a small dataset was found to perform better than that of hand-crafted

facial features. (Sabri & Kurita, 2018) investigated the ability of siamese and triplet networks

for expression intensity estimation in videos. Sequential image pairs capturing the temporal

dynamics of the sequence are obtained similarly to (Ren et al., 2017), where two consecutive

pairs are taken for Siamese networks and three images are considered for triplet networks. They

have shown that the internal representations of triplet networks are efficient in capturing accurate

localization of discriminative features, which improves the generalization capability of the

network.

(Walecki, Rudovic, Pavlovic, Schuller & Pantic, 2017) proposed a novel copula CNN approach

by exploiting the AU dependencies using conditional random fields (CRF) and estimating

complex efficient feature representations simultaneously using CNN architectures. They have

used multiple data sets for training the CNN model of 3 convolutional layers while the CNN

features are fed to the CRF graph to capture AU dependencies. All the parameters of CNN

and CRFs are jointly optimized by ensuring iterative batches that are most representative of

the target structure during optimization. (Wei, Bozkurt, Morency & Sun, 2019) introduced a

feature set that combines saliency map-based hand-crafted features and low-level CNN features
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for spontaneous smile intensity estimation. They further exploited the mutual complementary

relationship between the opponent-color characteristic of saliency maps and CNN features at

multiple levels, and showed improvement in the performance of the system.

(Kollias, Psaroudakis, Arsenos & Theofilou, 2023) proposed a network for expression intensity

estimation in videos to estimate, expressions, action units as well as valence and arousal. They

have introduced a representation extractor with an RNN network, followed by a mask layer, which

handles the varying input lengths by dynamically selecting the RNN outputs. (Lu & Zhang,

2019) explored happiness intensity estimation for a group of people, by estimating the happiness

intensity level of each individual in the group using a CNN model pretrained on the VGGFace

model. The group happiness intensity level is estimated using a weighted average of the intensity

level of individual faces. (Thuseethan, Rajasegarar & Yearwood, 2019) proposed a metric-based

mechanism for defining the primary emotions using the relation between action unit intensities

and primary emotions, followed by a deep CNN-based approach to estimate the intensities of

the primary emotions from posed and spontaneous video sequences.

1.3.1.2 Pain Estimation

Facial expressions of pain are often conveyed through the gold standard of facial expression

research, FACS (Ekman & Friesen, 1978). Using FACS, facial expressions can be composed

of a small subset of facial activities, namely lowering the brows (AU4), cheek raise (AU6)/lid

tightening (AU7), etc. Nevertheless, the facial expressions of pain may not always be observed

with a specific facial expression. (Wu et al., 2022) investigated the prospect of leveraging

DL-based models for pain classifiers based on facial expressions of critically-ill patients.

(Monwar & Rezaei, 2006) explored DL models to recognize pain as a binary classification

problem from facial expressions based on the location and shape features of the detected

faces. (Wang et al., 2017) addressed the problem of a limited dataset of facial expressions

by fine-tuning the face recognition network using a regularized regression loss and additional

data with expression labels. They have shown that their approach achieves state-of-the-art
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performance benefiting from the rich feature representations trained on a huge amount of data

for face verification.

(Xiang, Ye, Gregory & Trac, 2018) proposed temporal convolutional networks, where 1 -D

convolution is performed over the frame-based feature vectors along the temporal dimension.

They can detect pain levels both for frames as well as videos. (Egede, Valstar & Martinez, 2017)

used handcrafted features based on shape and appearance in combination with deep-learned

features and showed that their approach performs well even in small sample settings. They

have also included temporal information by considering the previous and successive frames.

Finally, the pain intensities are estimated using a relevance vector regressor (RVR). (Zhou, Hong,

Su & Zhao, 2016a) proposed Recurrent Convolutional Neural Network (RCNN) by adding

recurrent connections to the convolutional layers of the CNN architecture for estimating the

pain intensities. However, choosing fixed temporal kernel depth fails to capture varying levels

of temporal ranges as the duration of facial expressions may vary from short to long temporal

ranges. To address the problem of fixed temporal depth, (Tavakolian & Hadid, 2018) designed a

novel 3D CNN-based architecture using a stack of convolutional modules with varying kernel

depths for efficient dynamic spatiotemporal representation of faces in videos. (Tavakolian

et al., 2020) proposed a self-supervised learning framework for pain intensity estimation from

facial videos with a minimal amount of labeled data. They introduced a similarity function to

learn generalized representations using a Siamese network, which is further fine-tuned for pain

intensity estimation.

(Rodriguez et al., 2018) used VGG Face pre-trained CNN network (Parkhi, Vedaldi & Zisserman,

2015) for capturing the facial features and further fed to the LSTM network to exploit the

temporal relation between the frames. They have further shown that the performance of the pain

recognition system can be enhanced by relying on the entire face images instead of only facial

features. (Wang et al., 2017) addressed the problem of a limited dataset of facial expressions

by fine-tuning the face recognition network using a regularized regression loss. (Rodriguez

et al., 2018) used VGG Face pre-trained CNN network (Parkhi et al., 2015) for capturing the

facial features and further fed to the LSTM network to exploit the temporal relation between
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the frames. Apart from 2D models with LSTM, researchers also explored optical flow and 3D

CNN-based approaches for the temporal modeling of facial expressions. Compared with 2D

models, 3D-CNNs are found to be quite promising in capturing the temporal dynamics of video

sequences. The limitation of these approaches is that they require frame-level intensity labels,

which is a major bottleneck in real-time scenarios.

1.3.1.3 Fatigue Estimation

(Sikander & Anwar, 2019) provided an in-depth review of existing technologies for fatigue

detection in the context of driver assistance systems. (Ghazal, Abu Haeyeh, Abed & Ghazal,

2018) proposed a simple CNN with two convolutional layers followed by max-pooling layers and

two fully connected layers, which can be deployed in a low-cost and real-time embedded system

for fatigue detection. (Reddy, Kim, Yun, Seo & Jang, 2017) also explored a real-time drowsiness

detection method based on DL models, which can be deployed in low-cost embedded devices

while still retaining high accuracy. Specifically, they have proposed a compressed version of

the heavy baseline model by exploiting the idea of "distillation" of neural network (Hinton,

Vinyals & Dean, 2015) for transferring the knowledge from a huge model to a small model.

(Long, Guojiang, Yuling & Junwei, 2021) explored facial key points to extract the feature vectors

of each frame using DLIB (open-source software library). The feature vectors are further sliced

into short temporal feature sequences and fed to the LSTM network to obtain the fatigue levels.

(Zuopeng et al., 2020) proposed a CNN model, named EM-CNN, to detect the fatigue levels

based on eyes and mouth from the detected facial regions. They have considered the percentage

of eyelid closure over time and mouth opening degree as major factors to determine driver

fatigue levels using driving images. However, detecting eye states can be affected by wearing

sunglasses. To solve this problem, (Zhang, Su, Geng & Xiao, 2017) explored infrared videos for

detecting eye states based on the CNN model, which is further used to estimate eyelid closure

over time and eye blink frequency to monitor driver fatigue levels.

(Li, Xia, Cao, Zhang & Feng, 2021) proposed a face detection network named Little Face to

detect and classify faces to small yaw angle and large yaw angle. Then, the supervised descent
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method (SDM) is optimized only using the normal low yawn states for accurate face alignment,

which is further used to determine the driver fatigue level of distract state faces. (Dwivedi,

Biswaranjan & Sethi, 2014) utilized CNN to learn features from the localized face regions

obtained using the Viola-jones method (Viola & Jones, 2001) and the extracted CNN features are

fed to the softmax layer for drowsiness detection. (Zhang, Murphey, Wang & Xu, 2015) explored

yawning detection as a cue for driver fatigue monitoring, where nose tracking is preferred over

mouth tracking as it offers more accurate tracking and deploying a neural network for yawning

detection based on features extracted from nose tracking, gradient features around the mouth

and facial movement. Static Bayesian networks are also explored for fatigue detection (Qiang

Ji et al., 2004), however, they fail to capture the temporal dynamics of the facial expressions.

To incorporate the temporal dynamics, Dynamic Bayesian Networks (Li & Ji, 2005) were

considered to improve the performance of fatigue detection by modeling the temporal dynamics

of the driver’s affective state (Qiang Ji, Lan & Looney, 2006). (Yang, Lin & Bhattacharya,

2010) explored physiological features such as ECG and EEG along with facial features for driver

fatigue detection based on dynamic Bayesian networks.

1.3.2 Vocal Expressions

Vocal ER is widely explored in the context of emotion recognition, which is carried out by

relying heavily on the acoustic model, however, paralinguistics is used for emotion recognition as

it conveys the emotional state of the person. (Badshah, Ahmad, Rahim & Baik, 2017) explored

spectrograms for speech emotion recognition, where the spectrograms are fed to a deep CNN

with 3 convolutional layers and 3 fully connected layers. They further investigated the impact of

transfer learning and showed that a freshly trained model performs better than a finetuned model.

(Mao, Dong, Huang & Zhan, 2014) investigated the prospect of obtaining affect-salient features

using CNN features in a two-stage framework. Firstly, they extracted local invariant features of

unlabeled samples using a variant of the sparse autoencoder, which is further processed to obtain

salient discriminative features using a novel objective function. (Yenigalla et al., 2018) explored

phoneme sequences with spectrograms and conducted various experiments with different kinds
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of DL models. They have shown that the phoneme sequence carries significant emotional content

when combined with spectrograms and fed to the CNN model improving the performance of

the system. (Issa, Fatih Demirci & Yazici, 2020) introduced a new architecture, which extracts

multiple spectral features and used them as input to the 1-D CNN model for emotion detection.

(Niu, Zou, Niu, He & Tan, 2017) proposed a novel approach for emotion recognition by designing

a data augmentation algorithm inspired by the imaging principle of the retina for handling the

problem of a limited dataset. They have designed Deep Retinal Convolutional Neural Networks

(DRCNN) for obtaining robust high-level features with the help of existing DL architectures.

(Han, Yu & Tashev, 2014) proposed a system for speech emotion recognition using a deep

neural network. The probability distribution of the emotional states of each segment of the

speech signal is obtained using DNNs, using which utterance level features are estimated. These

features are further fed to a simple and efficient single-hidden layer neural network called an

extreme learning machine (ELM) for the emotion classification of utterances. (Zhou, Guo & Bie,

2016b) proposed a two-stage approach of two affective models for emotion recognition: one

based on a stacked autoencoder network for feature extraction and the other based on a deep

belief network for the classification of emotions.

(Satt et al., 2017) proposed a deep network which is a combination of CNN and RNN,

which is applied to the spectrograms of the speech signal. The spectrogram features are

found to be effective in suppressing the background non-speech such as music and crowd

noise. (Zhao, Mao & Chen, 2019) explored the potential of both 1D CNN and 2D CNNs

in combination with LSTMs to capture the local and global emotion-related features using

speech and log Melspectrograms respectively. They also show that the combination of 2D CNN

with LSTM outperforms traditional networks such as Deep Belief Networks (DBN) and CNNs.

(Lee & Tashev, 2015) explored the impact of long-term contextual effect to capture the temporal

dynamics pertinent to the high-level representation of emotional states using BLSTM models.

To tackle the uncertainty of emotional labels, the label of each frame is considered as a sequence

of random variables. (Fayek, Lech & Cavedon, 2017) evaluated the potential of DL models

including feed-forward and recurrent neural network architectures and their variants for vocal
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emotion recognition. They have shown that convNets have better discriminative performance

than other architectures for vocal emotion recognition. (Zheng, Yu & Zou, 2015) proposed a

systematic approach using log-spectrogram and principal component analysis (PCA), where

the latter is used to suppress the interferences. The PCA-whitened spectrogram is split into

nonoverlapping segments and fed to deep CNN to learn efficient features and detect emotions.

(Neumann & Vu, 2017) explored attention mechanism for emotion recognition using attentive

convolutional neural network in combination with multi-view learning objective function. They

have conducted various experiments and investigated the impact of variations in the length of

the input signal, input acoustic features, and emotions.

1.3.2.1 Fatigue Estimation

Speech is one of the significant cues and has an inevitable dependency on fatigue, which has

opened a wide range of applications in the medical domain. (Chen et al., 2022c) explored

the potential of DL models and showed that the phonetic features pertinent to fatigue can be

effectively captured using DL models, especially BLSTM network. (Krajewski et al., 2010)

explored features of nonlinear dynamics (NLD) as it provides additional information related to

dynamics and structure of fatigue speech than conventional features such as cepstral coefficients,

formats, etc. They have shown that NLD features are highly correlated with fatigue, resulting

in improved accuracy. (Greeley et al., 2006) showed that the attentiveness of the participants

and fatigue level is influenced by the formant frequencies and MFCC coefficients. They have

further shown that voice-based fatigue detection is related to precise phonetic identification

and alignment and developed techniques for fatigue detection based on phonetic alignments.

(Krajewski, Wieland & Batliner, 2008) proposed a novel framework for fatigue detection based

on speech characteristics such as prosody articulation and speech quality.

(Nicholas, Vidhyasaharan, Julien, Sebastian & Jarek, 2015) investigated that a speaker’s level of

depression is associated with the acoustic properties of the speech such as spectral features and

energy and presented a novel method for estimating the acoustic volume using Monte Carlo

Sampling of the feature distribution. They have also provided a review of the current assessment
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methods based on speech characteristics. They proposed a novel method ’relevance Vector

Machines’ for predicting depression levels in clinical settings based on paralinguistic properties.

They have further provided state-of-the-art for speech analysis in health-care applications as well

as the impact of DL models (Nicholas, Alice & Björn, 2018). (Shen & Wei, 2021) addressed

the problem of over-fitting with a limited fatigue dataset as it is very time-consuming to obtain

labeled fatigue data. They proposed a novel DL framework by integrating Active Learning (AL)

with complex speech features extracted using stacked sparse autoencoder networks, followed

by a densely connected convolutional autoencoder from spectrograms. (Wu & Sun, 2022) also

proposed an approach for Air traffic controller fatigue detection using ensemble learning based

on a self-adaption quantum genetic algorithm (SQGA). To cover a wide range of diversity among

the learners, traditional classifiers such as K-Nearest Neighbor (k-NN), and SVMs are used along

with neural networks. Finally, a weighted summation of the individual predictions is computed

to obtain final fatigue-level predictions. (Bayerl, Wagner, Baumann, Bocklet & Riedhammer,

2023) investigated the impact of neural embeddings such as x-vectors, ECAPA-TDNN, and

wav2vec 2.0 for fatigue detection based on vocal expressions and showed that all the neural

embeddings can effectively capture vocal fatigue when temporal smoothing and normalization

are applied to the extracted embeddings.

1.4 General Challenges of Expression Recognition

This section presents generic challenges related to video-based ER.

Variability Across Subjects: Subjective Bias is one of the major factors induced by the

subjective nature of the subjects i.e., different subjects can express the same level of pain at

different intensity levels. In addition to that, different subjects exhibit different facial appearances

though they have the same facial structure, which may result in hard samples in discriminating

the expressions at various intensity levels. Therefore, fine-tuning pre-trained models on face

recognition still retains the traces of subjective appearances i.e., face-dominated information

pertinent to subject identity, which will deteriorate the performance of recognizing expression

levels as they rely only on the facial dynamics. To address this problem, (Ding, Zhou & Chellappa,
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2017) proposed a novel architecture named FaceNet2ExpNet. They have shown that the fully

connected layers, succeeding the convolutional layers play a crucial role in capturing the

task-relevant features. Therefore, only the convolutional layers are fine-tuned with the target

labels and fully connected layers are trained from scratch.

Variability in Capture Conditions: Though there has been a shift in data capture from

laboratory-controlled conditions to in-the-wild uncontrolled environments, the datasets are

generally captured in a specific environment, which may vary across datasets and thereby results

in different data distribution of various datasets. Typically, state-of-the-art approaches are

evaluated on limited datasets and show superior performance. However, when deployed on

different datasets, these algorithms may fail to retain their superior performance due to the

differences in the distribution of datasets, often termed data-set bias, which is a prevalent problem

in the field of machine learning. To address the problem of data-set bias, a few approaches

(Benitez-Quiroz, Srinivasan & Martinez, 2016) have used multiple datasets for training by

merging the datasets and evaluated on different datasets. Even though merging multiple data

sets may increase the training data and thereby achieve better generalization, it may suffer from

label subjectivity. A few more approaches conducted cross-database experiments to validate the

generalizability of the algorithm by evaluating the algorithm on a dataset different from training

data (Ruiz, d. Weĳer & Binefa, 2015; Wang, Peng & Ji, 2018c).

Limited Relevant Data and Annotations: With the advent of DL models, there has been a

significant boost in the performance of prediction models for various applications in computer

vision, natural language processing, speech processing, etc. However, the performance of these

predictive models is highly constrained by the quantity and quality of data. An inferior method

trained with abundant data may often result in better performance than a superior method

with limited data. In the case of ER, most of the frames correspond to neutral frames, and

expressions are portrayed only in a few frames though humans can exhibit a wide range of

expressions. Therefore, deploying DL models for facial expression intensity estimation poses

a major challenge, especially with limited annotations. Since the V appearance of the face

varies from person to person due to age, civilization, ethnicity, cosmetics, eyeglasses, etc.,



40

the detection of facial expression intensities is a challenging task. In addition to the personal

attributes, variations due to pose, occlusion, and illumination are prevalent in unconstrained

scenarios of facial expressions, which leads to high intra-class variability. Therefore, there is an

immense need for large-scale data-set with a wide range of intra-class variation. Though humans

are capable of exhibiting a wide range of facial expressions, most of the existing data sets are

developed based on basic universal expressions as they are more frequent in our everyday life.

Label Ambiguity: Compared to other problems of computer vision, labeling expressions

is a highly complex process as it is subjective in nature. Manual annotation of expression

intensity levels is even more challenging compared to the prototypical categorical expressions

due to the increased range of facial behavior. Moreover, the annotation of expression intensity

levels requires domain expertise certified by FACS coding system, which is a time-consuming

and laborious task and thereby highly prone to errors induced by annotators. The process of

annotating expression intensity levels is highly complex due to the subtle differences between

different intensity levels, which is very challenging even for expert annotators. The continuous

dimensional model further complicates the process of labeling especially when annotators

are asked to label every frame of the video sequences as a continuous range of values for the

intensities will be more sensitive than discrete values, which will result in differences in the

labels for the same intensity of facial expression. Another major factor in obtaining annotations

for the continuous dimensional models is the reaction time of annotators. To alleviate the

impact of label subjectivity, the dataset is typically labeled by the strategy of crowd-sourcing,

where labels are refined from several annotators (Li, Deng & Du, 2017). In addition to label

subjectivity, there can be variations in the facial appearance due to heterogeneity of subjects

termed as identity bias i.e., ambiguity induced by the subjective nature of humans. For instance,

the expression of sadness is often misinterpreted as a neutral expression as the V appearance of

sadness is very close to that of a neutral expression.

Efficient Feature Representation: With the ubiquity of DL-based approaches for various

computer vision problems, there has been a shift from handcrafted features to learned features,

where pre-trained models of face verification are used for finetuning with the facial expressions or
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AU data due to the limited data pertinent to facial expressions or AU. However, as mentioned in

(Ding et al., 2017), the abstract feature representation of higher layers still retains identity-relevant

information even after fine-tuning the face verification net with FER data. To overcome the

problem of limited data and exploit the success of DL for FER, (Egede et al., 2017) have explored

the fusion of handcrafted and learned features for automatic pain intensity estimation and showed

superior performance over state-of-the-art approaches. RNN-based approaches are found to be

promising in capturing the temporal dynamics which has shown robust performance in various

computer vision, speech, and NLP applications. (Kim et al., 2019) explored efficient feature

representation robust to expression intensity variations by encoding the facial expressions in two

stages. First, spatial features are obtained through CNN using five objective terms to enhance

the expression class separability. Second, the obtained spatial features are fed to LSTM to learn

the temporal features. (Wang, Wang & Ji, 2013) studied the contribution of spatiotemporal

relationship among facial muscles for efficient FER. They have modeled the facial expression

as a complex activity of temporally overlapping facial events, where they proposed an Interval

Temporal Bayesian Network to capture the temporal relations of facial events for FER.

1.5 Weakly Supervised Learning

The category of machine learning approaches that deal with weakly annotated data is termed

Weakly Supervised Learning (WSL). Unlike supervised learning, accurate labeling will not be

provided for entire data in most real-world applications due to the tedious process of obtaining

annotations. Since the basic idea of machine learning approaches is to learn from data, labeling

of data plays a crucial role in controlling the performance of the prediction model. Therefore,

WSL is gaining attention in recent years as it has immense potential in improving the bottleneck

of the labeling mechanism, which will result in efficient learning from the data. Depending on

the mode of availability of labels (annotations), WSL can be classified into three categories:

Incomplete Supervision, Inexact Supervision, and Inaccurate Supervision. The details regarding

each of these categories are discussed elaborately in (Zhou, 2018). The pictorial representation

of the classification is shown in Figure 1.4.
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Figure 1.4 Pictorial illustration of WSL. Bars denote feature vectors; red/blue marks

labels; "?" implies inaccurate labels, intermediate subgraphs depict in-between

situations with mixed types of weak supervision

Taken from Zhou (2018)

Incomplete Supervision : It refers to the family of ML algorithms which deals with the situation

where only a small amount of labeled data is provided, which is not sufficient to achieve a good

learner despite the availability of abundant unlabeled data. For instance, it will be easy to collect

a large number of videos pertinent to various expressions, however, labeling the entire data with

the corresponding expressions remains to be a tedious task that demands much human labor.

One of the major solutions to handle this problem is semi-supervised learning (SSL), where data

distribution is assumed to occur in clusters. Semi-supervised learning relies on the assumption

of local smoothness ie., samples that lie close to each other are assumed to have similar labels,

based on which it makes use of unlabeled data by modeling the distribution of the data, where

the labels of the unlabeled data are obtained using data distribution.

Inexact Supervision: In this category, coarsely-grained labeling is provided for the entire data

instead of the exact labeling of data. The goal is to predict the accurate labels of unknown
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data using coarsely labeled data. One of the major approaches to tackle this problem is based

on MIL. It has a wide range of applications in the field of machine learning, where fully

labeled information is difficult to attain due to the high cost of the labeling process. Due to the

ubiquity of problems that are naturally formulated as the setting of MIL such as image and video

classification, document classification, sound classification, etc., it emerged as a highly useful

tool in many real-world applications.

Inaccurate Supervision: It refers to the scenario, where labeling information provided is not

always correct, unlike inexact and incomplete supervision. Though labeling information is

provided for entire data similar to supervised learning, labeling of data tends to be noisy. Since

inaccurate labeling degrades the performance of the prediction model, the goal is to identify

the potentially mislabeled samples from the given labeled data. Since labeling the frames

of the video with the corresponding expressions is a laborious task, the annotators are more

vulnerable to mislabeling the frames of the videos. Crowd-sourcing is a simple and effective

way of compensating the mislabeled samples, where the same labeling task is provided to a

group of individuals, and the correct labels of the samples are computed by taking the aggregate

of the labels provided by different individuals using the majority voting strategy.

1.5.1 Multiple Instance Learning

MIL has drawn much attention in the past few years as it has shown robust performance

in dealing with weakly annotated data. Mathematically, the problem can be formulated as

the task of predicting the learning function 𝑓 : X → Y from the training data-set D =

{(X1,Y1), (X2,Y2), ......., (Xn,Yn)} where Xi denotes a set of instances of input data, Yi

represents the label information and 𝑁 is the number of training data. These set of instances of

each input data Xi = {𝑥𝑖1,𝑥𝑖2, ........, 𝑥𝑖𝑚𝑖 } is called a bag, 𝑥𝑖 𝑗 , represents an instance of the bag

where 𝑗 ∈ {1, 2, ......, 𝑚𝑖} and 𝑚𝑖 is the number of instances in bag 𝑋𝑖 ⊆ 𝑋 . A bag 𝑋𝑖 is said to

be positive only if there exists at least one instance 𝑥𝑖 𝑗 , of 𝑋𝑖 belongs to 𝑌𝑖 where 𝑦𝑖 𝑗 = 𝑌𝑖 i.e., at

least one of the instances of 𝑋𝑖 should have the label 𝑌𝑖 and 𝑦𝑖 𝑗 denotes the label of instance 𝑗

of bag 𝑋𝑖. Otherwise, the bag is said to be negative, where all the instances of bag 𝑋𝑖 do not
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have the label 𝑌𝑖. The goal of the algorithms is to predict the labels of the unseen bags using the

learning function 𝑓 obtained from the training data 𝐷. This phenomenon is known as Multiple

Instance Learning. MIL can also be extended to regression problems, where the major difference

from the classification framework is that each bag is associated with a real-valued label but not a

class.

Even though the primary goal is to predict the bag-level prediction, many techniques have been

proposed to perform instance-level prediction, where each instance of the bag can be predicted.

For example, in the case of the classification task, the instances of the bags can be classified along

with the bag-level classification. These algorithms can be broadly classified as instance-level

predictions and bag-level predictions.

• Instance Level Algorithms: These algorithms tend to predict the label of each instance of

the bag, which is in turn used to perform bag level classification.

• Bag Level Algorithms: These methods represents the instances of the entire bag as a single

feature, thereby transforming the problem into supervised learning. To predict the label of a

new bag, distance metrics are used for discriminating the bags.

Several factors influence the performance of MIL algorithms such as Bag Composition, Data

Distribution, and Label Ambiguity, which is discussed in detail by (Carbonneau et al., 2018).

In recent days, many MIL algorithms have been proposed using DL architectures to address

the problems with classical approaches. (Xinggang, Yongluan, Peng, Xiang & Wenyu, 2018)

proposed a novel approach based on DL architectures for bag representations with a focus on

estimating the instance labels and showed that DL-based MIL approaches outperform the classical

approaches. (Ilse, Tomczak & Welling, 2018) addressed the problem of conventionally used max-

pooling (or a differentiable approximation) operation for combining the responses of instance

level classifier by proposing attention mechanism to give high priority to significant instances

(high weightage for witness) using neural-network-based permutation-invariant aggregation

operator.
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1.5.2 Applications in Facial Expression Recognition

(Ruiz, Van de Weĳer & Binefa, 2014) proposed a multi-concept MIL framework based on multi-

concept assumption i.e., multiple expressions in a video for estimating high-level (bag-level)

semantic labels of videos, which is influenced by multiple discriminative expressions. A set

of 𝑘 hyper-planes are modeled to discriminate 𝑘 concepts (facial expressions) in the instance

space and the bag-level representation is obtained using the probability of bag for each concept,

which is further classified using a linear classifier. (Wang et al., 2020) proposed an automatic

depression detection system using landmarks of facial expressions through the framework of

MIL. LSTM is used to model the relationship between the instances (sub-sequences) of a bag

(video) and global max pooling is deployed to identify depression-related instances and to

generate the depression label of a test sequence. (Liu, Xu, Wang, Rao & Burnett, 2016) also

used Bag of Visual Words (BoVW) at the pixel level with probabilistic latent semantic analysis

(pLSA) for feature extraction and formulated the problem of pixel-level emotion detection using

MIL framework, where the image is assumed to be a bag and local patches of the image as

instances. The emotional content is detected for each patch using the Bayes rule, which is in

turn used to predict the emotion of the test image.

(Xie, Tao & Wei, 2019) proposed an online MIL framework for early expression detection

in videos i.e., detecting an expression as soon as it starts and before it ends by extending a

max-margin early event detector (MMED) with a nonlinear kernel and further accelerated the

training process by reformulating MIL based EED (MIED) in an online setting. For each training

sequence, sub-sequence pairs along with ranking relationships are generated and a nonlinear

instance-level classifier is trained by treating bag as a sub-sequence and some of its candidate

subsets as instances for detecting expression of test sequences. Instead of relating bags and

instances in the model generation, (Fang & Chang, 2015) explored the significance of sparse

representation for effective feature learning in FER as a MIL problem, where a bag is treated

as a set of images. The sparse feature representation is derived by considering binary labels

for features and two strategies are investigated, one with mean subtraction and the other with

subtracting neutral face to predict the expression of test sequences.
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(Ruiz, Rudovic, Binefa & Pantic, 2016) proposed multi-instance dynamic ordinal random fields

(MI-DORF) for estimating ordinal intensity levels of frames, where the ordinal variables are

modeled as normal distribution and the relationship between the given observation (frame) and

latent ordinal value is obtained by projecting the given observation (frame) onto the ordinal

line, which is divided by the consecutive overlapping cutoff points of the normal distributions.

Next, the temporal information is modeled across the consecutive latent ordinal variables to

ensure the smoothness of the latent ordinal states. (Gnana Praveen, Granger & Cardinal, 2020)

further improved the performance using deep 3D CNN model (I3D (Carreira & Zisserman,

2017)) by integrating MIL into adversarial deep domain adaptation (Ganin & Lempitsky, 2015)

framework for pain intensity estimation, where source domain is assumed to have fully annotated

videos and target domain has periodically annotated weak labels. (Yang et al., 2018) proposed

an approach for student engagement prediction in the wild using multiple-instance regression,

where the input video (bag) was divided into segments (instances) and spatiotemporal features

of each segment are fed to an LSTM network followed by 3 fully connected layers to obtain the

regressed value of engagement intensity.

1.6 Attention Models

Attention models are specific types of models, that focus selectively on a particular aspect of

information more relevant to the downstream tasks. Inspired by the human visual processing

system, attention models have been explored in the field of machine learning for various

applications in computer vision (Guo et al., 2022), Natural Language Processing (NLP)

(Vaswani et al., 2017) and speech (Karmakar, Teng & Lu, 2021). With the advent of transformers

(Vaswani et al., 2017), attention models have become extremely popular in the field of DL. They

deploy the notion of relevance by allowing the model to pay specific attention to certain parts

of the input data, which is more relevant to perform the specific task at hand. In addition to

improving the performance of the models, they are also useful in analyzing the interpretability

of the DL models. Attention models can be categorized as soft attention, hard attention, and

self-attention based on the type of attention weights computed for various components of the
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input data (de Santana Correia & Colombini, 2022). In soft attention, attention weights are

computed for each input element from 0 to 1. It used a softmax function to estimate the weights,

which is deterministic and differentiable. In the case of hard attention, the attention weights

are computed as 0 or 1 for each input element i.e., only the elements of input pertinent to the

task at hand will be retained by discarding the rest. Hard attention is not differentiable and

reinforcement learning techniques are used to train the models. Both soft and hard attention

weights are estimated based on the relevance of input data and targets. However, self-attention

focused on relevance among the input elements irrespective of the target data. It allows the input

data to interact with each other and determines the salient regions to be emphasized.

1.6.1 Audio-Visual Attention for Video-Based Applications

(Tian, Shi, Li, Duan & Xu, 2018) investigated temporal localization tasks in a supervised

and weakly supervised setting along with cross-modality localization. They proposed a dual

multimodal residual network for A-V fusion, where A-V correlations are explored for A-guided

V attention, and introduced an A-V distance learning network to deal with cross-modality

localization. (Xue, Zhong, Cai, Chen & Wang, 2023) proposed a co-attention model that

leverages the spatial and semantic correlations across A and V features, which helps to obtain

more discriminative features for better localization of events in videos. (Hu et al., 2021)

introduced a novel framework of the deep multimodal attention network for sound localization

as well as event localization in videos, where a multi-modal separator and multi-modal matching

classifier module are deployed to address sound separation and modal synchronization problems.

Recently, joint co-attention has been explored by (Duan et al., 2021) in a recursive fashion for

A-V event localization. They have shown that recursive training of joint co-attention yields more

discriminant and robust feature representations for multimodal fusion. (Lee, Jain, Park & Yun,

2021) proposed multi-stage cross-attention, where A-V fusion is performed collaboratively

to fuse A and V features for localizing and classifying actions in videos. (Lee, Yun & Jain,

2022) further improved the cross-attention model by introducing a leaky gated mechanism,

where the gates are used to adaptively choose the cross-attended features based on the semantic
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relevance across the A and V features. (Nagrani, Yang, Arnab, Schmid & Sun, 2021) proposed

a transformer-based architecture to fuse the A and V modalities at multiple layers using fusion

bottlenecks, which helps to collate and condense more relevant information in each modality,

resulting in improved fusion performance at a reduced computational cost.

(Wang, Gao, Zhao & Wu, 2020a) addressed the problem of multi-modal feature fusion along with

frame alignment issues between A and V modalities using cross-attention for speech recognition.

(Hu, Wang, Nie & Li, 2019) proposed dense multi-modal fusion by densely integrating the

representation at multiple shared layers to capture hierarchical correlations across the modalities

and evaluated on cross-modal retrieval and speech recognition. (Vukotić, Raymond & Gravier,

2016) proposed a cross-modal deep network architecture, where the weights of two deep

networks are enforced to be symmetry, yielding joint representation in a common feature space.

They have further evaluated the proposed approach to multimodal retrieval tasks.

1.6.2 Audio-Visual Attention for Expression Recognition

(Zhao et al., 2020) proposed an end-to-end architecture for emotion classification by integrating

spatial, channel-wise, and temporal attention into V network and temporal attention into A

network. (Ghaleb, Niehues & Asteriadis, 2020) explored attention to weigh the time windows of a

video sequence to efficiently exploit the temporal interactions between the A-V modalities. They

used transformer (Vaswani et al., 2017) based encoders to obtain the attention weights through

self-attention for emotion classification. (Lee, Kim, Kim & Sohn, 2018) proposed spatiotemporal

attention for the V modality to focus on emotional salient parts using Convolutional LSTM

(ConvLSTM) modules and a temporal attention network using deep networks for A modality.

Then the attended features are concatenated and fed to the regression network for the prediction

of valence and arousal. However, these approaches focused on modeling the intra-modal

relationships and failed to effectively exploit the inter-modal relationship of the A-V modalities.

(Wang et al., 2020) investigated the prospect of exploiting the implicit contextual information

along with the A and V modalities. They have proposed an end-to-end architecture using

cross-attention based on transformers for A-V group ER. (Zhang et al., 2021b) investigated
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the prospect of improving the fusion performance over individual modalities and proposed

leader-follower attentive fusion for dimensional ER. They have leveraged the audio modality

to boost the performance of visual modality base on the attention weights obtained from the

cross-modal interactions of A and V modalities. (Zhang, Huang, Zeng & Shan, 2020) proposed

an attentive fusion mechanism, where the obtained A and V features are further re-weighted using

weights, obtained from scoring functions based on the relevant information in the individual

modalities for dimensional ER. (Luo, Zou & Huang, 2018) investigated the potential of joint

representation learning using Convolutional Recurrent Neural Networks (CRNN) for vocal ER.

They have shown that the impact of time intervals significantly impacts the performance of the

system.

(Parthasarathy & Sundaram, 2021) explored transformers with cross-modal attention for dimen-

sional ER, where cross-attention is leveraged using cross-modal interactions across A and V

modalities. (Tzirakis et al., 2021) investigated various fusion strategies along with attention

mechanisms for A-V fusion-based dimensional ER. They have further explored self-attention as

well as cross-attention fusion based on transformers to enable the extracted features of different

modalities to attend to each other. Although these approaches have explored cross-modal

attention with transformers and showed significant improvement, they fail to leverage semantic

relevance among the A-V features as well as to simultaneously capture the intra-modal relation-

ships. Typically, transformers are explored with cross-modal attention, where the query comes

from one modality and keys and values come from another modality. However, we have explored

joint cross-modal attention, where the query can be considered as a joint feature representation,

which helps to simultaneously obtain a semantic measure of intra and inter-modal relevance

among A and V modalities.

1.7 Domain Adaptation

With the advancement of CNN architectures, there has been significant progress in the perfor-

mance of various applications with the availability of huge high-quality training data. However,

the performance of these advanced CNN architectures may degrade when this is a lack of
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sufficient manually annotated datasets. One of the approaches to handle this problem is to adapt

the pretrained models trained on a huge dataset on the available unlabeled data, termed "transfer

learning". The data used for the pretrained model is referred to as source data and data on which

pretrained model is adapted is termed target data. Domain Adaptation (DA) is a special case of

transfer learning that utilizes the knowledge of labeled data in the source domain to enhance the

performance of the system on target data with different domain distributions but with the same

task. DA approaches are further categorized into supervised, semi-supervised, and unsupervised

Figure 1.5 Overview of different DA approaches

Taken from Wang & Deng (2018)

DA approaches. In supervised DA approaches, labeled data is available for the target domain,

which is used for DA. Semi-supervised DA deals with the case where the target data is partially

labeled and finally, unsupervised DA refers to the scenario, where unlabeled data is available in

the target domain. The overview of various categories in DA is shown in Figure 1.5.

Deep DA is the class of algorithms that leverage deep network architectures to enhance the

performance of deep DA. DL architectures designed for DA were observed to achieve better

results than shallow methods. (Wang & Deng, 2018) provided a survey on the DA approaches

based on DL architecture with some of the applications related to visual categorization. With

the advancement of neural-network-based DL approaches for various visual categorization

applications such as image classification, face recognition, and object detection. It was observed

that the deep features of the DL models converge from generic to specific features, where the

transferability of the representation sharply decreases with the higher layers.
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1.7.1 Domain Adaptation for Video-Based Applications

(Ganin & Lempitsky, 2015) proposed a novel approach of adversarial DA using DL models with

partial or no target data labels using a simple gradient reversal layer. Inspired by their adversarial

DA framework, (Jamal, Namboodiri, Deodhare & Venkatesh, 2018) explored deep DA in action

space, where the distribution gaps across the source and target domains of action videos are

minimized in an adversarial fashion using domain confusion loss. (Chen, Gao & Ma, 2022b)

proposed a novel framework of Multi-level attentive adversarial learning with temporal dilation,

where the distribution gap across the domains is minimized at multi-level temporal features

using multiple domain discriminators in an adversarial fashion. The temporal features are

dilated and further aggregated using the attention mechanism determined by individual domain

discriminators. (Song et al., 2021) proposed spatiotemporal DA to jointly learn the clip-level

and video-level representation alignment in a self-supervised contrastive framework. They

further introduced a domain metric scheme (video-based contrastive alignment) to optimize the

category-aware video-level alignment and domain-invariance across source and target domains.

In recent years, several approaches have explored DA with multiple modalities. (Zhang, Doughty,

Shao & Snoek, 2022) investigated the prospect of leveraging activity sounds for DA as they

have less variance across domains. They proposed an audio-adaptive encoder and audio-infused

recognizer that can effectively model the cross-modal interactions across domains and generate

domain-invariant features for activity recognition. (Yang, Huang, Sugano & Sato, 2022) have

shown that cross-modal interaction allows exploiting the complementary relationship across

the modalities to effectively achieve cross-domain alignment. They have further leveraged

the consensus of multiple modalities to obtain more relevant transferable information to

achieve domain-invariance for action recognition. (Kim et al., 2021) explored the multi-modal

information in videos with cross-domain adaptation setting, where each modality of a domain

is considered as a view and contrastive learning technique is leveraged to simultaneously

regularize the cross-modal and cross-domain feature representations. (Munro & Damen, 2019)

explored a multi-modal approach by deploying late-fusion of the two modalities, where the
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alignment of modalities and action recognition tasks are jointly optimized using multiple domain

discriminators.

1.7.2 Domain Adaptation for Facial Expression Recognition

DA has been widely used for many applications related to facial analysis such as face recognition,

FER, smile detection, etc. The performance of the recognition system significantly degrades

when there is a domain shift in the test images which can be due to variations in pose,

illumination, resolution, expressions, and modality. (Sangineto, Zen, Ricci & Sebe, 2014)

proposed a regression framework for personalized FER, where classifiers are generated for the

individuals of the source data rather than a generic model for the entire source data. Further,

parameter transfer is done to the target individual using the learned regression models from

the source data without the need for labeled target data. (Wang, Wang & Ni, 2018) proposed

an unsupervised DA approach for a small target dataset using GANs, where GAN-generated

samples are used to fine-tune the model pretrained on the source dataset. (Zhu, Sang & Zhao,

2016) explored an unsupervised domain adaptation approach in the feature space, where the

mismatch between the feature distributions of the source and target domains are minimized still

retaining the discrimination among the face images related to facial expressions.

(Liu, Wu, Lu & Zhang, 2019) proposed a data augmentation method as a DA task to handle the

problem of limited relevant data on facial expressions using a similarity-preserving generative

adversarial network (SPGAN). (Ji, Hu, Yang & Shen, 2023) proposed Region Attention

eNhanced Domain Adaptation (RANDA), where pseudo labels are iteratively assigned to the

target domain, followed by adversarial learning to minimize the distribution gaps across the feature

representations of source and target domains. They further deployed region attention learning

guided by facial landmarks to obtain robust features. (Wang, Ding, Yan & Shen, 2022) explored

a two-stage training pipeline for cross-domain FER, where the source domain is first pretrained

to obtain semantic features, followed by learning domain-invariant features by minimizing the

distance between samples of both domains with their prototype and maximizing the distance

across the prototypes using adversarial loss function. (Kalischek, Thiam, Bellmann & Schwenker,
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2019) studied the applicability of two DA frameworks, one for frame-level expression analysis

and the other for sequence-level expressions based on the self-ensembling method. They further

showed that DA is mostly applicable to person-specific FER.

1.7.3 Challenges

In this section, the challenges relevant to developing WSL models are presented for the estimation

of pain intensity, followed by relevant work in the literature.

Level Imbalance: In the case of expression intensity estimation, expressions can be expressed

at various intensity levels, however, they are generally sparse in nature as they are expressed

in only a few frames, resulting in a huge imbalance among the various expression intensity

levels, which is also reflected in UNBC-McMaster Pain database (Lucey et al., 2011). This

imbalance in expressions at various intensity levels is termed a level Imbalance. For instance,

subtle expressions of pain can be more frequent compared to expressions of intense pain, thereby

resulting in a huge imbalance among the samples of various expression levels. Moreover,

neutral frames are highly dominant compared to the frames eliciting expressions, which can

be seen in Figure 1.6. (He & Garcia, 2009) investigated and provided a comprehensive review

of state-of-the-art approaches for learning from imbalanced data along with metrics used for

evaluating the performance of the systems. (Jaiswal et al., 2018) used cumulative attributes with

a DL model as a two-stage cascaded network. In the first stage, original labels are converted

to cumulative attributes, and the CNN model is trained to output a cumulative attribute vector.

Next, a regression layer is used to convert the cumulative attribute vectors to real-valued output.

They have also evaluated the system with Euclidean loss and log loss and found that the latter

outperforms the former.

Limited Annotations: Due to the ambiguity and complex process of obtaining annotations, it

was found that manual annotations are extremely challenging and even impossible to obtain for

large scale data-sets. Therefore, WSL-based approaches have been explored to reduce the need

for exact and complete annotations, which has motivated many researchers to deal with weak

annotations in real-time applications. Another approach to counteract the problem of limited
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Figure 1.6 Frequency distribution of pain intensity levels in PSPI scale (0-5)

annotations is to develop a tool for semi-automatic annotation. Many researchers have explored

the prospect of automating the process of annotations, which can be further refined by expert

annotators to minimize the burden on human labor (Dhall, Goecke, Lucey & Gedeon, 2012).

Since a fully automatic tool for obtaining annotations of expressions or AUs is not feasible

and reliable, a semi-automatic tool seems to be a more plausible approach to obtain reliable

annotations for large scale data-sets, especially for the case of continuous affect model which

is more vulnerable to noise and highly complex process to discriminate the subtle variations

across the frames.

1.8 Audio-Visual Fusion

In this section, the existing approaches of A-V fusion for video-based applications and ER are

provided, followed by challenges pertinent to developing AV fusion models for dimensional ER.



55

1.8.1 Audio-Visual Fusion for Video Based Applications

A-V fusion has been mostly explored for action localization and event localization applications

along with ER. (Kazakos, Nagrani, Zisserman & Damen, 2019) proposed a novel architecture for

fusing A and V modalities within a range of temporal off-sets, where A, V, and flow modalities

are fused at the mid-level before temporal aggregation, with shared modality and fusion weights

over time. (Brousmiche, Rouat & Dupont, 2019) investigated the performance of several

fusion strategies for the A-V recognition task of event localization in videos. They further

introduce feature-wise linear modulation layers to exploit the semantic relationship across A

and V modalities and showed that A-V fusion performs better than unimodal performance.

(Liu, Quan, Liu & Yan, 2022) proposed a novel bi-directional modality fusion, which not only

fused A and V features but also enhanced the fused features to obtain more robust A-V feature

representations, where two forward-backward fusion modules are deployed in both directions

for event localization. (Zhao, Gong & Li, 2021) developed an A-V recurrent network for video

summarization, which is composed of three modules: LSTM networks to model the temporal

dependency of individual A and V modalities, A-V fusion LSTM to fuse the A and V features

based on latent consistency between them, and self-attention video encoder to capture the

global dependency in the video. (Rhevanth, Ahmed, Shah & Mohan, 2022) proposed a video

summarization technique by extracting the keyframes based on the structural similarity index,

where MFCC features are obtained for the corresponding keyframes and further fused with V

features of keyframes. The obtained A-V features of the keyframes are further refined using a

CNN model for the final summarization of videos.

1.8.2 Audio-Visual Fusion for Expression Recognition

(Tzirakis et al., 2017) proposed A-V fusion-based dimensional emotion recognition using DL

models, where A and V features are obtained using ResNet50 and 1D CNN respectively. The

obtained features are then concatenated and fed to a Long short-term memory (LSTM) for

the prediction of valence and arousal. (Ortega et al., 2019) investigated an empirical study of

fine-tuning pretrained CNN models by freezing various convolutional layers. (Kuhnke et al.,



56

2020) proposed two stream A-V network, where V features are extracted from R(2plus1)D

model (Tran et al., 2018) and A features are obtained from Resnet18 model (He et al., 2016).

The obtained features are further concatenated for the final prediction of valence and arousal.

(Wang, Wang, Qi & Suzuki, 2021) further improved their approach (Kuhnke et al., 2020)

by introducing teacher-student model in a semi-supervised learning framework. The teacher

model is trained on the available labels, which are further used to obtain pseudo labels for

unlabeled data. (Schoneveld et al., 2021) explored knowledge distillation using a student-teacher

model for the V modality and a CNN model for the A modality using spectrograms. The deep

feature representations are combined using an RNN-based fusion strategy. Inspired by the deep

auto-encoders, (Nguyen et al., 2021) investigated the prospect of how to simultaneously learn

compact representative features from A and V modalities using deep auto-encoders. They have

proposed a deep model of two-stream auto-encoders and LSTM for efficiently integrating V and

A streams for dimensional emotion recognition. (Rasipuram, Bhat & Maitra, 2020) also explored

the fusion of A and V features along with head pose, eye gaze, and action unit intensities,

where the temporal modeling is performed on the individual modalities using GRUs. Though

the above-mentioned approaches have shown significant improvement in dimensional emotion

recognition, they fail to capture the inter-modal relationships and relevant salient features specific

to the task.

1.8.3 Challenges

Differences in Learning Dynamics: Multiple modalities are often exploited to capture diverse

and comprehensive information among multiple modalities to obtain superior performance

than uni-modal approaches. Leveraging multiple modalities allows us to retain comprehensive

information which is often missing in some of the modalities. So, multi-modal approaches are

expected to perform better than uni-modal approaches. However, it was shown that multi-modal

approaches do not always outperform uni-modal approaches (Wang, Tran & Feiszli, 2020b).

This has been attributed to the fact that A and V channels exhibit different learning dynamics

while training the system in an end-to-end manner. Therefore, A and V modalities generalize
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at different learning rates, which results in poor performance of joint training than uni-modal

performance. Coping with the variations of learning dynamics of A and V modalities seems to

be crucial to develop a robust system that outperforms uni-modal systems.

Synchronization Issues: Exhibiting emotions are temporally dynamic events, which can be

inferred from both A and V modalities. A and V channels often exhibit different frame rates,

which results in the mismatch of temporal alignment of A and V features. However, proper

alignment of A and V modalities is a fundamental step to effectively capture the correlation

across the A and V features for emotion recognition. Therefore, improper alignment of A and V

features will result in poor performance of the A-V system for emotion recognition.

Audio-Visual Representation: A-V representation refers to the task of representing the data

from A and V modalities in the form of a joint representation. Since A and V channels often

contain complementary and redundant information, it is very important to obtain a robust A-V

feature representation in an efficient and meaningful way. For instance, in a specific video clip,

A modalities might be exhibiting significant modulations in the vocal expression, while facial

modality might be exhibiting poor semantics pertinent to emotions. So, some of the challenges

pertinent to A-V feature representation include different noise levels, missing data in one of

the modalities and effectively capturing both intra and inter-modal relationships from A and V

modalities.

Effective Fusion: Effectively fusing the A and V modalities allows us to capture the

complementary information across the A and V modalities i.e., the ability to retain the relevant

information pertinent to emotions even if one of the modalities is missing. With the advent of DL,

multimodal representation and fusion have been intertwined since the representation is learned

along with the task of classification or regression layers. Moreover, the heterogeneous nature of

the A and V modalities poses a major challenge in fusing the modalities. Typically, A-V fusion

can be broadly categorized as model-agnostic and model-based approaches. Model-agnostic

approaches refer to the class of approaches, which does not depend on any specific machine

learning model. Model-based approaches explicitly rely on specific models for fusion like
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neural networks. Though DL models show great progress in their performance, it often lacks

interpretability, which is a major challenge to analyze the fusion performance.

1.9 Conclusion

Based on the above-mentioned challenges and reviewing the current literature, two potential

research directions have been investigated to leverage DL models for weakly labeled videos with

minimum annotation and effectively capture the complementary relationship across A and V

modalities. Both of these research directions remain at a rudimentary level and are found to

be very promising in improving the performance of the system to build a robust ER system for

videos. A detailed review of our contributions along with a comprehensive review of existing

approaches to WSL for facial behavior analysis is presented in the following chapters.
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Abstract

Given the recent advances in deep learning (DL), and in sensor and computing technologies,

there has been considerable progress in the development of systems that analyze facial behavior,

evolving from systems that perform image analysis under controlled laboratory conditions,

to those for video analysis under more challenging real-world conditions. However, some

key challenges in real-world applications include the significant variations over time of facial

expressions for different people and capture conditions and the limited amount of data to train

predictive models. DL models typically require supervised training with large-scale datasets to

provide a high level of performance, and the collection and annotation of such datasets is a costly

undertaking that relies on domain experts. Moreover, the annotation process is highly vulnerable

to the ambiguity of expressions or action units due to the bias induced by the domain experts.

Therefore, there is an imperative need to address the problem of facial behavior analysis with

weak annotations. This paper provides a comprehensive review of weakly supervised learning

(WSL) approaches that are suitable for facial behavior analysis, either using weak categorical or

dimensional labels. First, a taxonomy of scenarios for WSL is introduced, along with challenges

related to each scenario. For both classification and regression applications (i.e., prediction of

categorical and intensity levels, respectively), we provide a systematic review of state-of-art

ML/DL models for each scenario, along with their respective strengths and limitations. A

review of the widely-used public datasets, experimental protocols, and experimental results is

also provided for these state-of-art ML/DL models. Finally, we present a critical analysis of
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Figure 2.1 Examples of primary universal emotions. From left to right: neutral, happy,

sad, fear, anger, surprise, disgust

Adapted from Compound facial expressions of emotion database Du et al. (2014)

models for different applications and scenarios, the key challenges, and opportunities, along

with the potential research directions to leverage weakly-labeled data to address real-world facial

behavior analysis problems.

2.1 Introduction

Facial Behavior Analysis is an emerging area of interest in computer vision and affective

computing, where it has great potential for many applications in human-computer interaction,

sociable robots, autonomous-driving cars, etc. It was shown that only one-third of human

communication is conveyed through verbal components and two-thirds of communication occurs

through non-verbal components (Mehrabian, 2017a). Although several nonverbal components

are available, facial behavior plays a major role in conveying the mental state of a person, which

can be reflected by the movements of the facial muscles of a person. Ekman and Fries conducted

a cross-cultural study on facial expressions, showing that there are six basic universal facial

emotions across human ethnicity and cultures – Anger, Disgust, Fear, Happy, Sad, and Surprise

(Ekman & Friesen, 1976) as shown in Figure 2.1. Subsequently, Contempt has been added to

these basic emotions (Matsumoto, 1992). Given the simplicity of discrete representation, these

seven prototypical emotions are the most widely used categorical model for the classification of

facial emotions. Though the terms "expression" and "emotion" are alternatively used in many

research papers, the primary difference is facial emotion conveys the mental state of a person,
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Figure 2.2 Examples of action units

Taken from Martinez & Valstar (2016)

whereas facial expression is the indicator of the emotions being felt, i.e., facial expressions

display a wide range of facial modulations but facial emotions are limited.

Ekman developed the Facial Action Coding System (FACS) (Ekman, 2002), a taxonomy of facial

expressions that defines all observable facial movements for every emotion. It is comprised of

32 action units (AUs), and 14 additional action descriptors (ADs). Action units are described by

the fundamental actions of individual muscles or groups of muscles to form a specific movement

as shown in Figure 2.2. Action descriptors are unitary movements that account for the head

pose, gaze direction, and miscellaneous actions such as jaw thrust, blow, and bite, etc. It has

been used as a standard for manually annotating facial expressions as it defines a set of rules to

express any possible facial expression in terms of specific AUs and also measures the intensity

of facial expressions at five discrete levels (𝐴 < 𝐵 < 𝐶 < 𝐷 < 𝐸) where 𝐴 being the minimum

intensity level and 𝐸 being the maximum intensity level. To further enhance the range of facial

expressions, continuous models over affect dimensions are proposed (Gunes & Schuller, 2013).

Due to the immense potential of AUs in interpreting the expressions for deriving high-level

information, we have focused on the analysis of both expressions and AUs in the framework

of categorical as well as regression labels. In the setting of categorical labels, expressions or

action units are analyzed as the problem of classifying or detecting expressions or AUs. In the
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case of regression labels, they can be formulated as the problem of either ordinal regression or

continuous (dimensional) regression. Ordinal regression deals with the estimation of discrete

ordinal or intensity levels of expressions or AUs, whereas continuous regression is the task

of estimating the wide range of emotions on a continuous scale of valence and arousal as a

dimensional problem.

Most of the conventional approaches for facial expression recognition (FER) rely on hand-crafted

features, such as Scale Invariant Feature Transform (SIFT), Local Binary Pattern (LBP), LBP on

three orthogonal planes (LBP-TOP) descriptors, which are deterministic and shallow in nature.

Therefore, the performance declines in real-time scenarios as it fails to capture the wide range of

intra-class variations of expressions within the same class due to factors such as age, gender, race,

cultural background, and other person-specific characteristics in uncontrolled environments.

With the advancement of deep learning architectures and computing capability, there has been a

breakthrough in the field of machine learning, which has made it possible to cope with a wide

range of variations to develop intelligent systems in uncontrolled real-time environments and

perform at par with human ability. With the increase in the training data, labeling the data

remains a tedious task that demands a lot of human support and is time-consuming, thereby not

feasible in real-time applications. To achieve minimal competency as a FACS coder, it takes

over 100 hours of training, and each minute of video takes approximately one hour to score

(Ekman & Friesen, 1978). Moreover, labels of intensity levels provided by the annotators are

subjective in nature, resulting in the ambiguity of the annotations due to the bias induced by

the annotators. Annotating dimensional labels i.e., valence and arousal on a continuous scale

becomes even more challenging as it increases the level of ambiguities due to the wide range of

emotions compared to discrete intensity levels. Therefore, there is an immense need to deal

with weak annotations pertinent to facial analysis in real-time environments to fully leverage the

potential of deep learning models.

In recent years, though exhaustive surveys including deep learning approaches are published

on facial behavior analysis (Martinez & Valstar, 2016; Sariyanidi, Gunes & Cavallaro, 2015;

Samal & Iyengar, 1992; Li & Deng, 2020), weakly supervised learning (WSL) based approaches
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for analyzing facial behavior is not yet done to the best of our knowledge, despite the immense

need of WSL approaches in real-life situations. In this survey, we have conducted a comprehensive

review of facial behavior analysis with weak annotations, consolidated and provided a taxonomy

of existing work over the last decade, primarily focusing on the classification or regression of

facial expressions or action units.The contribution of this review is as follows.

• We present the relevance of facial behavior analysis in the context of various types of weak

annotations and the corresponding problem formulations associated with it in the context of

classification and regression.

• State-of-the-art approaches for expression and AU analysis in the framework of WSL

are extensively reviewed, consolidated, and discussed insights along with advantages and

limitations.

• Widely used datasets in the context of weak annotations are provided along with comparative

results and the corresponding evaluation strategies.

• Prospective challenges and opportunities associated with the development of a robust FER

system pertinent to WSL scenarios in real-life situations along with an insight into potential

research directions are discussed.

The rest of the paper is organized as follows. The overview of facial behavior analysis in the

context of weakly annotated data is presented in Section 2.2. A comprehensive survey of the

existing approaches for facial behavior analysis with weak annotations related to classification

and regression is considered in Section 2.3 and Section 2.4 respectively. The databases widely

considered in the framework of WSL for evaluating their approaches are mentioned in Section

2.3.4.1 and Section 2.4.3.1. The challenges with the existing state-of-the-art approaches and

opportunities along with potential research directions are discussed in Section 2.5.

2.2 Weakly Supervised Learning for Facial Behavior Analysis

The category of machine learning approaches that deal with weakly annotated data is termed

"Weakly Supervised Learning (WSL)". Unlike supervised learning, accurate labeling will not be

provided for entire data in most real-world applications due to the tedious process of obtaining
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Figure 2.3 Illustration of WSL scenarios for expression recognition in videos. (a)

Supervised Learning with accurate frame-level labels. (b) Multiple Instance Learning

with Sequence Level labels. (c) Semi-supervised Learning with partial labels

(d) Inaccurate Supervised Learning with noisy labels

Taken from Gnana Praveen et al. (2021)

annotations. Therefore, WSL is gaining attention in recent years as it has immense potential in

a lot of vision applications such as object detection, image categorization, etc. Depending on

the mode of availability of labels (annotations), WSL can be classified into three categories:

Inexact Supervision, Incomplete Supervision, and Inaccurate Supervision. The details regarding

each of these categories are discussed elaborately in (Zhou, 2018). In this section, we will

briefly introduce these categories and their relevance to the recognition of facial expressions and

action units, which is depicted in Figure 2.3 and Figure 2.4 respectively. We have primarily

focused on four specific problems pertinent to facial behavior analysis in the context of various

categories of weakly supervised learning: Expression detection, Expression intensity estimation,

AU detection, and AU intensity estimation. The objective of expression or AU detection is to

classify various expressions or action units in a given image or video, whereas expression or AU

intensity estimation refers to estimating the intensities of expressions or AUs.
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Figure 2.4 Pictorial illustration of WSL scenarios for AU recognition in images. (a)

Supervised Learning with accurate AU annotations. (b) Inexact Supervised Learning

with Image-Level expression annotations. (c) Incomplete Learning with partial AU

annotations (d) Inaccurate Supervised Learning with noisy AU annotations

Taken from Gnana Praveen et al. (2021)

2.2.1 Inexact Supervision

In this category, coarsely-grained labeling is provided for the data samples instead of the exact

labeling of data. The goal is to predict the accurate labels of unknown test data using the coarsely

labeled training data. One of the major approaches to tackle this problem is based on Multiple

Instance Learning (MIL) (Foulds & Frank, 2010). It has a lot of potential in a wide range of
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applications, where fully labeled information is difficult to attain due to the high cost of the

labeling process. Due to the ubiquity of problems that are naturally formulated in the setting

of MIL such as image and video classification (Chen & Wang, 2004), document classification

(Settles, Craven & Ray, 2007), object detection (Viola, Platt & Zhang, 2006), etc., it has emerged

as a highly useful tool in many real-world applications.

The coarsely labeled data is considered a "bag" and the samples within the bag contributing

to the coarse annotation are referred to as "instances". In most computer vision applications,

the bag is considered to be an image or video, and the instances of the bag are considered

as patches in images and segments of frames or frames in videos. Even though the primary

goal is to predict the bag-level prediction, many techniques have been proposed to perform

instance-level prediction also, where each instance of the bag can be predicted. For example,

in the case of the classification task, the instances of the bags can be classified along with the

bag-level classification. Several factors influence the performance of MIL algorithms such as bag

composition, data distribution, and label ambiguity, which is discussed in detail by (Carbonneau

et al., 2018). These MIL algorithms can be broadly classified as instance-level predictions and

bag-level predictions:

• Instance Level Algorithms: These algorithms tend to predict the label of each instance of

the bag, which is in turn used to perform bag level classification.

• Bag Level Algorithms: These methods represents the instances of the entire bag as a single

feature, thereby transforming the problem into supervised learning.

In the case of expression detection, the task is to localize and predict the expressions of

short-video clips or frames of the videos using training data with sequence-level labels. Even

though data acquisition of videos of various expressions is not very difficult to attain, the major

bottleneck is to get the exact label information of all the frames in the training videos. This

problem can be circumvented using MIL algorithms, where sequence level predictions can be

estimated along with frame level predictions as shown in Figure 2.3b. In the context of multiple

instance regression (MIR) for expression intensity estimation, the objective is to estimate the

intensities of frames or sequences using training data of videos with sequence level intensities of
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expressions, where the sequence level label is given by the maximum or average of labels of

individual frames of a given sequence (Ray & Page, 2001). The state-of-the-art approaches for

detecting facial expressions and expression intensities from sequence level labels are discussed

in Section 2.3.1 and Section 2.4.1 respectively.

The task of AU detection in the context of inexact annotations is formulated as the problem

of AU label estimation from the expression labels of training data without AU labels, where

expression labels act as weak supervision for AU labels as shown in Figure 2.4b. The relevant

approaches for the problem of AU detection from the training data of expression labels are

elaborated in detail in Section 2.3.1. Similar to MIR for expression intensity estimation, AU

intensity estimation can also be formulated to estimate the AU intensities of frames (instances)

or sequences (bags) using training data of sequence-level AU intensities.

2.2.2 Incomplete Supervision

It refers to the family of ML algorithms which deals with the situation where only a small amount

of labeled data is provided, despite the availability of abundant unlabeled data. For instance, it

will be easy to get a huge number of videos or images of facial expressions. However, labeling

the entire dataset with the corresponding expressions or action units remains to be a tedious

task that demands a lot of human labor. One of the major solutions to handle this problem is

semi-supervised learning (SSL) (Chapelle, Schlkopf & Zien, 2010), where data distribution

is assumed to occur in clusters. Semi-supervised learning relies on the assumption of local

smoothness ie., samples that lie close to each other are assumed to have similar labels, based

on which it makes use of unlabeled data by modeling the distribution of the data. Therefore,

the labels of unlabeled data can be predicted using generative methods, which assume that the

labeled and unlabeled data are generated from the same distribution. The model assumption

for the data distribution plays a crucial role in improving the performance of the system as it

influences the label assignment of the unlabeled data.
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In the context of incomplete supervision for expression detection in videos (or images),

annotations will be provided for a subset of videos (or images), which can drastically reduce the

time required to annotate the data-set. The objective is to predict the labels of all the frames in

a test sequence (or test image) using partial labels of videos (or images) of training data. For

expression intensity estimation, the intensity levels will be provided only for a subset of videos

(or images) as shown in Figure 2.3c and the relevant approaches are discussed in Section 2.4.2.

For AU detection, the problem of semi-supervised learning can be formulated in two ways:

Missing Labels and Incomplete Labels as shown in Figure 2.4c. In the first case, each sample of

training data is assumed to be provided with multiple labels of Action Units but with missing

labels. The task is to train the AU classifier with the training samples of missing labels to predict

the complete set of labels for the test sample. On the other hand, for incomplete labels, the

entire label set of multiple AUs is provided to the training data but only for a subset of images

in the training data, where the rest of the training samples do not have AU labels (but may

have expression labels). The problem of incomplete annotation can be extended further to AU

intensity estimation, where AU intensity levels are provided only for the key frames within a

video sequence of the training data or only for a subset of data-set of images and the relevant

approaches for AU detection and AU intensity estimation are discussed in Section 2.3.2 and

Section 2.4.2.

2.2.3 Inaccurate Supervision

It refers to the scenario where labeling information is provided for the entire dataset similar to

supervised learning, however, the labels tend to be highly noisy. Since inaccurate labels degrade

the performance of the prediction model, the goal is to overcome the challenges imposed by

noisy labels and generate a robust predictive model to estimate the accurate labels of the test

data. Some of the widely used approaches to handle this problem are data-editing (Muhlenbach,

Lallich & Zighed, 2004) and crowd-sourcing (Brabham, 2008). In data editing, the training

samples are considered to be nodes, which are connected to each other based on labels, forming

a graph-like structure. The edges connecting the samples of different labels are termed cut-edges.
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A weighted statistic is estimated for cut-edges, with the intuition that a sample is considered

a potentially mislabeled sample if it is associated with many cut-edges. Crowd-sourcing is a

simple and effective way of compensating mislabeled samples, where the same labeling task is

provided to a group of independent non-expert annotators, and the correct labels of the samples

are computed by taking the aggregate of the labels provided by different individuals using a

majority voting strategy.

In the case of expression detection, labeling frames of the video with the corresponding

expressions is a laborious task and annotators are more vulnerable in mislabeling frames of

the videos. For instance, the expression of "sadness" may look similar to the expression of

"neutral". Therefore, there is an imperative need to handle the problem of noisy expression

labels and predict the accurate expressions of test data. The ambiguity will be even more

pronounced for compound expressions, which is a combination of more than one expression.

The problem of inaccurate annotations is more prevalent in the case of regression i.e., estimating

the level of the expressions. Regression can be done in two ways: ordinal regression, where the

expression levels are assumed to be discrete and continuous regression, where the expression

levels are continuous. Since more variation is possible for continuous regression compared

to ordinal regression, annotations of continuous regression tend to be noisier. The scenario

of inaccurate annotations for expression recognition in videos is shown in Figure 2.3d and the

relevant approaches for expression detection are discussed in Section 2.3.3. The framework of

inaccurate annotations for expression recognition can also be further extended to AU recognition,

where AU labels are considered to be noisy. The framework of inaccurate annotations for AU

recognition is shown in Figure 2.4d and the relevant approaches for AU detection are discussed

in Section 2.3.3.

2.3 Weakly Supervised Learning for Classification

The classification of facial expressions is a well-explored research problem in the field of affective

computing. In this section, we categorize the existing approaches on WSL for facial behavior

analysis based on the type of weak annotation: Inexact, Incomplete and Inaccurate annotations,



70

which are further sub-classified to expression detection and AU detection. Moreover, we provide

a summarization of the results of these approaches along with the evaluation strategies.

2.3.1 Inexact Annotations

This section deals with the review of existing approaches related to WSL of inexact annotations,

where annotations are provided at a global coarse level instead of finer low-level annotations.

Detection of Expressions

In the case of inexact annotations, expression labels are provided at the sequence level and the

goal of the task is to localize and predict the expressions of test sequences.

Instance Level Approaches: The detection of expressions with MIL was initiated by (Sikka

et al., 2014), where automatic pain localization was achieved by considering each video sequence

as a bag comprising of multiple segments (sub-sequences or instances) and segment-level

features are obtained by temporally pooling Bag of Words (BoW) representation of frames.

An instance-level classifier is developed using MILBOOST (Viola et al., 2006) and bag-level

labels are predicted based on the maximum probabilities of the instances of the corresponding

bag. (Wu, Wang & Ji, 2015b) further enhanced this approach by incorporating a discriminative

Hidden Markov Model (HMM) based instance level classifier with MIL instead of MILBOOST

to efficiently capture the temporal dynamics. Moreover, segment-level representation (instance)

is obtained based on the displacement of facial landmarks between the current frame and

the last one, which is further extended to expression localization. (Chen, Ansari & Wilkie,

2022d) explored pain classification with MIL using the relationship between AUs and pain

expression under two strategies of feature representation: compact and clustered representation.

In compact representation, each entry of the feature vector denotes the probability estimate of the

corresponding AUs whereas clustered representation is obtained by clustering the co-occurrence

of AUs. They have shown improvement using a clustered representation of AUs while an

instance-level (sub-sequence) classifier is modeled using MILBOOST.



71

Bag Level Approaches: Unlike the aforementioned approaches that rely on a single concept

assumption, (Ruiz et al., 2014) proposed a multi-concept MIL framework based on multi-concept

assumption i.e., multiple expressions in a video for estimating high-level (bag-level) semantic

labels of videos, which is influenced by multiple discriminative expressions. A set of 𝑘

hyper-planes are modeled to discriminate 𝑘 concepts (facial expressions) in the instance space

and the bag-level representation is obtained using the probability of bag for each concept, which

is further classified using a linear classifier. (Sikka, Sharma & Bartlett, 2016) also investigated

the temporal dynamics of facial expressions in videos, where the ordering of the discriminative

templates (neutral, onset, apex, or offset) in a video sequence is associated with a cost function,

which captures the likelihood of the occurrence of different temporal orders. Each video is

assigned a score based on the ordering of the templates using the model, which is learned

with Stochastic Gradient Descent (SGD) by minimizing the regularized max-margin hinge loss

function.

Unlike conventional MIL methods, (Huang, Ngai, Hua, Chan & Leong, 2016) developed a

novel framework of Personal Affect Detection with Minimal Annotation (PADMA) for handling

user-specific differences based on the association between key facial gestures and affect labels

i.e., if an instance occurs frequently in bags of particular class but not in others, the instance has

a strong association with the label. The facial feature vectors in a video are clustered as key

facial gestures (expressions) and the video is represented as a sequence of corresponding affect

labels. The sequence level affects are predicted by affect frequency analysis using the association

between facial gestures and facial affects. (Xu & Mordohai, 2010) represented a sequence with a

set of 20 dominating motion fields and a dictionary of motion words is obtained from the motion

fields of training sequences, which are labeled at the sequence level. Each frame (motion field)

is then represented as a histogram of motion words and labels are obtained using the nearest

neighbor classifier. Then the sequence level label is predicted using a majority vote of its frame

labels. (Wang et al., 2020) proposed an automatic depression detection system using landmarks

of facial expressions through the framework of multiple instance learning. LSTM is used to

model the relationship between the instances (sub-sequences) of a bag (video) and global max
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pooling is deployed to identify depression-related instances and to generate the depression label

of a test sequence.

Detection of Action Units

Since any expression can be characterized as a combination of action units, many psychological

studies have shown that there exists strong relation between expressions and AUs (Lewis,

Haviland-Jones & Barrett, 2010). Due to the expensive and laborious task of obtaining AU

annotations compared to expressions and the close relation between expressions and AUs

as shown in Table 2.1, many researchers have explored the problem of AU detection in the

framework of weakly supervised learning, where expression labels are considered as weak

coarse labels for AUs.

Table 2.1 List of AUs observed in expressions

Expression AUs
Anger 4, 5, 7, 10, 17, 22-26

Disgust 9, 10, 16, 17, 25, 26

Fear 1, 2, 4, 5, 20, 25, 26, 27

Happiness 6, 12, 25

Sadness 1, 4, 6, 11, 15, 17

Surprise 1, 2, 5, 26, 27

Pain 4, 6, 7, 9, 10, 12, 20, 25, 26, 27, 43

(Ruiz et al., 2015) investigated the prospect of learning AU classifiers using expression labels

by exploiting the relationship between expressions and AUs. Each input sample is mapped

to an Action unit, which is in turn mapped to an expression, and action unit classification is

considered a hidden task due to the lack of AU labels. Each expression classifier is learned

before training using an empirical study of the relationship between expressions and AUs

(Miyato, Maeda, Ishii & Koyama, 2018), which is in turn used to learn AU classifiers using

gradient descent. Instead of using only the relationship between basic expressions and the

corresponding AU probabilities, (Wang et al., 2018c) exploited both expression-dependent and



73

expression-independent AU probabilities without using any extra large-scale expression-labeled

facial images. First, the domain knowledge of expressions and AUs are summarized, based

on which pseudo AU labels are generated for each expression. Then a Restricted Boltzmann

Machine (RBM) is used to model prior joint AU distribution from the pseudo AU labels. Finally,

AU classifiers are assumed to be linear functions with a sigmoid output layer and learned using

Maximum Likelihood estimation (MLE) with regard to the learned AU label prior. Using

a similar approach, (Peng & Wang, 2018) explored adversarial training for AU recognition

instead of maximizing the log-likelihood of the AU classifier with regard learned AU label prior.

Inspired by generative adversarial networks (GAN), AU classifiers are learned by minimizing the

differences between AU output distribution from AU classifiers and pseudo AU label distribution

derived from the summarized domain knowledge.

Unlike the prior approaches, (Wang, Peng, Chen & Ji, 2018b) modeled the relation between

expressions and AU probabilities as inequalities instead of exact probabilities i.e., higher

probabilities of occurrence have higher rankings than those with lower probabilities. Then

expression-dependent ranking order among AUs is exploited to train the AU classifiers as a

multi-label ranking problem by minimizing rank loss. Similarly, (Zhang, Dong, Hu & Ji, 2018a)

comprehensively summarized the domain knowledge and exploited both expression-dependent

and expression-independent AU probabilities to model the relationship among AU probabilities.

Then multiple AU classifiers are jointly learned by leveraging the prior probabilities on AUs i.e.,

the derived relationships among AUs are represented in terms of inequality constraints among

AU probabilities, which is incorporated into the objective function instead of the multi-label

ranking framework as in (Wang et al., 2018b).

Inspired by the idea of dual learning, (Wang & Peng, 2019) integrated the task of face synthesis

along with AU recognition, where the latter is considered as the main task and the former

as an auxiliary task. Specifically, AU labels are predicted using AU classifiers learned from

the domain knowledge, which is formulated as the first objective term and a synthetic face

is generated using predicted AU labels, which are optimized using the second objective term

indicating the difference between the original and generated faces. Two conditional distributions
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are learned, one for each task which is jointly optimized using the stochastic gradient descent

method. All of the above-mentioned approaches for AU detection with weak expression labels

have been extended to the problem of incomplete AU annotations by deploying additional loss

components for the available partial AU annotations.

2.3.2 Incomplete Annotations

In this subsection, we have reviewed the existing algorithms, which fall under the category of

WSL with incomplete annotations.

Detection of Expressions

(Cohen, Sebe, Cozman & Huang, 2003) investigated the prospect of exploiting unlabeled data

for improving the classification performance of the system and proposed a structure learning

algorithm of the Bayesian network. The facial features are extracted as motion features of

nonrigid regions of the face, which capture the deformation of the face and are fed to the

proposed Bayesian classifier for recognizing expressions. (Happy, Dantcheva & Bremond,

2019) addressed the problem of limited data with incomplete annotations for classifying facial

expressions even with low intensity, as in real-life data. Label smoothing is used to prevent the

model from obtaining high confidence scores, thereby retaining expressions with low intensities.

Initially, they train a CNN model with limited labeled data in a supervised manner until an

adequate performance is achieved. Subsequently, model parameters are further updated by

finetuning using a portion of unlabelled data with high-confidence predictions, obtained by the

current model in every epoch. (Florea, Badea, Florea, Racoviteanu & Vertan, 2020) improved

the idea of center loss (Wen, Zhang, Li & Qiao, 2016) by maximizing the distance between

the centroids of the different classes in the loss function. Pseudo labels are estimated based

on the distances to centroids of different classes and used along with mix-up augmentation

(Hongyi Zhang,Moustapha Cisse & Lopez-Paz, 2018) to avoid over-fitting.
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Detection of Action Units

Missing Labels: (Song, McDuff, Vasisht & Kapoor, 2015) developed a Bayesian framework

for AU recognition by encoding the sparsity i.e., only very few AUs are active at any moment,

and co-occurrence structure of AUs i.e., overlapping of AUs in multiple groups via compressed

sensing and group-wise sparsity inducing priors. (Wu, Lyu, Hu & Ji, 2015a) proposed a

multi-label learning framework with missing labels to learn multi-label classifiers by enforcing

the constraints of consistency between predicted labels and provided labels (label consistency)

as well as with label smoothness i.e., labels of similar features should be close to each other

along with modeling the co-occurrence relationships among AUs. However, (Li et al., 2016)

found that the constraint of label smoothness with shared feature space among AUs is violated

for the task of AU recognition due to the diverse nature of the occurrence of AUs i.e., different

AUs occur in different face regions, thereby features selected for one AU classifier are not

discriminative for other AU classifier. Therefore, discriminative features are learned for each

AU class before deploying the constraint of label smoothness. (Li, Wu, Zhao, Yao & Ji, 2019)

further extended the idea of (Li et al., 2016) to address the problem of class imbalance in two

aspects: the number of positive AUs being much smaller than negative AUs in each sample

(image) and the rate of positive samples of different AUs being significantly different. They

have explored class cardinality bounds, where the model is learned by imposing the lower and

upper bounds, obtained using a histogram of positive AUs into the objective function.

Incomplete Labels: (Shangfei, Quan & Qiang, 2017) deal with incomplete AU labels but

complete expression labels by modeling the dependencies among AUs and the relationship

between expressions and AUs with Bayesian Network (BN) using Maximum Likelihood

estimation. However, Structural Expectation Maximization (SEM) is used to learn the parameters

of BN for data with no AU labels. They have further extended the approach to estimate AU

intensities. (Peng & Wang, 2019) explored an adversarial GAN-based approach with dual

learning by leveraging domain knowledge of expressions and AUs along with facial image

synthesis from predicted AUs. Specifically, the probabilistic duality between tasks and the

dependencies among facial features, AUs, and expressions are explored in an adversarial learning
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framework. Next, reconstruction loss is deployed by considering the constraints of the dual task

of AU predictions from facial images and facial image synthesis from predicted AUs in addition

to the standard supervised loss pertinent to AU labels and facial features.

Unlike the above two approaches, (Wu, Wang, Pan & Ji, 2017) used only incomplete AU

annotations without expression labels and models the prior relationships among AUs using

Restricted Boltzmann Machine (RBM). Multiple SVMs are used to learn AU classifiers using

deep features by minimizing the error between predicted labels and ground-truth labels while

simultaneously maximizing the log-likelihood of the AU label distribution model to be consistent

with learned AU label distributions. Inspired by the idea of co-training, (Niu, Han, Shan & Chen,

2019) further improved the performance using a novel approach of multi-label co-regularization

for semi-supervised AU recognition without expression labels.Specifically, a multi-view loss

is designed to ensure the features generated from the two views are conditionally independent

by orthogonalizing weights of AU classifiers of two views. Next, a co-regularization loss is

designed to enforce the AU classifiers from two views to have similar predictions by minimizing

the distance between two predicted probability distributions from two views. Subsequently,

a graph convolutional network (GCN) is also used to model the strong relationships among

different AUs and fine-tune the network.

2.3.3 Inaccurate Annotations

Since the process of the annotation of expressions or AU labels is a complex process, the

annotations are highly vulnerable to noise. Therefore, there is an immense need to refine the

inaccurate annotations of expression or AU labels.

Detection of Expressions

(Mollahosseini et al., 2016b) investigated the consistency of noisy annotations of images crawled

from web and performance of deep networks in handling noisy labels. AlexNet (Krizhevsky

et al., 2012) and WACV-Net (Mollahosseini, Chan & Mahoor, 2016a) are trained using training



77

data of true labels only, true labels with noisy labels, and true labels with noisy labels along

with noise modeling (Tong Xiao, Tian Xia, Yi Yang, Chang Huang & Xiaogang Wang, 2015).

All three scenarios are evaluated using the test set with true labels. It was observed that Alexnet

outperforms WACVNet in all cases with the scenario of training with true labels having the

best performance followed by noisy labels with noise modeling and noisy labels. (Barsoum,

Zhang, Ferrer & Zhang, 2016) trained a deep CNN with noisy labels obtained from 10 taggers,

which is analyzed using four different strategies for effective label assignment: majority-voting,

multi-label learning, probabilistic label drawing, and cross-entropy loss. It was observed

that strategies of multi-label learning fully exploit the label distribution and outperform the

single-label strategy. (Zeng, Shan & Chen, 2018) proposed a 3-step framework, Inconsistent

Pseudo Annotations to Latent Truth (IPA2LT) to discover the latent true labels of noisy data

with multiple inconsistent annotations. First, predictive models are trained for individually

labeled data-sets. Next, pseudo annotations are generated from the trained predictive models to

obtain multiple labels for each image of the labeled data-sets as well as large-scale unlabelled

data.Finally, LTNet is trained to estimate the latent true labels by maximizing the log-likelihood

of observed multiple pseudo annotations. (Zhang, Xu & Xu, 2021a) proposed a pose-invariant

model by leveraging the noisy data on the web to boost FER performance in the wild. They

have used clean data for jointly modeling the pose and classification task in order to stabilize the

network. Then the noisy data is further exploited to enhance the pose-invariant feature learning

by jointly learning the pose-modeling, noise-modeling, and classification tasks.

Detection of Action Units

(Zhao, Chu & Martinez, 2018) explored weakly supervised clustering on large-scale images from

the web with inaccurate annotations to derive a weakly-supervised spectral algorithm that learns

an embedding space to couple image appearance and semantics. Next, the noisy annotations are

refined using rank order clustering by identifying groups of visually and semantically similar

images They have further enhanced the approach by invoking stochastic extension to deal with

large-scale images. (Benitez-Quiroz, Wang & Martinez, 2017) proposed a global-local loss
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function by combining the local loss function, which emphasizes accurate detection by focusing

on salient regions, however, requires very accurate labels for better convergence, which is

circumvented by combining the global loss function that captures the global structure of images

yielding consistent results for AU recognition.

2.3.4 Experimental Results

In this section, we will present the datasets used for validating the WSL models for classification

proposed in the framework of weakly supervised learning along with the critical analysis of

results.

2.3.4.1 Datasets

UNBC-McMaster (Lucey et al., 2011): The database contains 200 video sequences of

48398 frames captured from 25 participants, who self-identified with shoulder pain. Each

frame of the video sequence is labeled with 5 discrete intensity levels of AUs pertinent to pain

(𝐴 < 𝐵 < 𝐶 < 𝐷 < 𝐸)obtained by three certified FACS coders. Only the action units related to

pain are considered: brow-lowering (AU4), cheek-raising (AU6), eyelid tightening (AU7), nose

wrinkling (AU9), upper-lip raising (AU10), oblique lip raising (AU12), horizontal lip stretch

(AU20), lips parting (AU25), jaw-dropping (AU26), mouth stretching (AU27) and eye-closure

(AU43), however AU43 is assigned only binary labels. In addition to the annotations based on

FACS, they have also provided labels of discrete pain intensities both at sequence-level and

frame-level. Prkachin and Solomon Pain Intensity Scale (PSPI) of pain intensities are labeled

at frame level with 16 discrete levels from 0-15 and Observer Pain Intensity (OPI) ratings are

provided at sequence-level on a scale of 0 - 5.

CK+ (Lucey et al., 2010) : The database consists of 593 video sequences captured in controlled

laboratory conditions, where the emotions are spontaneously performed by 123 participants. All

the video sequences are considered to vary from neutral face to peak formation of the facial

expressions and the duration of the sequences varies from 10 to 60 frames. The video sequences
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are labeled based on FACS with seven basic expression labels (including Contempt) and each

emotion is defined by a prototypical combination of specific action units (AUs). Out of 593

sequences, it was found that only 327 sequences satisfy the labeling strategy, where each video

sequence is labeled with the corresponding emotion label. Since the emotion labels are provided

at video-level, static approaches assign the emotion label of the video sequence to the last one to

three frames that exhibit the peak formation of the expression, and the first frame is considered a

neutral frame.

MMI (Pantic, Valstar, Rademaker & Maat, 2005; Valstar & Pantic, 2010): The database

contains 326 video sequences spontaneously captured in laboratory-controlled conditions from

32 subjects though it includes challenging variations such as large interpersonal variations, pose,

etc compared to the CK+ database. The sequences are captured as onset-apex-offset i.e., the

sequence starts with a neutral expression (onset), reaches the peak (apex), and returns again

to a neutral expression (offset). As per the standard of FACS, 213 sequences are labeled with

six basic facial expressions (excluding contempt) at the video level, of which 205 sequences

are captured in frontal view. They have also provided frame-level annotations for some of the

sequences. For approaches based on static images, only the first frame (neutral expression) and

peak frames (apex of expressions) are considered.

DISFA (Mavadati, Mahoor, Bartlett, Trinh & Cohn, 2013): Denver Intensity of Spontaneous

Facial Action dataset (DISFA) is created using 9 short video clips from YouTube, where the

participants of 27 adults are allowed to watch the short video clips pertaining to various emotions.

The facial expressions of each of the participants are captured with a high-resolution video of

1024x768 pixels with a frame rate of 20fps resulting in 1,30,754 frames in total. Each of these

frames is annotated with action units along with the discrete intensity levels by FACS expert

raters. The action units related to the expressions in the database are AU1, AU2, AU4, AU5,

AU6, AU9, AU12, AU15, AU17, AU20, AU25, and AU26, whose intensities are provided on a

six-point ordinal scale (neutral < A < B < C < D < E).
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Table 2.2 Comparative evaluation of performance measures for classification of

expressions under various modes of WSL setting on most widely

evaluated datasets

WSL Problem Dataset Method Task Model-type Learning Model Validation Performance

Inexact

UNBC - McMaster

(Sikka et al., 2014) Pain [2 classes] Dynamic Gradient Boosting LOSO 83.70

(Wu et al., 2015b) Pain [2 classes] Dynamic HMM LOSO 85.23

(Chen et al., 2022d) Pain [2 classes] Dynamic Gradient Boosting 10-fold 85.60

(Ruiz et al., 2014) Pain [2 classes] Static Gradient Descent LOSO 85.70

(Sikka et al., 2016) Pain [2 classes] Dynamic SGD LOSO 87.00

(Huang et al., 2016) Pain [2 classes] Static RF-IAF LOSO 84.40

CK+
(Wu et al., 2015b) Expression [7 classes] Dynamic HMM LOSO 98.54

(Sikka et al., 2016) Expression [7 classes] Dynamic SGD 10-fold 95.19

Oulu-CASIA VIS
(Sikka et al., 2016) Expression Detection Dynamic Classical 10-fold 74.0

(Xie et al., 2019) Expression Detection Dynamic Classical 5-fold 87.71

BU-4DFE (Xu & Mordohai, 2010) Expression Detection Dynamic Classical 10-fold 63.83

Incomplete

RAF-DB (Florea et al., 2020) Expression [7 classes] Static Margin-Mix Conventional 70.68

CK+ (Happy et al., 2019) Expression [7 classes] Static CNN Conventional 99.35

FER+ (Florea et al., 2020) Expression [7 classes] Static Margin-Mix Conventional 81.25

Inaccurate

RAF-DB
(Zeng et al., 2018) Expression [7 classes] Static IPA2LT Conventional 86.77

(Zhang et al., 2021a) Expression [7 classes] Static CNN Conventional 88.89

AffectNet
(Zeng et al., 2018) Expression [7 classes] Static IPA2LT Conventional 55.11

(Zhang et al., 2021a) Expression [7 classes] Static CNN Conventional 60.04

BP4D (Zhang et al., 2014b): The dataset is captured from 41 participants, where each subject

is requested to exhibit 8 spontaneous expressions and thereby 2D and 3D videos are obtained

for each task. A total of 328 video sequences are obtained, where the frames exhibiting a high

density of facial expressions are annotated with facial AUs. Due to the intensive process of

FACS coding, the most expressive temporal segments i.e., 20-second segments are encoded. A

total of 27 AUs are coded for the expression sequences and AU intensities are also coded on an

ordinal scale of 0-5 for AU 12 and AU 14. Similar to BU-4DFE, this dataset is also used for

analyzing facial expressions in dynamic 3D space.
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Table 2.3 Comparative evaluation of performance measures for classification of action

units under various modes of WSL setting on widely evaluated data-sets

WSL Problem Dataset Reference Task Model-type Learning Model Validation Performance

Inexact

UNBC - McMaster

(Ruiz et al., 2015) AU [14 AUs] Static Gradient Descent 5-fold 0.235

(Wang et al., 2018c) AU [6 AUs] Static RBM 5-fold 0.351

(Wang & Peng, 2019) AU [6 AUs] Static RBM 5-fold 0.400

(Peng & Wang, 2018) AU [6 AUs] Static RAN 5-fold 0.376

(Zhang et al., 2018a) AU [3 AUs] Static LBFGS(Moller, 1993) 5-fold 0.510

CK+

(Ruiz et al., 2015) AU [12 AUs] Static Gradient Descent 5-fold 0.469

(Wang et al., 2018c) AU [12 AUs] Static RBM 5-fold 0.705

(Wang & Peng, 2019) AU [12 AUs] Static RBM 5-fold 0.740

(Peng & Wang, 2018) AU [12 AUs] Static RAN 5-fold 0.715

(Zhang et al., 2018a) AU [8 AUs] Static LBFGS(Moller, 1993) 5-fold 0.732

MMI

(Ruiz et al., 2015) AU [14 AUs] Static Gradient Descent 5-fold 0.431

(Wang et al., 2018c) AU [13 AUs] Static RBM 5-fold 0.516

(Wang & Peng, 2019) AU [13 AUs] Static RBM 5-fold 0.530

(Peng & Wang, 2018) AU [13 AUs] Static RAN 5-fold 0.520

(Zhang et al., 2018a) AU [8 AUs] Static LBFGS(Moller, 1993) 5-fold 0.481

DISFA
(Ruiz et al., 2015) AU [12 AUs] Static Gradient Descent 5-fold 0.371

(Wang et al., 2018c) AU [12 AUs] Static RBM 5-fold 0.424

Incomplete

UNBC-McMaster

(Shangfei et al., 2017) AU [6 AUs] Static Bayesian Network 5-fold 0.183

(Song et al., 2015) AU [6 AUs] Static Bayesian Model 5-fold 0.450

(Wu et al., 2015a) AU [6 AUs] Static Gradient Descent 5-fold 0.146

(Ruiz et al., 2015) AU [6 AUs] Static Gradient Descent 5-fold 0.292

(Wang et al., 2018c) AU [6 AUs] Static RBM 5-fold 0.502

(Wang & Peng, 2019) AU [6 AUs] Static RBM 5-fold 0.514

(Peng & Wang, 2018) AU [6 AUs] Static RAN 5-fold 0.472

(Wang et al., 2018b) AU [6 AUs] Static Classical 5-fold 0.521

(Peng & Wang, 2019) AU [6 AUs] Static DSGAN 5-fold 0.520

CK+

(Shangfei et al., 2017) AU [13 AUs] Static Bayesian Network 5-fold 0.781

(Song et al., 2015) AU [13 AUs] Static Bayesian Model 5-fold 0.696

(Wu et al., 2015a) AU [13 AUs] Static Gradient Descent 5-fold 0.652

(Ruiz et al., 2015) AU [14 AUs] Static Gradient Descent 5-fold 0.594

(Wang et al., 2018c) AU [12 AUs] Static RBM 5-fold 0.787

(Wang & Peng, 2019) AU [12 AUs] Static RBM 5-fold 0.806

(Peng & Wang, 2018) AU [12 AUs] Static RAN 5-fold 0.792

(Peng & Wang, 2019) AU [12 AUs] Static DSGAN 5-fold 0.792

(Zhang et al., 2018a) AU [8 AUs] Static LBFGS(Moller, 1993) 5-fold 0.754

MMI

(Shangfei et al., 2017) AU [13 AUs] Static Bayesian Network 5-fold 0.438

(Song et al., 2015) AU [13 AUs] Static Bayesian Model 5-fold 0.447

(Wu et al., 2015a) AU [13 AUs] Static Gradient Descent 5-fold 0.432

(Ruiz et al., 2015) AU [13 AUs] Static Gradient Descent 5-fold 0.530

Continued on next page
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WSL Problem Dataset Reference Task Model-type Learning Model Validation Performance

Incomplete

MMI

(Wang et al., 2018c) AU [13 AUs] Static RBM 5-fold 0.531

(Wang & Peng, 2019) AU [13 AUs] Static RBM 5-fold 0.561

(Peng & Wang, 2018) AU [13 AUs] Static RAN 5-fold 0.529

(Peng & Wang, 2019) AU [13 AUs] Static DSGAN 5-fold 0.537

DISFA

(Shangfei et al., 2017) AU [12 AUs] Static Bayesian Network 5-fold 0.430

(Song et al., 2015) AU [12 AUs] Static Bayesian Model 5-fold 0.426

(Wu et al., 2015a) AU [12 AUs] Static Gradient Descent 5-fold 0.382

(Ruiz et al., 2015) AU [12 AUs] Static Gradient Descent 5-fold 0.428

(Wang et al., 2018c) AU [12 AUs] Static RBM 5-fold 0.522

BP4D
(Song et al., 2015) AU [12 AUs] Static Bayesian Model Training : 60% 0.400

(Wu et al., 2017) AU [12 AUs] Static RBM Validation : 20% 0.452

2.3.4.2 Experimental Protocol

Depending on the mode of annotation, the datasets are further modified to match the corresponding

task at hand to validate the techniques. For the task of classification, the performance of expression

and AUs are expressed in terms of percentage and F1-score respectively.

Inexact Annotations: Though UNBC-McMaster dataset is primarily used for both regression

and classification, it has been explored for expression classification by converting the ordinal

labels (OPI ratings) of the data-set to binary labels based on a threshold i.e., OPI > 3 is treated

as pain and OPI=0 as no pain, which results in a total of 149 sequences with 57 positive bags

and 92 negative bags. For AU classification, 7319 frames are chosen from 30 video sequences

of 17 subjects that exhibit the expression of pain with PSPI > 4. Six AU labels are associated

with the chosen frames i.e., AU4, AU6, AU7, AU9, AU10, and AU43, which have a dependency

on expression labels of pain. The bag label of each pain sequence is considered as the maximum

of frame labels. Out of 25 subjects, 15 are used for training, 9 for validation, and 1 for testing.

In the case of CK+ dataset, 327 sequences are considered for expression classification, whereas

for AU classification, 309 sequences of 106 subjects are chosen from 593 sequences of 123

subjects based on the occurrence of AU labels i.e., AU labels, which are available for more than

10% of all frames are chosen to result in 12 AU labels. MMI dataset is used for AU classification

by considering sequences, where AUs are available for more than 10% of all samples, resulting

in 171 sequences from 27 subjects with 13 labels. For the classification of DISFA dataset, 482
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apex frames are chosen based on AU intensity levels, for which expression labels are obtained

by FACS. Similar to CK+ and MMI, 9 AUs are considered, whose occurrence is greater than

10% 5-fold cross-validation is deployed, where 20% of the whole database is used as validation

set according to subjects. All the experiments are conducted as subject-independent protocol.

Incomplete Annotations: In the context of incomplete annotations, UNBC-McMaster, CK+,

MMI, and DISFA datasets are used for AU detection, where training data is obtained with

missing AU labels by dropping some of the AU labels. In the case of the BP4D dataset for AU

classification, only partial AU annotations are considered without expression labels. Images of

60% of subjects are used for training, 20% for validation, and the last 20% for testing. For all

the datasets, AU labels for 50% of the training samples are randomly removed to incorporate the

setting of incomplete annotations. The experiment is repeated for times and the average score of

the F1 measure is used for validation.

2.3.5 Critical Analysis

Although the classification of facial expressions or action units is well explored in the framework

of supervised learning, it is still an under-researched problem in the setting of WSL. Recently,

action unit detection has relatively drawn much attention compared to the problem of expression

detection in the context of WSL. This could be due to the fact that facial AUs cover a wide range of

facial expressions rather than a limited six basic universal expressions, which have huge potential

in a lot of real-time applications. Facial expressions or AUs are dynamic processes, which

evolve over time, and thereby temporal information of expression or AUs conveys significant

information about facial behavior. However, temporal information is not well explored for the

problem of AU detection though it has been investigated for pain detection in the framework of

WSL (Sikka, 2014; Sikka et al., 2016). Current works on expression detection in WSL have

used max-pooling or displacement of facial landmarks for extracting the dynamic information of

video sequences pertinent to expression. Displacement of facial landmarks was found to capture

the temporal dynamic better than max-pooling, which has been reflected in the work of (Wu
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et al., 2015b), where they have used displacement of facial landmarks in conjunction with HMM

instead of max-pooling.

Most of the current research on facial behavior analysis pertinent to WSL is based on classical

machine learning approaches (shallow networks) though deep-learning-based approaches are

gaining attention in recent years. One of the major bottlenecks in using deep learning for FER is

the lack of sufficient data for facial expressions or AUs as they are sparse in nature i.e., facial

expressions or AUs occur only for a limited duration of time in a video sequence. Deep networks

were proven to be robust in handling the wide range of intra-variations such as illumination,

pose, identity, etc better than shallow networks when a large amount of data is provided (Wang

et al., 2017). Therefore, pretrained networks on face recognition (Parkhi et al., 2015) are used

for expression or AU recognition by retaining the lower layers and fine-tuning only the higher

layers as they represent the task-relevant features to handle the problem of limited data-set of

facial expressions (Kaya, Grpnar & Salah, 2017).

However, it was found that the abstract feature representation of higher layers still holds the

expression-unrelated information pertinent to subject identity even after fine-tuning the face

verification nets (Ding et al., 2017). To tackle this problem, large-scale in-the-wild FER datasets

(Benitez-Quiroz, Srinivasan, Feng, Wang & Martínez, 2017), (Mollahosseini, Hasani & Mahoor,

2019) have been captured and made available to the research community in recent years, where

the noisy annotations are refined using WSL approaches related to inaccurate annotations (Zeng

et al., 2018), (Li et al., 2017). Recently, few works (Wang et al., 2018c), (Wang & Peng,

2019) have explored RBM for AU detection. To the best of our knowledge, no work has been

done using deep learning architectures for expression detection in the framework of inexact

annotations though it has been recently explored in WSL with incomplete annotations (Happy

et al., 2019).

Most of the current research on AU detection has been focused on exploiting the domain

knowledge of dependencies among AUs and between basic expressions and AUs in the

framework of WSL, where expression labels act as weak supervision for AU detection. Similarly,
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expression detection is widely explored in the context of pain detection in the framework of WSL.

Since the experimental strategy of (Ruiz et al., 2015), (Shangfei et al., 2017), (Song et al., 2015)

and (Wu et al., 2015a) are different from that of (Wang et al., 2018c), (Wang & Peng, 2019) and

(Peng & Wang, 2018), (Wang et al., 2018c) have re-conducted the experiments of (Ruiz et al.,

2015), (Shangfei et al., 2017), (Song et al., 2015) and (Wu et al., 2015a) with the setup of (Wang

et al., 2018c) in order to have fair comparison. The detailed comparison of results of current

state-of-the-art methods on widely used datasets is shown in Table 2.3. For expression detection,

the performance measure reflects the performance of sequence-level classification for data with

inexact annotations and frame-level classification for data with incomplete annotations. The

performance metric of accuracy measure is used for expression detection and average F1-Score

for AU detection.

2.4 Weakly Supervised Learning for Regression

Regression can be formulated as ordinal regression and continuous regression. Ordinal regression

algorithms are the class of machine learning algorithms, which deals with the task of recognizing

the patterns on a categorical scale that reflects the ordering between the labels. Continuous

regression algorithms deal with estimating the intensities of continuous labels such as valence or

arousal. Though the problem of regression is not well explored as in the case of the classification

task, it has been recently gaining attention due to its immense potential in many real-world

applications. In the context of facial behavior analysis, regression deals with the estimation of

intensity levels of facial expressions or AUs. Similar to the classification of facial expressions,

regression also follows the same methodology of major building blocks i.e., Preprocessing,

Feature Extraction, and Model Generation. However, the model is trained to capture the

intensities for the task of regression rather than classifying the behavior patterns. Even though

few algorithms have been proposed for the task of estimating the intensities of facial expressions

or AUs (Wang et al., 2017; Tavakolian & Hadid, 2018) in a fully-supervised setting, the problem

is still at the rudimentary stage in the framework of WSL. We have classified the existing

approaches relevant to the regression of facial expressions or AUs in the framework of WSL as
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inexact, incomplete, and inaccurate techniques based on the mode of WSL setting similar to that

of classification as described in Section 2.3.

2.4.1 Inexact Annotations

In the case of regression with inexact annotations, the intensity levels of expressions or AUs are

provided at the global level i.e., at the sequence level, the goal is to estimate the intensity level

of individual frames or sub-sequences using sequence-level labels.

Expression Intensity Estimation

(Ruiz et al., 2016) proposed multi-instance dynamic ordinal random fields (MI-DORF) for

estimating ordinal intensity levels of frames, where the ordinal variables are modeled as normal

distribution and the relationship between the given observation (frame) and latent ordinal value

is obtained by projecting the given observation (frame) onto the ordinal line, which is divided

by the consecutive overlapping cutoff points of the normal distributions. Next, the temporal

information is modeled across the consecutive latent ordinal variables to ensure the smoothness

of the latent ordinal states. (Gnana Praveen et al., 2020) further improved the performance

using deep 3D CNN model (I3D (Carreira & Zisserman, 2017)) by integrating multiple instance

learning into adversarial deep DA (Ganin & Lempitsky, 2015) framework for pain intensity

estimation, where source domain is assumed to have fully annotated videos and target domain

has periodically annotated weak labels. (Yang et al., 2018) proposed an approach for student

engagement prediction in-the-wild using multiple-instance regression, where the input video

(bag) was divided into segments (instances) and spatiotemporal features of each segment are

fed to an LSTM network followed by 3 fully connected layers to obtain the regressed value of

engagement intensity.
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Action Units Intensity Estimation

(Ruiz, Rudovic, Binefa & Pantic, 2018) extended the idea of (Ruiz et al., 2016) for AU intensity

estimation by modeling the relationship between the weak sequence-level label and instance

label using two strategies: maximum or relative values of instance labels. They have also further

extended the approach to partially labeled data, where the sequence-level labels are provided

along with partial instance-level labels. Unlike the conventional framework of MIL, (Zhang,

Zhao, Dong, Hu & Ji, 2018b) explored domain knowledge of relevance using two labels of peak

and valley frames. Specifically, they have considered three major factors: Ordinal relevance,

intensity smoothness, and relevance smoothness based on the gradual evolving process of

facial behavior Ordinal relevance ensures the relevant intensity levels based on the proximity

of neighboring frames, whereas intensity and relevance smoothness constrains the smooth

evolution of facial appearance and ordinal relevance respectively. Due to the relevance of local

patches for AUs, (Zhang, Jiang, Wu, Fan & Ji, 2019b) further improved the performance by

developing a patch-based deep model using attention mechanisms for feature fusion and label

fusion to capture the spatial relationships among local patches and temporal dynamics pertinent

to each AU respectively. Since the contribution of local patches and temporal dynamics vary for

different AUs, the attention mechanism was further augmented by learnable task-related context.

2.4.2 Incomplete Annotations

In this framework, the intensities of the frames are provided only for a subset of the training

data. The goal of the task is to generate a robust training model for predicting intensity values of

test data at frame-level using partially labeled data along with unlabeled data.

Expression Intensity Estimation

To the best of our knowledge, only one work has been done related to this problem, where (Zhao,

Gan, Wang & Ji, 2016) proposed a max-margin-based ordinal support vector regression using

ordinal relationship, which is flexible and generic in handling the varying level of annotations
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and a linear model is learned by solving the optimization problem using the Alternating Direction

Method of Multipliers (ADMM) to predict the frame-level intensity of the test image.

Action Units Intensity Estimation

(Zhang, Dong, Hu & Ji, 2018) designed a deep convolutional neural network for intensity

estimation of Action Units(AUs) using annotations of only peak and valley frames. The

parameters of CNN are learned by encoding domain knowledge of facial symmetry, temporal

intensity ordering, relative appearance similarity, and contrastive appearance difference. CNN is

designed as 3 convolutional layers followed by 3 max-pooling layers and 1 fully connected layer.

(Zhang, Fan, Dong, Hu & Ji, 2019a) further extended (Zhang et al., 2018) to joint estimation of

multiple AU intensities by introducing a task index to update the corresponding parameters of

the fully connected layer. They have also used a lot of unlabelled frames in addition to labeled

key frames for training to handle over-fitting under the framework of semi-supervised learning.

(Wang, Pan, Wu & Ji, 2019) extended the idea of (Wu et al., 2017) for AU intensity estimation,

where RBM is used to model AU intensity distribution and regularize the prediction model of

AU intensities. (Zhang et al., 2019c) further improved the performance by jointly learning the

representation and estimator using partially labeled frames by incorporating human knowledge

of soft and hard constraints. Specifically, the sequences are segmented into monotonically

increasing segments, and temporal label ranking and positive AU intensity levels are considered

hard constraints, and temporal label smoothness and temporal feature smoothness are considered

as soft constraints.

2.4.3 Experimental Results

In this section, the datasets used for validating the WSL models proposed in the framework

of weakly supervised learning for ordinal regression along with the critical analysis of results

pertinent to the WSL approaches are presented.
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2.4.3.1 Datasets

With the advancement of state-of-the-art FER systems, regression-based approaches are gaining

attention as humans make use of the wide range of intensity of facial expressions to convey their

feelings. To cover this wide range of facial expressions, several databases have been developed

with intensity levels of facial expressions such as pain, action units, etc.

FERA 2015 Challenge (Valstar et al., 2015): The dataset is drawn from BP4D (Zhang et al.,

2014b) and SEMAINE (McKeown, Valstar, Cowie, Pantic & Schroder, 2012) databases for the

task of AU occurrence and intensity estimation, where only five AUs from BP4D i.e., AU6,

AU10, AU12, AU14, and AU17 are considered for AU intensity estimation and 14 AUs from

both SEMAINE and BP4D for occurrence detection i.e., AU1, AU2, AU4, AU6, AU7, AU10,

AU12, AU14, AU15, AU17, AU23, AU25, AU28, and AU45. The original dataset of BP4D

is used as the training set, where training data is drawn from 21 subjects, development set

from 20 subjects, and the dataset is further extended for test-set captured from 20 subjects,

resulting in 75,586 images in the training partition, 71,261 images in development partition and

75,726 in the testing partition. Similarly for the SEMAINE dataset, 48,000 images are used

for training, 45,000 for development, and 37,695 for testing. The entire dataset is annotated

frame-wise for AU occurrence and intensity level for the corresponding subset of AUs. For the

BP4D-extended set, the onset and offsets are treated as B-level of intensity. In both datasets,

most facially-expressive segments are coded for AUs and AU intensities. The intensity levels of

AUs are coded on an ordinal scale of 0-5.

BU-4DFE (Yin, Chen, Sun, Worm & Reale, 2008): The database is an extended version of

BU-3DFE, where the facial behavior of static 3D space is further extended to include dynamic

space. The dataset contains 606 3D video sequences obtained from 101 subjects by allowing

each subject to exhibit six prototypical facial expressions. Each video sequence has 100 frames

with a resolution of 1040x1329, which results in a total of approximately 60,600 frames. This

dataset is widely used for multi-view 3D facial expression analysis.
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Table 2.4 Comparative evaluation of performance measures for regression of

expressions or action units under various modes of WSL setting on most widely

evaluated datasets

WSL Problem Dataset Reference Task Data Type Learning Model Validation MAE PCC ICC

Inexact

UNBC-McMaster

(Ruiz et al., 2018) Pain [6 levels] Static DORF LOSO 0.710 0.360 0.340

(Gnana Praveen et al., 2020) Pain [6 levels] Dynamic WSDA LOSO 0.714 0.630 0.567

(Zhang et al., 2018b) Pain [6 levels] Static BORMIR LOSO 0.821 0.605 0.531

DISFA

(Ruiz et al., 2018) Action Unit [12 AUs] Static DORF 5-fold 1.130 0.400 0.260

(Zhao et al., 2016) Action Unit [12 AUs] Static OSVR 5-fold 1.380 0.350 0.150

(Zhang et al., 2018b) Action Unit [12 AUs] Static BORMIR 5-fold 0.789 0.353 0.283

(Zhang et al., 2019b) Action Unit [12 AUs] Dynamic CFLF 3-fold 0.329 - 0.408

FERA 2015
(Zhang et al., 2018b) Action Unit [5 AUs] Static BORMIR (Valstar et al., 2015) 0.852 0.635 0.620

(Zhang et al., 2019b) Action Unit [5 AUs] Dynamic CFLF (Valstar et al., 2015) 0.741 - 0.661

Incomplete

UNBC-McMaster
(Ruiz et al., 2018) Pain [6 levels] Static DORF LOSO 0.510 0.460 0.460

(Zhao et al., 2016) Pain [6 levels] Static OSVR LOSO 0.951 0.544 0.495

DISFA

(Ruiz et al., 2018) Action Unit [12 AUs] Static DORF 5-fold 0.480 0.420 0.380

(Zhao et al., 2016) Action Unit [12 AUs] Static OSVR 5-fold 0.800 0.370 0.290

(Zhang et al., 2018) Action Unit [12 AUs] Dynamic CNN 3-fold 0.330 - 0.360

(Zhang et al., 2019a) Action Unit [12 AUs] Dynamic CNN 3-fold 0.330 - 0.350

(Wang et al., 2019) Action Unit [12 AUs] Static RBM 3-fold 0.431 0.592 0.549

(Zhang et al., 2019c) Action Unit [12 AUs] Dynamic CNN 5-fold 0.910 0.370 0.350

FERA 2015

(Wang et al., 2019) Action Unit [5 AUs] Static RBM (Valstar et al., 2015) 0.728 0.605 0.585

(Shangfei et al., 2017) Action Unit [5 AUs] Static Bayesian Network (Valstar et al., 2015) - 0.638 0.610

(Zhao et al., 2016) Action Unit [5 AUs] Static OSVR Valstar et al. (2015) 1.077 0.545 0.544

(Zhang et al., 2019a) Action Unit [5 AUs] Dynamic CNN (Valstar et al., 2015) 0.640 - 0.670

(Zhang et al., 2018) Action Unit [5 AUs] Dynamic CNN (Valstar et al., 2015) 0.660 - 0.670

(Zhang et al., 2019c) Action Unit [5 AUs] Dynamic CNN (Valstar et al., 2015) 0.870 0.620 0.600

CK+ (Zhao et al., 2016) Expression [11 levels] Static OSVR 10-fold 1.981 0.729 0.716

BU-4DFE (Zhao et al., 2016) Expression [11 levels] Static OSVR LOSO 2.242 0.545 0.503

2.4.3.2 Experimental Protocol

In the case of regression, the performance of expression is expressed as Mean Square Error

(MSE). The intensities of pain and AUs are evaluated in terms of Mean Absolute Error (MAE),

Pearson Correlation Coefficient (PCC), and Intraclass Correlation Coefficient (ICC).
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Inexact Annotations: In case of regression on the UNBC-McMaster dataset, PSPI labels of the

frames are converted to 6 ordinal levels:0(0), 1(1), 2(2), 3(3), 4-5(4), 6-15(5). The bag label of

each pain sequence is considered as the maximum of frame labels. Out of 25 subjects, 15 are

used for training, 9 for validation, and 1 for testing. For the EmotiW dataset, the training and

validation dataset provided by the organizers is used for training by manually splitting the data

to compensate for the class imbalance. The performance measure is evaluated on the test dataset

provided by the organizers.

Incomplete Annotations: For regression, only 8.8% of total annotations are considered for

the UNBC-McMaster dataset for the task of pain regression. Similarly, CK+ and BU-4DFE

datasets are used for expression regression, where 327 and 120 sequences with a total of 5876

and 2289 frames respectively are considered, out of which annotations are provided for onset

and apex frames. For the task of AU regression in UNBC-McMaster and DISFA datasets, only

10% of annotated frames are considered in (Ruiz et al., 2018), (Wang et al., 2019) and (Zhao

et al., 2016) to incorporate the setting of incomplete annotations, whereas (Zhang et al., 2018b)

and (Zhang et al., 2018) considered only the annotations of peak and valley frames. In the case

of FERA 2015 dataset, official training and development sets provided by FERA 2015 challenge

(Valstar et al., 2015) are deployed. Similar to UNBC-McMaster and DISFA, (Wang et al., 2019;

Shangfei et al., 2017) considers only 10% of annotated frames while (Zhao et al., 2016; Zhang

et al., 2018b; Zhang et al., 2018) considers annotations of peak and valley frames.

2.4.4 Critical Analysis

The intensity estimation of facial expressions or AUs is more challenging than the task of

classification due to the complexity of capturing the subtle variation of facial appearance and

obtaining the annotations of intensity levels as they are scarce and expensive. Therefore, in

general, the task of intensity estimation is still an under-researched problem compared to the task

of classification. A similar phenomenon has been observed in the framework of WSL for which

the problem of intensity estimation is rarely explored. Since temporal dynamics plays a crucial

role in conveying significant information for the task of intensity level estimation, (Zhang et al.,
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2018b) and (Ruiz et al., 2018) modeled the relevant ordinal relationship across temporal frames

by incorporating intensity and relevance smoothness into the objective function while (Zhang

et al., 2018) and (Zhang et al., 2019a) invoked facial symmetry and contrastive appearance

difference in addition to the temporal relevance and regression in a deep learning framework,

which was found to outperform the former approaches. (Kaur, Mustafa, Mehta & Dhall, 2018)

and (Yang et al., 2018) formulated the task of AU intensity estimation in the setting of deep

multi-instance regression and captured the temporal dynamics of frames using LBP-TOP features

and represented the video as maximum or average of the corresponding instance frames.

With the advent of deep learning architectures and their breakthrough performance in many

applications under real-time uncontrolled conditions, few approaches have explored deep models

for AU intensity estimation in recent days. However, one of the major challenges in using deep

models for intensity estimation of facial expressions or AUs is the requirement of a large number

of intensity annotations, which is very expensive and demands strong domain expertise for

obtaining the annotations. Therefore, estimation of intensity levels using deep models in the

framework of WSL still remains to be an open problem though few approaches have explored

the problem in a fully supervised setting (Gudi, Tasli, den Uyl & Maroulis, 2015), (Walecki

et al., 2017). To the best of our knowledge, only two works have exploited deep models for AU

intensity estimation i.e., (Zhang et al., 2018) and (Wang et al., 2019), and no work has been

done for estimating expression intensity levels with deep models.

To compare the work of (Ruiz et al., 2018) with the conventional approach of pain detection

(Sikka et al., 2014), MILBOOST is deployed, and the output probabilities of pain detection are

normalized between 0 and 5 to have a fair comparison with that of (Ruiz et al., 2018). The

performance metric used for the validation of the state-of-the-art approaches for AU intensity

estimation is Mean Absolute Error (MAE), Pearson Correlation Coefficient (PCC), and Intra-class

correlation (ICC). PCC is normally used to measure the linear association between predicted

values and ground truth and ICC is used for correlation among annotators. MAE measures the

error between predictions and ground truth, which is typically used for applications pertinent to

ordinal regression. The expression intensity values for student engagement level prediction in
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(Yang et al., 2018) and (Kaur et al., 2018) are validated with the performance measure of Mean

Square Error (MSE). The detailed comparison of results of current state-of-the-art methods on

widely used datasets is shown in Table 2.4.

2.5 Challenges and Opportunities

In addition to the challenges related to data labeling, there are other challenges to developing

a robust FER system. Though it has been discussed extensively in the existing literature

(Gehrig & Ekenel, 2013), (Martinez & Valstar, 2016), we will briefly review some of the generic

challenges along with the potential research directions pertinent to FER.

2.5.1 Challenges

In general, the task of facial analysis suffers from a lot of challenges, which is prevalent in most

face-related applications such as identity recognition, attribute recognition, etc.

2.5.1.1 Dataset Bias

Though there has been a shift in data capture from laboratory-controlled conditions to in-the-wild

uncontrolled environments, the datasets are generally captured in a specific environment, which

may vary across datasets and thereby results in different data distribution of various datasets.

Typically, state-of-the-art approaches are evaluated on limited datasets and show superior

performance. However, when deployed on different datasets, these algorithms may fail to retain

their superior performance due to the differences in the distribution of datasets, often termed

data-set bias, which is a prevalent problem in the field of machine learning. To address the

problem of data-set bias, a few approaches (Benitez-Quiroz et al., 2016) have used multiple

datasets for training by merging the datasets and evaluated on different datasets. Even though

merging multiple datasets may increase the training data and thereby achieve better generalization,

it may suffer from label subjectivity as discussed in 2.5.1.3. A few more approaches conducted



94

cross-database experiments to validate the generalizability of the algorithm by evaluating the

algorithm on a dataset different from training data (Ruiz et al., 2015), (Wang et al., 2018c).

2.5.1.2 Data Sparsity and Class Imbalance

Since the V appearance of the face varies from person to person due to age, civilization, ethnicity,

cosmetics, eyeglasses, etc., the detection of facial expressions is a challenging task. In addition

to the personal attributes, variations due to pose, occlusion, and illumination are prevalent

in unconstrained scenarios of facial expressions, which leads to high intra-class variability.

Therefore, there is an immense need for large-scale data-set with a wide range of intra-class

variation. In most machine-learning-based applications, the performance of the system is

highly influenced by the quality and quantity of data, which has been reflected in the superior

performance of deep learning architectures. Though humans are capable of exhibiting a wide

range of facial expressions, most of the existing datasets are developed based on basic universal

expressions and limited AUs as they are more frequent in our everyday life.

However, these facial expressions or AUs are generally sparse in nature as they are expressed only

a few frames, resulting in a huge class imbalance, which is also reflected in the UNBC-McMaster

Pain database (Lucey et al., 2011). For instance, eliciting a smile is a frequently occurring

expression, whereas expressions such as disgust, and anger are less common expressions, thereby

resulting in limited data on those less frequent expressions. (He & Garcia, 2009) investigated and

provided a comprehensive review of state-of-the-art approaches for learning from imbalanced

data along with metrics used for evaluating the performance of the systems. (Jaiswal et al.,

2018) used cumulative attributes with a deep learning model as a two-stage cascaded network.

In the first stage, original labels are converted to cumulative attributes, and the CNN model is

trained to output a cumulative attribute vector. Next, a regression layer is used to convert the

cumulative attribute vectors to real-valued output. They have also used evaluated the system

with Euclidean loss and log-loss and found that the latter outperforms the former.
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2.5.1.3 Label Subjectivity and Identity Bias

Label subjectivity and Identity Bias are two major factors induced by the subjective nature of the

annotators and varied responses of expressions. Compared to other problems of computer vision,

labeling facial expressions is a highly complex process as it is subjective in nature. Manual

annotation of AUs is even more challenging compared to the prototypical categorical expressions

due to the increased range of facial behavior. Moreover, the annotation of AUs requires domain

expertise certified by FACS coding system, which is a time-consuming and laborious task and

thereby highly prone to errors induced by annotators. The process of annotation becomes more

complex for intensities of expressions or AUs as the difference between different intensity levels

is very subtle, which is very challenging even for expert annotators. The continuous dimensional

model further complicates the process of labeling especially when annotators are asked to label

every frame of the video sequences as a continuous range of values for the intensities will be

more sensitive than discrete values, which will result in differences in the labels for the same

intensity of facial expression. Another major factor in obtaining annotations for the continuous

dimensional model is the reaction time of annotators.

To alleviate the impact of label subjectivity, the dataset is typically labeled by the strategy of

crowd-sourcing, where labels are refined from several annotators (Li et al., 2017). In addition

to label subjectivity, there can be variations in the facial appearance due to heterogeneity of

subjects termed identity bias, i.e., ambiguity induced by the subjective nature of humans. For

instance, the expression of sadness is often misinterpreted as a neutral expression as the V

appearance of sadness is very close to that of a neutral expression.

2.5.1.4 Tool for Semi-Automatic Annotation

Due to the above-mentioned challenges in Section 2.5.1.3, it was found that manual annotations

are extremely challenging and even impossible to obtain for large scale data-sets. Though

WSL-based approaches reduce the need for exact and complete annotations, the need for minimal

annotations for large scale data-sets has motivated many researchers to automate the process of
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annotations, which can be further refined by expert annotators to minimize the burden on human

labor (Dhall et al., 2012). Since a fully automatic tool for obtaining annotations of expressions

or AUs is not feasible and reliable, a semi-automatic tool seems to be a more plausible approach

to obtain reliable annotations for large scale data-sets, especially for the case of continuous affect

model which is more vulnerable to noise and highly complex process to discriminate the subtle

variations across the frames.

2.5.1.5 Efficient Feature Representation

In the field of machine learning, one of the major characteristics of feature representation is to

retain the relevant information on target labels while still minimizing the entropy of features.

For the task of FER, the features are expected to be robust to face appearance variations such as

pose, occlusion, illumination, blur, etc still retaining the relevancy of expressions. (Sariyanidi

et al., 2015) have provided a comprehensive analysis of local as well as global hand-crafted

features such as Gabor, SIFT, LBP, etc by revealing its advantages and limitations to various

key challenging factors. They have further analyzed the feature selection approaches to refine

the feature representation and showed that fusion-based representations outperform individual

feature representations. Another promising line of approach is to incorporate the temporal

dynamics in the feature representation, which has outperformed the approaches based on static

representation. Typically, Three Orthogonal Planes (TOP) features are extended with handcrafted

features such as LBP-TOP (Zhao & Pietikainen, 2007), LGBP (Almaev & Valstar, 2013), etc to

incorporate the dynamic information in the static feature representations.

With the ubiquity of deep learning-based approaches for various computer vision problems,

there has been a shift from handcrafted features to learned features, where pretrained models of

face verification are used for finetuning with the facial expressions or AU data due to the limited

data pertinent to facial expressions or AU. However, as mentioned in (Ding et al., 2017), the

abstract feature representation of higher layers still retains identity-relevant information even

after fine-tuning the face verification net with FER data. To overcome the problem of limited data

and take advantage of the success of deep learning for FER, (Egede et al., 2017) have explored
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the fusion of hand-crafted and learned features for automatic estimation of pain intensity and

showed superior performance over state-of-the-art approaches. RNN-based approaches are

found to be promising in capturing the temporal dynamics which was shown robust performance

in various computer vision, speech, and NLP applications. (Kim et al., 2019) explored efficient

feature representation robust to expression intensity variations by encoding facial expressions in

two stages. First, spatial features are obtained through CNN using five objective terms to enhance

the separability of the expression classes. Second, the obtained spatial features are fed to LSTM

to learn the temporal features. (Wang et al., 2013) studied the contribution of spatiotemporal

relationship among facial muscles for efficient FER. They have modeled the facial expression

as a complex activity of temporally overlapping facial events, where they proposed an Interval

Temporal Bayesian Network to capture the temporal relations of facial events for FER.

2.5.2 Potential Research Directions

In this section, we will present some of the potential research directions for the advancement of

facial behavior analysis in the framework of WSL.

2.5.2.1 Exploiting Deep Networks

With the massive success of deep learning architectures, many researchers have leveraged deep

models for various applications in computer vision such as object detection, face recognition, etc,

and showed significant improvement in performance over the traditional approaches in real-world

conditions. However, the performance of deep models is not fully explored in the context of

facial behavior analysis due to the limited training data and laborious task of annotations which

demands human expertise. Despite the complex process of obtaining annotations for facial

behavior, most of the existing approaches to FER based on deep learning have been focused

on the fully supervised setting. (Li & Deng, 2020) provided a comprehensive survey on deep

learning-based approaches for FER in the framework of supervised learning and gave insight

into the advantages and limitations of deploying deep models for FER.
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To the best of our knowledge, only five works have used deep networks with domain knowledge

for AU recognition, and only one work on the prediction of engagement level in videos. (Wang

et al., 2018c), (Wang & Peng, 2019) and (Peng & Wang, 2018) have explored the domain

knowledge of dependencies among AUs and the relationship between expressions and AUs

using deep networks, where (Wang et al., 2018c) and (Wang & Peng, 2019) used RBM for

modeling the domain knowledge and (Peng & Wang, 2018) used Recognition Adversarial

Network (RAN) to match the distribution of predicted labels with the pseudo AU labels obtained

from domain knowledge. Only two works i.e., (Wang et al., 2019) and (Zhang et al., 2018)

used unlabeled and partially labeled data for AU intensity estimation, where RBM is used for

modeling global dependencies among AUs and CNN for modeling the ordinal relevance and

regression respectively. (Kaur et al., 2018) and (Dhall, Kaur, Goecke & Gedeon, 2018) used

deep multi-instance learning for engagement level prediction of sequences, where (Kaur et al.,

2018) outperforms (Dhall et al., 2018). To the best of our knowledge, no work has been done on

expression detection in WSL framework using deep learning models.

2.5.2.2 Exploiting SpatioTemporal Dynamics

In most of the existing approaches for FER in WSL, only short-term dynamics across the

temporal frames are exploited. (Kaur et al., 2018) and (Dhall et al., 2018) used LBP-TOP

features (Zhao & Pietikainen, 2007) for capturing the temporal dynamics of the sub-sequences

while (Chen et al., 2022d), (Sikka et al., 2014) and (Xie et al., 2019) frame aggregation i.e.,

maximum of feature vectors of the frames are treated as spatiotemporal features. (Wu et al.,

2015b) explored displacement of facial landmarks with HMM for capturing temporal dynamics

and showed that it outperforms simple max-based frame aggregation techniques. (Sikka et al.,

2016) capture the temporal order of the templates of the sequence, where temporal dynamics is

obtained by appending frame-level features of the sequence while (Zhang et al., 2018) captures

temporal dynamics using contrastive appearance difference i.e., the difference between apex

frame and neutral frame.
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In recent days, LSTM was found to achieve superior performance in capturing both short-term

and long-term temporal dynamics by exploiting the semantic connection across the frames.

Another promising technique based on CNN i.e., C3D (Tran et al., 2015) is also gaining much

attention in the field of computer vision for modeling temporal information across the frames.

Compared to RNN, C3D is efficient in capturing short-term temporal information. Though

LSTM and C3D techniques are widely explored for FER in fully supervised settings (Kim

et al., 2019; Hasani & Mahoor, 2017), it is not yet explored for the framework of WSL for FER.

Therefore, LSTM and C3D techniques when deployed in WSL setting for FER was expected to

further enhance the performance of existing state-of-the-art approaches.

2.5.2.3 Dimensional Affect Model with Inaccurate Annotations

The problem of FER in the framework of inaccurate annotations is mostly explored in the context

of classification as described in Section 2.3.3. Though the problem of noisy annotations is

more pronounced in the case of the dimensional model as ordinal annotations have more subtle

variations across the consecutive frames, not much work has been done on the problem of

inaccurate annotations in the dimensional model. Due to the complexity of obtaining annotations

in the dimensional model and lack of techniques to handle noisy dimensional annotations,

most of the datasets are developed for the task of classification of facial expressions or AUs,

which is mentioned in Section 2.3.4.1. Though few datasets have been explored for the task of

ordinal regression as described in Section 2.4.3.1, the development of datasets for the continuous

dimensional model is rarely explored. As far as we know, only two datasets i.e., (Kollias et al.,

2019) and (Mollahosseini et al., 2019) have been developed for FER in a continuous dimensional

model though a few multi-modal datasets are available (Ringeval, Sonderegger, Sauer & Lalanne,

2013), (Aung et al., 2016).

The ordinal annotations of DISFA (Mavadati et al., 2013) are obtained by two FACS-certified

experts and noisy annotations are reduced by evaluating the correlation between the annotations

provided by the two FACS-certifed experts. For UNBC-McMaster (Lucey et al., 2011), the

ordinal annotations are obtained from three FACS coders, which were then reviewed by a fourth
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FACS coder and validated using Ekman-Friesen formulae (Ekman, Friesen & Hager, 2002).

Similarly, (Mollahosseini et al., 2019) hired 12 expert annotators and the annotations are further

reviewed by two independent annotators. (Kollias et al., 2019) obtained annotations from

six trained experts and doubly reviewed by two more annotators. Finally, the final labels are

considered as the mean of the annotations for each sample. They have also conducted statistical

analysis to evaluate the inter-annotator correlations.

2.5.2.4 Continuous Affect Model

The continuous dimensional model conveys a wider range of expressions than ordinal regression

and plays a crucial role in capturing the subtle changes and context sensitivity of emotions.

Compared to the task of classification and ordinal regression, WSL-based approaches for facial

expressions or AUs are hardly explored in the context of continuous dimensional space though

few endeavors have been made in the context of fully supervised learning (Feng, Shu, Charless,

Tao & Baiying, 2020; Kollias & Zafeiriou, 2018). (Gunes & Schuller, 2013) investigated

the potential of continuous dimensional model and gave insights on existing state-of-the-art

approaches and challenges associated with automatic continuous analysis and synthesis of

emotional behavior. Due to the intricate and error-prone process of obtaining annotations, there

is an imperative need to formulate the problem of the continuous dimensional model in the

framework of WSL to handle noisy annotations and alleviate the negative impact of unreliable

annotations. (Huang et al., 2015) investigated the impact of annotation delay compensation and

other post-processing operations for continuous emotion prediction of multi-modal data.

As far as we know, only one work (Pei, Jiang, Alioscha-Perez & Sahli, 2019) has been done

based on WSL for the prediction of a continuous dimensional model i.e., valence and arousal

in a multi-modal framework using audio and visual features. They have reduced the noise of

unreliable labels by introducing temporal label, which incorporates contextual information by

considering the labels within a temporal window for every time step. They have further used a

robust loss function that ignores small errors between predictions and labels in order to further

reduce the impact of noisy labels. Therefore, there is a lot of room for improvement to augment
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the performance of the FER system in the continuous dimensional model using WSL-based

approaches.

2.5.2.5 Domain Adaptation

DA is another promising line of research to handle data with limited annotations although it

requires a source domain with accurate annotations as it exploits the knowledge of the source

domain for modeling the target domain. It has been widely used for many applications related

to facial analysis such as face recognition, facial expression recognition, smile detection, etc.

(Wang et al., 2018) proposed an unsupervised domain adaptation approach for a small target

dataset using GANs, where GAN-generated samples are used to fine-tune the model pretrained

on the source dataset. (Zhu et al., 2016) explored an unsupervised domain adaptation approach

in the feature space, where the mismatch between the feature distributions of the source and

target domains are minimized still retaining the discrimination among the face images related to

facial expressions. (Shao, Cai, Cham, Lu & Ma, 2019) exploited the collection of constrained

images from the source domain with both AU and landmark labels and the unpaired collection of

unconstrained wild images from the target domain with only landmark labels. The rich features

of source and target images are disentangled to shape and text features, and the shape features

(AU label information) of source images are fused with the texture information of the target

feature. Therefore, the performance of FER can be enhanced using domain adaptation along

with deep learning for handling data with limited annotations while still harnessing the potential

of deep networks.

2.5.2.6 Localization of Action Unit patches

Attention mechanisms has been gaining attention for capturing the most relevant features

and achieved great success for various computer vision problems such as object detection,

semantic segmentation, etc. (Xie & Hu, 2019) proposed a deep-based framework for FER using

aggregation of local and global features, where local features capture the expression-relevant

details and global features models the high-level semantic information of the expression.



102

In recent days, a few approaches have been proposed in FER for localizing the AU regions based

on facial landmarks (Li, Abtahi, Zhu & Yin, 2018; Li, Abtahi & Zhu, 2017; Shao, Liu, Cai & Ma,

2018). However, these approaches rely on prior knowledge of predefined AU attentions, which

restrict the capacity to predefined AUs and fails to capture the wide range of non-rigid AUs. As

far as we know, only two approaches (Shao, Liu, Cai, Wu & Ma, 2019; Liu et al., 2016) have

addressed the problem of AU localization in the WSL framework, which is discussed in Section

2.3.1. (Shao et al., 2019) integrated the relations among AUs with attention mechanism in an

end-to-end deep learning framework to capture more accurate attention while (Liu et al., 2016)

used BoVW to capture the pixel-wise attention for emotion detection using MIL framework. Due

to the immense potential of expression-relevant local features and the tedious task of predefined

attention, there is an imperative need to formulate the problem of capturing AU attention in the

WSL framework.

2.5.2.7 Multimodal Affective Modeling

Humans exhibit emotions through a diverse range of modalities such as facial expressions,

vocal expressions, physiological signals, etc. Multimodal analysis has drawn much attention

over the past few years as it enhances the overall performance of the system over the isolated

mono-modal approaches. The most effective way of using the multimodal framework is to use

different modalities such as the face, speech, ECG, etc in a complimentary fashion to provide a

comprehensive feature representation, resulting in higher accuracy of the system. Inspired by

the performance of multimodal approaches, several multimodal datasets are developed for the

advancement of the system to handle the problems of real-world challenging scenarios (Ringeval

et al., 2013; Busso et al., 2008). Recently, deep learning architectures are found to outperform

state-of-the-art techniques by capturing the complex non-linear interaction in multimodal data.

(Rouast, Adam & Chiong, 2019) provided an exhaustive review of the role of deep architectures

for affect recognition using audio, visual, and physiological signals.

Of all the modalities through which emotions can be expressed, facial images and vocal

expressions play a crucial role in conveying emotions. In order to foster progress in multimodal
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emotion recognition, several audio-visual challenges such as AVEC 2014 - AVEC 2017 (Ringeval

et al., 2015a; Ringeval, Schuller, Valstar, Cowie & Pantic, 2015b; Ringeval et al., 2017), etc

have been conducted. (Tzirakis et al., 2017) extracted visual features and audio features using

the deep residual network of 50 layers (ResNet-50) (Szegedy, Ioffe, Vanhoucke & Alemi, 2017)

and CNN models respectively and deployed LSTM architectures for handling the outliers for

better classification. However, most of these works have focused on the setting of supervised

learning. As far as we know, only one work (Pei et al., 2019) has been done on WSL based

approach for multimodal affect recognition using audio and visual features.

2.5.2.8 Infrared and Thermal Images

Infrared and Thermal images are found to be efficient in capturing texture in images even under

low illumination conditions, which has achieved success in applications such as Image-dehazing,

low light imaging, etc. Inspired by the invariance of thermal images to illumination, a few

approaches have been proposed to exploit thermal images with RGB images in a complementary

fashion to augment the performance of FER system. (Wang, Pan, Chen & Ji, 2018a) explored

thermal images for better feature representation by extracting features from visible and thermal

images using two deep networks, which are further trained with two SVM models for expression

recognition. The whole architecture is jointly refined using similarity constraints on the mapping

of thermal and visible representations to expressions. (Pan & Wang, 2018) have further enhanced

the performance of the approach by introducing a discriminator module to differentiate visible

and thermal representation and enforcing the similarity between mapping functions of visible

and thermal representation to expression labels through adversarial learning. Though the fusion

of thermal images with RGB images was expected to be a promising line of research for FER, it

still remains to be an under-researched problem.

2.5.2.9 3D and Depth Images

Despite the advancement of FER systems based on 2D images, pose-variance still remains to be a

challenging problem. To overcome the problem of pose-variance and occlusion, 3D data has been
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explored to obtain the comprehensive information displayed by the face and capture the subtle

changes of facial AUs in detail using the depth of the facial surface. For instance, AU18(Lip

pucker) is hard to differentiate from AU10+AU17+AU24 in a 2D frontal view. (Sandbach,

Zafeiriou, Pantic & Yin, 2012) provided a comprehensive survey on the existing datasets and

FER systems pertinent to 3D or 4D data. (Li, Sun, Xu & Chen, 2017) extracted six types of

2D facial attributes from textured 3D face scans and jointly fed them to the feature extraction

and feature fusion subnets to learn the optimal 2D and 3D facial representations. The proposed

approach is further enhanced by extracting deep features from different facial parts of texture and

depth images and fused together with feedback mechanism (Jan, Ding, Meng, Chen & Li, 2018).

(Hui Chen, Jiangdong Li, Fengjun Zhang, Yang Li & Hongan Wang, 2015) restored 3D facial

models from 2D images and proposed a novel random forest-based algorithm to simultaneously

estimate 3D facial tracking and continuous emotion intensities. Although few approaches have

exploited 3D data in a fully supervised setting, we believe that 3D or depth images have not

been explored for FER in WSL framework.

2.6 Conclusion

In this paper, we have introduced various categories of weakly supervised learning approaches

and provided a taxonomy of approaches for facial behavior analysis based on various modes

of annotations. A comprehensive review of state-of-the-art approaches pertinent to WSL is

provided along with the comparative evaluation of the results. We have further provided insights

into the limitations of the existing approaches and the challenges associated with them. Finally,

we have presented potential research directions based on our analysis for the future development

of facial behavior analysis in the framework of WSL.
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Abstract

Estimation of pain intensity from facial expressions captured in videos has immense potential

for healthcare applications. Given the challenges related to subjective variations of facial

expressions, and to operational capture conditions, the accuracy of state-of-the-art deep learning

(DL) models for recognizing facial expressions may decline. Domain adaptation (DA) has been

widely explored to alleviate the problem of domain shifts that typically occur between video data

captured across various source (laboratory) and target (operational) domains. Moreover, given

the laborious task of collecting and annotating videos, and the subjective bias due to ambiguity

among adjacent intensity levels, weakly-supervised learning (WSL) is gaining attention in such

applications. State-of-the-art WSL models are typically formulated as regression problems and

do not leverage the ordinal relationship among pain intensity levels, nor the temporal coherence

of multiple consecutive frames. This paper introduces a new DL model for weakly-supervised

DA with ordinal regression (WSDA-OR) that can be adapted using target domain videos with

coarse labels provided periodically. The WSDA-OR model enforces ordinal relationships among

the intensity levels assigned to target sequences and associates multiple relevant frames to

sequence-level labels (instead of a single frame). In particular, it learns discriminant and domain-

invariant feature representations by integrating multiple instance learning with deep adversarial

DA, where soft Gaussian labels are used to efficiently represent the weak ordinal sequence-level

labels from the target domain. The proposed approach was validated using the RECOLA video

dataset as fully-labeled source domain data, and UNBC-McMaster shoulder pain video dataset as
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Figure 3.1 Examples of video frames with pain (left) and without pain (right) pain

Taken from Bellantonio et al. (2017)

weakly-labeled target domain data. We have also validated WSDA-OR on BIOVID and Fatigue

(private) datasets for sequence-level estimation. Experimental results indicate that our proposed

approach can significantly improve performance over the state-of-the-art models, allowing us to

achieve a greater pain localization accuracy.

3.1 Introduction

Pain is a highly disturbing sensation caused by injury, illness, or mental distress. It is a primitive

symptom of the malfunctioning of any system in our body (Zeng et al., 2018). Pain is typically

conveyed through a patient or an observer on a linear scale from 0 (no pain) to 10 (severe
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pain). However, the assessment provided by a patient or an observer may not be reliable since

it is subjected to bias induced by the individual’s perception of pain as shown in Figure 3.1.

Automatic estimation of pain is useful for people who lack verbal communication such as infants,

patients suffering from neurological disorders, those in the intensive care unit (ICU) requiring

assisted breathing, etc. Therefore, there is a growing demand for the development of automatic

pain management systems to ensure effective treatment and ongoing care.

One of the primary channels through which pain can be effectively communicated is facial

expressions. Over the years, there has been significant progress in the automatic estimation of

pain intensities based on facial expressions in videos (Hassan et al., 2019). In recent years, deep

learning (DL) models have provided state-of-the-art performance in many visual recognition

applications such as object detection, image classification, semantic segmentation, action

recognition, etc (Zhao, Zheng, Xu & Wu, 2019). Compared to 2D-CNN models, 3D-CNNs are

found to be efficient for encoding the spatiotemporal dynamics of facial expressions in videos

(de Melo, Granger & Hadid, 2019). However, using DL models poses several challenges for

real-world pain intensity estimation. An important challenge is the subjective variability of facial

expressions across different individuals and the operational capture conditions of videos. Indeed,

the performance of DL models for facial expression recognition may decline significantly when

there is a considerable domain shift between data distributions of videos captured in the source

(lab setting) and target (operational) domains (Wang & Deng, 2018).

Domain adaptation (DA) has been widely used to address the problem of domain differences in

various visual recognition applications (Wang & Deng, 2018). In particular, unsupervised DA

(UDA) is commonly used for applications related to facial analysis, such as smile detection, to

learn robust domain-invariant CNN representations based on labeled source and unlabeled target

domain data (Sangineto et al., 2014; Wang et al., 2018; Zhu et al., 2016). The literature on

UDA techniques focused on learning discriminant domain invariant embeddings by optimizing

an adversarial loss to encourage domain confusion or a discrepancy loss between the two data

distributions. Reconstruction-based approaches are another popular paradigm to learn the
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mapping between source and target images such that images captured in different domains have

similar appearances.

In contrast with the existing DA approaches for facial expression analysis, we explore the weakly-

supervised DA (WSDA) case, where source data is fully labeled (at a frame level), and target data

is weakly labeled. The authors have explored deep DA models to learn a common representation

that diminishes the domain shift between source and target domains. A preliminary version of

the approach proposed in this paper is presented in (Gnana Praveen et al., 2020), where deep

DA is explored for weakly-supervised pain localization in videos. In the present work, our

approach is improved considerably by leveraging the ordinal relationship among intensity levels,

and temporal coherence of multiple consecutive frames. We also provided a more detailed

formulation and experimental validation of our method. Performing DA for pain intensity level

estimation from videos of faces is a challenging problem, in particular when the reference video

data is provided with a limited amount of annotations. Most of the existing DL models for pain

intensity level estimation have been explored in the fully supervised setting, using frame-level

labels (Tavakolian & Hadid, 2018; Zhou et al., 2016a). However, annotating the pain intensity

levels for large-scale datasets involves a costly and time-consuming process with domain experts.

Moreover, the manual annotation process is vulnerable to subjective bias, resulting in ambiguous

labels.

Recently, weakly supervised learning (WSL) has been gaining attention for its potential to train

machine learning (ML) models using data with a limited amount of annotations (Zhou, 2018).

Based on the availability of labels, WSL scenarios can be classified according to three categories:

incomplete, inexact, and inaccurate supervision (Zhou, 2018). Incomplete supervision refers to

the scenario where annotations are only provided for a subset of the training dataset. In scenarios

involving inexact supervision, annotations are provided for the entire dataset, but at a global or

coarse level compared to ones provided in a fully supervised scenario. Inaccurate supervision

deals with scenarios where annotations are noisy and ambiguous. (Gnana Praveen et al., 2021)

provided a comprehensive review of WSL-based approaches for facial behavior analysis. In the

context of pain assessment in videos, inexact supervision is a relevant scenario since it assumes
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that pain intensities are annotated on a periodic basis or for entire videos (sequence-level), rather

than at the frame level. In particular, multiple instance learning (MIL) methods have been

widely used in applications such as object recognition (Miao, Tony, Ming-Chang & Khodayari-

Rostamabad, 2016), text categorization (Andrews, Tsochantaridis & Hofmann, 2002), and

context-based image retrieval (Zhang, Goldman, Yu & Fritts, 2002), to train ML models using

data with coarse annotations. Therefore, we have formulated the problem of pain intensity

level estimation from faces captured in videos in the framework of MIL, where sequences are

considered to be bags and frames as instances. Most MIL methods proposed in the literature for

pain intensity estimation rely on handcrafted features and conventional ML approaches (Sikka

et al., 2014; Wu et al., 2015b; Ruiz et al., 2018), due in part to the limited availability of training

data with sequence-level annotations. In this paper, we investigate deep WSDA models of pain

intensity levels using sequence-level labels.

Pain level assessment can be formulated as a classification or regression problem. In classification,

pain estimation is often formulated as a binary problem, i.e., pain/no pain, whereas regression

allows predicting a wider range of pain intensities. Recently, approaches based on the regression

formulation have gained much attention in the literature because they provide more accurate

localization of pain intensities (Tavakolian & Hadid, 2018), (Zhou et al., 2016a). Regression-

based approaches can in turn be classified into ordinal and continuous regression. Although

continuous regression predicts a wider range of pain intensities, discrete pain intensity levels are

often preferred in practical applications to ease video analysis and annotation. Ordinal relations

among pain intensity levels convey a rich source of information, yet very few approaches

have explored the ordinal relationship among pain intensity levels for automatic pain intensity

estimation in videos (Ruiz et al., 2018). The problem of ordinal regression has been widely

explored for various applications, such as age estimation (Niu, Zhou, Wang, Gao & Hua, 2016),

and image ranking (Liu, Liu, Zhong & Chan, 2011). However, the ordinal regression framework

is less explored for pain intensity estimation in videos annotated at the sequence-level. This

paper introduces a new deep WSDA model with ordinal regression (WSDA-OR). It learns

discriminant and domain-invariant feature representations by integrating MIL with adversarial
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DA, where soft Gaussian labels are used to represent the weak ordinal sequence-levels from

target videos.

In most of the conventional MIL approaches for pain assessment, MIL pooling is performed using

maximum operator, i.e., the sequence level label is associated with the frame corresponding to

the maximum intensity level (Hsu, Lin & Chuang, 2014; Sikka, 2014). However, the maximum

operator only relies on a single frame, failing to capture the relevant information available in

multiple adjacent frames. (Ilse et al., 2018) have shown that attention-based MIL pooling can

significantly improve predictive accuracy. Inspired by their approach, we introduce adaptive MIL

pooling, that relies on multiple relevant frames of the sequence (bag). It allows associating all the

relevant frames of the corresponding sequence to the sequence-level label, and can significantly

improve the accuracy of pain assessment. To the best of our knowledge, WSDA-OR is the

first model to efficiently capture the ordinal relationship among pain intensity levels through

Gaussian representation, in the context of multiple instance regression (MIR).

The main contributions of this paper are:

• a DL model for pain assessment that can adapt to diverse capture conditions and individuals

using weakly-labeled target videos;

• Gaussian modeling through multiple instance regression (MIR) to efficiently capture the

ordinal relationship among intensity levels;

• an adaptive MIL pooling to associate all the relevant frames of the corresponding sequence

to the sequence-level label;

• an extensive set of experiments validating that our proposed WSDA-OR can outperform

state-of-the-art models.

The rest of this paper is organized as follows. Section 3.2 provides some background on models

for pain intensity estimation, deep DA, ordinal regression, and MIL. Our proposed WSDA-OR

model is described in Section 3.3. Finally, Section 3.4 presents the experimental methodology

(datasets, protocols, and performance metrics), and results for validation.
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3.2 Related Work

3.2.1 Deep Models for Pain Intensity Estimation:

Though DL is explored extensively for fully supervised learning, it is still at a rudimentary

level to deal with weakly-labeled data. (Zhou et al., 2016a) proposed Recurrent Convolutional

Neural Network (RCNN) using recurrent connections in the convolution layers to capture the

temporal information without increasing the overload of parameters to avoid overfitting. In order

to deal with the problem of limited data, (Wang et al., 2017) used a pretrained face recognition

network for fine-tuning using a regularized regression loss. (Rodriguez et al., 2018) also used

VGG Face pre-trained CNN network (Parkhi et al., 2015) for capturing the facial features

and LSTM network is used to exploit the temporal relation between the frames. Compared

to 2D CNN models, 3D CNNs are found to be gaining attention in efficiently capturing the

temporal dynamics of the video sequences. (Tavakolian & Hadid, 2018) propose a 3D-CNN

based architecture using a stack of convolution modules with varying kernel depths for efficient

dynamic spatiotemporal representation of faces in videos. A temporal pooling method to encode

the spatiotemporal facial variations in video clips based on a two-stream model that performs a

late fusion of appearance and dynamic information (Carneiro de Melo, Granger & Lopez, 2020).

However, all these approaches have been proposed in the setting of fully supervised learning,

thereby requiring frame-level labels. Inflated 3D-CNNs (I3D) have been employed for facial

expression recognition, allowing to leverage pre-trained 2D-CNNs, yet benefit from the efficient

modeling of temporal dynamics using 3D CNN models (Ayral, Pedersoli, Bacon & Granger,

2021; Carreira & Zisserman, 2017). Inspired by these benefits and their performance, we have

relied on I3D for modeling the spatiotemporal dynamics of pain expressions for adversarial DA

with weakly-labeled target videos.

3.2.2 Deep Domain Adaptation:

(Wang & Deng, 2018) provided a survey of the deep DA approaches, with applications in visual

recognition. Deep DA can be primarily summarized into three categories: discrepancy-based,
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adversarial-based, and reconstruction-based DA. Discrepancy-based approaches attempt to

minimize the domain shift by fine-tuning the deep model with the labeled or unlabeled target

data. Adversarial-based approaches deploy domain discriminators to classify whether a data

sample is drawn from the source or target domain to diminish the domain shift. Finally,

reconstruction-based approaches try to ensure feature invariance using data reconstruction of

source or target samples to improve the performance of DA. (Sangineto et al., 2014) proposed

a regression framework for personalized facial expression recognition, where classifiers are

generated for the individuals of the source data rather than a generic model for the entire source

data. (Wang et al., 2018) proposed an unsupervised DA approach for a small target dataset using

Generative Adversarial Network (GAN), where GAN-generated samples are used to fine-tune

the model pretrained on the source dataset. (Zhu et al., 2016) explored the unsupervised DA

approach in the feature space, where the mismatch between the feature distributions of the source

and target domains are minimized still retaining the discriminative information among the face

images related to facial expressions. (Bozorgtabar, Mahapatra & Thiran, 2020) investigated the

use of adversarial DA to transform the visual appearances of simulated faces to real face images

without losing the face details relevant to identity or expressions. By doing so, expression

recognition models trained on labeled realistic face images with arbitrary head poses can be

directly generalized on the unlabeled simulated images without the need for re-training.

Contrary to the existing DA approaches for facial expression analysis, we have explored DA in

the context of adapting source domain data with full labels to target domain data with coarse

labels. (Ganin & Lempitsky, 2015) proposed a novel approach of adversarial DA using deep

models with partial or no target data labels using a simple gradient reversal layer. We have further

extended their approach for the scenario of coarsely labeled target data for pain localization in

videos.

3.2.3 Ordinal Regression:

(Zhao et al., 2016) proposed a max-margin-based ordinal support vector regression using ordinal

relationship, which is flexible and generic in handling varying levels of annotations. A linear
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model is learned by solving the optimization problem using the Alternating Direction Method

of Multipliers (ADMM) to predict the frame-level intensity of the test image. (Zhang et al.,

2018b) explored domain knowledge of Ordinal relevance, intensity smoothness, and relevance

smoothness based on the gradually evolving process of facial behavior. (Zhang et al., 2018)

designed a CNN model for intensity estimation of Action Units(AUs) using annotations of

only peak and valley frames, where the parameters of CNN are learned by encoding domain

knowledge of facial symmetry, temporal intensity ordering, relative appearance similarity, and

contrastive appearance difference. All of the above-mentioned approaches did not efficiently

capture the ordinal relationship and are proposed for expression or action unit intensity estimation

but not for pain intensity estimation.

3.2.4 Multiple Instance Learning:

Though MIL has been widely explored for many computer vision applications, relatively fewer

techniques have been proposed for dynamic pain intensity estimation. (Sikka et al., 2014)

developed an automatic pain recognition system for pain localization in the framework of MIL,

where video segments are represented as bags of multiple subsequences and MILBOOST (Viola

et al., 2006) is used for instance-level pain detection. (Wu et al., 2015b) further enhanced the

approach by incorporating a discriminative Hidden Markov Model (HMM) based instance level

classifier in conjunction with MIL framework instead of MILBOOST to efficiently capture the

temporal dynamics. (Chen et al., 2022d) proposed a novel two-stage approach for pain detection

by deploying a novel strategy to encode AU combinations using individual AU scores.

However, all of these approaches have been proposed for pain detection. (Ruiz et al., 2018)

proposed multi-instance dynamic ordinal random fields (MI-DORF) for modeling temporal

sequences of ordinal instances, where bags are defined as temporal sequences labeled as ordinal

variables. The instance labels are obtained by incorporating high-order cardinality potential

relating bag and instance labels in the energy function. But they have not leveraged the superior

performance of DL models. (Zhang et al., 2018) designed a deep CNN based on weakly

supervised learning for intensity estimation of Action Units(AUs) of facial expressions with
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limited annotations of AUs, where only the annotations of peak and valley frames of the AUs

are considered. Despite the advancement of MIL for various applications in computer vision,

not much work has been explored for the estimation of pain intensity levels using state-of-the-art

DL models. Unlike the above-mentioned approaches, our approach focused on pain intensity

level estimation using DL models in conjunction with MIL framework for localization of pain

intensity levels i.e., instance level prediction. We have further improved the pooling mechanism

by introducing adaptive MIL pooling to efficiently leverage all the relevant frames in the sequence

to associate with the sequence level label.

3.3 Proposed Approach

In this section, we elaborate on the proposed approach in detail. In the proposed framework, we

have explored deep DA in the context of MIL for ordinal regression, where labels of intensity

levels are provided for video sequences instead of individual frames. To efficiently model the

ordinal relationship among the intensity levels, we have considered Gaussian modeling of the

intensity levels (labels) instead of one-hot vectors. Unlike the conventional approaches of MIL

(Gnana Praveen et al., 2020; Ruiz et al., 2018), (Sikka, 2014), where the sequence level label

was associated with a single frame, we have exploited multiple frames, which are relevant

to the sequence level label to enhance the performance of learning framework. Inspired by

the performance of the I3D model (Carreira & Zisserman, 2017) with adversarial learning

(Ganin & Lempitsky, 2015), we have used the framework of adversarial-based DA as it was

shown to yield superior performance in the framework of DL models for videos (Jamal et al.,

2018). The overall block diagram of the proposed approach is shown in Fig 3.2.

Let D = {(X1,Y1), (X2,Y2), ......., (XN,YN)} represents the dataset of pain expressions of

videos from source and target domains. Xi denotes a video sequence of the training data with a

certain number of frames. In the case of the source domain, Yi denotes a structured label vector

with frame-level annotations of the corresponding video sequence Xi, whereas, for the target

domain, Yi represents an ordinal intensity value i.e., sequence level ordinal intensity value of
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Figure 3.2 Overall architecture of the proposed approach (WSDA-OR). Inc denotes

Inception module (Szegedy et al., 2015). Different colors are used to discriminate data flow

in different loss components. Best viewed in color

Taken from Rajasekhar et al. (2021b)

the corresponding video sequence, which is given by

Yi =

⎧⎪⎪⎨⎪⎪⎩
{𝑦1
𝑖 , 𝑦

2
𝑖 , ....𝑦

𝑛𝑖
𝑖 } 𝑖 𝑓 Xi ∈ 𝑠𝑜𝑢𝑟𝑐𝑒 𝑑𝑜𝑚𝑎𝑖𝑛

𝑦𝑖 𝑖 𝑓 Xi ∈ 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑜𝑚𝑎𝑖𝑛
(3.1)

where 𝑛𝑖 denotes the number of frames in the corresponding sequence Xi. 𝑁 represents the number

of training sequences. Specifically, Xi = {𝑥1
𝑖 , 𝑥

2
𝑖 , ....𝑥

𝑛𝑖
𝑖 } represents the temporal sequence of 𝑛𝑖

observations (frames) and 𝑥𝑡𝑖 denotes 𝑡𝑡ℎ frame in 𝑖𝑡ℎ sequence, where 𝑡 ∈ {1, 2, ..𝑛𝑖}.

The objective of the problem is to estimate a generic ordinal regression model 𝐹 : X → H

from the training data D to predict the pain intensity level of frames of unseen test sequences,

where X denotes the video sequences of training data and H represents the hidden label space of

frame-level annotations of the target domain. The estimated intensity levels of the individual

frames of the sequences in the target domain are predicted as structured output Hi ∈ H, where

Hi = {ℎ1
𝑖 , ℎ

2
𝑖 , ......., ℎ

𝑛𝑖
𝑖 } and each frame 𝑥𝑡𝑖 of the sequence is assigned a latent ordinal value ℎ𝑡𝑖 .
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Let 𝑆 represent the source dataset, which is fully labeled videos and 𝑇 denote the target dataset,

which is weakly labeled videos. Let 𝐺 𝑓 represent the feature mapping function, where the

parameters of this mapping are denoted by 𝜃 𝑓 . Similarly, the feature vectors of the source

domain and target domain are mapped to the corresponding labels using 𝐺𝑙 and 𝐺𝑤𝑙 , whose

parameters are denoted by 𝜃𝑙 and 𝜃𝑤𝑙 respectively. Finally, the mapping of the feature vector to

the domain label is obtained by 𝐺𝑑 with parameters 𝜃𝑑 .

3.3.1 Gaussian Modeling of Ordinal Intensity Levels

Due to the ordinal nature of pain intensity levels, we have formulated pain intensity estimation

as an ordinal regression problem, which attempts to solve the classification problem while still

retaining the ordinal relationship among the labels. Though ordinal regression can be formulated

as a classification problem, it does not capture the relative ordering among the ordinal labels.

For instance, if a particular sample has a pain intensity level of "4", a misclassification of "3"

or "5" is more acceptable than a misclassification of "1". Although the objective is to predict

the correct intensity level of "4", the system should, in the event of misclassification, logically

predict an ordinal level as close as possible to the ground truth "4".

Figure 3.3 Gaussian representation of weak ordinal labels

Taken from Rajasekhar et al. (2021b)

In order to model the relative ordering among the ordinal labels, soft labels have been widely

explored in the literature (Díaz & Marathe, 2019; Tan, Zhou, Wan, Lei & Li, 2017). Gaussian

distribution was found to be promising in modeling the ordinal relationships, where the probability
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(or contribution) of the nearby ordinal labels decreases exponentially as we move away from the

ground truth on either side of the mean in a symmetric manner. This approach has been widely

explored in the ordinal regression literature (Chu & Ghahramani, 2005), (Liu, Wang & Kong,

2019). Most of these approaches have imposed the constraints of Gaussian modeling on the

predicted outputs. In this work, we propose a simple yet efficient approach of encoding the target

labels as soft labels obtained from Gaussian distribution instead of one-hot vectors as shown in

Fig 3.3. Specifically, the mean of the Gaussian model is considered as the corresponding ground

truth label, and the variance controls the influence of neighboring ordinal levels. The intensity

levels in close proximity to the corresponding label, therefore, have higher relevance compared

to the intensity levels at far proximity. The soft Gaussian labels of the ordinal intensity levels

are given by

𝑞𝑖 = 𝑒
−(𝑘−𝑦𝑖)2

2𝜎2 (3.2)

where 𝜎 denotes the Gaussian smoothing parameter (variance) of the Gaussian model and

𝑘 ∈ {0, 1, 2, ..., 𝐾 − 1} and 𝐾 denotes the number of ordinal intensity levels.

The proposed approach of encoding the target labels using Gaussian distribution automatically

learns the ordinal relationships without any explicit modification to the network architecture.

Therefore, our method can also be used with any conventional classification networks with

common categorical loss functions such as cross-entropy. Additionally, deploying a soft

Gaussian version of the target labels also helps in counterfeiting the problem of limited data with

deep networks. We show empirically that these soft representations obtained from Gaussian

distribution efficiently capture the ordinal relationship among the pain intensity levels, and

significantly improve the performance of the system.

3.3.2 Adaptive Multiple Instance Learning Pooling

In the framework of MIL, the choice of the pooling function plays a crucial role in associating

the instance-level outputs to the bag label. Several pooling functions have been explored in

the literature and a comparative study of various pooling techniques is discussed in (Wang,
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Li & Metze, 2019). In the conventional setting of MIR (Hsu et al., 2014), the sequence level

label is associated with the frame corresponding to the highest intensity level in the framework

of MIL (Gnana Praveen et al., 2020; Ruiz et al., 2018; Sikka, 2014). The relationship between

the coarse bag-level label Yi and latent instance-level labels Hi is modeled by assigning the

maximum value of predicted instance-level outputs to the bag label, which is given by

Yi = max
ℎ

(Hi) ∀(Xi,Yi) ∈ D (3.3)

If the label Yi is 0, then all the frames in the sequence Xi will be assigned 0 i.e., neutral frame.

In the case of pain intensity levels, the sequence level label is associated with the frame

corresponding to the highest intensity level in the framework of MIR (Gnana Praveen et al.,

2020), (Ruiz et al., 2018; Sikka, 2014). The prediction of the weakly labeled sequence is given

by

𝑃(Xi) = max
𝑗∈(1,..𝑛𝑖)

(𝐺𝑤𝑙 (𝐺 𝑓 (𝑥 𝑗𝑖 ))) (3.4)

where 𝑃(Xi) denotes the probabilities of the frame pertinent to the maximum intensity level

among all the frames of the sequence, 𝐺 𝑓 and 𝐺𝑤𝑙 represent the feature extraction and weak

ordinal regression layers respectively.

However, the maximum operator relies only on a single frame and does not efficiently exploit

the information available in all the frames relevant to the sequence level label (Ilse et al., 2018).

To leverage the relevant information of multiple frames, several learnable pooling functions

have been proposed with deep networks (Ilse et al., 2018; Liu, Zhou, Sun, Zha & Zeng, 2017).

Unlike prior approaches, we have proposed a simple pooling function, which adaptively chooses

the relevant frames without the need to learn any additional parameters. We further show that

the proposed pooling mechanism has significantly improved the performance of the system.

The frames relevant to the bag label (sequence level label) are selected based on the predicted

instance-level outputs of the deep network. In the case of pain intensity estimation, there could

be many frames predicted as having the maximum pain intensity level, which is relevant to the
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sequence level label. The frames predicted as maximum intensity level are considered as frames

relevant to sequence level labels. Next, MIL pooling is performed by averaging the output

responses of the selected relevant frames, whose outputs represent the maximum intensity level

within the sequence. Therefore, the frames that are irrelevant to the sequence-level (bag) label

are discarded while the frames relevant to the sequence-level label are retained and deployed in

the pooling mechanism.

Typically, pain expressions are sparse in nature, where most of the frames in the sequence are

neutral along with few pain expression frames relevant to sequence-level labels. By deploying

adaptive MIL pooling only on the frames pertinent to maximum predicted intensity levels, highly

redundant neutral frames are discarded and the relevant multiple frames of higher intensity

levels are effectively used in the training mechanism. For the sake of ordinal regression, the

number of output units of the weak supervision layer 𝐺𝑤𝑙 (last fully connected soft-max layer)

of the ordinal regression module of the target domain is equal to the number of intensity levels

to be predicted. The bag level representation of the instance level outputs is obtained using

adaptive MIL pooling, which is obtained by averaging the outputs of selected frames (predicted

as maximum intensity level) within the sequence, which is given by

𝑃(Xi) = 1

𝑁𝑡𝑖

∑
𝑗∈max(1,..𝑛𝑖)

𝐺𝑤𝑙 (𝐺 𝑓 (𝑥 𝑗𝑖 )) (3.5)

where 𝑃(Xi) denotes the mean of the soft-max output responses of relevant frames predicted as

maximum intensity levels and 𝑁𝑡𝑖 represents the number of relevant frames of the corresponding

sequence predicted as maximum intensity level.

3.3.3 Training Mechanism:

The deep network architecture consists of three major building blocks: feature mapping, label

predictor, and domain classifier. In the proposed architecture, the feature mapping layers share

the same weights between the source and target domains to ensure common feature space

between source and target domains. It has been shown that the label prediction accuracy on
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the target domain will be the same as that of the source domain by ensuring the similarity

of distributions between source and target domains (Shimodaira, 2000). Next, an adversarial

mechanism is deployed between the domain discriminator 𝐺𝑑 , which is learned to discriminate

the source and target domain samples, and feature extractor 𝐺 𝑓 , which is trained simultaneously

to minimize the domain discrepancy between source and target domains. At the time of training,

label prediction loss is minimized on the source domain by optimizing the parameters of 𝐺 𝑓 and

𝐺𝑙 to learn the feature mapping given the labels, while simultaneously ensuring the features are

domain-invariant. This is achieved by maximizing the loss of the domain classifier to minimize

the discrepancy between the source and target domains while the parameters of𝐺𝑑 are learned by

minimizing the loss of the domain classifier to discriminate between source and target domains.

The label prediction loss (𝐿𝑆) for the source domain is defined by

𝐿𝑆 =
1

𝑁𝑠

𝑁𝑠∑
𝑖=1
𝑑𝑖=0

𝑛𝑖∑
𝑗=1

((𝐺𝑙 (𝐺 𝑓 (𝑥 𝑗𝑖 )) − 𝑦
𝑗
𝑖 ))2 (3.6)

where 𝑑𝑖 = 0 represents the source domain, 𝑁𝑠 denotes the number of video sequences in the

source domain and 𝑛𝑖 denotes the number of frames in the corresponding video sequence. In

addition to source labels, the weak labels of the target domain are also used in the feature

learning mechanism where the parameters of 𝐺𝑤𝑙 are optimized by minimizing the prediction

loss pertinent to weak labels of the target data. The weak sequence level labels (ordinal intensity

levels) of the target domain are encoded to soft Gaussian representations as mentioned in 3.3.1

instead of one-hot vectors to efficiently capture the ordinal relationship as well as to counterfeit

the problem of limited data.

Contrary to MIL-based approaches for pain intensity estimation, which relies on the single frame

with maximum intensity level (Gnana Praveen et al., 2020), (Sikka, 2014), we have explored

multiple frames with maximum predicted intensity levels to associate with the weak sequence

level label, thereby improving the training mechanism due to the deployment of multiple relevant

frames as described in 3.3.2. The prediction loss associated with the weak supervision of the
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target domain is estimated as cross-entropy (CE) loss between the soft gaussian labels of target

domain Yi and predicted response 𝑃(Xi), which is given by

𝐿𝑇 = − 1

𝑁𝑇

𝑁𝑇∑
𝑖=1
𝑑𝑖=1

( Yi. log (𝑃 (Xi))) (3.7)

where Yi denotes the Gaussian representation vector of the ordinal level of the video sequence

in the target domain, 𝑃(Xi) denotes the vector of the predicted intensity level of Xi in the target

domain, (.) denotes the dot product function and 𝑁𝑇 represents the number of video sequence in

the target domain.

Since domain classification is a typical binary classification problem, we have used logistic

regression to diminish the domain differences between source and target domains, where the

logistic loss function is given by

𝐿𝑑 =
1

𝑁𝑠 + 𝑁𝑇

𝑁𝑠+𝑁𝑇∑
𝑖=1
𝑑𝑖=0,1

𝑛𝑖∑
𝑗=1

[−𝑑 𝑗𝑖 log
(
𝐺𝑑 (𝐺 𝑓 (𝑥 𝑗𝑖 ))

)

−(1 − 𝑑 𝑗𝑖 ) log
(
1 − 𝐺𝑑 (𝐺 𝑓 (𝑥 𝑗𝑖 ))

)
] (3.8)

where 𝑑
𝑗
𝑖 denotes the domain label of the 𝑗 𝑡ℎ frame of the 𝑖𝑡ℎ video sequence.

The overall loss of the deep network architecture is given by

𝐿 = 𝐿𝑆 + 𝐿𝑇 − 𝜆𝐿𝑑 (3.9)

where 𝜆 is the trade-off parameter between the objectives of label prediction loss and domain

prediction loss and the parameters of 𝜃𝑙 , 𝜃𝑤𝑙 , 𝜃 𝑓 and 𝜃𝑑 are jointly optimized using Stochastic

Gradient Descent (SGD).
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At the end of the training, the parameters of 𝜃𝑙 , 𝜃𝑤𝑙 , 𝜃 𝑓 and 𝜃𝑑 are expected to give a saddle

point for the overall loss function as given by :

𝜃 𝑓 , 𝜃𝑙 , 𝜃𝑤𝑙 = arg min
𝜃 𝑓 ,𝜃𝑙 ,𝜃𝑤𝑙

𝐿(𝜃 𝑓 , 𝜃𝑙 , 𝜃𝑤𝑙 , 𝜃𝑑) (3.10)

𝜃𝑑 = arg max
𝜃𝑑

𝐿(𝜃 𝑓 , 𝜃𝑙 , 𝜃𝑤𝑙 , 𝜃𝑑) (3.11)

At the saddle point, the feature mapping parameters 𝜃 𝑓 minimize the label prediction loss to

ensure discriminative features and maximizes the domain classification loss to constrain the

features to be domain-invariant. To backpropagate through the negative term in our loss function,

a special gradient reversal layer (GRL) is deployed in our SGD optimization framework, which

is elaborated in detail in (Ganin & Lempitsky, 2015). The value of lambda is modified over

successive epochs, such that the supervised prediction loss dominates at the early epochs of

training. Further details on the training mechanism can be found in (Ganin & Lempitsky, 2015).

3.4 Results and Discussion

3.4.1 Experimental Setup:

The proposed approach has been evaluated on the UNBC-McMaster dataset (Lucey et al., 2011),

which is widely used for pain intensity level estimation in the context of MIL. Due to the

availability of state-of-the-art results of the UNBC pain dataset in the context of MIL, we have

primarily validated the proposed approach on the UNBC pain dataset. The dataset consists of

200 videos of pain expressions captured from 25 individuals, out of which 13 are female and 12

are male, resulting in 47,398 frames of size 320x240. Each video sequence is annotated using a

PSPI score at frame level on a range of 16 discrete pain intensity levels (0-15). Due to the sparse

nature of pain expressions and high-level imbalance among various intensity levels, we followed

the widely adapted quantization strategy i.e., the pain levels are quantized to 5 ordinal levels as

0(0), 1(1), 2(2), 3(3), 4-5(4), 6-15(5). In our experiments, we followed the same experimental

protocol as that of (Gnana Praveen et al., 2020) to have a fair comparison with state-of-the-art
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results, where Leave-One-Subject-Out (LOSO) cross-validation strategy is deployed i.e., 15

subjects have been used for training, 9 subjects for validation and 1 for testing in each cycle.

Due to the availability of labels for every frame, RECOLA (Ringeval et al., 2013) dataset is used

as the source domain, where each video sequence is obtained for a duration of 5 minutes and

annotated with an intensity value between -1 to +1 for every 40 msec (same as the frame rate of

25fps) i.e., all the frames are annotated. The video sequences of UNBC (target) and RECOLA

(source) datasets are converted to sub-sequences (bags) of 64 frames (instances) with a stride

of 8 to generate more samples for the learning framework, resulting in 10496 sub-sequences

for RECOLA and 2890 sub-sequences for UNBC dataset. To incorporate the setting of weakly

supervised learning in the target domain (weakly labeled videos), only coarse labels of the

sub-sequences of the UNBC dataset are considered i.e., the maximum intensity level within a

sub-sequence is assigned as a coarse annotation to formulate the problem of MIL for ordinal

regression (Hsu et al., 2014). To use the Gaussian representation of the weak ordinal labels, the

variance is considered to be 0.3.

The faces are detected, normalized, and cropped using MTCNN (Zhang et al., 2016) and resized

to 224 x 224. In our experiments, I3D architecture is used, where inception v-1 architecture

is used as the base model, which is inflated from 2D pre-trained model on ImageNet to 3D

CNN for videos of pain expressions. We have used Stochastic Gradient Descent (SGD) as our

optimization technique for training the model with a momentum of 0.9, and a weight decay of

1e5. The initial learning rate is set to 0.001 and annealed according to a schedule pre-determined

on the cross-validation set for every 5 epochs after 20 epochs. Due to the difference between the

number of samples (sub-sequences) between the source and target domain, a batch size of 4

is used for the source domain and 2 for the target domain. Due to the huge imbalance among

various intensity levels of the samples (sub-sequences) of the target domain, weighted random

sampling is deployed for loading the data to counterfeit the problem of level imbalance. An

early stopping strategy is used for model selection to avoid over-fitting.
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3.4.2 Evaluation Measures:

Given the ordinal nature of pain intensity levels, the performance of the proposed approach is

measured in terms of Pearson Correlation Coefficient (PCC), Intra class correlation (ICC(3,1)),

and Mean-Absolute-Error (MAE). In most of the existing literature on MIL, the results are

often reported for bag-level predictions. However, we have focused on instance-level prediction

i.e., frame-level prediction of ordinal pain intensity levels for accurate localization of pain

intensity levels in videos. PCC is invariant to linear transformations and efficiently captures the

correlation between predictions and ground truth, which may differ in scale and location. The

PCC measure between predictions (ℎ𝑖) and ground truth values (𝑦𝑖) of a sequence 𝑖 is given by

𝑃𝐶𝐶 (𝑦𝑖, ℎ𝑖) =
𝑛𝑖
∑(𝑦𝑖 ∗ ℎ𝑖) −

∑
𝑦𝑖
∑

ℎ𝑖√
[𝑛𝑖

∑
𝑦2
𝑖 − (

∑
𝑦𝑖)2] [𝑛𝑖

∑
ℎ2
𝑖 − (∑ℎ𝑖)2]

(3.12)

where 𝑛𝑖 represents the number of frames in the sequence. Though the PCC measure captures

the correlation between the two variables, it fails to capture the exact similarity measure i.e.,

an absolute agreement between ground truth and the predicted intensity levels. Therefore, we

have used ICC(3,1) (Shrout & Fleiss, 1979), which is widely used to accurately measure the

degree of correlation as it takes into account differences in scale and location. The ICC measure

between the predictions (ℎ𝑖) and ground truth (𝑦𝑖) is computed using Between Mean Squares

(BMS) and Error Mean Squares (EMS), as given by

𝐼𝐶𝐶 (𝑦𝑖, ℎ𝑖) = 𝐵𝑀𝑆𝑖 − 𝐸𝑀𝑆𝑖
𝐵𝑀𝑆𝑖 + 𝐸𝑀𝑆𝑖

(3.13)

where 𝐵𝑀𝑆𝑖 of sequence 𝑖 is given by

𝐵𝑀𝑆(𝑦𝑖, ℎ𝑖) =
𝑛𝑖
∑

(𝑦𝑖 + ℎ𝑖)2 − (
∑

𝑦𝑖 +
∑

ℎ𝑖)
2

2𝑛𝑖 (𝑛𝑖 − 1) (3.14)
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and 𝐸𝑀𝑆𝑖 of sequence 𝑖 is given by

𝐸𝑀𝑆(𝑦𝑖, ℎ𝑖) =
2
∑
𝑦2
𝑖 + 2

∑
ℎ2
𝑖 −

∑ (𝑦𝑖 + ℎ𝑖)2

2𝑛𝑖
(3.15)

We have also further provided the performance measure of Mean-Absolute-Error (MAE), which

is widely used for continuous regression applications and accurately captures the error between

the two measurements of predictions (ℎ𝑖) and ground truth (𝑦𝑖), which is given by

𝑀𝐴𝐸 (𝑦𝑖, ℎ𝑖) =
∑ |𝑦𝑖 − ℎ𝑖 |

𝑛𝑖
(3.16)

Table 3.1 PCC, ICC and MAE performance of proposed

approach under various baseline scenarios

Training Scenario Frame-level
PCC ↑ ICC ↑ MAE ↓

Supervised (source data only) 0.323 0.272 0.976

Supervised (target data only) 0.441 0.377 0.660

Supervised (source ∪ target) 0.570 0.448 0.539

Unsupervised DA 0.468 0.198 0.782

Transfer learning with weak labels 0.614 0.384 0.618

Supervised DA 0.750 0.724 0.440

3.4.3 Results with Baseline Training Models:

To analyze the impact of DA and availability of annotations of source and target domains, the

performance of the proposed approach has been evaluated by conducting a series of experiments

with various baseline models, where I3D training models are generated by varying the data

ranging from using only source data with full labels to the entire dataset of source and target

domains with full labels as shown in Table 3.1. In all these experiments, the performance

of the training model has been validated on the test data of the target domain. Initially, we

considered only the source domain with full labels without the target domain and generated

the training model. Due to the domain differences between train data (source) and test data
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(target), the generated training model exhibits poor performance. Next, we consider only the

target data with full labels without source data and generate the training model, which shows

improvement in performance as both train data and test data come from the same domain (target).

Subsequently, we use both source data and target data with full labels without DA and found

that the performance was further improved as training data spans a wide range of variations in

source and target domains. Now we conduct another series of experiments with DA, where the

Figure 3.4 PCC accuracy of I3D model trained with deep WSDA-OR

levels with decreasing level of weak supervision on target videos

Taken from Rajasekhar et al. (2021b)

training data is obtained from source data with full labels and target data with varying levels of

supervision. By considering the full labels of the source domain, the level of supervision of

the target domain is gradually reduced by decreasing the frequency of annotations i.e., labels

are provided by increasing the duration of sequence lengths. Specifically, we have conducted

experiments for sequence lengths of 8,16,32, and 64. In addition to varying sequence lengths,

we have also conducted experiments of DA with no supervision of the target domain, which acts

as the lower bound, and full supervision of the target domain, which acts as an upper bound.
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As we gradually reduce the amount of labels of the target domain, we can observe that the

performance of our approach gradually drops as shown in Fig 3.4. However, our approach still

performs at par with full supervision as there is only minimal decline, which is attributed to the

DA as we are leveraging source data to adapt to the target domain using adversarial DA. We

have further evaluated the proposed approach with transfer learning, where the training model is

first obtained only with the source domain, and then fine-tuned with the weak labels of the target

domain. Since transfer learning does not try to diminish the domain differences and relies on

the size of pretrained dataset, it shows lower performance compared to the proposed approach.

3.4.4 Ablation Study

Table 3.2 Performance of proposed approach with ablation study

of individual modules in terms of PCC, ICC, and MAE

Training Scenario for WSDA-OR Frame-level
PCC ↑ ICC ↑ MAE ↓

Baseline 0.511 0.498 0.632

Baseline + AMILP 0.627 0.597 0.740

Baseline + GM 0.598 0.599 0.617

Baseline + GM + AMILP 0.705 0.696 0.530

We have further analyzed the contribution of individual modules of the proposed approach:

Gaussian modeling of ordinal levels (GM) and Adaptive MIL pooling (AMILP) as shown in Table

3.2. First, we have generated the training model with a baseline version without GM and AMILP

i,e., we have used max operator for MIL pooling and conventional label smoothing (Szegedy,

Vanhoucke, Ioffe, Shlens & Wojna, 2016). The performance of the baseline training model

is low as the conventional max-pooling operation fails to leverage the significant information

in the nearby relevant frames and traditional label smoothing is not able to efficiently capture

the ordinal relationships. Next, we deployed AMILP of relevant frames without using GM

of ordinal levels. This shows that AMILP efficiently leverages the information in the nearby

relevant frames, thereby showing a significant improvement over conventional MIL pooling. To

validate the contribution of GM of ordinal labels, we have further generated the training model
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only with the GM of ordinal labels over the baseline version. Since GM effectively captures

the ordinal relationship among the pain intensity levels, the performance of the approach has

significantly improved over conventional label smoothing. Finally, we have enforced GM of

ordinal levels along with AMILP of relevant frames. By combining both modules, there was a

drastic improvement in the performance of the approach as it effectively leverages all the relevant

frames for MIL pooling and captures the ordinal relationship among the pain intensity levels.

3.4.5 Comparison with State-of-the-Art Methods:

In most of the existing state-of-the-art approaches for weakly supervised learning, classical ML

approaches have been explored due to the problem of limited data with limited annotations.

However, we have used a deep model (I3D) along with source data to compensate for the

problem of limited data with limited annotations using DA. Our work is closely related to that of

MI-DORF (Ruiz et al., 2018), which used graph-based models to capture the temporal dynamics

of the frames and the ordinal relationship of labels. We have further compared the proposed

approach with our previous work (Gnana Praveen et al., 2020) and shown that exploring the

ordinal relationships and relevant frames in adaptive MIL pooling significantly improves the

performance of the system over a conventional regression framework. The estimation of frame

level predictions of the proposed approach shows significant improvement, while sequence level

estimation performs at par with that of our previous work (Gnana Praveen et al., 2020). This is

due to the fact that the sequence level performance in the proposed approach is obtained from

the model trained for frame-level predictions whereas the sequence level performance of our

previous work (Gnana Praveen et al., 2020) is reported using the model trained for sequence-level

predictions instead of frame level predictions. We have also provided visualization of some of

our results for pain localization i.e., frame-level prediction for two subjects. Due to the efficient

modeling of the ordinal labels and adaptive MIL pooling, the proposed approach accurately

localizes pain better than (Gnana Praveen et al., 2020) even though it was not captured in ground

truth as shown in Figure 3.5.
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Figure 3.5 Visualization of pain localization on two different subjects in UNBC

dataset. From top to bottom: Scenario with multiple peaks of pain expressions,

Scenario where ground truth (GT) shows no pain, but our deep WSDA-OR

approach correctly localizes pain better than WSDA

Taken from Rajasekhar et al. (2021b)

Since the problem of pain intensity estimation in the framework of ordinal regression with MIL

is still at a rudimentary level, we have also compared our approach with that of (Sikka et al.,

2014), which was proposed for the classification of pain events at the sequence level. Unlike

the existing classification approaches based on MIL, which estimates sequence level labels, we

have estimated the ordinal intensity level of the individual frames using weak supervision of

sequence level labels in the target domain. Compared to the classification-based approaches (Wu

et al., 2015b), (Sikka et al., 2014), regression-based approaches (Ruiz et al., 2018) are found to

show superior performance due to the fact that intensity level estimation is closely related to
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Table 3.3 Performance of the proposed WSDA-OR approach with state-of-the-art in terms

of PCC, ICC, and MAE

Method Type of Frame-level Sequence-level
Supervision PCC ↑ ICC ↑ MAE ↓ PCC ↑ ICC ↑ MAE ↓

MIR (Hsu et al., 2014) Weak 0.350 0.240 0.840 0.63 0.630 0.940

MILBOOST (Sikka et al., 2014) Weak 0.280 0.110 1.770 0.380 0.380 1.700

MI-DORF (Ruiz et al., 2018) Weak 0.400 0.460 0.190 0.670 0.660 0.800

WSDA (Gnana Praveen et al., 2020) Weak 0.630 0.567 0.714 0.828 0.762 0.647

WSDA-OR (ours) Weak 0.705 0.696 0.530 0.745 0.750 0.443
BORMIR (Zhang et al., 2018b) Semi 0.605 0.531 0.821 - - -

LSTM (Rodriguez et al., 2018) Full 0.780 - 0.500 - - -

SCN (Tavakolian & Hadid, 2018) Full 0.920 0.750 0.320 (MSE) - - -

the problem of regression. However, failing to exploit the discrete nature of labels shows poor

performance in accurately tracking the pain intensity levels as that of the ground truth as shown

in Figure 3.5. Therefore, we have exploited the ordinal nature of the labels in our formulation,

which significantly improves the performance of the approach and effectively tracks the pain

intensity levels as reflected in the performance evaluation metrics as shown in Table 3.3.

The proposed approach shows superior performance in terms of PCC compared to ICC and MAE,

thereby effectively tracking the pain intensity levels of the individual frames as shown in Figure

3.5. Since ICC is more reliable than PCC for sequence-level estimation as it efficiently captures

the intra-class correlation, the proposed approach exhibits the higher performance of ICC for

sequence-level estimation compared to frame-level estimation. We have further compared the

performance of the approach to that of state-of-the-art fully supervised (Tavakolian & Hadid,

2018) as well as partially annotated scenarios (Zhang et al., 2018b). The proposed approach

performs better than (Zhang et al., 2018b) even without the requirement of any prior information

pertinent to peak and valley frames.

3.4.6 Results with Additional Datasets:

The WSDA-OR model was also validated on Biovid and Fatigue (private) datasets. In our

experiments, we have used Biovid Part A, which has 8700 videos of 87 subjects, which are

labeled with pain levels of 0 to 4 at sub-sequence level. The Fatigue dataset is obtained from
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Table 3.4 PCC, ICC and MAE performance of proposed

WSDA-OR approach under different scenarios

Training Scenario Sequence-Level
PCC ↑ ICC ↑ MAE ↓

Biovid Dataset
Supervised (source data only) 0.026 0.003 1.424

Transfer learning 0.246 0.240 1.242

DA (proposed approach) 0.341 0.317 1.162

Fatigue (Private) Dataset
Supervised (source data only) 0.028 0.007 1.645

DA (proposed approach) 0.436 0.367 0.363

18 participants in the Rehabilitation center, who are suffering from fatigue-related issues. A

total of 27 video sessions are captured from 18 participants with a duration of 40 - 45 minutes

and the videos are labeled at sequence level on a scale of 0 to 10 for every 10 to 15 minutes.

However, due to the lack of frame-level labels and the availability of state-of-the-art results for

these datasets in the context of weak supervision, we have validated with other baseline models

with transfer learning for sequence level estimation. With Biovid, 20 subjects are randomly

selected for testing out of 87 subjects, whereas with Fatigue, on each trial we alternate testing on

one subject out of 18 subjects.

We have conducted experiments on three scenarios and the results are shown in Table 3.4. In

the first scenario, the model was trained using the Recola dataset as source domain data. Since

the model is trained only on the source domain, the model shows poor performance on the test

(target) data since there is a significant shift between the source and target domains. In the second

case, the model trained using Recola as source domain data is further fine-tuned on Biovid as

target domain data. This model shows improvement when compared to the first case, where the

model is trained only on source data. Finally, we train a model using our WSDA-OR proposed

approach, which shows significant improvement compared to the previous scenarios since it

minimizes the domain differences and leverages the variability of both domains to improve the

generalization capability.
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3.5 Conclusion

In this work, we have proposed a generic DL framework of weakly-supervised DA with ordinal

regression for pain level assessment in videos. To address the problem of variations across

different operational conditions, we have explored deep DA to leverage the performance of deep

models by overcoming the problem of limited representative training data. We have formulated

the framework of deep DA in the context of limited annotations, where the source domain is

assumed to have fully supervised labels and the target domain is assumed to have weak sequence

level labels. Contrary to the existing approaches for pain intensity estimation, which explored DL

models for regression, we have shown that exploiting ordinal relationships among the intensity

levels significantly improves the performance of the system to accurately track and localize

the pain intensity levels in videos. The ordinal intensity levels are modeled using a Gaussian

distribution, which efficiently captures the ordinal relationships among the intensity levels.

In the conventional MIR approach (Hsu et al., 2014), the weak sequence-level label is associated

only with the frame pertinent to the frame with the maximum intensity level. However, we have

improved the performance of the system by deploying multiple frames relevant to the sequence

level label instead of a single frame. We have conducted an extensive set of experiments with

various baseline models using various combinations of source and target datasets and further

analyzed the performance of the proposed approach under varying levels of supervision for

the target data. Finally, we have compared the performance of the proposed approach with the

state-of-the-art approaches and shown that the proposed approach significantly outperforms over

the state-of-the-art approaches.
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Abstract

Automatic emotion recognition (ER) has recently gained lot of interest due to its potential in

many real-world applications. In this context, multimodal approaches have been shown to

improve performance (over unimodal approaches) by combining diverse and complementary

sources of information, providing some robustness to noisy and missing modalities. In this

paper, we focus on dimensional ER based on the fusion of facial and vocal modalities extracted

from videos, where complementary audio-visual (A-V) relationships are explored to predict an

individual’s emotional states in valence-arousal space. Most state-of-the-art fusion techniques

rely on recurrent networks or conventional attention mechanisms that do not effectively leverage

the complementary nature of A-V modalities. To address this problem, we introduce a joint

cross-attentional model for A-V fusion that extracts the salient features across A-V modalities,

that allows to effectively leverage the inter-modal relationships, while retaining the intra-modal

relationships. In particular, it computes the cross-attention weights based on correlation between

the joint feature representation and that of the individual modalities. By deploying the joint

A-V feature representation into the cross-attention module, it helps to simultaneously leverage

both the intra and inter modal relationships, thereby significantly improving the performance of

the system over the vanilla cross-attention module. The effectiveness of our proposed approach

is validated experimentally on challenging videos from the RECOLA and AffWild2 datasets.

Results indicate that our joint cross-attentional A-V fusion model provides a cost-effective
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solution that can outperform state-of-the-art approaches, even when the modalities are noisy or

absent.

4.1 Introduction

Automatic recognition and analysis of human emotions have drawn much attention over the

past few decades. It has been extensively researched in various fields such as neuroscience,

psychology, cognitive science, and computer science, leading to the advancement of a wide

range of applications in various fields, such as health care (e.g., assessment of anger, fatigue,

depression, and pain), robotics (human-machine interaction), driver assistance (assessment of

driver’s state), etc (Kołakowska, Landowska, Szwoch, Szwoch & Wróbel, 2014). Emotion

recognition (ER) is a challenging problem since the expressions linked to human emotions are

extremely diverse in nature across individuals and cultures. Ekman conducted a cross-cultural

study on human emotions and categorized the basic emotions into six categories – anger,

disgust, fear, happiness, sadness, and surprise (Ekman, 1992). Subsequently, contempt has been

added to these six basic emotions (Matsumoto, 1992). The categorical model of ER has been

explored extensively in the field of affective computing due to its simplicity and universality

(Anagnostopoulos, Iliou & Giannoukos, 2015).

Recently, real-world applications have driven a shift of affective computing research from

laboratory-controlled environments to more realistic natural settings. This shift has further led to

the analysis of a wide range of subtle, continuous emotional and health states that are elicited in

real-world settings. Conventionally, the estimation of continuous ER states is formulated as the

dimensional ER problem, where complex human emotions can be represented in a dimensional

valence-arousal space. Figure 4.1 illustrates the use of a two-dimensional space to represent

emotional states, where valence and arousal are employed as dimensional axes (Schlosberg,

1954). Valence reflects the wide range of emotions in the dimension of pleasantness from

being negative (sad) to positive (happy), whereas arousal spans the range of intensities from

passive (sleepiness) to active (high excitement) (Nicolaou, Gunes & Pantic, 2011). Recognizing

such fine-grained emotional states is beneficial in various applications, such as assessing driver
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Figure 4.1 The valence-arousal space. Valence denotes the range

of emotions from being very sad (negative) to very happy (positive)

and arousal reflects the energy or intensity of

emotions from very passive to very active

Taken from Praveen et al. (2023a)

fatigue, estimating the level of depression or pain in health care, assessing customer engagement

in marketing, etc. Given the growing need for continuous ER in real-world applications, this

paper focused on dimensional ER in the valence-arousal space.

Human emotions can be conveyed through various modalities such as face, voice, text, and

physiology (electroencephalogram, electrocardiogram, etc.), which typically carry complemen-

tary information among them. Although human emotions can be expressed through various

modalities, vocal and facial modalities are the predominant contact-free channels, which carry

complementary information (Shivappa et al., 2010). Audio-visual (A-V) fusion has also been

widely explored for various applications including identity verification (Ben-Yacoub, Luttin,

Jonsson, Matas & Kittler, 1999), event localization (Duan et al., 2021), action recognition

(Lee et al., 2021), etc. Efficiently leveraging the complementary nature of A-V relationships

captured in videos can play a crucial role in improving the performance of multimodal systems
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over unimodal systems (Shon, Oh & Glass, 2019). Techniques for multimodal fusion can be

broadly categorized as model-agnostic or model-based (Baltrušaitis, Ahuja & Morency, 2019).

In model-based approaches, fusion is performed using specialized models to cope with the

diverse information in multimodal data. Depending on the type of model used for fusion,

these techniques are typically classified further as kernel methods, graphical models, or neural

networks (Baltrušaitis et al., 2019). Unlike model-based fusion, model-agnostic fusion can be

achieved using almost any uni-modal classifier or regressor. They do not rely on any specialized

model for fusion. Most of the existing fusion models belong to this category, where fusion is

often performed by concatenating the features or individual modal predictions. Model agnostic

approaches can be further classified as three major strategies: decision-, feature-, and hybrid-level

fusion (Wu et al., 2014). In decision-level fusion (late fusion), multiple modalities are trained

end-to-end independently, and then the predictions obtained from the individual modalities

are fused to obtain the final predictions. Although decision-level fusion is easy to implement

and requires less training, it neglects the interactions across the individual modalities, thereby

resulting in limited improvement over uni-modal approaches. Conventionally, feature-level

fusion (early fusion) is achieved by concatenating the features of A-V modalities immediately

after they are extracted, which is further used for predicting the final outputs. Hybrid fusion

takes advantage of both decision-level and feature-level fusion by combining outputs from both

feature-level fusion and decision-level fusion. Though feature level fusion is conventionally done

by aggregating or concatenating the features immediately after they are extracted, it can also be

performed by learning the interactions between the modalities for better feature representations

before concatenating the features (Zhang et al., 2021b; Rajasekhar et al., 2021a). In this work, we

explore feature-level fusion based on joint cross-attention, where the A and V features extracted

from videos are further modeled using a joint cross-attention model before concatenation.

Deep learning (DL) models provide state-of-the-art performance in many V recognition

applications, such as image classification, object detection, action recognition, etc. Inspired

by their performance, several ER approaches have been proposed for video-based dimensional

ER using CNNs to obtain the deep features, and a recurrent neural network to capture the
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temporal dynamics (Schoneveld et al., 2021; Tzirakis et al., 2017). Deep models have also been

widely explored for vocal emotion recognition, typically using spectrograms with 2D-CNNs

(Schoneveld et al., 2021; Wang et al., 2021), or raw waveforms with 1D-CNNs (Tzirakis et al.,

2017). In most of the existing approaches (Tzirakis et al., 2017, 2021) for dimensional ER,

A-V fusion is performed by concatenating the deep features extracted from individual facial and

vocal modalities and fed to LSTM for predicting valence and arousal. Although LSTM-based

fusion models can improve the system performance by leveraging the intra-modal relationships,

it does not effectively capture the inter-modal relationships across the individual modalities. We,

therefore, investigate the prospect of extracting more comprehensive salient features that can

effectively exploit the complementary relationships across the A and V modalities.

Attention mechanisms have recently gained much interest in the areas of computer vision and

machine learning as they allow extracting task-relevant features, thereby improving system

performance. This has been extensively explored for various applications, such as event/action

recognition (Shi, Dai, Mu & Wang, 2020), ER (Lee et al., 2018), etc. Most of the existing

attention-based approaches for dimensional ER explore the intra-modal relationships (Lee et al.,

2018). Although a few approaches (Parthasarathy & Sundaram, 2021; Tzirakis et al., 2021)

attempt to capture the cross-modal relationships using cross-attention based on transformers,

they fail to effectively leverage the complementary relationship of A-V modalities. Indeed, their

computation of attention weights does not consider the correlation across the A and V features.

A preliminary version of the cross-attentional (CA) A-V fusion model for dimensional ER was

presented in our previous work (Rajasekhar et al., 2021a). In this work, we further extend

our previous work, where a joint A-V feature representation is deployed in the CA model to

jointly capture both intra and inter-modal relationships. In this previous paper (Rajasekhar

et al., 2021a), the attention weights are computed based on the correlation across A and V

modalities, which depends only on intermodal relationships. Instead of using individual feature

representations across the modalities to generate the attention weights, we introduce joint A-V

feature representations to capture the relationships within the same modality as well as other

modalities, thereby leveraging both inter- and intra-modal relationships to obtain the attention
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weights. Using the joint feature representation drastically reduces the heterogeneity across the A

and V features, which further helps to provide robust A-V feature representations. Specifically,

we obtain the cross-correlation matrix across the deep joint feature representation and features

of individual modalities to obtain the attention weights for the A and V modalities. Therefore,

the attention weights of each modality are obtained not only using the features of itself but also

from the other modality, resulting in more informative features. Besides providing improved

performance over individual modalities, a benefit of our joint A-V representation is its ability

to perform well even when a modality is noisy or absent. Finally, we have also explored the

impact on JCA performance of the feature-level fusion, where multiple diverse backbones are

combined for the A and V modalities.

The main contributions of the paper are: (1) A joint cross-attentional (JCA) model for A-V

fusion is introduced to effectively exploit the complementary relationship across modalities

for dimensional ER in valence-arousal space. Contrary to the prior approaches, the proposed

model simultaneously leverages both intra and inter-modal relationships to effectively capture

the complementary relationships. (2) Deploying the joint feature representation also helps

to reduce the heterogeneity across A and V features, thereby resulting in robust AV feature

representations. (3) An extensive set of experiments on the challenging RECOLA and Affwild2

datasets indicate that our proposed JCA fusion model can outperform related state-of-the-art

fusion models for dimensional ER. Our visual interpretation of the fusion process shows that

JCA can efficiently leverage the complementary intermodal relationships while retaining the

intramodal relationships.

The rest of this paper is organized as follows. Section II provides a critical analysis of the relevant

literature on dimensional ER and attention models for A-V fusion. Section III describes the

proposed JCA A-V fusion model in detail. Section IV presents the experimental methodology

for the backbones of the individual modalities and the experimental settings used in our fusion

model. Finally, the results obtained with the proposed approach with RECOLA and Affwild2

datasets are presented and discussed in Section V.
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4.2 Related Work

4.2.1 Audio-Visual Fusion for Dimensional Emotion Recognition:

One of the early approaches using DL models for A-V fusion-based dimensional ER was proposed

by (Tzirakis et al., 2017), where A and V features are obtained using ResNet50 and 1D-CNN

respectively. The obtained features are then concatenated and fed to a Long short-term memory

model (LSTM) for the prediction of valence and arousal. (Ortega et al., 2019) investigated

an empirical study of fine-tuning pretrained CNN models by freezing various convolutional

layers. (Schoneveld et al., 2021) explored knowledge distillation using the teacher-student model

for V modality and the CNN model for A modality using spectrograms. The deep feature

representations are combined using a model-based fusion strategy, where RNNs are used to

capture the temporal dynamics. Inspired by the deep auto-encoders, (Nguyen et al., 2021)

investigated the prospect of how to simultaneously learn compact representative features from A

and V modalities using deep auto-encoders. They have proposed a deep model of two-stream

auto-encoders and LSTM for efficiently integrating V and A streams for dimensional ER.

(Deng, Wu & Shi, 2021) proposed an iterative self-distillation method for modeling the

uncertainties in the labels in a multi-task framework. They have trained a model with multiple

task labels, which is further used to distill iteratively to several student models. They have shown

that iterative distillation significantly improves the performance of the system. (Kuhnke et al.,

2020) proposed two stream A-V network, where V features are extracted from R(2plus1)D model

(Tran et al., 2018) pretrained from action recognition dataset and A features are obtained from

Resnet18 model (He et al., 2016). The obtained features are further concatenated for the final

prediction of valence and arousal. (Wang et al., 2021) further improved their approach (Kuhnke

et al., 2020) by introducing teacher-student model in a semi-supervised learning framework.

The teacher model is trained on the available labels, which are further used to obtain pseudo

labels for unlabeled data. The pseudo labels are finally used to train the student model, which is

used for the final prediction. Though the above-mentioned approaches have shown significant

improvement for dimensional ER, they fail to effectively capture the inter-modal relationships
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and relevant salient features specific to the task. Therefore, we have focused on capturing the

comprehensive features in a complementary fashion using attention mechanisms.

4.2.2 Attention Models for Audio-Visual Fusion:

Attention mechanisms are widely used in the context of multimodal fusion with various modalities

such as A and text (Lee, Yoon & Jung, 2020; Krishna & Ankita, 2020), V and text (Ma et al.,

2018a; Wei, Zhang, Li, Zhang & Wu, 2020), etc. (Zhao et al., 2020) proposed an end-to-end

architecture for emotion classification by integrating spatial, channel-wise and temporal attention

into V network and temporal attention into A network. (Ghaleb et al., 2020) explored attention

to weigh the time windows of a video sequence to efficiently exploit the temporal interactions

between the A-V modalities. They used transformer (Vaswani et al., 2017) based encoders

to obtain the attention weights through self-attention for emotion classification. (Lee et al.,

2018) proposed spatiotemporal attention for the V modality to focus on emotional salient parts

using Convolutional LSTM (ConvLSTM) modules and a temporal attention network using

deep networks for A modality. Then the attended features are concatenated and fed to the

regression network for the prediction of valence and arousal. However, these approaches focused

on modeling the intra-modal relationships and failed to effectively exploit the inter-modal

relationship of the A-V modalities.

(Wang et al., 2020) investigated the prospect of exploiting the implicit contextual information

along with the A and V modalities. They have proposed an end-to-end architecture using

cross-attention based on transformers for A-V group ER. (Parthasarathy & Sundaram, 2021) also

explored transformers with cross-modal attention for dimensional ER, where cross-attention is

integrated along with self-attention. (Tzirakis et al., 2021) investigated various fusion strategies

along with attention mechanisms for A-V fusion-based dimensional ER. They have further

explored self-attention as well as cross-attention fusion based on transformers to enable the

extracted features of different modalities to attend to each other. Although these approaches

have explored cross-modal attention with transformers, they fail to leverage semantic relevance

among the A-V features based on cross-correlation.
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(Zhang et al., 2021b) investigated the prospect of improving the fusion performance over

individual modalities and proposed leader-follower attentive fusion for dimensional ER. The

obtained features are encoded and attention weights are obtained by combining the encoded A

and V features. The attention weights are further attended on the V features and concatenated to

the original V features for final prediction. (Zhang et al., 2020) proposed an attentive fusion

mechanism, where V features are obtained from 3D-CNNs and A features from spectrograms

fed to 2D-CNN. The obtained A and V features are further re-weighted using weights, obtained

from scoring functions based on the relevant information in the individual modalities. (Wang

et al., 2020a) addressed the problem of multi-modal feature fusion along with frame alignment

issues between A and V modalities using cross-attention for speech recognition. (Luo et al.,

2018) investigated the potential of joint representation learning using Convolutional Recurrent

Neural Networks (CRNN) for vocal ER. They have also shown that the impact of time intervals

significantly impacts the performance of the system. (Hu et al., 2019) proposed dense multi-

modal fusion by densely integrating the representation at multiple shared layers to capture

hierarchical correlations across the modalities. (Vukotić et al., 2016) proposed a cross-modal

deep network architecture, where the weights of two deep networks are enforced to be symmetry,

yielding joint representation in a common feature space. In this work, we have used a simple

joint representation of feature concatenation of A and V modalities in our JCA framework.

Unlike prior approaches, we advocate for a simple yet efficient JCA model based on joint

modeling of intra and inter-modal relationships between A and V modalities. Cross-attention has

been successfully applied in several applications, such as weakly-supervised action localization

(Lee et al., 2021), and few-shot classification (Hou, Chang, MA, Shan & Chen, 2019). A similar

idea of exploiting the complementary relationships for better audiovisual fusion has also been

explored for person verification (Shon et al., 2019), where an attention layer is used for the

fusion of A and V modalities. In most of these cases, cross-attention has been applied across

the individual modalities. However, we have explored joint attention between individual and

combined AV features. By deploying the joint AV feature representation, we can effectively

capture the intra and inter-modal relationships simultaneously by allowing interactions across
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the modalities as well as within oneself. Recently, joint co-attention has been explored by (Duan

et al., 2021) recursively for A-V event localization. They have shown that recursive training of

joint co-attention yields more discriminant and robust feature representations for multimodal

fusion. In this paper, joint (combined) A-V features are extracted through cross-attention

(instead of co-attention) for dimensional ER. Specifically, the features of each modality attend to

themselves, as well as those of the other modality, through cross-correlation of the concatenated

A-V features, and features of individual modalities. By effectively leveraging the joint modeling

of intra- and inter-modal relationships, the proposed approach can significantly improve system

performance.

4.3 Proposed Approach

4.3.1 Visual Network:

Facial expressions from videos involve both appearance and temporal dynamics of video

sequences. Efficient modeling of these spatial and temporal dynamics plays a crucial role

in extracting discriminant and robust features, which in turn improves the overall system

performance. State-of-the-art performance is typically achieved using 2D-CNN in combination

with Recurrent Neural Networks (RNN) to capture the effective latent appearance representation,

along with temporal dynamics (Kim et al., 2019). Several approaches have been explored for

dimensional facial ER based on 2D-CNNs and LSTMs (Nicolaou et al., 2011; Wöllmer, Kaiser,

Eyben, Schuller & Rigoll, 2013). However, 3D-CNNs are found to be efficient in capturing the

spatiotemporal dynamics in videos (Rajasekhar et al., 2021b), and have also been explored for

dimensional facial ER. For instance, in (Kuhnke et al., 2020), they have shown that R3D (Tran

et al., 2018) pretrained on the Kinetics-400 action recognition dataset (Kay et al., 2017) has

outperformed conventional 2D-CNNs for dimensional ER on Affwild2 dataset. Inspired by the

performance of 3D-CNNs, we consider Inflated 3D-CNN (Carreira & Zisserman, 2017), to

extract spatiotemporal features of the facial clips from a video sequence. Initially, proposed

by (Carreira & Zisserman, 2017) for action recognition, the Inflated 3D (I3D) CNN model
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can efficiently capture the spatiotemporal dynamics of the V modality while optimizing fewer

parameters than that of conventional 3D-CNNs. The I3D model is obtained by inflating the

filters and pooling kernels of 2D ConvNet, expanding to 3D CNN. Therefore, it allows leveraging

existing common pretrained 2D-CNNs, which are trained on large-scale image datasets for facial

expressions, thereby improving the spatial discrimination for videos. Though I3D model has

been primarily explored for action recognition, it has also been used for other applications in the

field of affective computing, like in video-based pain localization (Gnana Praveen et al., 2020),

etc. In the proposed approach, we train the I3D model to extract spatiotemporal features for the

facial modality (see implementation details in Section 4.4.2).

4.3.2 Audio Network:

The para-lingual information of vocal signals was found to convey significant information on the

emotional state of a person. Even though vocal ER has been widely explored using conventional

handcrafted features, such as Mel-frequency cepstral coefficients (MFCCs) (Sethu et al., 2015),

there has been a significant improvement over the recent years with the introduction of DL

models. Though deep vocal ER models can be explored using spectrograms with 2D-CNNs

(Schoneveld et al., 2021; Wang et al., 2021), as well as raw A signal with 1D-CNNs (Tzirakis

et al., 2017), spectrograms are found to carry significant para-lingual information about the

affective state of a person (Ma et al., 2018b; Satt et al., 2017). Spectrograms have been explored

with various 2D-CNNs in the literature for ER (Slimi, Hamroun, Zrigui & Nicolas, 2020;

Albanie, Nagrani, Vedaldi & Zisserman, 2018). Therefore, we consider spectrograms in the

proposed framework along with 2D-CNN models to extract A features. In particular, Resnet18

(He et al., 2016) was used for Affwild2 dataset, and the A model is shown in Table 4.2 for

RECOLA dataset. Given the differences in the size of the datasets, we have used different

2D-CNN models for RECOLA and Affwild2 to avoid over-fitting. (see implementation details

in Section 4.4.2).
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4.3.3 Feature-Level Fusion of Multiple Backbones:

We have also explored the fusion of features extracted from multiple backbones for both A and

V modalities. Deploying multiple backbones for each modality can allow for capturing diverse

information for the same modality. Specifically, we have extracted V features from I3D, R3D,

and 2D CNN in conjunction with Long Short-Term Memory (LSTM). I3D and R3D are 3D CNN

models, used to simultaneously capture the spatiotemporal relationships, which is efficient at

capturing the short-term temporal relations. 2D CNN with LSTM extracts spatial features, and

performs temporal modeling, which captures the long-term temporal relationships. Similarly,

for A modality, combined features from a 2D CNN trained on spectrograms, and conventional

handcrafted MFCC features, are widely used in speech processing for many applications.

Then we have considered two different feature-level fusion strategies to obtain a feature

representation for each modality. First, we concatenate the features from all the backbones,

followed by a fully connected layer to produce a compact joint representation based on multiple

diverse backbones. Feature concatenation followed by a fully connected layer has been widely

used in the literature for many applications. The second strategy is a more specialized feature

stacking approach, where the features extracted from multiple diverse backbones and a sequence

are assembled into a block of features, and then processed by the A-V fusion model. This

approach eliminates the need for training an additional fully connected layer to combine features,

as all features are trained within the fusion model.

4.3.4 Joint Cross-Attentional Audio-Visual Fusion:

Though A-V fusion can be achieved through unified multimodal training, it was found that

multimodal performance often declines over that of individual modalities (Wang et al., 2020b).

This has been attributed to several factors, such as differences in learning dynamics for

A and V modalities (Wang et al., 2020b), different noise topologies, with some modality

streams containing more or less information for the task at hand, as well as specialized input

representations (Nagrani et al., 2021). Therefore, we have trained DL models for the individual
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Figure 4.2 Joint cross-attention model proposed for A-V fusion (in testing mode)

Taken from Praveen et al. (2023a)

A and V modalities independently to extract A and V features, which is further fed to the JCA

fusion model for A-V fusion that outputs final valence and arousal prediction.

For a given video sequence, the V modality carries relevant information in some video clips,

whereas the A modality might be more relevant for others. Since multiple modalities convey

more diverse and complementary information for valence and arousal than a single modality,

their complementarity can be effectively explored through A and V fusion. To reliably fuse

these modalities, we rely on a cross attention based fusion mechanism to efficiently encode the

inter-modal information while preserving the intra-modal characteristics. Though cross-attention

has been conventionally applied across the features of individual modalities, we have explored

cross-attention in a joint framework. Specifically, our joint A-V feature representation is obtained

by concatenating the A and V features to attend to the individual A and V features. By using the

joint representation, features of each modality attend to oneself, as well as the other modality,

helping to capture the semantic inter-modal relationships across A and V. The heterogeneity

among the A and V modalities can also be drastically reduced by using the combined feature

representation in the cross-attentional module, which further improves system performance. A

block diagram of the proposed model is shown in Figure 4.2.
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A) Training mode: Let 𝑿a and 𝑿v represent two sets of deep feature vectors extracted for the

A and V modalities, in response to a given input video sub-sequence 𝑺 of fixed size, where

𝑿a = {𝒙1
a, 𝒙

2
a, ..., 𝒙

𝐿
a } ∈ R𝑑𝑎×𝐿 and 𝑿v = {𝒙1

v, 𝒙
2
v, ..., 𝒙

𝐿
v } ∈ R𝑑𝑣×𝐿 . 𝐿 denotes the number of

non-overlapping fixed-size clips sampled uniformly from 𝑺, 𝑑𝑎 and 𝑑𝑣 represents the dimension

of the A and V feature representations, respectively, and 𝒙𝑙a and 𝒙𝑙v denotes the A and V feature

vectors, respectively, for 𝑙 = 1, 2, ..., 𝐿 clips. Instead of applying cross-attention across the

features of individual A and V modalities, we use cross-attention in a joint learning framework.

The joint representation of A-V features, 𝑱, is obtained by concatenating the A and V feature

vectors:

𝑱 = [𝑿a; 𝑿v] ∈ R𝑑×𝐿 (4.1)

where 𝑑 = 𝑑𝑎 + 𝑑𝑣 denotes the feature dimension of concatenated features.

The concatenated A-V feature representations (𝑱) of the given video sub-sequence (𝑺) are now

used to attend to unimodal feature representations 𝑿a and 𝑿v. The joint correlation matrix 𝑪a

across the A features 𝑿a, and the combined A-V features 𝑱 are given by:

𝑪a = tanh

(
𝑿𝑇a 𝑾ja𝑱√

𝑑

)
(4.2)

where 𝑾ja ∈ R𝐿×𝐿 represents learnable weight matrix across the A and combined A-V features,

and 𝑇 denotes transpose operation. Similarly, the joint correlation matrix for V features is given

by:

𝑪v = tanh

(
𝑿𝑇v 𝑾jv𝑱√

𝑑

)
(4.3)

The joint correlation matrices 𝑪a and 𝑪v for A and V modalities provide a semantic measure of

relevance not only across the modalities but also within the same modality. A higher correlation

coefficient of the joint correlation matrices 𝑪a and 𝑪v shows that the corresponding samples

are strongly correlated within the same modality as well as other modality. Therefore, the

proposed approach can efficiently leverage the complementary nature of A and V modalities (i.e.,

inter-modal relationship) as well as intra-modal relationships, thereby improving the performance
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of the system. After computing the joint correlation matrices, the attention weights of the A and

V modalities are estimated.

Since the dimensions of joint correlation matrices (R𝑑𝑎×𝑑) and the features of corresponding

modality (R𝐿×𝑑𝑎) differ, we rely on different learnable weight matrices corresponding to features

of the individual modalities, and the corresponding joint correlation matrices, to compute

attention weights of the modalities. For the A modality, the joint correlation matrix 𝑪a and the

corresponding A features 𝑿a are combined using the learnable weight matrices 𝑾ca and 𝑾a

respectively to compute the attention weights of A modality, which is given by

𝑯a = 𝑅𝑒𝐿𝑢(𝑾a𝑿a + 𝑾ca𝑪
𝑇
a ) (4.4)

where 𝑾ca ∈ R𝑘×𝑑 , 𝑾a ∈ R𝑘×𝐿 and 𝑯a represents the attention maps of the A modality.

Similarly, the attention maps (𝑯v) of V modality are obtained as

𝑯v = 𝑅𝑒𝐿𝑢(𝑾v𝑿v + 𝑾cv𝑪
𝑇
v ) (4.5)

where 𝑾cv ∈ R𝑘×𝑑 , 𝑾v ∈ R𝑘×𝐿 . In our experiments, we have considered 𝑘 to be 32.

Finally, the attention maps are used to compute the attended features of the A and V modalities.

These features are obtained as:

𝑿att,a = 𝑾ha𝑯a + 𝑿a (4.6)

𝑿att,v = 𝑾hv𝑯v + 𝑿v (4.7)

where 𝑾ha ∈ R𝑘×𝐿 and 𝑾hv ∈ R𝑘×𝐿 denote the learnable weight matrices, respectively. The

attended A and V features, 𝑿att,a and 𝑿att,v are further concatenated to obtain the A-V feature

representation, which is given by:

X̂ = [𝑿att,v; 𝑿att,a] (4.8)
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Finally, the A-V features are fed to the fully connected layers for the predictions of valence and

arousal.

The Concordance Correlation Coefficient (𝜌𝑐) has been widely used in the literature to measure the

level of agreement between the predictions (𝑥) and ground truth (𝑦) annotations for dimensional

ER (Tzirakis et al., 2017). Let 𝜇𝑥 and 𝜇𝑦 represent the mean of predictions and ground truth,

respectively. Similarly, if 𝜎2
𝑥 and 𝜎2

𝑦 denote the variance of predictions and ground truth,

respectively, then 𝜌𝑐 between the predictions and ground truth is:

𝜌𝑐 =
2𝜎2

𝑥𝑦

𝜎2
𝑥 + 𝜎2

𝑦 + (𝜇𝑥 − 𝜇𝑦)2
(4.9)

where 𝜎2
𝑥𝑦 denotes the predictions – ground truth covariance. Although MSE has been widely

used as a loss function for regression models, we use L = 1 − 𝜌𝑐 since it is a standard and

conventional loss function in the literature of dimensional ER literature (Tzirakis et al., 2017).

The parameters of our A-V fusion model (𝑾ca, 𝑾a, 𝑾cv, 𝑾v, 𝑾ha, and 𝑾hv) are optimized

according to this loss. B) Test mode: As shown in Figure 4.2, we assume that a continuous

video sequence is an input to our model during inference. Feature representations 𝒙a and 𝒙v

are extracted by A and V backbones for successive input clips and spectrograms, and fed to the

fusion model for the prediction of valence and arousal.

4.4 Experimental Methodology

4.4.1 Datasets:

The proposed architecture is validated on REmote COLlaborative and Affective (RECOLA)

(Ringeval et al., 2013) and AffWild2 (Kollias et al., 2019).

RECOLA: In total, this dataset consists of 9.5 hours of multimodal recordings, which are

recorded by 46 French-speaking participants, performing a collaborative task during a video

conference. Among the participants, 17 are French, 3 are German and 3 are Italian. The video
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sequences are divided into sequences of 5 minutes each, which are annotated with a regressed

intensity value for every 40 msec by 6 French-speaking annotators (three male and three female).

The dataset is split into three partitions: train (16 subjects), validation (15 subjects), and test (15

subjects) by balancing the age and gender of the speakers. Due to the uncontrolled spontaneous

nature of expressions of the subjects, the dataset has been widely used by the research community

in affective computing for various challenges such as AVEC 2015 (Ringeval et al., 2015a),

AVEC 2016 (Valstar et al., 2016), etc. Most of the existing approaches in the literature, e.g.,

(Schoneveld et al., 2021; Tzirakis et al., 2017), have been validated on the dataset used for the

AVEC 2016 (Valstar et al., 2016) challenge, which consists of 9 subjects for training, and 9

subjects for validation. Therefore, we have also validated our proposed approach on the dataset

used in AVEC 2016 challenge.

Affwild2: Affwild2 is the largest dataset in the field of affective computing, consisting of 564

videos collected from YouTube, all captured in the wild (Kollias et al., 2019). Sixteen of these

videos display two subjects, both of which have been annotated. The annotations are provided

by four experts using a joystick and the final annotations are obtained as the average of the four

raters. In total, there are 2, 816, 832 frames with 455 subjects, out of which 277 are male and

178 female. The annotations for valence and arousal are provided continuously in the range

of [−1, 1]. The dataset is split into training, validation, and test sets. The partitioning is done

in a subject-independent manner so that every subject’s data will present in only one subset.

The partitioning produces 341, 71, and 152 videos for the training, validation, and test sets

respectively.

4.4.2 Implementation Details:

RECOLA: For the V modality, the faces are extracted and pre-processed from the video

sequences of the dataset using MTCNN model (Zhang et al., 2016), a deep cascaded multi-task

framework of face detection and alignment. Faces are resized to 224 × 224 to be fed to the I3D

model (Carreira & Zisserman, 2017). To generate more samples, the videos of the dataset are

converted to sequences of 128 frames with a subsequence length of 16, resulting in 21,284
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training samples and 16,177 validation samples. I3D used the Inception_v1 architecture as the

base model as shown in Table 4.1, which is pre-trained on Kinetics-400 dataset (Kay et al.,

2017), and then inflated to a 3D-CNN using RECOLA videos of facial expressions. Typically,

the pooling operation is performed on the last convolutional layer(512 × 7 × 7) to reduce the

spatial dimension to size 1 (7 → 1), however, it may leave out useful information. Therefore, the

scaled dot product of audio and visual features are performed to smoothly reduce the dimension

of raw visual features as in (Duan et al., 2021). For regularizing the network, dropout is used

with 𝑝 = 0.8 on the linear layers. The initial learning rate of the network was set to be 1𝑒 − 4

and the momentum of 0.9 is used for Stochastic Gradient Descent (SGD). Also, weight decay

of 5𝑒 − 4 is used. Due to hardware limitations and memory constraints, the batch size of the

network is set to 8. Data augmentation is performed on the training data by random cropping,

which produces a scale-invariant model. The number of epochs is set to 50 and early stopping is

used to obtain the best network weights.

Table 4.1 Deep NN (I3D) for V Model.

"Conv : 64, 7 × 7 × 7, 2 × 2 × 2" : 3D conv layer of 64 filters,

each of kernel size 7 × 7 × 7 and stride 2 × 2 × 2.

"Pool : 3 × 3 × 3, 1 × 2 × 2" : kernel size 3 × 3 × 3 and

stride 1 × 2 × 2. "Linear: in = 1024, out = 256":

fully connected layer of input size 1024 and output size 256

Stage Layers Output size
Input - 3 x 8 x 224 x 224

Block 1
Conv : 64, 7x7x7, 2x2x2

64 x 7 x 112 x 112
Max pool : 1x3x3, 1x2x2

Block 2
Conv : 192, 3x3x3, 1x2x2

192 x 7 x 56 x 56
Max pool : 3x3x3, 1x2x2

Block 3
2 x Inception Module

480 x 6 x 28 x 28
Max pool : 3x3x3, 1x2x2

Block 4
5 x Inception Module

832 x 2 x 14 x 14
Max pool : 3x3x3, 1x2x2

Block 5
2 x Inception Module

1024 x 1 x1 x 1
Avg pool : 2x7x7, 1x2x2

Block 6 Linear : in = 1024, out = 256 256x1

Block 7 Linear : in = 256, out = 1 1x1
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The A network is composed of 3 blocks of conv. layers: the first block has conv. layer followed

by the max pooling layer, the second block has two conv. layers followed by max pooling layer,

and the third block has two conv. layers followed by the average pooling layer, which then

outputs the feature vectors. Finally, the feature vectors are fed to the linear layers to obtain the

final predictions. All the conv. and linear layers are followed by ReLU activation functions.

The vocal signal is extracted from video sub-sequences and re-sampled to 16KHz, which is

further segmented into short segments. First, we split the extracted vocal signal to 5.12 sec,

which corresponds to the sequence of 128 frames of the V network. Next, the spectrogram is

obtained using Discrete Fourier Transform (DFT) of length 1024 for each short vocal segment of

5.12 sec, where the window and shift length are both 40 msec to match with the granularity of

annotation frequency. Following aggregation of short-time spectra, we obtain the spectrogram of

128× 129. The spectrogram is converted to log-power-spectrum, expressed in dB. Finally, mean

and variance normalization is performed on the spectrogram. Apart from mean and variance

normalization, no other voice-specific processing such as silence removal, noise filtering, etc

is performed. These spectrograms are then fed to the deep NN described in Table 4.2. The A

Table 4.2 Deep NN for A Model. "Conv: 64, 5 × 5, 1 × 2"

denotes a conv layer of 64 filters, each of kernel size 5 × 5

and stride of 1 × 2. "Pool : 4 × 4, 4 × 4" denotes kernel

size of 4 × 4 and stride of 4 × 4. "Linear: in = 1024,

out = 256" denotes linear fully connected layer

of input size 1024 and output size 256.

Stage Layers Output size
Input - 1 x 128 x 129

Block 1
Conv : 64, 5x5, 1x2

64 x 31 x 15
Max pool : 4x4, 4x4

Block 2

Conv : 128, 5x5, 1x2

256 x 15 x 4Conv : 256, 3x3, 1x1

Max pool : 2x2, 2x2

Block 3

Conv : 512, 5x5, 1x1

1024 x 1 x 1Conv : 1024, 3x3, 1x1

Avg pool : 13x2, 1x1

Block 4 Linear : in = 1024, out = 256 256x1

Block 5 Linear : in = 256, out = 1 1x1
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network is trained from scratch, where the initial weights of the network are initialized with

values from a normal distribution. The number of epochs is set to 100, and early stopping is

used. The network is optimized using SGD with a momentum of 0.9. The initial learning rate is

set to be 0.001 and the batch size is fixed to be 16. Due to the limited data, the network might

be prone to over-fitting. Therefore, to prevent the network from over-fitting, dropout is used with

p = 0.5 after the last linear layer. Also, weight decay of 5𝑒 − 4 is used for all the experiments.

For the A-V fusion network, the size of A-V features is set to be 1024. In the joint cross-attention

module, the initial weights of the cross-attention matrix are initialized with Xavier method

(Glorot & Bengio, 2010), and the weights are updated using Adam optimizer. The initial learning

rate is set to be 0.001 and batch size is fixed to be 16. Also, a dropout of 0.5 is applied on the

attended A-V features and weight decay of 5𝑒 − 4 is used for all the experiments. Due to the

spontaneity of the expressions, the annotations are also found to be highly stochastic in nature.

Therefore, post-processing steps are applied to predictions and labels. A rigorous analysis of

some of the post-processing steps for annotations appears in (Huang et al., 2015). (Tzirakis

et al., 2017) explored a series of post-processing steps for validating their architecture on the

RECOLA. Inspired by their approach, we have followed similar post-processing steps to validate

our architecture: (i) median filtering with the window size ranging from 0.4sec to 20sec; (ii)

centering the predicted values by computing the bias between annotated (ground truth) values

and predicted values; (iii) matching the scaling of predicted values and annotations using the

ratio of the standard deviation of annotated values and predicted values. (iv) time shifting the

annotations forward in time with values ranging from 0.04 to 10sec to compensate for the delay

in human annotations (delay in correspondence between the annotated values and the video

frames). The details regarding the complexity of the code is provided in Appendix II.

Affwild2: For the V modality, we have used the cropped and aligned images provided by the

challenge organizers (Kollias & Zafeiriou, 2021a). For the missing frames in the V modality, we

have considered black frames (i.e., zero pixels). Faces are resized to 224x224 to be fed to the

I3D network. The subsequence length and the sequence length of the videos are considered to

be 8 and 64 respectively, obtained by down-sampling a sequence of 256 frames by 4. Therefore,



153

we have 8 sub-sequences in each sequence, resulting in 1,96,265 training samples and 41,740

validation samples, and 92,941 test samples. Similar to the RECOLA dataset, the I3D model

was pre-trained on the Kinetics-400 dataset (Kay et al., 2017), and inflated to a 3D-CNN using

Affwild2 videos of facial expressions. Instead of a conventional pooling layer after the last

convolutional layer, we have used scaled dot product of audio and visual features similar to

that of (Duan et al., 2021). To regularize the network, dropout is used with 𝑝 = 0.8 on the

linear layers. The initial learning rate was set to be 1𝑒 − 3, and the momentum of 0.8 is used for

SGD. Weight decay of 5𝑒 − 4 is used. Here again, the batch size of the network is set to be 8.

Data augmentation is performed on the training data by random cropping, which produces a

scale-invariant model. The number of epochs is set to 50 and early stopping is used to obtain the

best weights of the network.

For the A modality, the vocal signal is extracted from the corresponding video and re-sampled to

44100Hz, which is further segmented to short vocal segments corresponding to a sub-sequence

of 256 frames of the V network. The spectrogram is obtained using Discrete Fourier Transform

(DFT) of length 1024 for each short segment, where the window length is considered to be 20

msec and the hop length to be 10 msec. Following aggregation of short-time spectra, we obtain

the spectrogram of 64 x 107 corresponding to each sub-sequence of the V modality. Now a

normalization step is performed on the obtained spectrograms. The spectrogram is converted to

log-power-spectrum, expressed in dB. Finally, mean and variance normalization is performed

on the spectrogram. Now the obtained spectrograms are fed to the Resnet18 (He et al., 2016)

to obtain the A features. Due to the availability of a large number of samples in the Affwild2

dataset, we trained the Resnet18 model from scratch. To adapt to the number of channels of the

spectrogram, the first conv. layer in the Resnet18 model is replaced by a single channel. The

network is trained with an initial learning rate of 0.001 and weights are optimized using the

Adam optimizer. The batch size is considered to be 64 and early stopping is used to obtain the

best prediction model. For the A-V fusion network, we have used a similar training strategy as

with the RECOLA dataset.
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4.5 Results and Discussion

4.5.1 Ablation Study:

Table 4.3 Performance of our approach with various components

on the RECOLA dataset. The 2D-CNN in Table 4.2 is used

to extract A features in all experiments.

Method: V + Fusion Valence Arousal
2D-CNN + Feature Concatenation 0.538 0.680

2D-CNN + LSTM 0.552 0.697

I3D + Feature Concatenation 0.579 0.732

I3D + Cross-Attention (Rajasekhar et al., 2021a) 0.687 0.831

I3D + Joint Cross-Attention (JCA) 0.728 0.842

I3D; R3D; 2DCNN + JCA 0.762 0.891

RECOLA: Table 4.3 presents the results of our ablation study on the RECOLA validation

dataset. To analyze the performance of our joint cross-attention model for A-V fusion, we

compare it with various fusion strategies widely used in the literature. One of those fusion

strategies is LSTM-based fusion, where the A and V features are concatenated and fed to

the LSTM followed by linear layers. We have extracted V features (frame-level) using VGG

2D-CNN architecture, pretrained on FER dataset similar to (Ortega et al., 2019), and further

fine-tuned on RECOLA. Initially, we compare the proposed approach without LSTM, where the

A and V features are concatenated and directly fed to linear layers. LSTM model-based fusion is

evaluated by feeding the concatenated features to LSTM layer followed by fully connected layers.

Given the temporal modeling of the concatenated features, the fusion performance improves

over the non-LSTM based fusion strategy. We also compare the performance to I3D using

baseline concatenation, where the A-V features are concatenated without attention, and fed to

linear layers for valence/arousal prediction (similar to that of the fusion in (Ortega et al., 2019)).

We have further compared the performance improvement of joint cross-attention fusion over that

of conventional CA fusion (Rajasekhar et al., 2021a). In the case of conventional CA fusion,

attention weights are computed based on the cross-correlation across the A and V modalities.

The attention weights encode the semantic relevance across the A and V features. However,
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they do not allow the features to interact within the same modality, thereby failing to capture the

temporal modeling within the same modality. Though temporal modeling across the modalities

captures inter-modal relationships and can improve state-of-art accuracy, retaining the temporal

modeling within the same modality also plays a pivotal role to capture intra-modal relationships.

Therefore, we have integrated the modeling within A and V modalities, along with modeling of

inter-modal relationships, and further improve system performance. Since we have introduced

joint feature representation in the proposed JCA fusion model, it simultaneously captures both

intra- and inter-modal relationships and thereby outperforms the conventional CA fusion in

(Rajasekhar et al., 2021a), along with most of the widely used fusion strategies.

Table 4.4 Performance of our approach with various components on the Affwild2 dataset.

Resnet18 (He et al., 2016) is used to extract A features in all experiments.

Method: V + Fusion Valence Arousal
TSAV (Ortega et al., 2019) + Feature Concatenation 0.531 0.493

TSAV (Ortega et al., 2019) + Joint Cross-Attention (Ours) 0.642 0.592

I3D + Feature Concatenation 0.498 0.452

I3D + Leader-Follower Fusion (Schoneveld et al., 2021) 0.592 0.521

I3D + Cross-Attention (Rajasekhar et al., 2021a) 0.541 0.517

I3D + Joint Cross-Attention (Ours) 0.657 0.580

I3D; R3D; 2DCNN + JCA 0.725 0.614

Affwild2: Table 4.4 presents the results of our ablation study on the Affwild2 validation dataset.

The performance of our proposed JCA fusion was compared using various A and V backbones

and A-V fusion strategies. Since we used I3D for the V modality, we have compared it against

a V backbone based on 3D (2plus1d) CNNs (Ortega et al., 2019). First, we implemented

the backbone of TSAV (Ortega et al., 2019) with simple feature concatenation, where the

extracted A and V features are concatenated, and fed to fully connected layers for valence and

arousal prediction. Our proposed model provides a significant performance improvement. We

have also analyzed when our V backbone (I3D) is used with baseline feature concatenation

and leader-follower fusion-based attention (Schoneveld et al., 2021) with our backbones and

found that there is a significant improvement in the performance over that of baseline feature

concatenation. We have also implemented the conventional CA fusion (Rajasekhar et al.,
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2021a) with the I3D backbone. Although its performance improves over that of baseline

feature concatenation, it shows lower performance than leader-follower attention (Schoneveld

et al., 2021). Finally, we have compared the proposed JCA fusion with I3D and found that it

outperforms other fusion strategies in the literature on Affwild2. By allowing the features of

each modality to interact with itself and other modalities, we can effectively capture the semantic

relevance of intra- and inter-modal relationships of A and V modalities for dimensional ER. We

can also observe that the performance of our proposed A-V fusion model with TSAV (Ortega

et al., 2019) slightly outperforms that of JCA fusion with I3D. We have further validated the

proposed fusion model with multiple backbones of V and A modalities and showed further

improvement in the performance of the system.

We have also explored multiple backbones for A and V modalities along with the proposed fusion

model and further improved the performance of the system. As discussed in Section 4.3.1 and

4.3.2 for V and A modalities respectively, we have used I3D, R3D, and 2D CNN in conjunction

with LSTM to obtain spatiotemporal features for V modality. Similarly, we have used MFCCs

and spectrograms with 2D CNNs for A modality. The features of multiple backbones are fused

using feature concatenation followed by a fully connected layer and stacking of features to obtain

comprehensive features for both A and V modalities. Features from multiple backbones help

to obtain diverse information about each modality and thereby improve the performance of

the system. The proposed AV JCA fusion model is validated with the fusion of features from

multiple backbones for both A and V modalities and the results are shown in Table 4.5.

Table 4.5 Performance of the proposed AV fusion model

using the fusion of features from multiple backbones

for A and V modalities. FC denotes a fully connected layer.

Dataset Fusion Method Valence Arousal

RECOLA Concatenation + FC 0.762 0.891

Stacking 0.754 0.865

Affwild2 Concatenation + FC 0.725 0.614

Stacking 0.712 0.595
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We have also evaluated our proposed approach for the case where a growing proportion of A

is replaced by background noise in test mode. Specifically, we have randomly replaced some

segments/spectrograms to reflect background noise in the video. We have tested our system

on Affwild2 with a video named "16-30-1920x1080.mp4" with 5475 frames and varied the

percentage of missing spectrograms by 10, 25, 50 and 100%. Even though spectrograms are

noisy and absent, we can observe that there is a modest minimal decline in CCC performance

(see Fig 4.3). In particular, since we can effectively encode the complementary relationship

across modalities (by jointly modeling intra- and inter-modal relationships), our models can

sustain a high level of performance for valence.

Figure 4.3 Performance of our proposed A-V fusion (JCA) and Leader-

Follower Attention (LFA) (Zhang et al., 2021b) models with a

growing proportion of missing A modality

Taken from Praveen et al. (2023a)

4.5.2 Comparison to State-of-the-Art:

RECOLA: Table 4.6 presents our comparative results against state-of-the-art A-V fusion models

on the RECOLA development set. (He et al., 2015) explored handcrafted LPQ-TOP features for

V, and low-level descriptors (LLDs) such as MFCC, energy, etc. for A, along with physiological

modalities like electrocardiogram (ECG) and electro-dermal activity (EDA). Given the use

of additional physiological modalities, and more LLD descriptors in A, as well as additional
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geometric features of V, the fusion performance provides significant improvement. (Han, Zhang,

Cummins, Ringeval & Schuller, 2017) explored LLD features for A, and facial landmark features

(only geometric) for V, combined hierarchically to leverage the individual advantages of support

vector regressor (SVR) and Bidirectional Long Short-Term Memory Networks (BLSTM), and

improved the performance for valence. Inspired by the performance of DL models, (Tzirakis

et al., 2017) explored Resnet50 2D-CNN for V and 1D-CNN on raw data for A. However,

the features are directly concatenated, and fed to LSTMs. This results in a decline in CCC

performance over individual modalities. The performance has been further improved by (Ortega

et al., 2019), where they pre-train a CNN on FER for V and LLD for A. Recently, (Schoneveld

et al., 2021) used knowledge distillation for V, and a VGG network on spectrograms for A. Instead

of direct concatenation, they rely on two independent CNNs before concatenating them, and

showed that their fusion outperforms individual modalities. Though deep models have improved

the performance over handcrafted features, they fail to effectively leverage the complementary

nature of the A-V modalities. By effectively leveraging the intra and inter-modal relationships

of A and V features, the proposed model outperforms state-of-the-art approaches using joint

cross-attention.

Table 4.6 CCC performance of proposed and state-of-art methods for A-V fusion on the

RECOLA development set. (SM represents strength modeling of SVR + BLSTM.)

Method – A/V backbone Valence Arousal
Audio Visual Fusion Audio Visual Fusion

(He et al., 2015) – A: LLDs; V: LLDs 0.400 0.441 0.609 0.800 0.587 0.747

(Han et al., 2017) – A: LLDs + SM; V: geometric features + S.M. 0.480 0.592 0.554 0.760 0.350 0.685

(Tzirakis et al., 2017) – A: 1D-CNN; V: Resnet50 0.428 0.637 0.502 0.786 0.371 0.731

(Ortega et al., 2019) – A:LLDs; V: 2D-CNN - - 0.565 - - 0.749

(Schoneveld et al., 2021) – A: Finetuned VGGish; V: Distilled CNN 0.460 0.550 0.630 0.800 0.570 0.810

(Rajasekhar et al., 2021a) – A: 2D-CNN; V: I3D 0.463 0.642 0.687 0.822 0.582 0.831

Joint Cross-Attention (Ours) – A: 2D-CNN; V: I3D 0.463 0.642 0.695 ± 0.033 0.822 0.582 0.801 ± 0.041

Affwild2: Table 4.7 shows our comparative results against relevant state-of-the-art A-V fusion

models on the Affwild2 dataset. In recent years, most of the existing work on the Affwild2

dataset has been submitted to the Affective Behavior Analysis in-the-wild (ABAW) challenges

(Kollias, Schulc, Hajiyev & Zafeiriou, 2020; Kollias & Zafeiriou, 2021a). Therefore, we compare
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Table 4.7 CCC performance of the proposed and state-of-the-art methods for

A-V fusion on the Affwild2 development set. (TCN denotes

Temporal Convolutional Network.)

Method – A/V backbone Valence Arousal
Audio Visual Fusion Audio Visual Fusion

(Kuhnke et al., 2020) – A: Resnet18; V: R(2plus1)D 0.355 0.463 0.493 0.359 0.570 0.613

(Zhang et al., 2021b) – A: VGGish; V: Resnet50 + TCN - 0.425 0.469 - 0.647 0.649
(Rajasekhar et al., 2021a) – A: Resnet18; V: I3D 0.355 0.412 0.541 0.359 0.534 0.517

Joint Cross-Attention (Ours) – A: Resnet18; V: I3D 0.355 0.412 0.625 ± 0.032 0.359 0.534 0.541 ± 0.039

our proposed approach with that of the top relevant approaches appearing in ABAW challenges

for A-V fusion.

Figure 4.4 Visualization of attention scores of our proposed A-V fusion (JCA) and CA

(Rajasekhar et al., 2021a) models on a video named "317" of Affwild2 dataset

Taken from Praveen et al. (2023a)

However, the experimental protocol and training data vary widely among these approaches.

We, therefore, re-implemented these approaches according to our experimental protocol and

analyzed the results on the Affwild2 validation set for a fair comparison. Similar to our A and

V backbones, (Kuhnke et al., 2020) also used 3D-CNNs, where R(2plus1)D model is used for

visual modality and Resnet18 is used for audio modality. However, they perform simple feature

concatenation without any specialized fusion model for the prediction of valence and arousal. So

the fusion performance was not significantly improved over the uni-modal performance. (Zhang



160

et al., 2021b) explored the leader-follower attention model for fusion and showed minimal

improvement in fusion performance over uni-modal performances. Though they have shown

significant performance for arousal than valence, it is highly attributed to the visual backbone.

In our proposed approach, we have shown significant improvement for fusion, especially for

valence than arousal. Even with vanilla CA fusion (Rajasekhar et al., 2021a), we have shown

that fusion performance for valence has been improved better than (Zhang et al., 2021b) and

(Kuhnke et al., 2020). By deploying joint representation into the cross attentional fusion model,

the fusion performance of valence has been significantly improved further. In the case of arousal,

though the fusion performance is lower than that of (Zhang et al., 2021b) and (Kuhnke et al.,

2020), we can observe that it has been improved better than that of uni-modal visual performance.

Therefore, the proposed approach is more effective in capturing the variations spanning over a

wide range of emotions (valence) than that of the intensities of the emotions (arousal).

Figure 4.5 Visualization of attention scores of our proposed A-V fusion (JCA) and CA

(Rajasekhar et al., 2021a) models on a video named "video92" of Affwild2 validation data

Taken from Praveen et al. (2023a)

Table 4.8 shows the results of our approach against relevant state-of-the-art A-V fusion models

on the Affwild2 test set. In recent years, several challenges such as FG2020 (Kollias et al.,

2020), ICCV2021 (Kollias & Zafeiriou, 2021a) have been performed on the Affwild2 dataset

as it has been the largest in-the-wild dataset in the field of affective computing. (Ortega et al.,

2019) proposed a two stream A-V network by using R(2plus1)D (Tran et al., 2018) for V
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Figure 4.6 Visualization of attention scores of our proposed A-V fusion (JCA) and CA

(Rajasekhar et al., 2021a) models on a video named "21-24-1920x1080" of Affwild2

validation dataset. Negative example where the proposed approach

fails to focus on semantic information

Taken from Praveen et al. (2023a)

stream, and Resnet18 (He et al., 2016) for A stream. They have also used additional masks

as external inputs to guide the spatial attention of the V modality and label filtering based

on multi-task labels to deal with the noisy annotations of valence and arousal. (Wang et al.,

2021) further extended their approach to perform semi-supervised learning. However, they

use the annotations of other ABAW challenge tasks (expression classification and action unit

classification) to filter the noisy labels of valence and arousal, as well as to estimate pseudo

labels for the unlabeled samples. (Deng et al., 2021) proposed an iterative distillation method

for modeling the uncertainty of annotations of valence and arousal and showed significant

improvement in the performance. However, they have used iterative distillation of student models,

which is computationally expensive as well as labels of other tasks to model the uncertainty

of valence/arousal labels. (Zhang et al., 2021b), (Meng et al., 2022) and (Karas, Tellamekala,

Mallol-Ragolta, Valstar & Schuller, 2022) are the only approaches, which does not use the labels

of additional tasks. (Meng et al., 2022) has shown significant improvement in the performance

by using three external datasets along with multiple backbones of A and V modalities, whereas

(Zhang et al., 2021b) and (Karas et al., 2022) use only Affwild2 dataset similar to ours. The
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proposed approach performs at par with that of (Zhang et al., 2021b) and is better than that of

(Karas et al., 2022) in terms of valence.

Table 4.8 CCC of the proposed approach compared to

state-of-the-art methods for A-V fusion on Affwild2

test set.

Method Valence Arousal Mean
(Meng et al., 2022) 0.606 0.596 0.601

(Kuhnke et al., 2020) 0.448 0.417 0.432

(Zhang et al., 2021b) 0.463 0.492 0.477

(Wang et al., 2021) 0.478 0.498 0.488

(Deng et al., 2021) 0.533 0.454 0.493

(Karas et al., 2022) 0.418 0.407 0.413

JCA (Ours) 0.451 0.389 0.420

Figure 4.7 Visualization of valence and arousal predictions over time for our proposed

A-V fusion (JCA) and Cross-Attention (CA) (Rajasekhar et al., 2021a) on video named

"video67" of Affwild2 validation dataset

Taken from Praveen et al. (2023a)
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4.5.3 Visual Analysis

We have further validated the proposed approach using interpretability analysis by visualizing

the attention scores of the A and V modalities. In the proposed approach, we have primarily

exploited the temporal attention within the same modality, as well as across the modalities. So

the clip-level attention scores help us to intuitively understand the semantic clips in the video,

where the fusion attention model focused on the temporal sequence of A and V modalities.

To highlight the improvement of the proposed approach w.r.t. that of the vanilla CA model

(Rajasekhar et al., 2021a), we have also plotted the attention scores of the proposed JCA model

along with that of (Rajasekhar et al., 2021a) including the predictions and ground truth of

valence and arousal. It can be observed that the proposed JCA model can effectively capture

the importance of modalities, as well as the temporal significance within the modalities. For

instance, as shown in Fig 4.4, the proposed JCA model focused on V modality when the person

smiles as the facial muscles around his nose and mouth significantly change over time. Similarly,

the proposed model assigns a high attention score for A modality when the person exhibits

significant modulation of vocal expressions. From Fig 4.5, we observe that the proposed model

assigns a higher attention score for clips when the person elicits knitted brows and significant

facial muscle movement near his mouth, whereas (Rajasekhar et al., 2021a) fails to capture

those important clips of the V modality. In both cases, we can observe that JCA assigns a higher

attention score to the corresponding modality when there is significant temporal variation (i.e.,

facial expression or tone changes), whereas the vanilla CA model (Rajasekhar et al., 2021a)

fails to focus on the some of the important clips of V modality. Since the proposed JCA

model leverages both the intramodal and intermodal relationships, it can effectively leverage the

contextual information among A and V modalities. Therefore, the proposed model can efficiently

exploit the importance of modalities as well as temporal importance within the modalities,

resulting in better performance than that of (Rajasekhar et al., 2021a), which has also been

reflected in the predictions of valence and arousal.

Though the proposed JCA fusion model can outperform (Rajasekhar et al., 2021a), we observe

lower performance for arousal than with valence, on both RECOLA and Affwild2 datasets. Since
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the proposed model considers the intra and inter-variations in computing the attention scores,

JCA fusion sometimes becomes misleading by assigning higher attention scores for neutral

frames, and lower attention scores for more relevant clips when there is significant occlusion,

blur or pose variations in the temporal sequence of the V modality. For instance, as shown in

Fig 4.6, the proposed model assigns higher attention scores for neutral clips, but lower attention

scores for clips with more relevant facial expressions due to blur and strong pose variations. In

addition to the attention scores of A and V modalities, we also visualize the valence and arousal

predictions over time for videos of the Affwild2 dataset. The proposed JCA model is able to

capture the contextual relationships between A and V modalities better than that of (Rajasekhar

et al., 2021a), which helps to achieve better performance. As shown in Fig 4.7, we can observe

that both the JCA and vanilla cross-attention models (Rajasekhar et al., 2021a) can track the

ground truth for valence and arousal. Yet, when a fully frontal face is not available (due to pose

variations), the predictions of the proposed JCA model closely follow the ground truth more

closely than that of (Rajasekhar et al., 2021a), especially for valence.

4.6 Conclusion

In this paper, JCA A-V fusion model is explored for video-based dimensional ER. Contrary

to the prior approaches, we leverage the intra- and inter-modal relationships across the A and

V features in a unified framework. Specifically, the complementary relationship between A

and V features is efficiently captured based on the correlation between the joint A-V feature

representations and individual A and V features while retaining the intra-modal relationships.

By jointly modeling the inter and inter-modal relationships, features of each modality attend to

the other modality as well as itself, resulting in robust A and V feature representations. With the

proposed model, A and V backbones are first trained individually for facial (V) and vocal (A)

modalities. Then, an attention mechanism based on the correlation between joint and individual

features is applied to obtain the attended A and V features. Finally, the attention-weighted

features are concatenated, and fed to linear connected layers to predict valence and arousal values.

The proposed A-V fusion model is validated experimentally on the challenging RECOLA and
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Affwild2 video datasets, using different A and V backbones, and different proportions of missing

A segments during the testing mode. Results show that the proposed model is a cost-effective

approach that can outperform the state-of-the-art. It encodes inter-modal relationships, while

sustaining a high level of performance, even when A segments are noisy and absent. Although

the JCA AV fusion model has been proposed for dimensional emotion recognition, it can also

be explored for other applications pertinent to audio-visual fusion such as identity verification,

event localization, etc.





CONCLUSION AND RECOMMENDATIONS

5.1 Summary of Contributions

Emotions play an important part in human communication. Human emotions are often conveyed

through multiple modalities such as audio, visual, text, etc. So it is obvious to exploit the

diverse and complementary information available in multiple modalities to build a robust system

for emotion recognition. Although emotion recognition has been widely explored for many

decades in the field of affective computing, there are still many open challenges associated

with developing a robust emotion recognition system in real-world scenarios. This thesis

aims to design a robust emotion recognition system by addressing the challenges pertinent to

weakly annotated videos for pain intensity estimation and A-V fusion for dimensional emotion

recognition and validated on pain and fatigue datasets.

Chapter 2 presented a detailed review of weakly supervised learning models for facial behavior

analysis. The existing approaches have been rigorously analyzed for weakly supervised learning

models of facial behavior analysis and provided a taxonomy of these approaches along with their

insights and limitations. In addition to that, the challenges associated with developing weakly

supervised learning models have been discussed for facial behavior analysis along with potential

research directions.

Chapter 3 introduced a novel framework of weakly supervised DA for pain intensity estimation

using weakly labeled videos by exploiting the DL models. The proposed model enforces ordinal

relationships among the intensity levels assigned to target sequences and associates multiple

relevant frames to sequence-level labels (instead of a single frame). Specifically, the proposed

model learns discriminant and domain-invariant feature representations by integrating MIL

with deep adversarial DA, where soft Gaussian labels are used to efficiently represent the weak

ordinal sequence-level labels from the target domain. Experimental results on pain and fatigue
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datasets indicate that our proposed approach can significantly improve performance over the

state-of-the-art models, allowing us to achieve a greater pain or fatigue localization accuracy.

Chapter 4 presented a novel attention model for effective A-V in dimensional emotion recognition.

The proposed model investigated the prospect of leveraging the complementary relationship

across the A and V modalities to predict the individual’s emotional states in valence-arousal space.

In particular, the proposed model leverages the inter-modal relationships while still retaining

the intra-modal relationships by computing the cross-attention weights based on the correlation

between the joint feature representation and that of the individual modalities. By deploying

the joint A-V feature representation into the cross-attention module, it helps to simultaneously

leverage both the intra and inter-modal relationships, thereby significantly improving the

performance of the system. The proposed model has been evaluated for dimensional emotion

recognition and detection of fatigue levels. Results indicate that our joint cross-attentional A-V

fusion model provides a cost-effective solution that can outperform state-of-the-art approaches,

even when the modalities are noisy or absent.

5.2 Recommendations

Based on the systematic study of ER pertinent to WSL and A-V fusion, the following research

directions are found to be worth exploring in the future to further improve the performance of

the system.

• Modeling the relationship between the video clip and its corresponding high-level

annotation. Since the high-level annotation in MIL for regression is associated with one of

the frames in the video clip, estimating the frame in the video clip that associates with the

high-level annotation helps us to effectively capture the relationship between the video clip

(bag) and the corresponding annotation.
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• Exploring the prospect of leveraging weakly supervised domain adaptation from weakly

labeled source domain to unlabeled target domain. Investigating the prospect of leveraging

the proposed framework of Weakly supervised domain adaptation (WSDA) to an unlabeled

target domain or weakly labeled source domain to an unlabeled target domain can minimize

the burden of the complex process of obtaining the annotations.

• Explore the framework of WSDA for other tasks such as classification or continuous

regression or even for other applications. The proposed framework of WSDA was found

to promising in leveraging the source domain to deal with the challenges of weak annotations

in the target domain. So, the proposed framework can be explored further to extend to other

classification tasks or even for other applications.

• Exploring gating mechanism to leverage the adaptive fusion of A and V modalities.

Fusion of A and V modalities may not always help in improving the performance of the

system as the A and V modalities may contradict each other in some of the video clips. So

exploring techniques like gating mechanisms can be worth exploring to adaptively fusion A

and V modalities based on their semantic relationship.

• To further investigate the challenges associated with missing modalities. In this thesis,

the performance of the proposed attention model is evaluated for A-V fusion for missing A

modality. However, it will be worth exploring to further investigate the challenges of missing

modalities to further improve the performance of the system.
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Abstract

In video-based emotion recognition (ER), it is important to effectively leverage the complementary

relationship among audio (A) and visual (V) modalities, while retaining the intra-modal

characteristics of individual modalities. In this paper, we present a recursive joint attention

model along with long short-term memory (LSTM) modules for fusion of vocal and facial

expressions in regression-based ER. Specifically, we investigated the possibility of exploiting

the complementary nature of A and V modalities using joint cross attention model in a recursive

fashion and LSTMs to capture the intra-modal temporal dependencies within the same modalities

as well as among the A-V feature representations. By integrating LSTMs with recursive joint

cross attention, our model can efficiently leverage both intra- and inter-modal relationships

for fusion of A and V modalities. The results of extensive experiments performed on the

challenging Affwild2 and Fatigue (private) datasets indicate that the proposed A-V fusion model

can significantly outperform state-of-the-art-methods.

1. Introduction

Automatic emotion recognition (ER) is a challenging problem due to the complex and extremely

diverse nature of expressions across individuals and cultures. In most of the real-world

applications, emotions are exhibited over a wide range of emotional states besides the six
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basic categorical expressions - anger, disgust, fear, happiness, sad, and surprise (Ekman, 1992).

For instance, emotional states can be expressed as intensities of fatigue, stress, and pain over

discrete levels. Similarly, the wide range of continuous emotional states is often formulated

as dimensional ER, where diverse and complex human emotions are represented along the

dimensions of valence and arousal. Valence denotes the range of continuous emotional states

pertinent to pleasantness, spanning from being very sad (negative) to very happy (positive).

Similarly, arousal spans the range of emotional states related to intensity, from being very passive

(sleepiness) to extremely active (high excitement). In this paper, we have focused on developing

a robust model for regression-based ER in valence-arousal space, as well as for fatigue.

A and V modalities often carry complementary relationships among themselves, which is crucial

to be exploited to build an efficient A-V fusion system for regression-based ER. In addition to

the inter-modal relationships across A and V modalities, temporal dynamics in videos carry

significant information pertinent to the evolution of facial and vocal expressions over time.

Therefore, effectively leveraging both the inter-modal association across the A and V modalities

and temporal dynamics (intra-modal) within A and V modalities plays a major role in building a

robust A-V recognition system. In this paper, we have investigated the prospect of leveraging

these inter- and intra-modal characteristics of A and V modalities in a unified framework. In

most of the existing approaches for regression-based ER, LSTMs have been used to model the

intra-modal temporal dynamics in videos (Schoneveld et al., 2021; Kuhnke et al., 2020) due

to their efficiency in capturing the long-term temporal dynamics (Karas et al., 2022). On the

other hand, cross-attention models (Rajasekhar et al., 2021a) have been explored to model the

inter-modal characteristics of A and V modalities for dimensional ER.

In this work, we have proposed a unified framework for A-V fusion, which effectively leverages

both the intra- and inter-modal information in videos using LSTMs and joint cross attention

respectively. To further improve the A-V feature representations of the joint cross-attention model,

we have also explored the recursive attention mechanism. Training the joint cross-attention

model recursively allows refining the A and V feature representations, thereby improving the

system performance. The main contributions of the paper are as follows. (1) A recursive joint
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cross-attentional model for A-V fusion is introduced to effectively exploit the complementary

relationship across modalities while deploying a recursive mechanism to further refine the A-V

feature representations. (2) LSTMs are further integrated to effectively capture the temporal

dynamics within the individual modalities, as well as within the A-V feature representations. (3)

An extensive set of experiments are conducted on the challenging Affwild2 and Fatigue (private)

datasets, showing that the proposed A-V fusion model outperforms the related state-of-the-art

models for regression-based ER.

2. Related Work

An early DL approach for A-V fusion-based dimensional ER was proposed by (Tzirakis et al.,

2017), where the deep features (obtained with Resnet-50 for V and 1D CNN for A) are

concatenated and fed to an LSTM. Recently, (Karas et al., 2022) investigated the effectiveness of

attention models and compared them with recurrent networks. They have shown that LSTMs are

quite efficient in capturing the temporal dependencies when compared to attention models for

dimensional ER. (Kuhnke et al., 2020) proposed a two-stream A-V network, where deep models

are used to extract A and V features, and further concatenated for dimensional ER. Most of these

approaches fail to effectively capture the intermodal semantics across A and V modalities. In

(Tzirakis et al., 2021) and (Parthasarathy & Sundaram, 2021), authors focused on cross-modal

attention using transformers to exploit the inter-modal relationships of A and V modalities

for dimensional ER. (Rajasekhar et al., 2021a) explored cross-attention models to leverage

the inter-modal characteristics based on cross-correlation across the A and V features. They

improved their approach by introducing joint feature representation into the cross-attention model

to retain the intra-modal characteristics (Praveen et al., 2023a). In most of these approaches,

they cannot effectively leverage intra-modal relationships. (Chen & Jin, 2016) modeled A and

V features using LSTMs, and the unimodal predictions are combined using attention weights

from conditional attention based on LSTMs. (Darshana, F, Simon & Clinton, 2019) also

explored LSTMs for V features and used DNN-based attention on the concatenated features of

A and V modalities for the final output predictions. (Beard et al., 2018) proposed a recursive

recurrent attention model, where LSTMs are augmented using an additional shared memory



174

state to capture the multi-modal relationships recursively. In contrast with these approaches,

we focus on modeling the A-V relationships by allowing the A and V features to interact and

measure the semantic relevance across and within the modalities recursively before feature

concatenation. LSTMs are employed for temporal modeling of both uni-modal and multimodal

features to further enhance the proposed framework. Therefore, our proposed model effectively

leverages the intra- and complementary inter-modal relationships, resulting in a higher level of

performance.

Figure-A I-1 Block diagram of the proposed recursive joint attention model with BLSTMs

Taken from Praveen et al. (2023b)

3. Proposed Approach

The block diagram of the proposed approach is shown in Figure I-1.

A) Problem Formulation: Given an input video sub-sequence 𝑆, 𝐿 non-overlapping video clips

are uniformly sampled and deep feature vectors 𝑿a and 𝑿v are extracted for the individual A

and V modalities respectively from pre-trained networks. Let 𝑿a = {𝒙1
a, 𝒙

2
a, ..., 𝒙

𝐿
a } ∈ R𝑑𝑎×𝐿

and 𝑿v = {𝒙1
v, 𝒙

2
v, ..., 𝒙

𝐿
v } ∈ R𝑑𝑣×𝐿 where 𝑑𝑎 and 𝑑𝑣 represent the dimensions of the A and V

feature representations, respectively, and 𝒙𝑙a and 𝒙𝑙v denotes the A and V feature vectors of the

video clips, respectively, for 𝑙 = 1, 2, ..., 𝐿 clips. The objective of the problem is to estimate

the regression model 𝐹 : 𝑿 → 𝒀 from the training data 𝑿, where 𝑿 denotes the set of A

and V feature vectors of the input video clips and 𝒀 represents the regression labels of the

corresponding video clips.
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B) Audio and Visual Networks: Spectrograms has been found to be promising with various

2D-CNNs (Resnet-18 (He et al., 2016)) for ER (Slimi et al., 2020; Albanie et al., 2018).

Therefore, we have explored spectrograms in the proposed framework. In order to effectively

leverage the temporal dynamics within the A modality, we have also explored LSTMs across the

temporal segments of the A sequences. Finally, the A feature vectors of 𝐿 video clips are shown

as 𝑿𝒂 = (𝒙1
a, 𝒙

2
a, ..., 𝒙

𝐿
a ) ∈ R𝑑𝑎×𝐿 .

Facial expressions exhibit significant information pertinent to both visual appearance and

temporal dynamics in videos. LSTMs are found to be efficient in capturing the long-term

temporal dynamics while 3DCNNs are effective in capturing the short-term temporal dynamics

(Fan et al., 2016). Therefore, we have used LSTMs with 3D CNNs (R3D (Tran et al., 2018)) to

obtain the V features for the fusion model. In most of the existing approaches, the output of

the last convolution layer is 512 x 7 x 7, which is further passed through a pooling operation to

reduce the spatial dimensions to 1 (7 → 1). This reduction in spatial dimension was found to

leave out useful information as the stride is big. Therefore, inspired by the idea of (Duan et al.,

2021), we use the A feature representation to smoothly reduce the spatial dimensions of raw V

features for each video clip similar to that of (Duan et al., 2021). Finally, we obtain a matrix of

V feature vectors of the video clips as 𝑿𝒗 = (𝒙1
v, 𝒙

2
v, ..., 𝒙

𝐿
v ) ∈ R𝑑𝑣×𝐿 .

C) Recursive Joint Attention Model: Given the A and V feature representations 𝑿𝒂 and

𝑿𝒗, the joint feature representation is obtained by concatenating the A and V feature vectors

𝑱 = [𝑿a; 𝑿v] ∈ R𝑑×𝐿 , where 𝑑 = 𝑑𝑎 + 𝑑𝑣 denotes the feature dimension of concatenated features.

The concatenated A-V feature representations (𝑱) of the given video sub-sequence (𝑺) are now

used to attend to unimodal feature representations 𝑿a and 𝑿v. The joint correlation matrix 𝑪a

across the A features 𝑿a, and the combined A-V features 𝑱 are given by:

𝑪a = tanh

(
𝑿𝑇a 𝑾ja𝑱√

𝑑

)
(A I-1)

where 𝑾ja ∈ R𝐿×𝐿 represents learnable weight matrix across the A and combined A-V features,

and 𝑇 denotes transpose operation. Similarly, the joint correlation matrix for V features is given
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by:

𝑪v = tanh

(
𝑿𝑇v 𝑾jv𝑱√

𝑑

)
(A I-2)

The joint correlation matrices capture the semantic relevance across the A and V modalities as

well as within the same modalities among consecutive video clips, which helps in effectively

leveraging intra- and inter-modal relationships. After computing the joint correlation matrices, the

attention weights of the A and V modalities are estimated. For the A modality, the joint correlation

matrix 𝑪a and the corresponding A features 𝑿a are combined using the learnable weight matrices

𝑾ca to compute the attention weights of A modality, which is given by 𝑯a = 𝑅𝑒𝐿𝑢(𝑿a𝑾ca𝑪a)
where 𝑾ca ∈ R𝑑𝑎×𝑑𝑎 and 𝑯a represents the attention maps of the A modality. Similarly, the

attention maps (𝑯v) of V modality are obtained as 𝑯v = 𝑅𝑒𝐿𝑈 (𝑿v𝑾cv𝑪v) where 𝑾cv ∈ R𝑑𝑣×𝑑𝑣 .
Then, the attention maps are used to compute the attended features of A and V modalities as:

𝑿att,a = 𝑯a𝑾ha + 𝑿a (A I-3)

𝑿att,v = 𝑯v𝑾hv + 𝑿v (A I-4)

where 𝑾ha ∈ R𝑑×𝑑𝑎 and 𝑾hv ∈ R𝑑×𝑑𝑣 denote the learnable weight matrices for A and V

respectively. After obtaining the attended features they are fed again to the joint cross-attentional

model to compute the new A and V feature representations as:

𝑿 (𝑡)
att,a = 𝑯(𝑡)

a 𝑾 (𝑡)
ha + 𝑿 (𝑡−1)

a (A I-5)

𝑿 (𝑡)
att,v = 𝑯(𝑡)

v 𝑾 (𝑡)
hv + 𝑿 (𝑡−1)

v (A I-6)

where 𝑾 (𝑡)
ha ∈ R𝑑×𝑑𝑎 and 𝑾 (𝑡)

hv ∈ R𝑑×𝑑𝑣 denote the learnable weight matrices of 𝑡𝑡ℎ iteration

for A and V respectively. Finally, the attended A and V features after 𝑡 iterations are further

concatenated and fed to BLSTM to obtain the temporal dependencies within the refined A-V

feature representations, which is fed to fully connected layers for final prediction.

4. Results and Discussion
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A) Dataset: Affwild2 is among the largest dataset in affective computing, consisting of 564

videos collected from YouTube, all captured in-the-wild (Kollias et al., 2019). The annotations

are provided by four experts using a joystick and the final annotations are obtained as the average

of the four raters. In total, there are 2, 816, 832 frames with 455 subjects, out of which 277 are

male and 178 female. The annotations for valence and arousal are provided continuously in the

range of [−1, 1]. The dataset is split into training, validation, and test sets. The partitioning

is done in a subject-independent manner so that every subject’s data will present in only one

subset. The partitioning produces 341, 71, and 152 videos for the training, validation, and test

sets respectively.

B) Ablation Study: Table I-1 presents the results of the experiments conducted on the

validation set for the ablation study. The performance of the approach is evaluated using

Concordance Correlation Coefficient (CCC). In this section, we have analyzed the contribution

of BLSTMs in the proposed model, where we have performed experiments with and without

BLSTMs. Firstly, we have conducted experiments without using BLSTM for both the individual

A and V representations as well as the A-V feature representations. Then, we included

BLSTMs only for the individual A and V modalities before feeding to the joint attention fusion

model i.e., only Unimodal-BLSTMs (U-BLSTMs). By including U-BLSTMs to capture the

temporal dependencies within the individual modalities, we can observe the improvement in

the performance of the system. Therefore, BLSTMs are found to be promising in capturing the

intra-modal temporal dynamics better than that of correlation-based intra-modeling in the joint

attention model. After that, we have also included joint BLSTM (J-BLSTM) in order to capture

the temporal dynamics across the joint A-V feature representations, which further improved the

performance of the system. It is worth mentioning that in all the above experiments, we have

not performed recursive attention. The Fatigue dataset is obtained from 18 participants in a

Rehabilitation center, suffering from degenerative diseases inducing fatigue. A total of 27 video

sessions are captured with a duration of 40 - 45 minutes and labeled at sequence level on a scale

of 0 to 10 for every 10 to 15 minutes. We have considered 80% of data as training data (50,845

samples) and 20% as validation data (21,792 samples).



178

Table-A I-1 Performance of our approach with components

of BLSTM and recursive attention on Affwild2 dataset.

Method Valence Arousal
JA Fusion w/o recursion

Fusion w/o U-BLSTM 0.670 0.590

Fusion w/o J-BLSTM 0.691 0.646

Fusion w/ U-BLSTM and J-BLSTM 0.715 0.688

JA Fusion w/ recursion

JA Fusion w/o BLSTMs 𝑡 = 2 0.703 0.623

JA Fusion with BLSTMs 𝑡 = 2 0.721 0.694
JA Fusion with BLSTMs 𝑡 = 3 0.706 0.652

JA Fusion with BLSTMs 𝑡 = 4 0.685 0.601

In addition to the impact of U-BLSTM and J-BLSTMs, we have also conducted a few more

experiments to investigate the impact of the recursive behavior of the joint attention model.

First, we did recursion without LSTMs and found some improvement due to recursion. Then

we included LSTMs and conducted several experiments by varying the number of recursions

(iterations) in the fusion model. As we increase the number of recursive times, the model

performance increases and starts to decrease after a certain recursion number. A similar trend of

the model performance is also observed in the test set. Therefore, this can be attributed to the

fact that recursion also works as a regularizer which improves the generalization ability of the

model. In our experiments, we found that 𝑡 = 2 gives the best performance i.e, we have achieved

the best performance of our model with two recursive iterations.

C) Comparison to state-of-the-art:

Table I-2 shows our comparative results against relevant state-of-the-art A-V fusion models on

the Affwild2 dataset. Recently, Affwild2 dataset has been widely used for Affective Behavior

Analysis in-the-wild (ABAW) challenges (Kollias et al., 2020; Kollias & Zafeiriou, 2021a).

Therefore, we compare our approach with that of the relevant approaches in the ABAW challenges.

(Kuhnke et al., 2020) used a simple feature concatenation using Resnet-18 for A and R3D for

V modalities and showed better performance for arousal than valence. (Zhang et al., 2021b)

proposed leader-follower attention model for fusion and improved the performance (arousal)

of the model proposed by (Kuhnke et al., 2020). (Rajasekhar et al., 2021a) explored the
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Table-A I-2 CCC performance of the proposed and state-of-the-art

methods for A-V fusion on the Affwild2 dataset.

Method Type of Fusion Valence Arousal

Validation Set

(Kuhnke et al., 2020) Feature Concatenation 0.493 0.613

(Zhang et al., 2021b) Leader Follower Attention 0.469 0.649

(Rajasekhar et al., 2021a) Cross Attention 0.541 0.517

(Praveen et al., 2023a) Joint Cross Attention 0.657 0.580

Ours LSTM + Transformers 0.628 0.654

Ours Recursive JA + BLSTM 0.721 0.694
Test Set

(Meng et al., 2022) LSTM + Transformers 0.606 0.596

(Karas et al., 2022) LSTM + Transformers 0.418 0.407

(Praveen et al., 2023a) Joint Cross Attention 0.451 0.389

Ours Recursive JA + BLSTM 0.467 0.405

cross-attention model by leveraging only the inter-modal relationships of A and V modalities

and showed improvement for valence but not so efficient for arousal. (Praveen et al., 2023a)

further improved the performance of the model by introducing joint feature representation to

the cross-attention model. The proposed model performs even better than that of vanilla JCA

(Praveen et al., 2023a) by introducing LSTMs as well as a recursive attention mechanism. For test

set results, the winner of the latest ABAW challenge (Meng et al., 2022) has shown improvement

using A-V fusion, however using three external datasets and multiple backbones. We have

also compared the performance of our A and V backbones with the ensembling of LSTMs and

transformers (Meng et al., 2022) on the validation set. (Karas et al., 2022) used LSTMs to

capture intra-modal dependencies and explored transformers for cross-modal attention, however,

they fail to effectively capture the inter-modal relationships across the consecutive video clips.

(Praveen et al., 2023a) further improved the performance (valence) using joint cross-attention.

The proposed model outperforms both (Karas et al., 2022) and (Praveen et al., 2023a).

Table I-3 shows the performance of the proposed approach on the Fatigue dataset. We have shown

the performance of individual modalities along with feature concatenation and cross-attention
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Rajasekhar et al. (2021a). The proposed approach outperforms cross-attention Rajasekhar et al.

(2021a) and baseline feature concatenation.

Table-A I-3 CCC performance on the Fatigue dataset

Method Fatigue Level
Audio only (2D-CNN: Resnet-18) 0.312

Visual only (3DCNN: R3D) 0.415

Feature Concatenation 0.378

Cross Attention (Rajasekhar et al., 2021a) 0.421

Recursive JA + BLSTM (Ours) 0.447

5. Conclusion

This paper introduces a recursive joint attention model along with BLSTMs that allows effective

spatiotemporal A-V fusion for regression-based ER. In particular, the joint attention model is

trained in a recursive fashion, allowing for the refinement of A-V features. We further investigated

the impact of BLSTMs for capturing the intra-modal temporal dynamics of individual A and

V modalities, as well as A-V features for regression-based ER. By effectively capturing the

intra-modal relationships using BLSTMs, and inter-modal relationships using recursive joint

attention, the proposed approach is able to outperform the related state-of-the-art approaches.



APPENDIX II

COMPLEXITY OF CODE

We have also provided the complexity of the code for the proposed joint cross-attentional

(JCA) A-V fusion model for dimensional emotion recognition. Initially we compute the joint

feature representation (𝑱) of the A-V features. Since the dimension of the joint representation

is the summation of the dimensions of the individual A and V feature vectors, it consumes

more number of parameters. After that, we compute the parameters required by the joint cross

correlation matrices 𝑪a and 𝑪v. The dimensions of the learnable matrices to compute the joint

cross correlation matrices is 𝐿x𝐿, where 𝐿 denotes the sequence length. So it consumes less

number of parameters for the learnable weights related to joint cross correlation matrices. The

learnable weights required to estimate the joint cross attention weights depends of the dimension

of the individual features representations. Finally, learnable weights are used to compute the

final attended features to reduce the dimension of the attention weights to that of the dimension

of the original feature vectors. The number of flops required for each module is proportional

to the number of parameters required in each module. The total number of parameters in the

proposed JCA fusion model is 2.6M parameters and the number of flops are 2701M. The number

of parameters required in each module of the proposed JCA fusion modal along with the number

of flops are shown in Table II-1.

Table-A II-1 Number of Parameters and flops of the proposed JCA A-V fusion model

Module Name Number of Parameters Number of Flops
Joint Representation (𝑱) 1049600 1073741824

Joint Correlation Matrix across A (𝑪v) 272 8388608

Joint Correlation Matrix across V (𝑪a) 272 8388608

Attention Weights of V (𝑿att,v) 262656 268435456

Attention Weights of A (𝑿att,a) 262656 268435456

Weights of Attended features (𝑿att,v) 524800 536870912

Weights of Attended features (𝑿att,a) 524800 536870912

Total = 2625056 Total = 2701131776
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Journal Articles

• Gnana Praveen Rajasekhar, Eric Granger, Patrick Cardinal. "Deep domain adaptation

with ordinal regression for pain assessment using weakly-labeled videos", Image and Vision

Computing, Volume 110, 2021.

• Gnana Praveen Rajasekhar, Patrick Cardinal, Eric Granger. "Audio-Visual Fusion for

Emotion Recognition in the Valence-Arousal Space Using Joint Cross-Attention", IEEE

Transactions on Biometrics, Behavior, and Identity Science, 2023.

• Gnana Praveen Rajasekhar, Eric Granger, Patrick Cardinal, . "Weakly Supervised Learning

for Facial Behavior Analysis: A Review", (Submitted to IEEE Transactions on Affective

Computing, 2022)

Conference Articles
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Adaptation for Pain Localization in Videos," 2020 15th IEEE International Conference on

Automatic Face and Gesture Recognition (FG 2020), 2020, pp. 473-480.
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Dimensional Emotion Recognition," 2021 16th IEEE International Conference on Automatic
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for Audio-Visual Fusion in Dimensional Emotion Recognition", IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 2486-2495, 2022.

• Madhu Kiran, R Gnana Praveen, Le Thanh Nguyen-Meidine, Soufiane Belharbi, Louis-
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British Machine and Vision Conference (BMVC), 2021.
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fusion in regression based emotion recognition," 48th IEEE International Conference on
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