
Large-Margin Representation Learning for Small-Size

Datasets

by

Jonathan DE MATOS

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ph.D.

MONTREAL, JULY 11, 2023

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

UNIVERSITÉ DU QUÉBEC

Jonathan de Matos, 2023

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Alessandro Lameiras Koerich, Thesis supervisor

Department of Software and Information Technology Engineering, École de technologie

supérieure

Mr. Alceu de Souza Britto Junior, Thesis Co-Supervisor

Postgraduate Program in Informatics, Pontifical Catholic University of Paraná

Mr. Robert Sabourin, Chair, Board of Examiners

Department of Systems Engineering, École de technologie supérieure

Mr. Matthew Toews, Member of the Jury

Department of Systems Engineering, École de technologie supérieure

Mr. Vincent Andrearczyk, External Independent Examiner

HES-SO University of Applied Sciences and Arts Western Switzerland

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON JUNE 2, 2023

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

I want to thank my supervisor, Professor Alessandro Lameiras Koerich, and my co-supervisor,

Professor Alceu de Souza Britto Junior, for supporting and guiding me during my studies and

the development of this work. I also want to thank ETS and Livia for the structure that facilitated

my work. The Natural Sciences and Engineering Research Council of Canada (NSERC) played

an essential role in this work, providing me with financial support, likewise the State University

of Ponta Grossa. The support from my colleagues from UEPG was also noteworthy. My friends

from ETS also taught me a lot during this period. I special thank my wife and daughter, which

were by my side during my studies. I want to dedicate my work to my mother and father (in

memoriam), which made all of this possible.

Apprentissage de Représentation à Large-Marge pour Ensembles de Données de Petite
Taille

Jonathan DE MATOS

RÉSUMÉ

Ce travail présente une nouvelle approche combinant des couches convolutives et un apprentissage

métrique à large marge pour l’apprentissage de modèles supervisés sur des ensembles de données

de petite taille. Cette approche comporte quatre composantes principales : i) un ensemble de

couches convolutives avec une couche de mis-en-commun par moyenne globale; ii) une méthode

de sélection d’instances pour choisir des ancres et les instances d’intérêt; iii) une fonction de perte

pour induire la mise à jour du poids des couches convolutives; iv) un discriminant à large marge.

Les images sont fournies aux couches convolutives pour générer une représentation latente,

puis utilisées pour entraîner un discriminant à large marge. Les informations du discriminant

(vecteurs de support et prédictions) aident à sélectionner des ancres et des instances d’intérêt pour

construire une fonction de perte qui vise à minimiser la distance entre les échantillons choisis.

La mise à jour du poids à l’aide de la fonction de perte cherche à modifier la représentation

latente pour augmenter la marge entre les classes. L’avantage de la méthode proposée est

qu’elle peut entraîner une banque de filtres avec une petite quantité de données en raison du

nombre réduit de paramètres. Il amène aussi à des coûts d’entraînement réduit puisque seul

un sous-ensemble d’instances est utilisé dans l’algorithme de rétropropagation. Les résultats

expérimentaux avec un ensemble de données synthétiques, un ensemble de données d’images de

texture et trois ensembles de données d’images histopathologiques (avec des caractéristiques de

texture) montrent que la méthode proposée converge rapidement, en quelques époques. De plus,

les autres avantages sont le faible coût de calcul, des précisions proches ou supérieures à ceux

des méthodes équivalentes, un traitement satisfaisant des données déséquilibrées et l’adaptation

des filtres à différents types de textures.

Mots-clés: Discriminant à large-marge, Couches convolutives, Points d’ancrage, Fonction de

perte, Images de texture.

Large-Margin Representation Learning for Small-Size Datasets

Jonathan DE MATOS

ABSTRACT

This work presents a novel approach combining convolutional layers (CLs) and large-margin

metric learning for training supervised models on small-size datasets. This approach has four

main components: i) a set of CLs with a global average pooling; ii) an instance selection method

to choose anchors and instances of interest; iii) a loss function to induce the weight update

of the CLs; iv) a large-margin discriminant. Images are provided to the CLs to generate a

latent representation and then used to train a large-margin discriminant. The information of

the discriminant (support vectors and predictions) aids in selecting anchors and instances of

interest to build a loss function that aims to minimize the distance between chosen samples. The

weight update using the loss function seeks to change the latent representation to increase the

margin between classes. The proposed method’s advantage is that it can train a filter bank with

a small amount of data due to the reduced number of parameters. It also has reduced training

costs since only a subset of instances is used in the backpropagation algorithm. Experimental

results with a synthetic dataset, a texture image dataset, and three histopathologic image datasets

(with textural characteristics) showed that the proposed method converges within a few epochs.

It also has a low computational cost, produces close or superior accuracy results than equivalent

methods, deals well with imbalanced data, and can adapt the filters to different textures.

Keywords: Large-margin discriminant, Fully convolutional network, Anchor points, Loss

function, Texture images.

TABLE OF CONTENTS

Page

INTRODUCTION .1

CHAPTER 1 LITERATURE REVIEW .. 7

1.1 CNNs and Textures . 7

1.2 Metric Learning and Deep Metric Learning . 10

1.3 Histopathologic Images . 12

CHAPTER 2 LARGE-MARGIN FULLY CONVOLUTIONAL NETWORKS 19

2.1 An overview of the LMFCN . 19

2.2 LMFCN . 20

2.2.1 Anchor Instance Selection . 21

2.2.2 LMFCN Training . 25

2.2.3 Loss Function . 32

2.2.4 SVM Loss Function . 34

2.2.5 FCN Architecture . 39

2.2.6 Large-Margin Discriminant . 41

2.2.7 Multiclass LMFCN . 42

2.3 Computational Cost . 42

2.4 Analysis of Loss Terms . 44

CHAPTER 3 EXPERIMENTS . 55

3.1 Experimental Protocol . 56

3.2 Datasets . 57

3.2.1 Gaussian Images . 57

3.2.2 Salzburg Dataset . 58

3.2.3 BreaKHis Dataset . 59

3.2.4 CRC Dataset . 60

3.2.5 BACH . 61

3.3 Performance Metrics . 62

3.3.1 Accuracy and Balanced Accuracy . 63

3.3.2 Complexity Measures . 64

3.3.3 Uniform Manifold Approximation and Projection (UMAP) 67

3.4 Experimental Results . 68

3.4.1 Low-Dimensional Latent Representation . 68

3.4.2 Comparison Between CNNs and the LMFCN . 71

3.4.3 Comparison Between the LMFCN and Handcrafted Feature

Extractors . 81

3.4.4 UMAPs for the LMFCN and Shallow Methods . 88

3.4.5 Results for Multiclass Experiments . 97

3.4.6 Computational Complexity Analysis . 101

XII

3.4.7 Impact of Hyperparameters on the LMFCN Performance106

3.4.8 Discussion .112

CONCLUSION AND RECOMMENDATIONS .115

BIBLIOGRAPHY .123

LIST OF TABLES

Page

Table 2.1 FCN Architecture . 41

Table 3.1 Complexity measures summary . 72

Table 3.2 Balanced accuracy for LMFCN vs. CNNs vs. CNNs as feature

extractor (BACH, BreaKHis, and CRC) . 80

Table 3.3 Balanced accuracy for LMFCN vs. CNNs vs. CNNs as feature

extractor (Salzburg and Gaussian) . 81

Table 3.4 Balanced accuracy for the LMFCN and SVMs trained with GLCM,

LBP, and PFTAS on five datasets. 88

Table 3.5 Balanced accuracy for multiclass datasets .100

Table 3.6 Hyperparameters runtime impact .102

Table 3.7 Test set balanced accuracy for fold one of the BreaKHis dataset109

Table 3.8 Balanced accuracy on the test set for all folds of the BreaKHis dataset109

Table 3.9 Test set balanced accuracy for fold one of the BACH dataset 111

Table 3.10 Average test set accuracy for five folds of the BACH dataset 111

LIST OF FIGURES

Page

Figure 1.1 Examples of HIs . 15

Figure 2.1 LMFCN abstract representation . 20

Figure 2.2 A 2D representation space for two-class instances and boundaries

generated by an RBF SVM .. 24

Figure 2.3 Anchors type zoom . 24

Figure 2.4 LMFCN training overview . 26

Figure 2.5 FCN Architecture . 40

Figure 2.6 Multiclass LMFCN . 43

Figure 2.7 Three vertical blobs - Loss 1 . 47

Figure 2.8 Three vertical blobs - Loss 2 . 47

Figure 2.9 Three vertical blobs - Loss 3 . 48

Figure 2.10 Three vertical blobs - L′cc and L′sv + L′cc . 49

Figure 2.11 Three vertical blobs - L′mc and L′mc + L′sv . 49

Figure 2.12 Blobs distribution - L′sv . 50

Figure 2.13 Concentric rings distribution - L′sv . 51

Figure 2.14 Interleaved moons distribution - L′sv . 51

Figure 2.15 Spiral distribution - L′sv . 52

Figure 2.16 Spiral distribution - L′sv, L′sv + L′mc, L′sv and L′cc terms 53

Figure 3.1 Examples of Gaussian images . 58

Figure 3.2 Examples of Salzburg images from the two classes selected 59

Figure 3.3 Example of BreaKHis dataset images . 60

Figure 3.4 Examples of CRC dataset images . 61

XVI

Figure 3.5 Example of BACH images . 62

Figure 3.6 Training information of Gaussian images with LMFCN . 69

Figure 3.7 Gaussian images latent representation with LMFCN . 69

Figure 3.8 Complexity measures - 16-wide latent representation - BACH 72

Figure 3.9 Complexity measures - 16-wide latent representation - BreaKHis 74

Figure 3.10 Complexity measures - 16-wide latent representation - CRC 75

Figure 3.11 Complexity measures - 16-wide latent representation - Gaussian

images . 76

Figure 3.12 Complexity measures - 16-wide latent representation - Salzburg 77

Figure 3.13 Complexity measures - LMFCN - All datasets . 78

Figure 3.14 Complexity measures - LMFCN vs. Handcrafted feature extractors -

BACH . 83

Figure 3.15 Complexity measures - LMFCN vs. Handcrafted feature extractors -

BreaKHis . 84

Figure 3.16 Complexity measures - LMFCN vs. Handcrafted feature extractors -

CRC . 85

Figure 3.17 Complexity measures - LMFCN vs. Handcrafted feature extractors -

Salzburg . 86

Figure 3.18 Complexity measures - LMFCN vs. Handcrafted feature extractors -

Gaussian images . 87

Figure 3.19 UMAP - LMFCN vs. Handcrafted feature extractors - BACH 90

Figure 3.20 UMAP - LMFCN vs. Handcrafted feature extractors - BreaKHis 91

Figure 3.21 UMAP - LMFCN vs. Handcrafted feature extractors - CRC 93

Figure 3.22 UMAP - LMFCN vs. Handcrafted feature extractors - Gaussian

images . 95

Figure 3.23 UMAP - LMFCN vs. Handcrafted feature extractors - Salzburg 96

Figure 3.24 LMFCN OVA sub-problems . 99

XVII

Figure 3.25 Total execution time for the LMFCN and the CNN-BCE103

Figure 3.26 Total execution time for the LMFCN and the CNN-BCE104

Figure 3.27 LMFCN step time percentage .105

Figure 3.28 Total execution time for the LMFCN and the CNN-BCE for BACH105

Figure 3.29 LMFCN epoch breakdown times .106

Figure 3.30 Accuracy for fold one of BreaKHis dataset .108

Figure 3.31 Average accuracy for five folds of BreaKHis dataset .108

Figure 3.32 Accuracy for fold one of the BACH dataset .110

Figure 3.33 Average accuracy for five folds of the BACH dataset .110

LIST OF ALGORITHMS

Page

Algorithm 2.1 LMFCN training algorithm . 27

Algorithm 2.2 calculate_base_matrices() . 27

Algorithm 2.3 calculate_instances_o f _interest() . 28

Algorithm 2.4 obtain_anchor_matrices() (Matrix A) . 30

Algorithm 2.5 obtain_anchor_matrices() (Matrix M and G) . 31

Algorithm 2.6 Lcc - loss_sv() . 35

Algorithm 2.7 Lmc - loss_mc() . 35

Algorithm 2.8 Lcc - loss_cc() . 36

LIST OF ABBREVIATIONS

BCE Binary Cross Entropy

CL Convolutional Layer

CNN Convolutional Neural Network

DML Deep Metric Learning

FCN Fully Convolutional Network

FC Fully Connected

FV-CNN Fischer Vector Convolutional Neural Network

GAP Global Average Pooling

GLCM Grey-level Cooccurrence Matrix

H&E Hematoxylin and Eosin

HI Histopathologic Image

LMFCN Large-margin Fully Convolutional Network

ML Metric Learning

OVA One-vs-All

PCA Principal Component Analysis

PFTAS Parameter-free Threshold Adjacency Statistics

RBF Radial-Basis Function

SV Support Vectors

SVM Support Vectors Machine

XXII

TCNN Texture Convolutional Neural Network

UMAP Uniform Manifold Approximation and Projection

WSI Whole Slide Image

LIST OF SYMBOLS AND UNITS OF MEASUREMENTS

X Set of input instances {Xt,ot}

Xt t-th image of X

ot Label or class of t-th image of X

n Size of the set X or number of images

T Matrix of images’ latent representations

φ Size of the latent representation (number of attributes)

P Auxiliary matrix used to calculate K and D

K Kernel matrix used in the large-margin classifier

D Distance matrix to help anchors selection

y Predicted output of an image by the SVM classifier

S Set with the indices instances of interest related to anchors Asv (Support

Vectors)

Q Set with the indices instances of interest related to anchorsAmc (Misclassified

instances)

R Set with the indices instances of interest related to anchors Acc (Correct

classified instances)

A Matrix with the indices of anchors Asv for each instance of interest

M Matrix with the indices of anchors Amc for each instance of interest

G Matrix with the indices of anchors Acc for each instance of interest

Lsv Loss function related to SVs

XXIV

Lmc Loss function related to misclassified instances

Lcc Loss function related to correct classified instances

svclose Number of closest anchors Asv for each instance of interest

mcclose Number of closest anchors Amc for each instance of interest

shclose Number of closest anchors Acc for each instance of interest

w Width of an image

h Height of an image

c Number of channels of an image

nclasses Number of classes

αfcn Number of weights of the FCN

αfc Number of weights of the fully-connected layers

nsv Number of support vectors

γ Hyperparameter of RBF Kernel

C Hyperparameter of SVM lenience with misclassified samples

ffcn(.) Fully Convolutional Network representation function

fsv(.) SVM classifier representation function

TR Training set

VAL Validation set

TS Test set

nSVs Number of Support Vectors

INTRODUCTION

Image recognition is a widespread problem in computing. It has been the focus of research for

a long time and has faced a revolution with the emergence of convolutional neural networks

(CNNs). CNNs have achieved state-of-the-art performance in many problems and defined a

new level of recognition compared to traditional feature extraction methods and classifiers. The

reason for this success is that the filters or feature extraction part is trained together with the

classifier or FC layers. With more filters, there is also a high number of parameters (weights)

that need more data for successful training. CNNs became more popular and achieved the best

results initially in object recognition problems, e.g., cars, people, animals, and numbers. The

reason is that this type of image or dataset is easier to acquire and label, not requiring specialists

for the task, so huge amounts of data are available like the ImageNet project (Russakovsky et al.,

2015). From the object recognition problems emerged several CNN architectures, like ResNet

(He, Zhang, Ren & Sun, 2016) and Inception (Szegedy, Vanhoucke, Ioffe, Shlens & Wojna,

2016), that are million-parameter networks, possible to train thanks to large data availability.

The first layers of CNNs are partially responsible for filtering patterns or textures on images,

and more profound layers learn shape and spatial information. Deeper layers also store more

domain-specific information. Based on these facts, researchers started using pre-trained CNNs

to transfer knowledge between domains, known as transfer learning. Transfer learning can utilize

the first and more generic pre-trained layers and fine-tune the deeper ones, adapting them to

the new domain. However, there are some issues associated with this technique: i) images

from a new domain have to be rescaled to the exact size of the original images used to train

the network in some models, although new architectures already implemented a global average

pooling (GAP) at their end, avoiding rescaling; ii) the outputs or classes of domains are usually

different in size and context; iii) the more profound layers have to suffer more changes to learn

the new domain (Andrearczyk & Whelan, 2016). When the new domain has sufficient data to

fine-tune a CNN, these issues do not cause too much impact, and training is fast.

2

Transfer learning can be applied in contexts with few data or simple images without spatial and

shape characteristics. Training deeper layers in this context is more straightforward than training

a CNN from scratch but can still be difficult if too many parameters exist. Another approach

similar to transfer learning is using pre-trained CNNs as feature extractors. In this technique,

deeper layers are discarded, and images are fed to the CNN. Without the deeper layers, the

output is a wide image representation vector. These representations are used to train a different

classifier, like an SVM, a random forest, or a k-NN. However, this method also has shortcomings,

such as the first layers may not generate good activations with the different textures, and the

representation is not necessarily suitable for the chosen classifier. CNNs as feature extractors

have similar behavior to handcrafted feature extractors. Both methods generate an immutable

representation and cannot adapt to new textures nor adjust their output to target a specific need

of classifiers.

There is an alternative to the CNNs as feature extractors that allow tuning its weights, so the

representation is no more immutable. It is called Deep Metric Learning (DML), but it is

usually applied in a different context. DML is a technique that uses deep learning methods to

generate image representations and metrics to calculate similarity measures and obtain some

categorization (Chopra, Hadsell & LeCun, 2005). The advantage of DML is that it allows

learning a metric for the dissimilarity calculation and training the network that generates the

representation. The context where DML is applied is on datasets with few samples per class, but

a large number of categories, because there are not enough samples to train a classifier.

Small-size datasets with textural images are a complex problem for CNNs due to few training

data, and the CNNs also have too many parameters in the face of image complexity. This type of

problem has some characteristics related to DML, handcrafted feature extractors, CNNs, and

monolithic classifiers. We proposed an approach that uses characteristics from some of these

methods to deal with these datasets. Histopathological images (HIs) are one type of small-size

3

dataset that does not have macro object characteristics. These images originate, for example,

from human tissue samples and work on the cellular level, allowing observe nuclei and support

structures. At this level, depending on the resolution or magnifying factor, shape, and spatial

information are absent, or there are only small shapes having more textural information. The

number of images is usually small because acquiring them is expensive and laborious, and the

labeling demands experienced pathologists. Despite a few labeled images, these datasets may

have vast amounts of data due to the size of some whole slide images. Thus, we used this type

of dataset to test our approach.

Problem Statement

Using large models is not the most suitable approach for problems with textural images and

small-size datasets. Alternatively, more straightforward methods can obtain a better cost-benefit

ratio relating to accuracy performance and computational cost. The model needs to adapt to

different characteristics of texture and be able to train with small-size datasets. A limited amount

of training data also poses a challenge when dealing with imbalanced datasets.

Research Question

Given the stated problem, two research questions are addressed in this thesis: i) May a strategy

to learn a latent representation (similar to a feature vector) and a large margin-based discriminant

from a small-size texture dataset provide competitive results compared to CNN-based approaches?

ii) Could a large-margin discriminant replace the dense layers of a regular CNN and speed up

the training convergence while maintaining accuracy?

4

Objectives

The main objective is to develop a new supervised learning method that generates a latent

representation of the problem and uses it in a discriminant to classify small-size texture datasets.

In the proposed end-to-end learning method, a large margin-based discriminant replaces the

CNN dense layers, speeding up the training process while achieving high accuracy. We can also

cite the following secondary objectives:

• Develop a CNN-like approach to create filter banks that automatically learn a discriminative

latent representation of images.

• Adapt the deeper CNN layers to consider a large margin strategy in the discriminant part.

• Develop an algorithm to optimize the model weights (convolutional layers and discriminant)

based on errors computed by a large margin-based discriminant.

• Evaluate the proposed end-to-end supervised learning method regarding computation time

and accuracy compared to conventional CNNs.

• Evaluate the proposed method in the context of small-size datasets, imbalanced and with

multiple classes.

Contributions

We developed an approach to train a set of convolutional layers (CLs) from scratch with little

amount of data. It is a representation learning method that can adapt the CLs’ filtering capacity

to different texture datasets. The training is computationally efficient because it uses specially

selected instances to guide the weight update. These instances are the support vectors (SVs)

discovered during the optimization of the SVM classifier used in the method. The training acts

on complex regions of the latent representation, where opposite class instances are close, so it

tends to induce faster convergence than traditional CNNs training methods.

5

Although using fewer instances to train the CL weights than CNN training methods, they are

more effective, positioned in the decision frontier, independent of the class. If a class has a higher

number of instances, similar instances inside this class are not used in training, balancing the

weights or the number of instances used per class. Thus, an additional contribution is a resilience

to the class imbalance because clustered instances of a prevalent class are not used, only the ones

in the margins. The effectiveness of the proposed approach was evaluated on several datasets,

and it outperformed other methods, i.e., equivalent CNNs and shallow approaches employing

handcrafted feature extractors and CNNs as feature extractors with monolithic classifiers.

Thesis Structure

This document is organized as follows: Chapter 1 presents a literature review of the significant

concepts that involve the LMFCN development, like the CNNs and their relation to simple

textural images, in Section 1.1. Section 1.2 presents a brief review of techniques related to

Metric Learning and Deep Metric Learning. This chapter closes with a review, in Section 1.3,

about HIs, from which emerge problems of image classification with small datasets of images

with textural characteristics.

Chapter 2 describes the LMFCN with all its details and parts. Section 2.2 describes the concepts

of anchors, the training algorithm, and the multiclass training procedure. We analyze the

computational cost of our approach in Section 2.3, comparing it with the other equivalent

approaches like CNNs and handcrafted feature extractors. Section 2.4 presents simulations of

the anchors’ effects in various latent representations that aim to clarify the importance of each

type of anchor.

Chapter 3 describes the experiments and the results obtained at each comparison. Section 3.2

presents the datasets used in the comparisons with examples of images and how they were

6

prepared and split. We used a set of metrics described in Section 3.3 to evaluate the results and

compare methods.

The last chapter presents our conclusions and future works (Chapter 4).

CHAPTER 1

LITERATURE REVIEW

This chapter will present some concepts we used in our approach. Section 1.1 describes some

CNN concepts and their use on textural images and histopathologic images (HIs). We also

present methods based on small networks designed to work with textural images that use

alternative layers to work with this type of image. The concept of Deep Metric Learning (DML)

is presented in Section 1.2, showing the difference between the usual context of DML and how

we use it in our approach. Finally, Section 1.3 describes the HIs used to diagnose some types of

tumor-related diseases. We show their importance, examples, and how the machine learning

methods are applied to analyze them.

1.1 CNNs and Textures

Deep learning is used in various fields, e.g., speech, sound and visual object recognition,

object detection, and drug discovery. Deep learning models are a set of linked layers trained

by the backpropagation algorithm to abstract complex structures of large-scale data (LeCun,

Bengio & Hinton, 2015). CNNs are a sequence of the connected convolutional layer (CLs), and

the output of each one is also called a feature map. Pooling layers that may sit between CLs

reduce the feature map size using some functions, e.g., maximum or average. Yet, activation

functions like ReLU, Tanh, or Sigmoid exist between layers to bring non-linearity to the model.

Without them, CNNs would be just a sequence of linear functions without depth. At the end of a

CNN, some models use the fully connected (FC) layers that work as classifiers.

The idea behind the CNNs is that the weights on CLs work as filter banks that can extract motifs

from images generating a feature map (LeCun et al., 2015). The first CLs at the bottom of the

network act as edge detectors, highlighting motifs spread around the image. The composition of

detected motifs allows identifying complex objects.

8

The CLs weights need the training to extract the motifs that help to identify complex structures.

The motifs are common in various images, so once trained, the first filters’ weights are useful

in other contexts to identify common patterns. The last layers, or the upper ones, are more

specialized and task-specific, thus needing to be retrained or replaced to use on other domains.

The upper layers are also capable of identifying the shape and position of objects or patterns.

In the context of texture images, using the first layers of a pre-trained CNN help with faster

convergence, and the upper layers do not need to be very deep and complex. Hence, part of the

network can be simplified and use fewer parameters. Pre-trained models and simplified upper

layers contribute to achieving better results with few amount of data.

Humeau-Heurtier (2019) presented a review on texture feature extraction, proposing a taxonomy

on the topic. The taxonomy classifies the CNN texture-related approaches as deep learning

methods under the category of Learning-Based Approaches. As advantages of the CNN-

based ones, they cite the capacity to learn high-level features more suitable to a specific

task. Nonetheless, the training process requires more computational effort than LBP. Liu,

Fieguth, Wang, Pietikäinen & Hu (2016) compared deep learning methods against LBP variants,

concluding that the first ones present the best results but with more computational cost in

processing and memory.

One advantage of the CLs is the parameter sharing, which allows the parameter count reduction,

leading to less training cost and less data necessity. Due to their high connectivity, the upper FC

layers have more parameters, and their spatial learning is not necessarily profitable in texture

image recognition. In this context, Cimpoi, Maji & Vedaldi (2015) published the FV-CNN,

which pools the last CL of a pre-trained network, using it as a latent representation. The pooling

allows using input images without resizing them to fit the CNN with the FC (FC-CNN). They

used the FV-CNN features as input to an SVM and compared the FC-CNN and SIFT features.

The FV-CNN has shown to be a good texture descriptor, performing well on several benchmarks.

The texture CNN (TCNN) (Andrearczyk & Whelan, 2016) uses a similar approach to the

FV-CNN, but with the classification accomplished by a sequence of FC layers. Its difference

9

from a traditional FC-CNN is the energy layer, a GAP at the last CL whose outputs go to

the FC layers. In contrast to FV-CNN, the SVM replacement by the FC layers as a classifier

permits training the CLs in conjunction with the classifier. This last approach does not require a

pre-trained CNN as it can train it with the FC layers, but it can exploit transfer learning on low

data scenarios, where the FC layers would require more data.

As cited by Humeau-Heurtier (2019), some medical images acquired by MRI, CT, radiography,

or microscopy have characteristics of texture images. Microscopy usually produces HIs, which

allow the observation of tissues, their cells, and their nuclei, with an appearance more texture

oriented with repeated small patterns, with reduced shape and spatial information. Although

these images have structures less complex than macro world images, they pose a challenge to

classification, mainly due to the few data availability and variations in the staining process. Thus

it is a defiant domain to explore with alternative CNNs methods.

Cheplygina, de Bruijne & Pluim (2019) dedicated a section of their review about medical images

to the transfer learning technique, covering three situations: same domain and different tasks;

different domain and the same task; and both different domains and tasks. They state that

this technique is proper for medical images due to few labeled images for supervised learning

methods.

Spanhol, Oliveira, Cavalin, Petitjean & Heutte (2017) used the features extracted from an

AlexNet, pre-trained with ImageNet, in the context of CAD for breast cancer. They analyzed

the features from the last three FC layers, 4096, 4096, and 1000 wide. The feature size creates

difficulties for some classifiers due to computational complexity, so they used Logistic Regression

as the base classifier, which allowed even the analysis of feature merging.

Compared with the AlexNet training from scratch proposed by Spanhol, Oliveira, Petit-

jean & Heutte (2016), the performance of the CNN feature extraction was similar and required

less computational effort. de Matos, Britto, Oliveira & Koerich (2019) used an InceptionV3 and

provided results comparable to the state-of-the-art by the time of the comparison, superior to the

10

previously mentioned works. The InceptionV3 also provides large feature vectors, with 2048

attributes, requiring a PCA before using it on the SVM classifier.

Deniz et al. (2018) used three CNNs to analyze which provides the best features for burned

tissue images. They tested the features with four different classifiers, concluding that combining

a ResNet-152 and SVM yields the best results.

The challenges with few amount of data and normalization problems on HIs require extensive

data augmentation for CNNs. The reduced spatial and shape characteristics make it difficult to

use well-known data augmentation methods based on macro object context. Therefore, methods

that can work with fewer data and focus on these image characteristics could benefit this study

area. The filters of CNNs, aside from detecting texture-like structures very well, produce an

output vector with characteristics trained for the FC layer of the CNN. It is interesting to develop

and train CL which output helps the classifier on its task, which are feasible by borrowing some

concepts of Deep Metric Learning.

1.2 Metric Learning and Deep Metric Learning

Metric learning is an alternative to classification methods in situations where the number of

classes is high, at the order of thousands, or where the number of samples of each category is

low (Chopra et al., 2005). Two examples of this situation are face recognition and signature

verification. The idea of dissimilarity metric learning is to learn a representation to identify two

samples’ similarities, usually employing a distance metric, e.g., Euclidean Distance.

There are handcrafted techniques to map images to smaller dimensions, but they suffer from

high sensibility to affine transformations, e.g., rotation, scaling, or shifting. Chopra et al. (2005)

presented a method that uses siamese convolutional neural networks and the energy-based

model. It consists of using raw energy values instead of probabilistic normalized ones. The

concept of energy in their work is close to the one of Andrearczyk & Whelan (2016). The

advantage of using CNNs is that they provide end-to-end training, learn low and high-level

features, and provide shift-invariant detectors. Their method aggregates the energy output of

11

each siamese network into one neural network trained with contrastive loss. The loss allows

training the system together (siamese networks and the single neural network), improving the

sample representation on the energy layer.

The FaceNet (Schroff, Kalenichenko & Philbin, 2015) inspired our approach because it uses a

single CNN and a monolithic classifier, a k-NN, at the end of the model. It focuses on the face

recognition problem as in Chopra et al. (2005), especially the selection of positive and negative

samples to compare the queries. Using all training instances may lead to slow convergence

since some are similar and do not contribute meaningfully to the training. They proposed a

batch process that improves the training instance selection. Moreover, the positive and negative

comparing samples (triplet) use a filtering process, which only uses the farthest positive and the

closest negative inside a minibatch.

The target of this approach is multiple class problems, each with a small number of samples. It

includes a loss function and a batch construction method to maximize the comparisons with

negative instances. The loss function minimizes the distance to a positive anchor at each batch

while maximizing it to the negatives. It reduces the so-called hard mining that pools all negative

instances to find a set of good ones that could maximize the separation. This method randomly

selects many classes opposite the query class and extracts features from a few instances of each

one. It randomly picks one of them and continuously adds more and more to the batch until N ,

selecting the ones that violate the loss constraints to the query class.

Wang et al. (2019) proposed a more elaborated training sample and anchors selection called

Ranked List Loss. It relies on a threshold margin that gives more attention, using weighting,

to the samples that maximize the margins between opposite classes. The margin determines

the negative points too close to the query, breaking the margin constraint. There can be many

negative points, so they proposed a weighting mechanism to penalize most ones that cause

more constraint violations. The positive points do not need weighting since the face recognition

problem usually presents more negative examples than positive ones. Their method was tested

with three datasets, obtaining state-of-the-art results in all of them.

12

Although the deep metric learning approaches address few samples and a high number of class

problems, the idea of learning a representation based on images resembles the one of feature

extraction. When extracting features using CNNs, the embedding function usually maintains

immutable, just as a handcrafted feature extractor. Deep metric learning can improve the feature

extractor for similarity problems. Analogously, we based our method on this feature tuning but

in the context of classification with large margin classifiers. Our idea still has the advantage of

automatically selecting the positive and negative anchors based on the SVs.

1.3 Histopathologic Images

Cancer is a disease with a high mortality rate in developed and in developing countries. The

impact of the disease is the loss of lives and the high costs for treatment, reflected in the population

and governments. According to Torre et al. (2015), mortality rates among high-income countries

are stabilizing or even decreasing due to programs to reduce the risk factors (e.g., smoking,

overweighting, physical inactivity) and treatment improvements. In low and middle-income

countries, mortality taxes increase due to increased risk factors. Improvements in treatment

include early detection. In 140 out of 184 countries, breast cancer is the most prevalent type

among women (Torre, Islami, Siegel, Ward & Jemal, 2017). Imaging exams like mammography,

ultrasound, or CT can diagnose the presence of masses growing in breast tissue, but only the

biopsy can confirm the tumor type.

Biopsies take more time to provide a result due to the acquiring procedure (e.g., fine-needle

aspiration or surgical open biopsy), tissue processing (creation of the slide with the staining

process), and pathologist analysis. Pathologist analysis is a highly specialized and time-

consuming task prone to inter and intra-observer discordances (Bellocq et al., 2011). The

staining process can also cause variance in the analysis process. Hematoxylin and Eosin (H&E) is

the most common and accessible stain, but they can produce different color intensities depending

on the brand, the storage age, and temperature.

13

Formerly, pathologists used to do the biopsy process directly on the microscope, analyzing

the slides with the prepared tissue. The advances in technologies allowed the coupling of the

microscope with digital cameras. This provided a way to register the images of the slides and

store them for post-analysis, e.g., by another pathologist. This process is not state-of-the-art on

HIs. It still requires the direct intervention of the pathologist on the microscope to find regions

of interest on slides and zoom in to obtain detailed images. Examples of these image types can

be seen in datasets proposed by Spanhol et al. (2016), Kostopoulos et al. (2009), Ninos et al.

(2016), and Glotsos et al. (2008). Another procedure to obtain the HI is the whole slide image

(WSI). This process is almost automatic, requiring human intervention only in preparing and

loading the slides onto a specialized machine. The idea behind the WSI is the high-resolution

acquiring process. The slide is digitalized as a single image of, e.g., 1,600 megapixels, as a

final product. This image allows the pathologist to analyze results remotely, requiring only a

technician to prepare and place the slides into the machine. Despite the great advantages of

WSI, it is much more expensive than microscope-mounted cameras and also requires many

storage spaces for the final images. The data storage space also makes it difficult to create online

available datasets of these images.

The time to return the patients’ results from a biopsy is important because the treatment should

start as soon as possible. As mentioned, biopsies are time-consuming and expensive. In the

United States, 1.6 million women are submitted annually to biopsies, but only a quarter of the

exams result positive for malignant breast tumors. This factor increases the queue of exams,

possibly delaying the treatment’s start for those requiring (Elmore et al., 2015). Computer-aided

diagnosis (CAD) systems can help reduce the time to analyze the images, but relying only on the

computer to accomplish the analysis is risky. Even the results of pathologists, in some cases,

require a second opinion or even a third one. Gurcan, Boucheron & Can (2009) raised questions

related to inter-observer, intra-observer, and physical and psychological factors in the image

analysis by pathologists. Inter-observer refers to the disagreement between malign and benign

sample labeling by two pathologists. Intra-observer variations occur when a single pathologist

observes the same sample within an interval of time, for example, one day. His conclusions can

14

differ between the two observations due to physiologic or psychological factors. CAD systems

can provide more security to the pathologist to emit a result, working as a complementary

opinion and a more deterministic actor.

The HI analysis can be seen as three pattern recognition problems: classification, regression,

or segmentation. The segmentation on HI usually extracts image elements like morphological

features related to nuclei size, density, and shape for posterior analysis. Sometimes, segmentation

precedes the classification to remove irrelevant information like background or stroma. The

regression problems are seen in prognosis studies, which estimate the survival time or rate based

on an image. The classification task aims to label an image in a certain category, e. g. benign

or malign tumors, types of tumor, a grade based on Gleason (Gleason, 1992) or Nottingham

(Galea, Blamey, Elston & Ellis, 1992) systems.

Figure 1.1 depicts examples of HI from four datasets, BreaKHis (Spanhol et al., 2016), HICL

(Kostopoulos et al., 2017), CRC (Kather et al., 2016) and ICIAR 2018 Challenge (Aresta et al.,

2019). All these datasets are publicly available and based on the hematoxylin and eosin (H&E)

staining process. We can cite P63 and immunohistochemistry (IHC) as other examples of

staining. HI uses H&E stain in various tissues, e.g., brain, breast, colorectal, cervix, prostate,

and lung, to create HI.

HIs contain cellular-level structures. Depending on the magnifying factor, it is possible to

observe nuclei and stroma. The nuclei shape can identify, e.g., mitosis, indicating how the cells

multiply. This is the case in works like the ones published by Awan, Aloraidi, Qidwai & Rajpoot

(2016), Wan et al. (2017), Albarqouni et al. (2016), Zerhouni, Lányi, Viana & Gabrani (2017)

and the ICPR contest of 2012, 2013, and 2014 (Veta et al., 2015). Another task other than

mitosis detection can be, e.g., necrosis detection as presented by Homeyer et al. (2013), stenosis

detection on the liver presented by Vanderbeck, Bockhorst, Komorowski, Kleiner & Gawrieh

(2014), and cervical cancer classification using textural analysis (Rahmadwati, Naghdy, Ros,

Todd & Norahmawati, 2011). Although invasive ductal carcinoma, a type of breast cancer, can

be detected by analyzing cell mitosis, it is important to observe other characteristics of HI from

15

a) CRC Complex b) BreaKHis Adenoma c) HICL Brain d) ICIAR Benign

e) CRC Tumor

f) BreaKHis Ductal

Carc. g) HICL Breast h) ICIAR Invasive DC

Figure 1.1 Examples of HIs

breast tissue to distinguish between other types of tumors. For example, lobular carcinoma, a

malign breast tumor, affects the milk glands. Papillary carcinoma (also a malign tumor) attacks

the ducts and epithelial cells but not the cells below it. The edge of the tumor also does not

invade the stroma (Rubin, Strayer & Rubin, 2012). So it is also important to have an overall

vision of the region to differentiate between tumors, having information of the rate or amount of

some types of texture that appear together in a single image.

Textural descriptors are widely used to analyze HI stained with H&E (Caicedo, Gonza-

lez & Romero, 2008) (Kuse, Sharma & Gupta, 2010) (Atupelage et al., 2013) (Fernández-

Carrobles et al., 2015) (Leo et al., 2016) (Das et al., 2017) (Peyret, Bouridane, Khelifi,

Tahir & Al-Maadeed, 2018) (Michail, Dimitropoulos, Koletsa, Kostopoulos & Grammalidis,

2014) (Bruno et al., 2016) (Chan & Tuszynski, 2016) (Phoulady, Zhou, Goldgof, Hall & Mouton,

2016) (Reis et al., 2017). Morphometric features are also used in works like the ones presented

by Ballarò et al. (2008), Loeffler et al. (2012), Song, Lee, Choi & Chun (2013), Michail et al.

(2014), Fukuma, Prasath, Kawanaka, Aronow & Takase (2016) and Niazi, Parwani & Gurcan

16

(2016). Still, they require more steps for the analysis because usually, it is necessary to segment

the image, find the elements, e.g., nuclei, and obtain measures.

According to de Matos, Ataky, de Souza Britto Jr, Soares de Oliveira & Lameiras Koerich

(2021) and Zhou et al. (2020), there is an increase in the use of deep learning methods in

the context of HIs. This trend follows the other areas where the use of these methods also

increased. As mentioned before and stated by Banerji & Mitra (2022), between the challenges

of HI datasets, the lack of labeled data contrasts with the needs of the training methods for deep

learning. Thus, the pre-trained deep learning methods in the context of transfer learning are

more frequently used (Zhou et al., 2020) like in Wahab, Khan & Lee (2019), Mahbod, Ellinger,

Ecker, Smedby & Wang (2018), and Vesal, Ravikumar, Davari, Ellmann & Maier (2018) that use

pre-trained networks and fine-tuned the parameters in the context of breast cancer HI. Song, Zou,

Chang & Cai (2017), Mehra et al. (2018), and Thuy & Hoang (2020) are examples of using deep

learning methods as feature extractors to produce a representation to be classified by a traditional

classifier. In Mehra et al. (2018), it is shown the ability of transfer learning in classifying HIs

using three well know CNNs (Resnet50, VGG16, and VGG19) and a logistic regression classifier.

Thuy & Hoang (2020) also used VGG16 and VGG19 as feature extractors and a neural network

to classify HIs. They augmented the HI dataset using two generative adversarial networks based

on StyleGAN and Pix2Pix methods, obtaining the best results compared to the non-augmented

data. The work of Song et al. (2017) used a VGG19 allied to a Fisher Vector to better adapt

the features to be classified by a linear SVM. A mitosis classification method is proposed by

Wahab et al. (2019). They fine-tuned a VGG16 to segment nuclei in HIs and used a hybrid CNN

based on pre-trained weights of an AlexNet to classify mitosis stages. The work of Mahbod et al.

(2018) used the fine-tuning of two different depth ResNets and fused their results to obtain the

final classification. Vesal et al. (2018) fine-tuned two CNNs, a ResNet50, and an Inception-V3,

to classify patches of HIs and used majority voting over the results of the CNNs and patches to

obtain the predicted class of a big image.

Other works like Jiang, Chen, Zhang & Xiao (2019), Chen, Dou, Wang, Qin & Heng (2016),

and Alom, Yakopcic, Nasrin, Taha & Asari (2019) used more advanced deep learning methods.

17

In Jiang et al. (2019), a ResNet is coupled with a squeeze-and-excitation block to classify breast

cancer HIs. A CasCNN is proposed by Chen et al. (2016) to detect mitosis. Their model

includes a CNN that first selects mitosis candidate regions and a second pre-trained CNN to

discriminate the mitosis. The work from Alom et al. (2019) used inception recurrent residual

CNN that combines the three main CNNs architectures that compose its name, the inception and

residual blocks, and the recurrent CNNs. The multi-instance learning (MIL) is also used in HI

problems, like in Li et al. (2021b), Sudharshan et al. (2019), and Li et al. (2021a). This last

work used MIL and an EfficientNet-B0 in multi-resolution problems of HIs.

The information that allows one to identify a tumor or classify its type may be small relative to

the image size. This is one of the reasons the pathology analysis of these images is challenging.

The problem worsens when the HIs are WSIs because the images have a high resolution of an

entire slide, not patches, achieving gigapixel count (Hou et al., 2016). The work of Huang et al.

(2021) uses the attention mechanism (Guo et al., 2022) to avoid the locality of the receptive

field of the CNNs. Multiple attention blocks are used in various CNN levels to identify different

information. Yang, Kim, Kim & Adhikari (2019) created a guided soft attention network

including coarse-level annotation to guide the attention of a CNN. Their method surpasses the

state-of-the-art in the BACH dataset and provides a visual explanation from activation maps that

helps understand the classification results. In Dabass, Vashisth & Vig (2021), an attention-guided

training method using a deep residual U-Net architecture is presented. It is used in the gland

segmentation task and merges the concepts of the attention mechanism, residual learning, and

multi-scale feature fusion. The contributions are the precise segmentation of complex scenarios

of inconsistent appearance and complex touching margins glands. Another deep learning method

that emerged in recent years is the transformer (Vaswani et al., 2017). It originates in the

attention mechanism, but unlike previous works, it relies solely on the attention mechanism and

not on RNNs or CNNs. Chen et al. (2022) presented the GasHis-Transformer, which uses a

transformer to detect Gastric cancer in HIs. It uses two modules, the global and local information

modules. The first module extracts information from the whole HI, and then the second module

uses the global information with an Inception-V3 architecture to process images in a multi-scale

18

fashion. Their method obtained excellent generalization ability with gastric HIs and other

cancer HIs. The Deconv-Transformer (He et al., 2022) is also a HI classification method based

on transformers. It includes a color deconvolution module and surpasses the performance of

compared traditional CNN methods. Stegmüller, Bozorgtabar, Spahr & Thiran (2023) presented

the Scorenet, a transformer that leverages the score of image regions to improve classification

results. They also include an augmentation module that, together with the transformer, obtained

state-of-the-art results with only 50% of the data compared to traditional methods. Attention

mechanisms and transformers are promising approaches that may be incorporated into many

deep learning methods.

As the machine learning field evolved and deep learning approaches became common, they also

started to be applied to HI problems. Although these methods demand a high amount of data to

train and avoid overfitting, researchers could circumvent this problem, obtain reasonable results,

and improve the results in the HI context.

CHAPTER 2

LARGE-MARGIN FULLY CONVOLUTIONAL NETWORKS

This section presents the LMFCN approach that includes the fully convolutional network (FCN)

description, the large-margin discriminant training, the loss functions that are used to update

the FCN weights and the multiclass approach. We also present a brief analysis of the LMFCN

computational costs and the impacts of the loss functions in the weights update.

2.1 An overview of the LMFCN

The LMFCN is an approach that uses an FCN to generate a latent representation from images

and trains a large-margin discriminant that can classify these images according to their classes. It

uses information gathered during the training of the discriminant, like the support vectors (SVs)

and classification results, to update the weights of the FCN and improve the latent representation

to ease the training of the discriminant in the next iteration. Figure 2.1 shows an abstract

representation of this approach. The FCN architecture is detailed in Figure 2.5.

The LMFCN has some distinct characteristics that can be summarized as follows:

• It learns representations directly from the raw data like CNNs.

• It uses a global average pooling layer to produce a low-dimensional latent representation.

• Instead of a fully connected layer, it uses an SVM as a discriminant.

• Besides learning a discriminant, the SVM also allows it to find out what training instances

(SVs) most impact such a discriminant and the mis- and well-classified instances. Such

instances are used as anchor points.

• The anchor points are used to calculate the specially developed loss functions to guide the

update of the convolutional layers, similar to DML.

• The loss function aims to move the SVs in the latent representation space towards their

closest well-classified anchors to increase the margins, move the misclassified instances in

the direction of the closest SVs to correct them, and move the closest well-classified instances

of the opposite class to the opposite direction, also increasing the margins.

20

Figure 2.1 An abstract representation of the LMFCN. Xtrain and Xtest are the

train and test sets. Ttrain and Ttest are the train and test latent representation

matrices of all images from these sets. Ttrain is used to train the large-margin

classifier and provide the classification results and the support vectors (S) to the

loss functions. Finally, it utilizes the loss error to update the FCN weights. This

process is accomplished iteratively. In the end, Xtest (blue line) can be fed to the

FCN, generating the latent representation to the classifier to obtain the

classification result.

• The training algorithm updates the parameters of the convolutional filters and, consequently,

the latent representation in an iterative way, recalculating the SVM and anchor points at each

iteration with the newly generated latent representation from the FCN trained in the previous

iteration.

• At the end, the iterative training ends at a chosen stop criteria, producing a model comprising

the trained FCN and SVM, forming an end-to-end raw data classifier.

2.2 LMFCN

The key point of the proposed approach is that it does not use all training instances. Instead, it

selects and uses only the most relevant instances during training, reducing the training complexity.

Such instances, named anchors, are used with a novel loss function, which speeds up training.

The proposed method has four components: a fully convolutional network (FCN) with a global

average pooling (GAP), a large-margin classifier, a set of anchor instances, and a novel loss

21

used to optimize the parameters of the convolutional filters. The LMFCN uses a sequence of

CLs acting as a filter bank to generate a latent representation from raw data (images). This

representation is fed to a large margin discriminant that can classify the data and provide

information on how the data is distributed. In addition, the backpropagation algorithm is used

with a newly created loss function to update the filters to generate a new latent representation

with the same raw data but separated with larger margins. The loss function is based on anchor

points defined by the information from the large margin discriminant and calculates the distance

between instances of interest and their anchors. The loss function has three terms that can be

used independently. Thus, only one may be used between the three, two combined, or three. The

most important term uses only the SVs as instances of interest. According to our experiments,

this term can solve most problems and use only a subset of the training set. The other two terms

use mis- and well-classified instances as instances of interest. The three terms together end up

using the whole training set, but the use of all terms together is not mandatory, as we show in

the evaluations.

2.2.1 Anchor Instance Selection

Anchors are essential in the proposed method because the FCN weight update procedure relies

only on such instances. Anchors are instances from the training set used as references by the loss

function to calculate the distance to instances of interest. Instances of interest are the samples

that we want to move in the latent representation to increase or decrease the distance (similarity)

to the anchors. The backpropagation algorithm minimizes such distances during training.

The LMFCN addresses the problem of selecting anchors and instances of interest using the

large margin principle. It creates a list of instances and anchors with the idea that increasing

the margin also reduces within-class dissimilarity (or distance) and increases between-class

dissimilarity. SVM is also based on margins, defining the largest possible margin to separate

classes.

22

The SVM is a supervised learning method based on SVs. Its purpose, simplifying the definition,

is to find instances in the training set that are close to other classes and also can draw the largest

margin possible between classes. These instances are the SVs that, in the LMFCN, become

instances of interest and anchors, depending on the situation our algorithm tries to solve. The

SVs are the most complicated instances to classify, based on similarity measures, being close to

the opposite category. The other training instances that are not SVs are near similar samples

and away from dissimilar ones. This idea is akin to a DML problem, where there are instances

we want to move away from the opposite and closer to the same class. The characteristics of

SVs are similar to DML. Thus the closer to the same category we move them, the bigger the

margin becomes. Typical classification problems with SVM do not change representation or

features. The only option is to find the best possible SVs to draw margins, which differs from

DML, where representation enhancement is allowed.

SVM also has two other interesting characteristics, kernel flexibility, and the soft margin

definition. Easier problems, linearly separable, can rely on a simple linear kernel, reducing

computational costs. Still, when the class separability is more complicated, we can use another

kernel type. One of them is the Radial Basis Function (RBF), which has its similarity measure

based on a Euclidean distance and allows more complex decision boundaries. The RBF kernel

accepts a hyperparameter, called γ, that dictates the spread of the kernel function. Higher γ

values create narrow margins, more islands, and sharpened contours, often leading to overfitting

and many SVs to draw a complex margin.

Another characteristic of the SVM is its soft margin that controls the lenience to misclassified

instances in the optimization process, defined by the hyperparameter C. Some problems cannot

converge into an optimal solution due to complex cases, or they may require too many SVs and

narrow margins producing an overfitted margin boundary. The soft margin allows controlling

the tolerance to misclassified instances during the training. In this case, the SVs are difficult

instances in the borders but not so overlapped with the opposite class.

23

We used the closest correct classified instances to SVs as our anchors and SVs as the instances

of interest. The SVs and each instance’s class prediction define the anchors and the instances of

interest. Figure 2.2a presents a latent representation space split into two regions by an RBF SVM

classifier. Our algorithm uses the distance calculation between SVs and their anchors as a loss

function, which, when minimized, causes an approximation of SVs to anchors. As in DML, we

can change the latent representation generated by the FCN using backpropagation with our loss

function. Looking at all SVs in Figure 2.2a, the overall view shows that their movement towards

their anchors produces margin enlargement. They are the instances in the most complicated

situation (closer to the decision boundaries) in the latent representation space, apart from the

misclassified ones. Figure 2.3a shows in detail a specific region and helps understand the

movement direction of SVs from both classes. Of course, changing the FCN aiming to move SVs

also impacts all instances around them with similar latent representations because they share

some characteristics. Therefore, such instances will also experience movements in a similar

direction. In our method, these anchors are denoted as Asv.

The impact of well-selected hyperparameters C and γ is visible in Figure 2.2a, with a smoother

margin and misclassified instances. These parameters play an essential role in our method,

reducing the number of SVs and generating more effective anchors with consistent movement

directions. A high number of SVs due to a high C or γ can drastically reduce the number of

correctly classified instances that are not SVs, reducing the number of anchors available. Fewer

anchors lead to movements in directions that may not be adequate. Another challenge to this

anchor selection method is a latent representation with highly overlapped classes, generating

many SVs and reducing anchors’ choice options.

Unlike a conventional CNN, where the discriminant is improved at each epoch, the discriminant

produced by the SVM in each epoch is discarded because the latent representation changes due

to the updates in the FCN weights. Only the SVM model from the epoch determined by stop

criteria, in our case, the SVM model which produced the biggest validation accuracy, is used as

a discriminant for the latent representation from images generated by the FCN from the same

epoch.

24

a) Asv b) Amc c) Acc

Figure 2.2 A 2D representation space for two-class instances and boundaries

generated by an RBF SVM. Circles are samples of class 0, and crosses are samples

of class 1. Bigger symbols mean the Support Vectors for each class. In blue is the

region of class 0, and in yellow is the region of class 1. Dashed straight black lines

link the instances to their anchors. In red are the anchors for three different

situations. a) are anchors of reference to the SVs (Asv), b) are anchors to move the

misclassified instances (Amc) and c) are anchors to increase the separation of

instances from opposite classes (Acc)

.

a) Asv b) Amc c) Acc

Figure 2.3 Anchors type zoom

Two other anchor types are also defined in our approach,Amc andAcc. Amc are the SVs closest

to a misclassified instance. In the latent representation space of Figure 2.2b, lines are linking the

misclassified samples to their anchors (SVs), with a detailed representation in Figure 2.3b. This

25

anchor type aims to correct the misclassified instances. They use SVs as anchors because they

are the closest correctly classified instances and do not induce substantial updates: the correctly

classified instances that are not SVs are too distant from a misclassified instance. Thus, there is

a small update that does not cause great disturbance in the other class.

Acc are characterized by the closest correctly classified instances of the opposite class, as shown

in Figure 2.2c. Acc helps to maximize the distance between instances of different classes

(between-class distance). This anchor spreads the instances in the representation space but may

cause movements in unfruitful directions, which may cause overlapping in other parts of the

space when dealing with complex data distributions. Such an anchor is also computationally

costly; the more the model produces well-classified samples, the more costly it becomes with

more instances of interest and anchors. Figure 2.3c allows a better observation and understanding

of the Acc definition.

It is essential to note that the number of anchors, regardless of their type, is a hyperparameter

in LMFCN. For instance, in Figure 2.2 we have 3, 1, and 1 anchor for Asv, Amc, and Acc,

respectively. The hyperparameters should be tuned according to the problem’s difficulty and

distribution. In Section 3.4.7, we analyze the impact of these hyperparameters values on the

accuracy and computational cost of the LMFCN.

Section 2.2.2 describes the algorithm of LMFCN and how the training algorithm defines and

uses the anchors.

2.2.2 LMFCN Training

The LMFCN training algorithm includes five basic steps illustrated by colored rectangles in

Figure 2.4. They are:

1. Convolution of kernels with the image to produce feature maps and GAP (latent representa-

tion);

2. Calculation of distance matrices P and D and a Gram matrix (K);

3. Training a kernel SVM on T to learn a discriminant and information on support vectors (S);

26

Figure 2.4 An overview of the LMFCN training scheme. Five main steps are

highlighted: 1) An FCN generates a latent representation of the training set images.

2) The latent representation is used to compute the kernel of a large margin

discriminant and the distance between instances. 3) Training of the large margin

discriminant. 4) Calculation of auxiliary matrices to determine the anchor points

of each instance of interest. 5) Loss terms computing and FCN weights update.

4. Creation of anchor matrices A, M, and G;

5. Calculation of a loss function that employs anchor points and backpropagation of the error

to update the convolutional filters of the FCN and improve the latent representation;

The steps are also described in Algorithm 2.1, with steps 1 and 2 merged in the function

calculate_base_matrices(.).

The training procedure starts with a dataset of size n denoted as X = {Xt,ot}nt=1
, where t indexes

images Xt of width w, height h and c channels in X, and ot ∈ [0,1] is its label. All images from

X are fed to a stack of multiple CLs denoted as ffcn(.) and produce a matrix Tn×φ, with φ being

the dimension of the latent representation (step 1 at Figure 2.4). The algorithm uses the matrix T

to calculate the matrix P (Equation (2.1)), which in turn is used to calculate matrices Kn×n and

Dn×n using Equations (2.2) and (2.3), respectively (step 2 at Figure 2.4) described in Algorithm

27

2.2. D is essential to the rest of the algorithm as it contains the pairwise distance of all instances

and is used to create the anchor matrices.

Algorithm 2.1 LMFCN training algorithm

Input: Set of n training images X = {Xt,ot}nt=1
and randomly initialized ffcn(.)

Output: ffcn(.), fsv(.)

1 while !stop_criteria do
2 T,P,K,D← calculate_base_matrices(X); // Step 1 and 2
3 S,Q,R, fsv(.) ← calculate_instances_o f _interest(T,K,X); // Step 3
4 A,M,G← obtain_anchor_matrices(S,Q,R); // Step 4
5 ffcn(.) ← fbackpropagation(loss_sv(A,TS)+

loss_mc(M,TQ) − loss_cc(G,TR)); // Step 5
6 end while

Algorithm 2.2 LMFCN - Base matrices calculation - calculate_base_matrices()

Input: Set of n training images X = {Xt,ot}nt=1

Output: Matrices T, P, D e K

1 T← ffcn(X)
2 P← 0

3 for i ∈ [0,n[do
4 for j ∈ [0,n[do
5 for b ∈ [0, φ[do

// P is a auxiliary matrix to save effort on
computing K and D

6 pi j ← pi j + (tib − t jb)2
7 end for

// Kernel matrix
8 ki j ← exp(−γpi j)

// Distance matrix
9 di j ← √pi j

10 end for
11 end for

K is an RBF kernel matrix used to train a large margin discriminant fsv(.), by optimizing the

Lagrangian multipliers as denoted in Algorithm 2.3. The large margin discriminant produces

28

the output yt for each element t of X, and also provides a set of support vectors (SVs) indexes

S = {su}vu=1, where su ∈ [0,n[and v is the number of SVs (step 3 at Figure 2.4).

Algorithm 2.3 LMFCN - Creation of auxiliary sets (S, Q, R) -

calculate_instances_o f _interest(T,K,X);
Input: Matrix of latent representations T, kernel K and o from X
Output: Trained large margin discriminant fsv(.) and the sets S, Q and R

1 fmargin(.) ← min
w,b

1
2
‖ w ‖2 +C

n∑
i=0

max(0,1 − oi · yi) // Soft margin SVM

2 flagrange(w, b, α) ← fmargin(.) −
n∑

i=0

αi[oi(w · x + b) − 1]

3 fdual(α,o,K) ←
n∑

i=0

αi − 1
2

n∑
i,j=0

αiα j oioj ki j

4 fsv(.),S ← max
α

fdual(α,o,K)

5 j ← 0

6 for i ∈ [0,n[do
// Select misclassified vectors to form Q

7 if fsv(ti) � oi then
8 qj ← i
9 j ← j + 1

10 end if
11 end for

12 j ← 0

13 for i ∈ [0,n[do
// Select correct classified vectors, except S, to form

R
14 if i � S and i � Q then
15 rj ← i
16 j ← j + 1

17 end if
18 end for

pi j =

φ∑
b=0

(tib − t jb)2 (2.1)

29

ki j = exp(−γpi j) (2.2)

di j =
√pi j (2.3)

TheAsv (step 4 at Figure 2.4) are obtained from matrix D, the set S, the expected output ot, and

the output from fsv(ffcn(Xt)), as shown in Equation (2.4):

eij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
τ if i = j or j ∈ S or oi � oj or oj � fsv(ffcn(X j))

dij otherwise

(2.4)

where eij is either the distance between SVs and their anchors (di j) or a large constant τ that

indicates that there is no SV-anchor relation (uninteresting instances).

Furthermore, we also define a sorting function fargsort(.) that takes a vector as input and returns

a vector of indices sorted in increasing order, in this case, the increasing order of distances

between SVs and their anchors stored in the vector e. So, the anchor matrix As×n is calculated

using Equation (2.5). Algorithm 2.4 describes how the A matrix is computed.

au = fargsort(esu) with su ∈ S and u ∈ [0, |S|[(2.5)

Likewise A, we calculate with Equations (2.7) and (2.9) in Algorithm 2.5 the matrices Mm×n

and Gg×n for Amc and Acc, respectively (step 4 at Figure 2.4). We define a set of numbers

(indexes) to indicate the misclassified and correctly classified instances from X as Q = {q | q ⊂
N : [0,n[∩fsv(ffcn(Xq)) � oq}, and R = {r | r ⊂ N : [0,n[∩r � S ∪ Q}, respectively.

zij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dij if i ∈ Q and j ∈ S and i � j

τ otherwise

(2.6)

mi = fargsort(zqi) with qi ∈ Q and i ∈ [0, |Q|[(2.7)

30

Algorithm 2.4 LMFCN - Loss auxiliary matrix A - obtain_anchor_matrices()

Input: Sets S, Q, R with the indexes to the instances of interest to each loss type

Output: Matrix A with the indexes to the closest anchors to each instance of interest

1 for i ∈ [0,n[do
2 for j ∈ [0,n[do

// Use the auxiliary matrix E to determine the
closest anchors to each SV

3 if i = j or j ∈ S or oi � oj or oj � fsv(ffcn(X j)) then
4 ei j ← τ
5 else
6 ei j ← di j
7 end if
8 end for
9 end for

10 for i ∈ [0, |S|[do
11 ai ← fargsort(esi)
12 end for

hij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dij if i ∈ R and j ∈ R and oi � oj

τ otherwise

(2.8)

gi = fargsort(hri) with ri ∈ R and i ∈ [0, |R |[(2.9)

where zij and hij in Equations (2.6) and (2.8) are the distance between misclassified instances

and the SVs (di j) and the distance between correctly classified instances from opposite classes

(di j), respectively. Again, τ is a large constant that indicates uninteresting instances.

Step 5 is the backpropagation of the error computed at the output of the loss functions to calculate

the gradients and update the CL weights. The loss functions use the latent representation of

three subsets of images XS, XQ and XR, which are the images correspondent to the SV, the

misclassified and correctly classified images, respectively. Steps 1 to 5 define one training epoch.

After step 5, the process restarts from step 1, so the latent representation is recomputed, as well

as the matrices P, K and D and the large-margin discriminant is retrained on such an updated

31

latent representation, producing another set of SVs allowing recalculation of matrices A, M and

G. Therefore, the latent representation of training samples in matrix T differs slightly from the

previous epoch because of the updated FCN weights. After each epoch, the accuracy of the

validation set is verified, and when improved, the models (FCN and discriminant) are kept. The

Algorithm 2.5 LMFCN - Loss matrices M and G - obtain_anchor_matrices()

Input: Sets S, Q, R with the indexes to the instances of interest to each loss type

Output: Matrices M and G with the indexes to the closest anchors to each instance of

interest

1 for i ∈ [0,n[do
2 for j ∈ [0,n[do

// Use the auxiliary matrix Z to determine the
closest anchors to each misclassified instance

3 if i ∈ Q and j ∈ S and i � j then
4 zi j ← di j
5 else
6 zi j ← τ
7 end if
8 end for
9 end for

10 for i ∈ [0, |Q|[do
11 mi ← fargsort(zqi)
12 end for
13 for i ∈ [0,n[do
14 for i ∈ [0,n[do

// Use the auxiliary matrix H to determine the
closest anchors to each correct classified
instance

15 if i ∈ R and j ∈ R and oi � oj then
16 hij ← dij
17 else
18 hij ← τ
19 end if
20 end for
21 end for
22 for i ∈ [0, |R |[do
23 gi ← fargsort(hri)
24 end for

32

stop criterion is usually defined as a number of epochs. After all the epochs, we have the best

models (FCN and SV) saved at the best validation accuracy.

2.2.3 Loss Function

The proposed loss function relies on the similarity between examples, and it has three terms, as

shown in Equation (2.10). It aims at finding a latent representation that maximizes the margin

(Lsv) while pushing misclassified examples towards the right side of the decision boundary

(Lmc) and moving well-classified examples farther away from the decision boundary (Lcc).

minimize Lsv + Lmc − Lcc (2.10)

Lsv calculates the sum of distances between SVs and their anchors using matrix A, as shown in

Equation (2.11). This loss is affected by the gradients from the SVs with respect to the values of

theAsv stored in T. The backpropagation procedure updates the weights in a way that the latent

representation generated by ffcn(.) has the smallest possible distance between SVs and Asv at

the current epoch. Therefore, the weights are updated to move the SVs and not the anchors.

Lsv =
1

|S|
|S|∑
i=0

svclose∑
j=1

| |ffcn(Xsi) − tai j | |22 (2.11)

where svclose is the number of anchors to use for each SV, ffcn(.) is the FCN to be updated by the

backpropagation, Xsi
is the matrix that represents the si image from X, aij is an index pointing to

an anchor instance in the input set X, tai j is the latent representation of such an anchor instance

(or image) Xai j , and |S| is the number of SVs.

The training algorithm computes the loss over TS ∈ T as a single batch. It is also possible to

use mini-batches, but considering small-size datasets and an FCN with compact architecture

that yields a low-dimensional latent representation, this is unnecessary. In the next epoch, the

updated weights will affect the generation of the latent representation of the entire training set X.

33

Therefore, the latent representation of anchors also changes, and the training algorithm must

choose a new set of anchors.

Lmc calculates the summation of distances between misclassified instances and their anchors

using matrix M, as shown in Equation (2.12). We also use all misclassified instances as a single

batch, although there is no limitation to performing it in mini-batches. Lmc influences the

training algorithm by updating the weights to minimize the distance between the misclassified

instances and their closest SVs. Consequently, the misclassified instances are pushed toward the

right side of the decision boundary.

Lmc =
1

|Q|
|Q|∑
i=0

wrclose∑
j=0

| |ffcn(Xqi) − tmij | |22 (2.12)

where wrclose is the number of anchors for each misclassified instance, ffcn(.) is the FCN updated

by the backpropagation, Xqi
is the matrix that represents the qi image from X, mij is an index

pointing to an anchor instance in the input set X, tmi j is the latent representation of an image

Xmi j , and |Q| is the number of misclassified instances.

When looking at only a single misclassified instance, the weight updating may not be enough to

move such an instance to the right side of the decision boundary because its anchors are SVs

right at the margin of the decision boundary. If it is not moved to the right margin side, the

misclassified example may become an SV in the following training epoch.

Lcc represents the distance between well-classified instances and their anchors, and it is computed

by Equation (2.13). Since we want to maximize such a distance, it is incorporated as a negative

term in the loss function, which is minimized during training.

Lcc =
1

|R |
|R|∑
i=0

shclose∑
j=0

| |ffcn(Xri) − tgij | |22 (2.13)

34

where shclose is the number of anchors for each correctly classified instance, ffcn(.) is the FCN to

be updated by the backpropagation, Xri
is the matrix that represents the ri image from X, gij is

an index pointing to an anchor instance in the input set X, tgi j is the latent representation of an

image Xgi j , and |R | is the number of correctly classified instances.

The number of anchors used for each training instance is controlled by svclose, wrclose, and shclose

in Equations (2.11) (2.12), and (2.13), respectively. Algorithms 2.6, 2.7 and 2.8 present the loss

calculations until the backpropagation. Usually, complex classification problems require a higher

number of anchors. Furthermore, using all three terms of the proposed loss function in the

training process may not always be necessary. Lsv alone already leads to good representations

as such a loss is directly related to SVs and margin maximization. The computational cost for

computing this term of the loss function is not high and decreases as the number of instances

used by the backpropagation algorithm reduces at each training epoch because the number of

SVs decreases as the latent representation improves. Computing Lmc is also not expensive

because the number of misclassified examples tends to decrease over the training epochs. On the

other hand, computing Lcc can become very expensive because the number of well-classified

instances tends to increase over the training epochs. Therefore, the term Lcc should be used

wisely, preferably only on challenging problems where the other two terms of the loss function

may not lead to a low training error. The use of this loss term is also recommended at a certain

interval of epochs, not at all of them, for example, in intervals of three epochs. The behavior and

impact of each loss function are further discussed in Section 2.4 and their cost in Section 2.3.

2.2.4 SVM Loss Function

The SVM base equation (Equation (2.14)) with hard margins seeks the optimization of the best

w and b to draw the largest linear margin that can separate all data correctly.

min
w,b

1

2
‖ w ‖2

subject to oi(w · ti + b) − 1 ≥ 0, i = 0...n
(2.14)

35

Algorithm 2.6 LMFCN - Lsv and weights update - loss_sv()

Input: Set S and matrix A
Output: Lsv

1 Lsv ← 0

2 for i ∈ [0, |S|[do
3 for j ∈ [0, svclose[do

// δ is the distance of a SV to its anchor
4 δ← 0

5 for ϕ ∈ [0, φ[do
6 δ← δ + (ffcn(Xsi)ϕ − tai jϕ)2
7 end for
8 Lsv ← Lsv +

√
δ

9 end for
10 end for
11 return Lsv

|S|

Algorithm 2.7 LMFCN - Lmc and weight update - loss_mc()

Input: Set Q and matrix M
Output: Lmc

1 Lmc ← 0

2 for i ∈ [0, |Q|[do
3 for j ∈ [0,mcclose[do

// δ is the distance of a misclassified instances to
its anchor anchors

4 δ← 0

5 for ϕ ∈ [0, φ[do
6 δ← δ + (ffcn(Xqi)ϕ − tmi jϕ)2
7 end for
8 Lmc ← Lmc +

√
δ

9 end for
10 end for
11 return Lmc

|Q|

where:

w is the margin’s weight

36

Algorithm 2.8 LMFCN - Lcc and weight update - loss_cc()

Input: Set R and matrix G
Output: Lcc

1 Lcc ← 0

2 for i ∈ [0, |R |[do
3 for j ∈ [0, shclose[do

// δ is the distance of a correctly classified
instance to a anchor

4 δ← 0

5 for ϕ ∈ [0, φ[do
6 δ← δ + (ffcn(Xri)ϕ − tgi jϕ)2
7 end for
8 Lcc ← Lcc +

√
δ

9 end for
10 end for
11 return Lcc

|R |

b is the margin’s bias

ti is the latent representation of the i-th training instance

oi is the expected class output of instance xi

n is the number of training instances

Given the minimization problem and constraints, it can be solved using Lagrangian multipliers

and transforming in a Wolfe dual problem as denoted in Equation (2.15).

max
α

n∑
i=0

αi − 1

2

n∑
i,j=0

αiα j oioj ki j

subject to αi ≥ 0, i = 0...n,
n∑

i=0

αiyi = 0

(2.15)

where:

α are the Lagrangian multipliers

ki j is the kernel matrix value for a i, j instance pair

37

After solving the Wolfe dual problem from Equation (2.15) with a method like sequential

minimal optimization (SMO), the values of w and b are obtained by Equations (2.16) and (2.17)

respectively.

w =

n∑
i=0

αioiti (2.16)

b =
1

s

s∑
i=0

(oi − w · ti) (2.17)

The SVM has a deterministic output and converges to an optimal value, always producing

the same results even when executed multiple times with the same data. Although it only

converges if there is an optimal solution, thus in a set of instances with outliers, for example,

it cannot converge because it does not accept misclassified instances due to the constraints

(oi(w · ti + b) ≥ 1).

To overcome the hard margin problem of SVM, the soft margin method adds slack variables ζi

to the constraints (Equation (2.18)).

oi(w · ti + b) ≥ 1 − ζi, i = 1...n (2.18)

The problem with using ζi is that, in principle, any value is accepted and will allow all samples

to satisfy the constraints. To limit the influence of ζ , the C regularization parameter is added so

that the optimization problem changes from Equation (2.14) to Equation (2.19).

min
w,b,ζ

1

2
‖ w ‖2 +C

n∑
i=0

ζi

subject to oi(w · xi + b) ≥ 1 − ζi, ζi ≥ 0, i = 0...n

(2.19)

38

So, the C parameter can control the weight of the influence of ζi in contrast to the first term.

The optimization equation for the soft margin SVM in its Wolfe dual form is represented by

Equation (2.20), changing the constraint αi ≥ 0 to 0 ≤ αi ≤ C.

max
α

n∑
i=0

αi − 1

2

n∑
i,j=0

αiα j oioj ki j

subject to 0 ≤ αi ≤ C, i = 0...n,
n∑

i=0

αiyi = 0

(2.20)

The hinge loss, defined by Equation (2.21), helps models pursue the largest possible margins for

the classification problems. It works by applying the largest penalties on instances that violate

the margins. It also tends to zero in the case of instances that are as far as possible from the

margin on the correct side.

Lhinge = max(0,1 − oiyi) (2.21)

The hinge loss is used in the soft margin SVM training, applied in the regularization term as the

ζi value. It provides controlled feedback from the training instances relative to the margin. The

problem of choosing a value for ζi is solved using this resource. The C parameter now controls

the effect of the misclassified instances, or the margin distance, calculated by the hinge loss in

the model training. The SVM problem with hinge loss is then represented by Equation (2.22).

min
w,b

1

2
‖ w ‖2 +C

n∑
i=0

max(0,1 − oi · yi) (2.22)

The use of hinge loss in SVM is different from using it in a CNN. The SVM is a shallow approach

that does not change the representation but finds the best margins defined by the SVs. The soft

margin term, obtained by the hinge loss, allows some lenience related to misclassified instances,

while the large margin is defined by the first term of the SVM equation (Equation (2.22)). This

loss applied in a CNN model induces updates in the representation generated by the network

39

with the objective of increasing the margins as a whole (all instances). The impact of the hinge

loss in the LMFCN is different, as it is indirectly used (inside the SVM) to tolerate misclassified

instances and avoid overemphasizing outliers that would produce large updates on the weights

of the CLs. The soft margin’s lenience greatly impacts the first steps of the LMFCN because,

initially, the latent representation does not allow clear separation. Without the hinge loss, and

consequently the soft margin SVM, the discriminant would not converge and would forbid the

use of SVs and predicted output from the discriminant in the losses.

2.2.5 FCN Architecture

The FCN is a sequence of CLs similar to those used in CNNs, used as filter banks to learn

representation related to textures, as presented in Table 2.1. Pooling layers follow these layers to

reduce the input size progressively. The deeper the layers, the narrower the latent representation,

but with an increasing number of channels, which allows more filters combination, increasing

the richness of the representation.

After the last CL, a GAP layer builds a latent representation where each element represents the

activation of a sequence of filters to the input characteristics. The GAP layer also makes the

output dimension independent of the input size, and the latent representation will always have the

same number of channels at the end of the FCN. Such a latent representation feeds a large-margin

discriminant to learn classification tasks. We compared our approach with two CNNs with

identical architecture (Table 2.1 and Figure 2.5) but with a sequence of fully connected (FC)

layers as discriminant after the GAP layer. We employed binary cross-entropy (BCE) loss and

hinge loss for binary problems and cross-entropy loss for multiclass problems.

The basic layers of the FCN architecture are CLs, MaxPooling, and ReLU. The current deep

learning scenario introduced new layers and blocks, e.g., inception, residual, squeeze-and-

excitation blocks, and attention mechanisms. Although we have not employed such new layers

and blocks, our approach does not prohibit their use. The purpose of choosing simple layers was

to show that our approach can obtain high performance in the chosen context even with basic

40

layers, avoiding extra complexity and computational costs. In our case, we are not exploring

new blocks or layers’ capabilities but focusing on the training procedure. Complex mechanisms

would cause an extra variable to the analysis of our approach.

In Table 2.1, we use w, h, and c to represent the input image’s width, height, and number of

channels. We used this generic representation to highlight that our FCN is not restricted to an

input size like other CNNs without GAP, where the activation maps depend on the dataset image

size. Our kernel sizes, the number of layers, and strides were defined empirically after a set of

experiments. We started using an FCN similar to AlexNet, and TCNN (Andrearczyk & Whelan,

2016) and tried modifying these parameters until we obtained the average best result in all

datasets. The parameter φ is the size of the latent representation. In our experiments, we have

started using φ equals two to allow the representation in a low dimensional space (dispersion

graphs). The value of φ=16 used in CNNs and LMFCN comparison was also defined based on

the best accuracy with the smallest latent representation. Therefore increasing it does not produce

a significant accuracy improvement. This parameter also depends on the dataset’s complexity. If

it is necessary to represent more image details and different textures, a latent representation of

higher dimensionality (large φ) is required as it tends to improve the representation capability. φ

must also be chosen carefully in multiclass problems due to the latent representation concatenation

in our OVA method (Section 2.2.7).

Figure 2.5 FCN Architecture with c=3, w=128, h=128, and φ=16

41

Table 2.1 FCN used on the LMFCN and in the

CNN comparison. (w: image width, h: image height,

c: number of channels, φ: size of the latent

representation

Layer Input Output
Convolutional Layer w × h × c w × h × 64

Batch Normalization

ReLU

Max Pooling w × h × 64 w/2 × h/2 × 64

Convolutional Layer w/2 × h/2 × 64 w/2 × h/2 × 128

Batch Normalization

ReLU

Max Pooling w/2 × h/2 × 128 w/4 × h/4 × 128

Convolutional Layer w/4 × h/4 × 128 w/4 × h/4 × φ
Batch Normalization

ReLU

Global Average Pooling w/4 × h/4 × φ 1 × 1 × φ

2.2.6 Large-Margin Discriminant

The large-margin discriminant of the LMFCN is a support vector machine (SVM) with an

RBF kernel, which Gram matrix K is obtained by Equation (2.2) calculated jointly with the

distance matrix D. The SVM training can be split into two phases, building the kernel and the

optimization of w and b. Thus, part of the SVM training is performed in GPU, based on the

pre-built matrix P, also used to compute D, accelerating this stage. We chose the pre-computed

RBF kernel due to its ease of computation using the GPU resources and space separation

capacity. Although a linear kernel is less computationally costly than an RBF kernel, learning

a discriminant representation would require more training epochs of the FCN weights. In the

preliminary studies, we compared the two kernel approaches and verified the advantage of the

RBF.

42

2.2.7 Multiclass LMFCN

A large-margin discriminant is inherently binary, and to deal with multiclass problems, we

use the one-vs-all (OVA) approach, which reduces multiclass problems into nclasses multiple

binary classification problems corresponding to the number of classes. In the training stage,

all instances are provided to nclasses LMFCN pairs (FCN+SVM). Our method trains the FCNs

to learn a representation to discriminate a single class against all others, so we build multiple

binary feature extractors and discriminants.

The multiclass LMFCN only uses the multiple binary discriminants to provide information

about the representation space generated by the FCNs, i.e., the SVs, well, and misclassified

instances. After training all the nclasses FCNs, we discard all SVMs, and a new discriminant is

trained using a latent representation with φ × nclasses attributes as shown in Figure 2.6. At the

end of the training process, the full model comprises nclasses FCNs with an output of φ attributes

and a multiclass SVM with an input of φ × nclasses attributes. The multiclass SVM internally

holds multiple binary SVMs on OVA configuration using RBF kernel. Although this approach

seems similar to using the multiple SVMs trained with the FCNs, all new classifiers have access

to the latent representations of all binary classifiers.

2.3 Computational Cost

The computational training cost analysis has to be split into three parts to compare the LMFCN

with equivalent CNNs. Both approaches have similar backpropagation complexity until the

GAP if we assume similar FCN architectures. It is proportional to the number of input images

n, their size w × h × c and the number of weights αfcn. The LMFCN does not have FC layers

as in CNNs, which have a high number of parameters due to the high connectivity of units, so

there is a reduction in the computational cost of αfc against n in the LMFCN. Despite lacking

FC layers, the LMFCN replaces them with an SVM classifier, which implies in computational

cost for kernel calculation (n2) and solving the quadratic programming problem by an SMO

algorithm, which requires (n3 or n × n2) in the worst case. Considering a small-size dataset

43

Figure 2.6 Multiclass LMFCN. Blue arrows mean part of the OVA filter

training, including backpropagation with loss functions. Black arrows

represent the data flow of the multiclass SVM classifier training with

concatenated latent representations of all OVA subproblems

(small n), even the SMO cubic cost is lower than n × αfc. Therefore, the n2 = αfc is the upper

bound of the LMFCN. For higher values of n, the advantages of using the LMFCN fade away,

and conventional CNNs should perform equally or better due to the training data availability.

One of the advantages of the LMFCN is the possibility of computing the loss function only for

SVs instead using all images from the training set (n) when using only Lsv, which reduces this

phase cost from n to |S|. The FCN, used on both LMFCN and CNNs, has more parameters

than the FC layers, so using fewer training samples has a significantly positive performance

impact on the weights update of the first layers. Furthermore, as we observed in our experiments,

the LMFCN converges faster than equivalent CNNs, requiring fewer epochs to achieve a low

training error. With this characteristic, the LMFCN training is even more efficient, and the

considered upper bound is then n2
sv > αfc instead of n2 > αfc.

44

In multiclass problems, it is necessary to use multiple FCNs and SVs, according to the number

of classes, due to the OVA approach. At the end of the LMFCN OVA training, there is a

multiclass SVM with a more comprehensive latent representation (φ × nclasses). We compared

the LMFCN with a CNN of equivalent size in terms of the number of parameters, number, and

the dimension of layers, increasing both the convolutional and discriminant parts to expand this

network representation capacity. With more parameters and the high connectivity of the FC

layers, the CNN backpropagation costs also increased. Additionally, the higher the number of

parameters, the more training data is needed, the higher the cost of each sample through the

network, and the convergence for more parameters takes more epochs. However, in the LMFCN,

we used multiple small FCNs that can converge faster with high-accuracy results.

Shallow approaches have a reduced total cost because algorithms for handcrafted feature

extraction process images into a single pass, and the classifiers are trained once with the extracted

features. Despite their computational cost advantage, they produce generic characteristics not

adapted for a particular classifier, resulting in worse accuracy values than the LMFCN. Multiclass

shallow approaches are also much less expensive than the LMFCN multiclass approach. Still,

they always produce the same representation (features) independent of the number of classes,

not exploiting the intra-class and between-class properties.

2.4 Analysis of Loss Terms

The three terms of our loss function play a specific role in the training process. To demonstrate

the influence of each loss term, we have generated synthetic distributions to simulate the output

of an FCN (ffcn(.)). Therefore, we simulate the representation learning mechanism using our

loss function with the backpropagation algorithm, which aims to reduce the distances between

instances of interest and their anchors (loss terms Lsv and Lmc using Equation (2.23)), and also

maximizing the distances between instances of interest and their anchors (loss term Acc using

Equation (2.25)). The update of the latent representation for Lsv and Lmc is based on a convex

combination between instances of interest and anchors, prioritizing (heavier weights) the closest

anchors. Our simulation also updates generic instances close to the instances of interest with

45

movements inversely proportional to their distance as in Equation (2.24). Both Equations (2.23)

and (2.24) can be used for simulating the behavior of loss terms (Lsv and Lmc), replacing svclose

by wrclose and S by Q.

The synthetic distributions are defined as T = {tn‖t ∈ R2}, where n is the number of instances.

As a parallel to our approach, the φ of the synthetic data for the simulation is R2 to create

correspondence to the 2-D Euclidean space, making it easier to visually interpret the algorithm’s

effect as it works by reducing (or augmenting) the Euclidean distances of instances to their

anchors.

Δti =

svclose+1∑
j=0

ψ j+1tai j , with {i |i ∈ N ∩ i ∈ S} (2.23)

where:

ti are the coordinates of an i-th SV or a misclassified instance

ψ is the weight of the convex combination with

svclose+1∑
i=0

ψi = 1 and

svclose+1∑
i=1

ψi < ψ0

tai j are the j − th anchor coordinates of the i − th SV or misclassified instance

Δti =

|S|∑
j=0

(
1 − 1

diS j

)
Δt j , with {i |i ∈ N ∩ i � S} (2.24)

where:

ti are the coordinates of a synthetic instance to update

dis j is the distance between instance i and S j

Δt j is the Δ applied to each SV.

The update of correctly classified instances position, like the update of the filter parameters of

the FCN (ffcn(.)) during the backpropagation, is accomplished by adding an update vector to

their coordinates. Such a vector is the weighted average vector between a correctly classified

46

instance and its anchors. The farthest the anchor, the smaller the weight on average. Equation

(2.25) expresses the calculation of the update of a correct classified instance.

Δti =

shclose∑
j=0

Γ(ti − tgi j)
(

1

j + 1

)
, with {i |i ∈ N ∩ i ∈ R} (2.25)

where:

ti are the coordinates of the i-th instance in R
gi j is index to the j-th closest instance from the i-th instance

tgi j are the coordinates of the j-th anchor of the i-th instance

Γ is the learning rate

Δti =

|R |∑
j=0

(
1 − 1

dir j

)
Δtr j , with {i |i ∈ N ∩ i � R} (2.26)

where:

ti are the coordinates of a i-th instance

dir j is the distance between instance i and r j

Δtr j is the Δ applied to a correct classified instance in R

The update of other than the misclassified instances is calculated by Equation (2.26). It adds

the weighted average of the update vectors of well-classified neighbors to other instances. The

weight is based on the distance between them.

The first synthetic distribution we used is depicted in Figure 2.7a. It was generated by two

Gaussian distributions, one at the center and the other at the sides of the representation space.

There are also two outliers on the right side.

47

a) Before training b) L′sv (it. 4) c) L′sv(it. 8)

Figure 2.7 Displacement of (a) instances of a two-class synthetic

distribution shifted with L′sv after b) four and c) eight iterations.

Figure 2.7 represents the Lsv simulation, denoted by L′sv, shifting the SVs towards their anchors.

After eight iterations, there is a separation in the instances similar to iteration four. It creates a

considerable inter-class margin and corrects the misclassified samples preserving the opposite

side margin. The large margin in the training set also impacts the test dataset (unseen instances)

because it improves the class separation. The outliers do not directly affect the optimization

process because the SVs are the object of interest. The relaxation or soft margin of the SVM

classifier allows some instances not to become SVs and limits the overfitting, limiting the effect

of the outliers.

a) Before training b) L′mc(it. 4) c) L′mc (it. 8)

Figure 2.8 Displacement of (a) instances of a two-class synthetic

distribution shifted with Lmc after b) four and c) eight iterations.

48

The L′mc is computationally lighter than the L′sv because the first has fewer instances of interest.

The margins produced by L′sv and L′mc losses are similar, so the last one is more interesting

due to its lower cost and good results. The update to correct the (red class) outliers on the right

side of the space representation also shifts the (red) instances in the center to the left, seen in

Figure 2.8. The L′mc also stops the optimization process after the training accuracy achieves

100% because there will be no instance to calculate an update. On the other hand, L′sv sustains

the optimization process, even without misclassified instances, because there will always be SVs

to guide the process and increase the margin. In Figure 2.8c, the left side margins are narrower

than in Figure 2.7c. The space of blue instances at the right side also infiltrates the space of red

instances more than L′sv, so in this simple scenario, we see the effects of outliers comparing the

two first loss terms.

a) Before training b) L′cc (it. 4) c) L′cc (it. 8)

Figure 2.9 Displacement of (a) instances of a two-class synthetic

distribution shifted with Lcc after b) four and c) eight iterations.

Figure 2.9 shows the simulation of the third term of the loss function. In this figure, the axis

x and y have the ticks numbering the axes, contrasting Figures 2.7 and 2.8. L′cc can shift

instances, but using correctly classified instances, it does not focus on correcting the outliers or

other misclassified instances. The focus is on inter-class distance so we can see the red instances

in the middle more squeezed by the two clouds of blue instances at each side. Blue samples are

also pushed away from the red ones, so the loss induces the spreading of samples across the

representation space, as can be seen comparing the scale of axes in Figures 2.9a and 2.9c.

49

a) L′sv (it. 8) b) L′cc (it. 8) c) L′sv + L′cc (it. 8)

Figure 2.10 Displacement of instances of a two-class synthetic distribution

shifted with a) L′sv b) L′cc and c) L′sv plus L′cc after eight iterations.

Each loss term has a specific way of guiding the training of the ffcn(.), and they can be used

together to combine their behavior. Figure 2.10 presents a comparison of a simulation using

L′sv and L′cc, and the combination of both. The difference in scale at the eighth iteration is

perceptible. L′sv keeps samples compacted with a well-defined margin, while L′cc spreads the

instances but does not separate them nicely. The representation in Figure 2.10c has better-defined

margins than the ones using only L′sv due to the inter-class distance maximization of L′cc. L′sv
does not allow L′cc to increase the intra-class distance like in Figure 2.9c. It is also important to

mention that L′cc is only applied at a three-epoch interval; otherwise, it would conflict with

L′sv and generate high computational cost in an actual situation.

a) L′sv (it. 8) b) L′mc (it. 8) c) L′sv + L′mc (it. 8)

Figure 2.11 Displacement of instances of a two-class synthetic distribution

shifted with a) L′sv b) L′mc and c) L′sv + L′mc after eight iterations.

50

The combination of L′sv and L′mc is presented in Figure 2.11, where it obtained a better

margin compared to the margins achieved by the two loss terms separately. The red samples are

compacted, and the blue instances are not infiltrated on the right side of the space. Both loss

terms are applied inside each epoch because their objectives do not differ, and the computational

cost is not high.

a) Before training b) L′sv (it. 1) c) L′sv (it. 4)

Figure 2.12 Displacement of (a) instances of a two-class synthetic four

blobs distribution shifted with L′sv after b) one and c) four iterations

The synthetic samples generated from three Gaussian distributions shown in Figures 2.7 to 2.11

are relatively easy to optimize. We have also generated samples from other more challenging

synthetic distributions to evaluate the proposed loss function in more complex representation

spaces. Figure 2.12 shows the simulation on samples distributed in four alternate blobs on

the corners of the space representation. In epoch 0 (no shift), there are class interleaving in

the middle of the latent representation graph with misclassified instances. In epoch 1 (Figure

2.12b), there is enough motion to shift blue instances to the corners and allow the separation of

classes. The correct movement was possible because the SVs in the class’s limit were pushed to

the corners, not the middle. The instances in the middle of the representation space are either

misclassified or SVs and cannot serve as anchors of the instances of interest. Thus, L′sv is

enough to induce class separation.

51

a) L′sv (it. 0) b) L′sv (it. 1) c) L′sv (it. 4)

Figure 2.13 Displacement of (a) instances of a two-class synthetic

concentric rings distribution shifted with L′sv after b) one and c) four

iterations

The distribution shown in Figure 2.13 is shaped as two concentric rings, one of each class.

Again, the L′sv was enough to expand the margin, compacting the red samples and moving the

outer ring away from the center.

a) Before training b) L′sv (it. 1) c) L′sv (it. 4)

Figure 2.14 Displacement of (a) instances of a two-class synthetic

interleaved moons distribution shifted with L′sv after b) one and c) four

iterations

The interleaved moons distribution shown in Figure 2.14 evaluates the behavior of the L′sv
with a scenario that requires shifting in diverse directions. There are also misclassified samples

across the class boundaries. In the fourth epoch, the simulation with L′sv was able to enlarge

the margin and drastically reduce the number of SVs, as shown in Figure 2.14c.

52

a) Before training b) L′sv (it. 1) c) L′sv (it. 4)

Figure 2.15 Displacement of (a) instances of a two-class synthetic spiral

distribution shifted with L′sv after b) one and c) four iterations

Finally, we used a challenging distribution with two classes interleaved in a spiral shape, as

shown in Figure 2.15. The complexity is reflected by the number of SVs and low balanced

accuracy in epoch zero compared to the other simulations. The higher the number of SVs, the

more updates are performed on the data representation, so after the first update, there is a drastic

shift in the instances. The movement increases the grouping of samples, but it is not enough to

improve the class separation (Figure 2.15b). In the fourth epoch (Figure 2.15c), margins are

already defined, the number of SVs is reduced, and the classifier achieves 100% accuracy.

The complexity of the spiral distribution led us to use it to simulate the combination of the loss

terms. Figure 2.16 shows the comparison of the combination after nine epochs. There is a subtle

difference between Figures 2.16a and 2.16b because the two loss terms (L′sv and L′sv+L′mc)

are based on distance reduction and misclassified instances are close to the SVs, but still, there is

an improvement in the margins and L′sv and L′mc combination has one less SV than L′sv alone.

On the other hand, combining loss terms L′sv and L′cc (Figure 2.16c) produces a different

representation, where it is possible to note the upper left corner blue instances pushing the red

ones around them. The blue samples in the middle are also far from the red ones compared to

L′sv+L′mc.

Although the simulations presented in this section do not implement the real forward and

backward passes, gradient computation and weight updating performed by the backpropagation

53

a) L′sv (it. 9) b) L′sv + L′mc (it. 9) c) L′sv + L′cc (it. 9)

Figure 2.16 Displacement of instances of a two-class synthetic spiral

distribution shifted with a) Lsv b) L′sv + L′mc terms and c) L′sv + L′cc after

nine iterations.

algorithm used to train the FCN (ffcn(.)), they are a good approximation of its behavior. It is

expected that the weights update during the backpropagation would affect the instances that are

more similar or close in the latent representation space, no matter the class they belong to. Thus,

we moved the instances of interest with respect to their anchors and applied a proportional shift

in a similar direction to the closest instances of interest, no matter their classes. We intended to

visualize the behavior of the loss terms in typical data distributions.

Our simulations showed that the proposed approach has the potential to change the latent

representation to expand the margins and ease the work of the large-margin discriminant. The

direction of the shifts produced by the algorithm guided by the loss function terms is consistent

in different synthetic distributions. We used simple distributions, like three and four blobs, and

more complex ones, like the spirals and interleaved moons. In all the synthetic distributions, we

chose average and standard deviation to generate some misclassification and complex margins.

The simulations showed that our anchor and instance selection and loss function works well

to increase the margins together with the loss function. In the next chapter, we evaluate the

proposed approach on real data to confirm the behavior found in the synthetic data distributions

with the algorithm simulation.

CHAPTER 3

EXPERIMENTS

This chapter describes the datasets used in our experiments, the metrics, and the results. Our

experiments aim to evaluate the LMFCN’s capability of efficiently classifying texture images of

small-size datasets. We compared it with other methods with similar size and complexity to

show that the LMFCN can obtain equivalent or superior accuracy results with the capability

of adaptation and low computational cost. The experiments used five datasets: three HI, one

textural, and another synthetic dataset. Although only one is texture specific, they all have

texture characteristics without object definition, like ImageNet. Image sizes from these datasets

ranged from 128×128 to 512×384, from two to eight classes. The smallest one has 400, and the

largest one has 2081 images.

We chose as the primary metric the balanced accuracy to compare the methods directly. In

addition, we used complexity measures to compare the latent representation or features generated

by each method and understand the impact of such features on the accuracy of the discriminants.

We also used UMAPs to render a graphic view of each method’s latent representations and

compare them. Additionally, we analyzed the number of convergence epochs, the number of SVs

over the training (in the case of LMFCN), and the time to execute some steps of the compared

methods.

The experiments with the real datasets used five stratified hold-outs with a split of 55/30/15%

for training, test, and validation sets, respectively. We chose this split as an in-between all the

splits from the works that used such datasets. In the experiments with the synthetic dataset,

we used 200 images for each set (training, test, and validation), with 100 images of each class,

and repeated the experiment five times. We used the same hold-outs for all methods and the

same random seed for each equivalent comparison experiment with the same hold-out in all

experiments.

56

We have compared LMFCN with other equivalent methods to analyze whether our method

effectively classifies small-size datasets with texture characteristics. The comparison includes

CNNs similar to TCNNs presented by Andrearczyk & Whelan (2016), handcrafted feature

extractors, pre-trained CNNs as feature extractors, and pre-trained CNNs with fine-tuning. We

have chosen a CNN with a small latent representation to create a direct visual comparison with

the LMFCN.

3.1 Experimental Protocol

We have carried out four types of experiments to assess the performance of the LMFCN and to

compare such a performance with other state-of-the-art approaches. The first one (Section 3.4.1)

evaluates the behavior of our method using a low-dimensional latent representation capable

of being directly depicted in scatter plots. Subsection 3.4.2 compares the LMFCN and CNNs

trained with two different loss functions: binary cross-entropy and hinge loss. Due to the

16-wide latent representation used in the comparisons, the analysis employs complexity measures

and accuracy metrics. Shallow methods employing feature extraction such as LBP (Ojala,

Pietikainen & Maenpaa, 2002), GLCM (Haralick, Shanmugam & Dinstein, 1973) and PFTAS

(Coelho et al., 2010) are compared to the LMFCN in Subsection 3.4.3. We also used complexity

measures and dispersion graphs with the dimensionality reduction performed by UMAPs in

these last comparisons. As a method between CNNs and handcrafted feature extractors, we

evaluated the performance of two pre-trained CNNs, ResNet and Inception, in the context of

transfer learning. Finally, the last comparison employs pre-trained networks, but instead of

using them only to extract features, we added extra FC layers to adapt their output to the binary

problems, training them (fine-tuning) for some epochs.

Our approach relies on a large-margin binary classifier, so there is no direct implementation

of multiclass classification. Therefore, to perform this type of classification, we used the OVA

approach where the latent representation generated by each FCN is concatenated to make up a

single latent vector as described in Section 2.2.7. The CNN used the cross-entropy loss that

allows direct multiclass training. Handcrafted feature extractors are not sensitive to the number

57

of classes. Still, the SVM classifier that uses their features needs a multiclass approach, so

we also opted to use the OVA approach. The principal evaluation metric of the multiclass

comparisons in Section 3.4.5 is the accuracy and balanced accuracy. We also presented the

accuracy for each subproblem in the OVA approach of the LMFCN to highlight its performance

in imbalanced scenarios.

3.2 Datasets

The dataset selection for our experiments considers the LMFCN target problems, which means

small-size datasets with a focus/particular interest on texture datasets. In the first analysis of our

approach, we used a synthetic dataset with images generated with two Gaussian distributions

with striped patterns. Another dataset we used was the Salzburg Texture Image Database

(STex), which has texture images of 32 classes, from which we used only the two most prevalent

classes. Additionally, we used three HI datasets, two based on mammary tissue and one on

colorectal tissue. The synthetic datasets aimed to provide a controlled way of testing the

LMFCN capabilities, avoiding extra variables intrinsic to real datasets. In this dataset, we could

configure the image size, the difference between classes, levels of noise, and the number of

images, allowing us to test the limits of the LMFCN. The STex dataset allowed an evaluation

of an actual texture dataset. The HI datasets are a complex problem, with several publications

(de Matos et al., 2021) that explored diverse methods, including the ones designed for texture

characteristics. As a challenging problem, they highlighted the advantages of the LMFCN

against the commonly used methods.

3.2.1 Gaussian Images

Our synthetic dataset contains 600 RGB images of 200×200 pixels generated from two Gaussian

distributions with μ=128 and 125 and σ2=35 and 30 for classes 0 and 1, respectively. Each

pixel from the three channels of the images has its value drawn from its respective Gaussian

distribution. Besides the Gaussian distribution pixel value, we also applied a striped pattern for

each class tilted with 22°± 5 and -22°± 5 for classes 0 and 1, respectively. We chose and tuned

58

the distributions’ mean and variance values to allow us to explore the LMFCN to its limits, where

it could no longer produce acceptable prediction values. We intended to create a controlled

scenario to explore the recognition capacities of the LMFCN, avoiding having other sources of

variability, such as those related to image acquisition, quality, standardization, and labeling. The

train/test/validation split has 200/200/200 images for each partition. As this dataset is used as a

controlled evaluation, the same size splits are intended to avoid extra complexity from the size

of the splits. Unlike the actual datasets, the subset images have similar characteristics around

the two distributions. Figure 3.1 presents examples of these images.

a) Class 0 b) Class 0 c) Class 1 d) Class 1

Figure 3.1 Examples of synthetic images generated based on Gaussian

distributions and striped pattern

3.2.2 Salzburg Dataset

The Salzburg dataset (Kwitt & Meerwald, 2020) has 32 classes of texture images. Owing to

the binary nature of the LMFCN and the fact that its multiclass version was not designed for

such a high number of classes, we have selected samples from the Miscellaneous (704 images)

and Fabric (1232 images) classes. The criteria for choosing these two classes is to get the most

prevalent ones, avoiding the bias of getting the ones that could benefit our approach. This

dataset has RGB images of 128×128 pixels resolution. We chose the train/test/validation split of

55/30/15%, respectively, and all comparisons between methods used the same image distribution

on these partitions.

59

a) Fabric b) Fabric c) Miscellaneous d) Miscellaneous

Figure 3.2 Examples of Salzburg images from the two classes selected

3.2.3 BreaKHis Dataset

The BreaKHis dataset contains HIs obtained by open surgical biopsy from tumors in mammary

tissue (Spanhol et al., 2016). The samples were sliced and stained with Hematoxylin and Eosin

(H&E), highlighting different types of structures at the cellular level. Hematoxylin exhibits a

violet color on cell nuclei, reacting to the DNA molecules. Eosin renders purple and red colors

to the cytoplasm, extracellular macromolecules, minerals, and blood cells. This dataset can

be used in binary classification tasks, distinguishing tumors from benign or malignant, or in

multiclass classification tasks, with eight classes, identifying between four types of benign and

malignant tumors.

The dataset images are initially divided patient-wise and in four magnification factors (40×,

100×, 200×, and 400×). We used only one of the magnifications (100×), ignoring the patient

split. Patient-wise split is important when testing the capability of a method relative to a

specific problem. Our purpose in this experiment was to evaluate the ability of the proposed

method to deal with general textures. Patient-wise splits usually require problem-specific image

preprocessing, which could introduce extra variables to our experiments. This dataset presents

variations in image quantity per class and coloration due to the staining process’s inherent

features. Creating our splits allows us to analyze and compare our approach objectively against

other methods avoiding specificities of the dataset that need domain-specific image preprocessing

and techniques. We used RGB images resized to 350×230 pixels. The experiments do not

60

employ normalization or data augmentation techniques to avoid extra complexities and biases to

the experiments. The train/test/validation split was 55/30/15%, and images were allocated at

each split randomly, not patient-wise.

The state-of-the-art results are not comparable to our approach results because we did not

follow the same split as the original work presenting the dataset. However, our separation

enables comparison between equivalent methods in this work. As in the Salzburg dataset, all

comparisons between methods used the same split and image allocation. Figure 3.3 shows

images identifying both the binary and multiclass image distribution.

a) Phyllodes Tumor b) Adenosis c) Tubular Adenoma d) Fibroadenoma

e) Ductal Carcinoma f) Papillary Carcinoma g) Lobular Carcinoma h) Mucinous Carcinoma

Figure 3.3 Example of BreaKHis dataset images, (a) Phyllodes Tumor (b)

Adenosis, (c) Tubular Adenoma, (d) Fibroadenoma, (e) Ductal Carcinoma, (f)

Papillary Carcinoma, (g) Lobular Carcinoma, (h) Mucinous Carcinoma.

(a,b,c,d) Benign Tumors, (e,f,g,h) Malignant Tumors

3.2.4 CRC Dataset

The CRC dataset (Kather et al., 2016) contains images of eight types of colorectal tissue stained

with H&E. There are two ways of processing this dataset, one is using its 5000×5000-pixel images

for segmentation, identifying each tissue, and another is to use tissue labeled 150×150-pixel

patches from the bigger images as a classification problem.

61

We used only stroma and tumor images to analyze and compare CNNs, handcrafted feature

extractors, and the LMFCN, as suggested by Kather et al. (2016) to perform binary classification

experiments. We also used it as a multiclass problem with the eight classes. All eight classes

have 625 images each, which is a balanced dataset. In our experiments with this dataset, we split

it into 55%, 15%, and 30% for train, validation, and test, respectively. This dataset does not

provide patient-wise information. As in the BreaKHis dataset, we avoided preprocessing the

images because we focused on comparing methods and not on state-of-the-art results on the

datasets. Figure 3.4 shows images of the CRC dataset identifying each class.

a) Empty b) Debris c) Adipose d) Mucosa

e) Lympho f) Complex g) Stroma h) Tumor

Figure 3.4 Examples of the CRC dataset images. (a) Empty, (b)

Debris,(c), Adipose, (d) Mucosa, (e) Lympho, (f) Complex, (g) Stroma,

(h) Tumor

3.2.5 BACH

BACH is an HI dataset of mammary tissue samples stained with H&E (Aresta et al., 2019). It

was the ICIAR 2018 competition dataset and did not have a publicly labeled test set. We used

only the original training set and did not use the public system to evaluate the performance of

our method with the test set. Using the test evaluation system would cause an overhead in our

experimental procedure. Researchers should submit their test predictions to a system that returns

62

the accuracy for any state-of-the-art comparison. We intend to use this dataset to compare the

equivalent approaches instead of improving the final classification performance. That would

require several pre-processing and domain-specific optimizations, as in the BreaKHis dataset.

BACH has four classes: normal, benign, in situ, and invasive. They represent tumor absent

tissue, tissue with a benign tumor, and the last two, malignant tumors. We grouped the normal

and benign in one class and in situ and invasive into another for a binary classification task.

All images of the BACH dataset have a resolution of 2048×1536 pixels, and each class has 100

images, so it is a balanced dataset. We have resized the images four times to 512×384 pixels to

make the training more efficient and fit samples into memory. The dataset split is 55%, 15%,

and 30% for training, validation, and testing, respectively. Figure 3.5 shows samples of the four

classes.

a) Normal b) Benign c) in situ d) Invasive

Figure 3.5 Example of BACH images. (a) Normal, (b) Benign, (c) in situ, (d)

Invasive

3.3 Performance Metrics

This section presents the metrics used in the analysis, which includes balanced accuracy and

metrics of complexity based on the latent representation generated by the ffcn(.). We also used

Uniform Manifold Approximation and Projection (UMAP) to plot the latent representation in

low dimensionality.

63

3.3.1 Accuracy and Balanced Accuracy

We have used accuracy, defined by Equation (3.1), and balanced accuracy, defined by the

imbalanced class weighting from Equation (3.3) and the metric defined by Equation (3.2). They

are the main evaluation metrics in the LMFCN experiments. Although they are simple metrics,

they aid in comprehending if the method is working and allow us to compare our approach to

other methods. However, these two metrics cannot inform how and why the technique works; in

the case of increasing values, they do not clarify the reason for this behavior. Thus, we used

complementary evaluation metrics, like the value of the losses and the number of SVs in the

case of the LMFCN. Instead of using more complex final evaluation metrics such as F1-score,

Area Under the Curve, Jaccard score, or Cohen-Kappa score, we used balanced accuracy. We

showed its variations concerning the latent representation change.

accuracy(y,o) = 1

n

n−1∑
i=0

1(yi = oi) (3.1)

where y is the vector of predicted outputs, o is the vector of expected outputs, n is the number

of instances, and 1(.) is the indicator function, which returns 1 if yi is equals oi, otherwise it

returns 0.

balanced_accuracy(y,o,w′) = 1

nclasses

n−1∑
i=0

1(yi = oi)w′oi (3.2)

where w′oi is the weight of instance i in the class oi.

w′oi =
1

n−1∑
j=0

1(oj = oi)
(3.3)

64

3.3.2 Complexity Measures

The complexity measures presented by Ho & Basu (2002) help us explain the relationship

among the classifiers’ accuracy performance, the latent representation, and images from a

dataset. They have the advantage of being based on geometric characteristics and class

distribution. The complexity measures can generate a meaningful value from a broad latent

representation created by a feature extraction mechanism and based on distances between

instances. They provide a better analysis than dimensionality reduction methods (e.g., PCA,

random projections) or a low-dimensional latent representation (R2). Compared with the first,

no bias is introduced by the chosen method, like hyperparameters and configurations that could

benefit one or another approach. High-dimensional latent representations can be used with

complexity measures, increasing the representation capabilities. Thus, the accuracy values in

experiments are more realistic than the ones resulting from a low-dimensional representation

with reduced representation power.

There are six categories of complexity measures based on six aspects: single features, neigh-

borhood, linearity, dimensionality, class balance, and network. In our work, we have used five

complexity measures related to our classifier and the distance metrics: N1, N2, and T1, from

the neighborhood categoy and F1 and F2 from the single feature category (Lorena, Garcia,

Lehmann, Souto & Ho, 2019).

The neighborhood measures inform the class overlapping and the shape of the decision boundaries.

They are directly based on pairwise instance distances. The N1 measure, defined in Equation (3.4),

expresses the fraction of borderline points by building firstly a minimum spanning tree (MST)

from the instances where the edges are weighted based on the inter-vertice distance. It then

calculates the percentage of connected vertices from opposite classes. These are samples located

on the border or overlapping regions. This measure estimates the margins’ complexity and

the boundaries definition’s complexity. The higher the value, the more complex the problem.

Although, N1 may also have a high value if the distance between inter-class samples in the

boundaries is smaller than intra-class distances (Basu & Ho, 2006).

65

N1 =
1

n

n∑
i=1

I(d(xi, xj) ∈ MST ∧ oi � oj) (3.4)

where MST is the minimum spanning tree from all instances, d(xi, xj) is the distance between

instances i and j, oi and oj is the required output of instances i and j, and n is the number of

instances.

The ratio of intra-class/inter-class nearest neighbor distance (N2) is calculated by dividing two

summations, the intra- and the inter-class distances, according to Equation (3.5). The intra-class

distance is calculated by summing the distance of all instances to their closest same-class

instance. The inter-class distance is obtained by summing the distance of all opposite-class

closest neighbors. A low N2 indicates a simple problem where the overall inter-class distance is

greater than the intra-class distance. This measure is not sensitive to boundary characteristics

but to the within-class data distribution. Similar to the N1, the N2 measure also has some

drawbacks, like linearly separable data along two thin parallel lines can be simple to separate

but will produce a high N2.

N2 =
intra_extra

1 + intra_extra
(3.5)

intra_extra =

∑n
i=1 d(xi,NN(xi) ∈ oi)∑n

i=1 d(xi,NN(xi) ∈ oj � oi)
(3.6)

where d(.) is pairwise distance between instances i and j, NN(.) is the nearest neighbour of

instance xi, and oi and oj are the expected output of instances i and j, respectively.

The T1 measure is the ratio between the number of hyperspheres encompassing groups of

samples and the total number of samples, as defined in Equation (3.7). Each sample has a

hypersphere centered in it that grows until touching an instance from another class. After growing

all hyperspheres, the smaller ones contained completely inside a bigger one are eliminated,

reducing their total number so that nhyperspheres < n. A set of instances with latent representation

66

that generates few spheres suggests a simple distribution. In this case, with same-class instances

packed together. Similar to the N2 measure, it expresses more within-class data distribution, not

boundaries.

T1 =
nhyperspheres

n
(3.7)

where nhyperspheres is the total number of hyperspheres to cover all instances of the dataset,

excluding small hyperspheres entirely contained in larger ones, and n is the total number of

instances.

The single feature F1 measure (maximum Fisher’s discriminant ratio) represents the overlapping

of features from different classes. It is calculated by Equation (3.8) (Lorena et al., 2019).

F1 =
1

1 + max
i=[1,φ]

r fi
(3.8)

where φ is the number of features, and r fi is the discriminant ratio for feature fi calculated by

Equation (3.9).

r fi =

nc∑
j=1

ncj (μ fi
cj − μ fi)2

nc∑
j=1

ncj∑
l=1

(x j
li
− μ fi

cj)2
(3.9)

where nc is the number of samples of a class, ncj is the number of samples in class cj , μ
fi
cj is the

mean of attribute fi of class cj , μ
fi is the mean of attribute fi of all classes, and x j

li
is the value

of attribute fi of one sample of class cj .

67

Considering Equation (3.8), when the latent representation of a set has at least one feature with

a high discriminant ratio, F1 will be lower than one. Thus a low F1 means simple problems with

little overlapping of at least one attribute.

The volume of the overlapping region (F2) is calculated by Equation (3.10) according to

Ho & Basu (2002).

F2 =

φ∏
i=1

min[max(xi,c0),max(xi,c1)] −max[min[xi,c0),min(xi,c1)]
max[max(xi,c0),max(xi,c1)] −min[min(xi,c0),min(xi,c1)]

(3.10)

where φ is the number of features, xi is a vector with values of the feature i of all samples, c0 is

the class 0, and c1 is the class 1.

The numerator becomes zero when there is no overlapping in at least one feature, so low values

mean a simple problem. Likewise other metrics, it also has drawbacks, like the representation

shown in Figure 2.7a. Despite small overlapping, the blue class’s mean will match the red

class’s mean. Outliers may also cause negative impacts on min and max calculations, incorrectly

pointing to a problem as being hard. This metric, jointly with the others, is not an absolute answer

to evaluate how simple a problem is but may help to understand how the latent representation is

being updated by the FCN.

3.3.3 Uniform Manifold Approximation and Projection (UMAP)

We have generated graphical representations based on the instances’ latent representation using

UMAPs (McInnes, Healy, Saul & Großberger, 2018). UMAPs are a dimensionality reduction

method that, as aforementioned, may insert biases in the resulting reduced representation

considering the method’s hyperparameters or configurations. However, UMAPs allow choosing

Euclidean distance as the distance metric used to build the visual representation. Our approach

relies on the Euclidean distance (to calculate the anchors and the loss function). Thus, UMAPs

tend to produce results related to the latent representations generated by our approach. They target

a reduced dimensionality mapping that keeps the characteristics of distance and neighborhood.

68

We used two parameters different from the defaults in our plots of latent representation using

UMAPs, the minimum distance and the number of neighbors, changed from 0.1 to 0.05 and

from 15% to 40% of n, respectively. The minimum distance impacts the graphs’ packing; small

values produce too close instances and make it difficult to distinguish between instances. The

minimum distance is the minimum value of distance allowed for instances to be apart in the

low-dimensional representation. Small values produce clumpier embedding, and larger values

focus on preserving the overall topological structure. We experimented with a sequence of

parameters and found the best graphical representation with a value of 0.05. Another parameter

we tuned was the number of neighbors. A high value produces a more global representation.

We set this value proportionally to the number of instances as a fixed value could be too high in

small datasets, and small values produced too local results. In this case, we used 40% of the

instances.

3.4 Experimental Results

This section presents the results of our comparisons of the LMFCN with deep and shallow

methods. We also show results from the analysis of the LMFCN with a low-dimensional latent

representation, which intends to reveal the evolution of the latent representation over the training

epochs, given the weight updates carried out by the backpropagation algorithm with the error

calculated by the proposed loss function presented in Section 2.2.3. Such a low dimensionality

allowed us to visualize the latent representation. We also show the comparison results with a

hybrid method using CNNs as feature extractors. The results comprise the balanced accuracy

comparison, graphical representation of the latent representation (using low dimensionality and

UMAPs), and complexity measures.

3.4.1 Low-Dimensional Latent Representation

This experiment aims to analyze the updates in the latent representation by the backpropagation

algorithm based on the developed loss function. We used φ=2, which facilitates the representation

plotting and observing the class separation. This φ value is not advantageous because it can

69

not carry enough information to help the classification. This is why we used only the synthetic

dataset in this experiment. A real dataset would present a challenging problem with such a low

dimensionality of the latent representation.

Figure 3.6 Evolution of accuracy and number of SVs according to the

training epochs for the LMFCN with a 2-dimensional latent representation

using the synthetic Gaussian images dataset.

a) epoch 0 b) epoch 1 c) epoch 2

d) epoch 4 e) epoch 8 f) epoch 16

Figure 3.7 Scatter plot of the latent representation of Gaussian images with two

attributes x = {x1, x2} of each training instance along the training epochs.

70

Figure 3.6 shows a training graph on the Gaussian image dataset over 20 epochs with the LMFCN.

The FCN in this experiment used w=200, h=200, c=3, and φ=2. This graph displays the following

information: loss value from SVs (Lsv), loss value from misclassified instances (Lmc), accuracy

on training (TR), validation (VAL), and test (TS) sets, the number of support vectors (nSVs),

and the epoch of the best validation accuracy (vertical dotted line). The best-balanced accuracy

values for training, validation, and test sets correspond to the peak validation accuracy. The

value of Lcc (opposite class instances loss) is not shown in this graph since it was not used in this

experiment. It is possible to observe that the values of the loss terms Lsv and Lmc, as well as

the number of SVs decreases over the epochs, while the accuracy rises. This information tells us

that the SVs are getting close to their anchors, as this distance is computed by Lsv. The number

of SVs also reduces, indicating that fewer SVs are needed at each epoch to separate the examples

of different classes. This implies a latent representation that is easier to classify. This execution

used the following parameters: svclose=5, wrclose=1, shclose=0, C=100 and the RBF kernel.

Figure 3.7 presents a sequence of scatter plots showing the changing in the latent representation

space of the training instances from epochs 0 to 16 of Figure 3.6. On epoch 0, with randomly

initialized weights, the instances of two classes (blue circles and green circles) cannot be

easily separated by the LMFCN, generating a balanced accuracy of about 55.6%. Misclassified

instances are shown as black circles. After the first epoch, the classes are less overlapped, and

the LMFCN achieves an accuracy of 71%. Such an accuracy increases to 98% and 100% on

epochs 8 and 16, respectively, where the separation of the examples of the two classes is clear.

This shows the effects of weight updating based on the Lsv and Lmc loss terms. Between epochs

2 and 4, the accuracy and the loss value increase due to the high number of SVs in the decision

boundaries. The SVs are also distant from the instances from their classes. In epoch 8, the

disentanglement is clearer, and the model achieves stability.

These experimental results illustrate the evolution of the quality of the latent representation over

the epochs in the scatter plots, noticeable by the increasing class separation of the instances,

with a consequent increase in accuracies. It also shows the reduction in the number of SVs,

which leads to less complex discriminants that can generalize better on unseen data.

71

3.4.2 Comparison Between CNNs and the LMFCN

In this experiment, we compare the LMFCN with deep learning methods. The goal is to show

that our approach can obtain equivalent or better performance than CNNs (texture CNNs in this

case) of similar size. Furthermore, considering that both CNNs and the LMFCN use weight

updating based on the backpropagation algorithm, we want to analyze the impact of the proposed

loss function and the hinge and BCE loss functions on the update of the parameters of the

convolutional filters.

The results for each dataset aggregates a set of graphs with the five complexity measures

computed on the latent representation generated by the FCN at each epoch for images of the

training sets. In these experiments, we compare the LMFCN with CNNs with hinge loss (CNN-H)

and CNNs with BCE loss (CNN-BCE). Both experiments use the same CNN architectures

but different loss functions. The CLs of the CNNs are similar to the LMFCN (Figure 2.5 and

Table 2.1), which implies the same dimension, number of filters, and values for additional

parameters. The additional deeper layers (FC) have two 32-wide layers and a last layer with an

output of two (binary classification). All the CNNs training used a learning rate of 1.0, defined

empirically. Both methods (LMFCN and CNNs) used Ada Delta as the optimizer. For LMFCN,

we used a learning rate of 0.1, svclose=5, wrclose=1, shclose=0, C=100 and γ = 1/(φ × σ2). σ2 is

the variance of the latent representation of all training instances. All experiments were repeated

five times to verify the consistency, but we presented the graphs for the first run for conciseness.

Figures 3.8 to 3.12 show all datasets’ five complexity measures and corresponding accuracy. The

accuracy for training, validation, and test sets is reported for the best-balanced accuracy epoch.

To help interpret the complexity measure graphics, we provide Table 3.1, which summarizes the

meaning of each measure described in Section 3.3.2.

When observing F1 and F2 measures in Figure 3.8, both CNN-H and CNN-BCE showed more

variation than the LMFCN, so the weight update was more significant to obtain better results in

both CNNs. In contrast, to achieve more than 90% accuracy in the initial epochs, the CLs of the

LMFCN did not suffer substantial updates, producing minor changes in the latent representation

72

Table 3.1 Complexity measures summary

Metric Value Meaning

F1
F1 < 1 One high discriminative single feature, simple problem

F1∼1 No discriminative single feature

F2
F2∼0 No overlapping in at least one feature, simple problem

High Hard problem

N1
Low More same class instances connected than opposite class, simple problem

High More complex margin

N2
Low Inter-class distance higher than intra-class, simple problem

High Interleaved instances from different classes, hard problem

T1
Low Few hyperspheres, more clustered data, simple problem

High More hyperspheres, but may be caused by few clusters and high number of SVs

Figure 3.8 Complexity measures and accuracies for the BACH dataset with a

16-dimensional latent representation. The models were trained up to 100 epochs.

of training samples. High F1 and F2 values indicate that the latent representation does not have

a single feature to ease the classification (single non-overlapping attribute). The LMFCN used

73

the initial latent representation (randomly initialized) more efficiently than CNNs. The classifier

did not need a single feature with high discriminative power because even with high F1 and F2,

it obtained higher initial accuracy than CNNs.

N1 and N2 metrics can reflect the separation of the samples based on all attributes, not isolated

attributes like F1 and F2 metrics. Thus, in Figure 3.8, the CNNs needed more inter-class

distance, with small clusters, as the T1 value also increased during training. Looking at N1 and

N2 curves, the LMFCN achieved a much higher accuracy with a slight separation. Analyzing

the behavior of the T1 curve for the LMFCN, the number of spheres grows over the training

epochs. This behavior is explained by the nature of the classification method based on SVs that

define the margins. Depending on the complexity of the margins, spheres can not grow too

much around the SVs without touching other class instances. Thus, the RBF kernel creates a

more complex margin over the training epochs, increasing T1 values. It is worth observing that

the balanced accuracy achieved by the LMFCN for all subsets (training, validation, and test)

outperformed the CNNs.

The initial absolute values of N1 and N2 indicate that the latent representation generated by

the FCN for the BreakHis dataset is more powerful than in the BACH dataset in Figure 3.9.

Hence, the first weight update produced even more separation. The T1 values indicate a similar

substantial update and the definition of relevant SVs that generate better margin outlining. The

CNN approaches started improving training accuracy only around epoch 18, where we can

see that by the values of N1, T1, and N2, the latent representation begins to enhance and

undergoes more substantial modifications. Thus, training the FC layers of the CNNs delays the

optimization of the latent representation, even if the FC layers have fewer parameters than the

CLs. Furthermore, the CLs training behavior in the CNNs shows that the needs of the FC layer

as classifiers are different from the SVM, so in a feature extraction approach with pre-trained

CNNs, the features are not the most suitable for a large margin classifier.

The three compared methods (LMFCN, CNN-H, and CNN-BCE) achieved high accuracy on

training, validation, and test sets of the CRC dataset, as shown in Figure 3.10. The two-class

74

Figure 3.9 Complexity measures and accuracy for the BreaKHis

dataset with a 16-dimensional latent representation. The models were

trained up to 100 epochs.

version of the CRC dataset uses only stroma and tumor images. Such images have very distinct

textures (Figures 3.4g and 3.4h), which reflects in the high accuracy values achieved on the

first epoch, with randomly initialized (untrained) filters in the LMFCN. As in the BreaKHis

experiments, the LMFCN exploited the class separation and reduced N1 and N2 over the

epochs. Comparing the results achieved on BreaKHis and CRC datasets, the network complexity

measures (N1 and N2) have low values in the latter. The CRC dataset has some class separation

at the beginning (N1 and N2), although it has a high F1 indicating that the high initial accuracy

value does not depend on a single component. The CNN approaches presented higher accuracy

at epoch 20 than the experiments with other datasets. Despite the CNNs’ early success, the

F1, N1, and N2 measures show that the training procedure of the CNNs modified the CLs to

75

Figure 3.10 Complexity measures and accuracies for the CRC dataset

with a 16-dimensional latent representation. The models were trained up

to 100 epochs.

generate a latent representation while also updating the FC layers. In contrast, the LMFCN only

updates the CLs.

The LMFCN reached high balanced accuracy on the first training epoch in the Gaussian image

dataset, as seen in Figure 3.11. The drastic difference between Figures 3.11 and 3.6 is due

to the difference in the latent representation dimension. Due to the early convergence of the

LMFCN, updating the parameters of the convolutional filters of the FCN did not cause significant

changes in the latent representation after the first epoch. This dataset highlights the power of

the large-margin classifier with the RBF kernel, which can obtain good accuracy due to the

capabilities of drawing more complex margins and higher-dimensionality mapping. The CNNs

needed more epochs to learn suitable parameters for the convolutional filters to generate a latent

representation that allows the FC layers to achieve higher classification accuracy. Compared to

76

Figure 3.11 Complexity measures and accuracy for the Gaussian

dataset with a 16-dimensional latent representation. The models were

trained up to 100 epochs.

the other datasets evaluated, the most symbolic measure representing such changes is the N1

measure, varying from 0.7 to 0.1 approximately. The increase of the T1 measure over the epochs

indicates that the classes are not well separated, but the absolute value difference is not high,

indicating the formation of small clusters.

Figure 3.12 presents the changes in the complexity measures and accuracy for the Salzburg

dataset over 100 training epochs. The behavior is comparable to the one seen in the BreaKHis

dataset. We found these results interesting as Salzburg is a pure texture dataset. As in other

experiments, the LMFCN achieved high accuracy on the first epochs and then stabilized, but the

CNNs needed almost 90 epochs to reach a similar accuracy. As the CNNs training needs to

update both the CL and FC layers, they did not benefit from the initial class separation, indicated

77

Figure 3.12 Complexity measures and accuracy for the Salzburg

dataset with a 16-dimensional latent representation. The models were

trained up to 100 epochs.

by the initial values of N1 and N2 measures. On the other hand, the LMFCN took advantage of

such an initial class separation (low N1 and N2 values), even with high F1, which indicates that

there is no single discriminative component in the representation.

Figure 3.13 aggregates the results achieved by the LMFCN for all five complexity measures,

training and test balanced accuracies, and the number of SVs over 15 epochs for all the datasets.

This figure aims to plot the LMFCN analysis information without the fluctuation and scale

differences caused by the CNNs in the previous graphs. Both training and test accuracy show

that the LMFCN improved the values over the iterations. The number of SVs shows this value

reduction over training epochs, meaning that the classes are more separated, needing fewer SVs

to define the large-margin discriminant. The value of the N2 measure decreases for all datasets

78

Figure 3.13 Complexity measures and balanced accuracy for all tested

datasets with the LMFCN using a 16-dimensional latent representation.

but Gaussian images, which is compensated by the T1 measure. An increase in the T1 measure

for all datasets reflects the definition of the boundaries by the SVs. T1 would hypothetically

decrease if the latent representation gets updated by searching for grouping around some chosen

instances. In this supposed situation few spheres around the chosen instances would contain

many instances from the same class before touching other class instances. The LMFCN strategy

does not focus on grouping or clustering instances. Instead, it focuses on margins, so it tends

to draw more spheres around the SVs that end up touching opposite class instances earlier

because they are in the limit of the decision boundary. Another fact that causes the T1 increase

in LMFCN is the complexity of the margins drawn with the RBF kernel. The difference in the

F2 measure between Gaussian datasets and the others and the good performance achieved by the

79

LMFCN in all datasets point towards the adaptation capabilities of our approach to different

datasets’ characteristics.

With a latent representation generator trained with information from a nearest neighbor-based

algorithm, the T1 measure would decrease as the data tends to group around some points. Here,

it is clear the difference in the algorithms’ strategies. The difference in the F2 measure between

Gaussian datasets and the others and the good performance achieved by the LMFCN in both

situations point towards the adaptation capabilities of our approach to different situations.

Finally, Tables 3.2 and 3.3 compare the results achieved by all approaches on all datasets for a

16-dimensional latent representation. Table 3.2 shows the average balanced accuracy of five

executions with the same training, validation, and test split for each approach. Tables 3.2 and 3.3

also present the results for two pre-trained CNNs (ResNet18 and InceptionV3) used as feature

extractors named ResNet18 FE and InceptionV3 FE. Since the representation produced by these

two CNNs has more than 16 dimensions 512 and 2048, respectively), the PCA was used to

reduce the dimensionality of such representations to 16 dimensions. Both tables also compare

with three pre-trained CNNs (ResNet18 FT, SqueezeNet FT, and DenseNet FT). These three

CNNs received two FC layers to adapt their output to the binary problem and were fine-tuned

with the first layers frozen. The ResNet18 presents high accuracy on the training set but does not

generalize well. The LMFCN is superior to the other methods in most cases. In the situations

where it loses, the values are close, as in the CRC dataset, where the training dataset presents

lower accuracy than the ResNet, which overfits. The most complicated situation for the LMFCN

was in the BACH dataset, but it achieved its best accuracy in an average of six epochs.

The binary classification experiments also included the LMFCN with alternative blocks replacing

each FCN convolutional layer: the Residual blocks (LMFCN-res) and Inception blocks (LMFCN-

inc). They did not show improvement in most experiments compared to the LMFCN with

convolutional layers. Their best results were in the Gaussian images dataset, where the LMFCN-

res outperformed the other methods but took more epochs to obtain the best validation accuracy

than LMFCN.

80

Therefore, the comparison shows that the LMFCN achieved better or equivalent performance

than the other methods but in fewer epochs than the CNNs. ResNet18 outperformed LMFCN

in the training set but did not generalize well. The complexity measures helped to verify the

difference in the latent representations of CNNs (CNN-BCE and CNN-H) and the LMFCN over

the training epochs. They also showed that the latent representation produced by CNNs, used

as a feature extractor, is less suitable to be used with a large-margin discriminant than the one

obtained with the LMFCN.

Table 3.2 Balanced accuracy achieved by the LMFCN, equivalent CNN

architectures, and CNNs as feature extractors for the BACH, BreaKHis, and

CRC datasets. Epoch refers to the training epoch where the best validation

accuracy was achieved. NA: Not applicable for models not trained iteratively.

Dataset Architecture Training Validation Test Epoch

BACH

LMFCN 0.8811 ± 0.0426 0.7857 ± 0.0221 0.8056 ± 0.0203 6

LMFCN-res 0.8845 ± 0.0264 0.7323 ± 0.0388 0.7570 ± 0.0417 18

LMFCN-inc 0.8750 ± 0.0451 0.7759 ± 0.0531 0.7773 ± 0.0392 3

CNN-BCE 0.8926 ± 0.0135 0.8200 ± 0.0291 0.7864 ± 0.0212 88

CNN-H 0.8534 ± 0.0410 0.8038 ± 0.0261 0.7838 ± 0.0242 68

ResNet18 FE 0.9981 ± 0.0026 0.7596 ± 0.0122 0.7584 ± 0.0270 NA

InceptionV3 FE 0.6295 ± 0.0746 0.5924 ± 0.0625 0.6049 ± 0.0630 NA

ResNet18 FT 0.9184 ± 0.0158 0.8198 ± 0.0281 0.7812 ± 0.0251 10

DenseNet FT 0.9740 ± 0.0243 0.7782 ± 0.0334 0.7906 ± 0.0302 17

SqueezeNet FT 0.6690 ± 0.0677 0.7058 ± 0.0538 0.6512 ± 0.0125 37

BreaKHis

LMFCN 0.9882 ± 0.0064 0.9442 ± 0.0137 0.8942 ± 0.0372 5

LMFCN-res 0.9175 ± 0.0089 0.9040 ± 0.0185 0.8814 ± 0.0071 9

LMFCN-inc 0.9252 ± 0.0091 0.8953 ± 0.0349 0.8876 ± 0.0272 2

CNN-BCE 0.8926 ± 0.0092 0.9122 ± 0.0226 0.8926 ± 0.0140 91

CNN-H 0.8560 ± 0.0041 0.8856 ± 0.0166 0.8638 ± 0.0042 91

ResNet18 FE 0.9777 ± 0.0062 0.8034 ± 0.0120 0.8262 ± 0.0122 NA

InceptionV3 FE 0.6058 ± 0.0207 0.6064 ± 0.0209 0.5949 ± 0.0207 NA

Resnet18 FT 0.9154 ± 0.0342 0.8890 ± 0.0190 0.8640 ± 0.0143 37

DenseNet FT 0.8776 ± 0.0738 0.8900 ± 0.0171 0.8640 ± 0.0150 25

SqueezeNet FT 0.4996 ± 0.0089 0.5174 ± 0.0149 0.5108 ± 0.0175 23

CRC

LMFCN 0.9924 ± 0.0046 0.9914 ± 0.0024 0.9914 ± 0.0060 6

LMFCN-res 0.9912 ± 0.0029 0.9862 ± 0.0088 0.9873 ± 0.0086 19

LMFCN-inc 0.9906 ± 0.0041 0.9903 ± 0.0045 0.9900 ± 0.0068 17

CNN-BCE 0.9828 ± 0.0070 0.9934 ± 0.0025 0.9880 ± 0.0111 31

CNN-H 0.9928 ± 0.0038 0.9924 ± 0.0027 0.9928 ± 0.0070 30

ResNet18 FE 0.9991 ± 0.0013 0.9683 ± 0.0081 0.9680 ± 0.0150 NA

InceptionV3 FE 0.7718 ± 0.0352 0.7670 ± 0.0375 0.7842 ± 0.0355 NA

ResNet18 FT 0.9936 ± 0.0094 0.9788 ± 0.0165 0.9814 ± 0.0112 42

DenseNet FT 0.9906 ± 0.0094 0.9884 ± 0.0086 0.9862 ± 0.0081 34

SqueezeNet FT 0.9104 ± 0.0123 0.9258 ± 0.0162 0.9306 ± 0.0098 41

81

Table 3.3 Balanced accuracy achieved by the LMFCN, equivalent CNN

architectures, and CNNs as feature extractors for the Salzburg and Gaussian

images datasets. Epoch refers to the training epoch where the best validation

accuracy was achieved. NA: Not applicable for models not trained iteratively.

Dataset Architecture Training Validation Test Epoch

Salzburg

LMFCN 0.9842 ± 0.0049 0.9446 ± 0.0083 0.9230 ± 0.0081 8

LMFCN-res 0.8729 ± 0.0187 0.8411 ± 0.0184 0.8362 ± 0.0123 9

LMFCN-inc 0.8877 ± 0.0174 0.8666 ± 0.0301 0.8450 ± 0.0214 3

CNN-BCE 0.8966 ± 0.0103 0.8762 ± 0.0100 0.8602 ± 0.0115 91

CNN-H 0.8258 ± 0.0257 0.8292 ± 0.0277 0.8046 ± 0.0314 84

ResNet18 FE 0.9946 ± 0.0033 0.9046 ± 0.0221 0.8932 ± 0.0088 NA

InceptionV3 FE 0.6680 ± 0.0332 0.6607 ± 0.0323 0.6644 ± 0.0473 NA

ResNet18 FT 0.9744 ± 0.0104 0.9494 ± 0.0188 0.9470 ± 0.0130 45

DenseNet FT 0.9792 ± 0.0170 0.9474 ± 0.0173 0.9460 ± 0.0132 38

SqueezeNet FT 0.5712 ± 0.0808 0.7332 ± 0.0169 0.7242 ± 0.0266 28

Gaussian

LMFCN 1.0000 ± 0.0000 0.9131 ± 0.0115 0.9315 ± 0.0082 2

LMFCN-res 1.0000 ± 0.0000 0.9970 ± 0.0067 0.9708 ± 0.0304 15

LMFCN-inc 1.0000 ± 0.0000 1.0000 ± 0.0000 0.9586 ± 0,0472 9

CNN-BCE 0.9421 ± 0.0123 0.8834 ± 0.0186 0.8812 ± 0.0213 72

CNN-H 0.9418 ± 0.0223 0.8221 ± 0.0127 0.7611 ± 0.0253 56

ResNet18 FE 0.9740 ± 0.0109 0.6126 ± 0.0198 0.6176 ± 0.0257 NA

InceptionV3 FE 0.5102 ± 0.0235 0.5311 ± 0.0185 0.5021 ± 0.0258 NA

ResNet18 FT 0.9700 ± 0.0050 0.9310 ± 0.0129 0.9210 ± 0.0156 19

DenseNet FT 0.9960 ± 0.0089 0.8958 ± 0.0175 0.8802 ± 0.0167 33

SqueezeNet FT 0.5046 ± 0.0071 0.5236 ± 0.0370 0.5188 ± 0.0310 38

3.4.3 Comparison Between the LMFCN and Handcrafted Feature Extractors

This section compares our approach with three handcrafted feature extractors, i.e., LBP, GLCM,

and PFTAS. We evaluate balanced accuracy values, complexity measures, and UMAPs. The

comparison aims to highlight the adaptability of the LMFCN facing the other approaches

commonly used in texture datasets. We also show that our approach performs well compared

to native texture feature extractors, pointing out that it is a competitive solution to texture

classification problems.

For a fair comparison, the LMFCN approach uses a 59-dimensional latent representation,

which has the same dimensionality as the representation produced by the LBP with uniform

patterns. The other techniques, PFTAS and GLCM, use 162-dimensional and 169-dimensional

representations, respectively. With a 59-dimensional latent representation, the LMFCN already

82

achieves high accuracy, which is higher than the others. Thus latent representations with higher

dimensions are unnecessary. We replicated the values for the handcrafted feature extractors for

15 epochs to ease the comparisons in the graphs. A vertical dotted line in the graphs identifies

the epoch where the LMFCN achieved the best-balanced accuracy on the validation set. We used

an RBF SVM with the same hyperparameters in all these experiments, even with the LMFCN.

The γ is given by 1/(φ ×σ2), where σ2 is the variance of the latent representation of all training

instances, and C=1000. The γ value is calculated according to the characteristics of each latent

representation adapting to each feature extractor. We performed a grid search cross-validation

varying C and found that C=1000 was the best value for all methods. With PFTAS, C=1000 and

C=100 led to very close values of balanced accuracy. The grid search cross-validation found

that 100 was the best value, but using all the hold-outs in the experiments, 1000 was slightly

better, so we fixed 1000 for all methods. One fact that allowed the same C is the adaptable γ.

Please, refer to Table 3.1, which summarizes the meaning of each measure that was described in

Section 3.3.2 to interpret the complexity measure graphics.

The classification task with the BACH dataset is challenging, given the difference in the training

and test accuracies. The SVM trained with PFTAS achieved around 100% accuracy in the

training set, whereas only 77% on the test set, as shown in Figure 3.14. This performance gap

between training and test sets also happens with the SVM trained with LBP, meaning a poor

generalization. Part of the difficulty in this dataset is due to its size. It has a few large images.

Although smaller, the performance gap between training and test is also present in the LMFCN,

but with a better generalization.

Interestingly, the PFTAS and the LMFCN produced more similar representations for all

complexity measures than the other two methods. The LBP generated features with less

separation (high N1 and N2 values). Still, a low T1 value indicates more clustered samples,

making generalization more complicated than the other methods with higher test accuracy.

For the BreaKHis dataset, we used 59-dimensional and 162-dimensional latent representations

in the LMFCN. We chose to use more dimensions due to the slight advantage of our approach,

83

Figure 3.14 Comparison between the LMFCN and handcrafted feature

extractors on the BACH dataset.

with 59 dimensions, over the PFTAS. One can notice the difference in the test set accuracy

values between the two dimensions of the latent representation in the LMFCN in Figure 3.15.

Regarding complexity measures, both latent representations obtained similar values, mostly on

N1 and N2 measures. The LMFCN reached smaller values in these two measures than in the

other approaches. Although the BACH dataset was more challenging than the BreaKHis dataset,

complexities for the LBP behaved akin in both datasets, including the difficulty in generalization.

The GLCM presented stable training and test accuracy values, but the measures’ values were

varied, e.g., high N1 for BACH and medium for BreakHis and low for the Gaussian images

dataset, when compared to other approaches.

The two-class version of the CRC dataset posed no difficulty to the SVMs trained with handcrafted

features that reached high balanced accuracy, as shown in Figure 3.16. The LBP was the only

84

Figure 3.15 Comparison between the LMFCN and shallow approaches

that use handcrafted feature extractors on the BreaKHis dataset.

approach that showed a reduced generalization power, and its complexity measures revealed

behavior analogous to the ones in the BreaKHis dataset. The LBP was the method with the low

T1 measure, indicating clustering. Given the ease in the classification task on this dataset and

the wide latent representation, the F2 measure achieved zero with all methods, so there is at least

one feature with no overlapping bounding boxes between classes. Here, the LMFCN used a

59-dimensional latent representation, posing less burden to the SVM classifier than the PFTAS,

which achieved a similar accuracy but with a 162-dimensional feature vector.

With a slightly better generalization, the LMFCN achieved training accuracy equivalent to the

SVM trained with LBP, as seen in Figure 3.17 for the Salzburg dataset. As in other datasets, the

SVM trained with LBP reached a smaller T1 measure than the other methods. On the other

85

Figure 3.16 Comparison between the LMFCN and shallow approaches

with handcrafted feature extractors on the CRC dataset.

hand, its N1 value is smaller than other methods and smaller than the other datasets. This last

value means more class separation, which helped the generalization and achieved better accuracy

performance than the SVM trained with PFTAS. The behavior of the LMFCN over training

epochs was consistent on the Salzburg dataset, analogous to the other datasets, presenting low

N1 and N2 and high T1 measures. The LMFCN achieved an accuracy performance superior to

the other methods.

Finally, Figure 3.18 shows that amidst handcrafted feature extractors, the SVM trained with

GLCM reached higher accuracy and good generalization on synthetic images, contrasting to

what took place in other experiments. The LMFCN performed well, with low N1 and N2

measures, although higher than the GLCM, which explains the high accuracy of both methods.

86

Figure 3.17 Comparison between the LMFCN and shallow approaches

that use handcrafted feature extractors on the Salzburg dataset.

The PFTAS had its worst N1 and N2 measures in this dataset, and even with a low F2 measure,

it could not overcome the class separation scarcity pointed out by network measures.

The complexity measures showed that each handcrafted feature extractor generated represen-

tations with different characteristics across the datasets, so despite the textural context of the

datasets, the features do not share similar measures for all datasets with the same method.

These feature extractors need to be chosen accordingly to each problem. The variability in the

complexity measures forces the discriminant to adapt its capabilities to classify the data. Thus,

trying combinations of each feature extractor with a set of discriminants is interesting to discover

the best pair (feature extractor and discriminant) to classify the data. It is also important to

point out that comparing both N1 and N2 of the LMFCN and the other feature extractors, these

measures are reduced during the training, indicating that the latent representations adapt to

87

Figure 3.18 Comparison between the LMFCN and shallow approaches

that use handcrafted feature extractors for synthetic images generated

from Gaussian distributions.

better suit the discriminant. It is also noticeable that these two measures for the handcrafted

feature extractors are higher in most cases than those of the LMFCN.

Table 3.4 shows the average balanced accuracy of five repetitions comparing shallow methods

trained on handcrafted features and our approach, underlining the best values. The SVM trained

with PFTAS was the best shallow method in three datasets (BACH, BreaKHis, and CRC). The

SVM trained with LBP was the best in the Salzburg dataset, and the SVM trained with GLCM

in the synthetic image dataset. The LMFCN outperformed all the traditional methods, even with

the lowest dimensional latent representation of 59 dimensions, indicating that our approach is

more adaptable to the problems’ particularities.

88

Table 3.4 Balanced accuracy for the LMFCN and SVMs trained with

GLCM, LBP, and PFTAS on five datasets.

Dataset Method Train Validation Test

BACH

GLCM 0.7346 ± 0.0199 0.6309 ± 0.0346 0.6618 ± 0.0711

LBP 0.9146 ± 0.0154 0.7455 ± 0.0442 0.7005 ± 0.0228

PFTAS 0.9899 ± 0.0037 0.7372 ± 0.0634 0.7608 ± 0.0361

LMFCN59 0.9664 ± 0.0751 0.7888 ± 0.0577 0.7684 ± 0.0435

LMFCN162 1.0000 ± 0.000 0.8068 ± 0.0600 0.7934 ± 0.0536

BreaKHis

GLCM 0.8128 ± 0.0086 0.8117 ± 0.0375 0.8076 ± 0.0071

LBP 0.9292 ± 0.0059 0.7998 ± 0.0099 0.7925 ± 0.0098

PFTAS 0.9801 ± 0.0034 0.9237 ± 0.0236 0.9145 ± 0.0168

LMFCN59 1.0000 ± 0.0000 0.9639 ± 0.0247 0.9476 ± 0.0075

LMFCN162 1.0000 ± 0.0000 0.9666 ± 0.0183 0.9595 ± 0.0050

CRC

GLCM 0.9864 ± 0.0036 0.9828 ± 0.0055 0.9853 ± 0.0101

LBP 0.9974 ± 0.0012 0.9431 ± 0.0099 0.9479 ± 0.0061

PFTAS 1.0000 ± 0.0000 0.9852 ± 0.0025 0.9872 ± 0.0097

LMFCN59 0.9977 ± 0.0022 0.9937 ± 0.0023 0.9883 ± 0.0084

Salzburg

GLCM 0.7706 ± 0.0163 0.7257 ± 0.0186 0.7338 ± 0.0142

LBP 0.9987 ± 0.0012 0.9282 ± 0.0209 0.9116 ± 0.0208

PFTAS 0.9650 ± 0.0051 0.9096 ± 0.0124 0.8973 ± 0.0137

LMFCN59 0.9994 ± 0.0006 0.9672 ± 0.0112 0.9500 ± 0.0180

Gaussian

GLCM 0.9583 ± 0.0028 0.9327 ± 0.0110 0.9527 ± 0.0191

LBP 0.6303 ± 0.0091 0.6710 ± 0.0131 0.6109 ± 0.0075

PFTAS 0.5578 ± 0.0080 0.5953 ± 0.0077 0.5608 ± 0.0076

LMFCN59 1.0000 ± 0.0000 0.9354 ± 0.1254 0.9880 ± 0.0121

3.4.4 UMAPs for the LMFCN and Shallow Methods

The UMAPs were generated with the latent representation of the LMFCN and with the feature

vectors generated by the three handcrafted feature extraction methods (GLCM, LBP, PFTAS)

for the training set of the five datasets. Each handcrafted feature extraction method generated a

UMAP scatter plot that shows the dispersion of the data in a low-dimensional representation space,

helping us to figure out the class separation and margin between classes. The values (coordinates)

of x and y axes result from reducing the dimensionality of the original representation space.

They do not have an absolute meaning. For the LMFCN, we used two graphs, one created

with the initial latent representation (FCN weights initialized randomly) and the other with the

latent representation of the epoch where the LMFCN obtained the best training accuracy. We

89

used the training information (accuracy and latent representation) with UMAPS to illustrate

the effect of the training procedure in the latent representation, increasing the margins and

comparing the difference between features from handcrafted feature extractors and their effect

on the classifier results. Using the test dataset could not represent the filter changes pursuing the

large-margin discriminant needs. All UMAPs used the following parameters, as discussed in

Section 3.3.3: Euclidean distance, a minimum distance equal to 0.05, the number of components

equal to 2, and the number of neighbors equal to 40% of the number of instances. Figures

3.19 to 3.23 show the scatter plots for all methods and datasets. The scatter plots show the

dispersion of the representations of two classes (red and green). Since the UMAPS building

relies on keeping topological characteristics of the original representation, mainly regarding

the inter-instance distances and neighborhood, the scatter plots hint at the relationship between

instances. Moreover, the geometric relation between instances is linked to the proposed loss

function since such a function induces an increase in the margins and a discriminant that

separates well instances of different classes.

Features generated by LBP and PFTAS for the BACH dataset (Figures 3.19c and 3.19d) produced

similar UMAP representations when looking at the big picture, both representations are more

dispersed. Training accuracy is 75.2% and 99.5% for LBP and PFTAS, respectively. Looking

in more detail, LBP presents more red and green overlapping, and the instances are more

mixed in the representation space. For PFTAS, there is less overlapping, and there are regions

concentrating instances of the same class compared to LBP. Overlapping instances from red and

green classes mean the classes are more difficult to discriminate. As UMAPs try to preserve

the distances (Euclidean distance) and neighborhood between instances and the SVM kernel is

also based on this distance, when there is overlapping in the reduced-dimension representation,

the discriminant has more difficulty in classifying the instances. GLCM features (with training

accuracy of 72.9%) in Figure 3.19e show the grouping of instances from different classes, but

it also has mixed red and green instances, with a small margin. Regarding the LMFCN in

Figure 3.19a and 3.19b (with training accuracy going from 80.3% to 100% from epoch zero

to one), there are few overlaps, but in epoch zero, red and green classes’ instances are more

90

a) LMFCN 169-dimensional at epoch 0 b) LMFCN 169-dimensional at epoch 1

c) LBP 59-dimensional d) PFTAS 162-dimensional

e) GLCM 169-dimensional

Figure 3.19 UMAPs generated with features from three handcrafted methods and

LMFCN for the BACH dataset. Axes x and y represent the two dimensions of the latent

representation reduced by the UMAP method. Blue arrows point to regions with instance

overlapping. Magenta arrows point to regions with more separation.

dispersed and mixed. In epoch one, small clusters are formed, with more distance between

91

classes in some parts of the representation space. This behavior is compatible with our loss

function.

a) LMFCN 169-dimensional at epoch 0 b) LMFCN 169-dimensional at epoch 1

c) LBP 59-dimensional d) PFTAS 162-dimensional

e) GLCM 169-dimensional

Figure 3.20 UMAPs generated with features from three handcrafted

methods and LMFCN for the BreaKHis dataset. Horizontal and vertical axes

represent the two dimensions of the latent representation reduced by the

UMAP method. Blue arrows point to regions with instance overlapping.

Magenta arrows point to regions with more separation.

92

Figure 3.20 shows the UMAPs generated for the BreaKHis dataset. The LBP features, which

obtained a training accuracy of 93.6%, demonstrated in Figure 3.20c some overlapping instances

of red and green classes. It also shows samples distributed uniformly, mixed, and without

clusters in the representation space. Mixed instances, distributed uniformly, are inadequate

for the SVM classifier because they will require more SVs to cover each small region in the

representation space. It will also have no large margins. The GLCM features (Figure 3.20e)

obtained a training accuracy of 81.1%. They are more densely populated on the boundaries

of the distribution. The density and distribution, with some clustering, are similar to PFTAS

(Figure 3.20d), but the last one obtained a training accuracy of 97.8%. The most significant

difference between the representation of both methods is the strong overlapping in the upper

border of the space. Overlapping makes it more difficult for the SVM to classify instances. The

difference in LMFCN representations from epoch zero, in Figure 3.20a (accuracy of 88.8%),

to epoch one, in Figure 3.20b (accuracy of 100%), shows more clustering of green instances

after training. There is a concentration of these instances in some points and more blank spaces

(margins) in the middle. The representation is similar to the one from PFTAS in terms of

overlapping and clustering, which is compatible with the high training accuracy of both methods,

but with more blank spaces for LMFCN. The margins in the center for LMFCN resulted in

better test accuracy (93.7% of PFTAS against 97.6% of LMFCN). The UMAPs of LMFCN at

epoch zero and one are mirrored, with the red instances in the left corner (epoch zero) plotted

on the right at epoch one. The UMAPs generation of epoch zero and one are not linked or

share information, so there is no commitment that each representation will place instances in the

space in a similar absolute position (considering the representation components as vertical and

horizontal coordinates in the scatter plot). The instances position at each UMAP is absolute and

not linked to the previous epoch. However, the instance’s distances and dispersion are correlated

between epochs because the UMAP algorithms focus on this information.

The two-class version of the CRC dataset is one of the most straightforward scenarios in our

experiments. The representation generated by the LMFCN depicted this fact on the UMAP

plots in Figures 3.21a and 3.21b, with red and green classes’ instances well separated even

93

a) LMFCN 169-dimensional at epoch 0 b) LMFCN 169-dimensional at epoch 1

c) LBP 59-dimensional d) PFTAS 162-dimensional

e) GLCM 169-dimensional

Figure 3.21 UMAP generated with features from three handcrafted

methods and the LMFCN for the CRC dataset. Horizontal and vertical axes

represent the two dimensions of the latent representation reduced by the

UMAP method. Blue arrows point to regions with instance overlapping.

Magenta arrows point to regions with more separation.

in the epoch zero. The training accuracy went from 99.5% to 100% from epoch zero to one.

94

The PFTAS features (Figure 3.21d) do not present the same level of instance separation in

the UMAPs as the LMFCN. Still, it achieved highly training balanced accuracy (100%) due

to the RBF SVM capabilities of drawing complex margins. We also need to emphasize that

UMAPs represent a reduced space, so the overlapping in PFTAS representation may not pose

a considerable challenge to SVM in the higher dimension (162-dimensional), and the kernel

increased dimensionality. Finally, there is a slight advantage for the LBP features (Figure 3.21c)

compared to the GLCM features (Figure 3.21e) regarding balanced accuracy (99.5% and 98.6%,

respectively). The clustered or compacted instances in GLCM make it more challenging to

separate the classes. The instances in the UMAP generated from the LBP features are more

spread, like in the other datasets, but they are not too mixed. The test accuracy of LBP was 95.2%

and 98.4% for GLCM, showing that the mixed instances in the middle of the representation

cause more problems in generalization due to reduced margins.

In the synthetic image dataset, LBP and PFTAS (with training accuracy of 89.9% and 58.3%

respectively) produced red and green overlapped instances with more clustering in the LBP

features, as seen in Figure 3.22c. The UMAP produced by the GLCM features, which

obtained 61.3% of training accuracy, showed homogeneous spacing between instances with

few overlapping. Still, the red and green instances are mixed, hindering the establishment

of decision boundaries. The UMAP produced by the LMFCN in Figures 3.22a and 3.22b

shows the difference between epochs zero and two with improving in accuracy from 74.9% to

98.9%. Instances of opposite classes (red and green) have few overlaps, and the spacing between

instances is improved, with the formation of bigger white spaces in the middle when compared

to epoch zero, which allowed improvement in test accuracy from 71.3% to 91.9% due to the

possibility of establishment of larger margins.

The scatter plots of UMAPs in Figure 3.23 show instances very close to each other, even from

opposite classes (red and green) for the GLCM (Figure 3.23e) that hinder the decision boundary

definition of the SVM, producing low balanced training accuracy on the Salzburg dataset of

77.8%. The LMFCN increased the clustering of instances and created spaces between clusters

of instances from epoch zero to one, improving training accuracy from 96.7% to 100%. The

95

a) LMFCN 169-dimensional at epoch 0 b) LMFCN 169-dimensional at epoch 2

c) LBP 59-dimensional d) PFTAS 162-dimensional

e) GLCM 169-dimensional

Figure 3.22 UMAP generated with features from three handcrafted

methods and LMFCN for the synthetic Gaussian image dataset. Horizontal

and vertical axes represent the two dimensions of the latent representation

reduced by the UMAP method. Blue arrows point to regions with instance

overlapping. Magenta arrows point to regions with more separation.

grouping and empty areas between them enlarge the margins and promote more generalization

capacity. The PFTAS (with a training accuracy of 99.1%) generated a feature distribution akin

96

a) LMFCN 169-dimensional at epoch 0 b) LMFCN 169-dimensional at epoch 1

c) LBP 59-dimensional d) PFTAS 162-dimensional

e) GLCM 169-dimensional

Figure 3.23 UMAP generated with features from three handcrafted

methods and the LMFCN for the Salzburg dataset. Horizontal and vertical

axes represent the two dimensions of the latent representation reduced by the

UMAP method. Blue arrows point to regions with instance overlapping.

Magenta arrows point to regions with more separation.

to the LMFCN, grouping same-class instances but with more aggregation. The LBP, which

achieved the best-balanced accuracy performance among the handcrafted feature extractors

97

in this dataset, 99.7%, produced an instance distribution more dispersed, with less clustering

than LMFCN or PFTAS. Although dispersed instances in the UMAP in the other datasets had

reduced generalization capacity, in this case, the red and green instances are not too equally

spaced, not so mixed, and with more clustering, despite less than in the LMFCN and PFTAS.

The visual representation provided by the UMAPs contributes to discovering the difference

between the latent representation (from the LMFCN) and feature representations (from PFTAS,

GLCM, and LBP). In the UMAPs, we can see that there is high between-class overlapping

in some experiments, and in these cases, the balanced accuracy was also negatively affected.

The LMFCN showed low overlapping or dispersed instances but produced good results in both

situations, unlike other feature representations that did not perform satisfactorily in all cases. We

notice the adaptability of the LMFCN in various conditions, for example, its UMAPs and results

for the synthetic image and BreaKHis datasets. The LMFCN performed well on both datasets

generating UMAPs with distinct characteristics, contrasting with the feature representations

produced by GLCM and PFTAS. The GLCM performed well on synthetic images and BreaKHis

datasets, while the PFTAS performed well only on the BreaKHis dataset. The LMFCN and

GLCM produced spread instances on the synthetic image dataset. In contrast, in the BreaKHis

dataset, the PFTAS and LMFCN performed best, had a compact latent representation with some

clustering and less between-class overlapping than the other methods.

3.4.5 Results for Multiclass Experiments

We only used the three HI datasets (BACH, BreaKHis, and CRC) in the multiclass experiments.

The synthetic image dataset was used to illustrate the training process of the proposed method,

and we designed it as a two-class dataset. The Salzburg dataset initially has 32 classes, placing

it outside our method’s scope due to the many categories. Our multiclass approach uses the

OVA strategy, which requires nclasses FCNs and an extended latent representation made up of the

concatenation of nclasses latent representations. The computational cost becomes prohibitively

high when the number of classes grows too much. Small datasets with many classes are a

98

problem suitable to DML or other dissimilarity-based methods. Thus the LMFCN is not focused

in this scenario.

The multiclass LMFCN is compared to a TCNN with similar architecture, with the same number

of layers, but with more channels. We increased the number of channels to provide more

weights to learn the multiclass representation, given that the problem with more classes is more

challenging. The number of layers was preserved to prevent the TCNN from learning more

spatial and shape characteristics. In the LMFCN, each FCN learns a latent representation and

discriminant to distinguish one class from the rest. Thus, using a TCNN with a number of

parameters equivalent to one of the FCNs from LMFCN would lead to an unfair comparison.

The TCNN would have less representation capacity with fewer parameters because LMFCN

would have the number of parameters of the FCN multiplied by nclasses. Therefore, the number

of TCNN parameters per layer was increased proportionally to the number of classes. Our

experiments also compared the LMFCN with the handcrafted feature extractors GLCM, LBP,

and PFTAS.

We used two pre-trained CNNs (ResNet18 and InceptionV3) as feature extractors with an SVM

classifier to analyze their performance compared to LMFCN in the multiclass scenario. The

SVM’s C and γ parameters were 1000 and ’scale’, respectively. As a further analysis, we also

used ResNet18, SqueezeNet, and DenseNet101 pre-trained CNNs with two additional FC layers

to adapt their output to the number of classes of each dataset. We trained them for 400 epochs

with their first layers frozen, fine-tuning the last additional layers.

The multiclass LMFCN encompasses multiple sub-models, each comprised of an FCN and an

SVM so that their performance can be analyzed individually. The accuracy of these sub-models

can provide valuable information regarding the potential of our approach in imbalanced scenarios.

The OVA strategy creates multiple two-class imbalanced problems since one class has instances

of a single class, and the other concentrates the instances of all other classes. We plot the

balanced accuracy graphs for each sub-problem for five repetitions of the HI datasets. These

plots are presented in Figures 3.24a, 3.24b, and 3.24c.

99

a) Balanced accuracy for 4

classes of the BACH dataset

b) Balanced accuracy for 8

classes of the BreaKHis

dataset

c) Balanced accuracy for 8

classes of the CRC dataset

Figure 3.24 Balanced accuracy for each class of the three HI datasets.

The two-class sub-problems of the BreaKHis dataset presented a smaller balanced accuracy

amidst our experiments. Both CRC and BACH datasets are balanced, minimizing the impact of

data imbalance. The BreaKHis dataset is imbalanced in its two ways of analysis, binary and

multiclass. The worst case was in class four (Phyllodes Tumor) against all other categories.

This class has few images (71), creating a heavily imbalanced scenario. Class zero (Ductal

Carcinoma) is the most prevalent, with 504 samples on the training set. Even with the imbalance,

the LMFCN approach produced good models.

Finally, the balanced accuracy results were compiled by comparing all methods with the LMFCN

in Table 3.5, where the LMFCN’s superiority over all others is noticeable. In the case of the

100

CNN experiments, 400 training epochs were used. For the LMFCN, we let each sub-model

train for ten epochs. The ResNet18 showed overfitting in the feature extraction experiment with

high training accuracy. The DenseNet showed higher training accuracy for the CRC dataset

than other methods and was also the best test accuracy in this dataset among the other methods,

excluding the LMFCN.

Table 3.5 Balanced accuracy and standard deviation for five runs in

multiclass experiments on three HI datasets. The best results for each

dataset and data partition are underlined. The three CNNs ResNet18,

SqueezeNet, and DenseNet, followed by the ’FT’ text, identify their use

as CNN with fine-tuning.

Dataset Method Train Validation Test

BACH

LMFCN 0.9690 ± 0.0348 0.7170 ± 0.0210 0.6854 ± 0.0278

CNN 0.8390 ± 0.0184 0.6788 ± 0.0406 0.6444 ± 0.0187

GLCM 0.4081 ± 0.0183 0.4003 ± 0.0753 0.3637 ± 0.0303

LBP 0.4643 ± 0.0334 0.4871 ± 0.0729 0.3951 ± 0.0896

PFTAS 0.6229 ± 0.0146 0.5690 ± 0.0464 0.6043 ± 0.0235

ResNet18 1.0000 ± 0.0000 0.6056 ± 0.0578 0.5671 ± 0.0300

InceptionV3 0.4628 ± 0.0807 0.4269 ± 0.0904 0.4057 ± 0.0261

ResNet18 FT 0.6721 ± 0.0855 0.5513 ± 0.0078 0.4668 ± 0.0575

DenseNet FT 0.9524 ± 0.0843 0.6220 ± 0.0453 0.4842 ± 0.0502

SqueezeNet FT 0.5692 ± 0.1180 0.6238 ± 0.0676 0.5462 ± 0.0681

BreaKHis

LMFCN 0.9688 ± 0.0285 0.8125 ± 0.0321 0.7895 ± 0.0162

CNN 0.8032 ± 0.0319 0.7347 ± 0.0238 0.7040 ± 0.0307

GLCM 0.4697 ± 0.0111 0.4218 ± 0.0212 0.4091 ± 0.0050

LBP 0.9235 ± 0.0084 0.5373 ± 0.0174 0.5218 ± 0.0147

PFTAS 0.9537 ± 0.0086 0.6643 ± 0.0109 0.6768 ± 0.0147

ResNet18 1.0000 ± 0.0000 0.5933 ± 0.0341 0.5834 ± 0.0213

InceptionV3 0.1848 ± 0.0182 0.1745 ± 0.0194 0.1767 ± 0.0123

ResNet18 FT 0.3496 ± 0.0633 0.4055 ± 0.0343 0.3546 ± 0.0182

DenseNet FT 0.8582 ± 0.1184 0.5561 ± 0.0475 0.5194 ± 0.0655

SqueezeNet FT 0.3038 ± 0.0652 0.3689 ± 0.0108 0.3589 ± 0.0186

CRC

LMFCN 0.9834 ± 0.0127 0.9379 ± 0.0065 0.9338 ± 0.0073

CNN 0.7209 ± 0.2614 0.3946 ± 0.0453 0.3901 ± 0.0402

GLCM 0.6062 ± 0.0057 0.5960 ± 0.0069 0.6049 ± 0.0084

LBP 0.6148 ± 0.0045 0.6086 ± 0.0270 0.6144 ± 0.0123

PFTAS 0.8359 ± 0.0058 0.8271 ± 0.0152 0.8297 ± 0.0097

ResNet18 0.9506 ± 0.0033 0.5070 ± 0.0141 0.5066 ± 0.0138

InceptionV3 0.1509 ± 0.0036 0.1546 ± 0.0075 0.1477 ± 0.0082

ResNet18 FT 0.7285 ± 0.0189 0.7530 ± 0.0155 0.7460 ± 0.0115

DenseNet FT 0.9955 ± 0.0063 0.9032 ± 0.0054 0.8933 ± 0.0037

SqueezeNet FT 0.8233 ± 0.0163 0.8126 ± 0.0190 0.8041 ± 0.0112

101

3.4.6 Computational Complexity Analysis

This section presents the computational costs using execution times of the LMFCN training

with the BreaKHis dataset. Although execution time is not a formal way to analyze a method’s

complexity, it can give us an idea of how it performs. The execution time depends on several

variables, such as the hardware characteristics, operating system, computer language, and

frameworks. For these experiments, we used a machine with an Intel Xeon E5-2620 processor,

64GB of RAM, and a Tesla P100 GPU with 12 GB of VRAM. The operational system was an

Ubuntu 20.04.4 LTS, and the source code was written in Python 3.6.13 and Pytorch 1.2.0+cu92.

The LMFCN execution time was compared to a CNN with an equivalent architecture, with the

number and dimension of FCN and FC layers similar to the experiments on Section 3.4.2. We

chose the two-class BreaKHis dataset because it represents a complex problem, the second most

difficult in the previous experiments. A simple dataset with a high accuracy rate would not pose

a challenge and would hinder the time evaluation.

The LMFCN, despite its extra calculations related to the large-margin discriminant, is still very

competitive against CNN approaches. We executed the LMFCN and a CNN-BCE with all five

folds from the dataset to allow the comparison. The performance was analyzed based on the

performance of a single fold and the average of all folds. The LMFCN requires a hyperparameter

setting. Thus, for these experiments, we used svclose=1, wrclose=4, and C=10. These values differ

from the previous experiments because the focus here was not to compare the best accuracy but

the parameter influence. We compare the hyperparameters combination concerning execution

time and accuracy in Tables 3.6, 3.9, and 3.7. To simplify and summarize the presentation of

the results, we had to choose one of the combinations to present these experiments. The two

first hyperparameters do not significantly impact the execution time. They do not affect the

FCN (latent representation creation), matrices calculation, and SMO times. They influence the

backpropagation time, where the distance from the instances of interest to the multiple anchors

is calculated. The impact is lighter because the anchors’ coordinates (latent representation) are

pre-calculated at each epoch, stored at matrix T. The backpropagation time depends more on

102

the number of instances of interest directly affecting the gradients’ calculation. As an example

of the hyperparameters’ impact on the execution time, we present Table 3.6, with the total

backpropagation for ten epochs of the BreaKHis dataset. It shows the time when varying both

hyperparameters, wrclose and svclose. There is a subtle difference from wrclose = 0 to wrclose = 1,

because for wrclose = 0 the Lmc is not calculated. From wrclose = 1 to wrclose = 2 the difference

is slight, and the difference is even small for the rest of the wrclose values. The difference is

small for svclose. Thus, to produce a more concise analysis, we fixed the hyperparameters. The

hyperparameter C has more impact on the execution time than svclose and wrclose because it

affects the number of SVs. Its effect is not so deterministic and easy to formulate since it

depends on the dataset’s complexity. A low C value tends to generate a model more lenient to

misclassified training instances, thus with fewer SVs defining a softer decision border. A high

C produces more SVs leading to a more contoured decision border and making each LMFCN

epoch computationally expensive, even more than the CNN epochs. Although the high cost, the

LMFCN tends to converge earlier, so the total time also tends to be smaller than in the CNN.

Usually, a C too high may produce as many SVs as training instances, which is not a good

characteristic of the discriminant, indicating a high possibility of overfitting. We also set this

hyperparameter to an intermediary value defined empirically to avoid overfitting. We limited

the CNN execution to 100 epochs and the LMFCN to 10.

Table 3.6 Total backpropagation time (in miliseconds)

for 10 epochs impacted by varying wrclose and svclose for

the dataset BreaKHis

wrclose

0 1 2 4 8

svclose

1 23783.8 25841.2 27494.6 27570.1 27718.6

2 23901.3 26748.0 27433.5 27489.2 27609.1

4 24174.1 26130.8 27246.5 27508.8 27085.6

8 24123.2 26366.9 27278.6 27890.9 27584.5

Figure 3.25a shows the total time for training up to the last epoch, limiting the number of training

epochs to 10 and 100 for the LMFCN and the CNN-BCE, respectively. Albeit the LMFCN has

extra calculations as the generation of the latent representation, calculation of several matrices,

103

and SMO, the training time is lower than the CNN. The CNN’s backpropagation time is higher

than the LMFCN’s because fewer instances are used for training by the last one. Reducing the

number of training instances compensates for the extra costs of the LMFCN in the face of CNN

training time. To ease the visual comparison, we highlight the training time between the first

and the 30th epoch in Figure 3.25b.

a) LMFCN (10 epochs) versus

CNN-BCE (100 epochs)

b) LMFCN (10 epochs) versus

CNN-BCE (30 epochs)

Figure 3.25 a) Total execution to 100 epochs for the CNN-BCE and ten epochs for the

LMFCN and b) Total execution for only 30 epochs for the CNN-BCE and ten epochs for

the LMFCN

Figures 3.25a and 3.25b consider the training time limited by the number of epochs regardless of

the accuracy of the validation set. For convergence efficiency comparison, Figure 3.26a shows

LMFCN and CNN-BCE runtime to achieve the best validation accuracy. The LMFCN took less

than ten epochs to obtain a validation accuracy superior to the CNN-BCE, which took more than

80 epochs. To better understand the time advantage of the LMFCN at each epoch, we present in

Figure 3.26b the time each step our approach takes inside one epoch. We used the epoch time

for fold 1 of the BreaKHis dataset. The most costly steps are generating the latent representation

by the FCN, the backpropagation algorithm, the matrices calculation (kernel and distance), and

the execution of the SMO algorithm. The execution time of the SMO increases as the number of

SV decreases, and the execution time of the backpropagation algorithm decreases with fewer

SVs, so one compensates the other. However, the absolute execution time of the SMO algorithm

is much smaller than the execution time of the backpropagation algorithm.

104

a) Time to best accuracy on the

validation set b) Time breakdown for the

LMFCN steps

Figure 3.26 a) Total execution time to achieve the best validation accuracy for both

methods (CNN-BCE and LMFCN) and (b) Execution time to each step of the LMFCN

(latent representation generation, matrices, distance calculation, SMO, and

backpropagation over ten epochs).

Figures 3.27a and 3.27b compare the percentage of the total time taken by each step of the

LMFCN in epochs 1 and 2. These complementary representations of Figure 3.26b make it easier

to see each step’s percentage and the relation between the execution time of the SMO and the

backpropagation algorithms.

The performance analysis for the BACH dataset, the most challenging dataset of our experimental

setup, showed a different time profile from the BreaKHis dataset. The BACH dataset has fewer

samples than the BreaKHis dataset, but they have a higher dimensionality than the samples of the

BreaKHis dataset. This fact has two impacts: (i) with fewer instances, matrix calculations and

the execution of the SMO algorithm take less time; (ii) the generation of the latent representation

by the FCN takes longer due to the convolution operation on bigger images. In this direction, the

LMFCN and the CNN would have similar runtime, with two drawbacks for the LMFCN because

it requires a forward pass of the FCN and the calculation of the large-margin discriminant.

Despite this, in Figure 3.28, the LMFCN presented an execution time shorter than the CNN and

used only ten epochs instead of 100 of CNN to achieve similar accuracy. The reason for that is

105

a) Epoch 1 b) Epoch 2

Figure 3.27 Percentage of the total execution time taken by each step of the LMFCN

in the first and the second training epochs.

the reduction in the number of SVs in the backpropagation, compensating for the extra forward

pass and the other calculations. With a reduced n, the computation of matrices and kernel

and the execution of the SMO takes much less time than the execution of the backpropagation

algorithm compared to the experiments with the BreaKHis dataset. Such a difference is shown

in Figures 3.29a and 3.29b.

Figure 3.28 Total execution time of 100

epochs for the CNN-BCE and the LMFCN for

the BACH dataset)

106

a) Time breakdown for the

LMFCN steps for 10 epochs

b) Time breakdown for the

LMFCN steps for epoch one

Figure 3.29 a) Step time inside each epoch of the LMFCN for fold one BACH of the

dataset over 10 epochs (first epoch takes longer due to more SVs) and (b) Execution

time to each step of the LMFCN for fold one of BACH dataset (latent representation

generation, matrices, distance calculation, SMO, and backpropagation over ten epochs)

This section compared the execution times between the LMFCN and the CNN-BCE for BreaKHis

and BACH datasets. These datasets have different characteristics. The BreaKHis dataset has

more, but smaller, images. The BACH dataset has fewer but larger images. Their aspects impact

distinct parts of the LMFCN. Larger images increase the time to generate a latent representation

and the execution of the backpropagation algorithm, while a high number of samples increases

the execution time to compute matrices and large-margin discriminant. However, thanks to the

reduction in the number of SVs and the consequent impact on the number of instances that

undergo backpropagation, the LMFCN is still competitive at each epoch. Another aspect is that

due to the high discriminative power of the RBF SVM and the latent representation adaptation

(FCN weight training), the LMFCN converges to a high accuracy earlier than a CNN.

3.4.7 Impact of Hyperparameters on the LMFCN Performance

This section analyzes how hyperparameters svclose and wrclose impact the balanced accuracy of

the LMFCN. Like in the empirical computational analysis carried out in Section 3.4.6, we used

the two most challenging datasets, BreaKHis and BACH. The hyperparameter’ values were set to

107

1, 2, 4, and 8 for svclose and 0, 1, 2, 4, and 8 for wrclose. The experiments combined these values

in a grid search for all five folds of both datasets. wrclose started with zero to give us an idea of

the impact of the LMFCN without the misclassified instances loss term (Lmc). Disabling Lsv

in our approach (svclose = 0) turns off the main advantage of it, the building of a large-margin

representation. It also creates a problem when the training accuracy achieves values close to

100% because the training will halt without instances (almost no misclassified instances) to

calculate the loss function if using only Lmc. Thus, using Lsv higher than one is essential for

the LMFCN.

Figure 3.30 presents the values of balanced accuracy for the fold one test set. In Figure 3.30a,

bars are ordered in the x-axis firstly by the value of the wrclose parameter and secondly by

the svclose. Thereby independent of the value of svclose, when not using wrclose, we have the

smallest accuracy values in this comparison. The best accuracy was obtained with wrclose equal

to four and eight, also observable in Table 3.7. Figure 3.30b shows that varying svclose does not

make significant differences in the accuracy, showing that our method is not so sensitive to this

parameter.

Figure 3.31 shows the average balanced accuracy for the test set of all folds of the BreaKHis

dataset. In this case, wrclose = 4 performs better than the other values with a low influence

of svclose. Therefore, our approach is not highly sensitive to its most crucial hyperparameter

(svclose), making it easier to set. Tables 3.7 and 3.8 bring the values used to create the bar graphs

(Figures 3.30 and 3.31) underlining the best-balanced accuracy values, with averages of the

groups (rows and columns). Observing Table 3.8 makes it easy to surmise that wrclose = 4 and

svclose = 8 produce the best accuracy and that varying svclose produces small changes.

The sensitivity analysis for the BACH dataset is presented in Figures 3.32 and 3.33. For this

dataset, the wrclose parameter set to zero for fold one resulted in lower balanced accuracy than

other values (1, 2, 4, and 8) in Figure 3.32a. Thus, this parameter is essential for training the

LMFCN with this dataset, but when it is not zero, its value does not imply in a significant

difference. A similar behavior occurs in the average of all folds of the BACH dataset, with

108

a) x-axis sorted according to the

wrclose

b) x-axis sorted according to the

svclose

Figure 3.30 Accuracy for fold one of the BreaKHis dataset varying wrclose and

svclose

a) x-axis sorted according to the

wrclose

b) x-axis sorted according to the

svclose

Figure 3.31 Average accuracy for five folds of BreaKHis dataset varying wrclose and

svclose

lower accuracy values for wrclose = 0 (Figure 3.33a), but it is less discrepant than for fold

one alone. Unlike the analysis with the BreaKHis dataset, the peak balanced accuracy was

obtained for wrclose = 1. The BACH dataset is smaller than the BreaKHis dataset (≈2000

109

Table 3.7 Balanced accuracy on the test set for fold one of the

BreaKHis dataset varying wrclose and svclose

svclose Avg. Std. Dev.1 2 4 8

wrclose

0 0.9221 0.9233 0.9207 0.9181 0.9211 0.0022

1 0.9287 0.9277 0.9230 0.9233 0.9257 0.0029

2 0.9166 0.9345 0.9386 0.9325 0.9306 0.0096

4 0.9264 0.9276 0.9302 0.9414 0.9314 0.0069

8 0.9411 0.9351 0.9333 0.9362 0.9364 0.0033

Avg. 0.9270 0.9296 0.9292 0.9303

Std. Dev. 0.0091 0.0050 0.0074 0.0095

Table 3.8 Test set balanced accuracy for all folds of the BreaKHis

dataset varying wrclose and svclose

svclose Avg. Std. Dev.1 2 4 8

wrclose

0 0.9067 0.9076 0.9069 0.9125 0.9084 0.0027

1 0.9065 0.9089 0.9103 0.9081 0.9084 0.0016

2 0.9093 0.9133 0.9098 0.9101 0.9106 0.0018

4 0.9147 0.9174 0.9143 0.9178 0.9160 0.0018

8 0.9100 0.9103 0.9133 0.9095 0.9108 0.0017

Avg. 0.9094 0.9115 0.9109 0.9116

Std. Dev. 0.0033 0.0039 0.0030 0.0038

against 400 images). Thus high wrclose uses anchors that may be too spread, causing shifts in

the misclassified instances to wrong directions. The influence of svclose is more homogeneous,

and the best accuracy value was achieved with svclose = 4 (Figure 3.33b). Tables 3.9 and 3.10

summarize the data from the graphs, highlighting the best-balanced accuracy for the experiments

and the averages of the groups of experiments. The average of the wrclose grouping shows little

variability when changing svclose, again pointing it as a stable and easy-to-use hyperparameter.

The hyperparameter wrclose has its use recommended, as seen in this experiment, and the one

with the BreaKHis dataset, but its value is more difficult to choose.

This section analyzed the influence of the two main hyperparameters of the LMFCN, svclose and

wrclose. The third hyperparameter, related to Lcc, was not analyzed because it is recommended

110

a) x-axis sorted according to the

wrclose

b) x-axis sorted according to the

svclose

Figure 3.32 Test accuracy for fold one of the BACH dataset varying wrclose and svclose

a) x-axis sorted according to the

wrclose

b) x-axis sorted according to the

svclose

Figure 3.33 Average test accuracy for five folds of the BACH dataset

varying wrclose and svclose

only for specific cases where the other two hyperparameters are insufficient and the data is

too packed. It is not the case for the datasets we used in this section’s experiments. The

hyperparameter svclose showed a more consistent behavior, being more stable in both datasets, so

changing its value does not produce catastrophic results. On the other hand, the hyperparameter

wrclose showed more impact in the different analyses. Its impact is related to the dataset’s size

111

Table 3.9 Balanced accuracy for the test set of fold one of the

BACH dataset varying wrclose and svclose

svclose Avg. Std. Dev.1 2 4 8

wrclose

0 0.7567 0.7323 0.7323 0.7264 0.7369 0.0135

1 0.7904 0.7904 0.7904 0.7904 0.7904 0.0000

2 0.7904 0.7904 0.7904 0.7904 0.7904 0.0000

4 0.7904 0.7904 0.7904 0.7904 0.7904 0.0000

8 0.7904 0.7323 0.7904 0.7904 0.7759 0.0291

Avg. 0.7837 0.7672 0.7788 0.7776

Std. Dev. 0.0151 0.0318 0.0260 0.0286

Table 3.10 Average accuracy on the test set for five folds of the

BACH dataset varying wrclose and svclose

svclose Avg. Std. Dev.1 2 4 8

wrclose

0 0.7541 0.7482 0.7329 0.7359 0.7428 0.0100

1 0.7593 0.7646 0.7690 0.7544 0.7618 0.0064

2 0.7659 0.7576 0.7572 0.7645 0.7613 0.0046

4 0.7572 0.7595 0.7530 0.7649 0.7586 0.0050

8 0.7501 0.7415 0.7493 0.7585 0.7499 0.0069

Avg. 0.7573 0.7543 0.7523 0.7556

Std. Dev. 0.0059 0.0093 0.0131 0.0118

and complexity. When too small, the number of instances in the dataset may produce updates in

the FCN guided by Lmc that could lead to the shift of misclassified instances to the direction of

faraway and not recommended anchors. The burden the dataset presents to the LMFCN also

affects this hyperparameter setting because challenging problems tend to start the training with

many misclassified instances, leading to several updates in the FCN weights. In this case, the

ratio between correctly and misclassified samples is low. As a result, it may produce updates

that move the correctly classified instances towards undesirable directions, in contrast to the Lsv

that tries to wrap them within regions delimited by SVs.

The BACH dataset is an example of a small and challenging dataset in contrast to the BreaKHis

dataset inside the reach of the LMFCN. Therefore, the experiments pointed out that the LMFCN

112

is not strongly sensitive to the svclose hyperparameter while showing that wrclose improves the

accuracy. The last one needs some tuning to find its best value for each problem, suggesting

that small-size datasets should benefit from lower values of wrclose and large-size ones from

higher values of wrclose. This section’s analysis is limited to the use of only two datasets. Still, it

intends to show the stability of the LMFCN in the face of two of its most inner hyperparameters.

3.4.8 Discussion

The LMFCN achieved equivalent performance or outperformed the compared methods. It is

a hybrid approach inherited from deep learning (FCN) and large-margin classifiers (SVM). It

is common sense that deep learning methods are suitable for large datasets. With small-size

datasets, the high number of parameters of deep learning methods are challenging to train

and obtain good generalization. To circumvent this problem, methods like data augmentation

increase the amount of data and also help to increase the variability of data. Although using

FCNs, the LMFCN works with small-size datasets, and instead of using data augmentation, it

requires even less training data than the amount available in the original dataset. Our approach

selects some instances of interest to participate in the loss calculation and the backpropagation

procedure. Our approach requires reduced training data because it only relies on instances close

to the margins or at the wrong side of the decision boundary. The other instances do not need

to participate in the training process because they will not effectively contribute to the margin

definition.

On the other hand, deep learning training algorithms must use all instances available because the

well-classified ones reduce aggressive updates, acting like a weighting mechanism. Therefore,

their training also follows the majority. Updates based only on misclassified instances could shift

well-classified instances to the wrong side of the decision boundary because it mainly focuses on

correcting complicated instances. In the LMFCN, the SVs that define different margins balance

themselves to avoid pushing well-classified instances to the wrong side of decision boundaries.

That is better explained in Section 2.4. CNNs do not work with a large-margin discriminant,

113

so their training algorithm does not need to bother with margin definition, unlike the LMFCN

approach.

Another relevant aspect tying CNNs to large datasets is their number of parameters and the

multiclass capabilities, reaching up to thousand classes in architectures designed to deal with the

ImageNet dataset. The number of parameters must be high to create an internal representation

appropriate to complex problems by the weights. However, as the LMFCN is designed to work

with small-size datasets and few classes, it only needs a few parameters to model the problem.

Using datasets with few instances and an update method like the one of CNNs, employing the

entire training set, can generate problems with dispersed and misclassified samples. These

instances cause a consistent updating, which makes margin enlargement difficult. On the other

hand, the LMFCN, thanks to the soft margin SVM, ignores such harmful instances in the loss

calculation. The LMFCN focuses on margin definition rather than correcting misclassified

instances. Our experiments helped to understand this behavior by improving balanced accuracy

over the epochs. The feature complexity measures also allowed us to compare the features

generated by different methods and find the reasons for our approach’s good classification

performance and adaptative capabilities.

CONCLUSION AND RECOMMENDATIONS

This thesis aimed to create an end-to-end strategy to learn the representation and a large-margin

discriminant from a small-size texture dataset with competitive results compared to approaches

based on CNNs. Our results and analysis showed that the FCN and the discriminant formed

an end-to-end method of supervised learning, named LMFCN, with the representation being

generated and modified to improve the accuracy of the discriminant. The balanced accuracy

results were equivalent or superior to approaches based on CNNs and shallow approaches

based on handcrafted feature extractors in a scenario of small-size texture datasets. It also

outperformed the compared methods in multiclass scenarios.

A question raised in this thesis was whether a large-margin discriminant replacing FC layers of

conventional CNNs could speed up the training convergence while maintaining or improving

classification accuracy. The large-margin discriminant contributed in two ways to speed up

the training convergence: (i) by reducing the number of parameters to update during the

backpropagation procedure; (ii) by producing more complex decision boundaries. Another point

that reduced the computational complexity of the proposed approach is that the loss function

conceived to train the FCN used fewer instances during the loss calculation and backpropagation.

This last characteristic did not speed up the convergence directly but contributed to reducing

the computational effort of the training. The synergy of the latent representation generation

by the FCN and the requirements of the large-margin discriminant also helped speed up the

convergence.

Training complex machine learning models on small-size datasets is challenging because they

tend to overfit, producing unsatisfying generalization results. On the other hand, simple models

may not be able to represent the data accordingly, generating underfitting. Large deep-learning

models currently present the most relevant results in object classification. Part of this success

is the availability of large datasets of this type. Compared to images with objects, medical

116

HIs are harder to acquire and label, limiting the data for training. Many shallow methods,

handcrafted feature extractors combined with monolithic classifiers, produced relevant accuracy

results for HI classification according to de Matos et al. (2021). Handcrafted feature extractors’

disadvantages are that they cannot adapt to different textural characteristics, and their generated

features are not tailored to a classifier. On the other hand, deep learning methods, like CNNs,

can adjust the weights of the convolutional filters to better deal with images while improving

the discriminant in deep layers. Given these two categories of machine learning methods, we

created the LMFCN, a hybrid approach combining the adaptability of CLs as filter banks and a

large-margin discriminant that works well with small-size datasets.

The LMFCN uses a novel loss function to train CLs from scratch to filter relevant characteristics

of diverse textural images. The weight updating of the CLs generates a latent representation

better suited to train a large-margin discriminant. The LMFCN targets small-size datasets with

textural characteristics and a limited number of classes. Using a shallow FCN requires training

of a few parameters, making it suitable for training with few data. Compared to traditional CNNs,

our approach replaces deep FC layers that act as a discriminant by a large-margin classifier,

specifically an SVM. The proposed loss function aims to enlarge the inter-class margin by

shifting SVs toward their anchors, the closest correctly classified instances of the same class, in

the latent representation space. It also moves misclassified instances toward the SVs and pushes

opposite-class instances apart.

The LMFCN converges faster than equivalent CNNs due to the reduced amount of parameters

and the discriminant tailored loss function. The large-margin discriminant also helps achieve

comparable or better generalization than other methods. In the experiments comparing LMFCN

and equivalent CNNs, using 16-dimensional latent representations, our approach obtained

training stability and high accuracy within 20 epochs, outperforming CNNs that took 100

epochs to achieve comparable performance. The complexity measures revealed that the LMFCN

117

produces substantial weight updates on the first epochs correlating to the balanced accuracy

metric. It also kept a consistent training behavior across different datasets. They also indicated

that the CLs of the CNNs (with hinge and BCE loss) needed more updates to work well with FC

layers and reach an accuracy equivalent to the LMFCN. The complexity measures provided a

hint of why the LMFCN performed better. It does not need huge updates on latent representation

because it better fits the classifier requirements. In CNNs, even if the GAP layer already produces

discriminative representations, the loss function depends on the combination of FCN+FC. Hence,

the backpropagation algorithm updates the entire network over the entire training set.

Regarding handcrafted feature extractors, our approach adapts to different textures due to the

FCN weight updating. However, the LMFCN takes more time to execute. Still, the accuracy was

equivalent or superior to the best of all other methods. Thus, while different handcrafted feature

extractors obtained the best accuracies in distinct datasets, the LMFCN accuracy performance

was close to the best on each dataset. The results from handcrafted feature extractors revealed

that the PFTAS was the best feature extractor for three datasets (BACH, BreaKHis, and CRC),

the LBP was the best for the Salzburg dataset, and the GLCM was the best for the Gaussian

image dataset. Nonetheless, the LMFCN outperformed all of them on all datasets showing that

the representation learning adapts to the characteristics of each type of image and simultaneously

adapts the latent representations to best suit the large-margin discriminant. For a fair comparison

of the LMFCN with handcrafted feature extractors, we used latent representations of the same size

as the ones generated by each feature extractor: 59-dimensional for the LBP, 162-dimensional

for the PFTAS, and 169-dimensional for the GLCM. The LMFCN achieved higher balanced

accuracy in these experiments than the compared methods. The LMFCN already obtained

good accuracy with a 16-dimensional latent representation. However, augmenting the latent

representation’s dimensionality improved the results’ quality. It was noticed that the performance

improvement from 16 to 59 dimensions is meaningful, with a slight gain when increasing latent

representations to 162 dimensions and an almost negligible gain from 162 to 169 dimensions.

118

Although the LMFCN did not target multiclass scenarios, its performance was superior to the

other compared methods. The multiclass LMFCN uses multiple models with the OVA technique

allowing it better distinguish each class because it can learn subtle characteristics of each one

against the others. Even if the OVA is unsuitable for imbalanced data, selecting instances of

interest embedded in the LMFCN training somewhat circumvents such a limitation because it

selects instances of the underrepresented classes and just a few from the most prevalent ones. For

example, suppose there is a class with numerous clustered instances. In that case, the LMFCN

approach only uses instances close to the decision boundaries. Hence, the number of instances

of interest used in calculating the loss function is not too imbalanced. The LMFCN showed

equivalent or superior accuracy performance compared to other methods. Nevertheless, it has

the drawback of the high computational cost, which grows with the number of classes. However,

the computational cost is not extremely high, given that we used only ten epochs to train each

model’s subproblem. Besides, we used small FCNs than CNNs. CNNs took 400 training epochs

to achieve an equivalent but smaller accuracy than the LMFCN. It is also important to emphasize

that training CNNs requires all training instances in all training epochs. In contrast, each binary

FCN of the LMFCN needed only the SVs discovered in each subproblem at the end of each

training epoch. For instance, when the number of classes increases, it is more advantageous

to use DML (a very high number of classes and few training instances) or CNNs (a medium

number of classes and a high number of instances).

The analysis of the latent representation produced by the LMFCN with complexity measures

and UMAPs showed that the representation produced by CNNs is different. For instance, a

CNN as a feature extractor generated a representation that does not necessarily match the needs

of an SVM. Handcrafted feature extractors also create features not necessarily tailored to an

SVM. However, the LMFCN takes advantage of updating the weights of the CLs responsible for

capturing the input images’ characteristics producing a latent representation that is more suitable

for training a large-margin classification model. Information gathered during the training of

119

the LMFCN indicates a progressive reduction in the number of SVs over the epochs. It occurs

concomitantly with the improvement in classification results, depicted by the balanced accuracy

and the separation of instances in the latent representation space, expressed by decreasing N1 and

N2 measures. The decrease in the number of SVs means that the samples, under the perspective

of their latent representation generated by the FCN, are well-positioned in the representation

space, facilitating the definition of the separation margins. Having fewer SVs also implies that

the training procedure of the FCN requires less computational effort, as the main term of the

proposed loss function depends on the number of SVs. Each epoch becomes more and more

computationally cheap as the discriminative power of the latent representation generated by the

FCN improves, best fitting the SVM needs. The LMFCN, compared to equivalent CNNs, has an

extra cost related to the creation matrices (kernel and distance) and the SMO algorithm that

discover the SVs. Matrices calculations have quadratic complexity proportional to the number of

instances. The SMO algorithm has cubic complexity proportional to the number of samples. On

the other hand, the computational cost related to CNNs is proportional to the number of images

and network parameters. In summary, CNNs have more parameters, use more instances with

the backpropagation algorithm, and take more epochs to converge than the LMFCN. Therefore,

CNNs are more computationally costly than the LMFCN in scenarios with few training data.

The usual procedure when training CNNs on small-size datasets is to use data augmentation to

raise the variability and the amount of training data. The LMFCN approach works oppositely;

although focused on small-size datasets, it uses fewer instances (only SVs) for training. This fact

can lead to questions about the resilience to outliers or mislabeling. As shown in our simulations

in Section 2.4, selecting SVs and using the lenience of the SVM to misclassified instances reduce

the adverse effects of outliers or mislabeled instances. The accuracy of CNNs usually improves

with data augmentation, although augmenting data causes two side effects: (i) increases the

number of training instances, increasing the cost of backpropagation at each epoch; (ii) extra

computing needed by the data augmentation algorithm.

120

The main contribution of this thesis is a novel instance selection method for the loss function

used in the backpropagation procedure. The instance selection method focuses on the SVs and

the misclassified instances, ignoring instances that do not contribute to the training procedure.

After the large-margin discriminant optimization, these instances are defined, so the weight

update aims to improve the discriminant’s latent representation. As the loss function uses only

certain selected instances, it reduces the burden of the backpropagation procedure.

Overall, contributions of this thesis can be summarized as follows:

• Creation of a machine learning approach that can train an FCN and a large-margin discriminant

from scratch with small-size datasets.

• A method that can adapt the filters to different textures.

• An efficient training method that is lighter than traditional CNNs using only some selected

instances as training data

• Compared to CNNs as feature extractors, the representation is targeted to the classifier needs.

• Developing a multiclass classification method that performs well even on imbalanced data.

Limitations

The proposed loss function has hyperparameters allowing the training algorithm to select the

number of anchors for each instance of interest. Our experiments used a small range of values

for these hyperparameters to find the ones which render the best results. We found that small

values of svclose are more suitable for smaller datasets. In more challenging datasets, many SVs

necessary to draw complex decision borders also require small values of svclose because the

method finds more SVs than anchors, considering the entire problem. Thus, the sensitivity and

the selection of best values for the hyperparameters are a limitation of our method. However,

this is also a characteristic of many machine-learning algorithms.

121

Another limitation is the OVA approach and the latent representation concatenation in multiclass

situations. With many classes, the multiclass latent representation tends to grow, like the number

of filter banks, also bringing more complexity to the model and increasing its computational

costs. Therefore, this fact limits the use of the LMFCN to scenarios with fewer classes.

Future Work

The LMFCN permits the use of different FCN architectures. One analysis worth exploring is the

behavior of our training method with other FCN architectures having different widths, depths,

and blocks. The combination of different sizes of training sets, different complexities of FCNs,

and different dimensions of the latent representation is an extensive and valuable analysis that

can assess the limits of the LMFCN. However, it requires an experimental design that covers the

possibilities to achieve consistent conclusions.

The development of the LMFCN focused on natural texture images and HIs in small-size datasets.

The context of object recognition works better with methods that can extract a complete set of

features, like spatial, shape, and position information. Although, before the advent of CNNs,

some works used handcrafted feature extractors and their combinations. It will be interesting

to assess the capacities of FCNs, or even small CNNs, in datasets more complex than those

used in our experiments to characterize the limits of the LMFCN. For instance, replacing the

GAP layer with a less aggressive aggregation method allows learning more characteristics from

images to the detriment of training simplicity. Exploration of this relationship can discover new

applications of our method.

We also consider the analysis of adversarial attacks resilience an essential issue regarding future

studies of the LMFCN. Large-margin representations tend to increase this resilience, but we do

not have mechanisms in this method to address the large gradient problem. We intend to evaluate

122

our approach with various adversarial attack methods and apply some defenses described in the

literature related to CNNs.

Publications

• de Matos, J., de Souza Britto, A., Oliveira, L. E. & Koerich, A. L. (2019). Double transfer

learning for breast cancer histopathologic image classification. International Joint Conference

on Neural Networks (IJCNN), pp. 1–8.

• de Matos, J., de Souza Britto, A., de Oliveira, L. E. & Koerich, A. L. (2019). Texture

CNN for histopathological image classification. IEEE 32nd international symposium on

computer-based medical systems (CBMS), pp. 580–583.

• Ataky, S. T. M., de Matos, J., Britto, A. d. S., Oliveira, L. E. & Koerich, A. L. (2020). Data

augmentation for histopathological images based on gaussian-laplacian pyramid blending.

International Joint Conference on Neural Networks (IJCNN), pp. 1–8.

• de Matos, J., Ataky, S. T. M., de Souza Britto, A., Oliveira, L. E. & Koerich, A. L. (2021).

Machine learning methods for histopathological image analysis: A review. Electronics,

10(5), 562.

• Ataky, S.T.M.; Saqui, D.; de Matos, J.; de Souza Britto Junior, A.; Lameiras Koerich, A.

(2023). Multiscale Analysis for Improving Texture Classification. Applied Sciences, 13(3),

1291.

• de Matos, J., de Oliveira, L. E. S., Junior, A. D. S. B., & Koerich, A. L. (2023). Large-margin

representation learning for texture classification. Pattern Recognition Letters, 170, 39-47.

BIBLIOGRAPHY

Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S. & Navab, N. (2016).

AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer His-

tology Images. IEEE Transactions on Medical Imaging, 35(5, SI), 1313–1321.

doi: 10.1109/TMI.2016.2528120.

Alom, M. Z., Yakopcic, C., Nasrin, M. S., Taha, T. M. & Asari, V. K. (2019). Breast

cancer classification from histopathological images with inception recurrent residual

convolutional neural network. Journal of digital imaging, 32, 605–617.

Andrearczyk, V. & Whelan, P. F. (2016). Using filter banks in Convolutional Neu-

ral Networks for texture classification. Pattern Recognition Letters, 84, 63 - 69.

doi: https://doi.org/10.1016/j.patrec.2016.08.016.

Aresta, G., Araújo, T., Kwok, S., Chennamsetty, S. S., Safwan, M., Alex, V., Marami, B.,

Prastawa, M., Chan, M., Donovan, M., Fernandez, G., Zeineh, J., Kohl, M., Walz, C.,

Ludwig, F., Braunewell, S., Baust, M., Vu, Q. D., To, M. N. N., Kim, E., Kwak, J. T.,

Galal, S., Sanchez-Freire, V., Brancati, N., Frucci, M., Riccio, D., Wang, Y., Sun, L.,

Ma, K., Fang, J., Kone, I., Boulmane, L., Campilho, A., Eloy, C., Polónia, A. & Aguiar,

P. (2019). BACH: Grand challenge on breast cancer histology images. Medical Image
Analysis, 56, 122 - 139. doi: https://doi.org/10.1016/j.media.2019.05.010.

Atupelage, C., Nagahashi, H., Yamaguchi, M., Abe, T., Hashiguchi, A. & Sakamoto,

M. (2013). Computational grading of hepatocellular carcinoma using multifrac-

tal feature description. Computerized Medical Imaging and Graphics, 37(1), 61-71.

doi: https://doi.org/10.1016/j.compmedimag.2012.10.001.

Awan, R., Aloraidi, N., Qidwai, U. & Rajpoot, N. (2016, feb). How divided is a cell? Eigenphase

nuclei for classification of mitotic phase in cancer histology images. 2016 IEEE-EMBS
International Conference on Biomedical and Health Informatics (BHI), pp. 70–73.

doi: 10.1109/BHI.2016.7455837.

Ballarò, B., Florena, A. M., Franco, V., Tegolo, D., Tripodo, C. & Valenti, C. (2008).

An automated image analysis methodology for classifying megakaryocytes in

chronic myeloproliferative disorders. Medical Image Analysis, 12(6), 703–712.

doi: https://doi.org/10.1016/j.media.2008.04.001.

Banerji, S. & Mitra, S. (2022). Deep learning in histopathology: A review. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 12(1), e1439.

Bardou, D., Zhang, K. & Ahmad, S. M. (2018). Classification of breast cancer based on

histology images using convolutional neural networks. Ieee Access, 6, 24680–24693.

124

Basu, M. & Ho, T. K. (2006). Data complexity in pattern recognition. Springer Science &

Business Media.

Bellocq, J.-P., Anger, E., Camparo, P., Capron, F., Chenard, M.-P., Chetritt, J., Chigot, J.-P.,

Cochand-Priollet, B., Coindre, J.-M., Copin, M.-C., Fléjou, J.-F., Galateau, F., Gaulard,

P., Guiu, M., Michiels, J.-F., Saint-André, J.-P., Scoazec, J.-Y. & Vacher-Lavenu, M.-C.

(2011). Sécuriser le diagnostic en anatomie et cytologie pathologiques en 2011. L’erreur

diagnostique: entre discours et réalité. Annales de Pathologie, 31(5, Supplement), S92 -

S94. doi: https://doi.org/10.1016/j.annpat.2011.08.006. Carrefour pathologie - 21 au 25

novembre 2011.

Bruno, D. O. T., do Nascimento, M. Z., Ramos, R. P., Batista, V. R., Neves, L. A. & Martins,

A. S. (2016). {LBP} operators on curvelet coefficients as an algorithm to describe

texture in breast cancer tissues. Expert Systems with Applications, 55, 329–340.

doi: https://doi.org/10.1016/j.eswa.2016.02.019.

Caicedo, J. C., Gonzalez, F. A. & Romero, E. (2008). A semantic content-based retrieval method

for histopathology images. Information Retrieval Technology, 4993(Lecture Notes in

Computer Science), 51+.

Chan, A. & Tuszynski, J. A. (2016). Automatic prediction of tumour malignancy in breast

cancer with fractal dimension. Royal Society open science, 3(12), 160558.

Chen, H., Dou, Q., Wang, X., Qin, J. & Heng, P. (2016). Mitosis detection in breast cancer

histology images via deep cascaded networks. Proceedings of the AAAI conference on
artificial intelligence, 30(1), 1.

Chen, H., Li, C., Wang, G., Li, X., Rahaman, M. M., Sun, H., Hu, W., Li, Y., Liu, W., Sun, C.

et al. (2022). GasHis-Transformer: A multi-scale visual transformer approach for gastric

histopathological image detection. Pattern Recognition, 130, 108827.

Cheplygina, V., de Bruijne, M. & Pluim, J. P. (2019). Not-so-supervised: A survey of semi-

supervised, multi-instance, and transfer learning in medical image analysis. Medical
Image Analysis, 54, 280 - 296. doi: https://doi.org/10.1016/j.media.2019.03.009.

Chopra, S., Hadsell, R. & LeCun, Y. (2005). Learning a SIMILARITY metric discrim-

inatively, with application to face verification. 2005 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR’05), 1, 539-546 vol. 1.

doi: 10.1109/CVPR.2005.202.

Cimpoi, M., Maji, S. & Vedaldi, A. (2015). Deep filter banks for texture recognition and

segmentation. 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3828-3836.

125

Coelho, L. P., Ahmed, A., Arnold, A., Kangas, J., Sheikh, A.-S., Xing, E. P., Cohen, W. W. & Mur-

phy, R. F. (2010). Structured literature image finder: extracting information from text

and images in biomedical literature. In Linking Literature, Information, and Knowledge
for Biology (pp. 23–32). Springer.

Dabass, M., Vashisth, S. & Vig, R. (2021). Attention-Guided deep atrous-residual U-

Net architecture for automated gland segmentation in colon histopathology images.

Informatics in Medicine Unlocked, 27, 100784.

Das, D. K., Mitra, P., Chakraborty, C., Chatterjee, S., Maiti, A. K. & Bose, S. (2017).

Computational approach for mitotic cell detection and its application in oral squamous

cell carcinoma. Multidimensional Systems and Signal Procesing, 28(3, SI), 1031–1050.

doi: 10.1007/s11045-017-0488-6.

de Matos, J., Britto, A. d. S., Oliveira, L. E. & Koerich, A. L. (2019). Double transfer learning for

breast cancer histopathologic image classification. 2019 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8.

de Matos, J., Ataky, S. T. M., de Souza Britto Jr, A., Soares de Oliveira, L. E. & Lameiras Koerich,

A. (2021). Machine learning methods for histopathological image analysis: A review.

Electronics, 10(5), 562.

Deniz, E., Şengür, A., Kadiroğlu, Z., Guo, Y., Bajaj, V. & Budak, Ü. (2018). Transfer learning

based histopathologic image classification for breast cancer detection. Health Information
Science and Systems, 6(1), 18. doi: 10.1007/s13755-018-0057-x.

Elmore, J. G., Longton, G. M., Carney, P. A., Geller, B. M., Onega, T., Tosteson, A. N. A.,

Nelson, H. D., Pepe, M. S., Allison, K. H., Schnitt, S. J., O’Malley, F. P. & Weaver,

D. L. (2015). Diagnostic Concordance Among Pathologists Interpreting Breast Biopsy

Specimens. Journal of American Medical Association, 313(11), 1122-1132.

Fernández-Carrobles, M. M., Bueno, G., Déniz, O., Salido, J., García-Rojo, M. & Gonzández-

López, L. (2015). Frequential versus spatial colour textons for breast

{TMA} classification. Computerized Medical Imaging and Graphics, 42, 25-37.

doi: https://doi.org/10.1016/j.compmedimag.2014.11.009.

Fukuma, K., Prasath, V. B. S., Kawanaka, H., Aronow, B. J. & Takase, H. (2016). A

Study on Nuclei Segmentation, Feature Extraction and Disease Stage Classification for

Human Brain Histopathological Images. Procedia Computer Science, 96, 1202–1210.

doi: https://doi.org/10.1016/j.procs.2016.08.164.

126

Galea, M. H., Blamey, R. W., Elston, C. E. & Ellis, I. O. (1992). The Nottingham prognostic

index in primary breast cancer. Breast Cancer Research and Treatment, 22(3), 207–219.

doi: 10.1007/BF01840834.

Gleason, D. F. (1992). Histologic grading of prostate cancer: A perspective. Human Pathology,

23(3), 273–279. doi: 10.1016/0046-8177(92)90108-F.

Glotsos, D., Kalatzis, I., Spyridonos, P., Kostopoulos, S., Daskalakis, A., Athanasiadis, E.,

Ravazoula, P. & Nikiforidis,G.and Cavouras, D. (2008). Improving accuracy in

astrocytomas grading by integrating a robust least squares mapping driven support vector

machine classifier into a two level grade classification scheme. Computer Methods and
Programs in Biomedicine, 90, 251-261.

Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, T.-J., Zhang, S.-H., Martin, R. R.,

Cheng, M.-M. & Hu, S.-M. (2022). Attention mechanisms in computer vision: A survey.

Computational visual media, 8(3), 331–368.

Gurcan, M. N., Boucheron, L. E. & Can, A. (2009). Histopathological Image Analysis: A

Review. IEEE Reviews in Biomedical Engineering, 2(1), 147-171.

Haralick, R. M., Shanmugam, K. & Dinstein, I. H. (1973). Textural features for image

classification. IEEE Transactions on systems, man, and cybernetics, (6), 610–621.

He, K., Zhang, X., Ren, S. & Sun, J. (2016). Deep residual learning for image recognition.

IEEE/CVF Conf Comp Vis Patt Recog, pp. 770–778.

He, Z., Lin, M., Xu, Z., Yao, Z., Chen, H., Alhudhaif, A. & Alenezi, F. (2022). Deconv-

transformer (DecT): A histopathological image classification model for breast cancer

based on color deconvolution and transformer architecture. Information Sciences, 608,

1093–1112.

Ho, T. K. & Basu, M. (2002). Complexity measures of supervised classification problems.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3), 289-300.

doi: 10.1109/34.990132.

Homeyer, A., Schenk, A., Arlt, J., Dahmen, U., Dirsch, O. & Hahn, H. K.

(2013). Practical quantification of necrosis in histological whole-slide im-

ages. Computerized Medical Imaging and Graphics, 37(4), 313–322.

doi: https://doi.org/10.1016/j.compmedimag.2013.05.002.

Hou, L., Samaras, D., Kurc, T. M., Gao, Y., Davis, J. E. & Saltz, J. H. (2016, June). Patch-Based

Convolutional Neural Network for Whole Slide Tissue Image Classification. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

127

Huang, P., Tan, X., Zhou, X., Liu, S., Mercaldo, F. & Santone, A. (2021). FABNet: fusion

attention block and transfer learning for laryngeal cancer tumor grading in P63 IHC

histopathology images. IEEE Journal of Biomedical and Health Informatics, 26(4),

1696–1707.

Humeau-Heurtier, A. (2019). Texture Feature Extraction Methods: A Survey. IEEE Access, 7,

8975-9000.

Jiang, Y., Chen, L., Zhang, H. & Xiao, X. (2019). Breast cancer histopathological image

classification using convolutional neural networks with small SE-ResNet module. PloS
one, 14(3), e0214587.

Kather, J. N., Weis, C.-A., Bianconi, F., Melchers, S. M., Schad, L. R., Gaiser, T., Marx,

A. & Zöllner, F. G. (2016). Multi-class texture analysis in colorectal cancer histology.

Scientific Reports, 6(1), 27988. doi: 10.1038/srep27988.

Khan, S., Islam, N., Jan, Z., Din, I. U. & Rodrigues, J. J. C. (2019). A novel deep learning based

framework for the detection and classification of breast cancer using transfer learning.

Pattern Recognition Letters, 125, 1–6.

Komura, D. & Ishikawa, S. (2018). Machine learning methods for histopathological image

analysis. Computational and structural biotechnology journal, 16, 34–42.

Kostopoulos, S., Glotsos, D., Cavouras, D., Daskalakis, A., Kalatzis, I., Georgiadis, P.,

Bougioukos, P., Ravazoula, P. & Nikiforidis, G. (2009). Computer-based associa-

tion of the texture of expressed estrogen receptor nuclei with histologic grade using

immunohistochemically-stained breast carcinomas. Analytical and Quantitative Cytology
and Histology, 31, 187-196.

Kostopoulos, S., Ravazoula, P., Asvestas, P., Kalatzis, I., Xenogiannopoulos, G., Cavouras,

D. & Glotsos, D. (2017). Development of a Reference Image Collection Library for

Histopathology Image Processing, Analysis and Decision Support Systems Research.

Journal of Digital Imaging, 30(3), 287–295. doi: 10.1007/s10278-017-9947-8.

Kuse, M., Sharma, T. & Gupta, S. (2010). A classification scheme for lymphocyte segmentation

in H&E stained histology images. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
6388 LNCS, 235–243. doi: 10.1007/978-3-642-17711-8_24.

Kwitt, R. & Meerwald, P. [Accessed: 2021-10-04]. (2020). STex, Salzburg texture image

database (STex). Retrieved from: https://wavelab.at/sources/STex/.

128

LeCun, Y., Bengio, Y. & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

doi: 10.1038/nature14539.

Leo, P., Lee, G., Shih, N. N., Elliott, R., Feldman, M. D. & Madabhushi, A. (2016). Evaluating

stability of histomorphometric features across scanner and staining variations: prostate

cancer diagnosis from whole slide images. Journal of medical imaging, 3(4), 047502.

Li, H., Yang, F., Zhao, Y., Xing, X., Zhang, J., Gao, M., Huang, J., Wang, L. & Yao, J. (2021a).

DT-MIL: deformable transformer for multi-instance learning on histopathological

image. Medical Image Computing and Computer Assisted Intervention–MICCAI 2021:
24th International Conference, Strasbourg, France, September 27–October 1, 2021,
Proceedings, Part VIII 24, pp. 206–216.

Li, J., Li, W., Sisk, A., Ye, H., Wallace, W. D., Speier, W. & Arnold, C. W. (2021b). A

multi-resolution model for histopathology image classification and localization with

multiple instance learning. Computers in biology and medicine, 131, 104253.

Liu, L., Fieguth, P., Wang, X., Pietikäinen, M. & Hu, D. (2016). Evaluation of LBP and Deep

Texture Descriptors with a New Robustness Benchmark. Computer Vision – ECCV 2016,

pp. 69–86.

Loeffler, M., Greulich, L., Scheibe, P., Kahl, P., Shaikhibrahim, Z., Braumann, U.-D.,

Kuska, J.-P. & Wernert, N. (2012). Classifying Prostate Cancer Malignancy

by Quantitative Histomorphometry. The Journal of Urology, 187(5), 1867–1875.

doi: https://doi.org/10.1016/j.juro.2011.12.054.

Lorena, A. C., Garcia, L. P., Lehmann, J., Souto, M. C. & Ho, T. K. (2019). How Complex is

your classification problem? A survey on measuring classification complexity. ACM
Computing Surveys (CSUR), 52(5), 1–34.

Mahbod, A., Ellinger, I., Ecker, R., Smedby, Ö. & Wang, C. (2018). Breast cancer histological

image classification using fine-tuned deep network fusion. Image Analysis and Recog-
nition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June
27–29, 2018, Proceedings 15, pp. 754–762.

McInnes, L., Healy, J., Saul, N. & Großberger, L. (2018). UMAP: Uniform Manifold

Approximation and Projection. Journal of Open Source Software, 3(29), 861.

Mehra, R. et al. (2018). Breast cancer histology images classification: Training from scratch or

transfer learning? ICT Express, 4(4), 247–254.

129

Michail, E., Dimitropoulos, K., Koletsa, T., Kostopoulos, I. & Grammalidis, N. (2014).

Morphological and textural analysis of centroblasts in low-thickness sliced tissue

biopsies of follicular lymphoma. Conference proceedings : ... Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE En-
gineering in Medicine and Biology Society. Annual Conference, 2014, 3374–3377.

doi: 10.1109/EMBC.2014.6944346.

Niazi, M. K. K., Parwani, A. V. & Gurcan, M. N. (2016). Computer-Assisted bladder cancer

grading: α-shapes for color space decomposition. Progress in Biomedical Optics and
Imaging - Proceedings of SPIE, 9791, 40–47. doi: 10.1117/12.2216967.

Ninos, K., Kostopoulos, S., Kalatzis, I., Sidiropoulos, K., Ravazoula, P., Sakellaropoulos, G.,

Panayiotakis, G., Economou, G. & Cavouras, D. (2016). Microscopy image analysis

of p63 immunohistochemically stained laryngeal cancer lesions for predicting patient

5-year survival. European Archives of Oto-Rhino-Laryngology, 273, 159-168.

Ojala, T., Pietikainen, M. & Maenpaa, T. (2002). Multiresolution gray-scale and rotation

invariant texture classification with local binary patterns. IEEE Transactions on pattern
analysis and machine intelligence, 24(7), 971–987.

Peyret, R., Bouridane, A., Khelifi, F., Tahir, M. A. & Al-Maadeed, S. (2018). Automatic classifi-

cation of colorectal and prostatic histologic tumor images using multiscale multispectral

local binary pattern texture features and stacked generalization. Neurocomputing, 275,

83–93. doi: https://doi.org/10.1016/j.neucom.2017.05.010.

Phoulady, H. A., Zhou, M., Goldgof, D. B., Hall, L. O. & Mouton, P. R. (2016, sep). Automatic

quantification and classification of cervical cancer via Adaptive Nucleus Shape Modeling.

2016 IEEE International Conference on Image Processing (ICIP), pp. 2658–2662.

doi: 10.1109/ICIP.2016.7532841.

Qian, Z., Li, K., Lai, M., Chang, E. I.-C., Wei, B., Fan, Y. & Xu, Y. (2022). Transformer

based multiple instance learning for weakly supervised histopathology image segmenta-

tion. International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 160–170.

Rahmadwati, Naghdy, G., Ros, M., Todd, C. & Norahmawati, E. (2011, jul). Cervical Cancer

Classification Using Gabor Filters. 2011 IEEE First International Conference on Health-
care Informatics, Imaging and Systems Biology, pp. 48–52. doi: 10.1109/HISB.2011.15.

Reis, S., Gazinska, P., Hipwell, J. H., Mertzanidou, T., Naidoo, K., Williams, N., Pinder,

S. & Hawkes, D. J. (2017). Automated Classification of Breast Cancer Stroma Maturity

from Histological Images. IEEE Transactions on Biomedical Engineering, 64(10),

2344–2352. doi: 10.1109/TBME.2017.2665602.

130

Rubin, R., Strayer, D. S. & Rubin, E. (2012). Rubin’s pathology : clinicopathologic foundations
of medicine (ed. sixth). Lippincott Williams & Wilkins.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A., Bernstein, M., Berg, A. C. & Fei-Fei, L. (2015). ImageNet Large

Scale Visual Recognition Challenge. Intl Journal of Computer Vision, 115(3), 211-252.

doi: 10.1007/s11263-015-0816-y.

Schroff, F., Kalenichenko, D. & Philbin, J. (2015, June). FaceNet: A Unified Embedding for

Face Recognition and Clustering. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 815–823.

Song, J.-W., Lee, J.-H., Choi, J.-H. & Chun, S.-J. (2013). Automatic differ-

ential diagnosis of pancreatic serous and mucinous cystadenomas based on

morphological features. Computers in Biology and Medicine, 43(1), 1–15.

doi: https://doi.org/10.1016/j.compbiomed.2012.10.009.

Song, Y., Zou, J. J., Chang, H. & Cai, W. (2017). Adapting fisher vectors for histopathology

image classification. 2017 IEEE 14th international symposium on biomedical imaging
(ISBI 2017), pp. 600–603.

Spanhol, F. A., Oliveira, L. S., Petitjean, C. & Heutte, L. (2016). Breast cancer histopathological

image classification using Convolutional Neural Networks. 2016 International Joint
Conference on Neural Networks (IJCNN), pp. 2560-2567.

Spanhol, F. A., Oliveira, L. S., Cavalin, P. R., Petitjean, C. & Heutte, L. (2017). Deep features for

breast cancer histopathological image classification. 2017 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pp. 1868-1873.

Stegmüller, T., Bozorgtabar, B., Spahr, A. & Thiran, J.-P. (2023). Scorenet: Learning

non-uniform attention and augmentation for transformer-based histopathological image

classification. Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 6170–6179.

Sudharshan, P., Petitjean, C., Spanhol, F., Oliveira, L. E., Heutte, L. & Honeine, P. (2019).

Multiple instance learning for histopathological breast cancer image classification. Expert
Systems with Applications, 117, 103–111.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. (2016). Rethinking the inception

architecture for computer vision. IEEE/CVF Conf Comp Vis Patt Recog, pp. 2818–2826.

131

Thuy, M. B. H. & Hoang, V. T. (2020). Fusing of deep learning, transfer learning and gan for breast

cancer histopathological image classification. Advanced Computational Methods for
Knowledge Engineering: Proceedings of the 6th International Conference on Computer
Science, Applied Mathematics and Applications, ICCSAMA 2019 6, pp. 255–266.

Torre, L., Bray, F., Siegel, R., Ferlay, J., Lortet-Tieulent, J. & Jemal, A. (2015).

Global cancer statistics, 2012. CA Cancer Journal for Clinicians, 65(2), 87-108.

doi: 10.3322/caac.21262. cited By 9258.

Torre, L. A., Islami, F., Siegel, R. L., Ward, E. M. & Jemal, A. (2017). Global Cancer in

Women: Burden and Trends. CEBP Focus: Global Cancer in Women, 26(4), 444-457.

doi: 10.1158/1055-9965.EPI-16-0858.

Vanderbeck, S., Bockhorst, J., Komorowski, R., Kleiner, D. E. & Gawrieh, S. (2014). Automatic

classification of white regions in liver biopsies by supervised machine learning. Human
Pathology, 45(4), 785–792. doi: https://doi.org/10.1016/j.humpath.2013.11.011.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. & Polo-

sukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30, 1-11.

Vesal, S., Ravikumar, N., Davari, A., Ellmann, S. & Maier, A. (2018). Classification of breast

cancer histology images using transfer learning. Image Analysis and Recognition: 15th
International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27–29, 2018,
Proceedings 15, pp. 812–819.

Veta, M., van Diest, P. J., Willems, S. M., Wang, H., Madabhushi, A., Cruz-Roa, A., Gonzalez, F.,

Larsen, A. B. L., Vestergaard, J. S., Dahl, A. B., Cireşan, D. C., Schmidhuber, J., Giusti,

A., Gambardella, L. M., Tek, F. B., Walter, T., Wang, C.-W., Kondo, S., Matuszewski,

B. J., Precioso, F., Snell, V., Kittler, J., de Campos, T. E., Khan, A. M., Rajpoot, N. M.,

Arkoumani, E., Lacle, M. M., Viergever, M. A. & Pluim, J. P. W. (2015). Assessment of

algorithms for mitosis detection in breast cancer histopathology images. Medical Image
Analysis, 20(1), 237–248. doi: https://doi.org/10.1016/j.media.2014.11.010.

Wahab, N., Khan, A. & Lee, Y. S. (2019). Transfer learning based deep CNN for segmentation

and detection of mitoses in breast cancer histopathological images. Microscopy, 68(3),

216–233.

Wan, T., Zhang, W., Zhu, M., Chen, J., Achim, A. & Qin, Z. (2017). Automated mitosis detection

in histopathology based on non-gaussian modeling of complex wavelet coefficients.

Neurocomputing, 237, 291–303. doi: https://doi.org/10.1016/j.neucom.2017.01.008.

132

Wang, X., Hua, Y., Kodirov, E., Hu, G., Garnier, R. & Robertson, N. M. (2019, June). Ranked

List Loss for Deep Metric Learning. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5207–5216.

Wang, X., Yang, S., Zhang, J., Wang, M., Zhang, J., Huang, J., Yang, W. & Han, X. (2021).

Transpath: Transformer-based self-supervised learning for histopathological image

classification. Medical Image Computing and Computer Assisted Intervention–MICCAI
2021: 24th International Conference, Strasbourg, France, September 27–October 1,
2021, Proceedings, Part VIII 24, pp. 186–195.

Yang, H., Kim, J.-Y., Kim, H. & Adhikari, S. P. (2019). Guided soft attention network for

classification of breast cancer histopathology images. IEEE transactions on medical
imaging, 39(5), 1306–1315.

Zerhouni, E., Lányi, D., Viana, M. & Gabrani, M. (2017, apr). Wide residual networks for

mitosis detection. 2017 IEEE 14th International Symposium on Biomedical Imaging
(ISBI 2017), pp. 924–928. doi: 10.1109/ISBI.2017.7950667.

Zhi, W., Yueng, H. W. F., Chen, Z., Zandavi, S. M., Lu, Z. & Chung, Y. Y. (2017). Using

transfer learning with convolutional neural networks to diagnose breast cancer from

histopathological images. Neural Information Processing: 24th International Conference,
ICONIP 2017, Guangzhou, China, November 14–18, 2017, Proceedings, Part IV 24,

pp. 669–676.

Zhou, X., Li, C., Rahaman, M. M., Yao, Y., Ai, S., Sun, C., Wang, Q., Zhang, Y., Li, M., Li, X.

et al. (2020). A comprehensive review for breast histopathology image analysis using

classical and deep neural networks. IEEE Access, 8, 90931–90956.

