
Adding a Dynamic Load Balancing based on a Static method in

Cloud via OpenStack

by

Neda Lame

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
IN PARTIAL FULFILLMENT OF A MASTER’S DEGREE

WITH THESIS IN IT ENGINEERING
M.A.Sc.

MONTREAL, AUGUST 01, 2023

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Neda Lame, 2023

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Michel Kadoch, Thesis supervisor

Département de génie électrique, École de technologie supérieure

Mr. Alain April, Chair, Board of Examiners

Département de génie logiciel et des TI, École de technologie supérieure

Mr. David Bensoussan, Member of the Jury

Département de génie électrique , École de technologie supérieure

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON JULY 25, 2023

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor, Prof.Kadoch, for his support, guidance, feedback,

and encouragement throughout the research process. Thank you for all your constructive advice

and consistent support during the running of this project.

Also, I would like to extend my deepest gratitude to my parents for their love, support, and

understanding during this challenging time that I am away from them to reach my educational

goals. Their encouragement gave me the strength and motivation to pass difficult moments

successfully.

Finally, I would like to thank my friends for their help and support in my academic journey and

for generously sharing their time, knowledge, and experiences.

Ajout d’un équilibrage de charge dynamique basé sur une méthode Statique dans le Cloud
via OpenStack

Neda Lame

RÉSUMÉ

Avec l’émergence de la technologie informatique en nuage sur Internet, l’accès à l’informatique

partagée ressources à bas coût par les consommateurs augmente. En raison de la demande

massive de services en ligne services, l’équilibrage de charge est essentiel pour optimiser

l’utilisation des ressources et éviter la surcharge ou sous-charge résultant des mises à jour

du système d’exploitation, du temps d’exécution des tâches, de la panne du serveur sur les

fournisseurs et une défaillance du système due à des problèmes matériels. Pour relever ces défis

de l’équilibrage de charge dans le cloud computing, divers algorithmes d’équilibrage de charge

ont été étudiés dans modes statique et dynamique. Bien que des mécanismes d’équilibrage de

charge dynamique aient été proposés avec leurs avantages et leurs inconvénients, aucun n’a

été déployé sur la base des méthodes statiques actuelles dans la plate-forme OpenStack, qui

est gratuite et dispose d’une communauté géante. Par conséquent, nous apporter une solution

dynamique basée sur la méthode statique, Weighted Round Robin, dans OpenStack. Notre

solution dynamique est capable d’équilibrer les tâches en tenant compte des critères d’utilisation

du processeur. En tant que évaluation, nous avons analysé les performances de la méthode

statique et de notre solution en tant que dynamique version de la méthode standard. Nos résultats

expérimentaux ont montré un temps de traitement moyen inférieur et de meilleures performances

dans notre solution que la méthode statique. Comme travail futur, nous avons proposé trois

méthodes suivantes. La première consiste à prendre en compte plusieurs dimensions dans notre

solution pour équilibrage de charge dynamique dans OpenStack pour améliorer l’efficacité.

Ensuite, utilisez plusieurs nuages dans différentes régions géographiques pour équilibrer la

charge de travail entre les fournisseurs de ces régions. Le dernier est une autre conception de

notre solution dynamique basée sur la méthode statique, Weighted Round Robin dans OpenStack

à l’aide de Machine Learning, avec suivi des charges actuelles, du processeur, de la mémoire et

Réseau pour calculer les pondérations appropriées pour chaque serveur principal afin d’équilibrer

les demandes des utilisateurs. En outre, la mise à l’échelle des ressources du cluster de serveurs

peut être utilisée via Machine Learning pour provisionner une nouvelle machine virtuelle dans

une période mouvementée pour répondre aux demandes des clients.

Mots-clés: Cloud computing, Équilibreur de charge, Équilibrage de charge, Équilibrage de

charge statique, Équilibrage de charge dynamique, OpenStack

Adding a Dynamic Load Balancing based on a Static method in Cloud via OpenStack

Neda Lame

ABSTRACT

With emerging Cloud computing technology over the Internet, accessing shared computing

resources at low cost by consumers is increasing. Due to the massive demand for online

services, load balancing is essential to optimize resource utilization and prevent overloading

or underloading resulting from operating system updates, task operating time, server failure

on the providers, and system failure due to hardware issues. To address these challenges of

load balancing in cloud computing, various load balancing algorithms have been studied in

static and dynamic modes. Although dynamic load balancing mechanisms have been proposed

with their merits and demerits, none have been deployed based on the current static methods

in the OpenStack platform, which is free of cost and has a giant community. Therefore, we

contribute a dynamic solution based on the static method, Weighted Round Robin, in OpenStack.

Our dynamic solution is able to balance the tasks considering CPU utilization criteria. As an

evaluation, we analyzed the performance of the static method and our solution as a dynamic

version of the standard method. Our experimental results showed less mean processing time

and better performance in our solution than the static method. As a future work, we proposed

three following methods. The first is considering multiple dimensions within our solution for

dynamic load balancing in OpenStack to enhance efficiency. Next is using multiple clouds in

different geographical regions to balance the workload among the providers in those regions.

Last is a further design of our dynamic solution based on the static method, Weighted Round

Robin in OpenStack using Machine Learning, with tracking current loads, CPU, Memory, and

Network to calculate the suitable weights for each backend server to balance the users’ requests.

Also, scaling out the server cluster’s resources can be employed through Machine Learning to

provision a new virtual machine in a hectic time to serve the clients’ requests.

Keywords: Cloud computing, Load balancer, Load balancing, Static load balancing, Dynamic

load balancing, OpenStack

TABLE OF CONTENTS

Page

INTRODUCTION .1

CHAPTER 1 BACKGROUND . 5

1.1 Cloud Definition . 5

1.1.1 Public Cloud . 7

1.1.2 Private Cloud . 7

1.1.3 Community Cloud . 7

1.1.4 Hybrid Cloud . 7

1.2 Load Balancing in Cloud . 8

1.3 Load Balancing Techniques . 10

1.4 OpenStack . 12

1.4.1 Cloud Computing Platforms . 12

1.4.2 OpenStack Architecture . 12

1.4.3 OpenStack Components . 14

1.4.4 Computing Service (Nova) . 15

1.5 Networking Service (Neutron) . 17

1.6 Load Balancing in OpenStack . 20

1.7 Load Balancer as a Service (LBaaS V1, V2) . 20

1.8 Octavia Project . 22

1.9 Octavia Components . 23

CHAPTER 2 LITERATURE REVIEW .. 25

2.1 Dynamic Load Balancing Algorithms in Cloud Computing . 25

2.2 Summary . 28

CHAPTER 3 DESIGN AND IMPLEMENTATIONS . 29

3.1 Installation Environment . 29

3.2 Deployment . 32

3.3 Simulation of Workload via Multi Threads . 33

3.4 Weighted Round Robin Load Balancing (Existing Static Method) 35

3.5 Dynamic (Agent-based) Load Balancing (Modified Static Method) 38

3.6 Summary . 47

CHAPTER 4 RESULTS AND DISCUSSION . 49

4.1 Network Topology . 49

4.2 Experiment and Results Analysis . 50

4.3 Weighted Round-Robin Algorithm . 50

4.4 Dynamic (Agent-based) Weighted Round-Robin Algorithm . 51

4.5 Summary . 54

XII

CONCLUSION AND RECOMMENDATIONS . 55

APPENDIX I OPENSTACK ARCHITECTURE . 57

BIBLIOGRAPHY . 61

LIST OF TABLES

Page

Table 1.1 Interaction of Octavia with OpenStack Modules . 22

Table 3.1 Hardware Configuration . 29

Table 3.2 Backends’ Hardware Configuration Details . 31

Table 3.3 Octavia Components . 32

Table 3.4 Servers’ weights . 33

Table 3.5 Capturing the number of requests on servers . 41

Table 3.6 Calculation of current load . 46

Table 4.1 Connection Counts for Dynamic WRR . 52

Table 4.2 Connection Counts for Static WRR . 52

LIST OF FIGURES

Page

Figure 1.1 Cloud Computing Architecture taken from Kumar & Rana (2015) 6

Figure 1.2 Load Balancing in Cloud Computing taken from Swarnkar,

Singh & Shankar (2013) . 9

Figure 1.3 Software Defined Networking- A high-level architecture taken from

Al-Mashhadi, Anbar, Jalal & Al-Ani (2020) . 10

Figure 1.4 OpenStack Logical Architecture taken from OpenStack (2018b) 13

Figure 1.5 OpenStack Service Overview taken from OpenStack (2023i) 14

Figure 1.6 The logical interaction among OpenStack components taken from

Huawei Technologies Co., Ltd. (2023) . 15

Figure 1.7 The logical interaction among OpenStack components taken from

Huawei Technologies Co., Ltd. (2023) . 16

Figure 1.8 Nova Workflow taken from Huawei Technologies Co., Ltd. (2023) 17

Figure 1.9 Neutron architecture taken from Huawei Technologies Co., Ltd.

(2023) . 18

Figure 1.10 The interaction between network plugin agents and the Neutron

server taken from Huawei Technologies Co., Ltd. (2023) 19

Figure 1.11 LBaaS V2 concepts taken from OpenStack (2023h) . 21

Figure 1.12 Octavia components taken from OpenStack (2023d) . 24

Figure 3.1 Installation Environment (Cloud Environment) . 30

Figure 3.2 Network Service Architecture . 31

Figure 3.3 Load Balancer as a Service (LBaaS) via Octavia . 33

Figure 3.4 Load Simulation via Multi Thread . 35

Figure 3.5 Load Balancer with Static method, WRR . 36

Figure 3.6 Logs for executing WRR Load Balancing . 37

XVI

Figure 3.7 Load Balancer with Dynamic Version of WRR . 39

Figure 3.8 Two-parts Agent . 40

Figure 3.9 Dynamic Load balancing procedure . 41

Figure 3.10 Logs for Dynamic version of WRR . 42

Figure 3.11 Logs of Current Load in Dynamic-WRR . 43

Figure 3.12 Calculating load’s Log in Ascending Sort . 44

Figure 3.13 New load weight logs in Dynamic-WRR . 45

Figure 4.1 Static Load Balancing . 51

Figure 4.2 Dynamic Load Balancing . 52

Figure 4.3 Request Completion Time on Average between Static and Dynamic

Load Balancers . 53

LIST OF ABBREVIATIONS

API Ápplication Programming Interface

AWLLB Adaptive Weighted Least Load Balancing algorithm

A2LB Autonomous Agent-based Load Balancing algorithm

DWRR Dynamic Weighted Round Robin

FwaaS Firewall as a Service

FCFS First Come First Serve

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

ICT Information and Communication Technology

LBaaS National Institute of Standards and Technology

PaaS Platform as a Service

RR Round Robin

SDN Software Defined Networking

SLA Service Level Agreements

SaaS Software as a Service

TCP Transmission Control Protocol

UDP User Datagram Protocol

WLC Weighted least connection

WS Web Server

WRR Weighted Round Robin

INTRODUCTION

Nowadays, the use of Cloud Computing services is growing in Information and Communication

Technology (ICT) instead of establishing physical data centers due to reducing the operating

expenses and time required for providing online services by cloud computing providers. The

online services consist of network resources to serve the end users’ requirements through different

cloud providers. Moreover, clients need to access their online services with vast requests. In

this case, it is necessary to use a load balancer to distribute incoming and outcoming traffic

between servers or clients’ requests. In cloud computing, load balancing is also called LBaaS,

Load Balancing as a Service (Mishra, Sahoo & Parida, 2020).

There are different load balancers, hardware and software-based. However, the hardware load

balancer is more expensive and harder to configure than the software one. Therefore, using a

software load balancer in cloud computing, which is part of SDN, Software Defined Networking,

is a solution to distribute the resources dynamically (Al-Mashhadi et al., 2020).

In general, load balancing is divided into both static and dynamic techniques. The static

methods work based on initial knowledge of servers and assign the workload such as CPU,

Network and Storage capacity among servers equivalently. However, the dynamic techniques

distribute the loads based on the last status of servers at run-time. Although these dynamic

algorithms are complex, they have fault tolerance and better performance (Kumar & Rana,

2015). Moreover, (Singh, Juneja & Malhotra, 2015) stated that dynamic load balancing methods

concentrate on low latency and execution time and are appropriate for large-scale distributed

environments. In contrast, static ones are good for small-scale distributed environments with

high-speed Internet regardless of latency.

The software-based load balancer in cloud computing can be deployed on different environments,

such as OpenStack, an open-source software cloud computing platform. OpenStack includes

a virtual network framework based on SDN architecture to provide and manage the network

2

environment and virtual network infrastructure (Rista, Ajdari & Zenuni, 2020). Using SDN

in cloud computing to deploy a dynamic load balancing reduces operation and capital costs

(Kumar & Rana, 2015). However, OpenStack uses static methods for load balancing by default

without considering the CPU usage of each VM (OpenStack, 2018a). Therefore, load balancing

in OpenStack can not be dynamically done based on a common popular static method at real-time.

The main goal of our study is to add a dynamic version of static load balancing, Weighted

Round Robin (WRR)1, in the Cloud via OpenStack to optimize the loads. Our approach is to

add WRR in dynamic state. The modified WRR uses the last status of servers in a network by

considering a standard dimension, such as CPU usage, to accommodate the upcoming request

for each server. Our design DWRR2 assigns workload across the servers at run-time. Then, our

solution is compared to the standard method, Weighted Round Robin, on OpenStack in terms of

minimum response time and maximum hardware utilization.

In this study, we implemented an agent-based load balancer based on a metric such as CPU

utilization to balance the loads dynamically. Our experimental results showed that the CPU usage

metric resulted in minimum response time and maximum resource utilization. The experiment

is performed in a cloud environment via OpenStack on VirtualBox3 hypervisor to emulate a

cloud network with all virtualized components to implement the proposed solution.

In the proposed algorithm (DWRR), two threads are considered written by Python. The main

thread on the load balancer is in charge of monitoring and processing the information coming

from servers. The worker thread on servers is in charge of periodically updating each server’s

numeric weight4 value via the load balancer.

1 WRR is Weighted Round Robin, a static load balancing method which is in default used in OpenStack

at present.

2 DWRR is a dynamic version of WRR, Weighed Round Robin, designed for our study.

3 VirtualBox is a open-source virtualization software for creating virtual environment.

4 Weight is selected based on power usage in which maximum weight will be assigned with maximum

power usage and minimum weight will be assigned with minimum CPU usage.

3

In conclusion, we successfully implemented a dynamic version of Weighted Round Robin

(DWRR) on OpenStack, which is also compared with the static version (WRR). Furthermore,

we observe that by changing the static load balancing to a dynamic state in OpenStack, we reach

a small percentage of improvement in efficiency for processing tasks and time execution.

This thesis is divided into the following chapters: The Introduction consists of the thesis

objectives.

Chapter 1 covers the background concepts behind cloud computing, SDN technology, load

balancing in the Cloud and OpenStack components.

Chapter 2 describes the related works discussed regarding other load balancing techniques in

the cloud environment.

Chapter 3 includes the implementation of the proposed dynamic load balancing method and

installation environment.

Chapter 4 comprises analyzing the results of experiments and negotiation based on them.

Chapter 5 concludes with the outcomes and defines future work to improve the efficiency of the

dynamic solution in OpenStack.

CHAPTER 1

BACKGROUND

We are going to present the basic concepts and the terminology of Cloud computing, SDN,

OpenStack architecture and essential modules, and load balancing techniques to follow the

results presented in this thesis. Furthermore, we will describe the core terms related to load

balancing in OpenStack.

1.1 Cloud Definition

"Cloud is a parallel and distributed computing system consisting of a collection of interconnected

and virtualized computers that are dynamically provisioned and presented as one or more unified

computing resources based on service level agreements (SLA) established through negotiation

between the service provider and consumers."(Buyya, Yeo, Venugopal, Broberg & Brandic,

2009)

In simple words, Cloud is network access to shared resources and standardized by NIST (National

Institute of Standards and Technology). Cloud Computing has an official definition by NIST,

which is "a pay-per-use model for enabling ubiquitous, convenient, on-demand network access to

a shared pool of configurable computing resources (e.g., networks, servers, storage, applications

and services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction" (Mell & Grance, 2011).

According to the definition of NIST, cloud computing has at least five characteristics, including

on-demand self-service, measured service, resource pooling, broad network access, and rapid

elasticity. It is also possible to receive three service models consisting of Software as a Service

(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). Figure 1.1 shows

the details regarding service models.

6

Figure 1.1 Cloud Computing Architecture taken from Kumar & Rana (2015)

• Infrastructure as a Service (IaaS) enables tenants to access computing resources within

virtual machines to run the required software, for example, Windows Azure, Google Compute

Engine, and Amazon EC2 (Tumkur, 2016).

• Platform as a Service (PasS), such as Microsoft Azure, and Google App Engine provides

tenants with access to computing resources via an application programming interface.

Customers utilize it to create and execute their applications. The user does not have access to

the system’s resources. The platform allocates resources to the application automatically

(Tumkur, 2016).

• Software as a Service (SaaS) ,such as Google Apps, and Microsoft Office 365 offers users

software programmes as a subscription service. Users are not required to install, configure,

or operate the software application (Tumkur, 2016).

7

Based on the NIST definition, clouds can be deployed in one of four different models: Private

Cloud, Community Cloud, Public Cloud and Hybrid Cloud (Mell & Grance, 2011) .

1.1.1 Public Cloud

Public cloud solutions are available from popular providers, including Google, Amazon,

Microsoft, and Alibaba (Kulkarni, Aldi, Mulla, Narayan & Hiremath, 2022). Public cloud

services provide the public with infrastructure and services, and you, or your organization, make

a piece of that infrastructure and network secure. Resources are shared by hundreds or thousands

of people (Mell & Grance, 2011).

1.1.2 Private Cloud

Private cloud solutions are dedicated to one organization or business and often have more

specific security controls than a public cloud. For implementing a private cloud, there are

various proprietary or open-source platforms like Apache CloudStack, OpenStack, ManageIQ,

and Cloudify (Mell & Grance, 2011).

1.1.3 Community Cloud

This type of Cloud provides an infrastructure for use by a community of consumers sharing

between several organizations with common concerns, including "mission, security requirements,

policy, and compliance considerations." It is managed by one or a group of organizations in the

community with shared interests (Mell & Grance, 2011).

1.1.4 Hybrid Cloud

This is a convergence of two or more different cloud infrastructures, including private, community

or public. "they are bound together by standardized or proprietary technology that enables

data and application portability (e.g., cloud bursting for load balancing between clouds)"

(Mell & Grance, 2011).

8

1.2 Load Balancing in Cloud

Due to the high demand for online services in cloud computing, user traffic is increasing.

Therefore, load balancing is required to assign tasks to virtual machines with high user

satisfaction by a fair allocation of computing resources (Kulkarni et al., 2022). One of the issues

of cloud computing that has not been entirely addressed is load balancing. The load is like

CPU, memory, and network workload. The job of load balancing is to spread the loads between

different nodes of the cloud system to boost resource utilization [CPU, RAM, etc.] as well as

response time considering the status of nodes; some have little work or are busy to load (Rimal,

Choi & Lumb, 2009).

As can be seen in Figure 1.2, the load balancing mechanism in Cloud distributes the workload

among all the nodes. The objective is user satisfaction and the ratio of resource utilization [CPU,

Storage, RAM, etc.], avoiding heavy workloads on a node and improving the whole performance

of the system. Load balancing in a suitable way can lead to efficient use of the available resources,

scalability, and response time reduction, and maximum throughput (Swarnkar et al., 2013).

Load balancer can be implemented in software or hardware format. As hardware, it acts as a

reverse proxy to distribute the loads among servers (Tumkur, 2016). However, the configuration

is difficult, and the device is expensive. Therefore, as software in cloud computing, which is

part of SDN, Software Defined Networking, is a solution to distribute the resources dynamically

(Al-Mashhadi et al., 2020).

Software Defined Networking (SDN) technology is a kind of networking that employs software-

based controllers or Application Programming Interfaces (APIs) to interact with hardware

devices and transfer data traffic over a network. Compared with traditional networking with

hardware devices such as switches and routers, SDN can build and manage a virtual or traditional

network through software. However, network virtualization enables companies or organizations

to have a variety of virtual networks on a physical network or vice versa, connecting hardware

devices on physical networks to build a virtual network; SDN proposes a new architecture to

control and route the packets of data by a central server as a controller (VMware, 2023).

9

Figure 1.2 Load Balancing in Cloud Computing taken from Swarnkar et al. (2013)

The primary idea of SDN technology is the separation between two sections, the control plane, a

programmable part [by SDN controller] and the data plane, known as the data forwarding part

[by switches]. SDN reduced the traditional networking challenges in terms of management and

complexity. SDN is the hottest topic among researchers and hardware producers like Ericson,

Net-gear, Nokia, Siemens and Verizon in the Open Networking Foundation (ONF) list. SDN

gives us a control mechanism of different network hardware devices by various vendors as a

main goal. It overcomes the main issues regarding security and reliability. In the following,

Figure 1.3 illustrates the SDN architecture (Al-Mashhadi et al., 2020).

10

Figure 1.3 Software Defined Networking- A high-level architecture taken from

Al-Mashhadi et al. (2020)

1.3 Load Balancing Techniques

There are two types of load-balancing techniques, Content-Aware and Content Blind, which

are explained as follows: One of the techniques is the Content-Aware type. According to this

technique, the data type is considered in deciding the path for transferring data packets, such as

banking, gaming, website loading, etc. (Verma, 2017). It is also suitable for a homogeneous

environment. In Content Blind, the data type is unimportant and compatible with a homogeneous

and heterogeneous environment (Mishra et al., 2020).

According to Kumar & Rana (2015), The static load balancing algorithm distributes the load

equally among servers using prior knowledge of the applications and statistical data about the

system. On the other hand, dynamic ones look for the lightest server in networking to assign the

proper workload at run-time. Although the algorithms in this category are considered complex,

they have excellent overall performance and fault tolerance.

• Content-Aware Techniques

The Content-Aware Techniques are classified into the following methods (Verma, 2017):

11

1. IP Hash

This technique makes a unique hash key through a combination of client and server IPs.

This key helps to assign the request to a specific server. The key also can be reproduced

if an interruption happens during the network connection (Verma, 2017).

2. DNS

Among the various methods of DNS load balancing, DNS delegation is used to assign

a domain as a sub-domain to defined zones under the control of a bunch of servers in

critical situations; once servers are lost, needing to serve the requests from the website

on that domain. This method works if the servers are in different areas in terms of

geography over the Internet (Verma, 2017).

3. Persistence

One of the usages of this method is in banking and security with respect to the

organizations in which the HTTP connection must be connected 24/7 between the server

and client. When the connection is exposed to attack or spoof in critical situations, it is

essential to use this method to transfer the specific data packets, as mentioned before,

by the same tunnel until the end of a session using the source and destination IP. The

persistence of the session during the transferring of data packets is vital in this method

which is helpful for data relating to bank or security uses (Verma, 2017).

• Content Blind Techniques

In this technique, the data type is not as crucial as Content-Aware techniques. Compared

with Content-Aware Techniques, responding to a request is much faster and is of priority.

The Algorithms of Content Blind Techniques are as follows (Verma, 2017):

1. Latency

This algorithm is common for gaming applications. In this case, the server with the

fastest response is used for the required connection. It is vital that delay must not occur

during the connection (Verma, 2017).

2. Round-Robin

12

This algorithm, known as RR, is very popular and simplest. Because the requests

are assigned to servers respectively regardless of considering factors such as resource

utilization, sometimes, a node might be heavy, and another stays idle without request

(Verma, 2017).

3. Least Connection

Considering the name of this algorithm, each server with a minimum number of online

connections can receive the request promptly (Verma, 2017).

4. Dynamic

This algorithm is used through an agent installed in each server to report its status.

Therefore, it can be combined with other algorithms or new methods to manage an

incoming request (Verma, 2017).

1.4 OpenStack

1.4.1 Cloud Computing Platforms

There are various open-source platforms for cloud computing. One of the most popular

ones is OpenStack, developed by Rackspace and NASA (National Aeronautics and Space

Administration), the hosting service provider, for helping cloud service providers and companies

make their cloud environment. It has a modular architecture to provide tenants with different

services over the Internet via a Dashboard (Huo, Qu & Wu, 2015). Many companies have used

OpenStack for their business goals. Data centers also use OpenStack to provide computing,

storage, and networking (Harvey, 2014).

1.4.2 OpenStack Architecture

OpenStack plays a crucial role for a cloud provider with a powerful dashboard to manage servers

on different hypervisors (VMware, ESXI, KVM, Hyper-V, Xen, etc.) as well as required storage

and virtual network services. It enables cloud customers to use various services, including

13

network, storage, and computing. The OpenStack architecture consists of four categories

(Callegati, Cerroni, Contoli & Santandrea, 2014):

• Controller nodes to manage the cloud platform (OpenStack, 2023g). Controller nodes

perform API (Application Programming Interface) for the components of OpenStack, such

as Cider, Glance, Nova, Keystone, and Neutron. These API services install on multiple

controller nodes if needed (Denton, 2016).

• Network nodes for providing cloud network services (Callegati et al., 2014). Network nodes

perform the network services such as DHCP and metadata and provide virtual routers if the

Neutron L3, DHCP and metadata agents are installed (Denton, 2016).

• Compute nodes usually execute the VMs on a hypervisor, including KVM, Hyper-V, Xen,

etc (Callegati et al., 2014).

• Storage nodes are related to 3 types of storage, like Cider, Swift, Or Glance for data and

VM images (Callegati et al., 2014).

Figure 1.4 shows the Cloud Architecture in the following:

Figure 1.4 OpenStack Logical Architecture taken from OpenStack (2018b)

14

1.4.3 OpenStack Components

In the following, OpenStack has different components (OpenStack, 2023i):

Figure 1.5 OpenStack Service Overview taken from OpenStack (2023i)

Figure 1.5 presents various components of OpenStack. As a brief explanation, Nova, as an

OpenStack compute service, manages the virtual machine instances, networks and tenants on

Cloud.

Neutron, as a networking service, provides different networking services such as DHCP, load

balancing, firewall, etc.

Keystone, as an Identity service, is used for authentication and authorization services in which

different network nodes can communicate via a token.

Other components are related to storage services, such as Cider (Block storage service) is used

for block devices such as a hard disk.

Swift (Object storage service) is used for media, backup, and VM image files.

Glance (Image service) is used for managing image services such as discovery, registration and

delivery.

Another component, Dashboard (Horizon), provides an interface for cloud customers (adminis-

trators and users) to manage and monitor the resources on Cloud (OpenStack, 2023i).

OpenStack services can correlate by calling the Application Programming Interface (API) of

each service to interact with others in a modular manner in a loosely coupled system. Figure 1.6

depicts the correlation between OpenStack modules (Huawei Technologies Co., Ltd., 2023).

15

Figure 1.6 The logical interaction among OpenStack components taken from Huawei

Technologies Co., Ltd. (2023)

1.4.4 Computing Service (Nova)

Nova, the control unit of OpenStack, is responsible for managing servers, creating virtual

machines and supporting containers. It correlates with other components of OpenStack for

different approaches, such as authentication with Identity service, three types of storages with

Glance, Swift, and Cider, network services with Neutron service, etc. (OpenStack, 2021).

Figure 1.7 depicts the interaction of Nova with its components and other modules in OpenStack.

Nova is crucial in managing and selecting the best hypervisors using the API server. It is

possible to build clouds with multiple hypervisors in various zones. The Hypervisors such

as Hyper-V, VMware vSphere, Kernel-based Virtual Machine (KVM), QEMU, Xen, Linux

Containers (LXC), etc, are supported by Compute (OpenStack, 2021).

The main components of Nova-compute are as follows (OpenStack, 2021):

• Nova-API is in charge of receiving all the requests coming from other components to Nova

and responding to them through APIs.

• Nova-compute is for managing instances on compute node.

16

Figure 1.7 The logical interaction among OpenStack components taken from Huawei

Technologies Co., Ltd. (2023)

• Nova-scheduler is responsible for choosing the appropriate compute node for hosting the

VM.

• Nova-conductor frequently requires database updates, like updating and retrieving the

virtual machines’ status. Nova-compute does not directly access the database for security

and scalability reasons, delegating this operation to Nova-conductor. It has two advantages:

increased system security and improved system scalability (Huawei Technologies Co., Ltd.,

2023).

According to Figure 1.8, when Nova API receives a request to build an instance, some essential

process is performed for sending a message to Messaging by RabbitMQ. By this message,

Scheduler starts scheduling to choose one of the most suitable compute nodes. Then Scheduler

sends a message to messaging to create an instance on the specified compute node. Through this

message, Nova-compute starts the instance on the compute node. Meanwhile, a message is sent

to Nova-conductor if it needs database access for updates or queries since the conductor can

communicate with the database.

17

Figure 1.8 Nova Workflow taken from Huawei Technologies Co., Ltd. (2023)

1.5 Networking Service (Neutron)

OpenStack Networking, Neutron, acts as an API to manage virtual and physical networks over

OpenStack Cloud. The main purpose of Neutron is connecting the virtual machines to the virtual

network on the Cloud and then connecting the virtual network to the physical network. Network

physical devices such as switches, routers, firewalls, and load balancers can be configured

virtually (Denton, 2016)

Neutron enables the tenants to employ and use networking resources. In (OpenStack, 2023e) ,

it was stated that "OpenStack Networking provides a tenant-facing API for defining network

connectivity and IP addressing for instances in the cloud, in addition to orchestrating the network

configuration."

According to Figure 1.9, Neutron architecture includes Neutron-API, plugins, and agents that

are described below:

Neutron API on the Neutron server receives demands and sends them to plugins for network

implementation.

Core plugins are used for supporting the two-tier virtual network by the L2 agent via OVS

(Open vSwitch). Since there is much more code duplication in implementing core plugins, the

ML2 core plugin is used instead of core plugins (Huawei Technologies Co., Ltd., 2023). The

18

ML2 plugin depends on various drivers’ types to define network types such as flat, VLAN,

VXLAN, and local, supported by Neutron Denton (2016).

Service plugins provide network services such as routing, load balancing, and firewalling (Huawei

Technologies Co., Ltd., 2023).

Neutron Agents such as DHCP, MetaData, L2, and L3 are used on compute and network nodes

to implement a network by receiving the messages on the message bus from the Neutron server.

DHCP is for providing DHCP services to all networks, and MetaData services provide users

with instances’ information such as hostname, Ips and public SSH keys (Denton, 2016).

Figure 1.9 Neutron architecture taken from Huawei Technologies Co., Ltd. (2023)

Figure 1.10 shows the correlation between agents and the Neutron server to create a virtual

network.

19

Figure 1.10 The interaction between network plugin agents and the Neutron server taken

from Huawei Technologies Co., Ltd. (2023)

Based on Figure 1.10 , at the first step, a request is received by Neutron API for connecting an

instance to a new network. Then To process the request, the API server calls the ML2 plugin. In

the second step, The ML2 plugin forwards the request to the OVS mechanism driver, which

generates a message based on the information in the request. The message is forwarded to

the appropriate OVS agent for processing via the management network. Next, The message is

received by the OVS agent, who configures the local virtual switch. In the last step, receiving

the request is received by the DHCP agent to configure the DHCP server within the network

20

node. Then virtual machine instances will be assigned IP addresses over the data network by the

DHCP server (Denton, 2016).

As mentioned above, in Neutron, there are three services such as LBaaS (Load Balancing

as a Service, FWaaS (Firewall as a Service) and VPNaaS (Virtual Private Network as a

Service) (OpenStack, 2023f). In this report, LBaaS is considered.

1.6 Load Balancing in OpenStack

OpenStack Neutron can distribute incoming requests between configured instances. Using

Neutron and OVS (OpenvSwitch), Load Balancing-as-a-Service (LBaaS) can be built. The load

balancing of workloads is used to spread incoming traffic between designated instances. This

operation ensures that no server takes all requests leading to a slowdown. Therefore, traffic is

divided among active instances and uses resources effectively. OpenStack LBaaS includes the

following methods (OpenStack, 2018a).

• Round robin has a simple mechanism that executes processes in circular order between

different instances regardless of priority.

• The source IP method assigns client requests via specific IPs to pass to the same instance.

• The least connections method is used for sending incoming requests to the server with fewer

active connections.

1.7 Load Balancer as a Service (LBaaS V1, V2)

Initially, LBaaS V1 was presented as a feature by the networking service in OpenStack; then, it

was updated to LBaaS V2 with a plugin named "neutron-lbaas”. LBaaS V2 has a facility named

listener that lets you set multiple listener ports, such as 80 and 443, on a load balancer IP address

based on Figure 1.11 (OpenStack, 2023h).

LBaaS V2 can be implemented in two ways, API-based via Octavia and agent-based via an

external 3rd party component like HAProxy software server (High Availability Proxy) (OpenStack,

2023h).

21

Figure 1.11 LBaaS V2 concepts taken from OpenStack (2023h)

HAproxy software is limited for TCP and HTTP-based applications ("e.g. high traffic websites")

as an open-source high availability load balancer and proxy server proxying solution roles to

distribute requests between servers in cloud platforms (HAProxy, 2023).

Octavia is a superset of LBaas V2 API, including additional features. It is used as an open-source

load balancer using a separate API inside virtual machines on hypervisors which is manipulated

by the compute service. In this case, there is no need for an agent (OpenStack, 2023h). According

to the mentioned load balancing methods in section 1.4.6, Octavia supports three Load balancing

methods: Round robin, Source IP and least connection methods.

In 2019, neutron-lbaas and neutron-lbaas-dashboard are retired and no longer supported as of

the Queens OpenStack release cycle. There are many reasons behind that. One and foremost is

that neutron stadium has grown considerably, resulting in some management scaling issues. By

this, neutron-lbass was considered as a high-level OpenStack project. Second, there is no need

to access the neutron code because of APIs. Through this change, Octavia uses independent

APIs to interact with other services of OpenStack. Moreover, the performance of load balancing

API was increased by removing neutron API code. Also, the number of repositories for adding

API features is decreasing to two repositories. Another is that; some substantial flaws in the

22

neutron-lbaas API code lead to the inconsistent state via a high volume of API calls which

resulted in renewing API code provided by Octavia. Lastly, Octavia, as an independent project,

can update quickly, and no one is confused by the name "neutron" (OpenStack, 2023g).

1.8 Octavia Project

After the Neutron-LBaaS project, which was updated from version 1 to version 2, Octavia is

replaced for implementing LBaas V2 API comprising additional features against neutron-lbaas

after the Liberty release of OpenStack. Now, Octavia, as an official OpenStack service project

provides load balancing capabilities for OpenStack with a standalone API which is considered

in Keystone as load balancer service (OpenStack, 2023d).

Octavia can provide load balancing services by managing VMs, containers, or bare metal servers

called amphorae setting up on-demand. With an on-demand, horizontal scalability feature,

Octavia is more compatible with the cloud environment than the other Load balancing solution

due to high availability by amphorae. In Octavia, Amphora is a virtual machine instance located

in Compute node including HAproxy software to act as a load balancer in the Octavia module.

And amphorae is more than one Amphora. Therefore, using the other modules, Octavia plays a

crucial role in the OpenStack ecosystem. In detail, Octavia interacts with the following modules

and libraries for its role. More explanation will be proposed below: (OpenStack, 2023d)

Table 1.1 shows the modules and libraries collaborating with Octavia to provide tenants with

load balancing services.

Table 1.1 Interaction of Octavia with OpenStack Modules

Modules and Libraries Controller Compute Network
Keystone Module �
Glance Module �
Nova Module �

Neutron Module � � �
Barbican Module �

Oslo Messaging Library �
TaskFlow Library �

23

• Nova for controlling Amphora and managing the compute resources on request.

• Neutron for network connection among Amphora, tenant environment and external network.

• Barbican for manipulating TLS6 (Transport Layer Security) certificates including private

keys to secure connections between clients and backend nodes.

• Keystone for authentication to the Octavia API as well as Octavia with other moudules.

• Glance for maintaining the amphora instance image.

• Oslo and taskflow as part of Oslo for making communication between Octavia components.

1.9 Octavia Components

According to Figure 1.12, Octavia consists of some components and subcomponents. There are

three components. First, amphorae are the VMs, containers, or bare metal servers to provide

tenants with load-balancing services. Second, the Controller, as Octavia’s "brains, " comprises

five sub-components: API Controller, Controller Worker, Health Manager, Housekeeping

Manager, and Driver Agent. Last is Network, which is needed for Amphora to spin up

to load balancer network and reach the tenant network’s backend members via a network

interface (OpenStack, 2023d).

The subcomponents of Octavia are as follows:

• API Controller is responsible to take requests, perform and transfer them to the controller

worker over Oslo messaging bus.

• Controller Worker is in charge of receiving the requests from API controller and taking

necessary action to fulfill the request.

• Health Manager is for monitoring amphorae to make sure they are up and running. Also, it

manages failover events if one of the amphorae fails.

• Housekeeping Manager is for cleaning the deleted database records and managing the spare

pool.

• Driver Agent is for connection with other modules.

6 TLS is used to provide secure communication over network.

24

Figure 1.12 Octavia components taken from OpenStack (2023d)

CHAPTER 2

LITERATURE REVIEW

We are going to review the works related to our study. In a distributed environment, load

balancing is needed for better performance and efficiency and is vital for Cloud Computing in

the research area. There are different heuristic load-balancing techniques. We will concentrate

on papers involving dynamic methods in the cloud environment through different simulations.

The target is to survey the various contributions with their cons and pros for adding a dynamic

version to the OpenStack platform.

2.1 Dynamic Load Balancing Algorithms in Cloud Computing

Assigning the user requests to the specific servers on cloud networks can lead to some challenges,

including power usage or run time from overloading or underloading. In this case, to overcome

the mentioned challenges, load balancing is a mechanism to balance different types of loads

in the Cloud, including CPU, RAM and network load. There are various algorithms for load

balancing consisting of dynamic for "homogeneous and heterogeneous environments" and

static for "homogenous or stable environments" (Tsai & Rodrigues, 2014). Based on the

mentioned problems, different algorithms are reviewed and discussed. Before going through

the existing algorithms, some performance metrics show the performance of various load-

balancing algorithms. Among these performance parameters in the Cloud, Makespan and energy

consumption are important. Makespan definition is the whole time needed to complete all tasks

submitted to the system (Mishra et al., 2020). Energy consumption is the energy consumed by

all ICT devices connecting in the cloud system (Moganarangan, Babukarthik, Bhuvaneswari,

Basha & Dhavachelvan, 2016)

Regarding the existing load balancing algorithms and their issues in Cloud Computing, five

parameters are considered: Scalability, Fault Tolerance, Throughput 7, Resource Utilization,

7 Throughput shows the number of executed tasks per unit of time. It should be high in order to optimise

system performance (Swarnkar et al., 2013).

26

Point of Failure and Response Time (Swarnkar et al., 2013). Based on challenges such as

avoiding overloading, latency, high energy consumption and response time coming from load

balancing, much research has been done to address the problems.

In 2010, a dynamic load-balancing algorithm named Honeybee Foraging Behavior (the behaviour

of bees inspired this name to seek their food) was investigated by Randles et al. In this method,

although system performance is raised via increasing system diversity, the throughput parameter

of this algorithm is not improved. It is suitable for situations requiring a diverse population of

service types. In this algorithm, virtual servers serve the requests and calculate their profits based

on CPU utilization to compare with other servers. The server with a high profit is selected to suit

the demands; otherwise, another server chooses randomly (Randles, Lamb & Taleb-Bendiab,

2010). This algorithm was proposed by (Nakrani & Tovey, 2004).

In 2013, Dasgupta et al. offered a load balancing method using Genetic algorithm with “the

mechanism of natural selection strategy” for cloud computing to make resource utilization

efficient. This method balances the workload based on a minimum makespan of coming tasks

using the CloudSim simulator. Although the proposed strategy performed better than existing

techniques (FCFS 8 , and RR 9), all the requests have the same priority, which may not occur in

a real case. Therefore, this algorithm is inefficient due to a huge number of VMs and demands.

Moreover, As this algorithm has a simple approach of GA, selection strategies can be changed

to make it more efficient (Dasgupta, Mandal, Dutta, Mandal & Dam, 2013).

In 2013, Wu et al. studied on WRR (Weighted Round Robin) and WLC (Weighted least

connection) to build AWLLB, an Adaptive Weighted Least Load Balancing algorithm. In this

method, once the load balancer received the request, server weight could be dynamically adjusted

and selected the nodes with the minimum amount of weight based on CPU usage to serve the

request. Then, the authors compared the performance of AWLLB with WRR and WLC through

the CPU utilization ratio in the OPENT platform. According to this benchmark, in AWLLB,

8 (First Come First Serve)

9 (Round Robin)

27

the CPU utilization ratio is lower than WRR and WLC. In WRR, high CPU usage resulted in

bottlenecks due to congestion on one server while other servers were vacant (Wu, Luo & Li,

2013).

In 2015, Singh et al., investigated the issues in terms of scalability and reliability and static

algorithm in the mentioned artificial intelligent algorithms and proposed "an Autonomous

Agent-based Load Balancing algorithm (A2LB) which can offer maximum resource utilization,

maximum throughput, minimum response time, dynamic resource scheduling with scalability

and reliability." This mechanism consists of agents calculating the proactive load of each VM

in a data center. If a VM’s load approaches a threshold amount, the Channel and Migration

agents search for a potential VM from other data centers. These agents behave like ants seeking

the shortest and best route to the destination. As the ants try to look for different paths to the

destination, they record the routes with a chemical material, then after a while, this chemical

material increases. Therefore, other ants follow that as the best and shortest path to the destination.

While moving from source to destination, they collect the path information and do not return to

their source, reducing traffic. Consequently, these agents are suitable for load balancing in Cloud

Computing with different data centers to seek the underloaded servers (Singh et al., 2015).

In 2017, Li et al. designed and implemented a load balancing technique on the OpenStack

platform based on load forecasting model and BP neural network algorithms. The algorithm

includes three steps, monitoring and gaining load information, load forecasting model and virtual

machine scheduling. Therefore, by this method based on BP neural network, load fluctuation is

slight, and network accuracy by online learning is approved (Li, Zheng, Li, Xu & Tang, 2017).

In 2018, Xinming et al. studied the merits and demerits of static and dynamic load balancing

algorithms in distributing services to propose a dynamic load balancing algorithm. In this paper,

this algorithm employs the real-time load on each server by combining the server’s performance

and the request number. Then it updates the weights through the dynamic feedback mechanism,

which minimizes average response time and improves the server’s overall utilization rate (Rong

He, Xinming Tan, 2018).

28

2.2 Summary

Based on the literature review, it has been observed that there are different dynamic mechanisms

in load balancing for Cloud environments with cons and pros in terms of scalability, reliability,

and throughput. To reach our goal, we plan to add a dynamic solution of load balancing

algorithm based on the static method, Weighted Round Robin via OpenStack.

CHAPTER 3

DESIGN AND IMPLEMENTATIONS

To reach the objective of adding an agent-based load balancing in OpenStack, we prepare a

cloud environment by installing OpenStack to built-in an agent-based algorithm over a standard

method on the load balancer. The steps to implement the agent-based method will be described.

3.1 Installation Environment

For implementing the proposed solution, the experiment is performed in a private cloud

environment via OpenStack on VirtualBox hypervisor to virtualize the environment. It is

installed on hardware as a host, including AMD Ryzen 5700U Processor and 16GB RAM. To

make a cloud environment via OpenStack, three virtual machines, Controller, Compute and

Network, are installed with Ubuntu Linux 20.04 with different configurations according to Table

3.1.

Table 3.1 Hardware Configuration

Virtual Device Controller Compute Network
CPU (Cores) 2 2 2

RAM (GB) 4 6 4

Primary Disk (GB) 20 40 20

For our purpose, the OpenStack architecture consists of three nodes with its tasks. The Controller

node manages the cloud platform, managing and maintaining APIs for the modules on OpenStack.

The Compute node is for installing, executing, and managing the virtual machine instances as

web servers, and the Network node provides instances with network services. Moreover, for

better performance, the network traffic is segregated into Control Plane for managing traffic and

Data Plane for data user traffic.

Figure 3.1 illustrates our Cloud environment in OpenStack platform.

30

Figure 3.1 Installation Environment (Cloud Environment)

Basic OpenStack packages like Yoga repository and python-OpenStackclient 5.8.0 Version in all

nodes are installed to prepare the infrastructure. Then, some requirements such as MariaDB for

managing SQL Database, RabbitMQ for controlling Message Queue and Memcached for cache

tokens are installed.

Based on Figure 3.2, for running the OpenStack platform, essential modules such as Keystone

for identity services, Glance for image services, Nova (API, Conductor, and Scheduler) as the

control unit of OpenStack, and Neutron for network services are installed on the Controller

node. The Neutron plugin agents (OpenVSwitch, DHCP, and L3) are installed on Compute

and Network nodes to build L2 and L3 connectivity between private and provider networks

to reach the external network to serve the users’ requests. Afterward, we must create a nested

virtualization network by Nova compute, QEMU emulator and OpenVSwitch as a virtual switch

to configure the network among virtual machine instances on Compute node. Moreover, each

31

node has a separate interface to connect to the Internet to set up the cloud environment and

update the repository. More information is placed in Appendix I.

Figure 3.2 Network Service Architecture

Once all essential modules, virtual switch and QEMU emulator are installed, we create a network

topology including three instances within Compute node with private network.

In this thesis, three web servers, WS1 (WebServer1), WS2 (WebServer2), and WS3 (WebServer3),

based on Table 3.2, are installed and configured as web servers by installing Apache2.

Table 3.2 Backends’ Hardware Configuration Details

Device WS1 WS2 WS3
CPU (Core) 1 1 2

RAM (GB) 1.00 GB 2.00 GB 2.00 GB

OS 10 Ubuntu 20.04 Ubuntu 20.04 Ubuntu 20.04

10 Operating System

32

3.2 Deployment

After making the cloud environment via OpenStack, we deploy the Octavia module as necessary

as other modules such as Keystone, Nova, Neutron and Glance for Load balancing services in

the Network node. As mentioned earlier, Octavia API V2 by Neutron_LBaaS was deprecated

and replaced with the Octavia project.

Octavia service and the following components are created and configured in this infrastructure

based on Table 3.3.

Table 3.3 Octavia Components

Components Node
Amphora Compute

API Controller

Network

Octavia Driver

Controller Worker

Health Manager

Housekeeping Manager

Octavia plays a load balancer role between the web servers and clients’ requests based on the

WRR (Weighted Round Robin) algorithm. The web servers can connect to the load balancer by

joining the pool, and clients consider it the web sites’ server address to get the requests’ answers.

In Figure 3.3, for load balancing as a service via Octavia, all management traffic use the

management network interface through messaging queue to connect the related agents and APIs

to run the load balancer within Amphora VM in compute node. Inside the amphora, there is

HAproxy software as load balancer, which is used for load balancing to set listener, pool member

and algorithm. Amphora is managed and monitored by Octavia API components through the

managemnt network. Amphora VM as a load balancer and web servers’ virtual machines

communicate togheder through OpenVswitch and then connect to the provider network to reach

the external network by floating IP on the virtual north-south router.

33

Figure 3.3 Load Balancer as a Service (LBaaS) via Octavia

According to the servers’ configuration, different weights are assigned to web servers described

in Table 3.4. We set the maximum weight to WS2 and the minimum weight to WS1. This

configuration shows the difference between static and dynamic load balancing in the next chapter.

Table 3.4 Servers’ weights

Host Name Numeric Weight

WS1 2

WS2 10

WS3 3

3.3 Simulation of Workload via Multi Threads

For sending requests to the load balancer, we execute the Python script, which simulates the

clients’ HTTP requests (via socket library) in different loops via multi threads. In the first step,

34

this script gets the number of requests and threads as input values to calculate the load per thread

based on the following equations11:

Suppose the number of requests is R, and the number of threads is T.

• T = the number of threads

• R = the number of requests

In Equation 3.1, L_i is calculated the load of the No .i thread.

𝐿𝑖 = �𝑅/𝑇� (3.1)

Equation 3.2 presents the S_L, which is the whole burden of all threads except the last thread.

𝑆𝐿 = Σ𝑇−1
1 𝐿𝑖 (3.2)

Equation 3.3 expresses the L_T as a load of last thread.

𝐿𝑇 = 𝑅 − 𝑆𝐿 (3.3)

At the Second step, the initial time is calculated. Then we create a thread pool12 with an input

number of threads to manage the parallel threads for distributing the sequence of loads among

them. Next, we assign a function called Requester as well as the sequence of loads in form of a

list in parallel to the thread pool. By this, the Requester function sends each element of load

sequence per thread to load balancer in parallel through HTTP GET method on TCP13 socket.

At the final step, the ending time is estimated.

11 These equations are helpful when the Quotient of the number of requests divided by the number of

threads will not be integer. Therefore, by this way, we can process all requests via multi threads to have

a better simulation of workload coming from clients.

12 Thread pool is used for multiprocessing.

13 TCP (Transmission Control Protocol)

35

In the following, Figure 3.4 shows an example of load calculation via multi threads.

Figure 3.4 Load Simulation via Multi Thread

3.4 Weighted Round Robin Load Balancing (Existing Static Method)

After the installation phase, based on Figure 3.5, we deployed Octavia as a load balancer over

one of the popular static methods, WRR. There are some reasons behind that. One is that

the allocation of requests is simple and easy to use. Second, server’s real-time status is not

considered by this algorithm, and the weight does not accurately reflect the server’s performance.

Weighted Round Robin builds on simple Round Robin load balancing. In the weighted version,

a static numerical weight is assigned to each server based on factors like CPU usage. Initial

weights, 2,10 and 3 are assigned to WS1, WS2, and WS3, respectively.

36

Figure 3.5 Load Balancer with Static method, WRR

Based on the logs below in Figure 3.6, it is visible that the WRR algorithm distributes the

requests blindly regardless of the last status of each servers’ CPU usage due to the large gap

among CPU percentages of WS1, WS2, and WS3. Large differences between servers’ weights

leading to requests congestion on one server. For example, in the logs, WS2, with 100% CPU

usage, is busier than WS3, with 21%.

37

Figure 3.6 Logs for executing WRR Load Balancing

Some limitations of this algorithm are as follows:

• By the static method, the server’s performance can be poor if the server is busy with local

tasks such as any updates on an operating system, OS functionality or hardware issues such

as CPU, memory and cooling.

38

• Network administrators must manually change weights on servers. Human variables

significantly impact weight setting, and static weight values cannot accurately represent the

servers’ dynamic demand and real-time processing capabilities.

• In the case of the same weights with different configurations, the servers are not being used

to their full potential, resulting in resource waste.

• If there is much more difference between the servers’ weights, then request congestion will

happen in one of the servers.

• This algorithm does not consider the real-time status of each server.

3.5 Dynamic (Agent-based) Load Balancing (Modified Static Method)

This algorithm differs from the WRR which was mentioned above. Despite the static method, in

the agent-based method, the load balancer always considers the last status of each server at run

time. In contrast, in the static mode, the initial state is considered to choose the lightest server.

To overcome the mentioned limitations of WRR, an agent is used on web servers to send the

last servers’ status to the load balancer for updating the weights dynamically. We use the same

network topology with three web servers utilized in the previous method but with an additional

agent.

For simulation purpose, based on Figure 3.7, we have implemented an agent located on each

web servers to collect servers’ statistics by Python script to send the run-time information such

as hostname, host IP and CPU usage percentage to the load balancer every 1 second on UDP14

protocol due to prevent latency.

14 UDP (User Datagram Protocol)

39

Figure 3.7 Load Balancer with Dynamic Version of WRR

Among different metrics related to load balancing algorithms in the literature review, CPU usage

resulted in minimum response time and maximum resource utilization. Therefore, in our study,

the percentage of CPU utilization for each web server is considered at run time to process the

incoming requests. If the server is busy with a high CPU usage percentage, it will not process

more requests. Otherwise, it can handle an increased number of requests.

Based on Figure 3.8, the agent includes two parts. One is located on the load balancer, with two

threads. The main thread receives the information in real-time from web servers for calculating

the new weight of each web server. The parallel one applies new web servers’ weights based on

power usage on backend nodes via load balancer. Therefore, the main thread is in charge of

monitoring and processing the information coming from virtual machine instances. The worker

thread applies new weights to instances through the load balancer. The second part of agent is

placed on web servers to send the last status of virtual machine instances to load balancer every

1 second in the form of UDP packets using the port of 1366.

40

Figure 3.8 Two-parts Agent

Figure 3.9 depicts the flowchart of the agent-based load balancing solution with dynamic weight

modification.

Based on this algorithm, new tasks are permanently assigned to the server with a low CPU

percentage. If two servers have the same weight (same power usage), new requests are assigned

randomly among them. By main thread, while new requests are coming from clients, the load

balancer receives updated information about each web server, such as hostname, host IP and

CPU percentage with ascending sort. Then, we store the hostnames and CPU percentage values

separately to make the descending sort on the servers’ weight values. Then, a new dictionary is

created including keys (hostnames) and reversed values as new weights. In parallel, the worker

thread updates new weights on the load balancer. Next, the new tasks are assigned to the light

server with low weight, and it dynamically switches among the servers which is not busy and

ready to process the new tasks. After updating, the last status of each web server in the load

balancer is equalled to a null value to ensure whether all servers are available or not in the pool.

41

Figure 3.9 Dynamic Load balancing procedure

In this way, the load balancer finds the new status of web servers and will not consider the server

which is down. This feature prevents requests from being lost and results in timely execution

and better performance in terms of load balancing. Following that, this function continues until

all requests are processed.

To show the difference between the static and dynamic methods in terms of the number of

established connections, we use "tcpdump" for discovering network information (Wikipedia

contributors, 2023).

According to Table 3.5, we use tcpdump as a data packet network analyzer to capture the traffic

on each web server with BPF, Berkeley Packet Filters, (IBM, 2022). By this, we find the number

of processed requests on servers.

Table 3.5 Capturing the number of requests on servers

tcpdump

Analyzer

Switch BPF Filter port

-n : to display name resolution of hostnames

−i : to capture traffic on an interface
‘tcp[13]& 8!=0’ 80

42

As we mentioned in Table 3.5, we utilize the BPF filter to capture all TCP-PSH packets

to determine how many client requests were processed on each server after the three-way

handshaking phase.

Figure 3.10, at a glance, describes how the load balancer calculates the current loads based

on CPU percentage to generate the new weight for each web server. In the following, we will

explain more about weight modification processing (current load, calculation load, and new load

weight) based on the mentioned procedure of the dynamic version of WRR.

Figure 3.10 Logs for Dynamic version of WRR

43

In Figure 3.11 regarding the current load, each server presents a number that refers to each

server’s real-time CPU percentage. In other words, each server shows how much CPU is

occupied for processing internal and external tasks as current load in real-time.

Figure 3.11 Logs of Current Load in Dynamic-WRR

44

In Figure 3.12, the current load is sorted in ascending order. For example, if the CPU percentage

of each web server as the current load is WS3:39, WS2:5 and WS1:46, then after ascending sort,

it will be WS2:5, WS3:39 and WS1:46.

Figure 3.12 Calculating load’s Log in Ascending Sort

45

In the following, Figure 3.13 shows the new weight calculated after Ascending sort. In this

Figure, three steps are carried out on the ascending sorted current load to generate the new

weight of each server. First is separating the Hostnames and CPU percentage values into two

lists. Second, the CPU values are sorted in descending order. Then the Hostname lists and

descending values are merged as new weights for the load balancer to distribute the new tasks.

By this, weights are dynamically modified according to the current load of each server. This log

shows that new requests go to the server with low power processing usage. For example, WS1,

with 9% CPU usage, changes to 46%. Then it increases to 53% in the following process.

Figure 3.13 New load weight logs in Dynamic-WRR

46

Table 3.6, comes from a part of actual results based on Figure 3.10 to see what exactly occurred

via the dynamic version of WRR in the backend. With reading the table from left to right, the

first column shows the current CPU usage percentage of each server. Then, in the second and

third columns, after calculation, including ascending, descending and merging, a new weight

is set for each server in the load balancer to assign new tasks. Therefore, the weight and the

number of requests for each server with high CPU usage are decreased. Moreover, CPU usage

percentage depends on internal and external tasks as well as Operating System updates.

Table 3.6 Calculation of current load

Step
Current load

(CPU usage percentage)
Ascending

Descending &

creating new weight

l {WS3: 37, WS2: 1, WS1: 0} {WS1: 0, WS2: 1, WS3: 37} {WS3: 0, WS2: 1, WS1: 37}

2 {WS3: 39, WS2: 1, WS1: 0} {WS1: 0, WS2: 1, WS3: 39} {WS3: 0, WS2: 1, WS1: 39}

3 {WS3: 39 , WS2: 5 , WS1: 0} {WS1: 0, WS2: 5, WS3: 39} {WS3: 0 WS2: 5, WS1: 39}

4 {WS3: 39 , WS2: 5, WS1: 46} {WS2: 5, WS3: 39, WS1: 46} {WS3: 39, WS2: 46, WS1: 5}

5 {WS3: 39, WS2: 9, WS1: 46} {WS2: 9, WS3: 39, WS1: 46} {WS3: 39, WS2: 46, WS1: 9}

6 {WS3: 15, WS2: 9, WS1: 46} {WS2: 9, WS3: 15, WS1: 46} {WS3: 15, WS2: 46, WS1: 9}

7 {WS3: 21 , WS2: 9, WS1: 46} {WS2: 9, WS3: 21, WS1: 46} {WS3: 21, WS2: 46, WS1: 9}

8 {WS3: 21, WS2: 59, WS1: 46} {WS3: 21, WS1: 46, WS2: 59} {WS3: 59, WS2: 21, WS1: 46}

9 {WS3: 21, WS2: 59, WS1: 53} {WS3: 21, WS1: 53, WS2: 59} {WS3: 59, WS2: 21, WS1: 53}

10 {WS3: 21, WS2: 66, WS1: 53} {WS3: 21 , WS1: 53, WS2: 66} {WS3: 66, WS2: 21, WS1: 53}

47

3.6 Summary

This chapter explained how we installed and configured the OpenStack cloud environment with

three nodes, Controller, Compute, and Network. In the Controller node, the essential modules for

our experiment, such as Nova, Keystone, Glance, and Neutron, were installed and configured. In

Compute node, we installed Nova-compute, one of the Nova components, Neutron-plugin-agent

and QEMU hypervisor for hosting three web servers needed for our experiment. We also

deployed the Octavia API in the Network node to launch Amphora as a load balancer service

with an existing static load balancing method, WRR, and three members (WS1, WS2, and WS3)

to balance client loads. For sending client requests to the load balancer, we simulated concurrent

HTTP requests via multi threads on TCP socket. In this workload simulation, we estimated the

time of request processing operation that will be used for evaluation in Chapter 4.

By performing the WRR algorithm, the logs showed the processing power usage of each web

server in the static method in which one server is busier than others.

For the next step, we proposed our solution as an agent-based method upon the static method,

WRR, and explained the dynamic load balancing procedure in real-time with an agent. The

agent includes two parts. The first is located within the load balancer, including two threads in

parallel. One is a main thread to receive the current load and calculate it. Another is a worker

thread to update new weights. After applying each update on servers by the worker thread, the

last status of each web server is assigned to a null value to check the servers’ attendance. Second,

another part of the agent is placed in each web server to send the last status of each server.

Then, we briefly described the logs based on servers’ CPU usage in static and dynamic algorithms

for balancing the tasks coming from the clients. Moreover, to count the number of processed

clients’ requests per server, we used a command-line packet network analyzer, tcpdump, to

capture real-time network traffic.

CHAPTER 4

RESULTS AND DISCUSSION

After adding a dynamic version load balancing based on the WRR algorithm in a cloud

environment via OpenStack as the thesis’s main intention, we will evaluate the outcomes of

the dynamic load balancer compared to the static one in this chapter. In addition to the main

purpose of this thesis, we will compare the static and dynamic methods in choosing the lightest

server for processing incoming requests based on the CPU utilization metric.

4.1 Network Topology

As mentioned in the previous chapter, we created the cloud environment via OpenStack with

three VMs. We installed and configured the QEMU hypervisor in Compute VM to create three

servers with Ubuntu 20.04 with different configurations based on Table 3.2. At first, These

servers, WS1, WS2, and WS3, connect to a Local private Local network to communicate with

each other. Then they connect to a Flat provider network through a router connecting to an

external network. Load balancer within the Amphora located in Compute node to receive the

load via floating IP on UDP connection due to prevent latency.

To make web servers, we logged in to each server via keypair for installing Apache2. The

network loads are simulated with HTTP requests through multi threads sending to Load balancer.

A Python script is used as an agent and consists of two parts. One is on each web server

to send real-time status to the load balancer, including hostname, host IP, and CPU usage

percentage. Another part of the agent is on the load balancer to receive the information from the

webserver-side agent to distribute the loads on each web server based on the weight considered

in the load balancer configuration.

50

4.2 Experiment and Results Analysis

For our test environment configuration, we consider different hardware configurations and

numeric weights for the web servers based on Table 3.6. To apply loads on web servers, we

deploy concurrent HTTP requests to each of the load balancers, static and dynamic, ranging

from 1000 to 20000. To generate the requests, as we mentioned in the previous chapter, the

Python script is created with a socket library and multi-threads to produce the concurrent client

requests.

As a load balancer, Octavia receives all the requests via Floating IP on the listener and then

transfers them to the servers’ pool based on the defined algorithm considering CPU utilization

metric.

4.3 Weighted Round-Robin Algorithm

For the static method, to verify the effectiveness of this algorithm, we set the different

configurations for the provider servers WS1, WS2, and WS3, considering different weights with

fixed values 2, 10 and 3. We perform minimum and maximum simulation concurrent requests

for this experiment, 1K to 20K, respectively. In this scenario, we consider different weights

regardless of resource capabilities to see the outcomes. For the whole execution, the distribution

is based on the initial weight without adjustment.

In this method, the responses to requests for each web server differ according to the weight.

Based on Figure 4.1, the number of requests for WS2 with weight 10 is much more than WS1

and WS3 with weight 2 and 3, respectively. It results in a significant difference between the

servers’ weights. In other words, WS2 processed more requests than WS1 and WS3 due to

maximum weight. Therefore, the CPU usage percentage of provider WS2 is much more than

other providers’ CPU utilization amount, according to logs in Figure 3.6.

51

Figure 4.1 Static Load Balancing

4.4 Dynamic (Agent-based) Weighted Round-Robin Algorithm

The second version to be benchmarked is Dynamic WRR with the same configuration we set

in the previous method. In this version, the balancer takes into consideration the last status of

each server to modify the weight. The values such as Hostname, Host IP and CPU usage are

received from the instances through the agent and calculated in the balancer to choose the next

server. Compared with the static method, Figure 4.2 shows no considerable difference between

the number of processed requests of each VM due to adjusting weight by the DWRR algorithm

based on the real-time status of instances. Therefore, the servers in this method can handle the

requests with better performance.

In this experiment, we execute a maximum of 20000 concurrent simulation requests on the

weighted Round-Robin algorithm and agent-based method with dynamic weight adjustment.

52

Figure 4.2 Dynamic Load Balancing

The following tables show the number of requests distributed among providers WS1, WS2, and

WS3. Table 4.1 illustrates the number of requests on each server in dynamic mode, and Table

4.2 describes them in the static method.

Table 4.1 Connection Counts for Dynamic WRR

The number of connections per server (Dynamic mode)
Device 1000 3000 5000 9000 11000 15000 20000
WS1 154 687 223 2790 3541 4662 5393

WS2 333 534 2758 2143 2719 3819 6917

WS3 513 1779 2019 4067 4740 6519 7690

Table 4.2 Connection Counts for Static WRR

The number of connections per server (Static mode)
Device 1000 3000 5000 9000 11000 15000 20000
WS1 133 400 666 1200 1466 2000 2666

WS2 667 2000 3334 6000 7334 10000 13361

WS3 200 600 1000 1800 2200 3000 4000

53

In Figure 4.1, with static mode, tasks are distributed inappropriately regardless of the resource

configuration. Consequently, It shows inappropriate gaps if weight values are incompatible with

the servers’ resources. Whereas, in the dynamic method, after considering the initial weight

value at the first step, the weight of servers is continuously adjusted according to the resource

configuration of the servers.

If the weights are chosen inappropriately, the static algorithm works blindly to assign the tasks

among servers compared to the dynamic one, which constantly monitors the real-time status.

When the test is carried out, we record the average processing response time per server for static

and dynamic methods, as in Figure 4.3.

Figure 4.3 Request Completion Time on Average between Static and Dynamic Load

Balancers

Figure 4.3 depicts that in the DWRR algorithm, the average response time is less than the mean

time in the WRR algorithm due to the dynamic weight reflecting the real-time load status. Graph

54

4.3 shows that DWRR algorithm considering CPU usage metric provides better performance

with approximately 10% efficiency.

4.5 Summary

After preparing the cloud environment in the OpenStack platform, we deployed one of the static

load balancing methods, WRR, within the Octavia module. Next, we sent simulated concurrent

HTTP requests ranging from 1k to 20k via multi threads like an actual situation to load balancer.

Then, we observed the web servers’ logs based on different CPU usage percentages, with a big

gap between them.

In the static method, the loads were distributed based on initial numeric weight, which refers to

CPU utilization percentage. In this method, each server with maximum weight received more

requests than the others without considering the hardware utilization. Therefore, a server with

maximum weight had a much more CPU percentage than other servers. Thus, one server was

always busier than others because there was no information about servers’ last status.

Our proposed solution was implementing the dynamic version of Weighted Round Robin

algorithm (WRR) in this thesis. The DWRR algorithm estimated the web servers’ current load

status to adjust the servers’ weight automatically based on the real-time hardware utilization

measure such as CPU usage. Therefore, according to the outcomes, there was less gap in

the number of requests per server compared to the static one, which resulted in small load

fluctuations among web servers’ CPU usage percentage. By this, the average response time per

server’s request was decreased, and each server could be fully utilized in hardware configuration

compared to the static method.

Results showed that the dynamic version of WRR based on processing power usage has better

performance with around 10% efficiency.

CONCLUSION AND RECOMMENDATIONS

According to the rapid progress and development in IT technology, Cloud computing is one of

the most usable distributed systems, service-oriented with various service models and low cost

in executing expenses. As users have high demands to access different online services by cloud

providers on the Internet, load balancer is needed to allocate workloads among providers and

clients’ requests. Load balancer in Cloud in software mode via SDN is better than hardware in

terms of cost and configuration. Different techniques in load balancing, static and dynamic, are

reviewed in the related works. The literature review focuses on dynamic models considering

high performance, fault tolerance, and low operation time. However, load balancing is the main

issue in Cloud that has not been completely addressed. To the best of our knowledge, those

dynamic mechanisms have not been deployed based on the static method in the OpenStack

platform, one of the most popular open-source cloud platforms. In other words, as far as we

know, there is no dynamic solution based on the static load balancing method in the OpenStack

platform.

Therefore, we successfully implemented an agent in load balancing based on CPU usage metric

over the static method, Weighted Round Robin, in a cloud environment via OpenStack on

VirtualBox hypervisor to choose the next web server. Then we compared the static and dynamic

mechanisms to determine a proper server to process the tasks based on CPU utilization.

The experiment was tested in a scenario with three configuration servers with various numeric

weights to receive HTTP requests. Our solution was built on two threads through Python. The

main thread is for receiving the last status of the servers’ information to calculate the new

weight of each server. The parallel thread is for updating the new weights via load balancer.

From the results, we can conclude that our proposed algorithm, DWRR, allocates the workload

better than WRR, the static algorithm. In DWRR as our solution, since the servers’ weight

automatically changes based on real-time load status, we observed less response time with

56

enhanced performance around 10% compared to the WRR algorithm showed in chapter 4, graph

4.3. Moreover, the results showed that almost all servers receive approximately the same number

of requests in the dynamic version compared to the static one.

As future work, according to the findings of this study, three future works can be investigated.

First is employing more than one metric to measure the current load within our solution to

balance the workload dynamically in OpenStack platform to make higher efficiency with more

than 10% observed in our study. Second is using Cloud bursting via OpenStack for dynamic

load balancing that empowers companies to assign the required resources to multiple cloud

environments in different geographical zones to guarantee optimal performance and workload

balance. Last is using Machine Learning to track different loads, such as CPU, Memory, and

Network, in real time to define and assign appropriate weights among backend web servers to

balance the users’ requests through agent-based load balancing within Octavia in the OpenStack

platform. In this scenario, also scaling out the resources can be considered using Machine

Learning to track the status of virtual machine instances in peak period time and make the best

decision, such as provisioning a new virtual machine instance with the same configuration as a

web server to serve the clients’ requests.

APPENDIX I

OPENSTACK ARCHITECTURE

0.1 OpenStack Components

To build a cloud environment for this project via OpenStack, some infrastructure components as

requirements and core components to provide services such as identity, compute, image, and

network are installed and configured to meet the needs of the scenario, which is mentioned in

chapter three based on the following Figure.

Figure-A I-1 Network Architecture

1. Infrustructure Components

To build the cloud environment via OpenStack, the following infrustructre components installed

and configured in advanced.

• MariaDB

• RabbitMQ

• Memcached

58

1.1 MariaDB

To store information, OpenStack supports MariaDB or MySQL, and other SQL databases

(OpenStack, 2023a). In this project MariaDB is used for core components’ database located on

Controller node.

1.2 RabbitMQ

In OpenStack, different message queue services are used, such as RabbitMQ, Qpid, and ZeroMQ,

for coordinating operations among services (OpenStack, 2023c). In this project, RabbitMQ is

located on Controller node to send requests to related agents and components to run the load

balancer and network services to serve the users’ requests. Therefore, core components can

communicate with their related agents through the RabbitMQ service.

1.3 Memcached

Memcached is used by OpenStack core components to store temporary data such as tokens

(OpenStack, 2023b). In this project, Memcached is located in the Controller node to cache

tokens for improving the overall performance of the cloud environment.

2. Core Components

To create a cloud architecture for this project with three virtual nodes, Controller, Network, and

Compute via OpenStack, the essential components such as Keystone, Glance, Nova, Neutron,

and Octavia are needed to provide application load balancing on users’ requests considering one

data center. More explanation is as follows:

• Keystone

• Glance

• Nova

• Neutron

• Octavia

59

2.1 Keystone

Keystone, as an identity service in the Controller node, provides centralized authentication and

authorization using username and password for other OpenStack components such as Glance,

Nova, Neutron, and Octavia to access resources and execute requests to provide web services in

this project.

2.2 Glance

Glance is located in the Controller node and played a role as an image service for virtual machine

instances (Web Servers) and is used to store the operating system (Ubuntu20.04) images for

each web server in this project.

2.3 Nova

Nova, as the control unit of OpenStack is responsible for managing instances and correlation with

other components for providing identity, image, network, and load balancer services using Octavia

in OpenStack to reach the goal in this thesis. Nova, located in the Controller node, comprises

some sub-components, Nova-API, Nov-compute, Nova-scheduler, and Nova-conductor, for

its tasks. Nova-API receives all the requests from other components for responding to them.

Nova-Compute is for managing backend web servers within compute node. Nova-scheduler is

for connecting to the compute node (in this project, just one compute node is considered for

hosting the virtual machine web servers). And Nova-conductor is used to update web servers’

database on Compute node.

2.4 Neutron

In this project, one of the other core components is Neutron, OpenStack networking as network

services. Neutron and its components are deployed to connect the virtual machine instances as

web servers to the external network for serving the clients’ requests. These sub-components are

Neutron-API for receiving the network requests, ML2 Core plugin to forward the requests to the

60

OVS agents located in other nodes (Network and Compute nodes in this project are configured

in separate Virtual machine nodes for user data plane), and OVS switch which is configured

through OVS agent, as well as DHCP agent to configure DHCP server within network node to

assign IP addresses for virtual machines as web servers.

2.5 Octavia

As another main component for this project, Octavia is used to act as a load balancer based on

DWRR algorithm as a dynamic solution to spread incoming HTTP requests between designated

instaces as backend web servers. Octavia API and its sub-components, such as the Controller

worker, Health Manager, Housekeeping Manager, and Driver Agent, are placed in the network

node in this project.

BIBLIOGRAPHY

Al-Mashhadi, S., Anbar, M., Jalal, R. A. & Al-Ani, A. (2020). Design of Cloud

Computing Load Balance System Based on SDN Technology. 603, 123–133.

doi: https://doi.org/10.1007/978-981-15-0058-9_13. Series Title: Lecture Notes in

Electrical Engineering.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J. & Brandic, I. (2009). Cloud com-

puting and emerging IT platforms: Vision, hype, and reality for delivering com-

puting as the 5th utility. Future Generation Computer Systems, 25(6), 599–616.

doi: https://doi.org/10.1016/j.future.2008.12.001.

Callegati, F., Cerroni, W., Contoli, C. & Santandrea, G. (2014). Performance of Network

Virtualization in cloud computing infrastructures: The OpenStack case. 132–137.

doi: https://doi.org/10.1109/CloudNet.2014.6968981.

Dasgupta, K., Mandal, B., Dutta, P., Mandal, J. K. & Dam, S. (2013). A Genetic Algorithm

(GA) based Load Balancing Strategy for Cloud Computing. Procedia Technology, 10,

340–347. doi: https://doi.org/10.1016/j.protcy.2013.12.369.

Denton, J. (2016). OpenStack Networking Essentials. Packt Publishing Ltd.

HAProxy. (2023). HAProxy - The Reliable, High Perf. TCP/HTTP Load Balancer. Re-

trieved on 2023-06-18 from: https://www.haproxy.org/.

Harvey. (2014). 60 Open Source Apps You Can Use in the Cloud | Datamation. Retrieved on 2023-

06-18 from: https://www.datamation.com/open-source/60-open-source-apps-you-can-

use-in-the-cloud/.

Hu, J., Gu, J., Sun, G. & Zhao, T. (2010). A Scheduling Strategy on Load Balancing of Virtual

Machine Resources in Cloud Computing Environment. 2010 3rd International Symposium
on Parallel Architectures, Algorithms and Programming, pp. 89-96. Retrieved from: https:

//ieeexplore.ieee.org/document/5715067.

Huawei Technologies Co., Ltd. (2023). Cloud Computing Technology. Singapore: Springer

Nature Singapore. doi: https://doi.org/10.1007/978-981-19-3026-3.

Huo, J., Qu, H. & Wu, L. (2015, 12). Design and Implementation of Private Cloud Storage

Platform Based on OpenStack. pp. 1098-1101. Retrieved from: https://ieeexplore.ieee.

org/document/7463870.

IBM. (2022). IBM Documentation. Retrieved on 2023-02-20 from: https://ibm.com/docs/en/

qsip/7.4?topic=queries-berkeley-packet-filters.

62

Kulkarni, V., Aldi, S. S., Mulla, M. M., Narayan, D. G. & Hiremath, P. S. (2022). Dynamic Live

VM Migration Mechanism in OpenStack-Based Cloud. 2022 International Conference
on Computer Communication and Informatics (ICCCI), pp. 1–6. Retrieved from: https:

//ieeexplore.ieee.org/document/9740780.

Kumar, S. & Rana, D. S. (2015). Various Dynamic Load Balancing Algorithms in Cloud

Environment: A Survey. International Journal of Computer Applications, 129, 14-

19. Retrieved from: https://www.researchgate.net/publication/284223774_Various_

Dynamic_Load_Balancing_Algorithms_in_Cloud_Environment_A_Survey.

Li, D., Zheng, Z., Li, Y., Xu, Y. & Tang, D. (2017). Design and Implementation of Load

Balancing Strategy in Openstack Cloud Platform. 22017 IEEE International Conference
on Computational Science and Engineering (CSE) and IEEE International Conference
on Embedded and Ubiquitous Computing (EUC), pp. 428–435. Retrieved from: http:

//ieeexplore.ieee.org/document/8005835/.

Mell, P. M. & Grance, T. (2011). The NIST Definition of Cloud Computing. NIST.

doi: https://doi.org/10.6028/NIST.SP.800-145. Last Modified: 2018-11-10T10:11-05:00

Publisher: Peter M. Mell, Timothy Grance.

Mishra, S. K., Sahoo, B. & Parida, P. P. (2020). Load balancing in cloud computing: A big

picture. Journal of King Saud University - Computer and Information Sciences, 32(2),

149–158. doi: https://doi.org/10.1016/j.jksuci.2018.01.003.

Moganarangan, N., Babukarthik, R. G., Bhuvaneswari, S., Basha, M. S. S. & Dhavachelvan, P.

(2016). A novel algorithm for reducing energy-consumption in cloud computing environ-

ment: Web service computing approach. Journal of King Saud University - Computer and
Information Sciences, 28(1), 55–67. doi: https://doi.org/10.1016/j.jksuci.2014.04.007.

Nakrani, S. & Tovey, C. (2004). On Honey Bees and Dynamic Server Al-

location in Internet Hosting Centers. Adaptive Behavior, 12(3-4), 223-240.

doi: https://https://doi.org/10.1177/105971230401200308.

OpenStack. (2018a). Additional networking services — arch-design 0.0.1.dev15 documen-

tation. Retrieved on 2023-06-17 from: https://docs.openstack.org/arch-design/design-

networking/design-networking-services.html#lbaas.

OpenStack. (2018b). Design — arch-design 0.0.1.dev15 documentation. Retrieved on 2023-06-

18 from: https://docs.openstack.org/arch-design/design.html.

OpenStack. (2021). OpenStack Docs: System architecture. Retrieved on 2023-06-18 from: https:

//docs.openstack.org/nova/pike/admin/arch.html.

63

OpenStack. (2023a). OpenStack Docs: SQL database. Retrieved on 2023-07-30 from: https:

//docs.openstack.org/mitaka/install-guide-rdo/environment-sql-database.html.

OpenStack. (2023b). Memcached — Installation Guide documentation. Retrieved on 2023-07-

30 from: https://docs.openstack.org/install-guide/environment-memcached.html.

OpenStack. (2023c). OpenStack Docs: Message queue. Retrieved on 2023-07-30 from: https:

//docs.openstack.org/mitaka/install-guide-ubuntu/environment-messaging.html.

OpenStack. (2023d). Introducing Octavia — octavia 11.1.0.dev42 documentation.

Retrieved on 2023-02-01 from: https://docs.openstack.org/octavia/latest/reference/

introduction.html.

OpenStack. (2023e). Networking — Security Guide documentation. Retrieved on 2023-06-

18 from: https://docs.openstack.org/security-guide/networking.html.

OpenStack. (2023f). Networking services — Security Guide documentation. Retrieved on 2023-

06-18 from: https://docs.openstack.org/security-guide/networking/services.html.

OpenStack. (2023g). Neutron/LBaaS/Deprecation - OpenStack. Retrieved on 2023-02-

01 from: https://wiki.openstack.org/wiki/Neutron/LBaaS/Deprecation#Why_are_we_

deprecating_neutron-lbaas.3F.

OpenStack. (2023h). OpenStack Docs: Load Balancer as a Service (LBaaS). Retrieved on 2023-

01-24 from: https://docs.openstack.org/neutron/rocky/admin/config-lbaas.html.

OpenStack. (2023i). Introduction to OpenStack — Security Guide documentation. Re-

trieved on 2023-06-18 from: https://docs.openstack.org/security-guide/introduction/

introduction-to-openstack.html.

Randles, M., Lamb, D. & Taleb-Bendiab, A. (2010). A Comparative Study into Distributed

Load Balancing Algorithms for Cloud Computing. 2010 IEEE 24th International
Conference on Advanced Information Networking and Applications Workshops, pp. 551–

556. Retrieved from: https://ieeexplore.ieee.org/document/5480636.

Rimal, B. P., Choi, E. & Lumb, I. (2009). A Taxonomy and Survey of Cloud Computing

Systems. 2009 Fifth International Joint Conference on INC, IMS and IDC, pp. 44-51.

Retrieved from: https://ieeexplore.ieee.org/document/5331755.

Rista, A., Ajdari, J. & Zenuni, X. (2020). Cloud Computing Virtualization: A Comprehensive

Survey. 2020 43rd International Convention on Information, Communication and
Electronic Technology (MIPRO), pp. 462–472. Retrieved from: https://ieeexplore.ieee.

org/document/9245124/.

64

Rong He, Xinming Tan. (2018). A load balancing algorithm with dynamic adjustment of

weight. Proceedings of 2018 the 8th International Workshop on Computer Science and
Engineering. doi: https://10.18178/wcse.2018.06.110.

Singh, A., Juneja, D. & Malhotra, M. (2015). Autonomous Agent Based Load Balanc-

ing Algorithm in Cloud Computing. Procedia Computer Science, 45, 832–841.

doi: https://doi.org/10.1016/j.procs.2015.03.168.

Swarnkar, N., Singh, A. P. A. K. & Shankar, D. R. (2013). A Survey of Load Balancing

Techniques in Cloud Computing. International Journal of Engineering Research &
Technology, 2(8). Retrieved from: https://www.ĳert.org/a-survey-of-load-balancing-

techniques-in-cloud-computing. Publisher: ĲERT-International Journal of Engineering

Research & Technology.

Tsai, C.-W. & Rodrigues, J. J. P. C. (2014). Metaheuristic Scheduling for Cloud: A Survey. IEEE
Systems Journal, 8(1), 279-291. Retrieved from: https://ieeexplore.ieee.org/document/

6516911.

Tumkur, G. (2016). Load Balancing As A Service In Openstack-Liberty. Re-

trieved from: https://www.researchgate.net/publication/327052299_Load_Balancing_

As_A_Service_In_Openstack-Liberty.

Verma, D. (2017). SOFTWARE DEFINED LOAD BALANCING OVER AN OPENFLOW-
ENABLED NETWORK. (Thesis). Retrieved from: http://hdl.handle.net/10106/26824.

VMware. (2023). What is Software-Defined Networking (SDN)? | VMware Glossary. Re-

trieved on 2023-06-17 from: https://www.vmware.com/topics/glossary/content/software-

defined-networking.html.

Wikipedia contributors. [[Online; accessed 20-June-2023]]. (2023). Tcpdump — Wikipedia,

The Free Encyclopedia. Retrieved from: https://en.wikipedia.org/w/index.php?title=

Tcpdump&oldid=1157800909.

Wu, Y., Luo, S. & Li, Q. (2013). An Adaptive Weighted Least-Load Balancing Algorithm

Based on Server Cluster. 2013 5th International Conference on Intelligent Human-
Machine Systems and Cybernetics, 1, 224–227. Retrieved from: https://ieeexplore.ieee.

org/document/6643872.

