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Une étude comparative des méthodes d’identification des vortex sur les simulations Wall
Mounted Hump à l’aide de SU2

Ramin TALEBAN

RÉSUMÉ

Au cours des deux dernières décennies, l’impact de l’accumulation de glace sur l’aérodynamique

du vol a été longuement étudié. Ces recherches visent à prédire quand un avion décroche en

raison de ses caractéristiques aérodynamiques modifiées par la glace. L’accrétion de glace

sur une aile d’avion peut modifier le champ d’écoulement, entraînant la formation de plus de

tourbillons. La formation de tourbillons due à la séparation des écoulements peut entraîner

une apparition précoce du décrochage, un problème de sécurité critique dans les opérations

aériennes. Il est donc crucial de comprendre les structures d’écoulement comme les tourbillons.

L’un des cas d’essai qui a suscité beaucoup d’attention est la Wall Mounted Hump (WMH).

On peut interpréter ce cas de test comme l’écoulement sur un profil aérodynamique glacé.

L’écoulement se sépare de la paroi en franchissant la bosse, représentant la glace, et forme des

structures tourbillonnaires. Les objectifs secondaires de cette recherche consistent à réaliser des

simulations stationnaires et instationnaires sur la Wall Mounted Hump (WMH). Ces simulations

seront utilisées pour l’objectif principal, qui est de quantifier le nombre de tourbillons dans les

sections critiques après la bosse pour une analyse plus approfondie. Plus précisément, trois

méthodologies d’identification de vortex sont utilisées pour localiser les tourbillonnaires après

la bosse. Une comparaison complète du critère Q, du critère 𝜆2 et des méthodes de force

tourbillonnante est entreprise pour évaluer leur efficacité à caractériser le nombre de tourbillons

dans différentes sections en aval de la bosse. Une revue approfondie de la littérature est menée

sur le WMH, le solveur SU2 et les techniques d’identification des vortex. L’effet de la résolution

de la grille et de la longueur de l’envergure sur les coefficients aérodynamiques à travers des

simulations stationnaire et instationnaires est étudié.

Cette recherche améliore notre compréhension des effets de la résolution de la grille sur les

coefficients aérodynamiques et l’aptitude des différentes techniques d’identification des tourbil-

lons pour l’analyse de scénarios d’écoulement complexes dans les applications aéronautiques.

Comprendre ces phénomènes d’écoulement complexes peut conduire à des pratiques de concep-

tion améliorées dans l’ingénierie aéronautique, améliorant les performances aérodynamiques

et l’efficacité énergétique des aéronefs et autres véhicules aérospatiaux. De plus, les simu-

lations peuvent être améliorées pour prévenir certains dangers liés à la nature des structures

tourbillonnaires.

Mots-clés: CFD, Wall Mounted Hump, Givrage, SU2, Spalart Allmaras, Reynolds Averaged

Navier Stokes, Delayed Detached Eddy Simulations, Étude de grille, Tourbillons





A Comparative Study of Vortex Identification Methods on the Wall Mounted Hump
Simulations Using SU2

Ramin TALEBAN

ABSTRACT

In the last two decades, the researches on the impact of ice accumulation on the aerodynamics

of flight has been prevalent. The complex geometry of an iced aircraft wing poses difficulties

for engineers in predicting when an airplane may stall due to aerodynamic degradation. Ice

accretion on an aircraft wing can alter the flow field, leading to the formation of more vortices.

The formation of vortices due to flow separation can lead to an early onset of stall, a critical

safety issue in aircraft operations. Thus, understanding flow structures like vortices is crucial.

One test case that received considerable attention and was high-referenced is the Wall Mounted

Hump (WMH). This test case can be interpreted as the flow over an iced airfoil, where the

flow separates from the wall upon crossing the hump, symbolizing the ice, and forms vortex

structures. As secondary objectives of this research we will carry out steady and unsteady

simulations on the WMH and quantify the number of vortices in critical sections following the

hump for further analysis. The main objective is to use three vortex identification methodologies

to identify potential vortex locations after the hump. A comprehensive comparison between

the Q-criterion, 𝜆2 criterion, and Swirling Strength methods is undertaken to assess their

effectiveness in characterizing the number of vortices in different sections downstream of the

hump. Literature review is conducted on the WMH, the SU2 solver, and vortex identification

techniques. The influence of grid resolution and spanwise length on aerodynamic coefficients

through steady and unsteady simulations are examined.

This research enhances our understanding of the effects of grid resolution on aerodynamic

coefficients and the suitability of different vortex identification techniques for analyzing complex

flow scenarios in aeronautical applications. Understanding these complex flow phenomena

can lead to improved design practices in aeronautical engineering, enhancing aerodynamic

performance and fuel efficiency of aircrafts, and other aerospace vehicles. Furthermore,

simulations can be improved to prevent hazards associated with the nature of vortex structures.

Keywords: CFD, Wall Mounted Hump, Icing, SU2, Spalart Allmaras, Reynolds Averaged

Navier Stokes, Enhance Delayed Detached Eddy Simulations, Grid study, Vortex
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INTRODUCTION

The design and analysis of products in the aerospace industry as well as in the surface

transportation sectors, such as cars, trucks, and boats, relies on simulations in CFD and also

testing (Spalart,P. Venkatakrishnan, 2016). The aircraft design process has changed significantly

due to the rapid advancement of CFD technologies over the past few decades. As a result of the

continuous use of CFD, wind tunnel time for aircraft development programs and experimental

rig testing in programs for developing gas turbine engines and the development time of new

concepts has been reduced (Slotnick et al., 2014).

Flow separation has been the subject of many studies, both numerically and experimentally.

It is crucial for many applications, including airfoils, diffusers, and vehicle aerodynamics. In

most circumstances, separation results in a significant loss in performance. However, a precise

prediction of separated flow is challenging (Borgmann, Pande, Little & Woszidlo, 2017), because

as explicitly stated by Prandtl (1935), increased pressure, and more importantly an adverse

pressure gradient, are the prerequisites for flow separation off the wall in the streamwise direction.

In separated flows, due to viscosity, the velocity is minimal near and zero at the wall. In the

downstream direction, pressure and friction are overcame by the minimal quantity of momentum

and energy along the surface body. The fluid flows in the opposite direction further downstream.

This reversing flow breaks down in lower velocity vortices.

The effects of attached flow acceleration can be observed in many viscous-body flows. This

acceleration phenomenon often results in downstream flow separation depending on changes in

the flow path curvature or shape (Kalsi & Tucker, 2016). As an example, the engine intake can

cause the flow to accelerate followed by a sudden decrease in velocity that can separate, leading

to a deformed and unstable flow at the fan front. This aerodynamic problem is usually linked to

fans and blades fatigue. Therefore, when building engine intakes and labyrinth seals, turbine
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blades, and nozzles, it is essential to comprehend and precisely predict accelerated flow features

and separation sizes (Orĳi & Tucker, 2013).

Another example where the flow field can be impacted is the shape of the wing surface that is

altered by ice accumulation on the leading edge of aircraft wing, which changes the flow field.

This phenomenon causes the drag to increase and affects the wing pressure distribution and

aerodynamic performance. Additionally, Ice accretion on leading edge results in the formation

of a separation, wing vibration, early stall, and ultimately loss of the aircraft control (Fatahian,

Salarian, Eshagh Nimvari & Khaleghinia, 2020).

To gain a more profound understanding of how this ice accumulation phenomenon impacts

the flow field and overall aircraft performance, a variety of numerical models have been

developed and implemented. Among them, the Reynolds-Averaged Navier-Stokes (RANS)

model stands out due to its common use in the industry and relatively low computational

cost. The Reynolds-Averaged Navier-Stokes (RANS) model, derived from the Navier-Stokes

Equations (NSE) using a method called Reynolds averaging, has been used to numerically solve

these partial differential equations (PDE) that describe the motion of viscous fluids (Blazek, J.,

2015). Because of its acceptability and low computational cost, RANS is frequently utilized in

industry design (Lee & Kwon, 2019; Li, Zhang & Bai, 2020). This method, however, is unable

to capture instantaneous flow structures. Additionally, it performs poorly when simulating

massively separated flow (Hao, Wei & Shengye, 2021). Although Large Eddy Simulations (LES)

approaches have shown to be effective in a variety of complicated flows, the high computational

cost prevents them from being used in real-world flows, although being less than a full Direct

Numerical Simulations (DNS) (Iyer & Malik, 2016). Therefore, hybrid models (RANS/LES)

have been suggested to benefit from the precision of LES and simplicity of RANS. The first

model, Detached Eddy Simulation (DES), developed by Spalart, Jou, Strelets & Allmaras
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(1997a), successfully improved estimations when applied to several study flow configurations,

specially in separated flows (Spalart et al., 2006).

As technology and understanding of flow dynamics continue to develop, principal organizations

and research entities are not only focusing on existing methods but also envisioning the future

of computational fluid dynamics (CFD). NASA’s CFD Vision 2030 Study, published in 2014,

serves as a beacon in this regard, outlining the progressive road map and anticipated technology

readiness levels in the field. NASA published the CFD Vision 2030 Study in 2014, as a report

describing the state of CFD written by professionals in business, government, and academia

in the aerospace industry (Slotnick et al., 2014). Figure 0.1 shows the areas of research and

technologies that need to be realized by 2030, which are a component of the CFD Vision 2030

workshop. Each timeline is coloured according to its Technology Readiness Level (TRL), which

is divided into three levels: low (red), medium (yellow), and high (green). The TRL scale is

intended to show the anticipated general state of each technological readiness at a given period.

We can observe a high expectancy that hybrid RANS/LES will reach a TRL by 2030.

Figure 0.1 A part of road to technology,

taken from Slotnick et al. (2014)
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As many publications have noted, including Shur, Spalart, Strelets & Travin (2015), Guseva

et al. (2017), and Iyer & Malik (2016), and as we will also go into depth in this thesis, the "gray

area issue" in hybrid approaches is where the flow simulation goes from the RANS model to the

LES model. This obstacle has been investigated by many researchers in the last decade. One of

the proposed ideas is to use an adaptive length scale in volume of interest (Shur et al., 2015) that

we will use.

Understanding vortices can help us understand the flow for further improvements of CFD, as

this understanding can lead to more accurate simulations of fluid flow behaviour, particularly in

complex and turbulent boundary layer scenarios and the design of aerodynamics in vehicles.

Because the behaviour of vortices directly impacts the aerodynamic efficiency and vehicle

stability (for example the impact of counter-rotating vortices on a delta wing), influencing factors

such as drag, lift, and fuel efficiency. A fluid structure with a circular or swirling motion is

known as a vortex. As a result, vorticity serves as the primary quantity used to define the

flow structure and the skeleton of the flow field (Hong et al., 2008). Vortices produced by

flow separation often breakdown in smaller vortices at high Reynolds number, offering crucial

insight into overall flow behaviour, such as fluid dynamic drag or propelling efficiency (Krueger,

Hahsler, Olinick, Williams & Zharfa, 2019). For the investigation of the physical mechanism

of the complicated flow field, the precise extraction of the vortex and the breakdown location

of these vortices are therefore crucial. The three categories of current conventional vortex

feature extraction approaches include local, global, and hybrid methods. Local methods use the

physical characteristics of the flow field to derive various attributes. The careful selection of

appropriate thresholds is necessary for these approaches in practical applications to produce

reliable findings. Therefore, a quantitative study on a well-known and experimented test case

can provide helpful ideas. The importance of vortex detection, the distribution of vortices after

the flow separation and the critical importance of accurately characterizing and counting these

complex flow phenomena for aeronautical applications will be reviewed. Therefore, the work
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undertaken in this thesis contributes to our understanding of flow separation and the number of

vortices with current local identification methods.

The primary focus of this thesis is to do a quantitative analysis of the number of vortices in

the Wall Mounted Hump (WMH) channel. The first sub-objective is to investigate the RANS

simulations with a specific focus on the influence of grid resolution on the results. More

specifically, this involves quantifying the discrepancies in the results as the mesh becomes

finer. Through this process, we aim to understand the relationship between the level of detail

in the computational mesh and the accuracy of the simulation results. This examination will

provide valuable insights into optimizing mesh resolution for EDDES simulations. The second

sub-objective addresses the so-called grey area issue related to EDDES simulations. This

issue is prevalent in hybrid RANS/LES approaches and is associated with the transition region

between the RANS and LES models. Identifying the potential causes and proposing solutions to

this issue will help to improve the accuracy and reliability of hybrid RANS/LES simulations.

These analyses aim to count and evaluate the number of vortices formed in critical locations

after the flow passes over the hump. By understanding the behaviour and distribution of these

vortices, we can gain a deeper insight into the complexities of flow separation and its effects on

aerodynamics, particularly in scenarios that mimic ice accumulation on aircraft wings. These

objectives contribute to advancing our understanding of complex flow phenomena, similar

to the one encounter behind an ice shape in a more general way, evaluating the accuracy of

computational fluid dynamics simulations and briefly contributing to safer and more efficient

design of aeronautical protection devices and operation procedures that prevent the associated

dangers.

In alignment with our primary objective to shed light on the latest techniques in vortex

identification, our research offers several new insights into the WMH test case. We have used

the open-source software SU2 for the WMH for the first time, showcasing how well SU2 can
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handle complex flow patterns, especially in the steady simulations. Additionally, we are the first

to run the unsteady EDDES simulations for the WMH using this software, further highlighting

the innovations we have introduced. Beyond these technical strides, we have analyzed three

different vortex identification methods for the WMH for the first time, unique methodologies

that have not been investigated on the WMH previously.

This research focuses on the WMH test case, which can represent the flow over an iced airfoil.

This study is limited to the use of the open-source solver SU2 and the application of the EDDES

and the Spalart-Allmaras (SA) turbulence model for conducting numerical simulations. The

investigation will evaluate the effect of grid resolution on aerodynamic coefficients and assess

vortex behaviour using three vortex identification methodologies. However, it is essential to

note that the results and findings of this study may not be directly applicable to other turbulence

models or CFD solvers based on the specific requirements of the study. Additionally, the specific

flow conditions and configurations considered in this research may not fully capture the complex

behaviour of vortex structures under all possible icing scenarios. As a result, the findings of this

study should be considered within the context of the chosen methodology and test case, and

further research may be required to generalize the results to other contexts or configurations.

This thesis is organized into four chapters. The first chapter offers an extensive review of the

relevant works on the WMH test case, the SU2 solver, and vortex identification methodologies.

The literature review serves as a foundation of the research and emphasizes the required

contributions. In chapter two we will describe the methodologies employed in this work,

including the computational setup, the choice of turbulence, configurations of the solver and the

vortex identification techniques. Chapter three presents the results obtained from the numerical

simulations of our steady and unsteady simulations and provides a detailed analysis of the

aerodynamic coefficients, vortex quantities, and the effectiveness of the vortex identification

methodologies. Finally, in the conclusion, we will summarize the main findings of the research,
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discusses their contributions to the field of aeronautical engineering, and identify the areas for

future work.





CHAPTER 1

LITERATURE REVIEW

1.1 Introduction

The primary goal of this chapter is to highlight the most recent studies and projects on flow

separation and vortex identification methods so that the background, needs, and contributions

made to the discipline are clarified to the reader. In other words, the reader will gain a clearer

understanding of the studies done on the Wall Mounted Hump (WMH) test case, especially using

the open-source software SU2, limitations of the Reynolds Averaged Navier Stokes (RANS) on

separated flows, how the local vortex identification techniques are used and what remains to be

done to contribute to the use of hybrid RANS/LES simulations and the behaviour of vortices

after flow separation.

In this chapter, the background of the test case that we considered for this master thesis will be

discussed in section 1.2. In addition, we will discuss the computational setups used by researchers

to compare their numerical results such as pressure coefficient, skin-friction coefficient and

separation length to those of experiments, discuss the limitation of the numerical methods and

the challenges of the test case. In section 1.3, we will concentrate on the selected solver, its

capabilities, and some of the past research works, where it has been used. More precisely,

we will look at studies that investigated the numerical settings we are adopting in this thesis.

We shall discuss the most recent identification techniques that have been put out for vortex

detection in the final section of chapter 1. Finally, section 1.4 will focus on the difficulties in

comprehending vortex behaviour and how crucial it is to do so.

1.2 The Wall Mounted Hump

Within the NASA CFDVAL2004 (https://turbmodels.larc.nasa.gov/nasahump_val.html) work-

shop, one of the documented test cases that has drawn much attention is the WMH (Armstrong

et al., 2022). This test case was initially introduced with rich experimental results to assess
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different numerical approaches on turbulent flows. The test case can be interpreted as the

separation on the upper surface of an airfoil over a hump (Fagbade & Heinz, 2022). The

well-researched WMH experiments offer a database for the creation of CFD algorithms that can

simulate separation (Siggeirsson & Andersson, 2019). It presents a challenging test case for

CFD validation because of its arbitrary curved geometry, unstable separation and reattachment,

and high Reynolds number separation bubble (Rumsey, Gatski, Sellers, Vasta & Viken, 2006),

(Uzun & Malik, 2017).

Figure 1.1 shows the configuration of the Glauert-Goldschmied type body. The body has a

chord length of 0.42 meter and is fixed on a splitter plate on the wind tunnel floor between

two side plates that are 0.584 meter apart and is identical to the setup used by Seifert & Pack

(Greenblatt et al., 2006). Similar to the first experiment of Seifert & Pack (2002) of the active

flow separation control at high Reynolds numbers, the test case represents an example of flow

separation followed by reattachment. The Reynolds number in the Greenblatt et al. setup reports

a Re=929,000 and a Mach number of Ma = 0.1, which was always held consistent during the

experiment with an error of less than 1 percent (Greenblatt et al., 2006).

Figure 1.1 Experimental setup of NASA WMH,

taken from Greenblatt et al. (2006)
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The WMH test case has been the subject of numerous studies (Gritskevich, Garbaruk,

Schütze & Menter, 2012). For example, the keyword "Wall Mounted Hump" returns 177

hits in Engineering Village1 and 874 hits in Google Scholar2. Just a few of the related and

cited papers are: Kiris et al. (2018); Rumsey (2007) for Reynolds Averaged Navier Stokes

(RANS) simulation, Franck & Colonius (2008); Šarić, Jakirlić, Djugum & Tropea (2006); Sekhar,

Mansour & Caubilla (2015); You, Wang & Moin (2006) for Large Eddy Simulations (LES).

Taking into account papers of Lattice-Boltzmann based (LB-LES) Noelting et al. (2008); Kiris

et al. (2018), Wall Resolved LES (WRLES) Uzun & Malik (2017), Wall Modeled LES (WMLES)

Dilip & Tafti (2014); Iyer & Malik (2016). And also hybrid RANS-LES simulations on the

Wall Mounted Hump like Bozinoski & Davis (2012); Šarić et al. (2006) for the Detached

Eddy Simulations (DES) and most importantly, papers that are most relevant to this work:

Siggeirsson & Andersson (2019); Guseva et al. (2017); Probst et al. (2017); Patel & Zha (2020);

Peng et al. (2014); Armstrong et al. (2022); Fagbade & Heinz (2022).

In the NASA Langley Workshop on CFD Validation of Synthetic Jets and Turbulent Separation

Control (Rumsey et al., 2006; Seifert & Pack, 2002; Greenblatt et al., 2006) both numerical and

experimental simulations are documented. The experiment produced a comprehensive data set

that is easily applicable for CFD validations. This section will concentrate on some numerical

studies where this test case was mainly used for validation. To start, we will discuss the grids

and meshing technique utilized for the WMH test case. Then, we will highlight the primary

distinctions between these publications and discuss how well they agree with the experimental

findings to clarify the meaning of our numerical results.

The NASA CFDVAL2004 (https://turbmodels.larc.nasa.gov/nasahump_val.html) workshop

website offers different grid resolutions for this test case. Five grids, ranging in mesh size

from coarse to fine, were initially introduced. These grids were offered both with and without

plenum. They are built from hexahedral elements with one element in the spanwise direction.

Figure 1.2 is the third grid with 409×109 (in x and y direction respectively). Moreover, we

1 Engineering Village keyword search performed on May 19, 2023

2 Google Scholar keyword search performed on May 19, 2023
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see a contoured top wall over the hump, which was suggested by the NASA CFDVAL2004

workshop(https://turbmodels.larc.nasa.gov/nasahump_val.html), to account for the side-wall

blockage effect, allowing the boundary layer to be resolved. This numerical trick was used to

account for the installation effects (Kalsi & Tucker, 2016).

The near-wall fine grid resolves the little structures in the boundary layer, whereas the coarser

outside grid is suitable for bigger structures far from the wall (Uzun & Malik, 2017). Furthermore,

because of the flow separation that occurs over the hump surface due to unfavourable pressure

gradients, a denser meshing is needed in the separation zone to capture the small structures

(Fagbade & Heinz, 2022).

Figure 1.2 Computational domain (x-z view) of the WMH (NASA CFDVAL2004

workshop)

In RANS simulations, the flow quantities are divided into their time-averaged and fluctuating

components to simulate a turbulent flow. However, as we will discuss further, the RANS

simulations can only resolve large and time-averaged scales eddies. Therefore, RANS predicts

a much larger separation area in the WMH simulations showing that using RANS alone

has limitations for this test case (Patel & Zha, 2020; Bozinoski & Davis, 2012; Krishnan,

Squires & Forsythe, 2006; Guseva et al., 2017; Menter, Hüppe, Matyushenko & Kolmogorov,

2021).
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During the last decades, it has been clear that RANS is the basis for the studies conducted by

academics and other individuals to assess the validity of hybrid RANS models. The RANS

approach, with its extensive history, computational efficiency, broad applicability, and well-

understood behavior, naturally positions itself as a foundational pillar in turbulence research.

Even as more advanced models are developed, RANS remains an essential benchmark and

reference point in the field of computational fluid dynamics (Blazek, J., 2015). We will begin by

summarising two studies that were carried out at the NASA Langley Research Center. In the

papers by Rumsey (2007) and Kiris et al. (2018), despite the limitations of the RANS simulations

on the WMH, they employed the RANS simulations along with the hybrid RANS/LES and

experiment to evaluate the hybrid RANS simulations as well as confirming the proper turbulence

model implementation.

Three distinct turbulence models reviewed by Rumsey (2007) generated results that were

quite similar. These turbulence models were the Spalart-Allmaras (SA) one equation model

(Spalart & Allmaras, 1994), Menter’s 𝑘 − 𝜔 two equations SST Model (Menter, 1994) and the

Explicit Algebraic Reynolds Stress Mode in 𝑘 − 𝜔 form (EARSM-k𝜔) (Rumsey,C & Gatski,

2003). These simulations were conducted using the CFL3D solver. The over prediction of

their RANS separation length were thought to be caused by the fact that the modelled turbulent

shear stresses in the separated region were too low in magnitude compared to the separation

point of the experimental results to a point that showed using RANS alone is not sufficient.

They compared the results with and without the blocking effect (the curve on the wall above

the hump). This modification demonstrated that findings were improved by accounting for the

blockage effect. For an unsteady case, they conducted a grid study to investigate two grids, the

structured medium mesh (53,000 grid points) and a finer mesh (210,000 grid points), resulting

in an insignificant difference (generally less than 5%) in long averaged periods of 𝐶𝑝. Finally,

the SA one equation turbulence model was used to investigate two eddy viscosity away from

the wall. With an arbitrarily turbulence model that was modified to produce twice the eddy

viscosity in the separation region away from the wall, an interesting finding was that the size of

the separation bubble was reduced. However, the flow field had too little mixing, causing it to
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reattach much later than the experiment suggested, while also underestimated the turbulence

shear stresses (Rumsey, 2007).

Later on, Kiris et al. (2018), due to the limited computational details provided in the previous

papers, conducted a thorough review on the WMH with RANS as well as hybrid RANS/LES

simulations. For the RANS results with the reattachment location being located at 1.263 m

(compared to 1.10 ± 0.005 m of the experimental results), and the separation location being

located at 0.661 m (compared to 0.665 ± 0.005 m of the experimental results) after the hump

being at zero with a height of 0.128 m, the RANS results had an error of 38.3 % compared to

the experimental results, while this error was decreased to 31.2 % using the hybrid RANS/LES

approach. Additionally, they used the zonal-DDES(ZDDES), with noticeably better results than

normal DDES. The reason for using ZDDES was to capture smaller flow structures. Indeed, they

enforced the solver to apply RANS and LES methods specifically in selected regions (employing

LES in the separation area and near the wall while using RANS in attached areas). The only

way to do this is by defining the zones for each test case which takes a lot of time and cannot be

generalized, whereas optimizing the Hybrid RANS-LES has the potential of being used in other

simulations without defining the regions.

One of the important works, is the paper by Siggeirsson & Andersson (2019). The computational

setup and the approach that we have taken in this thesis is similar to the one they have used.

Siggeirsson & Andersson (2019) used the SA-DDES model. They used two grids for the DDES

simulations and used RANS simulations with four different grids to ensure that the turbulence

model developed by Spalart and Allmaras was properly implemented in their simulation. Table

1.1 shows the grids they have used for their simulations. In the last column of Table 1.1 we can

see the longer reattachment lengths compared to the one in experiment (x/c = 1.10 ± 0.005).

Siggeirsson & Andersson (2019) have conducted two DDES simulations where the differences

were in the grid spacing and topology. "DDES 1" grid had 1.27 millions total nodes (236 nodes

in the stream wise direction × 90 nodes in the normal direction × 60 nodes in the spanwise

direction) while "DDES 2" grid had 5.12 million total nodes (474 nodes in the stream wise
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direction × 180 nodes in the normal direction × 60 nodes in the spanwise direction). The "DDES

1" grid is generated by extending the "RANS 2" grid that they used (with 249×90 in x and

y-direction) in the span-wise direction. While the "DDES 2" grid is generated to have slightly

larger cells in separation area but more uniform towards the outlet. Moreover, the span-wise size

for both of these simulations is z/c = 0.2.

The size of the domain in the span-wise direction is 0.2c. With 50 inner iterations, the time

step is set to 4 × 10−3𝑐/𝑈0 to ensure a CFL (see section 2.2) value of around 1 in the region of

interest. Their findings revealed an extended shear layer in the separated region, delaying the

transition from RANS to LES. They believed this was due to the lack of grid resolution in the

separation region. This delay affected the velocity profiles downstream of the hump and the

reattachment location. Out of five full flows they have selected the last three full flows for time

averaging. In the end, they concluded that a meshing that combines the DDES1 and DDES2

topology and even has a finer meshing in the separation area is required to have better results

compared to the ones in the experiment.

Table 1.1 Grid information of Siggeirsson & Andersson simulations

Grid 𝑛𝑥 𝑛𝑦 𝑛𝑧 𝑛tot Re-attachment length (x/c)

RANS 1 123 45 - 0.006M 1.251

RANS 2 249 90 - 0.02M 1.24

RANS 3 501 180 - 0.09M 1.225

RANS 4 1005 360 - 0.36M 1.205

DDES 1 236 90 60 (z/c = 0.2) 1.27M 1.212

DDES 2 474 180 60 (z/c = 0.2) 5.12M 1.236

Figure 1.3 contrasts the outcomes of Siggeirsson & Andersson’s two DDES simulations, a

steady-state simulation and the experimental findings. We can observe flow separation ranging

from x/c = 1.10± 0.005 (for the experiment) to 1.266 for DDES2. Figure 1.3b better distinguishes

the re-attachment location of their simulations. We can observe that DDES1 is the closest to
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the experimental re-attachment point (at around x/c 1.12), while the steady-state and unsteady

DDES2 have a longer separation length. The spanwise length used in the transient simulations

of Siggeirsson & Andersson was z/c= 0.2. They suggested investigating other spanwise sizes to

pinpoint the origin of the late transition from RANS to LES.

a) Pressure coefficient (𝐶𝑝) b) Skin friction coefficient (𝐶𝐹)

Figure 1.3 Distribution of the pressure and skin friction coefficient

along the wall of the WMH,

taken from Siggeirsson & Andersson (2019)

In the paper by Armstrong et al. (2022), they employed two groups of unstructured grids in

their investigation; namely P1 and P2. The P1 and P2 grids came in three different sizes: (103

x 28), (205 x 55), and (409 x 109). The P1 grids were derived from NASA CFDVAL2004

(https://turbmodels.larc.nasa.gov/nasahump_val.html) modelling resource page. However, for

the P2 grid set, Armstrong et al. used a mesh generator for high-order numerical method.

The area of flow separation received a finer mesh treatment in P2 grids. The mesh topology

difference can be seen in the Figure 1.4.

The turbulent Navier Stokes equation (RANS) and the negative Spalart Allmaras (SA-NEG)

turbulence model were employed. The boundary condition and computational domain was

similar to other papers. Patel & Zha and Armstrong et al. did not exclude the first part (from
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Figure 1.4 The difference between the P1 and P2 grid topology.

The red lines represent the high order cells in grids,

taken from Armstrong et al. (2022)

x/c=-6 to x/c=-2.14) of the WMH. They applied a no-slip wall condition on the bottom wall.

The numerical methods they used for the DDES simulations, however, are unknown. Moreover,

based on the idea of Shur et al. (2015); Armstrong et al. (2022) compared the DDES results

using various delta scaling constants (𝑎1 in equation 2.14), P1 and P2 grid sets, as well as grids

with linear and curved geometries. The re-attachment location for their P2 grids where around

x/c = 1.25 to 1.3. Armstrong et al. (2022) believed the reason behind this error (compared to x/c

= 1.10 ± 0.005 in experiment) was that the turbulent boundary layer directly at the wall was
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most likely not adequately captured. They believed one would require either the construction of

a wall model or finer grid resolution at the wall to achieve better results.

Patel & Zha (2020) used the DDES with SST turbulence model. They used the second coarse

mesh provided on the NASA CFD validation website (205×55×1). In addition, they reduced the

span-wise size from 1c to 0.2c, leading to 205×55×25 number of cells in x,y and z-direction

respectively for the DDES simulations.

Table 1.2 Grid information of

Patel & Zha simulations

Grid 𝑛𝑥 𝑛𝑦 𝑛𝑧 𝑛𝑡𝑜𝑡

RANS A 205 55 - 0.01M

RANS B 409 109 - 0.04M

RANS C 817 217 - 0.17M

DDES A 205 55 25 0.28M

A time step of Δ𝑡 = 2.5 × 10−3𝑐/𝑈∞ was chosen. This configuration was meant to provide a

CFL value of 2 in the region of interest. They disregarded the first 60 percent of the solution in

statistical time-averaging to prevent initial flow transition effects. According to the Patel & Zha

model, x/c = 1.18 was the reattachment point in their EDDES simulation. Compared to the SST

turbulence model result (x/c=1.27), their results appeared good.

In hybrid RANS-LES methods exists a zone known as the ’gray area.’ This region, encountered

during the transition between RANS and LES modeling approaches, represents a zone where

neither the averaged dynamics of RANS nor the resolved scales of LES are adequately captured.

As a result, the model can exhibit unpredictable behaviors and may not truly reflect the underlying

physics of turbulent flows. This problem was first introduced and explained in Spalart et al.

(1997a) and then profoundly elaborated upon by Shur et al. (2015) who highlighted the challenges

posed by the gray area specially on the WMH test case where a longer separation than the

experimental results happened.
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In the works of Probst et al. (2017), Guseva et al. (2017), and Peng et al. (2014), the

computational domain had a considerably finer resolution than the one which was used in the

paper by Patel & Zha (2020). Their mesh had around 5 million cells (with 511×127×80 cells in

the x, y, and z directions, respectively). The size in the spanwise direction is equivalent to 0.4c

in their simulation. They used a time step of Δ𝑡 = 2 × 10−3𝑐/𝑈∞ to achieve a CFL value well

below 0.5. For the temporal sample for averaging turbulence data, the first third of the solution

was disregarded, and then it was also averaged in space. They have used the SA-EDDES method

for their simulations but with higher order schemes than the one we have selected (see section

2.3) that showed a decrease in the error in the separation length compared to the experimental

results.

Guseva et al. (2017) have used a weighted, 4th-order centred and a 3rd-order upwind for the

inviscid fluxes with the spanwise length of z/c = 0.4. Figure 1.5 compares the results of Guseva

et al. between the experimental results, normal DDES, SLA DDES (EDDES) and Zonal IDDES

(Zonal EDDES). We can see that their results are closer to the experimental results, and the gray

area issue has been resolved.
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Figure 1.5 The time and spaced averaged skin friction coefficient (on top)

and the pressure coefficient (bottom),

taken from Guseva et al. (2017)

The findings from the chosen publications demonstrate that RANS simulations alone are

insufficient to achieve good agreement with the experimental results in predicting the flow

separation location. It must be noted here that the Reynolds number used in these numerical

simulations is Re = 936000 and in the experimental setup, is Re = 929000. This minor difference

of less than 1 percent with the numerical setup is believed to be insignificant (Greenblatt et al.,

2006). Moreover, despite employing the adaptive scale technique, the results from the EDDES

simulations show that a fine mesh (more than 5 million cells) is still needed close to the separation

area toward the outlet. That would justify the delay of RANS to LES in the separation area.

Therefore, based on the literature review, to reach the sub-objectives pointed out earlier, it is

critical to assess the effects of grid resolution in predicting aerodynamic coefficients on the wall

of the WMH as well as the separation location. Moreover, for the unsteady EDDES simulations,
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we should investigate the effects of the span-wise length on the solution as various span-wise

lengths were used in the literature and was suggested for further investigations.

1.3 Assessment of the DDES simulations with the SU2 solver

The solver that is used in this study for the simulations is the open-source code SU2 (Economon,

Palacios, Copeland, Lukaczyk & Alonso, 2016). SU2 is specially built to analyze partial

differential equations with avant-garde numerical methods. This section is intended to take a

closer look on publications that have shown, improved, or validated the use of SU2 with the

DDES simulations. Although SU2 is designed to solve any problems that can be reduced to

partial differential equations (PDE), it is especially effective with aerodynamic problems (Keep,

Vitale, Pini & Burigana, 2017).

Molina et al. (2017)’s work provides a thorough explanation of hybrid RANS/LES algorithms

implemented in the SU2. Molina et al. concentrated on the modifications required to implement

the Delayed Detached-Eddy Simulation (DDES) method to the existing RANS framework built

upon the Spalart-Allmaras turbulence model. They came up with a series of test cases for various

regimes to show the SU2 DDES capacity on both academic and professional-grade applications.

A high level overview of the SU2 package is presented by Molina et al. In particular, second-order

convective techniques suitable for hybrid RANS/LES calculations with low Mach and low

dissipation were discussed. They tested 4 cases that have been selected as a sample set of the

wide range of scale-resolving applications for which SU2 has been developed in order to show

the initial implementation of hybrid RANS/LES models. These test cases were Spatial Shear

Layer, Zero Gradient Flat Plate, Backward Facing Step (BFS) and the NACA0021 airfoil in deep

stall (Molina et al., 2017). The main difficulty with hybrid approaches, according to Molina

et al. (2017), is being able to precisely evaluate the subgrid-scale velocity components. One

also needs a suitable numerical technique, to maintain the RANS solution quality, and advanced

numerical methods, which SU2 offers.
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To validate the capabilities of SU2, we will use two well-known test cases. The BFS and

NACA0012 have rich information accessible within the NASA Langley research center TMR

section by Rumsey and in the literature Eaton & Johnston (1981); Jacob, Louisot, Juvé & Guerrand

(2001). One of the referenced papers that validate their proposed DDES simulation is the

paper by Spalart et al. (2006). They have used circular cylinder, single airfoil, BFS and

multi-element airfoil test cases using RANS, DES97 and DDES. They believed the BFS is a

perfect choice for hybrid methods. Therefore, researchers like Gritskevich et al. (2012); Deck

(2012); Reddy, Ryon & Durbin (2014); Shur, Spalart, Strelets & Travin (2008); Sainte-Rose,

Bertier, Deck & Dupoirieux (2009) are only some of the highly cited papers that used BFS with

the DDES. Moreover, for the NACA0012, To mention a few, we can consider Im & Zha (2014a);

Jain & Baeder (2015); Gao & Li (2017); Yang & Zha (2016); Tagawa et al. (2019), that all used

the DDES, at different angles of attacks.

BFS is well known for its application in the studies on turbulence in internal flows (Tagawa

et al., 2019). The flow separation is due to the sudden change in the geometry (Satheesh Kumar,

Singh & Thiagarajan, 2020). This sudden change creates a re-circulation zone, a point of flow

re-attachment like the one after the hump in the WMH. Thus, the BFS and WMH test cases

share some similarities in their properties. The WMH produces a region of flow re-circulation

just downstream of the hump, which is also present in the flow over the BFS. They are, therefore,

excellent candidates to evaluate the performance of numerical solvers. In addition, the flow over

the NACA0012 in high and reversed angles of attack also separates from the leading edge of the

airfoil. These angles of attack were investigated thoroughly by Shan, Jiang, Liu, Love & Maines

(2008). By using SU2, Tagawa et al. (2019) studied the impact of span width length on the

pressure coefficient and anticipated aerodynamic coefficients. The shear-layer modified DDES

approach of SU2 was presented first. The numerical findings were validated using the BFS and a

stalled NACA0012. They also analyzed the numerical flow over an iced Model 5-6. Tagawa et al.

studied the BFS using a Reynolds number of 36000 and a Mach number of 0.128. The Reynolds

number was determined by the step length. 298.33 K serves as the reference temperature, and the

wall heat flux has been set to zero. Due to the strong resemblance between this arrangement and
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the computational setup we are employing for the WMH, we will briefly look at their findings

here.

The 2D grid from NASA CFDVAL2004 (https://turbmodels.larc.nasa.gov/nasahump_val.html)

web-page served as the foundation for the computation grid that was employed. A 3D example

with 821,600 points was produced by extending the original mesh, a four-zone mesh with 20,540

nodes, by 40 nodes in the z-direction over a spanwise length of z/H = 4 with H being the

thickness. A fluid particle may travel the domain almost five times with a non dimensional time

steps sets Δ∗
𝑡 = Δ𝑡𝑈∞/𝐻 = 0.2 in 19.4 seconds, or 43000 time-steps during the simulation. The

latest 1.3 seconds were used to get the statistical average (3000 iterations) (Tagawa et al., 2019).

Tagawa et al. (2019) explain that the mean wall pressure coefficient and friction coefficient

distribution along the lower wall of the BFS test case that was simulated using SU2 have

acceptable agreement with Molina, Silva, Broeren, Righi & Alonso (2019) numerical and

Dietiker & Hoffmann (2009) experimental results. Tagawa et al. explain the tiny gap of around

0.02 % in 𝐶𝑝 distribution and 2.28 % in 𝐶𝑓 was due to the fact that Molina et al. have not

explicitly stated their sampling size. Tagawa et al.’s NACA0012 results in deep stall also had

a great agreement with the Im & Zha (2014b) numerical findings. Table 1.3 shows how the

experimental results and the DES, URANS, and DDES results of Im & Zha differ from the

DDES results obtained using SU2. Therefore, we can see the potential of SU2 in predicting flow

properties compared to other numerical solvers.
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Table 1.3 Comparison of Tagawa et al. lift and drag

coefficients of NACA 0012 in deep stall results with the

literature and experiment,

taken from Tagawa et al. (2019)

Author Im & Zha Im & Zha Im & Zha Im & Zha Tagawa et al. (SU2)

Method URANS DES DDES Experiment DDES

𝐶𝐷 1.421 1.075 1.076 1.109 1.077

𝐶𝐿 1.432 1.086 1.087 1.168 1.064

Error % 𝐶𝐷 24.190 0.215 0.048 2.885 N/a

Error % 𝐶𝐿 25.699 2.001 2.092 8.904 N/a

The analysis of the turbulent flow around a Gates Learjet Corporation-305 airfoil with a leading

edge horn-shape glazing ice was then pursued by Molina et al. (2019). For this simulation,

Molina et al. (2019) used an unstructured grid design compatible with SU2. Molina et al.

devised the computational domain to have a far-field boundary condition 40 chords away from

the airfoil (with a spanwise length of 0.5c). The sharp trailing edge has two chords downstream,

insuring a dimensionless 𝑦+ (see section 2.2) of the last grid to be less than one around the airfoil.

Moreover, the grid is stretched over 60 layers with a ratio of 1.1, filled with triangle shape grid

cells up to the far-field. Molina et al. also gave close attention to refining the grid around the

ice-ridge. The baseline grid has a size of 0.1c in the focus region around the ice (x-z direction),

and the baseline and fine grids were extruded in the spanwise direction with 50 and 100 layers

for the same span-wise dimension, respectively. This resulted in a medium grid of roughly 3

million cells and a fine grid of 10 million grid units. The non-dimensional time step was set to

Δ𝑡∗ = Δ𝑡𝑈∞/𝑐 = 0.0001, with 20 sub-iterations in a dual-time step approach. They used the

HR-SLAU2 scheme with the Venkatkrishnan limiter Venkatakrishnan (1993) for the convective

numerical scheme. The unsteady simulation was used from the RANS solution, the first third of

the transient phase was not used for the time averaging (Molina et al., 2019). For the DDES

coupled with (HR)-SLAU2 numerical method Molina et al. used the Shear-Layer Adapted

(SLA) sub-grid scale (SGS), the predictions improved by modifying the SGS to accelerate the
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RANS to LES transition to reduce the gray area issue as it was discussed in section 1.2 (by

replacing Δ𝑚𝑎𝑥 with Δ𝑆𝐿𝐴(Shur et al., 2015)). It was evident from the comparison of Δ𝑆𝐿𝐴 and

Δ𝑚𝑎𝑥 , that Δ𝑚𝑎𝑥 results exhibit a significant delay in the roll-up of the shedding vortex and, as a

result, the emergence of Kelvin-Helmholtz instability (Molina et al., 2019).

To reduce the viscosity in the numerical method, they use a low dissipation correction. The

three parameters for the low dissipation scheme are :𝜎𝑚𝑖𝑛 = 1 (original SLAU2), 𝜎𝑚𝑖𝑛 = 0.05

and 𝜎𝑚𝑖𝑛 = 0.01. The 𝜎𝑚𝑖𝑛 = 0.01 simulations were unstable in certain conditions due to the

presence of the ice horn, which according to the experiment, re-attachment occurs at roughly

0.53c from the leading edge. A sizable re-circulation bubble was predicted above the suction

surface. Molina et al. discovered that by reducing the dissipation parameter, they could move the

reattachment point closer. Therefore, Molina et al. believed a stable low numerical dissipation

convective scheme is essential for accurate prediction of flow over the ice (Molina et al., 2019).

The low dissipation parameter 𝜎𝑚𝑖𝑛 = 0.01 has been used for a grid study. Molina et al.

compared the RANS and EDDES with the base and fine grid. They found out that in an angle

of attack of 𝛼 = 6 deg, both RANS and DDES were capable of accurately predicting the flow

separation. However, as they increased the angle of attack, they found that RANS results deviate

from the experimental results. Moreover, Molina et al. discovered that velocity fluctuations

(𝑈𝑅𝑀𝑆/𝑈𝑖𝑛 𝑓 ) of the baseline grid and the finer grid were nearly identical when utilizing the

Δ𝑆𝐿𝐴 method. They believed this is a promising potential for future extension of simulating a

full iced-aircraft (Molina et al., 2019).

In unsteady simulations, the hybrid RANS/LES (EDDES) solver offered by SU2 presents a

promising potential. We have briefly mentioned few of the test cases like Spatial Shear Layer,

Zero Gradient Flat Plate, BFS, NACA0012, NACA0021 and GLC-305 which the SU2 results

had a good agreement with other numerical and experimental results. The papers from Molina

et al. (2017), Molina et al. (2019) and Tagawa et al. (2019) were just a fraction of SU2 active

research. The development of SU2 is expanding and will be further explored in the coming

years as RANS/LES hybrid computing capacity increases.
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1.4 Vortex identification methodologies

Few people stop to consider what the term "vortex" actually implies because it is used so

frequently in fluid dynamics. Those who do take a deeper look immediately understand how

challenging it is to clearly define vortices (Wang, Vita, Fraga, Wang & Hemida, 2021). Although

vortices are frequently thought of as having high vorticity, there is no set limit above which

vorticity should be deemed high. Even more concerningly, vorticity may be strong in parallel

mean shear flows without any visible vortices, because vortices are the results of strong vorticity

not yet "visible" going unstable. The development of coherent structures holds information

about the type of flow regime and can be distinguished by their scales, strengths, and directions,

among other characteristics. However, there is not yet a well-established and widely accessible

mechanism for extracting these characteristics (Devaux, Thomas, Calluaud & Pineau, 2020).

To fully understand the phenomenon of turbulent motions, coherent structures must be found,

tracked, visualised, and analysed. With this knowledge, turbulent flow modelling and predictions

can be improved. Because it is not always evident how to quantify the extension of the vortex

from its centre of spin, it is challenging to identify vortices and interactions between several

coherent structures (Lindner, Devaux & Miskovic, 2020).

Vortex identification techniques should be used to create qualitative and quantitative descriptions

of the vortex dynamics based directly on the flow field so that the physical processes of lift

generation/loss and moment balancing may be understood (Huang & Green, 2015). Identifying

vortices in realistic (complex, unstable, 3D) fluids like in the WMH, is a challenging approach due

to the diffusion of vorticity by viscosity and the interplay of vorticity distribution with background

strain fields. The difficulties in the identification and visualisation of vortical structures in

turbulence have accelerated the development of vortex identification techniques, such as intuitive

measurements, Lagrangian objective criteria, and Eulerian velocity-gradient-based criteria

(Jeong & Hussain, 1995).

A vortex is typically seen in Lagrangian techniques as a developing region with a high level

of material invariance. Typical intuitive signs like local pressure minima, closed or spiralling
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streamlines, and pathlines have significant difficulties identifying vortices, as reviewed in great

detail by Jeong & Hussain (1995). Almost all Lagrangian methods are based on the flow

map, a vector variable that plots fluid paths from their starting points to where they end up in

space after some integration period, building a comprehensive picture of how individual fluid

particles move and interact in the fluid flow over time(Chakraborty, Balachandar & Adrian,

2005; Haller & Beron-Vera, 2013). For Eulerian methods, the criteria is different.

The examination of the velocity gradient tensor serves as the foundation for the majority of

the current widely used Eulerian vortex identification criteria. Numerous frequently employed

vortex criteria, such as closed or spiralling streamlines, iso-vorticity surfaces, pressure minima,

etc., are Eulerian and are derived using spatial derivatives of the velocity field. According to

the Eulerian criteria, coherent structures are typically recognised as concentrated areas of high

vorticity that typically contain the key elements of the flow caused by a vortex filament. These

Eulerian methods provide a function that may be evaluated point-by-point and then categorize

each point as being within or outside a vortex according to a standard based on the point values

(Chakraborty et al., 2005).

Most local vortex identification criteria are derived from the velocity gradient tensor (or Jacobian),

they are Galilean invariant that remain unchanged when the underlying coordinate system is

translated at a constant speed (Fasel & Postl, 2006). The most widely utilized local criteria for

vortex identification is as follows:

• Vorticity

• The Q-criterion (Hunt, J. C. R. and Wray, A., and Moin, P , 1988)

• The 𝜆2-criterion (Jeong & Hussain, 1995)

• The Δ-criterion (Chong, Perry & Cantwell, 1990)

• The Swirling Strength (𝜆2
𝑐𝑖-criterion) (Zhou, Adrian, Balachandar & Kendall, 1999)

• Rortex (Liu, Gao, Tian & Dong, 2018a)

This following aims to provide information on the benefits and advancements of the listed

quantities. Vorticity can acquire significant values even in the presence of shear flows and might
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thus result in false detections in non-rotating velocity fields, it might be unwise to include it in

this list. Vorticity is simply the curl of the velocity field, −→v , and it is the classical quantity in

fluid mechanics used to represent local rotating motions (Blazek, J., 2015), (Canivete Cuissa, J.

R. & Steiner, O., 2022).

𝜔 =
−→∇ × −→v (1.1)

According to the right-hand rule, the vorticity vector direction shows the rotation orientation,

and its norm is proportional to the force of rotation. The norm of the vorticity vector for a

rotational vortex, which is a flow spinning rigidly around an axis, is 𝜔 = |𝜔|= 2Ω, Ω is the

fluid angular velocity. In the context of vortices, gamma (Γ) often represents circulation closely

related to vorticity. For a simple vortex, the circulation (Γ) equals the vorticity (𝜔) times the area

(𝐴) enclosed by a given loop, represented by the equation Γ = Ω · 𝐴. However, for more realistic

vortex models in fluid dynamics, such as Lamb-Oseen or Burgers vortices, this straightforward

relationships between the vorticity norm and the characteristics of vortical flows does not hold

(Canivete Cuissa, J. R. & Steiner, O., 2022).

The Q-Criterion techniques are easy to use because they require the instantaneous velocity field

and its gradient. They do, however, have several drawbacks, as discussed by Kolář (2007) and

Jeong & Hussain (1995). The structure size and border form can change depending on the

value that the user input for iso-surface level value while displaying the data, especially in 3D.

Furthermore, these criteria can be thought of as eigenvalue-based criteria because they are only

based on the eigenvalues of the velocity gradient tensor or the associated invariants. Although

in theory Q should be greater than 0, in actuality, depending on the mesh density, Q must be

high in order to detect an actual vortex (Jeong & Hussain, 1995). Many unsteady simulations

have employed the Q-criterion to depict the flow and vortical structures over time. In the articles

by Siggeirsson & Andersson (2019); Armstrong et al. (2022); Patel & Zha (2020); Iyer & Malik

(2016); Uzun & Malik (2017); Kalsi & Tucker (2016), that were covered in section 1.2, to see

the 3D vortical structures above the WMH, the authors used the Q-criterion to visualize vortices

in their unsteady simulations.
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The 𝜆2 criterion proposed by Jeong & Hussain (1995) is a commonly used technique for

pinpointing vortices, especially in non-compressible fluid flows. Based on this method, a vortex

is identified as connected regions in the fluid where two out of three specific values of the

eigenvalues of the symmetric matrix 𝑀 = 𝑆2 + Ω2 are negative. Vortices are identified when the

condition 𝜆2 < 0 holds. This method identifies a vortex based on whether the second largest

eigenvalue, 𝜆2, of the symmetric part of the velocity gradient tensor, is negative. This feature

differentiates it from other methods that rely solely on the magnitude of vorticity, allowing

it to detect vortices even in complex, changing flow fields. Moreover, unlike other vortex

methodologies, the 𝜆2 and Q-criterion are not affected by the Disappearing Vortex Problem

(DVP), making them more consistent and reliable for identifying vortices (Kolář & Šístek, 2022).

The Swirling Strength method (𝜆2
𝑐𝑖), also known as the local swirling velocity, is based on the

imaginary part of the non-zero complex eigenvalue of the velocity gradient tensor. While the

𝜆2
𝑐𝑖 resolves the pure shear flow issue, it is still unable to estimate the angular velocity of more

complex and realistic vortices. The 𝜆2
𝑐𝑖 cannot distinguish between the intrinsic shears present

in a differentially rotating flow and the rigid-body rotational component of the flow (Canivete

Cuissa, J. R. & Steiner, O., 2022). The advantage of 𝜆2
𝑐𝑖 is that the threshold value is defined by

Zhou et al. (1999) and it would be three percent of the max value.

In recent years, the scientific community has focused on studying Coherent Vortex Structures

(CVS) and the instability in complex fluid flows. One of the focuses of their research was on

the fluctuations of a fully separated flow, particularly in the zone close to reattachment in low

frequencies When the boundary layer flow separates from the wall due to the negative pressure

gradient produced by the hump geometry, a shear layer region forms parallel the surface of wall

at the edge of the hump. In the shear layer area, the separated flow interacts with the surrounding

fluid in a thin, high-shear region. When the separated flow encounters the re-circulation area

on the side of the hump or the downside of the BFS while moving downstream, it eventually

reconnects with the wall. It is distinguished by a quick drop in turbulence and an increase in the

wall shear stress. The flow continues downstream after the reattachment region and starts to

recover from the impacts of separation and reattachment.The turbulence will then progressively
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diminish as the flow seeks to return to its initial state before separation. These studies continued

to the equilibrium of the reattached shear layer (Wang et al., 2019). Figure 1.6 is a simplified

representation of the separated flow in the BFS by Wang et al. (2019). They have conducted

a quantitative analysis of the CVS in the flow over the BFS. In this study, Wang et al. has

visualized the vortices with the ghosting pictures which was a specific imaging technique to

visualize the vortices. Then, he defined the stages of the vortices and their development in the

BFS channel. Finally, they studied the vortex centers and their sizes and evolution.

Figure 1.6 The stages of flow structure in a 2D BFS. (FSR = Free Shear Region , CR =

Corner region, RR = Redeveloping Region and R is the re-attachment location,

taken from Wang et al. (2019)

As stated earlier, identifying the vortex behaviour in turbulent and separated flows is challenging.

Up to this date, we still lack a universal vortex identification method. This shortcoming has

caused confusion and misunderstanding of turbulent flows (Liu, Yan & Lu, 2014). After the

introduction of Rortex (Liutex) by Liu et al. in 2018, researchers like Yu, Shrestha, Alvarez,

Nottage & Liu conducted a correlation analysis on the DNS case of a boundary layer transition

between vorticity, Q-criterion and 𝜆2 criterion and Rortex (Liutex) methods. Due to the low

correlation of vorticity, Yu et al. suggest that vorticity alone lacks the principle of a vortex

identification method. Moreover, they state that although the Q-criterion and 𝜆2 criterion perform

well, yet, these well-known methods cannot give the exact relative strength of fluid rotation (Yu

et al., 2020). Moreover, Lindner et al. (2020) states that it is feasible to approximate a possible

vortex and the location of its centre by using the peak of the highest whirling intensity or by
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locating the areas where the Q criterion is higher than 0. According to them, these Eulerian

techniques do not always ensure the detection of an actual vortex, even when a threshold is used

(Lindner et al., 2020). Therefore, a quantitative study for the number of captured vortices in

comparable threshold values on a well-known test case like WMH can give insights into the

capabilities of these methods.

In this chapter, we have reviewed eight papers that used similar numerical settings on the

WMH test case, particularly, we have defined the computational setups and discussed their

main findings. Then, we have reviewed paper that used SU2 as their solver to simulate flow in

similar test cases. Finally, we defined vortex, how they are usually identified and what are the

shortcomings of their identification techniques.





CHAPTER 2

MATHEMATICAL MODEL AND METHODOLOGY

2.1 Introduction

In the previous section, we reviewed the works of the literature that used the same or comparable

settings in their WMH simulations. In this section, we intend to dig deeper into the properties and

configurations used in our simulations. In the first part, we will discuss the general mathematical

and physical expressions in more detail. More specifically, we will define the underlying

mathematics used by the SU2 solver to run the simulations. We will discuss the options,

capabilities of the solver and the numerical configurations we have used to run our steady and

unsteady simulations. In the last part, we will discuss the vortex identification methods used

in this thesis. More specifically, we will define the mathematics of three vortex identification

techniques.

2.2 Mathematical model

In contrast to laminar flows, the distinguishing characteristic of a turbulent flow is that fluid

particles move chaotically along complex, irregular paths. In turbulent zones, several fluid

layers are strongly mixed by the strong chaotic motion. Turbulent wall bounded flow results in

more skin friction and heat transfer than laminar flow under the same conditions because of the

improved momentum and energy exchange between fluid particles and solid surfaces (Blazek, J.,

2015).

Even though the Navier Stokes Equations (NSE) can be used to analyze turbulence, doing so

at high Reynolds numbers is impossible due to the massive range of length scales that must

be resolved. (Kundu, Cohen & Dowling, 2016). Moreover, only very straight-forward flow

problems at low Reynolds numbers (in the range of 104 to 105) can be directly simulated by the

time-dependent NSE, also known as the Direct Numerical Simulation (DNS). Because of the

number of grid points required for adequate spatial resolution scales as 𝑅𝑒9/4 and the CPU-time
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as 𝑅𝑒3, greater use of the DNS is prevented. So, we are compelled to account for the effects of

turbulence without fully reaching it (Blazek, J., 2015). Using the Reynolds decomposition to

evaluate the statistical mean flow from the fluctuating part, it is possible to rewrite the NSE into

the Reynolds Averaged Navier Stokes (RANS) equations.

With a control volume Ω defined by a close surface of S and with a normal vector of
−→n , the

integral form of continuity equation is (Blazek, J., 2015):

𝜕

𝜕𝑡

∫
Ω
𝜌𝑑Ω +

∮
𝜕Ω
𝜌(v · n)𝑑𝑆 = 0 (2.1)

where 𝜌 is the density, and v is the air velocity vector. Also, the momentum equation with ø

being the shear stress is written as:

𝜕

𝜕𝑡

∫
Ω
𝜌v𝑑Ω +

∮
𝜕Ω
𝜌v(v · n)𝑑𝑆 = −

∮
𝜕Ω
𝑝n𝑑𝑆 +

∮
𝜕Ω

(ø · n)𝑑𝑆 (2.2)

And the energy equation :

𝜕

𝜕𝑡

∫
Ω
𝜌𝐸𝑑Ω +

∮
𝜕Ω
𝜌𝐻(v · n)𝑑𝑆 =

∮
𝜕Ω
𝑘(∇𝑇 · n)𝑑𝑆 +

∮
𝜕Ω

(ø · v) · n𝑑𝑆 (2.3)

where 𝐸 is the total energy per unit mass, 𝐻 is the total enthalpy per unit mass, 𝑘 is the thermal

conductivity and 𝑇 is the temperature.

There are six additional unknowns called Reynolds stresses as a result of developing RANS

equations. So, to solve these issues, a turbulent model is needed. The kinematic eddy viscosity

(𝜈𝑡) is determined by a single transport equation in the classic Spalart-Allmaras model (SA)

(Spalart & Allmaras, 1994). It has been demonstrated that this model performs well with respect

to boundary layers and negative pressure gradients. Thus, this model has gained popularity for

use in external aerodynamics (Javaherchi, 2010).

The SA one-equation turbulence model (Spalart & Allmaras, 1994) employs transport equation

for an eddy-viscosity variable �̂�. It was developed based on empiricism, dimensional analysis,
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and Galilean in-variance (Spalart & Allmaras, 1994). It was calibrated using results for

2D mixing layers, wakes, and flat-plate boundary layers. The SA model also allows for

reasonably accurate predictions of turbulent flows with adverse pressure gradients (see for

example Constantinescu, Chapelet & Squires (2003); Kalitzin, Medic, Iaccarino & Durbin

(2005); Breuer, Jovičić & Mazaev (2003); Bardina, Huang & Coakley (1997)).

The SA model has several favorable numerical features. It is “local”, which means that the

equation at one point does not depend on the solution at other points. Therefore, it can be readily

implemented on structured multi-block or on unstructured grids. It is also robust, converges

rapidly to steady-state, and requires only moderate grid resolution in the near-wall region

(Spalart & Allmaras, 1994).

We provide the standard SA model (Spalart & Allmaras, 1994) for reference. The Boussinesq

eddy viscosity assumption is used to calculate Reynolds stresses and the eddy viscosity 𝜈𝑡 is

determined by:

𝜈𝑡 = �̂� 𝑓𝜈1, 𝑓𝜈1 =
𝑋3

𝑥3 + 𝑐3
𝜈1

, 𝑥 ≡ �̂�

𝜈
(2.4)

where 𝜈 is the kinematic viscosity. The working variable for the SA and transport equation is �̂�,

where:
𝐷�̂�

𝐷𝑡
= 𝑃 − 𝐷 + 𝑇 +

1

𝜎

[
∇.((𝜈 + �̂�)∇�̂�) + 𝑐𝑏2(∇�̂�)2

]
(2.5)

in which, production, wall destruction, and diffusive terms are:

𝑃 = 𝑐𝑏1(1 − 𝑓𝑡2)𝑆�̂�, 𝐷 =
(
𝑐𝑤𝑞 𝑓𝑤 − 𝑐𝑏1

𝑘2
𝑓𝑡2

) [ �̂�
𝑑

]2

, 𝑇 = 𝑓𝑡1(Δ𝑢)2 (2.6)

The modified vorticity is 𝑆 and given by:

𝑆 ≡ |𝑆 |+ 𝜈

𝑘2𝑑2
𝑓𝑣2, 𝑓𝑣2 = 1 − 𝑋

1 + 𝑋 𝑓𝑣1
, (2.7)
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where in this equation, the vorticity magnitude is |S|, and d is the distance from the nearest wall.

For defining 𝑓𝑤 is:

𝑓𝑤 = 𝑔
[ 1 + 𝑐3

𝑤3

𝑔6 + 𝑐6
𝑤3

]1/6
, 𝑔 = 𝑟 + 𝑐𝑤2(𝑟6 − 𝑟), 𝑟 = 𝑚𝑖𝑛

( �̂�

𝑆𝑘2𝑑2
, 𝑟𝑙𝑖𝑚

)
. (2.8)

The coefficients in P,T and D terms are given by:

𝑓𝑡1 = 𝑐𝑡1𝑔𝑡𝑒𝑥𝑝
(
𝑐𝑡2

𝜔𝑡

Δ𝑢2
[𝑑2 + 𝑔2

𝑡 𝑑
2
𝑡 ]
)
, 𝑓𝑡2 = 𝑐𝑡3𝑒𝑥𝑝

(
− 𝑐𝑡4𝑋2

)
, (2.9)

Here 𝑔𝑡 = 𝑚𝑖𝑛(0.1,Δ𝑢/𝜔𝑡Δ𝑥), where 𝑑𝑡 is distance to transition point (from laminar to turbulent).

𝜔𝑡 is the vorticity at the transition point, Δ𝑢 is the change in velocity relative to the transition

point, Δ𝑥 is the stream-wise grid spacing at the same point.

The previously mentioned constants are:

𝑐𝑏1 = 0.1355, 𝜎 = 2/3, 𝑐𝑏2 = 0.622, 𝑘 = 0.41,

𝑐𝑤1 =
𝑐𝑏1

𝑘2
+

(1 + 𝑐𝑏2)

𝜎
, 𝑐𝑤2 = 0.3,

(2.10)

and, 𝑟𝑙𝑖𝑚 = 10, no-slip wall: �̂� = 0, symmetry plane: 𝜕�̂�/𝜕𝑛 = 0 and free-stream (fully turbulent):

�̂�/𝜈 = a range of 3 to 5 and free-stream: �̂�/𝜈 � 1

In the original SA model, the eddy viscosity is usually positive. However, in the Negative Spalart

Allmaras (NSA) model, it can occasionally turn negative. As a result, the NSA model can depict

the effects of back-scatter, which is the transfer of kinetic energy in turbulence from smaller sizes

to larger scales. The NSA model is more accurate than the original SA model when predicting

turbulent flows with boundary layer separation, as demonstrated by the test cases in the paper

(Allmaras, Johnson & Spalart, 2012). The ability to represent back-scatter and its improved

performance in predicting separation makes the NSA model a better option for separated flows

(Allmaras et al., 2012).
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Due to the low computational costs of RANS models in comparison to DNS, RANS simulations

are being used widely in the industry for attached boundary layer cases. However, RANS models

cannot predict the turbulent separated flows in complex cases accurately, owing to the fact that

the RANS model tries to model the entire turbulent spectrum with statistical time-averaging

(Wang et al., 2021).

Large Eddy Simulations (LES) can resolve most of the turbulent energy directly. Nonetheless,

in LES simulations an exceedingly fine mesh is required near the wall. These conditions lead to

large computational resources. Even with the advancements of technology and computation

power, LES simulations are still not practical for flows with a very high Reynolds number

(typically 105 or higher) and complex geometry (Guseva et al., 2017; Armstrong et al., 2022).

Over the last three decades, researchers tried to come up with a solution to the previously

mentioned contradiction. Therefore, several hybrid turbulence models have been put forward to

secure LES precision combined with RANS modeling (see Figure 2.1).

Figure 2.1 Characteristics of DDES simulations in compared

to RANS and DNS/LES
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In 1997, Spalart et al. (1997a) proposed a Detached Eddy Simulation method called DES97, in

which the transition from RANS to LES explicitly depended on the grid resolution. Following

this paper, nine years later, Spalart et al. (2006) proposed Delayed Detached Eddy Simulations

(DDES), building the blocks of the idea of the shielding of the boundary layer proposed later by

Menter, Schütze & Gritskevich (2012).

Due to the strong natural Kelvin-Helmholtz (KH) instability, the transition from fully modelled

turbulence in attached boundary layers by RANS to turbulent separated shear layers tends to

be resolved by LES. However, in practice, the problem with these methods was the gray area

issue which was addressed in the first paper (Spalart et al., 1997a). This issue corresponds to

the delay in the transition from RANS to LES. Later Spalart et al. (2006) investigated the origin

of this issue.

To minimize the effect of gray area issue in DDES, Shur et al. (2015) proposed a promising new

approach called Enhanced Delayed Eddy Simulations (EDDES) with "Shear Layer Adapted"

strategy. The criteria for this methodology is based on twisting the computational grids (to

smaller cells) across the shear layer in the same direction. It has been demonstrated in Shur

et al. (2015) that in this methodology, by replacing the local grid spacing Δ𝑚𝑎𝑥 with the newly

offered strategy of Δ𝑆𝐿𝐴, leads to an accelerated unlocking of Kelvin-Helmholtz instability,

subsequently, a faster "second transition" to 3D turbulence.

A detailed background of the physical components of the SLA strategy is available in Shur et al.

(2015). With the direction of the vorticity vector (
−→n𝜔) and a cell with

−→r as center and −→𝑟𝑛 with

n representing the shape of the cells (n=1...8 for hexahedral cells), the first definition is:

Δ̃𝜔 =
1√
3
𝑚𝑎𝑥 |𝐼𝑛 − 𝐼𝑚 | (2.11)

where 𝐼𝑛 = 𝑛𝜔 × 𝑟𝑛 (𝑛𝜔) is the unit vector aligned with vorticity vector × the position vector

of the n-th vertex from the grid cell of interest (𝑟𝑛). Here Δ̃𝜔 represents the diameter of the

cross product points divided by
√

3. The value of
√

3 is the approximation for Δ𝑚𝑎𝑥 recovering

turbulence computed on the cubic cells. With this methodology, for example, a free shear layer
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flowing in the x-y direction that has a much larger grid spacing in the span-wise direction, Δ̃𝜔

reduces to 1√
3
(Δ𝑥2 + Δ𝑦2)

1
2 . However, replacing Δ𝑚𝑎𝑥 with Δ̃𝜔 is not enough to accelerate the

transition to resolved turbulence (Guseva et al., 2017). In the SLA methodology, Δ̃𝜔 essentially

measures the variation in the direction of vorticity across a given grid cell by comparing the

direction of the vorticity vector, −→𝑛𝜔, at each vertex of the grid cell, represented by −→𝑟𝑛 (Shur

et al., 2015). For each pair of vortices, a quantity 𝐼𝑛 - 𝐼𝑚 is computed, which signifies the

difference in the cross products of the vorticity vector and the position vectors of these vortices.

The maximum absolute difference amongst these quantities, normalized by 1√
3
, gives us Δ̃𝜔.

This indicates the maximum relative shift in the direction of vorticity across the cell, essentially

representing how homogeneous the vorticity is within the cell. This measure is useful in refining

the calculation of grid scales, allowing for the more accurate capture of turbulent structures.

Specifically, in flows where the grid spacing varies significantly in different directions, Δ̃𝜔

provides a more robust and flow-adaptive grid scale estimate (Shur et al., 2015).

Therefore, an additional modification to the sub-grid length scale is required. The additional

modification proposed by Shur et al. (2015) is called the Vortex Tilting Measure (VTM) that is

defined by a cross product of inviscid vorticity-evolution (𝑆.𝜔) with the vorticity vector as:

𝑉𝑇𝑀 =

√
6|(𝑆.𝜔) × 𝜔|

𝜔2
√

3𝑡𝑟(𝑆2) − [𝑡𝑟(𝑆)]2
(2.12)

In this equation 𝜔 is the vorticity, 𝑆 is the strain tensor and tr(.) is the trace. By using the VTM

equation, the definition of Δ̃𝜔 can be further deduce to:

Δ𝑆𝐿𝐴 = Δ̃𝜔𝐹𝐾𝐻(< 𝑉𝑇𝑀 >) (2.13)

Here, the function of the non-dimensional 𝐹𝐾𝐻 (Shur et al., 2015) is to unlock the Kelvin-

Helmholtz instability in the early stages of the shear layers. It is defined as:

𝐹𝐾𝐻(< 𝑉𝑇𝑀 >) = 𝑚𝑎𝑥
{
𝐹𝑚𝑖𝑛𝐾𝐻 , 𝑚𝑖𝑛

{
𝐹𝑚𝑎𝑥𝐾𝐻 , 𝐹

𝑚𝑖𝑛
𝐾𝐻 +

𝐹𝑚𝑎𝑥𝐾𝐻 − 𝐹𝑚𝑖𝑛𝐾𝐻

𝑎2 − 𝑎1
(< 𝑉𝑇𝑀 > −𝑎1)

}}
(2.14)
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In this equation, 𝐹𝑚𝑎𝑥𝐾𝐻 = 1.0 and 𝐹𝑚𝑖𝑛𝐾𝐻 = 0.1. The two constants of 𝑎1 and 𝑎2 are 0.15 and 0.3

respectively. Which will give:

𝐹𝐾𝐻(< 𝑉𝑇𝑀 >) = 𝑚𝑎𝑥
{
0.1, 𝑚𝑖𝑛

{
1, 0.1 +

1 − 0.1

0.3 − 0.15
(< 𝑉𝑇𝑀 > −0.15)

}}
(2.15)

As for EDDES formulations, this definition implies only a partial replacement of the Δ𝑚𝑎𝑥 with

Δ𝑆𝐿𝐴

Δ = 𝑚𝑖𝑛{𝑚𝑎𝑥[𝐶𝑤𝑑𝑤, 𝐶𝑤Δ𝑚𝑎𝑥,Δ𝑤𝑛],Δ𝑚𝑎𝑥} (2.16)

where 𝐶𝑤 is the empirical constant and equals to 0.15 and Δ𝑤𝑛 is the grid spacing normal to the

wall. That being the case, the new definition is,

Δ = 𝑚𝑖𝑛{𝑚𝑎𝑥[𝐶𝑤𝑑𝑤, 𝐶𝑤Δ𝑚𝑎𝑥,Δ𝑤𝑛],Δ𝑆𝐿𝐴} (2.17)

The interesting thing about this methodology is that the computational cost of simulations using

these definitions will not exceed two percent of DDES simulations (Guseva et al., 2017). Molina

et al. (2019) implemented the Delayed Detached Eddy Simulation (DDES) model in SU2. Its

foundation is the SA model and its variations. Different recently proposed modifications of the

sub-grid scale (SGS) were made to handle unstructured grids in order to reduce the gray area

issue. These modifications include the Vorticity Adapted SGS, and the Shear-Layer Adapted

(SLA) SGS (Shur et al., 2015; Guseva et al., 2017).

For the final part of this section, our goal is to define the used terms throughout this thesis to

enhance the reader’s comprehension. In particular, we will explore the terminology covering

aerodynamic coefficients, including pressure, skin friction, drag, and lift coefficients. Addi-

tionally, we will explain the concepts of CFL and 𝑦+ for a comprehensive understanding of the

subject matter (from Blazek, J. (2015)).
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Pressure coefficient (𝐶𝑃) is a dimensionless number which describes the relative pressures

throughout a flow field in fluid dynamics. It is defined by the equation:

𝐶𝑝 =
𝑃 − 𝑃0

0.5 ∗ 𝜌 ∗𝑈2∞
(2.18)

where: P is the pressure at the point in the flow field, 𝑃0 is the reference pressure , 𝜌 is the fluid

density,𝑈∞ is the free-stream velocity.

The skin friction coefficient (𝐶𝐹) is a measure of the resistance of a fluid directly adjacent to the

boundary of a body moving through it. It is defined as:

𝐶𝐹 =
𝜏

0.5 ∗ 𝜌 ∗𝑈2∞
(2.19)

where: 𝜏 is the wall shear stress, 𝜌 is the fluid density,𝑈∞ is the reference velocity.

The lift coefficient (𝐶𝐿) is a dimensionless number that characterizes the lift generated by an

object in a fluid flow. It is defined as:

𝐶𝐿 =
𝐿

0.5 · 𝜌 ·𝑈2∞ · 𝐴 (2.20)

where 𝐿 is the lift force acting on the object, 𝜌 is the fluid density,𝑈∞ is the free-stream velocity,

and 𝐴 is the reference area.

The drag coefficient (𝐶𝐷) is a dimensionless number that quantifies the drag experienced by an

object moving through a fluid. It is defined as:

𝐶𝐷 =
𝐷

0.5 · 𝜌 ·𝑈2∞ · 𝐴 (2.21)

where 𝐷 is the drag force acting on the object, 𝜌 is the fluid density, 𝑈∞ is the free-stream

velocity, and 𝐴 is the reference area.



42

The CFL (Courant-Friedrichs-Lewy) number is defined as the ratio of the product of the

characteristic velocity (U) and the time step size (Δ𝑡) to the characteristic length or grid spacing

(Δ𝑥). The equation for the CFL number is:

𝐶𝐹𝐿 =
𝑈 · Δ𝑡
Δ𝑥

(2.22)

The CFL number is used to determine the stability and accuracy of numerical methods for

solving fluid dynamics equations. It sets a limit on the time step size based on the characteristic

velocities and grid spacing to ensure stable and accurate simulations.

The 𝑦+ value is a dimensionless parameter used in computational fluid dynamics (CFD) to

describe the behaviour of fluid flow near a wall. It represents the non-dimensional distance from

a cell center to the nearest wall, normalized by the local viscous length scale. The equation for

the 𝑦+ value depends on the specific definition of the viscous length scale (δ) used:

𝑦+ =
𝑢 · 𝛿
𝜈

(2.23)

where u is the velocity magnitude at the cell center, 𝛿 is the viscous length scale, and 𝜈 is

the kinematic viscosity of the fluid. The y+ value helps determine the appropriate treatment

of the near-wall region in CFD simulations, such as selecting the turbulence model and the

corresponding wall treatment, based on the grid resolution and the distance from the wall.

2.3 Numerical method in SU2

Below is a quick summary of the specifics of how the relevant numerical approaches are

implemented in SU2. On unstructured meshes, the flow problems are numerically resolved

using an edge-based data structure. The governing equations are discretized in space and time

separately using the method of lines. The choice of various type of schemes for the integration

of space and time is achieved by the decoupling of space and time. The finite volume method

(FVM) is used to integrate space. A dual time-stepping method is utilised for calculations that

are accurate in time (Economon et al., 2016). At first we will take a look at the spatial integration
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using the FVM, a dual grid with a typical edge-based structure and control volumes created

using a median-dual, vertex-based approach is used to discretize partial differential equations

(PDEs) Blazek, J. (2015). By joining the centroids, faces, and edge-midpoints of all cells sharing

the specific node, dual control volumes are created. The semi-discretized, integral version of a

typical PDE (such as the RANS) is provided from the divergence theorem and integration of the

governing equations across a control volume. For example:∫
Ω𝑖

𝜕𝑈

𝜕𝑡
𝑑Ω +

∑
𝑗𝜖𝑁(𝑖)

(�̂�𝑐𝑖 𝑗 + �̂�𝑣𝑖 𝑗 )Δ𝑆𝑖 𝑗 −𝑄 |Ω𝑖 |=
∫
Ω𝑖

𝜕𝑈

𝜕𝑡
+ 𝑅𝑖(𝑈) = 0, (2.24)

where 𝑅𝑖(𝑈) is the numerical residual that represents the integration of the spatial factors and U

is a vector of state variables. Q is a source term, while �̂�𝑐𝑖 𝑗 and �̂�𝑣𝑖 𝑗 are the projected numerical

approximations of the convective and viscous fluxes, respectively. Δ𝑆𝑖 𝑗 is the portion of the face

that corresponds to edge 𝑖 𝑗 , Ω𝑖 is the volume of the control volume, and 𝑁(𝑖) is the collection of

nodes that are immediately adjacent to node 𝑖. Figure 2.2 shows these symbols in an imaginary

2D grid.

Figure 2.2 A schematic diagram of a finite volume cell illustrating the relevant

entities, the control volume Ω𝑖, the faces and edge-midpoints, the centroids, and the

adjacent nodes 𝑁(𝑖)
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SU2 evaluates the convective and viscous fluxes at the middle-edge (red stars) of each cell. These

fluxes are then calculated by the numerical solver looping through all of the edges in the original

mesh (Economon et al., 2016). Then they are integrated to determine the residual at each node

in the numerical grid. With SU2, the convective fluxes are discretized using upwind scheme.

The evaluation of the viscous fluxes with the finite volume approach requires the flow quantities

and their first derivatives at the control volume faces. First, using the weighted least-squares,

the gradients of the flow variables are estimated at each grid node to determine the gradients at

the cell faces. Source terms are roughly developed within each cells using piece-wise constant

reconstruction. For the time integration, it is necessary to evaluate 𝑅𝑖(𝑈) at time 𝑡𝑛+1(implicit

methods) for the equation 2.24 to be valid over the entire time range. The following linear system

must be solved to determine the solution update, concentrating on the implicit integration.

( |Ω𝑖 |
Δ𝑡𝑛𝑖

𝛿𝑖 𝑗 +
𝜕𝑅𝑖(𝑈

𝑛)

𝜕𝑈𝑗

)
.Δ𝑈𝑛𝑗 = −𝑅𝑖(𝑈𝑛), (2.25)

where Δ𝑈𝑛𝑖 = 𝑈𝑛+1
𝑖 −𝑈𝑛𝑖

To resolve equation (2.25), the SU2 framework has various linear solvers implemented. The

main techniques for the linear solvers that we are using is the Generalized Minimal Residual

(GMRES) approach uses a vector in a Krylov subspace to approximate the solution with minimal

residual. It uses the Arnoldi iterative algorithm to find the vector in the Krylov subspace which

best approximates the solution Δ𝑈𝑛, minimizing the residual in the process (Economon et al.,

2016).

2.4 Vortex Identification Techniques

In fluid dynamics, a vortex is a region where the fluid rotates around an axis line that may

be either straight or curved. Vortices can be identified by their swirling motion and are

typically characterized by a low-pressure core. We will use three identification techniques in

section 3.4 to detect the possible vortices after the hump. To have a clearer understanding of

these methodologies, we present the mathematical equations of these techniques here. These

techniques are :
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1. Q-criterion

2. 𝜆2 criterion

3. Swirling Strength (𝜆2
𝑐𝑖)

The vortices are recognized as flow regions with a positive second invariant of the velocity

gradient tensor, denoted by ’Q’, as determined by the Q-criterion proposed by Hunt, J. C. R.

and Wray, A., and Moin, P (1988) Another requirement is that the pressure in the eddy zone

should be lower than the surrounding pressure. According to Chakraborty et al. (2005), "in an

incompressible flow, Q is a local measure of the excess rotation rate relative to the strain rate".

−→𝜈 (
−→x , 𝑡).

∇𝜈 = 𝑆 + Ω (2.26)

where

𝑆 =
1

2

(
Δ𝜈 + (Δ𝜈)𝑇

)
(2.27)

is the rate of strain tensor and:

Ω =
1

2

(
Δ𝜈 − (Δ𝜈)𝑇

)
(2.28)

and Ω is the vorticity tensor. A vortex is discovered when the difference between the vorticity

and strain is positive. In other words:

𝑄 =
1

2
( |Ω|2−|𝑆 |2) > 0 (2.29)

where the rate of strain is dominated by the vorticity tensor Euclidean norm. When simulating

simple flows, particularly in two dimensions, contours of 𝑄 > 0 are frequently employed to

identify vortices, which are considered to be regions in which local rotation predominates over

local strain tensor (equation 2.29). In simple flows, the areas with positive Q are referred to as

vortex zones. Practical implementation frequently uses contours that are a specified percentage

of the maximum Q value, in complicated 3D or turbulent experimental flows.

Another technique for identifying vortices is called 𝜆2, which was developed by Jeong & Hussain

(1995). It is well-liked because of how consistently it can find vortices and how straightforward
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the computation processes are. The same as Q-criterion, S indicates the rate-of-strain tensor and

Ω rate-of-rotation tensor. By excluding the unstable irrotational straining and viscous effects the

symmetric portion of the gradient of the incompressible Navier-Stokes equation can be written

as:

𝑆2 + Ω2 = −1

𝜌
∇2𝑝 (2.30)

Therefore, 𝑆2 + Ω2 represents the pressure minima. This matrix has precisely three real

eigenvalues because it is real and symmetric. The following eigenvalues are calculated and

arranged in descending order: 𝜆1 ≥ 𝜆2 ≥ 𝜆3. Therefore the regions with 𝜆2 < 0 indicate

possible location of a vortex (Dong, Yan & Liu, 2016) .

The Swirling Strength (𝜆2
𝑐𝑖) was initially suggested by Zhou et al. (1999) for the shear flow

problem. It is calculated using the𝑈 = ∇𝑣 velocity gradient, which transforms into a Jacobian

matrix of the velocity field. The velocity gradient can be diagonalized as follows for a rotating

flow:

𝑈 = [𝑢𝑟 , 𝑢+, 𝑢−]

��
𝜆𝑟 0 0

0 𝜆+ 0

0 0 𝜆−

������
[𝑢𝑟 , 𝑢+, 𝑢−]−1, (2.31)

where 𝜆± = 𝜆𝑐𝑟 ± 𝑖𝜆𝑐𝑖 ∈ 𝐶 (complex numbers) and 𝜆𝑟 ∈ 𝑅 (real numbers) are the corresponding

eigenvalues that make up the change of basis matrix P, and 𝑢± and 𝑢𝑟 are the eigenvectors of U

that make up the eigenvalue of the middle matrix. Two times the imaginary part of the complex

eigenvalues is how we define the Swirling Strength (𝜆2
𝑐𝑖) (Zhou et al., 1999).

𝜆 = 2𝜆𝑐𝑖 (2.32)

In this chapter, we have defined the mathematical equations of the flow, including the original

and negative SA turbulence models, and introduced the concepts of the SLA strategy. Then,

we explored the configuration and functionality of SU2. Finally, we identified the vortex

identification techniques that will use in the next section. More specifically, we will employ

the EDDES solution to capture vortices occurring after the hump of the WMH. For vortex
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identification, we will employ the Q-criterion, 𝜆2, and 𝜆2
𝑐𝑖. To evaluate these identification

techniques quantitatively, we will analyze the number of vortices in different sections following

flow separation. This analysis will provide valuable insights into the characteristics and behaviour

of the vortices in our simulation.





CHAPTER 3

RESULTS

3.1 Introduction

From the literature review, in chapter 1 we have concluded that the EDDES method can predict

the turbulent flow structure over the Wall Mounted Hump (WMH). However, these structures

have not yet been investigated with vortex detection methods for this test case.

In chapter 2, we have defined the mathematical and numerical settings employed for this thesis.

More specifically, a summary of the approaches by the numerical solver as well as different

definitions used in this work were explained. Then, we defined various vortex identification

methods.

In this chapter, Section 3.2 will present a study based on RANS simulations with SU2 solver on

the NASA WMH grids. To be more precise, we shall define the test case first. By examining

the distribution of the pressure and skin friction coefficient along the wall, we shall determine

how the grid density affects the results. We will contrast our findings with those obtained from

similar numerical settings and experimental data after examining the impact of the grid on the

solution. Finally, by finding the errors in aerodynamic coefficients, and a Grid Convergence

Index study of the grids, we choose the grids for the EDDES section. In section 3.3, after

defining the test cases in more depth, we will do a grid study on three separate grids with two

different span-wise sizes (𝐿𝑍 ). We will look at the time and space-averaged solution to pinpoint

the possible reason for the late transition of RANS to LES in hybrid models. We will use vortex

identification, with the different techniques presented in chapter 2 on the EDDES simulations in

the final section (3.4). We shall observe the variations in vortices in the various grids and time

steps. Finally, we will determine the number of vortices in the WMH channel at various time

steps in different sections. We will use the EDDES data from section 3.3.
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3.2 RANS simulations

Examining the effect of grid resolution on the separation length is the main goal here. The

inaccuracy caused by the selection of grids will be examined and quantified. More specifically,

on the WMH velocity field and aerodynamic coefficients, we shall observe the impact of grid

resolution. We will compare the results with similar findings in the literature with a simillar

configuration to ensure the correct turbulence model is implemented.

Figure 3.1 represents the layout of the WMH. The WMH measures 𝑙𝑥 = 10.39𝑚 in length. The

depth is 𝑙𝑦 = 1𝑚, while the height is 𝑙𝑧 = 0.90905𝑚. With a Mach of 0.1 (34.3 m/s), the flow

enters the WMH channel and reaches the hump at x=0 m. Based on the chord length of 1(m),

the Reynolds number is 936000.

Figure 3.1 Scheme of the WMH test case

Figure 3.2 represents the boundary conditions of the WMH. At the inlet, which is located at

x = -6.39 m, a uniform flow enters the WMH channel and hits the hump at position zero in

the direction of the stream. A total temperature and pressure of 298.92 k and 42847.65 Pa,

respectively, are imposed through the inlet border with no angle of attack (flow is in the x-axis

only). The imposed static pressure at the exit is 42533.63 Pa. The top wall has an inviscid
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slip-wall condition. Whereas the front face and back face walls have symmetry plane conditions.

Since we are solving the compressible RANS equations, the bottom wall has adiabatic wall

conditions, flow adheres to the wall. Thus, the heat flux is equal to 0 𝐽/𝑚2, and the velocity on

the bottom wall is 0 m/s.

Figure 3.2 WMH simulation model displaying the boundary conditions

Various characteristics of these grids are displayed in Table 3.1. Δ𝑥 and Δ𝑧 , respectively,

represent the minimum distance between the nodes in the stream-wise direction and the nodes

normal to the wall. It is important to note that the values for Δ𝑥 and Δ𝑧 are approximations and

were calculated in the downstream side of the hump. Figure 3.3 show the area where the Δ𝑥 and

Δ𝑧 are evaluated. The reason behind choosing this location is to find the minimum values of Δ𝑥

and Δ𝑧 in the computational domain. These grids are numbered from coarse to fine.

Figure 3.3 Location of the area where Δ𝑥 and Δ𝑧 is evaluated
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Table 3.1 Characteristics of NASA grids for the WMH

No. 𝑛𝑥 𝑛𝑦 Δ𝑥 Δ𝑧 Total cells

1 103 28 9.3 × 10−3 6.6 × 10−5 2,754

2 205 55 4.7 × 10−3 3.3 × 10−5 11,016

3 409 109 2.3 × 10−3 1.6 × 10−5 44,064

4 817 217 1.1 × 10−3 8.3 × 10−6 176,256

5 1633 433 5.0 × 10−4 4.1 × 10−6 705,024

We will use grids without plenum in this thesis. These grids are displayed in Figure 3.4 in the

same sequence from coarse to fine as in Table 3.1. In all of these meshes, the density tends

to increase in the normal direction as it gets closer to the wall. Additionally, this tendency of

increasing mesh density can be seen over the hump in the x-direction as well.

Figure 3.4 Front view of the NASA CFDVAL2004 workshop grids (XZ)
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Table 3.2 shows the computational resources spent on each grid. The problem is handled

iteratively with a maximum CFL of 5 with the time adaptive strategy to reach a steady state

solution. The number of iterations for each grid is different since it took more time to get a

converged solution for denser grids. Following this we will compare the (𝜌) and �̃� residuals

for each grid. For our RANS simulations, the space-numerical integration uses the SLAU2

for the inviscid terms of the RANS equation (Kitamura, 2016). A weighted least square

interpolation method is used for spatial gradient interpolation (Hu et al., 2019). A second-order

MUSCL scheme with the Venkatakrishnan limiter stabilizes the convective flux calculations

(Venkatakrishnan, 1993). An Euler implicit scheme is used for time discretization (Hirsch,

2007). The linear system is solved with FGMRES and a minimum error of 1 × 10−10 or

20 iterations (DeVries, Iannelli, Trefftz, O’Hearn & Wolffe, 2013). For the negative Spalart

Allmaras turbulence equation, a scalar upwind is used for the inviscid terms. A second-order

integration in space using the MUSCL scheme employs the same Venkatakrishnan slope-limiting

method (Venkatakrishnan, 1993). The problem is solved iteratively using a constant CFL of 5.

Table 3.2 Computational resources of the simulations on

Niagara cluster

No. Grid Total iterations Time of simulation CPUs

1 103×28 130,000 00hr:17min 40 (1 node)

2 205×55 311,200 01hr:31min 40 (1 node)

3 409×109 799,999 16hr:25min 40 (1 node)

4 817×217 696,051 40hr:23min 40 (1 node)

5 1633×433 439,230 89hr:54min 40 (1 node)

The degree of convergence of the numerical solution is measured by the density residuals for

these CFD simulations. The solution improves as the residuals decrease. High value of the

density residual means that the numerical solution is not converged, which can be due to a

mistake in the numerical formulation, a lack of grid resolution, improperly selected boundary

conditions, or numerically unstable flows. When the residuals go down at least 3 or 4 degrees of
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magnitude, we can conclude that the solution is converged (Blazek, J., 2015). Figure 3.5a and

3.5b shows the evolution of 𝜌 and (�̃�) residuals for the five grids we have used. We can observe

that as the level of grid density increases, it takes more iteration for the solver to converge to

10−9 (which is the order of magnitude below the starting 10−5). However, the number and limit

of iterations seem sufficient for these simulations.

a) Density (𝜌) residuals b) �̃� residuals

Figure 3.5 Comparison of density and �̃� residuals between the five simulations (5 grids)

The 2D velocity distribution will be our first point of focus for post-processing. To examine the

separation and reattachment location more precisely, we will zoom in the streamlines downstream

of the hump.

The velocity distribution in the channel of the WMH is depicted in Figure 3.6 as the first step. As

previously mentioned, the flow enters the WMH channel with a velocity of 34.3 m/s (Ma=0.1).

As the area narrows, speed will increase over the hump (yellow). Just downstream of the hump,

low velocity is visible (black). This figure shows the general characteristics of physical flow. In

other words, the flow is not acting oddly or unrealistically.
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Figure 3.6 Velocity-x distribution on the channel of the WMH for the fourth grid

(817x217)

With a closer look at the velocity distribution in the separation zone, we can better identify in

Figure 3.7 where the flow separates from the wall and where it reattaches. A tangential line to

the instantaneous velocity direction is referred to as a streamline (in white in Figure 3.7). We

may picture the movement of a tiny marked fluid element along these white lines. The fluid

re-circulation, separation, and reattachment points can all be seen clearly in this way.

Figure 3.7 A closer look at the separation and reattachment point of the fourth grid

(817x217)

The pressure coefficient on the WMH 2D cut is shown in Figure 3.8. This representation is from

the results of the fourth grid (817x217). The pressure coefficient iso-contours are shown with

white lines. As the velocity increases, we can see that the pressure coefficient just over the hump
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has a lower value than in other areas of the computational domain as expected according to the

Bernoulli’s equation.

Figure 3.8 Distribution of pressure coefficient on the mid-section plane of the WMH for

the fourth grid (817x217)

The pressure coefficient distribution along the WMH wall is shown in Figure 3.9. In the first

step, we will compare the results from different grids. As we can see, before the flow encounters

the hump at point x/c = 0, all grids have identical values with an error of less than 0.01 %. In

this graph, we can also see the locations of the flow critical stages. Some differences are visible

on the coarser grids as the flow enters the low-pressure region, where the velocity is high due to

a reduction in area (around x/c=0.5). The highest inaccuracy can be visually observed close to

the flow separation. We note that the difference between the grids also decreases as the pressure

coefficient rises once more and gets closer to the free stream value (where the flow reattaches).

We shall thoroughly compare these grids reattachment lengths at the end of this section.
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Figure 3.9 Distribution of pressure coefficient along the WMH wall (RANS)

results shifted to have a start point at the location of zero at x/c = -0.5

(103×28 shifted by -0.035, 205×55 shifted by -0.02 and the rest with -0.015 )

The second goal here is to quantify the error induced by the grids (shown in Figure 3.9). To

accomplish this, we will compare each grid to the finest mesh, which will be used as the reference

point. The grid-induced error of these grids compared with the finest grid (1633 × 433) is

demonstrated in Table 3.3. We will use the Mean Absolute Error (MAE) and Root Mean Squared

Error (RMSE) (Hodson, 2022) to get the difference between the pressure coefficients of the first

four grids when compared with the fifth grid.

For each grid, we have sets of x-values x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and y-values (𝑦1, 𝑦2, . . . , 𝑦𝑛) which

corresponds to the 𝑥/𝑐 and pressure coefficients respectively. The MAE between the pressure

coefficients of two grids will be calculated by:

𝑀𝐴𝐸 =
1

𝑛

𝑛∑
𝑗=1

��𝑦𝑖 − 𝑦∗𝑖 �� (3.1)

where the 𝑦∗ is the pressure coefficient of the reference grid. This method shows the average

magnitude difference between the pressure coefficient values of two grids without considering
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the sign. The functions originally are used to get the difference between actual values and

estimated values. However we have modified it to get the difference between our data sets.

The RMSE is defined as:

𝑅𝑀𝑆𝐸 =

√
1

𝑛

𝑛∑
𝑗=1

(𝑦𝑖 − 𝑦∗𝑖 )2 (3.2)

The RMSE also represents the average magnitude of the differences. However, it gives more

weight to the higher differences as it squares them. Therefore, it is more sensitive to errors

compared to the MAE. Additionally, because these approaches compute the pressure coefficient

difference, which is a dimensionless value, they are dimensionless as well (Hodson, 2022).

Table 3.3 indicates that by refining the mesh MAE will gradually decline, indicating that the

grid refinement has a positive effect on 𝐶𝑃 for these simulations.

Table 3.3 MAE and RMSE induced

by each grid compared to the finest

grid (1633 × 433) for the 𝐶𝑝 curve

No. Grid MAE RMSE

1 103×28 0.0283 0.0335

2 205×55 0.0098 0.0124

3 409×109 0.0140 0.0175

4 817×217 0.0013 0.0016

The SU2 solver and the CFL3D solver (Siggeirsson & Andersson, 2019) are compared in Figure

3.10. The MAE and RMSE of 𝐶𝑝 between the results of the SU2 and the CFL3D solvers

for the 817 × 217 grid is 0.0166 for both approaches. Therefore, we can conclude that the

implementation of the SA turbulence model agrees with the literature. The difference between

the SU2 𝐶𝑝 and the experiment is MAE = 0.0514 and RMSE = 0.0692. We can see that both

CFD codes exhibit the same limitations when compared to the experimental results.
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Figure 3.10 Validation of RANS results with the results available in the NASA

CFDVAL2004 workshop for the WMH (resuts of SU2 and CFL3D solver is shifted by 𝐶𝑝 =

- 0.015 to better match with the experimental results of Greenblatt et al. (2006))

The distribution of the x-component of the skin friction coefficient on the bottom wall of the

WMH is illustrated in Figures 3.11 and 3.12. The changes in the skin friction coefficient between

each grid are shown in the first Figure (3.11). The graph shows the key points previously

explained for the pressure coefficient in red (Figure 3.9). This graph illustrates how the flow

behaves physically. Skin friction will gradually rise as the flow reaches the hump, increasing the

x-component. The value drops to negative numbers just at the location of separation. Then rises

to positive numbers as the flow re-attaches. We can see a decline in 𝐶𝐹 curves from x/c = -0.5 to

0 as the fluid particles hit the hump at location zero. The area narrows down from x/c = 0 until

the separation location around x/c=0.6, and the 𝐶𝐹 increases. Just after this point, due to flow

separation, we see a sudden drop in skin friction coefficient going into negative values until it

re-attaches to the wall and goes into positive values.
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Figure 3.11 x-component of the skin friction coefficient distribution along the

WMH bottom wall compared between the five simulations (5 grids)

We have conducted the same study on the effect of grids on the results as we did for the pressure

coefficient. This time we see that the variations between the first three grids (Grid #1 to Grid #3)

are much more significant in comparison to the last two grids (Grid #4 and #5). The method is

identical as before, using the MAE and RMSE methods, we will determine the error between

the first four grids and the finest grid.

Table 3.4 MAE and RMSE induced

by each grid compared to the finest

grid (1633 × 433) for the 𝐶𝐹 curve

No. Grid MAE RMSE

1 103×28 0.00034 0.00043

2 205×55 0.00029 0.00038

3 409×109 0.00028 0.00039

4 817×217 0.00012 0.00031
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Figure 3.12 compares the results from the NASA turbulence webpage for the WMH with the

results from the 817x217 grid. Before the low-pressure area and at the flow separation from the

wall (between x/c=0.05 and x/c=0.4) the highest difference between the two numerical data sets

are visible which could be due to different approaches to numerical approximation, turbulence

modeling, and boundary layer resolution. The MAE and RMSE between the SU2 x-component

friction coefficient and the CFL3D are 0.00004 and 0.00013 respectively. While comparing to

the experimental results the difference increases to MAE= 0.00545 and RMSE = 0.01647. The

main visible difference between the experimental results and the numerical solvers here is in

the separation length. The separation in the experimental results starts at around x/c = 0.665 ±
0.005, and the reattachment is at 1.10±0.005. However, the numerical findings for the selected

grid show a separation point of around ≈ 0.68 and a reattachment of approximately ≈ 1.25.

Figure 3.12 Comparison between SU2 and CFL3D solver for the skin friction coefficient

on the bottom Wall of the WMH

Moreover, we shall compare the separation points and reattachment locations with the experi-

mental findings. The 𝐶𝐹 curves on the bottom wall of the WMH can be used to pinpoint the

separation and reattachment sites. The criteria for identifying these sites is based on determining

the location where the 𝐶𝐹 value signs change. The first sign change will be the separation

location (the location of x/c where 𝐶𝐹 goes from a positive value to a negative value), the second
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sign change will be the reattachment location (the location of x/c where 𝐶𝐹 goes from a negative

value to a positive value). Table 3.5 demonstrates the variation of separation and reattachment

locations compared with the experimental results. Upon refining the mesh, the reattachment

location and separation bubble length diverge from the experimental data. This indicates the

complexities in the turbulence behaviour and the interaction with the wall, which may not be

fully captured by the numerical models, especially in finer meshes that resolve more detailed

flow features.

Table 3.5 Separation and reattachment locations of the

WMH compared with the experimental data of Greenblatt

et al. using the 𝐶𝐹 values

Simulation Separation loc(x/c) Re-attachment loc(x/c) Separation bubble length(x/c)

Experimental 0.665 ± 0.005 1.10 ± 0.005 0.435

103×28 0.667 1.246 0.579

205×55 0.664 1.246 0.582

409×109 0.661 1.235 0.574

817×217 0.661 1.263 0.602

1633×433 0.661 1.260 0.599

As the final step, we have conducted a grid study based on the values we have calculated for the

pressure and skin friction coefficient to assess the robustness and uncertainty of our numerical

simulations. The approach involves a spatial convergence analysis applied to our unstructured 2D

grids. The Grid Convergence Index (GCI) proposed by Roache (1994) serves as an estimate for

the upper bound of discretization error. The order of grid convergence (𝑝) requires a refinement

ratio of 𝑟 for the calculations.

𝑝 = ln ( 𝑓3 − 𝑓2
𝑓2 − 𝑓1

)/ln(𝑟) (3.3)

In this equation, we will assess three grids each time based on the GCI method. Here, 𝑓1, 𝑓2 and

𝑓3 are the MAEs that we have previously calculated for 𝐶𝑝 and 𝐶𝐹 from Tables 3.3 and 3.4. To

clarify, it means that the first calculated GCI is for the first three grids based on their 𝐶𝑝 MAE.
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For the grid refinement ratio (r) based on the total number of cells, we have selected 𝑟 ≈ 2 based

on the Δ values and total number cells in Table 3.1 (each time the mesh was refined with an

order of 2). Subsequently, we have used the following equation to calculate the GCI for each

pair of grid (Roache, 1994).

𝐺𝐶𝐼21 =
𝐹𝑠 | 𝑓2 − 𝑓1 |

(𝑟 𝑝 − 1)
(3.4)

In this equation based on the paper by Roache (1994), the safety factor (𝐹𝑠) is chosen as 1.25

for three or more grids, providing a conservative estimate of discretization error. Now we will

use these equations to calculate the GCI of MAE for 𝐶𝑝. The GCI of the first three grids is

approximately 2.005%, while the GCI for the second, third and fourth grids reduces to around

0.183%. Similarly, the calculated GCI for MAE of 𝐶𝐹 in the first three grids is 0.006%, while

for the following three grids (2nd,3rd and 4th grids), it falls to a GCI of 0.003%. Note that

we cannot calculate the last three grids (3rd,4th and fifth grids) since the fifth grid was used

as a reference point for the calculation of MAE (𝑝 will become ∞). From the calculated GCI

values, it is apparent that as we refine the grid, the discretization error decreases, indicating an

increase in the accuracy of our numerical simulations. However, it is crucial to note that beyond

a certain level of refinement (in this case, from the fourth grid onward), the rate of improvement

in accuracy tends to slow down, suggesting a degrading return on the computational effort

invested in further grid refinement.

In this section, after defining the test case, we used five grids using steady RANS simulations.

We reviewed the computational setup and processing times of simulations for each grid. After

that, we analyzed different aerodynamic quantities to find the most suitable meshes for our

EDDES simulations. More to the point, we found errors in the pressure and skin friction

coefficients between the results. Finally, we performed a GCI study on the grids to solidify the

choice of the grid for the following section based on all the findings. These steps showed that

the fourth grid and fifth grid are refined sufficiently. Therefore, we will use these two grids for

further investigations in EDDES simulations.
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3.3 EDDES simulations

Previously, we observed that the final two grids outperformed the remaining grids available

in the NASA CFDVAL 2004 workshop in the RANS simulations. We will now perform the

unsteady simulations and examine how results change with each grid. To do so, the EDDES,

defined in section 2.3, are used. We modify these two grids from the RANS simulations (817

x 217) and the fine grid (1633 x 433) in the spanwise direction. Three mesh densities and

domain sizes are used to examine the impact of the grids on the WMH and subsequently vortex

properties in the next section.

We have modified the original meshes used for the RANS simulations for these simulations.

The inlet is now positioned at x/c = -2.14 (previously x/c = -6.39). The reason behind the

length reduction is to lower the computational costs. Figure 3.13 shows the new computational

domains coloured in black and blue. The velocity and turbulent distributions are interpolated

from the RANS solution. The investigation of the effects of this size reduction on the developing

boundary layer compared to the results with RANS solution at x/c = -2.14 will be discussed

shortly.

Figure 3.13 Modified computational domain of WMH for EDDES simulations

For the EDDES simulations, with a few minor exceptions, we will employ identical boundary

conditions as the ones for the RANS simulations. The WMH boundary conditions for the

EDDES simulations are shown in Figure 3.14. The upper wall is an inviscid wall. We imposed

periodic boundary conditions in the spanwise direction. The flow enters the WMH channel at the

inlet, which is situated at x/c = -2.14 and hits the hump at position zero in the stream direction.

The unsteady EDDES simulations largely mirror the configuration of RANS simulations. The
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main difference is that each iteration in the EDDES simulations includes sub-iterations that

resemble those in the RANS simulations. The unsteady EDDES is carried out over time. This is

accomplished using a second order dual-time step approach with the Euler implicit scheme for

the inner iterations. Additionally, the time step values for each grid are adjusted based on the

computational costs and the CFL value in the region of interest.

Figure 3.14 Boundary conditions for the EDDES simulations

We interpolated the node coordinates, the unit velocity orientations (i,j,k), the total pressure and

temperature, as well as the �̃� of the one-equation turbulence model from the previous RANS

solution at x/c = -2.14. At the exit, there is a static pressure of 42533.63 Pa. Figure 3.15 shows

the imposed total pressure and total temperature at x/c = -2.14.
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Figure 3.15 Total temperature and total pressure from RANS solution,

imposed at inlet (x/c = -2.14)

Figure 3.16, shows the imposed �̃� and momentum at x/c = -2.14 of the RANS solution. The

velocity vector orientation units are computed from the momentum components. The �̃� is for

the one equation SA turbulence model.

Figure 3.16 The imposed �̃� and momentum-x profiles

extracted from the RANS solution at x/c = -2.14
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We gave these simulations names. EDDES-M1, EDDES-M2, and EDDES-M3. The grids of

these simulations are shown in Figure 3.17. The numerical settings of these simulations were

explained in 2.3.

Figure 3.17 Grids used for the EDDES simulations

Table 3.6 displays the parameters of these grids. In essence, the second mesh is the first grid

with double the spanwise size (x/c = 0.4 instead of x/c = 0.2). This is being done to examine the

impact of the spanwise size and see whether we can lessen the impact of the gray area issue. It is

important to note that the minimum distances depicted in the table (Δ𝑥 , Δ𝑦 and Δ𝑧) are measured

near the wall, from where the flow separation begins (similar to Figure 3.3 for the RANS). Since

the mesh is not constant, these numbers do not match across all of the computational domains.

However, in the spanwise direction, the distances between each node (Δ𝑦) are the same.
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Table 3.6 Characteristics of NASA grids for the WMH

Name 𝑛𝑋 𝑛𝑌 𝑛𝑍 Δ𝑥 Δ𝑦 Δ𝑧 Total cells

EDDES-M1 768 216 32 1.14 × 10−3 6.25 × 10−3 7.41 × 10−6 5,308,416

EDDES-M2 768 216 64 1.14 × 10−3 6.25 × 10−3 7.41 × 10−6 10,616,832

EDDES-M3 1536 432 32 5.7 × 10−4 6.25 × 10−3 3.86 × 10−6 21,233,664

The time step Δ𝑡 varies between each simulation. Table 3.7 shows the time step for each of our

EDDES simulations. The selected time steps are based on having a CFL of around one, near the

wall in the separation region.

Table 3.7 Time step (Δ𝑡)
for each simulations

Name Δ𝑡

EDDES-M1 1.5 ×10−5 (s)

EDDES-M2 2 ×10−5 (s)

EDDES-M3 4 ×10−5 (s)

The EDDES-M1 simulations density residuals are displayed in Figure 3.18. The total number of

iterations can be seen at the bottom of the graph, and the dimensionless simulation duration

can be observed at the top (Δ𝑡×𝑢𝑐 ). We can see that each iteration involves completing several

sub-iterations to obtain the log 𝜌 of -8. Each of these colors represents an average flow over that

period that was computed internally by SU2. In other words, each of these colors represent a

simulation (of one day) and averaged in time by SU2 for that period. In the RANS simulations,

we observed a direct correlation between a CFD solver convergence and the decline in the

density residuals. However, the graphs for EDDES simulations won’t be the same. It is because

before moving on to the next iteration, some sub-iterations are completed in each iteration. The

sub-iteration for these simulations is limited to a maximum of 20 or when the residuals reach -8

for the log 𝜌. Figure 3.18 shows the last value which is obtained at the end of the sub-iteration.
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Figure 3.18 Log of the residuals 𝜌 equation as a function of iteration and dimensionless

time
Δ𝑡(𝑠)×𝑢(𝑚/𝑠)

𝑐(𝑚)
for the EDDES-M1 simulation

Figure 3.19 represents the lift coefficient calculated by SU2 for each iteration. The top axis

shows the evolution of the lift coefficient as a function of dimensionless time. When the flow

has laminar features, a sinusoidal pattern connected to the development of vortex formations

in a separated flow may be seen. But because the flow is three-dimensional, vortex shedding

does not happen all at once across the span. Therefore, in such complex situations, a perfect

sinusoidal form is not usually expected.
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Figure 3.19 Lift coefficient 𝐶𝐿 calculated by SU2 for each iteration for the EDDES-M1

simulation

The drag coefficient is also calculated iteratively by SU2. We can see the variation of drag

coefficient in each iteration and also with respect to dimensionless time in Figure 3.20. The

first four averaging periods show different drag coefficient values compared to other periods.

Therefore it is another way of knowing which iterations are discarded to eliminate the transient

effects of unsteady simulations. Only one of the simulations convergence curves is shown

(EDDES-M1). We will utilize the same analysis criteria for the other two simulations to get

averages in time and space.
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Figure 3.20 Drag coefficient 𝐶𝐷 calculated by SU2 for each iteration for the EDDES-M1

simulation

Figure 3.21 shows the 2D velocity fields over the WMH using Line Integral Convolution (LIC)

by Cabral & Leedom (1993). The LIC lines, which represent the direction and magnitude of

velocity vectors, trace the instantaneous paths of particles. They illustrate the complex routes of

flow particles as they cross the WMH channel. In Figure 3.21, random snapshots of LIC lines

over the WMH signify the difference between the steady and unsteady simulations.
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Figure 3.21 Snapshots of LIC lines in random time steps from EDDES-M1,

illustrating instantaneous velocity over the mid-section plane

of the WMH around the region of interest

Unlike RANS simulations, the unsteady simulations involve dynamic fluctuations where

observing instantaneous variables can often prove misleading for gaining insights into the

flow characteristics. This difference primarily comes from the fundamental difference in

these methodologies. While the RANS focus on time-averaged flow properties and provides a

statistically stable picture of the flow, unsteady simulations depict transient flow phenomena

where the instantaneous snapshots of the variables do not represent the overall flow physics. It is

crucial to realize that in unsteady simulations, the transient features manifest themselves through

changes in the flow variables over time. Thus, understanding the underlying flow mechanisms

requires averaging in space and time (Blazek, J., 2015).

The averaging intervals for these simulations are detailed in Table 3.8. Following the approach

utilized in the literature, such as the studies by Guseva et al. (2017), Patel & Zha (2020), and
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Siggeirsson & Andersson (2019), the transient periods at the beginning of their simulations are

neglected for the time averaging (around one third of the full simulations). Upon examining

the drag coefficient curve again (Figure 3.20), we observed that for the EDDES-M1 simulation,

there is a noticeable reduction in fluctuation after the 28000th iteration, compared to the more

significant variations observed during the initial stages. Therefore, we have neglected the first

five averaging periods (from iteration 0 to 28000 for EDDES-M1) calculated by SU2 for our

time averaging. We used the same examination for other two simulations. As the mesh gets

denser, the computational cost is more expensive, subsequently, the averaging periods (colors in

Figure 3.18) become shorter for a one day simulation. Therefore, the reason behind different

periods in Table 3.8 is due to heavier computational costs and more averaging periods.

Table 3.8 Averaging periods for EDDES simulations

Name Iterations period Non-dimensional time

EDDES-M1 (28k - 94k) (19.6 - 64.2)

EDDES-M2 (20k - 65k) (13.9 - 44.6)

EDDES-M3 (18k - 28k) (24.7 - 38.4)

Now that we have chosen the periods for the time averaging of our EDDES simulations, we

should do the averaging in space. To do so, we plot the pressure coefficient along the wall at

several locations in the spanwise direction. Figure 3.22 shows these lines on the wall of the

WMH.
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Figure 3.22 The time averaged pressure coefficient of the EDDES-M1 simulation, plotted

over lines on the wall of the WMH

The spacing in selecting these lines is 𝐿𝑧/𝑐 = 0.1. It means that EDDES-M1 and EDDES-M3

have 20 lines from 𝑧/𝑐 = −0.01 to 𝑧/𝑐 = −0.2, since their spanwise length equals to Δ𝑧/𝑐 = 0.2.

For the EDDES-M2 with twice the spanwise length, 40 lines have been plotted along the wall

(from 𝑧/𝑐 = −0.01 to 𝑧/𝑐 = −0.4). Figure 3.23 shows the different time-averaged pressure

coefficients along the wall of the WMH as a function of x/c (previously shown in figure 3.22).

This means that we get a full time average based on the selected periods (Table 3.8) and we have

plotted lines in different locations of span along stream-wise direction to get an average in space.



75

Figure 3.23 The time-averaged pressure coefficients of the EDDES-M1 in different

spanwise locations along the wall of the WMH

We export these lines into Python to perform an average between all of the lines. We do this for

EDDES-M2 and EDDES-M3 also. Figure 3.24 shows the time and space-averaged pressure

coefficients between our EDDES simulations and the experimental result from Greenblatt et al.

(2006). The critical locations of the WMH are also specified, as we have done for the RANS

simulations.
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Figure 3.24 Time and space averaged pressure coefficients along the wall of the WMH for

the EDDES simulations, compared with the experimental results of Greenblatt et al. (2006)

Figure 3.25 compares the EDDES-M2 pressure coefficient on the wall of the WMH with the

results from Guseva et al. (2017); Siggeirsson & Andersson (2019) and experimental results

(Greenblatt et al., 2006). We can visually see that the EDDES-M2 behaves similarly to the

Siggeirsson & Andersson results. However, Guseva et al. results have a better agreement with

the experimental results. The comparison of the EDDES-M2 pressure coefficient with the

literature and experimental results shows both areas of strong agreement and potential room

for refinement. In particular, the good performance in the low-pressure region is encouraging,

while the discrepancy in the reattachment region, points to areas where further investigation and

model refinement may be needed.
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Figure 3.25 Time and space-averaged pressure coefficient of the EDDES-M2 simulations

compared to the results of Guseva et al. (2017); Siggeirsson & Andersson (2019) and

experimental results of Greenblatt et al. (2006)

We have averaged the pressure coefficient in time and space and the same approach is used for

the skin friction coefficient. We use the time-averaged skin friction coefficients along the wall

of the WMH (see Figure 3.22). Similarly, the EDDES-M1 and EDDES-M3 have twenty lines

along the wall in the spanwise direction, while EDDES-M2 have forty lines. Figure 3.26 shows

the time-averaged skin friction coefficients plotted along the wall in different spanwise locations

for the EDDES-M1 solution. We can see the variations in the time averaged solutions begin

after the flow gets separated from the wall, which suggests the complexity of flow dynamics in

the separation region.
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Figure 3.26 The time-averaged skin friction coefficients of the EDDES-M1 in different

spanwise locations along the wall of the WMH

Figure 3.27 shows the time and space-averaged skin friction coefficients of our EDDES results

compared with the experimental results from Greenblatt et al. (2006). The critical stages of the

flow in the WMH are also identified. We can see that the curve for EDDES-M2 seems smoother

than the other two simulations. This could be due to the fact that it had twice the spanwise

length, and averaging in space is performed over forty lines (unlike twenty lines for EDDES-M1

and M2). The other potential cause is the limited number of time averaging periods because of

the high computational costs. Moreover, we see an overall agreement between these simulations

before the flow separation.
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Figure 3.27 Time and space averaged pressure coefficients along the wall of the WMH for

the EDDES simulations, compared with the experimental results of Greenblatt et al. (2006)

Figure 3.28 compares the skin friction coefficient obtained from the results of Siggeirsson & An-

dersson, Guseva et al. (see Figures 1.3b and 1.5), and experimental results of Greenblatt

et al. to our EDDES-M2 results that have been time and spatially averaged. In this figure,

the reattachment locations are also specified. Each arrow colour represents the reattachment

location of the corresponding simulation. The error in the flow reattachment (difference

from the experimental reattachment) is visible here. We can see that the difference between

EDDES-M2 and the experimental reattachment is slightly less compared with the results from

Siggeirsson & Andersson (2019). However, the results from Guseva et al. (2017) has the highest

agreement with the experiment.
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Figure 3.28 Time and space-averaged skin friction coefficient of the EDDES-M2

simulations compared to the results of Guseva et al. (2017), Siggeirsson & Andersson

(2019) and experimental results of Greenblatt et al. (2006)

As a final step, we will use the skin friction coefficient plots to pinpoint the separation and

reattachment locations. Usually, when the skin friction goes into negative signs, it indicates

that the flow is getting separated from the wall. On the other hand, when it goes into positive

values again, it shows the reattachment location (see for example Armstrong et al. (2022)). Table

3.9 presents the locations of flow separation and reattachment obtained from our simulations,

along with corresponding numerical results from Siggeirsson & Andersson (2019), Guseva et al.

(2017) and experimental findings from study Greenblatt et al. (2006).
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Table 3.9 Non dimensional separation and reattachment

locations (x/c) of the WMH compared to the experimental

data of Greenblatt et al. and numerical results of

Siggeirsson & Andersson and Guseva et al. (2017) using

the 𝐶𝐹 values

Simulation Sep. loc (x/c) Re-attach. loc (x/c) Bubble len. (x/c)

Experimental 0.665 ± 0.005 1.10 ± 0.005 0.435

EDDES-M1 0.659 1.275 0.616

EDDES-M2 0.659 1.257 0.598

EDDES-M3 0.659 1.281 0.622

Siggeirsson & Andersson 0.659 1.266 0.607

Guseva et al. 0.663 1.151 0.488

To see the differences in these locations, we calculate the errors in reattachment and separation

locations compared to the experimental results from Table 3.9. The formula is to differentiate

the numerically predicted values from experimental values divided by the experimental values

multiplied by 100%. Table 3.10 shows these errors compared to the experimental results. It is

important to note that in our comparisons, we have used the exact values of x/c = 0.665 and x/c

= 1.10 from the experimental data. However, the experimental results indicate a margin of error

of x/c = 0.005 for separation and reattachment locations.

Table 3.10 Percentage errors in predicted separation and

reattachment locations (x/c) of the WMH for various simulation

models compared to experimental data

Simulation Error in Sep. loc (%) Error in Re-attach. loc (%)

EDDES-M1 0.90 15.91

EDDES-M2 0.90 14.27

EDDES-M3 0.90 16.45

Siggeirsson & Andersson 0.90 15.09

Guseva et al. 0.30 4.64
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This table shows how EDDES and Siggeirsson & Andersson results over-predict the reattachment

location, while the results from Guseva et al. are much closer to the experimental results. We

explored finer meshes than the one Guseva et al. used, with different spanwise sizes as suggested

by Siggeirsson & Andersson. Nevertheless, a wider separation can still be seen in our EDDES

simulations. Therefore, a higher-order scheme (not currently available in SU2) is the suspect to

solve the gray area issue. Higher-order schemes have the potential to capture flow features and

gradients more accurately, thereby reducing numerical dissipation and enhancing the resolution

of turbulence structures. Moreover, we can also conclude that between the EDDES results,

EDDES-M2 having twice the span size (and twice the average samples in the spanwise direction)

predicts a lower error in separation location and a smoother curve compared to EDDES-M1 and

EDDES-M3 (see Figure 3.27, for example).

In this section, we have taken several steps toward understanding the differences between

unsteady simulations compared with RANS simulations by establishing a robust computational

setup. We have analyzed the internally averaged solution provided by SU2, enabling accurate

time averaging of our EDDES solutions. Additionally, we have chosen multiple locations in the

spanwise direction to extract aerodynamic coefficients, facilitating reliable spatial averaging.

Then, to shed light on the gray area issue within hybrid approaches, we have compared our results

and relevant literature and experimental data. This comparative analysis aims to identify potential

challenges and discrepancies associated with the gray area phenomenon. Finally, moving toward

our main objective, the subject of the next section lies on performing a quantitative analysis of

the number of captured vortices using the mentioned methodologies, including the Q-criterion,

𝜆2, and 𝜆2
𝑐𝑖. By employing these techniques, we aim to differentiate this technique for identifying

coherent structures present in the flow in the WMH channel after it gets separated from the wall.

3.4 Vortex identification

For steady and unsteady simulations of the WMH, we have assessed the velocity, pressure

coefficient and skin friction coefficient. We have observed in the EDDES simulations that

vortices form after the flow separation and affect the behaviour of the flow. Quantifying these
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vortices is the main objective here. We do a quantitative analysis of the number of vortices

in three main locations after the hump. Three different identification techniques are used to

identify and analyze the vortices characteristics. The process of our identification methods for

quantifying vortices is shown in the flow chart below. Our EDDES simulations (EDDES-M1,

EDDES-M2, and EDDES-M3) provide the input data.

Figure 3.29 Flow chart of the first part of the quantitative study

Figure 3.30 illustrates schematically the flow behaviour after it gets separated from the wall and

the vortex structures develop. There are three main sections in the WMH channel, as depicted in

the figure, and previously covered in the literature review especially by the paper of Hao et al.

(2021). Despite the common association of high vorticity with separated flows, it is important to

note that a high level of vorticity also occurs in attached boundary layers, especially near the
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wall. Therefore, even in the recovery region after reattachment, vorticity does not necessarily

reduce due to the proximity to the boundary layer.

Figure 3.30 Scheme of the flow separation in the WMH channel

To count the number of vortices in the WMH channel, we have divided the part after the hump

into its critical locations according to Hao et al. (2021). These locations are from (x/c= 0.65

to 1.25),(x/c= 1.25 to 2) and (x/c= 2 to 4). Figure 3.31 shows these locations on the WMH

channel. The idea behind choosing these sections is based on the critical locations of literature

findings and our EDDES simulations (We have selected an approximate-round value from Table

3.9 for separation and reattachment regions). The first section is from the separation point to

the re-attachment point. The second section is from the re-attachment point to the approximate

relaxation region, and the final section is from the chosen relaxation region until the end of

WMH channel. Additionally, the domain is sliced in the stream-wise direction to obtain a 2D

component of the solution. The mid-span plane for all of our simulations is represented by the

pink plane, located at y/c= -0.1.



85

Figure 3.31 Channel division after separation point for vortex quantification

We intend to conduct a quantitative analysis of the number of identified vortices for our EDDES

simulations, as was previously indicated. We will employ the Q-criterion, 𝜆2 criterion, and

Swirling Strength (𝜆2
𝑐𝑖 criterion) defined in section 2.4 as our three identification methodologies.

Since the simulations are unsteady and vary in time, we will attempt to choose the snapshots for

each simulation that are comparable to the other two EDDES simulations for the comparisons

and post-processing.

Table 3.11 Table representing the periods for further

analysis of the vortices

Section Location (x/c) Δ𝑥/𝑐 (x/c) Representing Region
1 (0.65 to 1.25) 0.6 Shear layer region

2 (1.25 to 2) 0.75 Reattachment region

3 (2 to 4) 2 Relaxation region

The 2D and 3D Q-criterion contours are shown in Figure 3.32. We choose Q=25000 (𝑠−2) as

the threshold after visualizing the flow with other well-known values used for this test case

and the studies from Schanz et al. (2016) and Merabet (2021) that compare different threshold

values. In the dimensionless form (with 𝑄 = 𝑄∗ × 𝑐2

𝑈2 ), 𝑄∗ ≈ 784.65. The 3D form of Q, which

resembles tubes after being separated from the hump, is depicted on the top in Figure 3.32. We

will look for the 2D vortex formations to conduct a quantitative investigation. As a result, only

Q contours on the pink plane (2D, 𝑦/𝑐 = −0.1) will be analyzed.
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Figure 3.32 Q-criterion representation in 2D and 3D for EDDES-M1 simulations

The visualization of vortex forms in a flow field in 2D and 3D using the 𝜆2 criterion, is shown

in Figure 3.33. The second eigenvalue (𝜆2) of the symmetric tensor sum of the squares of

the vorticity tensor (Ω) and the strain rate tensor (S) is the basis of the 𝜆2 criteria. Areas

with negative 𝜆2 values are isolated to form vortex regions. The Q-criterion compares the

magnitudes of the vorticity and strain tensors, while the 𝜆2 criterion uses eigenvalues to analyze

the balance between vorticity and strain in the flow. Because of the mathematical equation of 𝜆2

the threshold value is similar to the opposite value of the Q-criterion. So, we have established

𝜆2 = −25000(𝑠−2) or 𝜆∗
2

= −784.65 as the threshold value for better comparisons.

Table 3.12 The properties of our vortex identification methods

Method Threshold Value Units Color Dimensionless values
Q-criterion 25000 𝑠−2 Red 784.65

𝜆2 criterion -25000 𝑠−2 Yellow -784.65

𝜆2
𝑐𝑖 1000 𝑠−1 Blue 31.43
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Figure 3.33 𝜆2 Criterion representation in 2D and 3D for EDDES-M1 simulations

Figure 3.34 represents the 𝜆2
𝑐𝑖 in the WMH channel. Due to the differences in the underlying

principles of each vortex identification technique, the 𝜆2
𝑐𝑖 values can have different magnitudes

and distributions compared to 𝜆2 and Q-criterion values. Therefore, to effectively visualize

vortex structures, the threshold value used for the 𝜆2
𝑐𝑖 method needs to be adjusted. The threshold

value used to visualize a physical vortex representation is 1000 (𝑠−1) (𝜆2∗
𝑐𝑖 = 31.43). For 𝜆2∗

𝑐𝑖 , there

are no particular evidence of choosing this specific value from the literature and the suggested

value by Zhou et al. that is exactly comparable to the other two methodologies, however, after

trial and error, we have found out that lower values cannot distinguish the vortices clearly and

increasing the value results in capturing large regions that are not connected to vortex properties.
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Figure 3.34 𝜆2
𝑐𝑖 representation in 2D and 3D for EDDES-M1 simulations

A quantitative study on each simulation is performed over ten snapshots of our unsteady

simulations. These gives us the number of vortices in time and space for each simulation. Which

are then represented using histograms and tables.

We begin with the shear layer of the EDDES-M1 simulation. Figure 3.35 represents the identified

vortices captured by our different vortex identification methodologies. The red lines represent

the vortices detected using the Q-criterion, the yellow lines represent the 𝜆2 criterion, and the

blue lines the 𝜆2
𝑐𝑖 technique. We will quantify the time of the simulation relatively in regards to

the starting time, which we have excluded due the to the fact that the flow was transient. Thus,

"t" stands for the difference between the second iteration number to the first one, multiplied by

the time step for the simulation plus the starting time.
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a) t= 0.33 (s) b) t= 0.36 (s)

c) t= 0.39 (s) d) t= 0.42 (s)

e) t= 0.45 (s) f) t= 0.48 (s)

g) t= 0.51 (s) h) t= 0.54 (s)

i) t= 0.57 (s) j) t=0.6 (s)

Figure 3.35 The first division of the WMH channel for the EDDES-M1 simulations, after

the hump where the flow gets separated from the wall. This shear layer region is

from x/c= 0.65 to 1.25 (red : Q ; yellow : 𝜆2 ; blue : 𝜆2
𝑐𝑖)

Figure 3.36 depicts the second region for the EDDES-M1 simulations following the hump from

x/c = 1.25 to 2. We can observe a decrease in the overall number of vortices identified using our

vortex identification techniques. The underlying reason is that the flow begins to slow down and

reattach to the wall. If we compare it to the shear-layer region, the flow becomes less unstable.

As a result, the vortices that develop here often have a smaller number and bigger size.
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a) t= 0.33 (s) b) t= 0.36 (s)

c) t= 0.39 (s) d) t= 0.42 (s)

e) t= 0.45 (s) f) t= 0.48 (s)

g) t= 0.51 (s) h) t= 0.54 (s)

i) t= 0.57 (s) j) t= 0.6 (s)

Figure 3.36 EDDES-M1, the second division of the WMH channel after the hump, where

flow begins to reattach to the wall. This re-attachment region is from x/c= 1.25 to 2

(red : Q ; yellow : 𝜆2 ; blue : 𝜆2
𝑐𝑖)

The third division of the WMH channel is presented in Figure 3.37 before quantifying the

vortices for the EDDES-M1 simulation. Given the return of the flow toward its original state, a

decrease in discernible vortex structures is noticeable in this region. An important consideration

to bear in mind is that, as suggested by Table 3.11, this segment is longer in the stream-wise

direction compared with the other sections. A potential implication of this characteristic length

could be a gradual decrease in turbulent activity as the fluid progresses along this extended path,

further reducing the detectable vortex structures. We also observe that the 𝜆2 criterion commonly

detects vortices within those identified by the Q-criterion. This phenomenon could imply that
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𝜆2 is adapted at recognizing more localized, smaller-scale vortices, potentially offering a more

intricate view of the turbulent dynamics within larger vortex structures. Despite 𝜆2
𝑐𝑖 occasionally

identifying stronger vortices, it’s apparent that the quantity of captured vortices remains limited.

There are also noticeable discrepancies near the wall. This limitation may hint at the criterion’s

sensitivity to wall-induced effects, which could potentially influence its effectiveness in detecting

vortex structures near the wall.

a) t= 0.33 (s) b) t= 0.36 (s)

c) t= 0.39 (s) d) t= 0.42 (s)

e) t= 0.45 (s) f) t= 0.48 (s)

g) t= 0.51 (s) h) t= 0.54 (s)

i) t= 0.57 (s) j) t= 0.6 (s)

Figure 3.37 The third division of the WMH channel for the EDDES-M1 after the hump,

where the flow enters the relaxation region. It is from x/c= 2 to 4

(red : Q ; yellow : 𝜆2 ; blue : 𝜆2
𝑐𝑖)
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A quantitative study of the number of vortices in each section is then pursued. Counting the

number of vortices is the easiest way to compare the credibility of vortex identification methods,

since averaging the size or the vorticity is not trivial and requires to develop a specific tool.

For all of the sections of the EDDES-M1, Table 3.13 shows the number of vortices using our

three vortex identification methods. We can observe that in the shear-layer region, nearly in

all time frames of this simulation, the Q-criterion method detects more vortices than the other

two techniques (except 3.35f, where 𝜆2 had the same number of identified vortices). Moreover,

it’s worth noting that the Q-criterion, being sensitive to the strain rate of the fluid, might be

more capable of detecting rotational structures in this high-strain region. This is consistent

with the observation that this method often identifies a greater number of vortices. This trend

is almost the same for the reattachment region except for 3.36e and 3.36h, where 𝜆2 identified

more vortices. An interesting point is that the 𝜆2 criterion can sometimes detect more subtle

vortex structures, as it is not strictly tied to the local strain rate. Each method only managed

to identify less than three vortices in the relaxation region. There are not many vortices in the

relaxation region because the flow is almost back to the state before separation. As a result,

there are fewer vortices overall. We should also note that the vortices on the boundaries of each

section location are counted in both sections. Therefore, there might be a minor error of around

five percent in the overall number of vortices in the entire domain. moreover, it should be noted

the average number of vortices and also the standard deviation values are rounded up since a

fraction of a vortex is meaningless.
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Table 3.13 Number of detected vortices using three different

vortex identification methodologies for the EDDES-M1

No Fig no Time Q-criterion 𝜆2 criterion 𝜆2
𝑐𝑖

Se
ct

io
n

1
1 3.35a 0.33 65 48 22

2 3.35b 0.36 74 51 20

3 3.35c 0.39 61 55 28

4 3.35d 0.42 64 49 25

5 3.35e 0.45 65 62 24

6 3.35f 0.48 60 60 31

7 3.35g 0.51 75 69 34

8 3.35h 0.54 55 41 30

9 3.35i 0.57 53 49 25

10 3.35j 0.6 53 34 21

Average - - 63 52 26
Std Dev - - 8 9 5

Se
ct

io
n

2

11 3.36a 0.33 13 11 5

12 3.36b 0.36 20 16 7

13 3.36c 0.39 18 16 4

14 3.36d 0.42 21 15 5

15 3.36e 0.45 11 15 7

16 3.36f 0.48 12 11 3

17 3.36g 0.51 19 14 3

18 3.36h 0.54 12 14 3

19 3.36i 0.57 9 11 7

20 3.36j 0.6 16 14 6

Average - - 14 14 5
Std Dev - - 4 3 2

Se
ct

io
n

3

21 3.37a 0.33 2 1 0

22 3.37b 0.36 2 1 0

23 3.37c 0.39 2 2 0

24 3.37d 0.42 3 0 0

25 3.37e 0.45 1 0 0

26 3.37f 0.48 3 1 0

27 3.37g 0.51 1 0 0

28 3.37h 0.54 3 2 0

29 3.37i 0.57 3 1 0

30 3.37j 0.6 2 1 0

Average - - 2 1 0
Std Dev - - 1 1 0
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Figure 3.38 shows the vortices found in ten distinct time frames for EDDES-M2 simulations

using our vortex identification approaches. For EDDES-M1, EDDES-M2 and EDDES-M3

simulations time-steps were chosen based on identifying a period where the same trend of flow

separation and re-attachment is observed through their time-steps.

a) t= 0.67 (s) b) t= 0.78 (s)

c) t= 0.89 (s) d) t= 1 (s)

e) t= 1.11 (s) f) t= 1.22 (s)

g) t= 1.33 (s) h) t= 1.44 (s)

i) t= 1.55 (s) j) t= 1.66 (s)

Figure 3.38 EDDES-M2, the first division of the WMH channel after the hump where the

flow gets separated from the wall. This shear layer region is from x/c= 0.65 to 1.25

(red : Q ; yellow : 𝜆2 ; blue : 𝜆2
𝑐𝑖)

For the EDDES-M2 simulation, Figure 3.39 illustrates the second division following the hump.

The variation of vortices throughout different periods can be seen in each sub-figure. The vortices



95

that start to merge together are called interacted vortices (see for example Figure 3.39d). If we

carefully examine, the 𝜆2 occasionally correctly identifies the interacted vortices individually,

while Q-criterion identifies them as one in this threshold value.

a) t = 0.67 (s) b) t = 0.78 (s)

c) t = 0.89 (s) d) t = 1 (s)

e) t = 1.11 (s) f) t = 1.22 (s)

g) t = 1.33 (s) h) t = 1.44 (s)

i) t = 1.55 (s) j) t = 1.66 (s)

Figure 3.39 EDDES-M2, the second division of the WMH channel after the hump where

the flow reattaches the wall. This period is from x/c = 1.25 to 2

(red : Q ; yellow : 𝜆2 ; blue : 𝜆2
𝑐𝑖)

Figure 3.40 shows the flow in ten different snapshots in the WMH channel final section following

the hump. Although the number of identified vortices with 𝜆2 criterion is less than the Q-criterion,

we can see that identified vortices with 𝜆2 criterion is in the middle of identified vortices using

the Q-criterion. This will give the impression that with the comparable threshold value, 𝜆2 may

have more level of precision in outlining the boundaries of interacted vortices.
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a) t = 0.67 (s) b) t = 0.78 (s)

c) t = 0.89 (s) d) t = 1 (s)

e) t = 1.11 (s) f) t = 1.22 (s)

g) t = 1.33 (s) h) t = 1.44 (s)

i) t = 1.55 (s) j) t = 1.66 (s)

Figure 3.40 EDDES-M2, the third division of the WMH channel after the hump, in the

relaxation region, from x/c = 2 to 4 (red : Q ; yellow : 𝜆2 ; blue : 𝜆2
𝑐𝑖)

The number of vortices following the hump is in Table 3.14. We will examine the number of

vortices for the EDDES-M2 simulation over various time steps and sections in the table below.

Once more, we can observe that the average number of vortices identified by Q-criterion is higher

than other identification techniques. If we compare the average values between EDDES-M1

and EDDES-M2 simulation, we can see that EDDES-M2 has fewer average values compared

to EDDES-M1. The only exception is the average number of identified vortices, with 𝜆2 in

EDDES-M2 being higher than in EDDES-M1 in section 1.
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Table 3.14 Quantity of detected vortices using three different

vortex identification methodologies for the EDDES-M2

No Fig no Time Q-criterion 𝜆2 criterion 𝜆2
𝑐𝑖

Se
ct

io
n

1
1 3.38a 0.67 59 60 23

2 3.38b 0.78 79 65 22

3 3.38c 0.89 52 50 22

4 3.38d 1 63 53 25

5 3.38e 1.11 67 52 30

6 3.38f 1.22 52 45 13

7 3.38g 1.33 61 50 23

8 3.38h 1.44 56 53 22

9 3.38i 1.55 45 41 17

10 3.38j 1.66 67 72 24

Average - - 60 54 22
Std Dev - - 9 9 4

Se
ct

io
n

2

11 3.39a 0.67 12 10 4

12 3.39b 0.78 13 16 7

13 3.39c 0.89 9 9 4

14 3.39d 1 13 15 10

15 3.39e 1.11 17 12 3

16 3.39f 1.22 12 10 7

17 3.39g 1.33 15 13 14

18 3.39h 1.44 16 18 6

19 3.39i 1.55 12 8 6

20 3.39j 1.66 15 9 6

Average - - 12 11 6
Std Dev - - 3 3 3

Se
ct

io
n

3

21 3.40a 0.67 3 2 0

22 3.40b 0.78 5 2 0

23 3.40c 0.89 3 1 0

24 3.40d 1 1 1 0

25 3.40e 1.12 2 0 0

26 3.40f 1.22 6 4 0

27 3.40g 1.33 6 2 0

28 3.40h 1.44 1 1 0

29 3.40i 1.55 3 2 0

30 3.40j 1.66 4 1 0

Average - - 3 2 0
Std Dev - - 2 1 0
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Figure 3.41 depicts the vortical structures for EDDES-M3 simulations across six sequential

time-steps. Compared to the first two simulations, the overall number of vortices has risen.

Moreover, the improvement of the 𝜆2
𝑐𝑖 technique in capturing more vortices grabs the interest.

More vortices are captured with the same threshold value in this finer mesh. Moreover, we can

see that the identified vortices using 𝜆2
𝑐𝑖 cannot distinguish the interacted vortices very well and

are connected in most regions.

a) t = 0.44 (s) b) t = 0.46 (s)

c) t = 0.48 (s) d) t = 0.5 (s)

e) t = 0.52 (s) f) t = 0.54 (s)

Figure 3.41 EDDES-M3, the first division of the WMH channel after the hump, in the

shear layer region, from x/c = 0.65 to 1.25 (red : Q ; yellow : 𝜆2 ; blue : 𝜆2
𝑐𝑖)

The EDDES-M3 simulation second section is seen in Figure 3.42. In this re-attachment region,

we observe more vortices than in the first two simulations. The interactions between the vortices

continue as they move away from the wall, and as was already mentioned, the 𝜆2 is better

at identifying the boundary between interacted vortices than the Q is. Furthermore, in this

simulation we see more identified vortices with the 𝜆2
𝑐𝑖 method.
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a) t = 0.44 (s) b) t = 0.46 (s)

c) t = 0.48 (s) d) t = 0.5 (s)

e) t = 0.52 (s) f) t = 0.54 (s)

Figure 3.42 EDDES-M3, the second section of the WMH channel after the hump, in the

reattachment area, from x/c = 1.25 to 2 (red : Q ; yellow : 𝜆2 ; blue : 𝜆2
𝑐𝑖)

The relaxation region is shown in different time steps for the EDDES-M3 simulations in Figure

3.43. We can notice that the 𝜆2
𝑐𝑖 captures vortices in this area, which were not previously captured

in the first two simulations. The number of captured vortices in this section is almost higher by

a factor of 5 than in the first two simulations. Moreover, in the second half of this section (from

x/c= 3 to 4), only three vortices are captured by Q-criterion in this threshold value in all of our

EDDES simulations.

a) t = 0.44 (s) b) t = 46 (s)

c) t = 0.48 (s) d) t = 0.5 (s)

e) t = 0.52 (s) f) t = 0.54 (s)

Figure 3.43 EDDES-M3, the third section of the WMH channel after the hump, in the

relaxation region, from x/c = 2 to 4 (red : Q ; yellow : 𝜆2 ; blue : 𝜆2
𝑐𝑖)
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Table 3.15 is the last quantification of number of identified vortices in the various sections for

the EDDES-M3 simulation. Previously, in the first two simulations, the 𝜆2
𝑐𝑖 identified only few

vortices. However, it is now capable of doing so even in the relaxation region. Unexpectedly,

we also observe that 𝜆2 in this simulation has discovered more vortices than Q, especially in

the shear layer region. We need more vortices observation and other identifying techniques to

conclude about the validity of the detected vortices at different threshold values.

Table 3.15 Quantity of detected vortices for the EDDES-M3

using three different vortex identification techniques

No Fig no Time Q-criterion 𝜆2 criterion 𝜆2
𝑐𝑖

Se
ct

io
n

1

1 3.41a 0.44 79 90 61

2 3.41b 0.46 97 104 67

3 3.41c 0.48 100 105 74

4 3.41d 0.5 98 108 78

5 3.41e 0.52 96 109 59

6 3.41f 0.54 105 112 71

Average - - 96 105 68
Std Dev - - 9 8 7

Se
ct

io
n

2

7 3.42a 0.44 40 35 20

8 3.42b 0.46 50 37 22

9 3.42c 0.48 41 38 18

10 3.42d 0.5 35 35 26

11 3.42e 0.52 37 38 15

12 3.42f 0.54 37 25 15

Average - - 40 35 19
Std Dev - - 5 5 4

Se
ct

io
n

3

13 3.43a 0.44 7 3 1

14 3.43b 0.46 8 4 0

15 3.43c 0.48 16 5 0

16 3.43d 0.5 14 4 1

17 3.43e 0.52 9 3 1

18 3.43f 0.54 15 5 0

Average - - 13 4 1
Std Dev - - 4 1 1
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In the final step, we have compiled the average number of identified vortices and their standard

deviation from each section of the WMH across all our EDDES simulations into histograms.

Figure 3.44 shows the histograms of average number of identified vortices using our different

identification techniques.

Figure 3.44 Comparison of the average and standard deviation of vortices identified per

section across our three distinct identification technique

Our analysis reveals a noticeable trend in the detection of vortices across all methodologies for

each simulation (EDDES-M1, EDDES-M2, EDDES-M3), showing a decrease in the number

of vortices from section one to section three. This downward trend is most evident in the

Q-criterion method, where section one consistently shows higher vortex counts compared to

other sections, regardless of the simulation.
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Adding to this, it’s also worth considering that the higher count in the first section could be due

to the intense turbulence that characterizes the separation region, where vortex generation is

typically at its peak. This reflects the fact that in the separation region we have the most turbulent

and complex flow patterns. In other words, it indicates that Q-criterion loses the precision of

identifying the vortices in the relaxation and reattachment region as it identified more vortices

with a closer look at standard deviations from this study. This could further suggest that while

Q-criterion excels in regions of high turbulence, its performance may diminish in less turbulent

or more stable flow regions, thus impacting its effectiveness across different regions that requires

lower threshold value to identify those vortices.

Regarding the average vortex counts, EDDES-M3 significantly captures more vortices than the

other two simulations in all three identification techniques. It demonstrates remarkably high

counts, especially for the 𝜆2 criterion and 𝜆2
𝑐𝑖 in section one. This indicates the higher sensitivity

and the presence of more complex vortex structures in the EDDES-M3 simulation with a finer

mesh. Additionally, the higher vortex count in the EDDES-M3 simulation might also hint at the

simulation’s ability to resolve smaller-scale or finer vortices, owing to a higher resolution mesh.

On the other hand, upon observing the standard deviations, we see relatively higher variations

in the vortex count in the initial sections in all simulations. While this variability decreases

across the sections, it is notable that it remains relatively high in EDDES-M3, suggesting more

complex and diverse vortex structures. These standard deviations might also be indicative of the

inherent unsteadiness of the flow, where higher standard deviations imply more fluctuating flow

conditions.

To conclude, the 𝜆2 criterion reveals its strength in the WMH test case, specifically in the

complex flow situations shown in the EDDES-M3 simulation. We have also seen earlier and

vortex interactions better than other techniques. The effectiveness of the 𝜆2 criterion in these

situations might be attributed to its inherent ability to discern the cores of vortices irrespective of

the vortex strength. The ability of the 𝜆2 criterion to identify these points sets it apart from the

other methods, particularly in more complex flow scenarios like in the EDDES-M3 simulation.

While each identification technique has its superiority, the 𝜆2 criterion adeptness at capturing
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intricate vortex interactions makes it particularly suited to the task at hand. Its application in the

EDDES-M3 simulation leads to a more comprehensive representation of the vortex dynamics in

the flow over the WMH, thereby highlighting its potential use in analyzing complex turbulent

flows.

In this section, we defined the methodology we took to identify the vortices. After creating

sections on the WMH channel, we counted the number of vortices in each section using the three

distinct identification methodologies on the EDDES solutions. Finally, we used the average

and standard deviation of the number of vortices for further analysis of the vortex identification

techniques.





CONCLUSION AND RECOMMENDATIONS

In this work, we highlighted the crucial role of turbulent flow comprehension and its significant

importance in real-world scenarios. Our investigation began with a thorough literature review,

focusing on the WMH test case that can be interpreted as ice accretion on a wing of an airplane (a

common and hazardous aviation phenomenon). Our work utilized the open-source SU2, which

holds potential for further advancements and enhancements. Through our analysis, we shed light

on the limitations of RANS methodologies in dealing with separated flows, thereby emphasizing

the necessity to refine hybrid RANS/LES methods. Our research is one of the first investigations

employing these hybrid models in the WMH test case within the context of the SU2 platform.

Furthermore, we defined the distinctive features of three widely-recognized Eulerian vortex

identification techniques (the Q-criterion, the 𝜆2 criterion, and Swirling Strength (𝜆2
𝑐𝑖)). Notably,

no prior study has undertaken a comparative examination of these identification techniques

applied to the WMH. Consequently, our research fills this gap and provides a new comparison of

the vortex identification techniques in such complex turbulent flows in a well-known test-case.

Our investigation into the separation and reattachment locations of the WMH began with five

distinctive grids for the RANS approach. We started with a comprehensive analysis of the flow

characteristics, such as velocity profiles, pressure, and the skin friction coefficient along the

wall and in 2D. Despite the recognized limitations of the RANS methodology, particularly in

pinpointing the reattachment location, showed good agreement with the RANS results in the

literature, demonstrating a significant degree of validity. Subsequently, to identify a suitable

grid for unsteady simulations, we determined the errors in aerodynamic coefficients associated

with each grid. Generally, these errors displayed a declining trend with the increase in grid

density. Moreover, we conducted a rigorous study to estimate the GCI errors, which showed that

further grid refinement is not necessary for RANS solution.
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From our RANS grids, we modified three grids for the EDDES simulations, one having twice

the spanwise size. We analyzed the different time-averaged periods to omit the transient flow

from these unsteady simulations and find the most suitable periods for time averaging. Then, we

investigated the aerodynamic coefficients along the wall in various span locations and averaged

these locations to get a spatial average. We have compared the outcomes with the experimental

and the literature findings. In these findings, we saw that the gray area issue still causes the

delay from the transition of RANS to LES in the separation region. This had consequences

on the reattachment location occurring later (further downstream) than in the experiment and

some of the results from the literature. After careful analysis, we found that one of the potential

issues could be the accuracy level of the solver in estimating viscous fluxes. To simplify, it

seems like the solver might not be precise enough when it comes to handling these complex

calculations, which might explain the longer separation (gray area issue). Interestingly, the

EDDES-M2 having more extensive spanwise length and twice sampling sizes for the spatial

averaging, had smoother time and space-averaged aerodynamic coefficients compared to the

other two simulations.

Finally, in our primary research objective, using our three EDDES simulations, we compared

the number of vortices in three critical sections after the hump in the WMH channel. We

used the previously mentioned identification methods for the first time on the WMH for a

comparative analysis. This exercise permitted us to evaluate the performance of these techniques,

which highlights the 𝜆2 criterion remarkable capability. For this analysis, we have examined

the identified vortices and counted the number of each identified vortex for each section. It’s

worth mentioning that the 𝜆2 criterion demonstrated superior performance in outlining the

boundaries of interacted vortices in the same threshold value than the one already identified for

the Q-criterion, with more precision compared with the other two techniques.
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Despite its strengths, we also recognized some limitations with the 𝜆2
𝑐𝑖 criterion. This method

captures fewer vortices and indicates a larger vortex region along the wall. This suggests a less

discriminating capability for detecting individual vortex structures, especially in the vicinity

of the wall where the flow complexity is high within the selected threshold value. Therefore,

analyzing different threshold values can be an area for future improvements in this criterion.

Furthermore, we collated these pieces of information into tables and histograms for further

breakdown. Our comparative analysis underscored the shortcomings of the Q-criterion tech-

nique in identifying excessive vortices, particularly those in the reattachment and relaxation

regions. Moreover, the Q-criterion technique consistently failed to capture individual vortices.

Additionally, the impact of mesh density on vortex identification was evident, while the finer

grid (EDDES-M3) revealed a higher number of vortices and more complex flow structures.

For further investigations, it is recommended to incorporate higher-order accuracy algorithms

within the SU2 framework for the approximation of viscous fluxes. A potential area for future

research might also be the development of a new vortex detection method that combines the

strengths of existing criteria while addressing their limitations. This enhancement could improve

precision and provide a deeper understanding of the gray area issue, which concerns the late

transition between RANS and LES in hybrid RANS/LES methods.

Furthermore, in future works, the efficiency and precision of 𝜆2 can be leveraged in automating

the process of creating sections and counting the number of vortices at critical stages of the WMH.

This could facilitate the vortex identification procedure and possibly establish a universally

practical tool for vortex detection in similar flow scenarios. This automation could involve

machine learning or other computational techniques to effectively analyze complex turbulent

flows and rapidly process extensive data. The potential integration of 𝜆2 with these techniques

underscores an exciting prospect that can open up new possibilities for automation and accuracy

in turbulence studies.
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Vortex analysis using Lagrangian techniques could also be considered for future studies, as

this approach enables the tracking of fluid particles over time, providing a unique perspective

on vortex dynamics. This would suggest the potential for future studies to delve deeper into

the evolution of vortices over time, which can contribute to a more dynamic understanding of

turbulent flows. Given the strength of 𝜆2 in identifying vortex interactions, combining it with

Lagrangian analysis could yield significant insights into vortex dynamics and interaction over

time.
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