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Développement d’algorithmes d’apprentissage machine pour le traitement du langage
naturel afin de détecter certains concepts dans les récits cliniques

Thanh-Dung LE

RÉSUMÉ

Une abondance de données et d’information est disponible dans le domaine clinique. Les

cliniciens ont réussi à combiner les données informatives et structurées, qui comprennent les

résultats de tests de laboratoire, l’imagerie médicale et les données de capteurs portables avec de

nouveaux algorithmes analytiques pour offrir des soins de santé omniprésents et personnalisés.

Cependant, les sources narratives cliniques, qui sont de courtes notes sur les patients, écrites

par des médecins, posent des contraintes considérables. Bien que les notes sont fournies

continuellement et stockées dans les entrepôts de données cliniques, elles sont peu utilisées

en pratique réelle. La limitation provient principalement de leur format non structuré ou

semi-structuré. Heureusement, le déploiement de l’apprentissage en profondeur au cours des

dernières années aide à capturer efficacement la représentation cachée des récits cliniques, en

raison de sa grande capacité de calcul. En particulier, l’amélioration des performances de

l’apprentissage en profondeur sur les notes cliniques est continuellement renforcée par l’usage

de techniques de traitement de langage naturel (NLP) lors du prétraitement des données. Le

NLP devient une approche nécessaire pour surmonter les défis présents dans les notes de texte

clinique non structurés, car cette étape peut efficacement mapper les mots dans les données non

structurées dans un espace de dimension inférieure.

Heureusement, une grande source de données de notes cliniques est actuellement stockée dans

l’entrepôt de données de recherche au CHU Sainte-Justine (CHUSJ). Il y a 7 notes/patient/jour

pour 1386 patients (contenant un ensemble de données de plus de 2,5 x 107 mots). Ces notes sont

extraites de notes d’admission, notes d’évaluation et notes de synthèse. Les notes d’admission

décrivent les raisons pour l’admission aux unités de soins intensifs, le progrès historique de la

maladie, les médicaments donnés, la chirurgie et toutes autres données de base supplémentaires

du patient. Les affections quotidiennes et les résultats des tests de laboratoire sont décrits dans

les notes d’évaluation, desquels l’état du patient sera évalué et diagnostiqué plus tard par des

médecins. Tous ces détails, de l’admission à la sortie d’un patient, sont résumés dans les notes

de synthèse. Cependant, ces sources d’information sont utilisées comme documentation clinique

pour les rapports et la facturation plutôt que servir comme connaissances cliniques antérieures

pour prédire la progression de la maladie. Pour éviter la perte d’information scientifique

contenue dans ces points de données, un algorithme de NLP basé sur l’apprentissage machine

sera développé pour prédire l’état du patient en utilisant des notes cliniques stockées dans

l’entrepôt de données de recherche à CHUSJ. L’algorithme proposé peut effectivement apprendre

une représentation latente de notes cliniques pour en tirer une conclusion sur l’insuffisance

cardiaque du patient, qui ne peut pas être décrite par une approche traditionnelle.

Premièrement, notre étude fournit des informations importantes sur l’utilisation de modèles

d’apprentissage automatique dans des ensembles de données limités. Plus précisément, nous
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avons constaté que des modèles plus petits et plus simples peuvent mieux fonctionner dans de

tels contextes. À cette fin, notre cadre combine TF-IDF et MLP-NN, et nous démontrons que

la sélection de caractéristiques à partir de l’espace vectoriel de représentation d’apprentissage

peut encore améliorer les performances. Notre algorithme proposé apprend efficacement une

représentation latente de notes cliniques pour conclure l’état d’insuffisance cardiaque d’un

patient, que les approches traditionnelles ne peuvent pas décrire. Nous avons atteint une

performance de classification globale avec une précision de 89%, un rappel de 88% et une

précision de 89%. De plus, nous avons constaté que l’encodage des points décimaux sous

forme de chaîne "DOT" aide à conserver les informations des valeurs numériques dans les notes

cliniques, ce qui peut améliorer les performances du modèle.

De plus, la thèse souligne qu’un facteur critique pour améliorer les performances des clas-

sificateurs d’apprentissage automatique dans le traitement clinique du langage naturel est le

traitement approprié de la caractéristique de l’espace de représentation. Plus précisément, l’étude

démontre que l’incorporation d’un auto-encodeur (AE) pendant la formation peut effectivement

compresser l’espace des caractéristiques du modèle terme fréquence-fréquence de document

inverse (TF-IDF), ce qui en fait un mécanisme efficace pour l’interprétabilité et la transparence

dans le système CDSS. La deuxième étape consiste à utiliser un MLP-NN pour prédire l’état de

santé en fonction de l’espace de fonctions compressé. Le modèle d’ensemble efficace atteint une

précision de 92%, un rappel de 91%, une précision de 91% et un score f1 de 91%, surpassant

toutes les approches alternatives.

Enfin, bien que Transformer ait été largement reconnu comme l’approche de pointe en matière

de traitement du langage naturel, il est toujours confronté à des limites lorsqu’il est appliqué

à une PNL clinique courte et limitée. Nous proposons un cadre simplifié Switch Transformer

que nous formons à partir de zéro sur un petit ensemble de données de classification de textes

cliniques en français à l’hôpital CHU Sainte-Justine. Nos résultats montrent que les modèles

simplifiés de transformateurs à petite échelle fonctionnent mieux que les modèles pré-formés

basés sur BERT, tels que DisstillBERT, CamemBERT, FlauBERT et FrALBERT. Le cadre

proposé atteint une précision de 87%, une précision de 87% et un rappel de 85%, ce qui surpasse

le troisième meilleur modèle basé sur BERT pré-formé, FlauBERT, qui a atteint une précision de

84%, précision à 84 % et rappel à 84 %. Cependant, les transformateurs de commutation ont des

limites, telles qu’un écart de généralisation et des minima nets. Pour répondre à ces limitations,

nous le comparons à un réseau de neurones perceptrons multicouches pour la classification des

petits récits cliniques français et montrons que ce dernier surpasse tous les autres modèles.

Dans l’ensemble, l’étude démontre l’efficacité du cadre proposé et fournit des informations

précieuses pour le développement de techniques de PNL en milieu clinique. Il améliore le

processus long et coûteux de traitement des maladies, les interventions de santé et la gestion de

la prévention à l’unité de soins intensifs pédiatriques de l’hôpital CHUSJ.

Mots-clés: traitement clinique du langage naturel, insuffisance cardiaque, apprentissage

automatique, apprentissage par déséquilibre, sélection de fonctionnalités
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ABSTRACT

Currently, an abundance of data and information are available in the clinical domain. Grasping

this opportunity, clinicians have been successfully combining the informative and structured

data, which includes laboratory test results, medical imaging, and wearable sensor data, with

novel data analytic algorithms to provide pervasive and personalized healthcare. However,

considerable constraints are imposed by clinical narrative sources, which are short notes on

patients originally written by doctors and physicians. Although the notes are continuously

provided and plentifully stored in clinical data warehouses, they are underutilized in practice.

The limitation mainly comes from their unstructured or semi-structured format. Fortunately,

the deployment of machine learning algorithms in recent years helps to effectively capture

the hidden representation of clinical narratives because of its high computational capacity. In

particular, the improvement of machine learning performance on clinical notes is continually

reinforced by employing natural language processing (NLP) techniques as a data preprocessing

step in advance. NLP becomes a necessary approach to overcome the existing challenges of

unstructured clinical text notes because it effectively maps the words in unstructured data into a

continuously-valued lower dimensional space.

Fortunately, a large data source of clinical notes is currently stored in our Research Data

Warehouse at CHU Sainte-Justine (CHUSJ) hospital. There are 7 caregiver notes/patient/day

from 1386 patients (containing a dataset of more than 2.5x107 words). These notes are scribed

extensively from admission notes, evaluation notes and summary notes. Admission notes outline

reasons for admission to intensive care units, historical progress of disease, medication, surgery

and additional baseline status of the patient. Daily ailments and laboratory test results are

described in evaluation notes, from which patient condition is evaluated and diagnosed later by

doctors. All these details from admission to discharge of a patient are outlined in summary notes.

However, these information sources are being used as clinical documentation for reporting and

billing instead of prior clinical knowledge for predicting disease condition. To prevent the loss

of scientific information from these beneficial data points, a machine-learning-powered NLP

method is developed to predict patient condition by using clinical notes stored at the Research

Data Warehouse at CHUSJ hospital. The proposed algorithm can effectively learn a latent

representation of clinical notes to draw a conclusion about a patient’s cardiac failure condition

which cannot be depicted by traditional approaches.

First, our study provides important insights into using machine learning models in limited datasets.

Specifically, we found that smaller and simpler models can work better in such contexts. To this

end, our framework combines TF-IDF and MLP-NN, and we demonstrate that feature selection

from the learning representation vector space can further improve performance. Our proposed

algorithm effectively learns a latent representation of clinical notes to conclude a patient’s
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cardiac failure condition, which traditional approaches cannot depict. We achieved an overall

classification performance with 89% accuracy, 88% recall, and 89% precision. Furthermore,

we found that encoding decimal points as a string "DOT" helps retain the information from

numerical values in clinical notes, which can improve model performance.

Furthermore, the thesis highlights that a critical factor for improving the performance of

machine learning classifiers in clinical natural language processing is the appropriate treatment

of the representation space feature. Specifically, the study demonstrates that incorporating

an autoencoder (AE) during training can effectively compress the feature space of the term

frequency-inverse document frequency (TF-IDF) model, making it an effective mechanism for

interpretability and transparency in the CDSS system. The second step involves using an MLP-

NN to predict the health status based on the compressed feature space. The efficient ensemble

model achieves 92% accuracy, 91% recall, 91% precision, and 91% f1-score, outperforming all

alternative approaches.

Finally, while Transformer has been widely recognized as the state-of-the-art approach in natural

language processing, it still faces limitations when applied to short and limited clinical NLP. We

propose a simplified Switch Transformer framework that we train from scratch on a small French

clinical text classification dataset at CHU Sainte-Justine hospital. Our results show that the

simplified small-scale Transformer models perform better than pre-trained BERT-based models,

such as DistillBERT, CamemBERT, FlauBERT, and FrALBERT. The proposed framework

achieves an accuracy of 87%, precision at 87%, and recall at 85%, which outperforms the

third-best pre-trained BERT-based model, FlauBERT, which achieved an accuracy of 84%,

precision at 84%, and recall at 84%. However, Switch Transformers have some limitations, such

as a generalization gap and sharp minima. To address these limitations, we compare it with a

multi-layer perceptron neural network for small French clinical narratives classification and

show that the latter outperforms all other models.

Overall, the study demonstrates the effectiveness of the proposed framework and provides valuable

insights for developing NLP techniques in clinical settings. It improves the time-consuming

and costly disease treatment process, health interventions, and prevention management at the

Pediatric Critical Care Unit of CHUSJ hospital.

Keywords: clinical natural language processing, cardiac failure, machine learning, imbalance

learning, feature selection.
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INTRODUCTION

A clinical decision support system focuses on the real-time analysis of the diagnosis and

management of patient condition (Berner, 2007). It has been developing and providing a crucial

promotion in the personalized healthcare system because more available data are continuously

collected and stored. These data sources are decisive points to advance and enhance the efficiency

and effectiveness of clinical decision support systems’ operations. Consequently, predictive

models currently result in preventive treatment and patient diagnosis for healthcare improvement

in an intelligent, precise, yet timely manner.

Unfortunately, limitations for the data collection process of the proposed clinical decision

support system remain. One of the reasons is that data collection has been designed to document

clinical activity for reporting and billing reasons instead of developing new algorithms and/or

knowledge. Therefore, many challenges are being faced in critical care data analysis, such as

compartmentalization, corruption, and complexity, as described in (Johnson et al., 2016). These

challenges arise from the fragmented nature of data sources, leading to difficulties in integrating

diverse data streams and data corruption issues due to inaccuracies and noise. Moreover, the

inherent complexity of critical care data, characterized by multifaceted variables and intricate

relationships, necessitates advanced analytical approaches. Successfully addressing these

challenges mandates interdisciplinary collaboration and innovative methodologies, promising

advancements in patient care and critical care practices through informed decision-making

and tailored interventions. To overcome these challenges, data validation processes of clinical

variables must be effectively elaborated in clinical data management of the clinical decision-

support system whose data are continuously collected in the critical care unit.

Following the mentioned achievements, a clinical decision-support system at CHU Sainte-Justine

Research Center (CHUSJ) is being developed. Two fundamental processes in the workflow of a

clinical decision-support system, which involves the collection and process of critical care data,
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Figure 0.1 Workflow demonstration of a clinical

decision-support system at CHUSJ hospital

are shown in Fig. 0.1. First, clinical data is collected and stored in a clinical data warehouse.

Second, in the data processing unit, the data are systematically aggregated and processed to

convert raw data to machine-readable data. This process helps to analyze the unknown data

interpretation and presentation. Consequently, the clinical decision-support system can integrate

the advanced analytic result from the data-processing unit and learning algorithms, and clinicians

adequately utilize the clinical decision-support system as guidance in early intervention and

prevention for healthcare management.

The project points to an approach that could improve and accelerate healthcare adoption and use

of information and communication technology. Specifically, one of the targets of the clinical

decision support system in CHUSJ is too early to diagnose acute respiratory distress syndromes

(ARDS). The primary role of the respiratory system is to facilitate the exchange of gases in our

bloodstream. This process hinges on two main actions: inhaling and exhaling. When inhales,
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Table 0.1 Details the proposed definitions for those children at risk for pediatric ARDS

(Group et al., 2015)

the diaphragm and intercostal muscles contract, expanding the chest cavity; this causes a drop in

lung pressure, drawing air in from our surroundings. This inhaled air brings oxygen, which enters

the bloodstream, while carbon dioxide is moved from the blood to the lungs. Upon exhaling,

we release this carbon dioxide into the environment. Usually, our lungs supply oxygen to our

bloodstream, delivering it to essential organs and removing carbon dioxide (Ware & Matthay,

2000).

However, complications arise with lung injuries or certain viral infections. In such situations,

the lungs might not supply enough oxygen to vital organs or effectively remove carbon dioxide

from the blood. To compensate, the brain signals additional respiratory muscles to assist. This

strain on the respiratory system is called respiratory distress. It’s a severe condition; over-relying

on these accessory muscles can eventually lead to cardiopulmonary arrest. Recognizing and

diagnosing acute respiratory distress early is crucial. Timely detection allows immediate medical
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intervention, dramatically increasing the chances of recovery and preventing lasting damage to

essential organs (Matthay et al., 2019).

Additionally, ARDS and cardiac failure often present with similar symptoms, making early

and accurate diagnosis essential for effective treatment strategies, particularly in critical care

units like the Pediatric Intensive Care Unit (PICU). Accurately distinguishing between these

conditions can significantly influence patient outcomes, potentially saving lives.

An expert panel on pediatric acute lung injury has posited that a pivotal step in diagnosing

respiratory diseases in children is to determine the absence of "cardiac failure." As detailed in

Table 0.1, evidence suggests that children exhibiting heart dysfunction still meet all the criteria

for ARDS. This overlap in symptoms and criteria, encompassing factors like age, onset timing,

and edema origin, makes distinguishing between heart failure and ARDS challenging (Group

et al., 2015).

Given the complex interplay between these conditions, a thorough diagnostic approach is

indispensable. This often involves a combination of clinical data, laboratory tests, and

echocardiography assessments. Pinpointing the absence of cardiac failure becomes a pivotal

diagnostic criterion within this framework. By reliably identifying when cardiac failure isn’t

present, clinicians can refine their ARDS diagnostic accuracy, streamlining the diagnostic

process as depicted in 0.2. This clarity can then expedite the right treatment choices, ensuring

timely and appropriate medical interventions, ultimately elevating the quality of patient care.

Advantageously, an imaginative data resource of clinical notes is currently stored in our Research

Data Warehouse at CHUSJ. As shown in Fig. 0.3, there are 7 caregivers notes/patient/day

from 1386 patients (containing a dataset of more than 2.5x107 words). These notes are scribed

extensively from admission, evaluation, and summary notes. Expressly, admission notes enfold

delineation of indisposition being admitted to intensive care units, historical information of
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Figure 0.2 Key identification for Acute Respiratory Distress Syndrome

Figure 0.3 Data collection process at CHUSJ



6

disease, medication, surgery, and the additional baseline status of the patient. Daily ailments

and laboratory test results are described in evaluation notes, from whose patient conditions are

evaluated and diagnosed later by doctors. Such detailed afflictions from admission to discharge of

a patient are adumbrated in summary notes. However, that information source is used as clinical

activities for reporting and billing reasons instead of prior clinical knowledge for predicting

disease conditions. To prevent the continuous loss of scientific information from these beneficial

data points, a machine learning algorithm powering natural language processing inception is

developed to prognosticate patient conditions using clinical notes stored at the Research Data

Warehouse, CHUSJ. The proposed algorithm can effectively learn a latent representation of

clinical notes to conclude patients’ cardiac failure condition, which cannot be depicted by

the traditional approaches. Consequently, it bounteously extricates from the time-consuming

and costly disease treatment process but increases the management improvement for health

intervention and prevention at the PICU, CHUSJ.

Based on the stored clinical notes that synthesized all this information, the patient’s cardiac con-

dition can be effectively found. As per the recommendations of CHUSJ’s medical professionals,

the selection of clinical notes for our study is focused on two crucial types: Admission and

Evaluation notes. This strategic emphasis stems from recognizing that these note categories,

explicitly delving into the medical background, pre-admission disease history, and cardiovascular

evaluations, encompass vital information essential for timely cardiac failure detection. The

rationale is that Admission notes comprehensively encapsulate the patient’s condition upon entry

into the PICU, providing an initial overview. Given the context of patients entering the PICU, if

we can effectively classify ARDS and cardiac failure, a prompt and precise treatment path can

be determined, optimizing the critical time window for medical intervention. This approach

holds the potential for real-time decision-making for medical practitioners and saves lives by

swiftly and accurately guiding the course of treatment for patients entering the PICU. Then,

based on those above inclusion criteria taken from clinical notes in the PICU database, clinical
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knowledge representation in detecting cardiac failure is set, as shown in Table 0.2. The clinical

knowledge representation summarizes detailed attributes vital to detecting heart failure. As a

result, a patient is considered to have a cardiac failure if he/she takes one of the criteria.

Table 0.2 The clinical knowledge representation in detecting cardiac failure

Label
Cardiac failure

Attributes
1. Admission notes:

a. Medical history: Levosimendan, Milrionone or Dobutamine.

b. History of diagnosed terms: cardiomyopathie dilatee, choc cardiogenique,

defaillance cardiaque gauche aigue, defaillance cardiaque gauche chronique,

defaillance cardiaque post-operatorie (LCOS), surcharge liquidienne (hyperv-

olemie), myocardite.

2. Evaluation notes:

a. Evolution par systeme (Cardiovascular): FE (ejection fraction <50%) and/or

FR (shortening ratio <25%).

b. Laboratory test result: pro-BNP ng/L (> 1000)

Table 0.2 shows the list of golden indicators to classify the patient with cardiac failure. Technically,

in the medical history, we will extract the information for Levosimendan, Milrinone, Dobutamine.

That medication information is a surrogate to the gold standard because the medication list

can be retrieved from syringe pump data, prescriptions, and notes. If any listed medication is

present, there is a cardiac failure. However, existing information that helps diagnose cardiac

failure is not always readily available electronically.

Besides, we also base on the diagnosed terms to detect the patient with cardiac failure. There

are totally six terms that are selected including cardiomypathie dilatee, cho caridogenique,

defailance cardiaque gauche aigue, defailance cardiaque gauche chronique, delaillance cardiaque

post-operatorie (LCOS), surcharge liquidienne (hypervolemie).
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Furthermore, we will take the value of ejection fraction (FE) and shortening fraction (FR) from

the cardiovascular evolution notes. The EF (< 50%) refers to the amount, or percentage, of

blood that is pumped (or ejected) out of the ventricles with each contraction. It is a surrogate for

left ventricular global systolic function, defined as the left ventricular stroke volume divided by

the end-diastolic volume. While the FR (< 25%) is the length of the left ventricle during diastole

and systole. It measures diastolic/systolic changes for inter-ventricular septal and posterior wall

dimensions.

Finally, we concentrate on the pro-BNP ng/L (>1000) from laboratory test results. The brain

natriuretic peptides (BNP) are peptides (small proteins) that are either hormones or part of

the peptide that contained the hormone at one time. They are continually produced in small

quantities in the heart and released in larger quantities when the heart senses that it needs to

work harder. This supports fluid retention and volume expansion in the arteries and veins. They

are useful in acute settings for differentiating HF from pulmonary causes of respiratory distress.

Consequently, Table 0.3 shows an example of real data and labels from CHU Sainte Justine,

with critical indicators for cardiac failure diagnosis. However, as all the information that helps

diagnose cardiac failure is not readily available electronically, we will develop a machine learning

algorithm based on NLP that automatically detects the desired concept label from clinical notes.

Specifically, the algorithm can detect whether a patient has a cardiac failure or healthy condition

in terms of lacking gold indicators from the notes. Technically, in such a condition, the proposed

algorithm can effectively learn a latent representation of clinical notes, which traditionally

rule-based approaches cannot depict.

Continuing the trajectory of refining ADRS diagnosis at CHUSJ, a series of investigations have

been undertaken, encompassing the evaluation of chest X-ray infiltrations (Yahyatabar et al.,

2023) and the estimation of the oxygenation index through diverse statistical analyses and neural

network methodologies (Sauthier, Tuli, Jouvet, Brownstein & Randolph, 2021) shown in Fig.
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Table 0.3 An example of patient with cardiac failure from CHUSJ

Attributes Clinical Findings

Medical background # Cardiomyopathie dilatée
Suivi en cardio HSJ - en attente de greffe cardiaque
Dernière écho 20/08/2018: VD taille normale. VG sévèrement dilaté

(64.8mm en diastole et 58.3mm en systole) et hypokinésie. FR 10% et FE
21%.

# Retard de la motricité grossière
Carvedilol 3.2 mg BID

Lasix 7 mg BID

Captopril 7 mg TID

Lansoprazole 7.5 mg die

Aldactone 5 mg TID (essai récent en cardio)

History of disease Patiente suivi pour une CMD en attente d’une greffe cardiaque.
Depuis plusieurs mois, stagnation pondérale et diminution de l’énergie.

Vu en cardiologie 27/08/2018 et malgré une thérapie pharmacologique

aggressive pour optimiser sa FE, elle stagne autours de 20-21%.

Risques expliqués aux parents relatifs à la possibilité de mort subite et

de détérioration sévère et suggestion d’initier une perfusion de milrinone

comme traitement d’une insuffisance cardiaque severe due a la CMD.
Parents initialement hésitant. Retour en clinique 28/08/2018 et acceptent

admission à USIP pour initier perfusion de milrinone.

Enfant malgré tout en bon état général. Pas de fièvre, pas de Sx IVRS, GI

ou GU. Patient explique qu’à ce moment là, il n’était pas capable de parler

et l’air ne passait pas au niveau de sa gorge. Respiration plus rapide, mais

état général préservé, parents n’étaient pas inquiets.

Cardiovascular evaluation # Cardio-vasculary evolution note 1
Milrinone 1 mcg/kg/min ajustée pour son poids 5 decembre

Carvedilol 4 mg BID (dose max) pas ajusté pour son poids

Ivabradine (x 31-10) 1.2 mg bid - aucune augmentation prévue pour le

moment pas ajuster pour son poids

Pas d’arythmie depuis 14/11

ETT du 12/12: FEVG stable à 15%, IM modérée idem. Pas IT exploitable.

pas thrombus, pas épanchement

# Cardio-vasculary evolution note 2
Milrinone 0.7 mcg/kg/min
Carvedilol 3.2 mg q12h

FC 125-150

Chaude, pouls 2+ femoraux B/L

Refil <2 sec

ECG 29/08/2018: tachycardie sinusale avec évidence de dilatation du VG.
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Figure 0.4 Projects help detect ARDS from the CDSS at CHUSJ

0.4. Building upon this foundation, the primary objective of the current study is to forge ahead

in the realm of advancement by formulating a machine learning algorithm rooted in natural

language processing. This algorithm’s core functionality is to autonomously discern whether a

patient’s condition leans towards "cardiac failure" or "healthy," effectively leveraging physician

notes stored within the Research Data Warehouse of CHUSJ. A holistic framework emerges by

accomplishing this, revolutionizing real-time ADRS diagnosis at CHUSJ. This transformative

approach can significantly enhance clinical decision-making processes, offering timely and pre-

cise insights into patient conditions and ultimately contributing to optimizing patient care within

the critical care domain. Technically, the main objective consists of two sub-objectives, as follows.

• Which representation learning approach should be used? The representation learning

approach, which can retain the words’ semantic and syntactic analysis in critical care data,
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enriches the mutual information for the word representation by capturing word-to-word

correlation.

• Which machine learning classifier should be employed? The classifier can avoid the

overfitting associated with the machine learning rule by marginalizing the model parameters

instead of making point estimates of its values.

This thesis comprises four chapters. Chapter 1 offers a comprehensive literature review on clinical

natural language representation learning, machine learning classifiers, and their application in

detecting cardiac failures. This chapter provides an overview of the latest clinical narrative

classifications, which serve as the primary focus of this thesis. The subsequent three chapters

delve into each of the previously mentioned objectives, with their corresponding literature

reviews presented within.

The following section presents the four primary contributions of this thesis, organized by their

respective chapters and peer-reviewed publications:

Contribution 1: One of the main contributions of this thesis is demonstrating the effectiveness

of using a multilayer perceptron neural network classifier for small clinical narrative datasets

compared to conventional classifiers and pretrained-based deep learning models. This study

shows that by retaining and encoding numeric values, the MLP classifier achieves better results

for the classification task without losing any valuable information. This work highlights the

advantages of using MLP classifiers in clinical narrative classification, mainly when dealing

with limited data.

In our experiments, we assessed three learning representations for short-text classification with

limited data: Bag of Words (BoW), Term Frequency-Inverse Document Frequency (TF-IDF),

and word embeddings. BoW and TF-IDF demonstrated superior capabilities in retaining

relevant information from the notes compared to word embeddings. Notably, TF-IDF showcased



12

the highest classification accuracy, particularly for very short texts (less than 20 words per

sample). Although our study’s scope was limited to samples of around 80 words each, TF-IDF

outperformed neural word embeddings, underscoring its robustness in handling short text data.

We further evaluated several classifiers for their effectiveness in short text classification,

including Random Forest (RF), Gaussian Naïve Bayes (GaussianNB), Multinomial Naïve Bayes

(MultimonalNB), Logistic Regression (LR), Support Vector Machines (SVM), and K-nearest

neighbor. Our comparative analysis revealed that RF, MultimonalNB, and SVM all yielded

accuracy rates below 75%. On the other hand, LR, GaussianNB, and Multi-layer Perceptron

Neural Network (MLP-NN) exhibited superior performance, making them more suitable choices

for short-text classification than the aforementioned classifiers.

This work has been published in the following peer-reviewed journal papers:

Thanh-Dung Le, Rita Noumeir, Jérôme Rambaud, Guillaume Sans, and Philippe Jouvet, “Detect-

ing of a Patient’s Condition From Clinical Narratives Using Natural Language Representation,”

IEEE Open Journal of Engineering in Medicine and Biology, 3 (2022): 142-149.

Contribution 2: Another significant contribution of this thesis is the development of an autoen-

coder learning algorithm that addresses the issue of sparsity in the feature space representation of

a small clinical narrative dataset. Unlike other approaches, the algorithm’s lossless compression

capacity enables it to learn the most optimal representation of the training data. This feature

leads to a considerable improvement in its downstream classification performance, which is not

possible with deep learning models. The proposed method offers a promising alternative for

improving the classification accuracy of small clinical narrative datasets.

Addressing the challenge of sparsity often leads researchers to dimension-reduction techniques.

Two popular methods are Principal Component Analysis (PCA) and Neighborhood Component

Analysis (NCA), favored for their simplicity among various dimensionality reduction techniques.



13

We investigated the potential of PCA and NCA to mitigate sparsity due to the aforementioned

advantages. However, neither approach significantly enhanced classification performance. This

outcome underscores the inherent limitation of these methods, which attempt to approximate a

feature subspace to optimize class separability linearly.

On the other hand, autoencoders (AE) with non-linear activation functions demonstrated superior

efficacy in compressing the sparse TF-IDF representation space. We further evaluated this

compressed representation’s effectiveness for reconstruction.

Several machine learning classifiers, including MLP-NN, LR, GaussianNB, RF, Multinomial

Naive Bayes, and SVM, were tested for classification tasks. Among these, the MLP-NN classifier

showcased the best performance, recording 92% accuracy, 91% precision, 91% recall, and 91%

F1 score. This is a notable 2-3% improvement across each evaluation metric compared to the

general classification performance achieved in a sparse TF-IDF feature space (89% accuracy,

89% precision, 88% recall, and 88% F1 score). These results validate that the AE methodology

effectively addresses sparsity by compressing the TF-IDF feature space, boosting the MLP-NN

classifier’s performance and making it more resilient than other techniques.

Furthermore, the behavior of AEs with limited data is consistent even with larger datasets, per

the information-theoretic framework. This framework provides insights into the workings of

AEs and pinpoints scenarios where they achieve optimal compression. Our study also delves

into understanding the behavior of AEs during contraction by examining the mutual information

across each hidden layer in both the encoder and decoder segments.

This work has been published in the following peer-reviewed journal paper:

Thanh-Dung Le, Rita Noumeir, Jérôme Rambaud, Guillaume Sans, and Philippe Jouvet,

“Adaptation of Autoencoder for Sparsity Reduction From Clinical Notes Representation Learning,”

IEEE Journal of Translational Engineering in Health and Medicine, 11 (2023): 469-478.
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Contribution 3: The third contribution of this Ph.D. thesis is the exploration of the Switch

Transformer model for clinical text classification. Our findings demonstrate that this model shows

promising results in improving performance over pre-trained BERT-based models. Although it

did not outperform a small MLP-NN neural network, we believe that this framework has the

potential to enhance accuracy on small French clinical narrative datasets. Our work serves

as a proof-of-concept for the application of Switch Transformer in clinical natural language

processing and highlights its potential for future research.

In our study, we evaluated the performance of six classifiers for a binary classification task:

CamemBERT, DistillBERT, FlauBERT, FrALBERT, Transformer, and Switch Transformer.

Our findings revealed that diligent hyperparameter optimization could lead the Transformer

models to outperform the pre-trained BERT-based counterparts. Given that Transformer models

typically require substantial amounts of data for practical training, in our study, we divided the

dataset into 80% for training, 10% for validation, and the remaining 10% for testing. To evaluate

the effectiveness of our approach, we utilized several metrics such as accuracy, precision, recall,

and the F1 score. When trained from scratch, the Switch Transformer model emerged as the

top performer, boasting an accuracy score of 87%, precision and recall rates of 87% and 85%,

respectively, an F1 score of 86%, and an AUC of 92%.

However, even these commendable metrics could not surpass the results of a meticulously

engineered MLP-NN classifier. This classifier, designed with specialized techniques like

numerical decoding, negation tagging, and sparsity reduction, outdid the Transformer-based

models. One contributing factor is the discernible generalization gap observed in Transformer

models during training and validation, especially for longer sequences. We further deduced

that these models struggled on the clinical dataset because of their limitations in accurately

contextualizing and interpreting real-world data. Clinical tasks often present a low signal-

to-noise ratio, and during the training phase, Transformers may divert their attention from
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pivotal keywords. Consequently, it remains an open question whether Transformer models can

consistently perform across diverse scenarios within the clinical domain.

This work was submitted in the following peer-reviewed journal paper (Under review):

Thanh-Dung Le, Philippe Jouvet, and Rita Noumeir, “A Small-Scale Switch Transformer

and NLP-based Model for Clinical Narratives Classification” submitted to IEEE Journal of

Biomedical and Health Informatics in March 2023.

In this pioneering Ph.D. thesis, the experiments in this study systematically progress from

more straightforward methodologies to advanced deep learning techniques. Surprisingly, given

the constraints of our dataset (limited in size and highly specialized in the medical domain),

pre-trained language models did not offer significant performance enhancements. This thesis

tackles a challenging real-world dataset for which there is no benchmark data or prior published

comparisons.

Technically, a comprehensive end-to-end framework has been meticulously developed to

revolutionize the detection of patient conditions from clinical notes at CHUSJ. The culmination

of this research journey has illuminated the most promising candidate for statistical learning

representation, namely TF-IDF, coupled with scalable machine learning in the form of MLP-NN.

This amalgamation has demonstrated unparalleled potential in transforming the landscape of

patient condition detection.

The significance of the framework is further augmented by the inclusion of adept engineering

strategies in data preprocessing, elevating the performance of the classification end task. The

adept handling of various approaches for encoding vital sign numeric values, coupled with

the strategic implementation of autoencoders, has been pivotal in enhancing the accuracy and

efficiency of the overall system. These data preprocessing techniques have proven instrumental

in mitigating challenges associated with feature sparsity in the representation feature space.
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While this thesis has unveiled remarkable achievements, it has also shed light on the potential of

Transformers as a promising solution for patient condition detection. Nonetheless, formidable

challenges and limitations associated with Transformers have surfaced. The identified general-

ization gap and the Transformer’s inherent limitation in effectively comprehending shorter texts

are pivotal areas that warrant further exploration and refinement.

In essence, this Ph.D. thesis marks a significant milestone in healthcare informatics. The novel

end-to-end framework, powered by the symbiotic synergy of statistical learning representation

and scalable machine learning, presents a transformative approach to patient condition detection.

As the healthcare landscape evolves, the insights gleaned from this research serve as a springboard

for future endeavors to advance patient care’s accuracy, scalability, and efficacy through innovative

data-driven methodologies.



CHAPTER 1

LITERATURE REVIEW

Recent advancements have seen a convergence of machine learning and natural language

processing (NLP) to enhance the interpretation of clinical notes, notably through temporal

and analytical reasoning (Sheikhalishahi et al., 2019). This synergy has applications across

various clinical domains, such as early diagnosis, treatment intervention, and predicting patient

readmissions.

The combination of machine learning (ML) and NLP has become increasingly popular in

learning from clinical notes by facilitating temporal and analytical reasoning (Sheikhalishahi

et al., 2019). This combination has been applied to a wide range of clinical applications,

including early diagnosis (Shi et al., 2016; Huddar et al., 2016; Soguero-Ruiz et al., 2014),

treatment intervention (Liu et al., 2019a; Suresh et al., 2017), and readmission prediction

(Rumshisky et al., 2016; Curto, Carvalho, Salgado, Vieira & Sousa, 2016; Agarwal, Baechle,

Behara & Zhu, 2017). Compared to conventional statistical learning models for clinical text

processing, machine learning-based natural language processing has proven to be a dominant

method because of its applicability in real practice. For instance, a system for diagnosing

common diseases such as hypertension, diabetes, and chronic obstructive pulmonary was

developed and found to be feasible and effective for use in Huangshi Central Hospital (Yang

et al., 2018). Additionally, Mayo Clinic Research Center developed an automated system for

identifying peripheral arterial disease cases from clinical narratives (Afzal et al., 2017), while

Massachusetts General Hospital successfully predicted early readmission by using a neural

language model (Rumshisky et al., 2016). At Harvard Medical School, a machine learning-based

natural language processing classifier was developed to classify medical subdomains, which

integrated deep learning algorithms and distributed word representation (Weng, Wagholikar,

McCray, Szolovits & Chueh, 2017).

These advancements underscore that ML-integrated NLP has become instrumental in knowledge

discovery within the clinical sector, especially when processing clinical text notes. Alternative
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approaches pale in comparison to the results achieved with this combined methodology. This

evolution addresses the decade-old question, "What can natural language processing do for

clinical decision support?" (Demner-Fushman, Chapman & McDonald, 2009), by delivering

effective solutions and insightful answers. Two primary factors have catalyzed the aforementioned

advancements in clinical note interpretation: the capability of NLP for feature extraction and the

representation learning abilities of neural networks.

First, NLP and Feature Extraction: NLP can quickly learn feature extraction from unstructured

notes. The key to understanding clinical note features is word representation, which represents

words quantitatively and then transforms those features into machine-readable or structured

data. There are many ways to represent words quantitatively, such as fixed word representation

that does not assume semantics and similarity of words (one-hot representation, co-occurrence

matrix representation), and word embedding through distributional word representation that

incorporates semantics and similarity information of words into embedding (Word2Vec (Mikolov,

Sutskever, Chen, Corrado & Dean, 2013), GloVe (Pennington, Socher & Manning, 2014)).

These word representation techniques are popularly used for clinical notes feature extraction (Liu

et al., 2019a; Weng et al., 2017; Fan & Zhang, 2018). Consequently, one of NLP’s strengths is

its ability to extract features from unstructured notes. The crux of comprehending clinical note

features revolves around word representation — a technique that quantitatively defines words

and transforms them into structured, machine-readable data. There are several approaches to

achieve this:

1. Fixed Word Representations: These methods, like one-hot representation and co-occurrence

matrix representation, represent words in a quantitative manner but don’t inherently capture

semantic nuances or similarities between words.

2. Distributional Word Representations: Techniques like Word2Vec (Mikolov et al., 2013) and

GloVe (Pennington et al., 2014) go beyond mere quantification, embedding semantic and

similarity information into the representation. Such word representation methods have been

widely adopted for feature extraction from clinical notes.
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Second, Neural Networks and Representation Learning: ML can represent high-level

abstraction by learning complicated functions (Bengio, Courville & Vincent, 2013). Hence, the

interdisciplinary field of machine learning for biomedical data has been accelerating due to the

availability of well-annotated data and greater clinician involvement. The achievements of ML in

healthcare have been extensively analyzed from clinical collaboration, clinical data availability,

clinical conditions and tasks, and ML methods, as summarized in (Beaulieu-Jones et al.,

2019). Moreover, ML is encouraged to be adopted in healthcare because ML methodologies

computationally learn the best treatment decisions and provide guidelines to build a successful

end-to-end smart healthcare system (Kreimeyer et al., 2017; Young, Hazarika, Poria & Cambria,

2018). The push towards incorporating ML in healthcare is not just due to its computational

accomplishments in determining optimal treatment decisions but also because it provides a

framework for building holistic, smart healthcare systems.

In case of resourceful data availability, the state-of-the-art ML-based NLP is focused on using

deep learning (DL) for clinical notes to overcome the abovementioned limitations (Pham, Tran,

Phung & Venkatesh, 2017; Rajkomar et al., 2018). For instance, deep learning models like

Convolutional Neural Networks (CNN) have shown exceptional performance in predicting

cardiac failure, achieving an F1 score of 0.756 compared to the conventional approach of

Random Forest, which achieved an F1 score of 0.674 (Liu et al., 2019b). Similarly, combining

word2vec and deep learning has yielded the best performance for predicting multiple chronic

diseases, such as cerebral infarction, pulmonary infection, and coronary atherosclerotic heart

disease, with an average accuracy and F1 score exceeding 90% (Shi et al., 2016).

However, while DL architectures generally perform well on large-scale datasets with short

texts, they do not necessarily outperform conventional approaches like Bag-of-Words (BoW) on

smaller datasets with longer clinical notes (Li et al., 2018). For instance, automatic methods

for extracting the New York Heart Association classification from clinical notes (Zhang et al.,

2017) have found that the support vector machine (SVM) with n-gram features achieved the

best performance, with an F-measure of 93%. Similarly, a study by Agarwal et al. (Agarwal

et al., 2017) showed that combining BoW and the Na"ive Bayes classifier on clinical notes
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for predicting hospital readmission yielded an area under the curve (AUC) of 0.690. Finally,

Fodeh et al. (Fodeh, Li, Jarad & Safdar, 2019) found that with a small dataset, TF-IDF and

BoW techniques performed better than other techniques for classifying coronary microvascular

dysfunction.

Despite the significant achievements in ML-based natural language processing for clinical text

knowledge extraction, concerns remain regarding the trajectory of clinical natural language

processing research (Young et al., 2018; Sheikhalishahi et al., 2019). One limitation is learning

the semantic and syntactic structure of feature extraction for clinical texts. Combining semantic

and syntactic information can lead to conflation deficiencies when a word level is tightened to the

semantic and syntactic level. This challenge is even more difficult to mitigate in clinical notes

written in languages other than English (Névéol, Dalianis, Velupillai, Savova & Zweigenbaum,

2018). In short, ML-enhanced NLP has made significant strides in extracting knowledge from

clinical texts, but critical concerns remain about the trajectory of clinical NLP research, as

highlighted in (Kreimeyer et al., 2017).

1. Feature Learning from Clinical Texts: One main challenge is extracting semantic and

syntactic structures from clinical text representations. Traditional text feature extraction

methods often employ count-based strategies, such as one-hot representations or co-

occurrence matrices. These methods can require extensive manual effort to produce

meaningful representations. Moreover, it’s been established that not all textual data equally

contribute to the meaningfulness of clinical notes. However, when the dataset is small,

word embedding techniques like Word2Vec or GloVe struggle to generalize in the unique

language landscape of clinical notes.

2. Deep-Supervised Learning Limitations: Deep-supervised learning models have limi-

tations, particularly when used for classification. In large datasets, these models learn

differences between actual data instances and synthesized instances produced by the learn-

ing rules. In scenarios with limited data, clinical text’s actual underlying probability

distribution remains obscured. Consequently, models trained under these conditions can

have a deficiency in discriminative learning. This is of particular concern in the medical
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field, where machine-learning algorithms must align with expert medical insights. It’s

crucial to articulate why a specific learning algorithm is trustworthy, especially when most

discriminative learning is centered on curve fitting.

As mentioned, DL requires a large amount of data to achieve good generalization capability,

which may not always be available (Paleyes, Urma & Lawrence, 2020). Study (Kumar, Recupero,

Riboni & Helaoui, 2020) proposes an alternative approach to address the issue of small datasets,

but it either removes vital sign numeric values or does not provide information on how to handle

them. To improve the effectiveness of neural network-based natural language processing, the

semantic enrichment of clinical notes and the classification deficiency of supervised learning

must be significantly strengthened. Therefore, the project will adopt two strategies: 1) focus on

learning the underlying structure of clinical text by adapting data engineering and 2) improve the

interpretability of learning representation using a simpler neural network. Recent studies (Wang,

Zhou, Jin, Liu & Lu, 2017; Fodeh et al., 2019) have demonstrated that combining statistical

learning representations and traditional ML techniques yields superior results for classifying

clinical notes for smaller datasets. In light of this evidence, this study will concentrate on the

following statistical learning representations and conventional ML classifiers:

1.1 Clinical Natural Language Representation Learning

There is no doubt about the effectiveness of neural word embedding. The study (Shi et al.,

2016) confirms that word2vec representation has been successfully used for various disease

classifications from medical notes. Especially for the French clinical notes, the study (Dynomant

et al., 2019) shows that word2vec and GloVec effectively embed the clinical notes. The word2vec

had the highest score on 3 out of 4 rated tasks (analogy-based operations, odd one similarity,

and human validation). In addition, studies (Agarwal et al., 2017; Li et al., 2018; Zhang

et al., 2017; Fodeh et al., 2019) confirm that conventional approaches bag-of-words (BoW),

term frequency-inverse document frequency (TF-IDF) have better performance than other deep

learning techniques on a smaller corpus with long texts in clinical note corpus. Therefore, we
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will evaluate the effectiveness of two conventional representation approaches, including BoW,

TF-IDF, and the word2vec neural embedding model.

1.1.1 Bag-of-Words

A bag-of-words model (Joachims, 1998), or BoW for short, represents text that describes the

occurrence of words within a document. Technically, if documents have similar content, they

will be similar. It extracts features from the text by considering each word count as a feature

from a vocabulary of known words. There is a theoretical analysis for understanding the BoW

model (Zhang, Jin & Zhou, 2010), which proves that the success of BoW representation is

not by using a heuristic clustering process but by a statistical approach based on statistical

consistency. However, in the BoW representation, any two different words drawn from the

vocabulary are treated equally if they are assigned the same topic; in reality, it neglects much

correlation information among words.

1.1.2 TF-IDF

The TF-IDF, first introduced in (Salton & Yang, 1973), stands for term frequency (TF) × inverse

document frequency (IDF). TF-IDF weighting is commonly used in information retrieval for

text mining. The intuition is that term importance increases with the term’s frequency in the

text, but its frequency neutralizes it in the domain of interest. Given a collection of terms t ∈ T

that appear in a set of N documents d ∈ D, each of length nd, tf-idf weighting is computed as:

tft,d =
ft,d

nd
(1.1)

idft = log N

dft
(1.2)

Wt,d = tft,d × idft (1.3)
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where ft,d is the frequency of term t in document d, and dft is the document frequency of term t,

the number of documents in which term t appears. Several variations were offered, including

normalizing tft,d, and optional weighting schemes.

TF-IDF and its variations do not only focus on the fundamental statistical relation of note

representation. But, its strong theoretical arguments are explained for its heuristic (Robertson,

2004), and as a probabilistic theoretical explanation (Havrlant & Kreinovich, 2017). And, it is

shown that if TF-IDF is treated carefully with the bias, it will manifest better performance in

representation learning.

1.1.3 Neural Word Embeddings

The neural word embedding was introduced in (Mikolov et al., 2013), and named the word2vec

model. Each word will be represented by two sets of vectors, uw, and vw. uw is used when word

w is the context word, and vw is used when word w is the center word. Using these two vectors,

the probability for the central target word wo and context word wc for each word w will look like

this:

pwo | wc =
expu�

o vc

i∈V expu�
i vc

(1.4)

The key to the success of word2vec is that it can compute the logarithmic conditional probability

for the central word vector and the context word vector. Then, its computation obtains the

conditional likelihood for all the words in the dictionary given the context word wc, and is trained

by a neural network.

log pwo | wc = u�
o vc − log

(
i∈V

expu�
i vc

)
(1.5)
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where V = {0, 1, . . . , |V | − 1} is the vocabulary index. After the training, for any word in the

dictionary with index wi, we will get its two-word vector sets vi and ui . In applications of NLP,

the central target word vector in the skip-gram model is generally used as the representation

vector of a word.

In this study, we adapted the instruction of how to generate a good neural word embedding

(Lai, Liu, He & Zhao, 2016). Significantly, the three critical components in training word

embeddings, including the model, corpus, and training parameters, are well customized. In

addition, hyper-parameter choices are significant in neural word embedding systems; therefore,

we also controlled the effects of data size and frequency range on distributional semantic models

based on the recommendations from (Levy, Goldberg & Dagan, 2015).

The neural word embedding only focuses on one-hot representation and ignores the morphological

knowledge. However, morphological knowledge can help decrease the training time, as shown

in (Santos, Macedo, Bispo & Zanchettin, 2020) on a dataset with 1 billion tokens.

1.2 Machine Learning Classifiers

Deep learning has proven its superiority to representation learning and classification problems

from various data structures such as medical imaging, time-series data, and clinical natural

language (Otter, Medina & Kalita, 2020). Unfortunately, not all cases can apply deep learning,

especially with limited data.

When the ratio value for the number of samples/number of words per sample is small (<

1500), a small MLP-NN that takes n-grams as input performs better or at least as well as deep

learning-based sequence models. Besides, an MLP-NN is simple to define and understand and

takes less computation time than sequence models. A detailed explanation of using an MLP-NN

in medical analysis can be seen from (Pasini, 2015).

Several classifiers have been trained for short text classification; this includes Random Forest,

Gaussian Naïve Bayes, Multinomial Naïve Bayes, logistic regression, support vector machines,
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and K-nearest neighbour. The experimental results from (Maimon & Rokach, 2014; Wang et al.,

2017) confirm that logistic regression, and generative Naïve Bayes perform much better than the

other classifiers.

Furthermore, we implemented and compared all the above-mentioned methods; the result of

Random Forest, MultimonalNB, and support vector machine was less than 75% for accuracy.

Again, the result shows that only logistic regression, Gaussian Naïve Bayes and neural network

multilayer perceptron are comparable and perform better than Random forest, multimodal, and

support vector machine classifiers.

Moreover, study (Ng & Jordan, 2002) evaluated different classifiers’ performance, including

discriminative and generative learning approaches, particularly for small datasets. And, it

confirms that the discriminative logistic regression algorithm has a lower asymptotic error, while

the generative Naïve Bayes classifier converges more quickly. Therefore, in this study, we choose

with three different machine learning classifiers logistic regression, Gaussian Naïve Bayes, and

MLP-NN.

Here we consider a binary classification problem. Given n training samples D = x1, y1..., xn, yn

where xi ∈ Rp is a p-dimensional column vector and label yi ∈ {0, 1}.

1.2.1 Logistic Regression (LR)

LR uses a logistic function to model the probability of a binary dependent variable (particular

class or event) such as unhealthy/healthy. Therefore, it is widely used in most medical fields

(Tolles & Meurer, 2016). We first write the logistic function as follows:

px; w = py = 1 | x; w =
1

1 exp
(−wT x

) (1.6)
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where w is the weight vector of coefficients, and p is a sigmoid function. Here, we assume that

the n training examples are generated independently. Finally, we thus can obtain the following

log-likelihood.

�w = n

i=1
log p

(
yi | xi; w

)
= n

i=1

{
yiw

T xi − log
(
1 exp

(
wT xi

)} (1.7)

1.2.2 Gaussian Naïve Bayes (GaussianNB)

GaussianNB algorithm for classification is a set of supervised learning algorithms based on

applying Bayes’ theorem with the “Naïve” assumption of conditional independence between

every pair of features given the value of the class variable. Bayes’ theorem states the following

relationship, given class variable Y and dependent feature vector x1 through xn:

py | x1, . . . , xn =
pypx1, . . . , xn | y

px1, . . . , xn
(1.8)

Using the Naïve conditional independence assumption that

pxi|y, x1, . . . , xi−1, xi1, . . . , xn = pxi|y, (1.9)

for all i, this relationship is simplified to
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py | x1, . . . , xn =
py n

i=1 pxi | y

px1, . . . , xn
(1.10)

Since px1, . . . , xn is constant given the input, we can use the following classification rule:

Py | x1, . . . , xn ∝ py n
i=1 pxi | y. Then

ŷ = arg max
y

py n

i=1
Pxi | y (1.11)

and we can use the maximum a posteriori estimation to estimate py and pxi | y; the former is the

relative frequency of class y in the training set. However, the difference between GaussianNB

and Naïve Bayes classifiers is mainly based on pxi | y distribution. The likelihood of the features

is assumed to be Gaussian with mean μ and variance σ2 for GaussianNB (Hastie, Tibshirani,

Friedman & Friedman, 2009):

pxi | y =
1√

2πσ2
y

exp
(

−xi − μy
2

2σ2
y

)
(1.12)

1.2.3 Multilayer Perceptron Neural Network (MLP-NN)

The earliest work in the field of “neural network" is attempted to understand, model, and emulate

neurological function and learning in brains (McCulloch & Pitts, 1943). Since then, a commonly

used neural network has been the MLP-NN. In an MLP-NN, the neurons are structured into

layers, consisting of at least three layers: the input layer, hidden layer or layers, and an output

layer (Demuth, 2014). Typical MLP-NN networks are feedforward neural networks where the

computation is carried out in a single direction from input to output.
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Figure 1.1 An mathematical model for

a biologicallyinspired neural network

As shown in Fig. 1.1 (Karparthy, 2020), xi is the ith input (axon from a neuron) to an input

neuron, and a weight wi is the effect of the ith synapse on the neural network. Then, the total

impact of the input on the synapse from the cell body is:

n

i
wixi b (1.13)

Following this affine transformation of the weighted sum of its input, a nonlinear activation

function f · is defined for the cell output. This nonlinear activation function f · generally enables

the MLP-NN to learn and solve nonlinear problems. It is proven that ReLU activation in

combination with stochastic gradient descent optimization algorithm shows a better convergence

and gives a better optimization in small MLP-NN (Li & Yuan, 2017). Therefore, we apply the

ReLU activation for the hidden layer as shown below:

f · = ReLUα = maxα, 0 (1.14)
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2.1 Abstract

The rapid progress in clinical data management systems and artificial intelligence approaches

enable the era of personalized medicine. Intensive care units (ICUs) are ideal clinical research

environments for such development because they collect many clinical data and are highly

computerized. Goal: We designed a retrospective clinical study on a prospective ICU database

using clinical natural language to help in the early diagnosis of heart failure in critically ill

children. Methods: The methodology consisted of empirical experiments of a learning algorithm

to learn the hidden interpretation and presentation of the French clinical note data. This study

included 1386 patients’ clinical notes with 5444 single lines of notes. There were 1941 positive

cases (36% of total) and 3503 negative cases classified by two independent physicians using a

standardized approach. Results: The multilayer perceptron neural network outperforms other

discriminative and generative classifiers. Consequently, the proposed framework yields an overall

classification performance with 89% accuracy, 88% recall, and 89% precision. Conclusions:

This study successfully applied learning representation and machine learning algorithms to

detect heart failure in a single French institution from clinical natural language. Further work is

needed to use the same methodology in other languages and institutions.
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2.2 Introduction

Currently, clinical narratives are continuously provided and stored in electronic medical records

(EMR), but they are underutilized in clinical decision support systems. The limitation comes

from their unstructured or semi-structured format. Besides, another problem with clinical

narratives is that they are written in incomplete sentences but in an information-dense way for

communication between clinicians (Johnson et al., 2016). Because of the two reasons, clinical

narrative sources impose constraints in an actual application for clinical outcome prediction.

Since 2013, the Pediatric Critical Care Unit at CHU Sainte-Justine (CHUSJ) has used an EMR.

The patients’ information, including vital signs, laboratory results, and ventilator parameters are

updated every 5 minutes to 1 hour (Matton et al., 2016). Primarily, a significant data source

of French clinical notes is currently stored. There are seven caregiver notes/patient/day from

1386 patients (containing a dataset of more than 2.5 × 107 words). These notes are scribed

extensively from admission notes and evaluation notes. Admission notes outline reasons for

admission to intensive care units, historical progress of the disease, medication, surgery, and the

patient’s baseline status. Daily ailments and test results are described in evaluation notes, from

which patient condition is evaluated and diagnosed later by doctors. However, these information

sources are being used as documentation for reporting and billing instead of clinical knowledge

for predicting conditions or decision support.

2.2.1 Problem Statement

The diagnosis of acute respiratory distress syndrome (ARDS) is frequently delayed or even not

diagnosed in intensive care units. In the largest international cohort of patients with ARDS, the

diagnosis of ARDS was delayed or missed in two-thirds of patients, with the diagnosis missed

entirely in 40% of patients (Bellani et al., 2016). To make the diagnosis of ARDS, three main

conditions need to be detected: hypoxemia (low blood oxygenation), presence of infiltrates on

chest X Ray and absence of cardiac failure (Group et al., 2015). The development of a clinical

decision support system (CDSS) in real time that automatically screen the EMR data, chest X
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Rays and other data sources (medical devices collecting vital signs, ventilator settings) has the

potential to increase diagnosis rate and then improve the management of this syndrome (Group

et al., 2015). Our research team has developed the first two algorithms for hypoxemia (Sauthier

et al., 2021) and chest X Ray analysis (Zaglam, Jouvet, Flechelles, Emeriaud & Cheriet, 2014).

This work contributes to the third algorithm development i.e. identifying the absence of cardiac

failure.

Cardiac failure is clinically suspected and the test that confirms its absence or presence is

ususally an echocardiography. This echocardiography could have been performed prior to PICU

admission, even in another institution and could not be digitally available for analysis. However,

when an echocardiography has been performed, physicians report its result in the notes. It is the

reason why, using notes to exclude or confimed a cardiac failure was assumed to be the best way

to electronically collect as soon as possible the information.

Generally, there is a list of golden indicators to classify cardiac failure patients. Those

indicators could be either from the medical history, clinical exam, chest X-Ray interpretation,

recent cardiovascular performance evaluation, or laboratory test results. Medication, such as

Levosimendan, Milrinone, Dobutamine, is a surrogate to the gold standard. Its list can be

retrieved from syringe pump data, prescriptions, and notes. If any medication from the three

is present, there is certainly a cardiac failure. Besides, cardiovascular performance evaluation

also contributes to indicate the cardiac failure diagnosis. One of the evaluations is ejection

fraction (EF) < 50%. EF refers to the percentage of blood pumped (or ejected) out of the

ventricles with each contraction. It is a surrogate for left ventricular global systolic function,

defined as the left ventricular stroke volume divided by the end-diastolic volume. The other

indicator for cardiovascular performance evaluation is shortening fraction (SF) < 25%. FR is the

length of the left ventricle during diastole and systole. It measures diastolic/systolic changes for

inter-ventricular septal and posterior wall dimensions. Finally, brain natriuretic peptide, known

as pro-BNP ng/L > 1000, comes from laboratory test results being useful in the acute settings

for differentiation of cardiac failure from pulmonary causes of respiratory distress. Pro-BNP is
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continually produced in small quantities in the heart and released in more substantial quantities

when the heart needs to work harder.

Consequently, the clinical knowledge representation will summarize detailed attributes that are

essential to detecting cardiac failure. All notes are taken into account if they are encompassed

by the information of the prescription history of Milrinone (mcg/kg/min), measurement

notes of pro-BNP (ng/L), dilated cardiomyopathy, acute left cardiac failure, chronic cardiac

failure, postoperative cardiac failure, coronary microvascular disorder history notes, notes of a

measurement result of either EF (%) or SF (%). As a result, a patient is considered to have a

cardiac failure if he/she has one of the criteria. Unfortunately, as all the mentioned information

above that helps diagnose cardiac failure is not readily available electronically, we will develop

a machine learning algorithm based on natural language processing (NLP) that automatically

detects this desired concept label from clinical notes. The algorithm can automatically see

whether a patient has a cardiac failure or a healthy condition lacking gold indicators from the

notes. In such a situation, the proposed algorithm can effectively learn a latent representation of

clinical notes, which traditionally rule-based approaches cannot depict.

2.2.2 Motivation

The recent study (Olsen, Mentz, Anstrom, Page & Patel, 2020) extensively analyzed and

confirmed the feasibility of employing machine learning for cardiac failure. However, we are

dealing with two challenges from clinical notes in French and a limited amount of dataset size in

our case. We will examine data retrospectively to validate the diagnosis. And the main objective

of this study consists of two sub-objectives that overcome the mentioned limitations, as follows:

• Which representation learning approach should be used? The representation learning

approach, which can retain the words’ semantic and syntactic analysis in critical care data,

enriches the mutual information for the word representation by capturing word-to-word

correlation.
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• Which machine learning classifier should be employed? The classifier can avoid the overfitting

associated with the machine learning rule by marginalizing over the model parameters instead

of making point estimates of its values.

2.3 Materials and Methods

2.3.1 Clinical Narrative Data at CHUSJ

Figure 2.1 An overview of the proposed methodology

to detect cardiac failure from clinical notes at CHUSJ
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Fig. 2.1 illustrates the conceptual framework for conducting the experiments. First, the data

integration process has been completed at the Pediatric Intensive Care Unit, CHUSJ, for more

than 1300 patients. After the research protocol was approved by the research ethics board from

Research Center of the Sainte-Justine University Hospital. We only took information from

two types of notes, including admission and evaluation notes. Since, these notes documented

the reasons why a patient was admitted to the hospital by the physician in charge. And, the

notes also provided the initial instruction for that patient’s care based on the patient’s health

status. Primarily, we focused on medical background, history of the disease to admission, and

cardiovascular evaluation. Furthermore, we only used notes for each patient’s first stay within

the first 24h since the admission. If a patient had more than one ICU stay, we only analyzed

the first one. We did not have any missing notes but we can not exclude some information that

were not collected by physicians and then not reported in the note. However, the data fully

reflect real clinical practice. Then, two doctors from the CHUSJ (Dr. Jérôme Rambaud and

Dr. Guillaume Sans), who did not compose the notes at the first hand, separately reviewed each

patient’s notes; each note was manually labeled “YES" or “NO" for positively cardiac failure

or under a healthy condition, respectively. By doing so, we could double-check that missing

data was not problematic. To avoid data contamination, we checked both the “patientID” and

“careproviderID” to ensure no notes were simultaneously present in the training and testing

cohort. Finally, we have 5444 line of notes with 1941 positive cases (36% of total) and 3503

negative cases. Fig. 2.2 shows an example of clinical notes with labels. Besides, the average

length of the number of characters is 601 and 704. The average length of the number of digits is

25 and 26 for the positive and negative cases, respectively.

2.3.2 Data Pre-Processing

Generally, it is proven that if the preprocessing steps are well prepared, the result for the end-task

will be improved (Kannan et al., 2014). Therefore, there are steps that were used as case

lowering, and stop words removing. Fig. 2.3 shows the statistics for the list of stop words

removed. From the list, all these words are the definition in French; therefore, they do not
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Figure 2.2 An example of clinical notes from CHUSJ

contribute to the learning representation. Besides, we did not consider any French linguistic

feature as our method is based on uncorrelated words. All the notes are short narratives, and the

n-gram length distribution is shown in Fig. 2.5. The longest n-gram is over 400 words, but most

of the n-gram length distribution is between 50 and 125 words. Then, the ratio of the number

of samples/words per sample is much smaller than 1500, as given by a tutorial for small text

classification (Google, 2019).

Figure 2.3 Clinical notes analyzing for stop words removing
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In addition, it is essential to pay attention to negation in medical expression. First, the negation

criteria from the study (Deléger & Grouin, 2012) were used for detecting the negative meaning

from French notes. Then, a negation technique is applied (Dubois, Romano, Kale, Shah & Jung,

2017): a term “neg_" is added as a prefix for a term. An example note is “Patient explique

qu’à ce moment là, il n’était pas capable de parler et l’air ne passait pas au niveau de sa gorge.

Respiration plus rapide, mais état général préservé, parents n’étaient pas inquiets. (Patient

explained at that time, he was not able to speak and the air did not pass at the level of his throat.

Breathing faster, but general condition preserved, parents were not worried)". The negation

will be tagged as: “Patient explique qu’à ce moment là, il neg_était capable de parler et l’air

neg_passait au niveau de sa gorge. Respiration plus rapide, mais état général préservé, parents

neg_étaient inquiets."

Table 2.1 A summary of experiments dealing with vital sign numeric values

neg_étaient inquiets."

Table 2.1 A summary of experiments dealing with vital sign numeric values

Figure 2.4 An example of code snippet in Python for decomposing numeric values

(Example 4)
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For the vital numeric values (heart rate, blood pressure, etc...), most of the NLP representation

learnings cannot accommodate the numeric values effectively. Most NLP models treat numeric

values in the text the same way as other tokens. It has been proven that the pre-trained

token representations (word2vec) can naturally encode the numeric values (Wallace, Wang, Li,

Singh & Gardner, 2019). Unfortunately, it required a large amount of data with specific labeling

progress for this task. At the same time, the state-of-the-art for numerical reasoning results is

much less good (47%) compared with the expert human performance (96.4%) in the f1 score

metric (Dua et al., 2019). Another study only focuses on how to extract the number, not dealing

with representation learning (Cai et al., 2019). Even, study (Kumar et al., 2020) proposes an

alternative approach to deal with both large and small datasets. However, the authors either

removed all of the vital sign numeric values or did not mention how to deal with numeric values.

Because we have limited data, we decide to keep all numeric values for vital sign values (nearly

4% of the notes) and apply the decoding for those number values. In fact, a numeric value

consists in a numerical measurement value and a measurement unit as ruled by Digital Imaging

and Communication in Medicine standard for report document (Noumeir, 2003). Therefore, we

performed four experiments to evaluate the contribution from the numeric value to the classifiers.

Fig. 2.4 shows an example of code snippet in Python, which help us conducting the decomposing

the numerical measurement value. Finally, Table 2.1 summarizes the four different approaches

to decode the numeric values, including (i) keeping all of the original numeric values and their

units, (ii) removing all of the numeric values and their units, (iii) encoding the decimal into a

string named dot, and (iv) decomposing into digits.

For the note visualization, we apply the ScatterText (Kessler, 2017). We have more than 580000

(n-grams) word count from the data shown in Fig. 2.6. The figure shows the most frequent

words for the positive case in the upper right corner; the most frequent words for the negative

cases in the lower-left corner; and, all less frequent words for both cases are in the center.

Besides, the top 20 terms from the positive and negative cases are presented on the right-hand

side. Their frequency distribution is illustrated in Fig. 2.7 and Fig. 2.8, respectively. There is

an abbreviation for medical terms, whose descriptions and characteristics are summarized in
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Table 2.2. For example, there are CIV (Communication intraventriculaire), CEC (Circulation

extra-corporelle), CIA (Communication intra-auriculaire), FC (fréquence cardiaque), and IVRS

(Infection des voies respiratoires supérieures). For more specific, Fig. 2.9 shows the top 30

n-grams that frequently appear for both cases, and Fig. 2.10 also visualizes the terms distributed

for both cases. In positive cases, we quickly see that most of these terms are positively related to

cardiac malfunction: milrinone (milri), aorte, aortique, and valve. In contrast, terms such as

urgence, ad, respiratoire, vers, toux, and ivrs indicate respiratory syndromes. From Fig. 2.9, we

can see that the overlapping: terms that strongly indicate one class also appear to a lesser degree

in the other class.

Figure 2.5 The distribution of length of notes in the CHUSJ dataset
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Figure 2.6 Clinical note illustration by using Scattertext visualization
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Table 2.2 Important Abbreviations for Medical Terms

Abbreviations Descriptions (In French) Characteristics

CIV Communication intraventriculaire Cardiac malformation

CEC Circulation extracorporelle Treatment for cardiac failure

CIA Communication intraauriculaire Cardiac malformation

FC Fréquence cardiaque Cardiac frequency

IVRS Infection des voies respiratoires supérieures Virus responsible for respiratory distress

SOP Salle d’opération Operations

PO Per os (by mouth) Feeding

Figure 2.7 N-grams’s frequency distribution

for positive cases (Top 20 n-grams)

Figure 2.8 N-grams’s frequency distribution

for negative cases (Top 20 n-grams)
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Figure 2.9 Top 30 frequent n-grams overlapping respecting to both two classes

distribution.

2.3.3 Clinical Natural Language Representation Learning

There is no doubt about the effectiveness of neural word embedding. The study (Shi et al.,

2016) confirms that word2vec representation has been successfully used for various disease

classifications from medical notes. Especially for the French clinical notes, the study (Dynomant

et al., 2019) shows that word2vec and GloVec effectively embed the clinical notes. And, the

word2vec had the highest score on 3 out of 4 rated tasks (analogy-based operations, odd one

similarity, and human validation). In addition, studies (Agarwal et al., 2017; Li et al., 2018;

Zhang et al., 2017; Fodeh et al., 2019) confirm that conventional approaches bag-of-words

(BoW), term frequency-inverse document frequency (TF-IDF) have better performance than
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other deep learning techniques on a smaller corpus with long texts in clinical note corpus.

Therefore, we will evaluate the effectiveness of two conventional representation approaches,

including BoW, TF-IDF, and the word2vec neural embedding model.

2.3.4 Machine Learning Classifiers

The state-of-the-art machine learning-based NLP currently focuses on deep learning for clinical

notes (Pham et al., 2017; Rajkomar et al., 2018; Otter et al., 2020; Young et al., 2018;

Sheikhalishahi et al., 2019). For example, to predict cardiac failure, deep learning (Convolution

Neural Network-based) shows its exceptional performance, F1 score of 0.756, to the conventional

approach Random Forest (RF) with an F1 score of 0.674 (Liu et al., 2019b). And, study (Shi

et al., 2016) shows the best performance to predict multiple chronic diseases (cerebral infraction,

pulmonary infection and coronary atherosclerotic heart disease) by combining of word2vec and

deep learning with the average accuracy and F1 score exceeded 90%.

However, a large enough amount of data is needed to have a good generalization capability of

deep learning, while this data availability requirement is not always provided (Paleyes et al.,

2020). Especially, clinical notes in a language other than English, the challenge is more difficult

to mitigate (Névéol et al., 2018). Deep learning architectures generally work well for large

scale data sets with short texts while do not outperform conventional approaches (BoW) on

a smaller corpus with long texts in clinical note corpus (Li et al., 2018). Automatic methods

to extract New York heart association classification from clinical notes (Zhang et al., 2017)

confirm that the machine learning method, support vector machines (SVM) with n-gram features,

achieves the best performance at 93% F-measure. Also, study (Agarwal et al., 2017) proved the

achievement by combining the BoW and Naïve Bayes classifier on clinical notes for accessing

hospital readmission offering an area under the curve (AUC) of 0.690. This study confirms

that, with the small dataset, TF-IDF and BoW have better performance than other techniques on

coronary microvascular classification (Fodeh et al., 2019).
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Besides, logistic regression (LR) and generative Naïve Bayes perform better than the other

classifiers, particularly for small datasets. Several classifiers have been trained for short

text classification; it includes RF, Gaussian Naïve Bayes (GaussianNB), Multinomial Naïve

Bayes (MultimonalNB), LR, SVM and K-nearest neighbour. The experimental results from

(Maimon & Rokach, 2014; Wang et al., 2017) confirm that LR, and GaussianNB perform much

the better than the other classifiers. Moreover, study (Ng & Jordan, 2002) evaluated different

classifiers’ performance, including discriminative and generative learning approaches. And,

it also confirms that the discriminative LR algorithm has a lower asymptotic error, while the

generative Naïve Bayes classifier converges quickly.

Additionally, when the ratio value for the number of samples/number of words per sample is

small (< 1500), a small multilayer perceptron neural network (MLP-NN) that takes n-grams as

input performs better or at least as well as deep learning models Besides, an MLP-NN is simple

to define and understand, and it takes less computation time than sequence models. A detailed

explanation of using an MLP-NN in medical analysis can be seen from (Pasini, 2015).

Consequently, we implemented and compared all the above mentioned methods; the result of RF,

MultimonalNB, and SVM was less than 75% for accuracy. Again, the result shows that only LR,

GaussianNB and MLP-NN are comparable, and perform better than RF, MultimonalNB, and

SVM classifer. Therefore, in this study, we focus on three different machine learning classifiers,

including LR, GaussianNB, and MLP-NN.

2.4 Results

We did the analysis to select of proper neural network sizes and architectures (Hunter, Yu,

Pukish III, Kolbusz & Wilamowski, 2012). We have used the structure of an MLP-NN that

consists of L = 3 layers, where layer 1 is the input layer, layer 3 is the output layer, and layer

2 is the hidden layer. The total number of neurons in the hidden layer is Nt = 100 neurons.

To prevent the neural network from overfitting, we applied the dropout (Srivastava, Hinton,
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Krizhevsky, Sutskever & Salakhutdinov, 2014) with the probability of dropping out rate p=0.25,

and GlorotNormal kernel initializer (Glorot & Bengio, 2010).

We used the scikit-learn library (Pedregosa et al., 2011b) and Keras (Chollet, 2015) in Python to

implement our model. No preprocessing was required to deal with missing data. The data was

divided into 60% training, 20% validation, and 20% testing. To make our results more consistent,

we used the k-fold cross validation (k = 5) (Kohavi, 1995); each dataset was divided into k

subsets called folds, the model was trained on k − 1 of them and tested on the left out. This

process was repeated k times, and the results were averaged to get the final one. Furthermore, we

also employed the univariate feature selection with sparse data from the learning representation

feature space. This selection process works by selecting the best features based on univariate

statistical tests named SelectKBest algorithms, which removes all but the K highest scoring

features (K=20000).

To effectively assess the performance of our method, metrics including accuracy, precision,

recall (or sensitivity), and F1 score were used (Goutte & Gaussier, 2005). These metrics are

defined as follows:

Accuracy (acc) =
TP TN

TP TN FP FN
Precision (pre) =

TP
TP FP

Recall/Sensitivity (rec) =
TP

TP FN

F1-Score (f1) =
2�Precision�Recall

Precision Recall

where TN and TP stand for true negative and true positive, respectively, and they are the number

of negative and positive patients classified correctly. FP and FN represent false positive and

false negative, respectively, representing the number of positive and negative patients wrongly

predicted.
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2.5 Discussion

Table 2.3 presents the results of our method. First, among four experiments for dealing with

numeric values, experiment 3 yields the best performance. Encoding the decimal point into

a string “DOT" has helped the learning representation process retain the information from

numeric values. It is also interesting to mention that when we keep all numeric values and

do nothing (experiment 1), the results are worse than if we remove all the numbers and their

units (experiment 2). Experiment 4 confirms that if the numbers are extensively encoded, it will

negatively affect the result, lowering the performance.

The combination of TF-IDF and MLP-NN consistently outperforms other combinations with

overall performance and is the most stable in all circumstances. Without any feature selection,

the proposed framework yielded an overall classification performance with acc, pre, rec, and f1

of 85% and 84%, 85%, and 84%, respectively. Also, the representation matrix from the TF-IDF

above is sparse because every word is treated separately. Hence, the semantic relationship

between separated entities is ignored, which would cause information loss. Therefore, if the

feature selection (SelectKBest) was well applied and tuned, it could improve up to 3-4% for each

evaluation in the overall performance. Consequently, it achieves the best performance with 89%,

89%, 88%, and 88% for acc, pre, rec, and f1, respectively. And, the detailed confusion matrix

showing the classification of positive cases (1) and negative cases (0) is shown in Fig. 2.11.

Furthermore, with limited data, the BoW and TF-IDF have proven their capacity to better retain

information from the notes representation. It has been shown in (Wang et al., 2017) that the

TF-IDF has the highest accuracy compared to neural word embeddings in short text classification

(less than 20 words per sample). In our study, we could not increase our samples beyond 80

words per sample. However, our results show that the TF-IDF performs better than the neural

word embedding when used on short narratives (approximately 80 words per example in our

case). It is in agreement with the comparison discussed in (Wang et al., 2017). The difference

in performance was less significant in our case. One can expect the neural word embeddings to
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outperform others approaches, when the word number increases as shown in (Sahlgren & Lenci,

2016).

Besides, with the same learning presentation approach (BoW, TF-IDF, or neural word embed-

dings), the LR classifiers had better performance than GaussianNB classifiers. The results align

with the theoretical and experimental analysis from (Ng & Jordan, 2002; Perlich, Provost & Si-

monoff, 2003). LR performs better with smaller data sizes because it effectively approaches

its lower asymptotic error from the initial learning steps. However, MLP-NN models always

dominated with their best generalization. They have achieved their generalization capacity

because the misclassification probability can be reduced and trained closer to optimal points

that cannot be achieved with simple algorithms (Bartlett, 1998).

By applying the dropout (p=0.25) (Srivastava et al., 2014), GlorotNormal initializer (Glo-

rot & Bengio, 2010), and balancing the classes by using the Bayes Imbalance Impact Index (Lu,

Cheung & Tang, 2019), the classifier was successful in avoiding the overfitting. Primarily, Fig.

2.12 represents the Area Under the Curve (AUC) with respect to the epoch for the training and

validation. We can see that the classifier can achieve nearly 100% of separability of the two

classes during the training. The classier can achieve almost 90% of the separability during the

validation. The distance between the two curves does not change with the increasing epoch

number. And, the validation curve does not drop out to the growing epoch number. This

indicates the algorithm does not overfit.

We also tested with the model CamemBERT, which is specifically a transformer-based language

model for the french language (Martin et al., 2020). It is motivated by the success of

a Bidirectional Encoder Representations from Transformers (BERT) for natural language

understanding (Kenton & Toutanova, 2019). Unfortunately, the result was not as good as

expected; we could only achieve less than 60% accuracy, even though we applied the drop-

out technique as recommended from the study (Pasupa & Sunhem, 2016). We continued

investigating with the simpler Transformer, which is solely based on attention mechanisms
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through the connection of the encoder and decoder (Vaswani et al., 2017), and it is implemented

by Keras

The result has achieved a decent performance compared to advanced and complicated BERT-

based models. However, it is still far below the performance from the simple MLP-NN, where

the highest precision and recall are continually fluctuating at around 80% as shown in Fig.

2.13. Moreover, from the result of Fig. 2.13, we can conclude that the transformer-based

model underperforms in classification tasks for a small sample size, short of clinical NLP. This

conclusion is in agreement with the limitations identified and discussed in (Gao et al., 2021);

the authors have proved that the transformer-based model was well suited for understanding the

contextual meaning of a long sequence rather than understanding key words or phrases.

2.6 Conclusion

We have employed both learning representation and machine learning algorithms to tackle

the French clinical natural language processing for detecting cardiac failure in children at

CHUSJ. We have extensively conducted and analyzed a conceptual framework to detect a

patient’s health condition from the contextual input to the contextual output. Our numerical

results have confirmed the feasibility of the proposed design by combining TF-IDF and MLP-

NN; the proposed mechanism could also be improved with the feature selection from the

learning representation vector space. Consequently, the proposed framework yields an overall

classification performance with 89% accuracy, 88% recall, and 89% precision.

Secondly, we assumed that the numeric values significantly contribute to the classifier. Instead of

losing them, we addressed different decoding approaches for numeric values in our work. In our

case study, encoding the decimal point into a string “DOT” has helped the learning representation

process retain the information from the numerical values in clinical notes. Otherwise, it is

better to remove the numeric values rather than keep them without any encoding, or extensive

encoding.
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Finally, with the MLP-NN learning algorithm, we can train closer to optimal architectures, which

cannot be trained with simple algorithms (LR, GaussianNB, RF, MultinomialNB, and SVM).

Although BERT-based models are currently known as the state-of-the-art in natural language

processing tasks, the final results suggest that these Transformer-based methods perform less

effectively than existing alternatives.

One of the limitations is that the CDSS is still under development (in process currently). The

next step of our project is to create the CDSS to diagnose ARDS early by integrating this

NLP algorithm with the other algorithms on hypoxemia and chest X-Ray analysis. When the

integration is done in the PICU electronic medical infrastructure, we will validate the CDSS’s

ability to screen ARDS prospectively. Furthermore, future research should carefully consider

the potential effects of numerical values alongside unstructured notes. Ideally, an algorithm,

which can automatically extract and represent the numerical values from the clinical notes,

should be investigated for further validation. This may be a promising aspect of using a semantic

neural network to determine the boundaries and extract the numerical values from the text. And,

generative learning has a great potential for an evaluation (Dua et al., 2019).
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Figure 2.10 Visualization of terms distribution for both classes
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Table 2.3 Performance evaluation
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Figure 2.11 Confusion matrix of the MLP-NN classifier,

showing the classification of positive (Yes) and

negative (No) between predicted and actual labels

Figure 2.12 Area Under the Curve (AUC)

performance of MLP-NN
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Figure 2.13 Precision (left) and recall (right) performance based on the Transformer

configuration
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3.1 Abstract

When dealing with clinical text classification on a small dataset, recent studies have confirmed

that a well-tuned multilayer perceptron outperforms other generative classifiers, including deep

learning ones. To increase the performance of the neural network classifier, feature selection for

the learning representation can effectively be used. However, most feature selection methods only

estimate the degree of linear dependency between variables and select the best features based on

univariate statistical tests. Furthermore, the sparsity of the feature space involved in the learning

representation is ignored. Goal: Our aim is, therefore, to access an alternative approach to tackle

the sparsity by compressing the clinical representation feature space, where limited French

clinical notes can also be dealt with effectively. Methods: This study proposed an autoencoder

learning algorithm to take advantage of sparsity reduction in clinical note representation. The

motivation was to determine how to compress sparse, high-dimensional data by reducing the

dimension of the clinical note representation feature space. The classification performance of

the classifiers was then evaluated in the trained and compressed feature space. Results: The

proposed approach provided overall performance gains of up to 3% for each test set evaluation.

Finally, the classifier achieved 92% accuracy, 91% recall, 91% precision, and 91% f1-score

in detecting the patient’s condition. Furthermore, the compression working mechanism and
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the autoencoder prediction process were demonstrated by applying the theoretic information

bottleneck framework.

3.2 Introduction

Clinical decision support systems (CDSS) are continuously being developed and play a crucial

role in promoting a personalized healthcare system, as more and more data are collected and

stored continuously (Musen, Middleton & Greenes, 2021). These data represent decisive points

in advancing and enhancing the efficiency and effectiveness of CDSS operations. Predictive

models have been developed based on the latter for preventive treatment and patient diagnosis,

culminating in intelligent, precise, and timely healthcare improvement (Sutton et al., 2020).

In one notable example, a recent study (Gold et al., 2022) analyzed the effect of CDSS on

cardiovascular risk in 18,578 patients in 70 community health centers. In that case, CDSS

significantly reduced the risk of cardiovascular disease among vulnerable high-risk patients.

Figure 3.1 Workflow demonstration of a clinical

decision-support system at CHUSJ hospital
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Following the above successes, a CDSS was developed at CHU Sainte-Justine Research Center

(CHUSJ). The system monitors pediatric intensive care management for all patients ranging in

age from 0 to 18 years old. Fig. 3.1 illustrates two fundamental processes in the CDSS workflow

at CHUSJ, which involve collecting and processing critical care data. First, clinical data are

collected and stored in a clinical data warehouse. The data processing unit is then systematically

aggregated and processed to convert raw data to a machine-readable form in the data processing

unit. This process helps analyze the unknown data interpretation and presentation. The CDSS

can thus integrate the advanced analytic result of the data processing unit and learning algorithms;

then, clinicians can adequately use the CDSS to guide early intervention and prevention for

healthcare management.

Figure 3.2 The clinical NLP based on machine learning for patients’ condition prediction

at CHUSJ hospital

One of the goals of the CDSS system in CHUSJ is automatically screening the data from

electronic medical records, chest X-rays, and other data sources, which can increase the diagnosis

rate and improve the management of acute respiratory distress syndromes (ARDS) in real time.

Usually, the diagnosis of ARDS was delayed or missed in two-thirds of patients, and the diagnosis

was missed completely in 40% of patients (Bellani et al., 2016). Three main conditions need

to be detected to diagnose ARDS: hypoxemia (low blood oxygenation), presence of infiltrates

on chest X-Ray and absence of cardiac failure (Group et al., 2015). Our research team has

developed algorithms for hypoxemia (Sauthier et al., 2021), chest X-ray analysis (Zaglam et al.,
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2014; Yahyatabar, Jouvet & Cheriet, 2020), and identification of the absence of cardiac failure

(Le, Noumeir, Rambaud, Sans & Jouvet, 2022, 2021). Technically, it successfully carried out

extensive analyzes of machine learning algorithms (ML) aimed at detecting cardiac failure

from clinical narratives using natural language processing (NLP) based on such algorithms (Le

et al., 2022). The study’s design was to detect a cardiac failure in a patient’s first 24 hours of

admission using admission notes and evolution notes within the first 24 h. As summarized in

Fig. 3.2, the study included the clinical notes of 1386 patients classified by two independent

physicians using a standardized approach. Then, a comparative analysis was performed to

discover the effective combination of various representation learning techniques with different

machine learning classifiers. Consequently, it confirmed that the framework proposed herein

outperforms other combinations with an overall classification performance of 89% accuracy,

88% recall, and 89% precision by applying a multilayer perceptron neural network (MLP-NN)

classifier in combination with a term frequency x inverse document frequency (TF-IDF) learning

representation.

These results were made possible by the contributions of the feature selection process, also

known as SelectKBest. The advantage of the process was proven for supervised models as the

classifier performance brought overall improvements of up to 3-4% over the case without the

feature selection. It is obvious to understand because there are fewer misleading features; the

classifier accuracy is improved after selecting the best K features. Unfortunately, the SelectKBest

feature selection continues to have certain limitations in the proposed framework. One reason

is that the feature selection method is based on a statistical test that estimates the degree of

linear dependency between random variables. Then, it removes irrelevant features and ignores

the correlation between data elements. As a result, more samples are required for an accurate

estimation and avoidance of overfitting, which is not possible in our case (Jain & Singh, 2018).

Furthermore, SelectKBest does not deal mainly with the sparsity of the feature space in the note

representation matrix (Forman, 2003). Consequently, the sparsity that characterizes the learning

representation space is ignored.
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In healthcare, the autoencoder algorithm (AE) has lived up to its promises and has shown its

effectiveness in improving outcomes for efficient clinical decision-making. AE can find infor-

mative transformed feature vectors through the compressed latent representation. For example,

a study (Zhou, Jia & Motani, 2018) demonstrates an efficient framework for automatically

learning compact representations from heterogeneous raw data sources from patient health

data. In addition, AE can improve the predictability of the six different learning models to

detect Parkinson’s classification (Xiong & Lu, 2020). Another study (Kolyvakis, Kalousis,

Smith & Kiritsis, 2018) shows that AE improved the performance of a novel outlier detection

mechanism by retrofitting word vectors for the biomedical ontology matching task. In addition,

having rich and accurate clinical data is very challenging (Quiroz et al., 2019) because the

acquisition and sharing of medical data face a significant obstacle in the form of privacy

issues and the sensitive nature of the data. AE can be applied for sparsity reduction in clinical

representation feature to tackle problems related to limited data availability. It could effectively

discover the low dimensional embeddings and reveal the underlying effective manifold structure

from a sparse high dimensional document-term matrix (Leyli-Abadi, Labiod & Nadif, 2017).

Therefore, the present study examines alternatives to feature selection and focuses mainly on

compressing data without loss of information by employing an AE algorithm. First, the study

aims to achieve a better feature space without sparsity. The authors are interested in compressing

the sparse TF-IDF matrix and reducing its dimensions to improve the efficiency of the feature

space representation. Notably, a neural network is incorporated to learn efficient codings

of unlabeled data to address the issues caused by sparse vectors generated from the TF-IDF

representation feature space for clinical notes. Then, the compressed vector space from the

TF-IDF matrix is fed into the classifiers as a refined input. Finally, ML classifiers conduct the

learning process to draw comparative results, which are then used to evaluate the classification

performance.

Our study confirms that AE effectively compresses the vector space of the TF-IDF representation

for clinical narratives into a lower dimension. The proposed approach can retain the critical

feature by capturing the correlation between attributes during the training process, hence; the
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downstream classification task can generally be increased to 2-3% for each evaluation criterion.

Furthermore, the value of AE behaviors in a limited data set is also highlighted. The working

mechanism of the AE is analyzed and explained how the AE works to compress data through the

encoder and decoder. Based on the information-theoretic framework, the working mechanism of

the AE is to optimize the information bottleneck during the compression and prediction process,

respectively. As a result, the behavior of AE in limited data is exactly in harmony with such

cases where there is much larger data availability.

Section 3.3 will discuss the materials and methods. The experimental results and discussion

then will be discussed in section 3.4, 3.5. Finally, section 3.6 provides concluding remarks.

3.3 Materials and Methods

3.3.1 Data Sparsity Challenges

In numerical analysis, a sparse matrix or array is a matrix in which most elements are zero

(Hurley & Rickard, 2009). The number of zero-valued elements divided by the total number

of elements (e.g., m × n for a m × n matrix) is called the matrix sparsity (equal to 1 minus

the density of the matrix). Using these definitions, a matrix will be sparse when its sparsity

is more significant than 0.5. In our case, after the research ethics board approved the research

protocol from the Research Center of the Sainte-Justine Hospital, the data were retrospectively

extracted from the electronic medical record. There are more than 580000 (unigrams) word

count from 5444 single lines of notes with 1941 positive cases (36% of total) and 3503 negative

cases. All the notes are short narratives, and detailed description characteristics can be found

in the Supplementary Materials from (Le et al., 2022). The longest n-gram is over 400 words,

but most n-gram length distribution is between 50 and 125 words. The average length of the

number of characters is 601 and 704. And the average size of the number of digits is 25 and 26

for the positive and negative cases, respectively. Then, the data was pre-processed by applying

the stop-word removal to exclude the minor information. In addition, the negation in medical

expression was used to add the negative meaning from French notes. For the vital numeric
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values (heart rate, blood pressure, etc.), all numeric values for vital sign values were kept (nearly

4% of the notes), and the decoding for those number values was used to decode the numeric

values. Finally, the feature selection, SelectKBest, was used to select the top best ‘k=20000’ of

the vectorized features for the TF-IDF representation learning feature space. Hence, there is

a matrix of features of 5444 × 20000. It is calculated by the Eq. 3.1, and the sparsity of the

matrix is greater than 0.9.

It confirms that the representation matrix from the TF-IDF is sparse because every word is

treated separately. Hence, the semantic relationship between separated entities is ignored, which

would cause information loss. Although the combination of TF-IDF and MLP-NN consistently

outperformed other combinations with overall performance and was the most stable under all

circumstances (Le et al., 2022), the sparsity remains. Therefore, the motivation is to compress

the sparse, high-dimensional data by reducing the dimension from the TF-IDF feature space of

clinical notes representation

sparsity = 1 − count_nonzero(TF-IDF)

total_elements_of_(TF-IDF)
(3.1)

3.3.2 Autoencoder Learning Algorithm

An AE was originated by (Kramer, 1991) to solve a nonlinear dimensional reduction; later,

AE was famously promoted by training an MLP-NN with a small central layer to reconstruct

high-dimensional input vectors (Hinton & Salakhutdinov, 2006; Wang, Yao & Zhao, 2016).

Technically, AE takes an input X ∈ RN×D and maps it to a latent representation Z ∈ RN×M

via a nonlinear mapping. Let us call x ∈ X , and z ∈ Z, then it will be as:

z = gWx b (3.2)
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W is a weight matrix during training, b is a bias vector, and g· stands for a nonlinear function,

such as the logistic sigmoid function or a hyperbolic tangent function. The encoded feature

representation x is then used to reconstruct the input x by reverse mapping, leading to the

reconstructed input x′:

x′ = fW ′z b′ (3.3)

where W ′ is usually limited to the form of W ′ = W T , i.e., the same weight is used to encode the

input and decode the latent representation. f · is also a non-linear function. The AE tries to learn

a function fW ′,b′x ≈ x′. In other words, it is trying to learn an approximation of the identity

function for the output x′ that is similar to x. Still, by placing constraints on the network, such

as limiting the number of hidden units, interesting data structures can be discovered. Then, the

reconstruction error is defined as the Euclidean distance between x and x′ that is constrained to

approximate the input data x (that is, minimizing ||x − x′||2).

L
(
x, x′) =

∥∥∥x − x′∥∥∥2

=
∥∥∥x − fW ′ (

gWx b
)

b′∥∥∥2
(3.4)

For the reconstruction evaluation between the original data x, and the reconstructed output x′,

the statistical measure R2
i will be applied for the ith variable of xi, and it can be computed as:

R2
i = 1 −

m
j=1xj,i − x′

j,i
2

m
j=1 x2

j,i

(3.5)

Since R2 = 1 will be a perfect reconstruction. Consequently, the reconstruction will be evaluated

by how much the value of R2 is close to 1.
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Figure 3.3 Schematic structure of an AE-based

for compression and prediction

Ideally, an effective AE can be designed and trained based on the minimization of reconstruction

error from Eq. 3.4 and maximization of the reconstructed effectiveness from Eq. 3.5; however, it

is substantially based on its width (number of neuron units or latent representation dimension M )

and its depth (number of hidden layers). First, conventional AE relies on the dimension of the

latent representation z being smaller than that of the input x (M < D), which means that it tends

to learn a low-dimensional compressed representation. The study (Garg & Liang, 2020) presents

methods to learn the decoder function f · as a learnable function through the reconstruction error

in Eq. 3.4 in several representation learning approaches. It is concluded that the compression

depends on dimension M but less on dimension D. Second, it has been shown that training a

neural network-based by increasing the number of hidden layers (in combination with an increase

in the number of neuron units per layer) achieves less consistent results (Steinmeyer & Wiese,

2020). Therefore, a small and simple AE will be used in our case. An AE with three layers

(one input layer, one hidden layer, and one output layer) is employed. Mainly, to reduce the

parameters from the latent space of the AE, the regularization technique is applied from study

(Shi, Lei, Ma & Niu, 2019) to remove redundant parameters.
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After training, the weight matrix from the hidden layer as a pre-trained tool is used. A classifier

subsequently uses this pre-train latent space representation to perform the binary classification,

as shown in Fig. 3.3. For the classifiers, it is essential to have consistency in evaluating

the proposed approach’s performance. Then, six different ML classifiers, including Random

Forest (RF), Multinomial Naive Bayes (MultinomialNB), Logistic Regression (LR), Support

Vector Machine (SVC), Gaussian Naive Bayes (GaussianNB), and Multilayer Perceptron Neural

Network (MLP-NN) are used.

Furthermore, to understand the dynamics of learning and the behavior of AE, particularly in

our case with limited data, the behavior of AE during the training process from the encoder

and decoder is analyzed. Technically, it is captured to understand how the AE can retain the

information during the compression process. To do that, the information-theoretic quantities

and their estimators are applied. The technique is based on information-theoretic learning,

which computes and optimizes information-theoretic descriptors named mutual information.

The information-theoretic framework (Yu & Principe, 2019; Tapia & Estévez, 2020; Lee & Jo,

2021) has been utilized for a detailed theoretical explanation of an AE. These studies rely on

the “information bottleneck” (Tishby, Pereira & Bialek, 2000; Shwartz-Ziv & Tishby, 2017) to

understand and estimate how the AE works by quantifying its information plane coordinates.

The information bottleneck can be used as an optimal bound that maximally compresses the

input x, for a given mutual information on the desired output x′. There are comprehensive

overviews of recent studies (Geiger, 2021; Geiger & Kubin, 2020; Alomrani, 2021). Technically,

the output activation is firstly binned as stated in (Shwartz-Ziv & Tishby, 2017), and each

hidden layer i (1 ≤ i ≤ K) is treated as a single variable Ti. Then it will be able to estimate

the mutual information between all the hidden layers and the input/output layers by estimating

the joint distribution PX, Ti and PTi, X ′, and use them to calculate the mutual information of

the encoder (between the input X and the hidden layer Ti), and the mutual information of the

decoder (between the hidden layer Ti and the desired output X ′) using the following equations

Eq. 3.6, 3.7. Finally, the good representation TX can be learned, which is characterized by its
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encoder and decoder distribution PT |X , and PX ′|T , respectively, to effectively map the input

patterns X to a good prediction of the desired output X ′.

IX; Ti =
x∈X,t∈Ti

Px, t log
( Px, t

PxPt

)
(3.6)

ITi; X ′ =
t∈Ti,x′∈X ′ Pt, x′ log

( Pt, x′

PtPx′
)
. (3.7)

3.4 Experimental Implementation

To assess the performance of our method, metrics including accuracy, precision, recall (or

sensitivity), and F1 score were used (Goutte & Gaussier, 2005). These metrics are defined as

follows.

Accuracy (acc) =
TP TN

TP TN FP FN
Precision (pre) =

TP
TP FP

Recall/Sensitivity (rec) =
TP

TP FN

F1-Score (f1) =
2�Precision�Recall

Precision Recall

where TN and TP stand for true negative and true positive, respectively, and are the number of

negative and positive patients correctly classified. FP and FN represent false positives and false

negatives, respectively, and represent the number of positive and negative patients incorrectly

predicted.
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For implementation, the same hyperparameters are used as from the previous study (Le et al.,

2022) for all classifiers to have a consistent evaluation of the performance: avoiding overfitting

by applying the dropout (p=0.25) (Srivastava et al., 2014), and the GlorotNormal initializer

(Glorot & Bengio, 2010); balancing the classes by using the Bayes Imbalance Impact Index (Lu

et al., 2019) to deal with the imbalanced classes. The data was also divided into 60% training,

20% validation, and 20% testing. The implementation was done using Python Scikit learn

(Pedregosa et al., 2011a) and Keras (Chollet, 2015).

There is a tradeoff between the guarantee to identify the best combination of hyper-parameters and

the computation time. And, for training a neural network, usually, only some hyper-parameters

matter. The others have little impact on the machine learning model’s accuracy. Based on the

study (Luo, 2016), there are three essential hyper-parameters, including the number of hidden

layers, the number of nodes on each hidden layer, and the learning rate for the backpropagation

algorithm. With this limited range of hyper-parameters, the grid search will quickly become

feasible to optimize every parameter simultaneously, including the cross-product of all intervals.

Then, the models can be trained quickly. Further advantages of grid search include easier

parallelization and flexible resource; the equivalent does not hold for Bayesian optimization

(Yu & Zhu, 2020). Therefore, this study used grid search for up to three hidden layers and

500 neurons per layer, and other hyperparameters are summarized in Table 3.1 for AE training.

For the optimizers, the Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation

(ADAM) was used with small scalar ε, and the forgetting factors for gradients and second

moments of gradients, β1 and β2. Then, a combination with the highest estimations was

considered the best performance.

3.5 Results and Discussion

To deal with sparsity, many researchers focus on dimension reduction. There are two most

popular techniques, namely Linear Discriminant Analysis (LDA) and Principal Component

Analysis (PCA), for their simplicity among other dimension reduction techniques (Anowar,

Sadaoui & Selim, 2021), even with a large dataset (Reddy et al., 2020). Especially when the
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Table 3.1 Summary of Hyperparameters

Hyperparameter Ranges
Hidden layers 1-3

Neurons 100-500

Activation Sigmoid

Kernel initializer GlorotNormal

Optimizers SGD, ADAM

Learning rate 0.001 - 0.01

β1 0.9

β2 0.999

ε e−8 - e−7

training data set is small, and the PCA-supervised discriminative approach can outperform, it

is also less sensitive to the variability of the training sets (Martinez & Kak, 2001). The study

(Gárate-Escamila, El Hassani & Andrès, 2020) shows that PCA can increase the performance of

different ML classifiers for predicting cardiac failure.

It can be said that the classifiers performed better after applying LDA to the linear data set. If the

classes are non-linearly separable, the LDA cannot effectively discriminate between these classes

(Tharwat, Gaber, Ibrahim & Hassanien, 2017). Otherwise, in the case of linear data, LDA can

reduce the dimensionality and be used in different classification tasks (Ghosh & Shuvo, 2019).

However, the TF-IDF enhanced with the LDA approach did not allow the classifier to score high

accuracy compared to the other two methods when smaller datasets were fed (Dzisevič & Šešok,

2019). One of the reasons was explained in (Reddy et al., 2020); the results showed that ML

algorithms with PCA produce better results when the dimensionality of the data sets is high.

When the dimensionality of datasets is low, the ML algorithms without dimensionality reduction

yield better results. Another possible way is using an unsupervised generative Latent Dirichlet

allocation to estimate the topic distribution (topics) by using observed variables (words). Latent

Dirichlet allocation shows the effectiveness of overcoming the sparsity from the feature space

matrix of TF-IDF (Kim & Gil, 2019). It can also help to make texts more semantically focused

and reduce sparseness (Chen, Yao & Yang, 2016). However, its selection of characteristics does

not improve performance with small data (Fodeh et al., 2019).
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Table 3.2 A comparison performance of feature selection approaches

Feature selection Accuracy Precision Recall F1

SelectKBest (Le et al., 2022) 0.89 0.89 0.88 0.88

PCA 0.88 0.88 0.86 0.87

NCA 0.89 0.88 0.89 0.88

The possibility of PCA for sparsity reduction was explored because of the advantages mentioned

above. The training was tuned and performed, and the best performance was achieved by

decreasing to 2 principal dimensions. The completed test has an accuracy of 88%, a precision

of 88%, a recall of 86%, and an f1-score of 87%. Furthermore, following the recommendation

of (Laghmati, Cherradi, Tmiri, Daanouni & Hamida, 2020), a statistical method, Neighborhood

Component Analysis (NCA) (Goldberger, Hinton, Roweis & Salakhutdinov, 2005), was also used

to reduce the dimensions of the data set. NCA has shown that it works well on a small dataset

for the medical domain. However, the result is slightly better than PCA; NCA only achieves

an accuracy of 89%, a precision of 88%, a recall of 89%, and an f1-score of 88%. From Fig.

3.4, 3.5, it can be easily seen the features overlap; hence, the classification task hardly separates

the boundary for the binary classification. Neither PCA nor NCA can improve classification

performance summarized in Table. 3.2. It confirms the limitation of these approaches by linearly

approximating a feature subspace to maximize class separability.

Furthermore, the non-linear activation function AE performs best on compression of the sparse

TF-IDF representation space. This study compares the effectiveness of reconstruction based on

the reconstruction evaluation from Eq. 3.5 between PCA, linear activation function AE (LAE),

AE, and stacked AE (SAE) (Gehring, Miao, Metze & Waibel, 2013). The results confirm that the

PCA and LAE have the same performance, achieving about 80% of the reconstruction. When

the activation of AE is linear, then PCA and LAE are identical. There is no improvement if

the SAE is used to extract the features in cases of limited data. Besides, the effectiveness of

non-linear activation in AE is proved when it can maximally reconstruct up to 86% compared to

the original spare data. It is one of the advantages of nonlinear transformation from AE, trained

by a neural network, which is superior to the linear transformation from other approaches.
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Figure 3.4 Visualization of the representation space

for 2 components from Principle Component Analysis (PCA)

Figure 3.5 Visualization of the representation space

for 2 components from Neighborhood Component Analysis (NCA)
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Figure 3.6 Loss for training and validation

for the AE algorithm

Overall, the downstream classification performances are effectively improved by feeding the

compressed feature space output from the AE to ML classifiers. Fig. 3.6 shows the loss during

the training and validation process by optimizing the loss function from Eq. 3.4 for training

the AE; both training and validation losses have quite-smooth convergence. After successfully

training the AE, there is a pre-trained compressed, low-dimension feature space. Then, machine

learning classifiers are employed to perform the classification and evaluate the performance.

Instead of performing on MLP-NN, LR, and GaussianNB, it is also tested with other classifiers

such as Random Forest (RF), Multinomial Naive Bayes, and Support Vector Machine. The best

performance from MLP-NN classifier is achieved at 92%, 91%, 91%, and 91%, respectively,

for accuracy, precision, recall, and f1 score. And the detailed confusion matrix showing the

classification of positive cases (1) and negative cases (0) between predicted and actual labels for

the holdout set is shown in Fig. 3.7. The experimental results are improved to 2-3 % for each

evaluation criterion from (Le et al., 2022), which had a general classification performance in a

sparse TF-IDF feature space at 89% accuracy, 89% precision, 88% recall, and 88% f1 score. It

confirms that the AE method can deal with sparsity by compressing the TF-IDF feature space.

Consequently, it improves the downstream task performance of the MLP-NN classifier and is

more robust than other methods. Recent work (Mienye, Sun & Wang, 2020) also confirmed a

similar effect, but it was applied to a different dataset type and larger data availability. These

results confirm the effectiveness of compressing the feature representation learning space into a
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low-dimensional representation using the AE algorithm. The robust transformation can outplay

the deep learning models with limited data resources.

Cross-validation was further used to accurately estimate the model’s predictive performance and

determine the reliability of ML algorithms (Arlot & Celisse, 2010). Fig. 3.8 shows the accuracy

comparison, using a box plot, of the 5-fold cross-validation. It can be seen that the best three

classifiers are MLP-NN, LR, and GaussianNB, respectively. All their median accuracy is over

80%; mainly, the MLP-NN classifier’s median accuracy is the highest, over 90%. While there is

not much difference between LR and GaussianNB, the median accuracy is around 82-83%. In

addition, MultinominalNB, RF, and SVC follow right after as the three most minor performances,

respectively, with median accuracy lower than 75%. Second, although the models’ performance

is assumed that the returns of accuracy follow a normal distribution, in reality, the returns are

usually skewed. Notably, there is two skewness of the accuracy distribution for all classifiers.

There is a negatively skewed distribution (skewed left) from the MLP-NN, LR, and RF, which

may expect frequent smaller accuracy than their median in practice. In contrast, it should be

expected to have higher accuracy than the median from the GaussianNB, MultinominalNB, and

SVC because they all have positively skewed distribution (skewed right). Lastly, the dispersion

distribution for most classifiers’ accuracy is quite similar because the variability range contains

all the smallest and largest accuracy values at the end of the whiskers. However, there is an

exception for the LR and MultinomialNB classifiers, which have values outside the box plot’s

whiskers. It means that the two classifiers are less stable and reliable. In short, MLP-NN gives

the best performances because of its high and stable accuracy for the model generalization

validation; GaussianNB follows right after; LR is comparatively similar to GaussianNB. And all

other classifiers are less effective.

Furthermore, an important aspect of performance analysis is that the proposed approach still

shows its advantageous capacity to increase data availability. The study investigated the

effectiveness of AE for compressing feature space and studied how algorithm performance varies

with the increasing of training examples from the compressed feature space. The performance of

two classifiers, GaussianNB and MLP-NN, was assessed to evaluate their effectiveness. When it
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Figure 3.7 Confusion matrix of the MLP-NN classifier,

showing the classification of positive (1) and

negative (0) between predicted and actual labels

Figure 3.8 A comparison evaluation of the box plot 5-fold cross-validation

results for classifiers performance.

possibly increases data availability in the future, whether the classifier improves performance or

not. In this case, study (Ng & Jordan, 2002) confirms that when the number of training examples
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Figure 3.9 Performance of classifiers in case of increasing the training size: GaussianNB

(left) and MLP-NN (right)

increases, the generative model based on Naive Bayes would expect to perform better. However,

our results are in contrast to that confirmation. Fig. 3.9 shows the GaussianNB (left) and

MLP-NN (right) training and validation scores when increasing the number of training examples.

Technically, the GaussianNB reaches a plateau of performance after around the 2000th training

examples with the same dataset size, and the cross-validation score could not improve. It should

be expected that this is one of the limitations of GaussianNB, namely the linear discrimination

characteristic for a real-world dataset, discussed in (Xue & Titterington, 2008). In contrast, the

MLP-NN shows improvement with the increasing size of the dataset. Its cross-validation score

gradually increases from the point at 500th to the 2500th training examples; especially, the slope

shows no signs of decreasing after reaching the maximum number of the training example. In

short, GaussianNB shows improvement, but not as much as the MLP-NN, and reaches a plateau

more quickly. It can be confirmed that our approach with MLP-NN is still applicable when data

is possibly increased and continually improves its classification performance.

Moreover, the behavior of AE in limited data is in harmony with more significant data cases

based on the information-theoretic framework. The behavior of AE was analyzed, and the

technique was based on an information-theoretic framework, as mentioned in Eq. 3.6, and 3.7.



72

It aims at understanding how the AE behaves during the compression process by analyzing

the mutual information of each hidden layer from the encoder and decoder. Generally, this

type of analysis has been performed for a larger data set and has mainly focused on other data

sources compared to our case; such as computer vision (Viola & Wells III, 1997), medical

imaging (Pluim, Maintz & Viergever, 2003), and genetics (Olsen, Meyer & Bontempi, 2008).

The analysis for two AE models was performed concerning various hidden layers (three hidden

layers and five hidden layers). As shown in Fig. 3.10, there are two phases of the information

plane in each hidden layer of the three-layer and five-layer cases. It is noted that from left to right,

it illustrates the behavior of each hidden layer. And in each hidden layer, from top to bottom, it

captures the mutual information for each training epoch. Finally, all trajectories follow a similar

path during the learning process, eventually converging and getting closer to the optimal points

in the bottleneck bound.

Specifically, it can be divided into two phases for the working mechanism of AE in Fig. 3.10.

The first phase is called the drift phase, where the AE attempts to learn the latent representation

TX with a smaller dimension than the original data X . During the compression, there will be

information loss, which is why it can be seen the trend of decreasing the mutual information of

encoder IX; T . At the end of this step, there will be a compressed latent representation TX ,

and optimal mutual information IX; T . Then, the second phase is named the diffusion phase.

Within this step, the AE tries to find the reconstructed data X ′, which is optimally close to the

original data X . The AE maps the latent representation TX to the reconstructed data X ′ by

maximizing the mutual information of the decoder IT ; X ′. By doing that, there is an increasing

trend of IT ; X ′; until IT ; X ′ reaches its optimal bound for each layer. And the optimal mutual

information will get smaller when AE has more hidden layers. In the case of three hidden layers,

the optimal mutual information of the encoder IX, T is larger by 6.0 but is maximum at 5.5

for five hidden layers. It is the same for the optimal mutual information of the decoder IT, X ′

at nearly 7.0 and 6.5 for three and five hidden layers, respectively. These results illustrate the

mechanism of an AE is to optimize the information bottleneck trade-off TX during compression

and prediction for each layer. Remarkably, it is trained on a small and sparse dataset; still,
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it proves its effectiveness by compressing and maximizing the mutual information from the

TF-IDF feature space.

Figure 3.10 The evolution of the layers with epochs in the information plane for three

hidden layers (left) and five hidden layers (right)

3.6 Conclusion

First, this study has shown that the participation of an AE in training can effectively compress

the feature space of TF-IDF. The AE with a nonlinear activation function can achieve the

reconstruction capacity at 86% compared to the original data. It outperforms other approaches

such as PCA, NCA, LAE (AE with linear activation function), and stacked AE. It concludes that

AE can learn the best representation of the training data due to its lossless compression capacity.

Additionally, the AE also works well with a small clinical dataset, especially in harmony with the

information-theoretic mechanism of an AE for a larger dataset and from different data sources.

It has two learning phases; the encoder’s drift phase by trying to compress the data. The second

phase is related to the diffusion phase by maximizing the mutual information process in the

decoder. Consequently, it shows the effectiveness of lost information in compressing the data.
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By doing so, the interpretability can also be captured as comprehensibility and transparency of

the proposed model for decision-making in our CDSS system recommended by (Rudin, 2019).

The second step involves using an MLP-NN to predict the health status based on the compressed

feature space. It has been shown that the sparsity reduction for the feature space strongly affects

the classifier performance in the downstream task. AE learning algorithm effectively leverages

the sparsity reduction. As a result, it helps the MLP-NN classifier achieve 92% accuracy, 91%

recall, 91% precision, and 91% f1-score. This efficient ensemble model can outperform all

alternative approaches: GaussianNB, LR, RF, MultimonialNB, and SVC.

The proposed approach is still proving successful in cases where data availability is increased.

The MLP-NN effectively achieves a better performance after the GaussianNB reaches its

maximum capacity. In future work, the optimal parameters will be chosen, and our method will

be validated on more datasets. The weak supervision approach will be explored, as it recently

proved its effectiveness in 4,000 cardiac magnetic resonance sequences with imperfect labels

(Fries et al., 2019); because it can maximize unlabeled data at scale, which is costly to annotate.

Finally, the CDSS is still under development. By combining this NLP algorithm to detect

the absence of heart failure with the two other algorithms already developed on hypoxemia

detection (Sauthier et al., 2021) and chest X-ray analysis (Zaglam et al., 2014; Yahyatabar

et al., 2020), the next step of our study is to implement the resulting CDSS (integration of the

three algorithms) within the cyberinfrastructure of the pediatric intensive care unit (PICU) at

Sainte-Justine Hospital to diagnose ARDS early. We will then verify the ability of the CDSS to

detect ARDS prospectively once the integration with the PICU e-Medical infrastructure will be

completed.
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4.1 Abstract

In recent years, Transformer-based models such as the Switch Transformer have achieved

remarkable results in natural language processing tasks. However, these models are often too

complex and require extensive pre-training, which limits their effectiveness for small clinical text

classification tasks with limited data. In this study, we propose a simplified Switch Transformer

framework and train it from scratch on a small French clinical text classification dataset at CHU

Sainte-Justine hospital. Our results demonstrate that the simplified small-scale Transformer

models outperform pre-trained BERT-based models, including DistillBERT, CamemBERT,

FlauBERT, and FrALBERT. Additionally, using a mixture of expert mechanisms from the

Switch Transformer helps capture diverse patterns; hence, the proposed approach achieves better

results than a conventional Transformer with the self-attention mechanism. Finally, our proposed

framework achieves an accuracy of 87%, precision at 87%, and recall at 85%, compared to

the third-best pre-trained BERT-based model, FlauBERT, which achieved an accuracy of 84%,

precision at 84%, and recall at 84%. However, Switch Transformers have limitations, including

a generalization gap and sharp minima. We compare it with a multi-layer perceptron neural

network for small French clinical narratives classification and show that the latter outperforms

all other models.
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4.2 Introduction

Recent advancements in deep learning have led to the development of Transformer models

(Vaswani et al., 2017), which have shown remarkable performance in various natural language

processing (NLP) tasks (Tripathy et al., 2021). As a result, there is a growing interest in

applying Transformer-based models to clinical applications, such as predicting disease risk

(Huang et al., 2022), identifying disease (Ilias & Askounis, 2022), and improving clinical

decision-making (Meng, Speier, Ong & Arnold, 2021). These models can be trained on

various data sources, including electronic health records (EHRs) (Meng et al., 2021; Blanco,

Pérez & Casillas, 2021; Li et al., 2022b), medical imaging (Deng et al., 2022; Li et al., 2022a;

Mondal, Bhattacharjee, Singla & Prathosh, 2021), electrogram (Phan et al., 2022; Lu et al.,

2022), and genome (Clauwaert & Waegeman, 2020; Huang, Nie, Ni, Luo & Wang, 2020) to

extract clinically relevant information and provide accurate predictions. Overall, Transformer

models present a powerful tool for clinical applications and can potentially play an increasingly

important role in healthcare.

In clinical NLP, Transformers-based models have shown great promise in clinical narrative

classification. In this context, clinical narrative refers to patient encounters in EHRs or other

clinical documentation. Using Transformers-based models, researchers and clinicians can

develop algorithms that automatically classify these narratives based on different criteria, such

as diagnosis, treatment, or patient outcomes. This can help streamline clinical workflows

and improve patient care by providing more accurate and efficient clinical data processing.

Some examples of successful applications of Transformers-based models for clinical narrative

classification include identifying clinical coding (López-García, Jerez, Ribelles, Alba & Veredas,

2021, 2023), diagnosing health conditions (Roitero, Portelli, Popescu & Della Mea, 2021;

Mugisha & Paik, 2022; Rizwan et al., 2022; Kjell, Sikström, Kjell & Schwartz, 2022), and

detecting clinical events (Althari & Alsulmi, 2022; Kim et al., 2023; Yang, Bian, Hogan & Wu,

2020). As such, Transformers-based models have become an increasingly important tool in

clinical NLP and are likely to continue playing a significant role in this field (Zhou, Yang,

Shi & Ma, 2022).
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Despite their many benefits, Transformers-based models for clinical text classification have

some limitations that must be considered. One major challenge is the need for large amounts

of annotated clinical data to train these models effectively. Clinical data is often scarce and

sensitive, which makes it challenging to obtain and annotate in a way that preserves patient

privacy (Gao et al., 2021). Additionally, clinical language is highly specialized and can vary

significantly across different specialties and regions, making it difficult to develop models

that generalize well across different contexts (Bear Don’t Walk IV, Sun, Perotte & Elhadad,

2021). There is a risk of bias in the data used to train these models, leading to errors or

disparities in the predictions made (Alimova, Tutubalina & Nikolenko, 2021). Furthermore, the

computational requirements of Transformer-based models can be pretty high, which can limit

their use in resource-constrained settings where computational resources are limited (Gillioz,

Casas, Mugellini & Abou Khaled, 2020). Finally, the interpretability of these models can be

limited, making it difficult for clinicians to understand how they make their predictions and

trust their outputs (Rudin, 2019; Tonekaboni, Joshi, McCradden & Goldenberg, 2019). While

Transformers-based models have great potential for clinical text classification, they also require

careful attention to their limitations and the potential biases that can arise.

• Computational requirements: If a model lacks the necessary computational capacity, its

training efforts will fail, regardless of the learning algorithm’s sophistication or the training

data’s quality (Bhattamishra, Patel & Goyal, 2020). This can be a limiting factor for smaller

clinical text or resource-constrained settings.

• Data requirements: Transformer-based models require large amounts of labeled data for

training, which may not be available for some clinical text classification tasks, especially for

rare or low-frequency conditions (Zeng, Linwood & Liu, 2022).

• Domain-specific language: Clinical text is highly domain-specific and contains jargon and

abbreviations that may not be covered by general language models such as Transformers.

This can lead to suboptimal performance on clinical text classification tasks (Gu et al., 2021).

• Interpretability: Transformer-based models are highly complex and difficult to interpret,

making it challenging to understand how the model makes predictions, which is essential for

clinical decision-making (Zafar et al., 2021).



78

Figure 4.1 French clinical note at CHUSJ illustration

by using Scattertext visualization
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Another significant limitation of using Transformer-based models for clinical text classification

is that they may not perform as well for languages other than English and that are in limited

availability. Most Transformer-based models have been developed and trained on English-

language text, and their performance may suffer when applied to other languages (AlShuweihi,

Salloum & Shaalan, 2021). This is particularly important in the clinical context, where patient

data can be collected in many languages. Another challenge is that clinical datasets are often

small and imbalanced, making it difficult to train accurate models using Transformer-based

(Névéol et al., 2018). Small datasets can also lead to overfitting, where the model performs

well on the training data but fails to generalize to new data. When there is insufficient data,

the Transformer model does not learn to focus on local features in the lower layers of the

network. This may result in reduced model performance, as it cannot effectively capture relevant

information from the input data (Raghu, Unterthiner, Kornblith, Zhang & Dosovitskiy, 2021).

Overall, while Transformer-based models offer many advantages for clinical text classification,

their effectiveness is influenced by the data’s language and the training dataset’s size and quality.

This study aims to overcome the challenges of using Transformer-based models for clinical text

classification for a small French clinical note by employing the Mixture-of-expert (MoE) frame-

work from the recent Switch Transformer model developed by Google (Fedus, Zoph & Shazeer,

2021). Switch Transformer is an extension of the Transformer architecture motivated by the

original model’s self-attention mechanisms. Still, it uses an MoE mechanism to address the

limitations of the conventional Transformer (Vaswani et al., 2017). A key technical difference

between Switch Transformers with an MoE mechanism and Transformers with self-attention

is how they handle the modeling of complex input-output relationships. An example of the

effectiveness of MoE has been proven by (Xue et al., 2022); that study shows that the approach

of using parameter sharing to compress along the depth of the model, which is used in existing

works, is limited in terms of performance. To improve the model’s capacity, the authors propose

scaling along the model’s width by replacing the feed-forward network with an MoE. This allows

for better modeling capacity and potentially better performance.
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Additionally, the study (Lazaridou et al., 2021) suggests that simply increasing the model’s

size is insufficient to address the issue of performance degradation over time from neural

language models. However, the researchers found that using models that continuously update

their knowledge with new information can help alleviate this problem. While Transformers

with self-attention model these relationships through a single attention mechanism that captures

dependencies between all input and output positions, Switch Transformers with an MoE

mechanism decompose the problem into smaller, simpler sub-problems, each handled by a

different “expert" model. In other words, instead of using a single global attention mechanism,

Switch Transformers employ multiple local attention mechanisms focusing on different input

aspects. The gating mechanism used in Switch Transformers selects which expert model to use

for a given input, depending on the context. Therefore, this approach can potentially improve the

modeling of complex input-output relationships and increase the model’s efficiency, especially

when dealing with complex data from the clinical domain. This is particularly important in

clinical data, where information is often conveyed through complex and nuanced language. By

employing this approach, our study aims to improve the accuracy and generalizability of clinical

text classification models for small datasets in languages other than English. We have made

several significant contributions to clinical text classification using Transformer-based models.

• First, our study demonstrates a comprehensive implementation of a simplified Switch

Transformer model from scratch. This would allow other researchers to understand and

replicate the methodology used in the study, which is essential for building on and advancing

this work.

• Second, our study provides experimental evidence showing the limitations of Transformer-

based models in terms of generalization gap and sharp minima. This highlights the importance

of carefully selecting and preprocessing the data used to train these models to avoid overfitting

and improve generalization performance.

• Finally, our study illustrates the interpretable output of the model by adapting the Integrated

Gradients (IG) (Sundararajan, Taly & Yan, 2017). It provides a way to attribute importance

to the input features of a model, allowing clinicians and researchers to gain insight into how

the model is making its predictions.
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This study significantly contributes to developing accurate and interpretable clinical text

classification models and sheds light on the limitations and challenges of using Transformer-

based models in this context. By leveraging the MoE technique, this approach offers a promising

solution to the problem of small datasets in clinical text classification, enabling the practical

adaptation of Transformer-based models to real-world clinical data. The MoE allows the model

to learn from multiple experts, each specialized in different aspects of the data, and to combine

their outputs to achieve improved performance. Furthermore, a Transformer-based model

provides a powerful tool for capturing the complex relationships between words and phrases

in clinical text. However, our proposed method underperforms compared to a smaller and

simpler framework that combines statistical representation learning with term frequency-inverse

document frequency and multilayer perceptron network. Despite this limitation, our work

demonstrates the potential of combining MoE with Transformer-based models to overcome data

limitations and improve the accuracy and interpretability of clinical text classification models,

which could have a significant impact on clinical decision-making.

This paper is organized as follows. Section 4.3 will discuss the materials and methods. Then,

the experimental results and discussion will be discussed in section 4.4, and 4.5, respectively.

Misclassification cases will be discussed in section 4.6. Finally, section 4.7 provides concluding

remarks.

4.3 Materials and Methods

4.3.1 French Clinical Data at CHUSJ

The clinical decision support system (CDSS) system in the CHU Sainte Justine (CHUSJ) hospital

aims to improve the diagnosis and management of acute respiratory distress syndromes (ARDS)

in real-time by automatically screening data from electronic medical records, chest X-rays, and

other sources. Previous studies have found that the diagnosis of ARDS is often delayed or missed

in many patients (Bellani et al., 2016), emphasizing the need for more effective diagnostic

tools. Three main conditions must be detected to diagnose ARDS: hypoxemia, chest X-ray
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infiltrates, and absence of cardiac failure (Group et al., 2015). The research team at CHUSJ has

developed algorithms for detecting hypoxemia (Sauthier et al., 2021), analyzing chest X-rays

(Zaglam et al., 2014; Yahyatabar et al., 2020), and identifying the absence of cardiac failure. In

addition, the team has performed extensive analyses of machine learning algorithms for detecting

cardiac failure from clinical narratives using natural language processing (Le et al., 2022; Le,

Noumeir, Rambaud, Sans & Jouvet, 2023c). Implementing these algorithms could increase

ARDS diagnosis rates and improve patient outcomes.

This study was conducted following ethical approval from the research ethics board at CHUSJ;

and, the study’s design focused on identifying cardiac failure in patients within the first 24 hours

of admission by analyzing admission and evolution notes during this initial period. Therefore,

we conducted a retrospective analysis of EHRs from the Research Center of CHUSJ in this

study. The dataset consisted of 580,000 unigrams extracted from 5,444 single lines of short

clinical narratives. Of these, 1,941 cases were positive (36% of the total), and 3,503 cases were

negative. ScatterText (Kessler, 2017) was utilized to visualize the notes and identified over

580,000 unigrams (n-grams), as depicted in Fig. 4.1. The visualization showcases the most

frequent words for positive cases in the upper right corner, negative cases in the lower-left corner,

and less frequent words for both cases in the center. The top terms for positive and negative

cases are also presented on the right-hand side. Upon inspection, we observed that most top

terms for positive cases were positively related to cardiac malfunction, such as milrinone or

milri (milrinone), and aorte or aortique valve (aortic valve). In contrast, terms like respiratoire

(respiratory), détresse respiratoire (distress respiratory), and 02 (oxygen) indicated respiratory

syndromes in negative cases. While the longest n-gram was over 400 words, most n-grams

had a length distribution between 50 and 125 words. The average length of the number of

characters was 601 and 704, and the average size of the number of digits was 25 and 26 for the

positive and negative cases, respectively. We pre-processed the data by removing stop-words

and accounting for negation in medical expressions. Numeric values for vital signs (heart rate,

blood pressure, etc.) were also included and decoded to account for nearly 4% of the notes that
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contained these values. All the notes are short narratives; detailed characteristics can be found

in the Supplementary Materials from (Le et al., 2022).

Figure 4.2 Workflow demonstration of the proposed methodology

to classify French clinical narratives at CHUSJ hospital

4.3.2 Language Models for Clinical Narratives

This manuscript thoroughly analyzes the present state of pre-trained BERT-based models and

Transformer models for clinical narrative classification, with a particular emphasis on limited

datasets. Various pre-trained BERT-based models for the French language are leveraged, such

as FlauBERT, FrALBERT, CamemBERT, and DistilBERT, as depicted in Fig. 4.2. Moreover,

conventional and Switch Transformer models are constructed from scratch to perform the same

task. Finally, we compare the performance of all models based on various evaluation metrics

for binary classification, including accuracy, precision, recall, F1-score, and area under the
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curve (AUC). This study endeavors to offer insights into the efficacy of these models on limited

datasets, which is a critical aspect in real-world clinical settings for non-English notes.

Figure 4.3 Illustration of a Conventional Transformer (Alammar, 2018) (left), and a

Switch Transformer (Fedus et al., 2021) (right) encoder block

4.3.2.1 Transformer-based Models

Transformer-based models have been highly effective for various NLP tasks, including text

classification. The conventional Transformer model (Vaswani et al., 2017) with multi-head

self-attention is a widely used architecture for this task. Shown in Fig. 4.3 (left), its architecture

comprises an encoder consisting of multiple layers of multi-head self-attention and feedforward

neural networks (FFN). The multi-head self-attention mechanism allows the model to weigh the

importance of different words in a sequence based on their semantic relationships, while the

FFNs transform the output of the self-attention layer into a more helpful representation. The

Transformer’s core is the self-attention mechanism based on mathematical expressions (Lin,

Wang, Liu & Qiu, 2022). Given a sequence of input embeddings x1, ..., xn, the self-attention

mechanism computes a set of context-aware embeddings h1, ..., hn as follows:
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hi = AttentionQW Q
i , KW K

i , V W V
i (4.1)

where Attention is the scaled dot-product attention function:

AttentionQ, K, V = softmax

(
QKT

√
dk

)
V (4.2)

Then, the multi-head attention is a concatenation of all head of hi, as follows:

MultiHeadQ, K, V = Concath1, . . . , hnW O (4.3)

Additionally, the position-wise FFNs are multi-layer perceptrons applied independently to each

position in the sequence, which provide a nonlinear transformation of the attention outputs.

FNNs are calculated as follows:

FFNx = ReLUxW1 b1W2 b2 (4.4)

For each layer, there is a Layer Normalization which normalizes the inputs to a layer in a neural

network to improve training speed and stability.

LayerNormx = γ
x − μ√

σ2 ε
β (4.5)

where Q, K, and V are the query, key, and value matrices, W Q
i , W K

i , and W V
i are the learned

weight matrices for the i-th head of the multi-head attention, W1 and W2 are the weight matrices

for the position-wise FFNs, γ and β are learned scaling and shifting parameters for layer

normalization, and μ and σ are the mean and standard deviation of the input feature activations.
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The working mechanism in the Transformer architecture can be summarized into the following

steps:

1. Linear Transformation: The input sequence is projected into three vectors, query Q, key K,

and value V , by applying a linear transformation to the input embedding.

2. Splitting: The Q, K, and V vectors are then split into multiple heads hi, allowing the model

to simultaneously attend to different aspects of the input sequence Eq. 4.1.

3. Scaled Dot-Product Attention: For each hi, the model calculates the attention weights

between the Q and K vectors by scaling their dot product by the square root of the vector

dimension. It calculates each K vector’s importance to the corresponding Q vector.

4. Softmax: The resulting attention weights are normalized using a softmax function, ensuring

that they sum to 1.

5. Weighted Sum: The attention weights are then used to weigh the V vectors, producing an

attention output for each head hi Eq. 4.2.

6. Concatenation: The attention outputs from each head are concatenated and projected back

to the original vector dimension through another linear transformation Eq. 4.3.

7. Feed Forward Network: The resulting output is passed through a feedforward network,

which introduces non-linearity and allows the model to capture more complex relationships

between the input and output Eq. 4.4.

By performing these steps for each layer in the encoder and decoder, the multi-head self-attention

mechanism allows the Transformer architecture to capture rich semantic relationships between

different words in a sequence and is highly effective for a wide range of NLP tasks. However,

the conventional Transformer architecture has some limitations. One of the main issues is

that the self-attention mechanism requires quadratic computation time concerning the input

sequence length, making it difficult to scale the model to very long sequences (Raffel et al.,

2020), and lower generalizability for a short sequence (Gao et al., 2021). Additionally, the

self-attention mechanism treats all positions in the input sequence equally, which may not be

optimal for certain types of inputs where some positions are more critical than others. While
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the Transformer model has shown state-of-the-art performance on many NLP tasks, it can still

struggle to capture complex input-output relationships requiring more specialized models.

Switch Transformers (Fedus et al., 2021) attempt to address these limitations by introducing a

mixture of expert (MoE) mechanisms that decompose the problem into smaller, simpler sub-

problems, allowing the model to handle long sequences and complex input-output relationships

better. As mentioned above, the multi-head self-attention mechanism in the Transformer model

is motivated by the need to capture semantic relationships between words in a sequence, but it

has limitations when dealing with short sequences (Gao et al., 2021). The MoE mechanisms

allow the model to divide the sequence into smaller, more manageable segments and apply

different experts to each segment. This approach has improved the model’s performance on

short sequence tasks and has achieved state-of-the-art results on several benchmarks (Xue et al.,

2022; Lazaridou et al., 2021; Fan et al., 2021).

The critical difference in the mathematical equation of the Switch Transformer compared to the

conventional Transformer is replacing the FFN with the MoE mechanism, shown in Fig. 4.3

(right). In the conventional Transformer, the FFN consists of two linear layers with a ReLU

activation function in between. The MoE mechanism, on the other hand, uses a set of expert

networks to learn different aspects of the input data and then combines their outputs with a

gating network. It allows the model to dynamically choose between multiple sets of parameters

(i.e., expert modules) based on the input. This contrasts the original Transformer model in Eq.

4.4, which uses a fixed set of parameters for all inputs. Formally, the MoE mechanism in the

Switch Transformer can be represented by the following equation:

zt =
j
gjxt ∗ ejxt (4.6)

where gjxt is a gating function that determines the importance of expert module j for input xt,

and ejxt is the output of expert module j for input xt. The switch mechanism is implemented by
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learning the parameters of the gating functions, which are used to select the expert modules

dynamically. This allows the model to adapt to different input distributions and perform better on

various tasks. Here is a summary of how the MoE mechanism works in the Switch Transformer:

1. The input is split into multiple subspaces, and each subspace is processed by a separate

expert. Each expert is a separate neural network trained to specialize in a specific subset of

the input space.

2. The output of each expert is a vector that represents its prediction for the given input

subspace.

3. A gating mechanism selects the most relevant expert for a given input. This gating mechanism

takes the input and produces a set of weights that determine the importance of each expert’s

prediction.

4. The final output is a weighted combination of the experts’ predictions. The weights used in

the combination are determined by the gating mechanism.

Overall, the MoE allows the Switch Transformer to learn complex patterns in the input space

by leveraging the specialized knowledge of multiple experts. The MoE framework enables

the model to learn from multiple experts, each specialized in different aspects of the data, and

combine their outputs to achieve better performance. This can lead to better performance on

tasks requiring understanding inputs and offers a promising solution to the challenge of small

datasets in clinical text classification. Consequently, the study uses its ability to capture the

complex relationships between words and phrases in the clinical text.

4.3.2.2 Pre-trained BERT-based Models for French

Pre-trained BERT-based models have become increasingly popular, enabling researchers and

practitioners to perform various language-processing tasks with unprecedented accuracy. While

BERT (Kenton & Toutanova, 2019) was initially developed for English language processing,

it has since been adapted to several other languages, including French. In this context, we

will explore some of the most popular pre-trained BERT-based models for French language

processing available from Huggingface.
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CamemBERT (Martin et al., 2020): This is a pre-trained Transformer-based language model

designed explicitly for processing French text. It is based on the Roberta architecture and was

trained on a large corpus of French text that was filtered and pre-processed to improve the

data quality. Its pre-training objective is a masked language model, where some input tokens

are masked, and the model is trained to predict the missing tokens. Overall, CamemBERT is

a highly effective tool for processing French language text and can be fine-tuned for specific

downstream tasks or used for transfer learning in multilingual settings.

FlauBERT (Le et al., 2020): It is based on the original BERT architecture and was trained on

a large corpus of the French text. It has been shown to perform strongly on several natural

language processing tasks in French, including named entity recognition and sentiment analysis.

It also performs well on tasks related to French morphosyntaxes, such as part-of-speech tagging

and dependency parsing. It was trained using a masked language model objective, where a

portion of the input tokens are masked, and the model is trained to predict the missing tokens.

FlauBERT is a powerful language model for processing French text that can be fine-tuned for

specific downstream tasks.

FrALBERT (Cattan, Servan & Rosset, 2021) is a Transformer-based language model designed

explicitly for text classification tasks in French. It is based on the ALBERT architecture and was

trained on a large corpus of the French text. It has achieved state-of-the-art performance on

several text classification tasks in French, including sentiment analysis, news categorization, and

toxic comment classification. The model was fine-tuned using a supervised learning approach,

where the model was trained on labeled data to predict the correct class label for a given input

text. FrALBERT is available for download and can be fine-tuned on specific text classification

tasks in French or used for transfer learning in multilingual settings.

DistillBERT (Sanh, Debut, Chaumond & Wolf, 2019) is a smaller and more efficient version of

the BERT architecture designed to reduce the computational and storage requirements of the

model while maintaining its performance. It was trained on a large corpus of French text and

has been shown to perform strongly on various natural language processing tasks, including text



90

classification. It is particularly useful for text classification tasks in French, such as sentiment

analysis and news categorization. DistillBERT is much smaller than the original BERT model,

making it more suitable for deployment on resource-constrained devices or in applications where

speed and efficiency are a concern.

4.4 Experimental Implementation

Table 4.1 Models Hyperparameters

Hyperparameters CamemBERT DistillBERT FlauBERT FrALBERT Transformer Switch Transformer

Hidden Layers 12 6 6 12 4 4

Total Parameters 111 M 66.7 M 54.6 M 12.3 M 2.3 M 5.7 M

Table 4.1 shows the hyperparameters of different Transformer-based models used in this

study, including CamemBERT, DistillBERT, FlauBERT, FrALBERT, Transformer, and Switch

Transformer. The hyperparameters compared include hidden layers and total parameters.

CamemBERT and FrALBERT have 12 hidden layers, whereas DistillBERT, FlauBERT, Trans-

former, and Switch Transformer have 6, 6, 4, and 4 hidden layers, respectively. Regarding to total

parameters, CamemBERT has the highest number of parameters, with 111 million, followed

by DistillBERT with 66.7 million parameters, and FlauBERT with 54.6 million parameters.

FrALBERT, Transformer, and Switch Transformer have significantly fewer parameters, with

12.3 million, 2.3 million, and 5.7 million, respectively. The variation in hyperparameters across

different models reflects the differences in the architecture and design of the models. This

information is crucial for understanding each model’s computational complexity and efficiency

and helps select the most suitable model.

When training a machine learning model, the hardware and software specifications used for the

training process can significantly impact the model’s performance and efficiency. In this case,

the models were trained on a local machine with a Quadro P620 GPU and CUDA library version

12. Including these specifications when describing the trained models can provide important

context for others looking to replicate or build upon the work.
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Table 4.2 Hyperparameters of the fine-tuned models

Hyperparameters Pretrained BERT-based Transformer Switch Transformer

Number of multi-head attention N/A 4 4

Number of Experts N/A N/A 4

Batch size 16 16 16

Dropout 0.5 0.35 0.35

Learning rate Cosine annealed Cosine annealed Cosine annealed

Optimizer Adam AdamW AdamW

Adam_ε N/A 5*1e-06 5*1e-06

Maximum sequence length 256 256 256

Defining the hyperparameters during the training process of Transformers is a critical step in

achieving good performance. Hyperparameters are the settings that control the behavior of

the training algorithm, and they can significantly impact the final performance of the model.

Here are some of the critical hyperparameters that are tuned during the training process of

BERT-based and Transformer models in this study:

• Maximum sequence length: This is the maximum number of tokens that can be inputted

into the model simultaneously. Setting an appropriate maximum sequence length can affect

the performance and memory usage of the model. Due to computational constraints, the

maximum sequence length varies from 128 to 256.

• Batch size: Choosing an appropriate batch size can affect the speed and stability of the

training process. We varied the training batch size for each trial, ranging from 4 to 32 (with

gradient accumulation as 4), based on the knowledge that training with smaller batches is

more effective for highly low-resource language training (Atrio & Popescu-Belis, 2021).

• Drop-out: This regularization technique randomly drops out some of the neurons during

training to prevent overfitting. The dropout rate determines the proportion of neurons to drop

out during each iteration (Srivastava et al., 2014).

• Optimizers: These algorithms update the model weights during training to minimize the

loss function. Different optimizers have different strengths and weaknesses, and choosing

the right one can impact the final performance of the model. Adaptive Moment Estimation
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(Adam) (Kingma & Ba, 2015), AdamW (Adam with weight decay) (Loshchilov & Hutter,

2019) were used.

• Learning rate: Consine annealed learning rate with warmup can help prevent training

instability in the deeper layers of a neural network; its primary purpose is to help the

model converge more quickly and effectively to a better solution overall (Gotmare, Keskar,

Xiong & Socher, 2019).

• Number of multi-head attention: This determines the number of attention heads used in

the multi-head attention layer of the Transformer. Increasing the number of attention heads

can improve the model’s ability to attend to different input parts.

• Number of experts: This determines the number of experts used in the MoE layer of the

Transformer. Increasing the number of experts can improve the model’s ability to handle

diverse inputs.

Choosing appropriate values for these hyperparameters requires careful experimentation and

tuning to achieve the best possible results. Additionally, optimizing hyper-parameters is essential

for achieving high performance in machine learning models, but this process comes with a

tradeoff between the quality of the final solution and the time required for computation. However,

not all hyperparameters significantly impact model accuracy, and only a few parameters require

careful tuning. As reported in (Popel & Bojar, 2018), the model size, learning rate, batch

size, and maximum sequence length are the three critical hyper-parameters for Transformer

model training. For this reason, grid search can be an efficient approach for optimizing these

parameters by simultaneously exploring all possible combinations of intervals. Compared to

Bayesian optimization, grid search has advantages in parallelization and flexibility of resource

allocation (Yu & Zhu, 2020). In this study, we used grid search to optimize hyper-parameters for

model training. The combination with the highest estimated performance was considered the

optimal solution, and this approach balances computational efficiency and models’ accuracy.

Finally, table 4.2 presents the hyperparameters used to fine-tune three models. For the pre-trained

BERT-based model, the number of multi-head attention and the number of experts are not

applicable (N/A), as this model is already trained and does not require further customization.
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The batch size, epochs, dropout rate, learning rate, and optimizer for all models are specified.

The trained BERT-based model uses an Adam optimizer with a dropout rate of 0.5 and a cosine

decay learning rate. The Transformer and Switch Transformer models use an AdamW optimizer

with a dropout rate of 0.35 and a cosine decay learning rate. The Adam_ε is only specified for

the Transformer and Switch Transformer models and is set to 5*1e-06. The maximum sequence

length for all models is set to 256. The fine-tuning process for the pre-trained BERT-based

model was performed for 40 epochs, while the Transformer and Switch Transformer models

were fine-tuned for 70 epochs. Additionally, the GlorotNormal initializer (Glorot & Bengio,

2010), batch normalization (Ioffe & Szegedy, 2015; Bjorck, Gomes, Selman & Weinberger,

2018) are employed for models’ stability, and balancing the classes by using the Bayes Imbalance

Impact Index (Lu et al., 2019) to deal with the imbalanced classes. Then, these hyperparameters

were carefully chosen to achieve optimal performance and prevent overfitting.

The data was divided into 80% training and 10% validation and 10% testing. To assess the

performance of our method, metrics including accuracy, precision, recall, and F1 score were

used (Goutte & Gaussier, 2005). These metrics are defined as follows.

Accuracy =
TP TN

TP TN FP FN
Precision =

TP
TP FP

Recall/Sensitivity =
TP

TP FN

F1-Score =
2�Precision�Recall

Precision Recall

where TN and TP stand for true negative and true positive, respectively, and are the number of

negative and positive patients correctly classified. FP and FN represent false positives and false

negatives and the number of incorrectly predicted positive and negative patients.
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Figure 4.4 Training and validation performance results from Switch Transformer model

4.5 Results and Discussion

During training and validation shown in Fig. 4.4, the Switch Transformer model showed a

gradual decrease in loss with increasing epochs. The loss started to converge after around 20

epochs and reached its minimum at the 30th epoch. Applying the early stopping at this point

helped prevent the model’s overfitting. The accuracy and precision of the model showed a

smooth convergence to their optimal values for both the training and validation phases. However,

the recall values for the two phases were observed to be quite fluctuating. The model’s overall

performance was good, with high accuracy, precision, and recall. The model’s ability to reach

its optimal values with smooth convergence and with the help of early stopping indicates the

model’s effectiveness in the given task.
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The results presented in the table 4.3 indicate that careful hyperparameter tuning can result in

better performance of Transformer models over pre-trained BERT-based models for the given task.

The table compares the performance of six classifiers with metrics such as accuracy, precision,

recall, F1, and AUC. The classifiers include DistillBERT, CamemBERT, FlauBERT, FrALBERT,

Transformer, and Switch Transformer. The results show that the best-performing classifier in

accuracy, precision, recall, F1, and AUC is Switch Transformer, with an accuracy score of 0.87,

precision of 0.87, recall of 0.85, F1 score of 0.86, and AUC of 0.92. The Transformer model

has the second-best performance with an accuracy score of 0.85. DistillBERT, CamemBERT,

and FrALBERT perform comparably well, with accuracy scores ranging from 0.80 to 0.83.

The Switch Transformer and Transformer models achieved the best accuracy, precision, recall,

F1 score, and AUC. These models demonstrated faster training and evaluation times than

others, making them the most suitable options for the given task. However, it is essential to

note that FlauBERT achieved the best precision, recall, F1 score, and AUC among all models,

although it required longer training and evaluation times. Compared to other methods (excluding

fine-tuning), mixture-of-experts (MoEs) is more efficient regarding the computational resources

required (Artetxe et al., 2021). The study suggests that Switch Transformer and Transformer

models are the most suitable for the given task, given their high performance and faster training

and evaluation times. Overall, these findings suggest that careful selection of Transformer-based

models and hyperparameter tuning can significantly improve the performance of small clinical

narrative classification.

Table 4.3 A comparison performance of different classifiers

Model Accuracy Precision Recall F1 AUC Training Time Evaluation Time

DistillBERT 0.80 0.79 0.78 0.78 0.84 109 5

CamemBERT 0.83 0.82 0.83 0.82 0.89 212 19

FlauBERT 0.84 0.84 0.84 0.84 0.91 51 6

FrALBERT 0.83 0.82 0.81 0.81 0.89 196 19

Transformer 0.85 0.85 0.83 0.84 0.91 4 1
Switch Transformer 0.87 0.87 0.85 0.86 0.92 34 2

Fig. 4.5 compares the confusion matrices obtained from six models. Each confusion matrix

presents the number of true positives (TP), false positives (FP), false negatives (FN), and true
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Figure 4.5 Confusion matrix comparison for all classifiers

negatives (TN) for binary classification tasks. This study labels the classes ‘0’ for ‘Negative’

and ‘1’ for ‘Positive.’ The Switch Transformer model obtained the highest number of TP and

TN, with 253 and 219, respectively. It misclassified 34 instances as false positives and 38

instances as false negatives. DistillBERT, on the other hand, obtained 253 TP and 201 TN, with

54 instances misclassified as false positives and 56 instances as false negatives. FlauBERT

and FrALBERT models had similar results with 246 TP and 215 TN and 241 TP and 209 TN,

respectively. Both models misclassified around 15% of instances. CamemBERT model obtained

239 TP and 214 TN, with 48 and 43 instances misclassified as false positives and false negatives,

respectively. Finally, the Transformer model obtained 250 TP and 213 TN, with 37 and 44

instances misclassified as false positives and false negatives, respectively. In summary, the

Switch Transformer model achieved the highest number of correct classifications and the lowest

number of misclassifications, followed closely by the DistilBERT and Transformer models. The

FlauBERT and FrALBERT models performed similarly, with slightly higher misclassifications.



97

However, the CamemBERT model had the lowest number of correct classifications and a

relatively high number of misclassifications. These results can guide the selection of models for

future classification tasks. Particularly, it suggests that simpler models (in terms of the number

of parameters) may perform better for non-English and limited clinical narrative datasets.

Figure 4.6 Generalization gap and sharp minima

during training Switch Transformer without early stopping

Although the Switch Transformer outperforms several other models, including DistillBERT,

CamemBERT, FlauBERT, FrALBERT, and the conventional Transformer model, its performance

falls short when compared to two of our previous studies (Le et al., 2022, 2023c) that extensively
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Figure 4.7 Hidden embedding visualization during training (4 left figures) and validation

(4 right figures) for the Switch Transformer at the 30th epoch

analyzed a conceptual framework for detecting a patient’s health condition from contextual input

to output. The proposed framework in those studies utilized a combination of TF-IDF (term

frequency-inverse document frequency) and MLP-NN (multilayer perceptron neural network),

achieving an overall classification performance of 89% accuracy, 88% recall, and 89% precision.

Moreover, sparsity reduction significantly affected classifier performance in downstream tasks,

and a generative AE (autoencoder) learning algorithm effectively leveraged sparsity reduction

to help the MLP-NN classifier achieve 92% accuracy, 91% recall, 91% precision, and 91%
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F1-score. These findings suggest that the simpler frameworks are effective for this specific

context and highlight the limitations of the Switch Transformer model.

While the Switch Transformer model has demonstrated promising results in clinical text

classification, there is still room for further improvement of its performance. One possible

area of investigation is the training methodology, as suggested by previous research (Hoffer,

Hubara & Soudry, 2017; Nakkiran et al., 2021). Specifically, the model was trained for 500

epochs without early stopping, which resulted in three distinctive phases in the learning curves

of training and validation losses in Fig. 4.6. Initially, the model underwent the learning phase,

where the loss gradually decreased and reached its minimum at epoch 30. Subsequently, the

model entered the second phase, where overfitting occurred, and the loss increased sharply,

reaching its maximum at epoch 120. Interestingly, the model experienced double descent, and

the loss started decreasing again in the third phase and remained flat until nearly the end of the

400 epochs. During this phase, the classifier was confined to a sharp minimum and failed to

improve further. Regarding accuracy, after achieving the optimal value, both learning curves

from training and validation remained flat, which is expected. These are typical phenomena

in deep learning models trained on small datasets, as the model tends to overfit the data and

struggles with generalization. The classifier could not bridge the generalization gap caused

by the sharp minima effect due to insufficient data explained in (Keskar, Mudigere, Nocedal,

Smelyanskiy & Tang, 2017).

Furthermore, we propose a novel perspective on this behavior and find a better illustration, viewing

them through hidden embedding visualization for each layer during training and validation to

explain their behavior. To illustrate this perspective, we present detailed visualizations of the

Switch Transformer embedding for each layer (from 1 to 4) in Figure 4.7. We utilize t-SNE, a

nonlinear dimensionality reduction technique well-suited for embedding high-dimensional data

into lower-dimensional data (2 dimensions in our case). By analyzing the hidden embedding

from the model, we successfully observe the difference between the training and validation

processes. The four top figures illustrate that after the 30th epoch, the model successfully

separates the two classes (1: positive, 0: negative) in each hidden layer. Remarkably, the last
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hidden layer (4th layer) achieves perfect classification accuracy of 98% on the training set.

However, this level of performance does not carry over to the validation set at the same epoch.

The four bottom figures demonstrate that the two classes overlap, and the model cannot learn a

clear boundary between them, resulting in only 87% validation accuracy. Therefore, we observe

a generalization gap between the training and validation for a large model with small data.

4.6 Misclassification Interpretability

Interpretability of misclassifications is essential to model evaluation, particularly in critical

applications such as medical diagnosis. In this study, we analyze the misclassification cases

of the Switch Transformer model by visualizing the results from the misclassification. Totally,

there are 72 cases of misclassification from the results of the Switch Transformer. Our focus

has been primarily on the false negatives, where the true label indicates the presence of cardiac

failure (True label is 1); however, our classifiers predict the opposite. We have referred to the

labeled data to understand the reasons behind these misclassifications better. The clinician

analyzes and confirms which information was inferred to label the data.

Technically, Integrated Gradients (IG) (Sundararajan et al., 2017) are a powerful interpretability

technique for explaining the predictions of deep learning models, including the Transformers

model used in clinical text classification. IG provides a way to attribute importance to the input

features of a model, allowing clinicians and researchers to gain insight into how the model is

making its predictions. Then, we compared this information with the information from the

classifier based on the IG methods. This helped us identify misclassification sources and improve

our classifiers’ accuracy in detecting cardiac failure.

The results in Fig. 4.8 demonstrate the Transformer model’s ability to calculate attribution

scores to predict output based on input features. The sign of the attribution score indicates

the direction of the feature’s influence on the output: a positive score means that the feature

positively influences the output, while a negative score indicates a negative influence. However,

the model did not perform well on the task at hand. The correct labeling of the data requires
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Figure 4.8 The highlighted misclassification cases

from the Switch Transformer model

clinical expertise and professional knowledge. For example, in the first original note, the absence

of data on cardiac failure was compensated for by the presence of other clinical signs such as

‘Souffle 3/6,’ ‘très faible pouls fémoral mais pas de pouls pédieux (very weak femoral pulse but

no pedal pulse),’ and ‘Pieds tièdes (warm feet).’ Similarly, in the second note, no data on cardiac

failure was present, but ‘sténose sous pulmonaire et CIV large (subpulmonary stenosis and wide

CIV)’ suggested its presence. These examples highlight the significant gap in the Transformer

model’s contextual learning and understanding of real clinical datasets. There are two possible

reasons for this limitation. First, while Transformer models have shown promising performance

in new tasks, it remains unclear if they can generalize across the differences in settings within the

clinical domain (Bear Don’t Walk IV et al., 2021). Second, the tasks in the clinical domain often

have a low signal-to-noise ratio, where the presence of a few essential keywords may suffice to

determine a specific label. In contrast, Transformer’s training process involves learning intricate

and nuanced relations between all words in the pretraining corpus, which may not be relevant for

the classification task and may shift attention away from the critical keywords (Gao et al., 2021).
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4.7 Conclusion

We compared the performance of 6 classifiers on a binary classification task: CamemBERT,

DistillBERT, FlauBERT, FrALBERT, Transformer, and Switch Transformer. The results

indicated that careful hyperparameter tuning could significantly improve the performance of

Transformer models over pre-trained BERT-based models. The Switch Transformer model

achieved the highest performance in Accuracy, Precision, Recall, F1, and AUC, with an accuracy

score of 0.87, precision of 0.87, recall of 0.85, F1 score of 0.86, and AUC of 0.92. The

Transformer model achieved the second-best performance, with an accuracy score of 0.85.

Furthermore, we presented the confusion matrices obtained from six models. The results indicated

that the Switch Transformer model obtained the highest number of correct classifications and the

lowest number of misclassifications, followed closely by the DistillBERT and Transformer models.

FlauBERT and FrALBERT models performed similarly, with slightly higher misclassifications.

Finally, the CamemBERT model obtained the lowest number of correct classifications and a

relatively high number of misclassification.

The study used attribution scores to demonstrate the Transformer model’s ability to predict

output based on input features. However, the model did not perform very well on the clinical

dataset due to its inability to contextualize and understand real-world data. The clinical tasks

have a low signal-to-noise ratio, and the Transformer’s training process may shift attention

away from critical keywords. Additionally, it remains unclear whether Transformer models can

generalize across different settings in the clinical domain. Overall, the results suggest the need

for further research to improve the Transformer model’s performance in clinical settings.

These findings suggest that careful selection of Transformer-based models and hyperparameter

tuning can significantly improve the performance of clinical narrative classification tasks.

Especially the CDSS at CHUSJ is currently under development. By combining this NLP

algorithm to detect the absence of heart failure with the two other algorithms already developed

on hypoxemia detection (Sauthier et al., 2021) and chest, X-ray analysis (Zaglam et al., 2014;

Yahyatabar et al., 2020), the next step of our study is to implement the resulting CDSS (integration



103

of the three algorithms) within the cyberinfrastructure of the pediatric intensive care unit (PICU)

at Sainte-Justine Hospital to diagnose ARDS early. We will then verify the ability of the CDSS

to detect ARDS prospectively once the integration with the PICU e-Medical infrastructure is

completed.

4.8 Future Works

The study only considers binary classification tasks and does not examine the performance of

Transformer-based models on multiclass classification tasks. The dataset used for the study is

relatively small, with almost more than 5000 instances, which may limit the generalizability

of the findings to larger datasets. The study did not examine the impact of fine-tuning on

the performance of the Transformer-based models. To improve the performance of this study,

some potential solutions would be 1) including multiclass classification tasks to examine the

performance of Transformer-based models on more complex classification tasks; 2) expanding

the dataset to increase the generalizability of the findings. The impact of fine-tuning could be

examined to determine if it improves the performance of the Transformer-based models. In

summary, potential future directions could be explored as follows:

1. Model optimization: Transformer-based models can be optimized to reduce their compu-

tational requirements while maintaining accuracy, such as using distillation or pruning

methods to reduce the number of parameters.

2. Data augmentation: Data augmentation techniques can be used to increase the amount of

labeled data available for training Transformer-based models, such as using synthetic data

generation methods or unsupervised learning techniques to leverage unlabeled data.

3. Domain-specific pre-training: pre-trained Transformer-based models on clinical text data can

be employed to improve their understanding of domain-specific language and performance

on clinical text classification.





CONCLUSION AND RECOMMENDATIONS

With the rise of Artificial Intelligence, Quebec has announced its ambition to revolutionize three

sectors by developing advanced Artificial Intelligence technologies. These three sectors are

health, finance, and the intelligent city reported in “Strategy for the Development of Quebec’s

Artificial Intelligence Ecosystem”, a mandate from Quebec Économie, Science et Innovation

in May 2018. In its 2018-2019 budget, the Quebec government has tagged specific priority

sectors in health, in which more than $5.4B in additional investment is planned. The goal is to

engage health informatics, data analytics in health databases, and machine learning techniques.

Therefore, the successful development of the proposed predictive model to identify heart failure,

based on natural language processing by using clinical notes and relevant prescribed parameters,

yields multiple uses in health from Quebec’s Artificial Intelligence strategy.

First, it prevents the continuous loss of scientific information from significant data points (4x108)

on more than 1300 patients, uniquely stored in the database at CHU Sainte-Justine. Moreover,

the data is continuously collected; it is a good starting point to learn from it effectively. Hence, it

will be innovative for casual data tracking for later use in clinical settings. This work highlights

the value of heterogeneous datasets combined with data analytics in improving proactive health

prevention and intervention programs and accelerating precision care.

Second, educational use of the drawn result allows students and researchers to learn how cardiac

disease evolves through historical clinical narratives. Standard criteria and other variables that

may directly or indirectly impact cardiac disease do not explain the relation. The expected

outcomes can help overcome diagnosis issues and improve disease prevention. In particular,

wide-scale uptake and implementation that impact decision-making will lead to changes in the

health system’s care delivery and patient empowerment.

Third, it promotes the optimization and consistency of care for children with pediatric acute

respiratory distress syndrome by detecting a cardiac failure as recommended by experts in
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pediatric acute lung injury. Then, patients are predicted for their early-stage health condition and

have an appropriate treatment regimen. The syndrome of acute lung injury and cardiac failure

are very similar; it is reported by LUNG SAFE Investigators ESICM Trials Group (2016) that

40% of cases of acute respiratory distress syndrome were not recognized at any time during a

patient’s stay in the intensive care unit.

Furthermore, the theoretical and practical issues plaguing the applications of machine learning

and statistical learning representation techniques will be effectively contributed to biomedical

information processing at Laboratoire de traitement de l’information en santé (LATIS), École de

technologie supérieure, and other academic researchers. The contributions include scientific

attention to clinical data interpretation, hyper-parameter optimization, training acceleration, and

improving machine learning algorithm prediction accuracy.

Finally, this research is part of a research program that aims to develop a clinical decision-

support system in real-time for the management of critically ill patients at CHU Sainte-Justine.

Therefore, the developed algorithm can bring the success of a clinical decision support system

implementation. The system helps intensive care clinicians to make informed decisions

concerning the evolution of cardiac disease. Also, the data validation process of variables in

acute respiratory distress syndrome analysis will be effectively elaborated. Consequently, it

would enable clinicians to anticipate potentially related events in a child’s health that may require

special attention. This research will help the healthcare system in Montreal to be recognized as

an international leader, strengthening the position of École de technologie supérieure and CHU

Sainte-Justine Research Center internationally.

Technically, this study presents a framework for detecting cardiac failure in children at CHUSJ

using natural language processing (NLP) techniques. We employ both learning representation

and machine learning algorithms to process French clinical text and identify a patient’s health

condition from the contextual input to the contextual output. Our framework combines TF-IDF
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and MLP-NN, and we demonstrate that feature selection from the learning representation vector

space can further improve performance. Our case study also shows that encoding decimal points

as a string "DOT" helps retain the information from numerical values in clinical notes. Our

proposed framework achieves an overall classification performance with 89% accuracy, 88%

recall, and 89% precision.

Furthermore, we show that using an autoencoder (AE) in training can effectively compress the

feature space of TF-IDF. Compared to other approaches such as PCA, NCA, LAE, and stacked

AE, the AE with a nonlinear activation function achieves the best reconstruction capacity at 86%

compared to the original data. The AE can learn the best representation of the training data due

to its lossless compression capacity, making it an effective mechanism for interpretability and

transparency in our CDSS system.

The second step involves using an MLP-NN to predict the health status based on the compressed

feature space. We show that the sparsity reduction for the feature space strongly affects the

classifier performance in the downstream task, and the AE learning algorithm effectively

leverages the sparsity reduction. Our efficient ensemble model achieves 92% accuracy, 91%

recall, 91% precision, and 91% f1-score, outperforming all alternative approaches.

We also compare the performance of six classifiers on a binary classification task and demonstrate

that careful hyperparameter tuning can significantly improve the performance of Transformer

models over pre-trained BERT-based models. The Switch Transformer model achieves the

highest performance in Accuracy, Precision, Recall, F1, and AUC, with an accuracy score of

0.87, precision of 0.87, recall of 0.85, F1 score of 0.86, and AUC of 0.92. The results also

indicate the need for further research to improve Transformer models’ performance in clinical

settings.
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Finally, we present the confusion matrices obtained from six models, with the Switch Transformer

model obtaining the highest number of correct classifications and the lowest number of

misclassifications. Our study demonstrates the effectiveness of our proposed framework and

provides valuable insights for developing NLP techniques in clinical settings.

Future research should carefully consider the potential effects of numerical values alongside

unstructured notes. One promising approach is to investigate an algorithm that can automatically

extract and represent numerical values from clinical notes using a semantic neural network

to determine the boundaries and extract the numerical values from the text. Furthermore,

the algorithm’s effectiveness can be evaluated using generative learning (Dua et al., 2019).

In addition, the weak supervision approach should be explored as it has proven effective in

maximizing unlabeled data at scale and can be applied to expand the dataset (Fries et al., 2019).

To improve the generalizability of the findings, future work should consider expanding the dataset

to include multiclass classification tasks and examining the impact of fine-tuning on Transformer-

based models’ performance. Potential solutions to improve the performance of the study include

model optimization, data augmentation, domain-specific pre-training, and explainable AI. For

example, Transformer-based models can be optimized using distillation or pruning methods to

reduce computational requirements while maintaining accuracy. Data augmentation techniques

such as synthetic data generation or unsupervised learning can increase the amount of labeled

data available for training Transformer-based models. Pre-trained Transformer-based models on

clinical text data can be employed to improve their understanding of domain-specific language

and performance on clinical text classification. Lastly, researchers can develop techniques to

make Transformer-based models more interpretable using attention visualization or sensitivity

analysis to understand which parts of the input text the model focuses on during prediction.

In conclusion, there are several potential future research directions as follows:
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Addressing the challenges inherent in our research domain, the initial focus lies in enhancing

domain-specific training, given the constraints of limited data availability. As established in our

study (Le et al., 2022), harnessing numerical attributes effectively leads to an improved classifier

for the ultimate end-task classification. However, the reliance on manually designed methods

remains a drawback in current approaches. To surmount this limitation, future endeavors should

be directed towards autonomous acquiring representations from these numerical attributes.

Simultaneously, considering the overarching goal of facilitating ADRS diagnosis, our research

has concentrated on singular modalities: chest X-ray infiltrations, laboratory vital sign time series

data for oxygenation level estimation, and cardiac failure absence identification. To amplify the

impact of our work, future investigations should pivot towards embracing a multimodal learning

paradigm, as depicted in Figure 5.1. This innovative framework holds the potential to extract

insights from diverse data modalities, thereby enriching the real-time diagnosis of ADRS in a

more comprehensive and effective manner.

Figure 5.1 A proposed self-supervised multimodal learning to combine tri-modality for

real-time PARDS diagnosis
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Additionally, our utilization of autoencoders (Le et al., 2023c) has proven to be instrumental in

effectively mitigating the sparsity issue inherent in TF-IDF’s learning representation feature space.

However, the scalability of these techniques may be eclipsed by the potential of Transformers

with expanded data availability. Nonetheless, the efficacy of training Transformer models with

modest datasets poses a significant challenge, evident in their susceptibility to a generalization

gap and convergence challenges when applied to smaller data contexts (Le, Jouvet & Noumeir,

2023a; Macabiau, Le, Albert, Jouvet & Noumeir, 2023). As such, finding strategies to adapt

Transformer models within constrained datasets becomes crucial. And model optimization that

can improve and adapt the Transformer models for a small dataset is necessary. A potential

avenue involves the integration of the Gated Residual Network (GRN) as an intermediate

component within Transformer-based classifiers (Le, Macabiau, Jouvet & Noumeir, 2023b).

The GRN, characterized by its Gated Linear Units (GLUs), addresses the intricacies of uncertain

relationships between inputs and targets, providing nonlinear processing only when essential.

By capitalizing on GLUs, the GRN harmonizes information emphasis or suppression based on

task-specific requirements. This innovation significantly improves the Transformer convergence,

resulting in smoother loss curves during training and validation. These advancements culminate

in substantial gains in performance, showcasing the remarkable performance of the GRN-

Transformer. Navigating this complexity holds the key to unlocking the full potential of

Transformers in these scenarios.

Finally, our experiments confirmed certain limitations of the Transformer architecture in

generalizing for small clinical text classification tasks. This limitation often arises due to the

model’s reliance on specific keywords or phrases contributing to the classifier’s final output.

Nevertheless, one can mitigate this shortcoming by integrating human feedback and leveraging

reasoning capabilities derived from large language models (LLMs), particularly those built upon

the advanced architecture of the Transformer.
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The recent emergence of large language models has reignited discussions about the potential of

these models to replicate human cognitive capacities, especially when trained with extensive data.

A focal point of these discussions is the LLMs’ ability to reason about unfamiliar challenges

on a zero-shot basis without any prior direct training. Such an ability is reminiscent of human

cognitive reasoning, often driven by analogy.

A study (Webb, Holyoak & Lu, 2023) revealed that GPT-3, in particular, demonstrated a

commendable aptitude for abstract pattern recognition, often equating or even exceeding human

abilities in various contexts. Preliminary evaluations of GPT-4 have hinted at even superior

performance metrics. Our results suggest that LLMs, including GPT-3, can intuitively solve a

wide array of problems by drawing analogies, even when confronted with them on a zero-shot

basis.

Another study (Singhal et al., 2023) substantiates that as the scale of these models grows and

instruction prompts are fine-tuned, there’s a noticeable improvement in knowledge recall and

reasoning. This suggests the promising potential of LLMs in the medical domain. However, our

human evaluations also spotlight the existing limitations of the current LLMs. This underscores

the significance of developing robust evaluation frameworks and refining methods to craft safe

and efficient LLMs suitable for clinical applications.

In short, as we navigate the intricacies of domain-specific training in the face of limited data,

the apparent path lies in the fusion of automated representation acquisition and embracing a

machine learning paradigm. Our research has shown the power of conventional neural networks

(MLP-NN), yet as the landscape evolves, the potential of Transformer models, incredibly when

fine-tuned for smaller datasets, cannot be overlooked. The recent strides in large language

models, exemplified by GPT-3, offer a glimpse into the future of clinical text classification.

Their remarkable pattern recognition abilities, even in zero-shot scenarios, with human feedback

and advanced architectures, hold immense promise. However, with every advancement, we must
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address existing limitations and continuously refine our methods, ensuring we harness the best

technology for holistic, accurate, and real-time diagnoses in medical applications.



BIBLIOGRAPHY

Afzal, N., Sohn, S., Abram, S., Scott, C. G., Chaudhry, R., Liu, H., Kullo, I. J. & Arruda-Olson,

A. M. (2017). Mining peripheral arterial disease cases from narrative clinical notes

using natural language processing. Journal of vascular surgery, 65(6), 1753–1761.

Agarwal, A., Baechle, C., Behara, R. & Zhu, X. (2017). A natural language processing

framework for assessing hospital readmissions for patients with COPD. IEEE journal of
biomedical and health informatics, 22(2), 588–596.

Alammar, J. (2018). The illustrated transformer. The Illustrated Transformer–Jay Alammar–
Visualizing Machine Learning One Concept at a Time, 27, 1-2.

Alimova, I., Tutubalina, E. & Nikolenko, S. I. (2021). Cross-Domain Limitations of Neural

Models on Biomedical Relation Classification. IEEE Access, 10, 1432–1439.

Alomrani, M. A. (2021). A Critical Review of Information Bottleneck Theory and its Applications

to Deep Learning. arXiv:2105.04405, 1-2.

AlShuweihi, M., Salloum, S. A. & Shaalan, K. (2021). Biomedical corpora and natural language

processing on clinical text in languages other than English: a systematic review. Recent
Advances in Intelligent Systems and Smart Applications, 491–509.

Althari, G. & Alsulmi, M. (2022). Exploring transformer-based learning for negation detection

in biomedical texts. IEEE Access, 10, 83813–83825.

Anowar, F., Sadaoui, S. & Selim, B. (2021). Conceptual and empirical comparison of

dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP,

LE, ICA, t-SNE). Computer Science Review, 40, 100378.

Arlot, S. & Celisse, A. (2010). A survey of cross-validation procedures for model selection.

Statistics surveys, 4, 40–79.

Artetxe, M., Bhosale, S., Goyal, N., Mihaylov, T., Ott, M., Shleifer, S., Lin, X. V., Du, J., Iyer,

S., Pasunuru, R. et al. (2021). Efficient large scale language modeling with mixtures of

experts. arXiv preprint arXiv:2112.10684, 1-2.

Atrio, À. R. & Popescu-Belis, A. (2021). Small Batch Sizes Improve Training of Low-Resource

Neural MT. Proceedings of the 18th International Conference on Natural Language
Processing (ICON), pp. 18–24.

Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: the

size of the weights is more important than the size of the network. IEEE transactions on
Information Theory, 44(2), 525–536.



114

Bear Don’t Walk IV, O. J., Sun, T., Perotte, A. & Elhadad, N. (2021). Clinically relevant

pretraining is all you need. J Am Med Inform Assoc, 28(9), 1970–1976.

Beaulieu-Jones, B., Finlayson, S. G., Chivers, C., Chen, I., McDermott, M., Kandola, J., Dalca,

A. V., Beam, A., Fiterau, M. & Naumann, T. (2019). Trends and focus of machine learning

applications for health research. JAMA network open, 2(10), e1914051–e1914051.

Bellani, G., Laffey, J. G., Pham, T., Fan, E., Brochard, L., Esteban, A., Gattinoni, L., van Haren,

F., Larsson, A., McAuley, D. F. et al. (2016). Epidemiology, patterns of care, and

mortality for patients with acute respiratory distress syndrome in intensive care units in

50 countries. Jama, 315(8), 788–800.

Bengio, Y., Courville, A. & Vincent, P. (2013). Representation learning: A review and new

perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8),

1798–1828.

Berner, E. S. (2007). Clinical decision support systems. Springer.

Bhattamishra, S., Patel, A. & Goyal, N. (2020). On the Computational Power of Transformers

and Its Implications in Sequence Modeling. Proceedings of the 24th Conference on
Computational Natural Language Learning, pp. 455–475.

Bjorck, N., Gomes, C. P., Selman, B. & Weinberger, K. Q. (2018). Understanding batch

normalization. Advances in Neural Information Processing Systems, 31, 1-2.

Blanco, A., Pérez, A. & Casillas, A. (2021). Exploiting ICD Hierarchy for Classification of

EHRs in Spanish Through Multi-Task Transformers. IEEE J. Biomed. Health Inform.,
26(3), 1374–1383.

Cai, T., Zhang, L., Yang, N., Kumamaru, K. K., Rybicki, F. J., Cai, T. & Liao, K. P. (2019).

EXTraction of EMR numerical data: an efficient and generalizable tool to EXTEND

clinical research. BMC medical informatics and decision making, 19(1), 226.

Cattan, O., Servan, C. & Rosset, S. (2021). On the Usability of Transformers-based Models for

a French Question-Answering Task. International Conference on Recent Advances in
Natural Language Processing, 2021, pp. 244–255.

Chen, Q., Yao, L. & Yang, J. (2016). Short text classification based on LDA topic model. IEEE
International Conference on Audio, Language and Image Processing.

Chollet, F. (2015). keras.



115

Clauwaert, J. & Waegeman, W. (2020). Novel transformer networks for improved sequence

labeling in genomics. IEEE/ACM Trans. Comput. Biol. Bioinform., 19(1), 97–106.

Curto, S., Carvalho, J. P., Salgado, C., Vieira, S. M. & Sousa, J. M. (2016). Predicting ICU

readmissions based on bedside medical text notes. 2016 IEEE international conference
on fuzzy systems (FUZZ-IEEE), pp. 2144–a.

Deléger, L. & Grouin, C. (2012). Detecting negation of medical problems in French clinical

notes. Proceedings of the 2nd ACM sighit international health informatics symposium,

pp. 697–702.

Demner-Fushman, D., Chapman, W. W. & McDonald, C. J. (2009). What can natural language

processing do for clinical decision support? Journal of biomedical informatics, 42(5),

760–772.

Demuth, H. B. (2014). Neural network design. Martin Hagan.

Deng, Z., Cai, Y., Chen, L., Gong, Z., Bao, Q., Yao, X., Fang, D., Yang, W., Zhang, S. & Ma,

L. (2022). Rformer: Transformer-based generative adversarial network for real fundus

image restoration on a new clinical benchmark. IEEE J. Biomed. Health Inform., 26(9),

4645–4655.

Dua, D., Wang, Y., Dasigi, P., Stanovsky, G., Singh, S. & Gardner, M. (2019). DROP: A

Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs.

Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 2368–2378.

Dubois, S., Romano, N., Kale, D. C., Shah, N. & Jung, K. (2017). Learning effective

representations from clinical notes. stat, 1050, 15.

Dynomant, E., Lelong, R., Dahamna, B., Massonnaud, C., Kerdelhué, G., Grosjean, J., Canu, S.,

Darmoni, S. J. et al. (2019). Word embedding for the French natural language in health

care: comparative study. JMIR medical informatics, 7(3), e12310.

Dzisevič, R. & Šešok, D. (2019). Text classification using different feature extraction approaches.

IEEE Open Conference of Electrical, Electronic and Information Sciences.

Fan, A., Bhosale, S., Schwenk, H., Ma, Z., El-Kishky, A., Goyal, S., Baines, M., Celebi, O.,

Wenzek, G., Chaudhary, V. et al. (2021). Beyond English-centric multilingual machine

translation. The Journal of Machine Learning Research, 22(1), 4839–4886.



116

Fan, Y. & Zhang, R. (2018). Using natural language processing methods to classify use status

of dietary supplements in clinical notes. BMC medical informatics and decision making,

18, 15–22.

Fedus, W., Zoph, B. & Shazeer, N. (2021). Switch transformers: Scaling to trillion parameter

models with simple and efficient sparsity. J. Mach. Learn. Res, 23, 1–40.

Fodeh, S. J., Li, T., Jarad, H. & Safdar, B. (2019). Classification of patients with coronary

microvascular dysfunction. IEEE/ACM Trans. Comput. Biol. Bioinform., 17, 1-2.

Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification.

J. Mach. Learn. Res., 3, 1-2.

Fries, J. A., Varma, P., Chen, V. S., Xiao, K., Tejeda, H., Saha, P., Dunnmon, J., Chubb, H.,

Maskatia, S., Fiterau, M. et al. (2019). Weakly supervised classification of aortic valve

malformations using unlabeled cardiac MRI sequences. Nature Communications, 10(1),

1–10.

Gao, S., Alawad, M., Young, M. T., Gounley, J., Schaefferkoetter, N., Yoon, H. J., Wu, X.-C.,

Durbin, E. B., Doherty, J., Stroup, A. et al. (2021). Limitations of Transformers on

Clinical Text Classification. IEEE journal of biomedical and health informatics, 1-2.

Gárate-Escamila, A. K., El Hassani, A. H. & Andrès, E. (2020). Classification models for heart

disease prediction using feature selection and PCA. Informatics in Medicine Unlocked,

19, 100330.

Garg, S. & Liang, Y. (2020). Functional Regularization for Representation Learning: A Unified

Theoretical Perspective. Advances in Neural Information Processing Systems, 33, 1-2.

Gehring, J., Miao, Y., Metze, F. & Waibel, A. (2013). Extracting deep bottleneck features using

stacked auto-encoders. IEEE international conference on acoustics, speech and signal
processing.

Geiger, B. C. (2021). On Information Plane Analyses of Neural Network Classifiers–A Review.

IEEE Trans. Neural Netw. Learn. Syst., 1-2.

Geiger, B. C. & Kubin, G. (2020). Information Bottleneck: Theory and Applications in Deep

Learning. Multidisciplinary Digital Publishing Institute.

Ghosh, J. & Shuvo, S. B. (2019). Improving Classification Model’s Performance Using Linear

Discriminant Analysis on Linear Data. IEEE International Conference on Computing,
Communication and Networking Technologies.



117

Gillioz, A., Casas, J., Mugellini, E. & Abou Khaled, O. (2020). Overview of the Transformer-

based Models for NLP Tasks. 15th Conference on Computer Science and Information
Systems (FedCSIS), pp. 179–183.

Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward

neural networks. Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249–256.

Gold, R., Larson, A. E., Sperl-Hillen, J. M., Boston, D., Sheppler, C. R., Heintzman, J.,

McMullen, C., Middendorf, M., Appana, D., Thirumalai, V. et al. (2022). Effect of

Clinical Decision Support at Community Health Centers on the Risk of Cardiovascular

Disease: A Cluster Randomized Clinical Trial. JAMA Network Open, 5, 1-2.

Goldberger, J., Hinton, G. E., Roweis, S. & Salakhutdinov, R. R. (2005). Neighbourhood

components analysis. NeurIPS, pp. 513–520.

Google. (2019). Machine Learning Guides Text Classification. Retrieved on 2019-10-

21 from: https://developers.google.com/machine-learning/guides/text-classification/step-

2-5.

Gotmare, A., Keskar, N. S., Xiong, C. & Socher, R. (2019). A Closer Look at Deep Learning

Heuristics: Learning rate restarts, Warmup and Distillation. 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Goutte, C. & Gaussier, E. (2005). A probabilistic interpretation of precision, recall and

F-score, with implication for evaluation. European conference on information retrieval,
pp. 345–359.

Group, P. A. L. I. C. C. et al. (2015). Pediatric acute respiratory distress syndrome: consensus

recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatric
critical care medicine: a journal of the Society of Critical Care Medicine and the World
Federation of Pediatric Intensive and Critical Care Societies, 428.

Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama, N., Liu, X., Naumann, T., Gao, J. & Poon, H.

(2021). Domain-specific language model pretraining for biomedical natural language

processing. ACM Transactions on Computing for Healthcare (HEALTH), 3(1), 1–23.

Hastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H. (2009). The elements of statistical
learning: data mining, inference, and prediction. Springer Science & Business Media.

Havrlant, L. & Kreinovich, V. (2017). A simple probabilistic explanation of term frequency-

inverse document frequency (tf-idf) heuristic (and variations motivated by this explana-

tion). International Journal of General Systems, 46(1), 27–36.



118

Hinton, G. E. & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural

networks. science, 313(5786), 504–507.

Hoffer, E., Hubara, I. & Soudry, D. (2017). Train longer, generalize better: closing the

generalization gap in large batch training of neural networks. Advances in Neural
Information Processing Systems, 30, 1-2.

Huang, N., Nie, F., Ni, P., Luo, F. & Wang, J. (2020). Sacall: a neural network basecaller for

oxford nanopore sequencing data based on self-attention mechanism. IEEE/ACM Trans.
Comput. Biol. Bioinform., 19(1), 614–623.

Huang, Y.-J., Lin, Y.-T., Liu, C.-C., Lee, L.-E., Hung, S.-H., Lo, J.-K. & Fu, L.-C. (2022).

Assessing schizophrenia patients through linguistic and acoustic features using deep

learning techniques. IEEE IEEE Trans. Neural Syst. Rehabilitation Eng., 30, 947–956.

Huddar, V., Desiraju, B. K., Rajan, V., Bhattacharya, S., Roy, S. & Reddy, C. K. (2016).

Predicting complications in critical care using heterogeneous clinical data. IEEE Access,
4, 7988–8001.

Hunter, D., Yu, H., Pukish III, M. S., Kolbusz, J. & Wilamowski, B. M. (2012). Selection of

proper neural network sizes and architectures—A comparative study. IEEE Transactions
on Industrial Informatics, 8(2), 228–240.

Hurley, N. & Rickard, S. (2009). Comparing measures of sparsity. IEEE Transactions on
Information Theory, 55(10), 4723–4741.

Ilias, L. & Askounis, D. (2022). Explainable identification of dementia from transcripts using

transformer networks. IEEE J. Biomed. Health Inform., 26(8), 4153–4164.

Ioffe, S. & Szegedy, C. (2015). Batch normalization: Accelerating deep network training

by reducing internal covariate shift. International Conference on Machine Learning,

pp. 448–456.

Jain, D. & Singh, V. (2018). Feature selection and classification systems for chronic disease

prediction: A review. Egyptian Informatics Journal, 19(3), 179–189.

Joachims, T. (1998). Text categorization with support vector machines: Learning with many

relevant features. European conference on machine learning, pp. 137–142.

Johnson, A. E., Ghassemi, M. M., Nemati, S., Niehaus, K. E., Clifton, D. A. & Clifford, G. D.

(2016). Machine learning and decision support in critical care. Proceedings of the IEEE.
Institute of Electrical and Electronics Engineers, 104(2), 444.



119

Kannan, S., Gurusamy, V., Vĳayarani, S., Ilamathi, J., Nithya, M., Kannan, S. & Gurusamy, V.

(2014). Preprocessing techniques for text mining. International Journal of Computer
Science & Communication Networks, 5(1), 7–16.

Karparthy, A. (2020). Neural Networks 1. Retrieved on 2020-04-01 from: https://cs231n.github.

io/neural-networks-1.

Kenton, J. D. M.-W. C. & Toutanova, L. K. (2019). BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M. & Tang, P. T. P. (2017). On

Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

Kessler, J. (2017). Scattertext: a Browser-Based Tool for Visualizing how Corpora Differ.

Proceedings of ACL 2017, System Demonstrations, pp. 85–90.

Kim, H. K., Park, Y., Park, Y., Choi, E., Kim, S., You, H. & Bae, Y. S. (2023). Identifying

alcohol-related information from unstructured bilingual clinical notes with multilingual

transformers. IEEE Access, 1-2.

Kim, S.-W. & Gil, J.-M. (2019). Research paper classification systems based on TF-IDF and

LDA schemes. Human-centric Computing and Information Sciences, 9(1), 30.

Kingma, D. P. & Ba, J. (2015). Adam: A Method for Stochastic Optimization. 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings.

Kjell, O. N., Sikström, S., Kjell, K. & Schwartz, H. A. (2022). Natural language analyzed with

AI-based transformers predict traditional subjective well-being measures approaching

the theoretical upper limits in accuracy. Scientific Reports, 12(1), 3918.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model

selection. Ijcai, 14(2), 1137–1145.

Kolyvakis, P., Kalousis, A., Smith, B. & Kiritsis, D. (2018). Biomedical ontology alignment:

an approach based on representation learning. J. Biomed. Semantics, 9, 1-2.

Kramer, M. A. (1991). Nonlinear principal component analysis using autoassociative neural

networks. AIChE journal, 37, 233–243.



120

Kreimeyer, K., Foster, M., Pandey, A., Arya, N., Halford, G., Jones, S. F., Forshee, R.,

Walderhaug, M. & Botsis, T. (2017). Natural language processing systems for capturing

and standardizing unstructured clinical information: a systematic review. Journal of
Biomedical Informatics, 73, 14–29.

Kumar, V., Recupero, D. R., Riboni, D. & Helaoui, R. (2020). Ensembling Classical Machine

Learning and Deep Learning Approaches for Morbidity Identification from Clinical

Notes. IEEE Access, 1-2.

Laghmati, S., Cherradi, B., Tmiri, A., Daanouni, O. & Hamida, S. (2020). Classification

of Patients with Breast Cancer using Neighbourhood Component Analysis and Super-

vised Machine Learning Techniques. IEEE International Conference on Advanced
Communication Technologies and Networking.

Lai, S., Liu, K., He, S. & Zhao, J. (2016). How to Generate a Good Word Embedding. IEEE
Intelligent Systems, (6), 5–14.

Lazaridou, A., Kuncoro, A., Gribovskaya, E., Agrawal, D., Liska, A., Terzi, T., Gimenez, M.,

de Masson d’Autume, C., Kocisky, T., Ruder, S. et al. (2021). Mind the gap: Assessing

temporal generalization in neural language models. Advances in Neural Information
Processing Systems, 34, 29348–29363.

Le, H., Vial, L., Frej, J., Segonne, V., Coavoux, M., Lecouteux, B., Allauzen, A., Crabbé,

B., Besacier, L. & Schwab, D. (2020). FlauBERT: Unsupervised Language Model

Pre-training for French. Proceedings of the 12th Language Resources and Evaluation
Conference, pp. 2479–2490.

Le, T.-D., Noumeir, R., Rambaud, J., Sans, G. & Jouvet, P. (2021). Machine Learning Based

on Natural Language Processing to Detect Cardiac Failure in Clinical Narratives. 36e
Congres de la recherche au CHU Sainte-Justine.

Le, T.-D., Noumeir, R., Rambaud, J., Sans, G. & Jouvet, P. (2022). Detecting of a Patient’s

Condition From Clinical Narratives Using Natural Language Representation. IEEE Open
Journal of Engineering in Medicine and Biology, 3, 142–149.

Le, T.-D., Jouvet, P. & Noumeir, R. (2023a). A Small-Scale Switch Transformer and NLP-based

Model for Clinical Narratives Classification. arXiv preprint arXiv:2303.12892.

Le, T.-D., Macabiau, C., Jouvet, P. & Noumeir, R. (2023b). GRN-Transformer: Enhancing

Motion Artifact Detection in PICU Photoplethysmogram Signals. arXiv preprint
arXiv:2308.03722.



121

Le, T.-D., Noumeir, R., Rambaud, J., Sans, G. & Jouvet, P. (2023c). Adaptation of Autoencoder

for Sparsity Reduction From Clinical Notes Representation Learning. IEEE Journal of
Translational Engineering in Health and Medicine, 1-2.

Lee, S. & Jo, J. (2021). Information Flows of Diverse Autoencoders. Entropy, 23(7), 862.

Levy, O., Goldberg, Y. & Dagan, I. (2015). Improving distributional similarity with lessons

learned from word embeddings. Transactions of the Association for Computational
Linguistics, 3, 211–225.

Leyli-Abadi, M., Labiod, L. & Nadif, M. (2017). Denoising autoencoder as an effective

dimensionality reduction and clustering of text data. Pacific-Asia Conference on
Knowledge Discovery and Data Mining.

Li, R., Li, Q., Wang, H., Li, S., Zhao, J., Yan, Q. & Wang, L. (2022a). DDPTransformer: Dual-

Domain With Parallel Transformer Network for Sparse View CT Image Reconstruction.

IEEE Trans Comput Imaging, 8, 1101–1116.

Li, Y., Yao, L., Mao, C., Srivastava, A., Jiang, X. & Luo, Y. (2018). Early prediction of

acute kidney injury in critical care setting using clinical notes. 2018 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 683–686.

Li, Y., Mamouei, M., Salimi-Khorshidi, G., Rao, S., Hassaine, A., Canoy, D., Lukasiewicz,

T. & Rahimi, K. (2022b). Hi-BEHRT: Hierarchical Transformer-based model for

accurate prediction of clinical events using multimodal longitudinal electronic health

records. IEEE J. Biomed. Health Inform., 1-2.

Li, Y. & Yuan, Y. (2017). Convergence Analysis of Two-layer Neural Networks with ReLU

Activation. Advances in Neural Information Processing Systems, 30, 597–607.

Lin, T., Wang, Y., Liu, X. & Qiu, X. (2022). A survey of transformers. AI Open, 1-2.

Liu, F., Pradhan, R., Druhl, E., Freund, E., Liu, W., Sauer, B. C., Cunningham, F., Gordon, A. J.,

Peters, C. B. & Yu, H. (2019a). Learning to detect and understand drug discontinuation

events from clinical narratives. Journal of the American Medical Informatics Association,

26(10), 943–951.

Liu, X., Chen, Y., Bae, J., Li, H., Johnston, J. & Sanger, T. (2019b). Predicting Heart Failure

Readmission from Clinical Notes Using Deep Learning. 2019 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 2642–2648.

López-García, G., Jerez, J. M., Ribelles, N., Alba, E. & Veredas, F. J. (2021). Transformers for

clinical coding in Spanish. IEEE Access, 9, 72387–72397.



122

López-García, G., Jerez, J. M., Ribelles, N., Alba, E. & Veredas, F. J. (2023). Explainable

clinical coding with in-domain adapted transformers. Journal of Biomedical Informatics,
1-2.

Loshchilov, I. & Hutter, F. (2019). Decoupled Weight Decay Regularization. 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019.

Lu, P., Wang, C., Hagenah, J., Ghiasi, S., Zhu, T., Thwaites, L., Clifton, D. A. et al. (2022).

Improving Classification of Tetanus Severity for Patients in Low-Middle Income Countries

Wearing ECG Sensors by Using a CNN-Transformer Network. IEEE Trans. Biomed.
Eng., 1-2.

Lu, Y., Cheung, Y.-M. & Tang, Y. Y. (2019). Bayes imbalance impact index: A measure of class

imbalanced data set for classification problem. IEEE transactions on neural networks
and learning systems, 31(9), 3525–3539.

Luo, G. (2016). A review of automatic selection methods for machine learning algorithms

and hyper-parameter values. Network Modeling Analysis in Health Informatics and
Bioinformatics, 5(1), 1–16.

Macabiau, C., Le, T.-D., Albert, K., Jouvet, P. & Noumeir, R. (2023). Label Propagation

Techniques for Artifact Detection in Imbalanced Classes using Photoplethysmogram

Signals. arXiv preprint arXiv:2308.08480.

Maimon, O. Z. & Rokach, L. (2014). Data mining with decision trees: theory and applications.
World scientific.

Martin, L., Muller, B., Suárez, P. J. O., Dupont, Y., Romary, L., de La Clergerie, É. V., Seddah,

D. & Sagot, B. (2020). CamemBERT: a Tasty French Language Model. Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 7203–7219.

Martinez, A. M. & Kak, A. C. (2001). Pca versus lda. IEEE Trans. Pattern Anal. Mach. Intell.,
23(2), 228–233.

Matthay, M. A., Zemans, R. L., Zimmerman, G. A., Arabi, Y. M., Beitler, J. R., Mercat, A.,

Herridge, M., Randolph, A. G. & Calfee, C. S. (2019). Acute respiratory distress

syndrome. Nature reviews Disease primers, 5(1), 18.

Matton, M.-P., Toledano, B., Litalien, C., Vallee, D., Brunet, F. & Jouvet, P. (2016). Databases

and Computerized Systems in PICU: Electronic Medical Record in Pediatric Intensive

Care: Implementation Process Assessment. Journal of pediatric intensive care, 5(3),

129.



123

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5(4), 115–133.

Meng, Y., Speier, W., Ong, M. K. & Arnold, C. W. (2021). Bidirectional representation learning

from transformers using multimodal electronic health record data to predict depression.

IEEE J. Biomed. Health Inform., 25(8), 3121–3129.

Mienye, I. D., Sun, Y. & Wang, Z. (2020). Improved sparse autoencoder based artificial neural

network approach for prediction of heart disease. Informatics in Medicine Unlocked, 18,

100307.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. (2013). Distributed representations

of words and phrases and their compositionality. Advances in neural information
processing systems, pp. 3111–3119.

Mondal, A. K., Bhattacharjee, A., Singla, P. & Prathosh, A. (2021). xViTCOS: explainable

vision transformer based COVID-19 screening using radiography. IEEE J. Transl. Eng.
Health Med., 10, 1–10.

Mugisha, C. & Paik, I. (2022). Comparison of Neural Language Modeling Pipelines for Outcome

Prediction From Unstructured Medical Text Notes. IEEE Access, 10, 16489–16498.

Musen, M. A., Middleton, B. & Greenes, R. A. (2021). Clinical decision-support systems.

In Biomedical informatics (pp. 795–840). Springer.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B. & Sutskever, I. (2021). Deep double

descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12), 124003.

Névéol, A., Dalianis, H., Velupillai, S., Savova, G. & Zweigenbaum, P. (2018). Clinical natural

language processing in languages other than english: opportunities and challenges.

Journal of biomedical semantics, 9(1), 1–13.

Ng, A. & Jordan, M. (2002). On discriminative vs. generative classifiers: A comparison of

logistic regression and naive bayes. Advances in neural information processing systems,
14(2002), 841.

Noumeir, R. (2003). DICOM structured report document type definition. IEEE Transactions on
information technology in biomedicine, 7(4), 318–328.

Olsen, C. R., Mentz, R. J., Anstrom, K. J., Page, D. & Patel, P. A. (2020). Clinical applications

of machine learning in the diagnosis, classification, and prediction of heart failure.

American Heart Journal, 1-2.



124

Olsen, C., Meyer, P. E. & Bontempi, G. (2008). On the impact of entropy estimation on

transcriptional regulatory network inference based on mutual information. Journal on
Bioinformatics and Systems Biology, 2009, 1-2.

Otter, D. W., Medina, J. R. & Kalita, J. K. (2020). A survey of the usages of deep learning

for natural language processing. IEEE Transactions on Neural Networks and Learning
Systems, 1-2.

Paleyes, A., Urma, R.-G. & Lawrence, N. D. (2020). Challenges in deploying machine learning:

a survey of case studies. arXiv preprint arXiv:2011.09926, 1-2.

Pasini, A. (2015). Artificial neural networks for small dataset analysis. Journal of thoracic
disease, 7(5), 953.

Pasupa, K. & Sunhem, W. (2016). A comparison between shallow and deep architecture classifiers

on small dataset. 2016 8th International Conference on Information Technology and
Electrical Engineering (ICITEE), pp. 1–6.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V. et al. (2011a). Scikit-learn: Machine learning in

Python. The Journal of Machine Learning Research, 12, 2825–2830.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V. et al. (2011b). Scikit-learn: Machine Learning

in Python. Journal of Machine Learning Research, 12, 2825–2830.

Pennington, J., Socher, R. & Manning, C. D. (2014). Glove: Global vectors for word

representation. Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532–1543.

Perlich, C., Provost, F. & Simonoff, J. (2003). Tree induction vs. logistic regression: A

learning-curve analysis. 1-2.

Pham, T., Tran, T., Phung, D. & Venkatesh, S. (2017). Predicting healthcare trajectories from

medical records: A deep learning approach. Journal of biomedical informatics, 69,

218–229.

Phan, H., Mikkelsen, K., Chén, O. Y., Koch, P., Mertins, A. & De Vos, M. (2022). Sleeptrans-

former: Automatic sleep staging with interpretability and uncertainty quantification.

IEEE Trans. Biomed. Eng., 69(8), 2456–2467.

Pluim, J. P., Maintz, J. A. & Viergever, M. A. (2003). Mutual-information-based registration of

medical images: a survey. IEEE Trans. Med. Imaging, 22(8), 1-2.



125

Popel, M. & Bojar, O. (2018). Training tips for the transformer model. arXiv preprint
arXiv:1804.00247, 1-2.

Quiroz, J. C., Laranjo, L., Kocaballi, A. B., Berkovsky, S., Rezazadegan, D. & Coiera, E. (2019).

Challenges of developing a digital scribe to reduce clinical documentation burden. NPJ
Digital Medicine, 1-2.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W. & Liu, P. J.

(2020). Exploring the limits of transfer learning with a unified text-to-text transformer.

The Journal of Machine Learning Research, 21(1), 5485–5551.

Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C. & Dosovitskiy, A. (2021). Do vision

transformers see like convolutional neural networks? Advances in Neural Information
Processing Systems, 34, 12116–12128.

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus,

J., Sun, M. et al. (2018). Scalable and accurate deep learning with electronic health

records. NPJ Digital Medicine, 1(1), 18.

Reddy, G. T., Reddy, M. P. K., Lakshmanna, K., Kaluri, R., Rajput, D. S., Srivastava, G. & Baker,

T. (2020). Analysis of dimensionality reduction techniques on big data. IEEE Access, 8,

54776–54788.

Rizwan, M., Mushtaq, M. F., Akram, U., Mehmood, A., Ashraf, I. & Sahelices, B. (2022).

Depression Classification From Tweets Using Small Deep Transfer Learning Language

Models. IEEE Access, 10, 129176–129189.

Robertson, S. (2004). Understanding inverse document frequency: on theoretical arguments for

IDF. Journal of documentation, 1-2.

Roitero, K., Portelli, B., Popescu, M. H. & Della Mea, V. (2021). DiLBERT: Cheap embeddings

for disease related medical NLP. IEEE Access, 9, 159714–159723.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions

and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215.

Rumshisky, A., Ghassemi, M., Naumann, T., Szolovits, P., Castro, V., McCoy, T. & Perlis, R.

(2016). Predicting early psychiatric readmission with natural language processing of

narrative discharge summaries. Translational psychiatry, 6(10), e921–e921.

Sahlgren, M. & Lenci, A. (2016). The Effects of Data Size and Frequency Range on Distributional

Semantic Models. Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 975–980.



126

Salton, G. & Yang, C.-S. (1973). On the specification of term values in automatic indexing.

Sanh, V., Debut, L., Chaumond, J. & Wolf, T. (2019). DistilBERT, a distilled version of BERT:

smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 1-2.

Santos, F., Macedo, H., Bispo, T. & Zanchettin, C. (2020). Morphological Skip-Gram: Using mor-

phological knowledge to improve word representation. arXiv preprint arXiv:2007.10055,

1-2.

Sauthier, M., Tuli, G., Jouvet, P. A., Brownstein, J. S. & Randolph, A. G. (2021). Estimated

Pao2: A Continuous and Noninvasive Method to Estimate Pao2 and Oxygenation Index.

Critical care explorations, 3(10), 1-2.

Sheikhalishahi, S., Miotto, R., Dudley, J. T., Lavelli, A., Rinaldi, F., Osmani, V. et al. (2019).

Natural language processing of clinical notes on chronic diseases: systematic review.

JMIR Medical Informatics, 7(2), e12239.

Shi, X., Hu, Y., Zhang, Y., Li, W., Hao, Y., Alelaiwi, A., Rahman, S. M. M. & Hossain, M. S.

(2016). Multiple disease risk assessment with uniform model based on medical clinical

notes. IEEE Access, 4, 7074–7083.

Shi, Y., Lei, M., Ma, R. & Niu, L. (2019). Learning robust auto-encoders with regularizer for

linearity and sparsity. IEEE Access, 7, 17195–17206.

Shwartz-Ziv, R. & Tishby, N. (2017). Opening the black box of deep neural networks via

information. arXiv preprint arXiv:1703.00810, 1-2.

Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J., Chung, H. W., Scales, N., Tanwani,

A., Cole-Lewis, H., Pfohl, S. et al. (2023). Large language models encode clinical

knowledge. Nature, 1–9.

Soguero-Ruiz, C., Hindberg, K., Rojo-Alvarez, J. L., Skrøvseth, S. O., Godtliebsen, F., Mortensen,

K., Revhaug, A., Lindsetmo, R.-O., Augestad, K. M. & Jenssen, R. (2014). Support

vector feature selection for early detection of anastomosis leakage from bag-of-words in

electronic health records. IEEE journal of biomedical and health informatics, 20(5),

1404–1415.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. (2014). Dropout: a

simple way to prevent neural networks from overfitting. The journal of machine learning
research, 15(1), 1929–1958.

Steinmeyer, C. & Wiese, L. (2020). Sampling methods and feature selection for mortality

prediction with neural networks. Journal of Biomedical Informatics, 111, 103580.



127

Sundararajan, M., Taly, A. & Yan, Q. (2017). Axiomatic attribution for deep networks.

International Conference on Machine Learning, pp. 3319–3328.

Suresh, H., Hunt, N., Johnson, A., Celi, L. A., Szolovits, P. & Ghassemi, M. (2017). Clinical

intervention prediction and understanding with deep neural networks. Machine Learning
for Healthcare Conference, pp. 322–337.

Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N. & Kroeker, K. I.

(2020). An overview of clinical decision support systems: benefits, risks, and strategies

for success. NPJ digital medicine, 3(1), 1–10.

Tapia, N. I. & Estévez, P. A. (2020). On the information plane of autoencoders. IEEE
International Joint Conference on Neural Networks.

Tharwat, A., Gaber, T., Ibrahim, A. & Hassanien, A. E. (2017). Linear discriminant analysis: A

detailed tutorial. AI communications, 30(2), 169–190.

Tishby, N., Pereira, F. C. & Bialek, W. (2000). The information bottleneck method. arXiv
preprint physics/0004057, 1-2.

Tolles, J. & Meurer, W. J. (2016). Logistic regression: relating patient characteristics to

outcomes. Jama, 316(5), 533–534.

Tonekaboni, S., Joshi, S., McCradden, M. D. & Goldenberg, A. (2019). What clinicians want:

contextualizing explainable machine learning for clinical end use. Machine Learning for
Healthcare Conference, pp. 359–380.

Tripathy, J. K., Sethuraman, S. C., Cruz, M. V., Namburu, A., Mangalraj, P., Vĳayakumar, V.

et al. (2021). Comprehensive analysis of embeddings and pre-training in NLP. Computer
Science Review, 42, 100433.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. & Polo-

sukhin, I. (2017). Attention is all you need. Proceedings of the 31st International
Conference on Neural Information Processing Systems, pp. 6000–6010.

Viola, P. & Wells III, W. M. (1997). Alignment by maximization of mutual information.

International journal of computer vision, 24, 137–154.

Wallace, E., Wang, Y., Li, S., Singh, S. & Gardner, M. (2019). Do NLP Models Know Numbers?

Probing Numeracy in Embeddings. Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-ĲCNLP), pp. 5310–5318.



128

Wang, Y., Yao, H. & Zhao, S. (2016). Auto-encoder based dimensionality reduction. Neuro-
computing, 184, 232–242.

Wang, Y., Zhou, Z., Jin, S., Liu, D. & Lu, M. (2017). Comparisons and selections of features

and classifiers for short text classification. Iop conference series: Materials science and
engineering, 261(1), 012018.

Ware, L. B. & Matthay, M. A. (2000). The acute respiratory distress syndrome. New England
Journal of Medicine, 342(18), 1334–1349.

Webb, T., Holyoak, K. J. & Lu, H. (2023). Emergent analogical reasoning in large language

models. Nature Human Behaviour, 1–16.

Weng, W.-H., Wagholikar, K. B., McCray, A. T., Szolovits, P. & Chueh, H. C. (2017).

Medical subdomain classification of clinical notes using a machine learning-based

natural language processing approach. BMC medical informatics and decision making,

17(1), 1–13.

Xiong, Y. & Lu, Y. (2020). Deep feature extraction from the vocal vectors using sparse

autoencoders for Parkinson’s classification. IEEE Access, 8, 27821–27830.

Xue, F., Shi, Z., Wei, F., Lou, Y., Liu, Y. & You, Y. (2022). Go wider instead of deeper.

Proceedings of the AAAI Conference on Artificial Intelligence, 36(8), 8779–8787.

Xue, J.-H. & Titterington, D. M. (2008). Comment on discriminative vs. generative classifiers:

A comparison of logistic regression and naive bayes. Neural processing letters, 28(3),

169–187.

Yahyatabar, M., Jouvet, P. & Cheriet, F. (2020). Dense-Unet: a light model for lung fields

segmentation in Chest X-Ray images. 2020 42nd Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1242–1245.

Yahyatabar, M., Jouvet, P., Fily, D., Rambaud, J., Levy, M., Khemani, R. G. & Cheriet, F. (2023).

A web-based platform for the automatic stratification of ARDS severity. Diagnostics,
13(5), 933.

Yang, X., Bian, J., Hogan, W. R. & Wu, Y. (2020). Clinical concept extraction using transformers.

J Am Med Inform Assoc, 27(12), 1935–1942.

Yang, Z., Huang, Y., Jiang, Y., Sun, Y., Zhang, Y.-J. & Luo, P. (2018). Clinical assistant

diagnosis for electronic medical record based on convolutional neural network. Scientific
reports, 8(1), 6329.



129

Young, T., Hazarika, D., Poria, S. & Cambria, E. (2018). Recent trends in deep learning based

natural language processing. IEEE Computational Intelligence Magazine, 13(3), 55–75.

Yu, S. & Principe, J. C. (2019). Understanding autoencoders with information theoretic concepts.

Neural Networks, 117, 104–123.

Yu, T. & Zhu, H. (2020). Hyper-parameter optimization: A review of algorithms and applications.

arXiv preprint arXiv:2003.05689, 1-2.

Zafar, M. B., Donini, M., Slack, D., Archambeau, C., Das, S. & Kenthapadi, K. (2021). On the

Lack of Robust Interpretability of Neural Text Classifiers. Findings of the Association
for Computational Linguistics: ACL-ĲCNLP 2021, pp. 3730–3740.

Zaglam, N., Jouvet, P., Flechelles, O., Emeriaud, G. & Cheriet, F. (2014). Computer-aided

diagnosis system for the acute respiratory distress syndrome from chest radiographs.

Computers in biology and medicine, 52, 41–48.

Zeng, X., Linwood, S. L. & Liu, C. (2022). Pretrained transformer framework on pediatric

claims data for population-specific tasks. Scientific Reports, 12(1), 3651.

Zhang, R., Ma, S., Shanahan, L., Munroe, J., Horn, S. & Speedie, S. (2017). Automatic

methods to extract New York heart association classification from clinical notes. 2017
ieee international conference on bioinformatics and biomedicine (bibm), pp. 1296–1299.

Zhang, Y., Jin, R. & Zhou, Z.-H. (2010). Understanding bag-of-words model: a statistical

framework. International Journal of Machine Learning and Cybernetics, 1(1-4), 43–52.

Zhou, B., Yang, G., Shi, Z. & Ma, S. (2022). Natural language processing for smart healthcare.

IEEE Rev Biomed Eng, 1-2.

Zhou, C., Jia, Y. & Motani, M. (2018). Optimizing autoencoders for learning deep representations

from health data. IEEE J. Biomed. Health Inform., 1-2.


