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FOREWORD

Nowadays, the growing and continuous development in the power system field through the

implementation of novel concepts and smart methodologies and the rising of integration of

renewable energy sources, highlighted the issues and the concerns of ensuring reliable and stable

operation of a power system. As result of this evolution, introduced significant variability and

uncertainty into the power system to maintain stability in the presence of these intermittent

sources requires advanced control and monitoring systems, advanced methodologies to analyze

the abnormality in the power system, as well as flexible and adaptive power system designs that

can accommodate these new sources of power assets.

Moreover, power system protection is an essential component to ensure the safety and reliability

of the electrical power system. The main function of power system protection is to detect and

isolate faults or abnormalities in the power system, such as short circuits or overloads, and to

disconnect the faulty component or section of the system to prevent further damage. Therefore,

the main power system protection characteristic describes the ability to detect and respond to

faults in a timely manner that could be caused by a short circuit, loose connection, or lightning

strikes in the transmission lines. Mitigating such faults with consistent and authentic protection

system reduces the risk of power outages.

Overall, implementing power system protection requires a comprehensive approach that considers

the power system’s design, operating conditions, and potential fault scenarios. These systems

should be designed to be redundant and have built-in backups to ensure that they continue to

operate even in the event of potential failure in primary protection layers. A well-designed and

maintained protection system is essential for ensuring the safety, reliability, and efficiency of the

electrical power system.
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Classification des défauts dans les lignes de transport à l’aide de séries temporelles
d’imagerie et de réseaux neuronaux convolutifs, et protection par relais adaptatif

Baraa KHABAZ

RÉSUMÉ

Dans cette étude, nous présentons une modèle de classification des défauts dans les lignes

de transport, visant à détecter et à classifier ces défauts tout en maintenant une coordination

entre les relais primaires et de secours grâce à l’adaptation des paramètres du relais de manière

adaptative.

Nous proposons une méthode pour la sélection des relais primaires et de secours à surintensité

directionnelle dans les lignes de transmission, ainsi qu’un modèle mathématique pour coordonner

ces relais dans un système électrique maillé. Par ailleurs, nous utilisons un modèle de classification

des défauts basé sur l’apprentissage profond, plus précisément un réseau neuronal convolutif

(CNN) tel qu’AlexNet, pour déterminer le type de défaut dans les lignes de transport. Afin de se

conformer à cette approche, les signaux de tension et de courant sont transformés en images

à l’aide de la méthode du champ angulaire Gramian. L’objectif est d’exploiter les capacités

des réseaux neuronaux convolutifs pour extraire les caractéristiques temporelles des signaux de

séries temporelles, et la classification est réalisée à l’aide de réseaux neuronaux entièrement

connectés.

Afin d’assurer un fonctionnement synchronisé des relais primaires et de secours, nous modélisons

la coordination entre ces relais comme un problème d’optimisation avec des contraintes et une

fonction objective. Cette fonction vise à minimiser le temps total de fonctionnement des relais

primaires en utilisant le logiciel GAMS. Nous avons utilisé le système d’essai à 9 bus pour

déterminer la coordination optimale des relais en fonction du type de défaut, et les résultats ont

été évalués par rapport à la littérature existante.

Mots-clés: Classification des défauts, Optimisation, Réseau de neurones artificiels, Coordination

des relais





Fault Classification in Transmission Lines Utilizing Imaging Time-Series and
Convolutional Neural Networks and Adaptive Relay Protection

Baraa KHABAZ

ABSTRACT

In this research, a model is presented to fault classification in the transmission lines to detect

and classify faults while keeping the coordination between the primary and the backup relays by

adaptively changing the relay’s parameters accordingly.

Furthermore, this research provides a method to select the directional overcurrent primary and

backup relays in the transmission lines, as well as the mathematical model for coordinating

these relays in a meshed power system. Additionally, a fault classification model based on deep

learning as convolutional neural network to determine the fault type within the transmission

lines. To comply with convolutional neural network, the voltages and the currents signals

were transformed into images using Gramian Angular Field. The objective is to benefit from

convolutional neural networks extract the relative temporal features from time-series signals,

with the classification process performed using fully connected neural networks.

Additionally, to ensure the synchronized operation of the primary and backup relay relays, the

coordination between these relays are modelled as an optimization problem with constraints

and objective function. Where the objective function is to minimize the total primary relay

operating time by using GAMS software. The 9-bus test system is employed to determine

optimal relay coordination according to the fault type and evaluate the results in comparison to

existing literature.

Keywords: Fault Classification, Optimization, Neural Network, Relay Coordination
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INTRODUCTION

0.1 Motivation

Implementing power system protection involves several steps and considerations to ensure that

the protection system is effective, reliable, and compatible with the power system’s design and

operation.

Fault classification and relay coordination are two critical functions in the operation and protection

of power systems. Fault classification refers to the process of identifying and characterizing

the type of fault occurred in the power system. By accurately and precisely diagnose the fault

type, the appropriate response to the fault, such as opening or closing of circuit breakers, will be

decided by power system automation and operator to minimize the damage and ensure the safe

and reliable operation of the power system.

Moreover, relay coordination is the process of controlling the operation of the protective relays

to ensure that the relays will operate appropriately when a fault in the power system occurs.

This involves selecting the correct trip settings for each relay, configuring the relays to detect the

correct type of fault, and arranging the relays in a sequence in the most effective response to

clear a fault.

The protection settings, such as current settings, time delays, must be considered and coordinated

according to the fault type, to ensure that the protective devices operate correctly and reliably

under normal and fault conditions with providing the necessary redundancy.

0.2 Problem Statement

The problem to be addressed through this study is the need for a protection system that can

dynamically adjust the relay’s settings and operation to enhance their response to the fault
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conditions. This need arises from the necessity to align with the current demands of power

protection systems, especially considering the limitations of conventional relays with fixed

settings.

0.3 Thesis Statement

In this thesis, the goal is to develop an adaptive protection scheme, that utilizes time-series

imaging as features extraction, convolutional neural networks as decision layers, and optimization

algorithms to enhance the operation of power system protection.

Moreover, a time-series imaging method will be employed to extract features from temporal

measurement data for both voltages and currents, in order to classify faults in transmission

lines. To enhance the accuracy of this process, a proposed approach will use a convolutional

neural network as feature extraction to the generated images, fully connected neural network,

and Softmax layer to make decisions.

After the fault type has been identified, it will enhance the selectivity of the relay’s setting.

The GAMS software GAMS (2023) will calculate the relay’s parameters for achieving optimal

relay coordination, while taking into account the fault type, objective function, and constraints.

This approach will improve the reliability and efficiency of the power system protection in the

electrical grid. The effectiveness of this method will be evaluated by comparing its performance

with that of traditional protection schemes.

0.4 Thesis Objectives

The objective behind this research is to develop adaptive protection scheme to mitigate the

protection problems. The objectives of this research can be summarized as:

• To briefly summarize the existing literature, this review aims to identify a research gap that

has not been adequately addressed in previous studies.
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• Identify and analyze the directional overcurrent relays in the protection scheme to select the

primary and backup relays.

• Develop a protection scheme that uses the time-series imaging and neural networks to classify

the faults in the transmission lines and optimize the relay coordination based on the specific

fault conditions.

• Compare the results and evaluate the optimization performance of the proposed scheme with

different optimization methods and techniques.

• Identify the limitations and challenges of the proposed scheme and provide suggestions for

future improvements.

0.5 Methodology

The main focus of research solution is to enhance the accuracy of fault classification in the

transmission system and coordinate between the primary and backup relays while maintain the

minimum overall operating time for protection layers.

Construct

Power

System

Identify

P/B

Relays

Short-

circuit

analysis

Fault clas-

sification

Optimal

coordina-

tion

Relay

Settings

Figure 0.1 Stages for proposed protection scheme

Figure 0.1 shows the proposed approach which consists of multiple stages. The first stage is to

identify the layout and the components of the power system. Then, the next stage of this research

is to select and identify the primary and the backup relays using LINKNET method, further

discussion will be provided in the following Chapter 2.
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After calculating the short-circuit analysis and organizing the data, the next step is to apply

time-series imaging and convolutional neural networks for feature extraction to classify different

types of faults that may occur, such as symmetrical and asymmetrical faults, with a high level of

accuracy, as it will be discussed in Chapter 3.

Once the faults have been classified, the fault type has the key role to obtain the optimal operating

time for both the primary and backup directional overcurrent relays. In Chapter 4, will find the

optimal the coordination between inverse-time directional overcurrent relays according to design

constraints and the objective function by selecting the optimal relay settings: pickup currents

and time delay settings.

0.6 Thesis Outline

This thesis is organized as follows:

Chapter 1 presents a comprehensive review of existing adaptive protection techniques, algorithms

employed for optimal relay coordination, and the implementation of different machine learning

techniques for fault classification.

Chapter 2 provides an overview of the principles of protective relays and the approach used

to identify primary and backup relays with a case study. Additionally, a brief overview of

inverse-time and directional overcurrent relays.

Chapter 3 provides an overview on types of faults in transmission lines, as well as presents the

proposed of a fault classifier based on image transformation and CNN as features extractions,

whereas utilizes the fully connected neural networks as last stage of classification.

Chapter 4 applies the methods discussed earlier for identifying relay pairs and fault classification

and the formulation of the optimization problem to obtain the relay coordination. The 9-bus test

system is used for this purpose.



CHAPTER 1

LITERATURE REVIEW

This chapter presents a comprehensive review of the current adaptive protection techniques

and solutions used in power system protection. It includes an interpretation of the algorithms

used for relay coordination in power system protection. Additionally, the chapter reviews the

implementation of various machine learning techniques used for fault classification.

This chapter is structured in two main sections, Section 1.1 related to the adaptive protection

techniques and Section 1.2 for machine learning techniques for fault classification.

1.1 Adaptive Protection Schemes

To improve the resilience of power system protection and increase redundancy within the system,

it was necessary to develop new adaptive protection schemes. These schemes adapt and utilize a

range of methods and approaches to overcome challenges and improve their integrity.

The literature on adaptive protection schemes covers various approaches, such as numerical

optimization, fuzzy approaches, and other hybrid methods. Researchers aimed to deploy the

developed methods by studying the limitations of previous methods, future implications, and

other factors that may impact the reliability of protection systems as shown in Figure 1.1.

Adaptive Protection

Schemes

Numerical

Optimization
Neural Networks

Other

Approaches

Figure 1.1 Approaches for adaptive protection schemes

El-Hamrawy et al. (2022) modeled an adaptive relay scheme by enabling communication

paths between all the protection’s components and using the GA for optimal relays settings.

The proposed scheme recommended to use decentralized networks between the protective
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relays to offer fast-acting and exchange the fault status to trip the other relays by overriding

the predetermined coordination scheme. However, the deployment of such network must be

accompanied with conservative regulations to prevent compromising the overall coordination

scheme.

A proposed adaptive protection system has been designed to meet the requirements of IEEE 929

standards in Fani et al. (2018). The standard restricted the output current from the solar panels

and disconnect them from the grid in case of abnormal conditions. However, this standard could

have undesirable impacts on the stability of the grid and on the coordination in the protection

system. This is due to the possibility of inducing voltage fluctuation when more solar panels are

disconnected. Thus, the occurrence of false tripping caused by relays and results miscoordination

in power system protection. The authors proposed to have a group of presets relay’s setting for

different voltage profiles with the ability to readjust the relay’s setting as needed.

By solving bidirectional current problems in modern distribution systems, Ates et al. (2016)

aligned their model to adapt to modern distribution systems with DG regulations, to build a

dynamic framework that monitors DG operating conditions, to produce different actions and

control protection mechanisms in the presence of DG units as shown Figure 1.2.

Figure 1.2 Adaptive protection scheme

Taken from Ates et al. (2016)



7

1.1.1 Numerical Optimization for Optimal Relays Settings

Optimal relay coordination in power systems protection refers as the process of selecting the

operating characteristics of the protective relays and coordinating the primary and backup

relays.Thus, ensure the reliability and resiliency of the protection systems to instantly detect and

classify the faults, isolating any faulted sections, restoring the power, and each relay operates

appropriately in the event of a fault.

This process typically involves of using of mathematical algorithms to determine the optimal

relay’s settings and with correct configurations. This literature is exploring the employed

algorithm to accomplish this goal.

In Akdag & Yeroglu (2021), the authors suggested to utilize Manta Ray Foraging Optimization

algorithm (MRFO) to determine the optimal coordination of Directional Over-Current Re-

lay(DOCR). The MRFO algorithm is based on mimic a biology nature inspired by the foraging

behavior of manta rays. That search for the optimal solution in the problem space, where the

rays move randomly in the solution space and adapt their search behavior based on the quality of

the solutions they found. The authors proposed three different operation modes of protection

scheme for distribution system in presence of DGs: all DGs are connected, partial DGs are

connected to the grid, and when the distribution system is in island mode.

A new algorithm Teaching Learning-Based Optimization (TLBO) is proposed by Singh et al.

(2013). The TLBO algorithm is based on the teacher’s manner in the class, by motivating the

students and extracting the maximum performance. Thereby, the students will be encouraged

to elevate their study performance. The objective function of this article is to minimize the

coordination time interval between the relays, additionally, to minimize the operating time

between backup and primary relays.

Different algorithm is proposed by Uthitsunthorn et al. (2011) to obtain the optimal relay setting

in distribution systems with the presence of DG. The Artificial Bee Colony (ABC) is based on

the behavior of bees, by dividing colony of artificial bees into groups: employed bees, which
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they search for the food source with nectar, the highest amount of nectar choose as optimal

solution; onlookers, save the location of the food sources; scouts, search for their food sources

randomly apart from employed bees.

In context of obtaining the optimal relay coordination, a stochastic optimization technique was

applied by Acharya & Das (2022), to overcome the problems associated with complicated

optimization that involves local optima and early convergence. The Class Topper Optimization

(CTO) inspired by the learning the behavior of students. The CTO algorithm divides the class

into sections, each section has a student that continuously improving his/her performance. Each

section has topper that represents a local optima; hence, the global solution is the best topper in

the class.

A real-time analysis based protection scheme is discussed by Alam (2019). This approach

requires acquiring the essential input data such as voltage, current, and status of circuit breakers

and determines the optimum setting for the relays. To retrieve the input and control the protective

assets, generation, and loads, the IEC 61850 communication protocol is used to adequate the

major modification. This scheme alternates and controls the relay’s setting rapidly to avoid

miscoordination. The Interior Point OPTimization (IPOPT) method is used with an objective

function to minimize the operating times of primary and backup relays.

Additional nature-inspired algorithm was addressed by Alaee & Amraee (2021). The Imperialistic

Competitive Algorithm (ICA), is based on the concept of imperialism and colonization between

the countries in the world. The established imperialist power is identified by the power of

the colonies. Hence, the most powerful empire, compared to other empires, is considered the

optimal solution.

Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm inspired by the

social behavior of bird flocking. Zeineldin et al. (2006) employed PSO to obtain optimal

directional relay settings. The PSO concept is to search for the optimal solution within a feasible

region. Creating swarm of particles that moves in the feasible region, each particle represents a

candidate solution moving in the search-space and update their position and velocity, accordingly.
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The best solution found by any particle in the swarm was encountered as the optimal solution.

Besides, performing interior point method in prior to initialize the particles within the feasible

region; to tolerate the possibility of a single particle being outside the feasible region and to

locate the feasible region in coordination model.

Razavi et al. (2008) used Genetic Algorithm (GA) to coordinate the overcurrent relays. The

basic concept of a genetic algorithm is to simulate the process of natural selection by creating

a population of potential solutions to a problem. Then, repeatedly applying a set of genetic

operators, such as mutation and crossover, to evolve the population towards better solutions.

Table 1.1 Summary of protection schemes using numerical optimization

Reference Methodology Objective Drawback

Akdag & Yeroglu (2021)
Manta Ray

Foraging Optimization

Construct different modes

of operations for

the relay’s setting

Consider only

single fault type

Singh et al. (2013)
Teaching Learning-

Based Optimization

Minimize the total

operating time of

the protection relays

Not considering

adaptive protection

scheme nor other

fault type

Uthitsunthorn et al. (2011)
Artificial Bees Colony

Algorithm

Minimize the total

operating time of

the relays

Not covering the

directional feature of

the overcurrent relays

Acharya & Das (2022)
Class Topper

Optimization

Search for the

global solution for

the relay coordination

Consider only one

relay’s characteristics

Alam (2019)
The Interior Point

Optimization

Changeable relay’s

setting via

communication protocol

Not conducting fault

classification to

sufficient

protection scheme

Alaee & Amraee (2021)
Imperialistic

Competitive Algorithm

Achieve the minimum

operation time of the

primary relays

Not considering

adaptive protection

scheme

Zeineldin et al. (2006)
Modified Particle

Swarm Optimization

To obtain the optimal

directional relay setting

Initialization of

feasible region does

not guarantee the

global solution as

this process vary to

the used algorithm

Razavi et al. (2008) Genetic Algorithm
Coordinate overcurrent

relays

Missing adaptive

protection scheme

Table 1.1 summarizes the potential benefits and the limitation for the proposed methods in the

literature for obtaining the optimal relay setting using for numerical optimization.
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1.1.2 Fuzzy Approaches

The fuzzy approach is a mathematical framework to handle the uncertainty and imprecision in

data analysis and decision-making. Fuzzy logic is a type of multi-valued logic that allows for

intermediate values between true and false.

Swathika et al. (2017) presented an adaptive protection scheme for protecting microgrid. A

central protection scheme is developed by integrating both fuzzy logic and graph theory. When

the fault is detected and its location is identified by the fuzzy logic, the graph theory assists

the scheme to isolate only the necessary and the smallest possible portion in the network for

clearing the fault. Meanwhile, this scheme cannot be implemented in the meshed power system

because of the branching property of the graph method.

A new protection system that combines an Adaptive Fuzzy Inference Model (AFIM) and a

heuristic algorithm has been presented by Kumar & Srinivasan (2018). The suggested approach

is applying a novel hybrid numerical relay, that permits implementation of real-time adjustment

to the relay’s setting. The AFIM is used to determine the appropriate relay’s current setting.

While the heuristic algorithm calculates the time dial settings and reduces the total operating

time of the numerical relay.

Momesso et al. (2019) presents an adaptable protection system that employs Fuzzy Logic to

adjust the pick-up currents setting in the overcurrent relay. Utilizing the Alternative Transients

Program - Electromagnetic Transients Program (ATP-EMTP) brings the advantage of enhancing

adaptability to the system, by accommodating the modified relay’s curves. The outcome of this

method led to a reduction of modifying the relay’s setting according to the network’s topology.

1.1.3 Alternative Approaches

This subsection interprets various methods for adaptive protection schemes, which could include

a combination of different approaches or a structured method.
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Vasconcelos et al. (2022) presents a distribution system with penetration of DGs. The authors

suggested combination of methods to have better response and incorporated automated controls

for protection system. By utilizing fuzzy logic to have the authority of controlling and changing

the protective relays’ setting during various operational modes, while utilizing genetic algorithm

to optimize and acquire the optimal configuration values for the protective relays.

Coffele et al. (2015) focused their solution to develop and implement a four-layers architecture.

Figure 1.3 illustrates the proposed approach. The bottom layer of hierarchical model is the

physical equipment. The next layer is local control units such as intelligent electronic devices

(IDEs) to executes the general commands from the upper layer. The coordination layer is

the main layer to accomplish the coordination between the overcurrent relays, compute the

power system parameters, and assign new relays setting to the IDEs. In the top of hierarchy

is the management layer that regulates, monitors, and supervises the overall performance of

adaptive scheme. Different communication protocols were applied between the layers. This

method emphasis on calculating the coordination between the relays on real-time basis without

considering the fault type.

Figure 1.3 Adaptive protection architecture

Taken from Coffele et al. (2015)
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In their paper, Faria et al. (2020), employed a multi-objective optimization technique to determine

the optimal location, size, and coordination of protective assets that relied on a probabilistic

short-circuit current analysis. Designing a protection scheme that is optimized by the probability

of short-circuit occurrence and its location.

Another approach is proposed in Papaspiliotopoulos et al. (2017). The suggested approach

involves utilizing the hardware-in-the-loop (HIL) simulation method to determine the optimal

relay settings. The primary goal is to reduce the total operating time of both the primary and

backup systems, and develop a set of configurations to accommodate all possible scenarios. This

method used closed-loop procedure along with hardware devices such as RTDS, digital relay and

PLC as centralized controllers, and communication infrastructure. One of the key benefits of

employing HIL is the ability to detect any defects or failures before implementing the solution.

However, Sharaf et al. (2015) believed that the traditional protection strategy, taking pick-up

current and time multiplier setting is not sufficient to coordinate the digital relays. Consequently,

they introduced new modification to the optimization’s variables by assigning two constant

related to the relay’s characteristics as a variable. As a result, creating non-standard relay’s

curves that reduces the response time to the fault events by approximately 45% in comparison to

two variable conventional coordination schemes.

1.2 Fault Classification using Machine Learning Models

These widely recognized techniques and models in machine learning for data classification.

To gain a better understanding and their utilization in the domain of fault classification, these

methods are divided into two distinct types.

1.2.1 Generic Machine Learning Methods

These approaches are based on input data that is labeled with corresponding target values.

An algorithm learns to predict the output values based on input data that is labeled with

corresponding target values. The algorithm is trained on a labeled dataset, where each input data
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is associated with its corresponding output value. Selecting an appropriate algorithm or model

for classification tasks depends on the nature of the data, computational resources, accuracy, and

generalization of the output model.

1.2.1.1 Support Vector Machine Approach

Support Vector Machine (SVM) is a supervised learning algorithm that can be used for

classification tasks. Originating from probability hypothesis, Noble (2006), expressed the basic

concept SVM model as to find a hyperplane that maximally separates different classes of data

points. In the context of power systems, SVM could be utilized to classify different types of

faults that may occur in the transmission lines.

Wang & Zhao (2009) applied SVM to transmission line fault classification. The proposed

solution is composed of multi-class SVM using a polynomial kernel. To determine the fault

location and type, the authors used voltages and currents from a simulated transmission line

connected between a source and a load. Thereby, establishing better performance and more

accurate results in contrast with Multilayer Perceptions (MLP).

To enhance the response of protective relaying in power transmission systems, a real-time fault

classification using SVM model to the protection system is introduced by Youssef (2009). Unlike

selecting voltages and currents, the author selected the current phase angles as input data to the

SVM model, to reduce the computational resources and gaining higher accuracy.

A multi-class SVM model is investigated by Malathi & Marimuthu (2008) for a system that

consists of two generators connected via transmission line. The proposed SVM model has 5

different classes: Single-Line to ground, Line-Line, Double-Line to ground and Three-Phase

fault. To classify the dataset, the Radial Basis Function (RBF) kernel was utilized.

Ramesh Babu & Jagan Mohan (2017) follow different directions of applying multiple stages

for preprocessing the input data. By implementing Empirical Mode Decomposition (EMD),

Intrinsic Mode Functions (IMF) and Hilbert Huang Transform (HHT), respectively, to extract
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the features from voltages signals. Hence, the overall efficiency of the classification model under

3 different tuning SVM parameters is 95.33%.

Accomplishing high accuracy of 99.21% to classify 10 fault classes, Ray & Mishra (2016)

developed a SVM model for multi-class and the SVM parameters were optimized using PSO.

The proposed model uses wavelet transformation to extract and normalize features from fault

currents. The system under testing consisted of two voltage sources connected by a 300 km

transmission line with a rating of 400kV.

1.2.1.2 Random Forest Approach

Random Forest is a popular ensemble learning algorithm used in machine learning for both

classification and regression tasks. According to the research by Breiman (2001), the random

forest concept involves the creation of a forest consisting of decision trees. This is achieved by

randomly selecting a subset of features and data points at each node of the decision tree. The

tree provides a systematic and organized method for analyzing faults, reducing the possibility of

missing critical information and increasing the accuracy of fault diagnosis. Which recursively

partitions the data into subsets based on the most informative features.

Fonseca et al. (2022) classifies the transmission lines fault using a random forest model. Despite

that, the SVM reached an accuracy of 99.21%, and the remarkable results from neural networks,

the random forest needs less computation time. Regardless of inadequate performance of the

random forest model, the authors utilize it with Fourier transform and notch filter for the input

data with 10 different fault classes, to achieve reasonable mean accuracy.

Moreover, the penetration of DG raised the issues of the reliability of the power system.

Chakraborty et al. (2019) implements the random forest model to IEEE 14-bus distribution

system with penetration of DGs. The random forest model was specifically developed to

accommodate four distinct fault classes.
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1.2.2 Neural Networks Methods

Machine learning and artificial intelligence can be used in fault classification in the power

system domain in a variety of ways. For example, supervised learning algorithms can be trained

on historical data to classify different types of faults, such as short circuits and line faults.

Unsupervised learning algorithms can be used to identify patterns in the data that may indicate

the presence of a fault.

1.2.2.1 Feed-forward Neural Network

The feedforward neural network is a type of artificial neural network where information flows

only in one direction as shown in Figure 1.4. The input data is fed through input layer to a

series of interconnected hidden layers, to reach the output layer to have the final verdict, without

feedback nor loops to update the weights of neural networks.
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Figure 1.4 Simple feed-forward neural network

Taken from Svozil et al. (1997)

This concept was carried out by Elnozahy et al. (2019) for fault classification and location.

Using normalized fault voltages and currents from the simulation, this method astonishing

accomplished an accuracy of 100%; however, the neural model cannot represent a factual

experiment to develop a more complex power system, due to a relatively simple system: a

generator connected to the load via transmission lines.
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1.2.2.2 Backpropagation Neural Network

In contrast to the feed-forward neural networks, the backpropagation approach is based on

updating the neuron’s weighted sum incrementally until the network’s output is sufficiently close

to the desired output, which allows the error to be propagated backward through the network by

computing the error with respect to the true output.

Jamil et al. (2015) followed this approach for fault classification in their predetermined power

system. The input data for the neural networks are voltages and currents. To ascertain the neural

network that is most effective, versatile and accurate, a comprehensive evaluation was conducted,

which included testing different numbers of layers.

Adopting this approach to be implemented in microgrid concept, Yu et al. (2019) conducted

backpropagation neural network for microgrid protection faults detection and classification.

The suggested approach achieves an accuracy level of 97.6%, surpassing the accuracy levels

of random forest and SVM, which are 94% and 93.3%, respectively, in terms of classification.

Additionally, the model exhibits exceptional performance even when there is noise present, with

results that nearly to 97.55%.

1.2.2.3 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a type of deep learning algorithm that is particularly

compatible for image classification tasks. The CNNs are composed of multiple layers of artificial

neurons, each of which is designed to learn a specific feature from the input data. The layers are

organized in a hierarchical manner, similar to the suggested architecture by Lecun et al. (1998)

in Figure 1.5 to represents AlexNet architecture. According to O’Shea & Nash (2015), the CNN

can be segmented into three fundamental components that comprise its basic functionality:

In Gu et al. (2018), the Convolutional Neural Network (CNN) is a type of artificial neural

network that specifically designed for image classification. The input image is passed through a

series of convolutional layers that apply a set of filters.
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Figure 1.5 CNN for AlexNet architecture

Taken from Lecun et al. (1998)

The filters perform a mathematical operation called convolution, which involves sliding a

window over the input image and computes the dot product of the window at each group pixels.

This process results in a set of feature maps, each representing a different aspect of the input

image. Moreover, this approach was modified by Sánchez-Reolid et al. (2022), to perform

one-dimensional convolutional process for ECGs signals.

Furthermore, Mitra et al. (2022) adopted the same approach for CNN classification, by gathering

the three-phase fault currents over a predetermined cycle and combined them into one flatten

vector as represented in Figure 1.6. Eventually, the fully connected neural layers receives the

output from the convolutional layers as one flatten vector, which perform classification task

based on the extracted features.

Integrating DGs into distribution systems raises concerns regarding of fault classification and

detection. Rai et al. (2021) demonstrated the implementation of a CNN approach that doesn’t

require feature extraction, instead using directly the voltages and currents signals captured by

the power system sensors.

In an alternative method of applying CNN, Tong et al. (2021) formulated a novel approach using

CNN model and graph theory. By incorporating adaptable changes to the topology of the power

system network during transient fault conditions.
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Figure 1.6 Combined features CNN

Taken from Mitra et al. (2022)

This approach incorporates prior topology information into the neural network. This results in

an effective scheme for fault detection and a more generalized model.

An LSTM is a type of recurrent neural networks architecture to handle the vanishing gradient,

whereas the gradients can become insignificant as they propagate through time. The LSTM

introduces a memory cell and three gates to increase effective and the ability to handle time-series

data and capture long-term dependencies. Zhang et al. (2018) suggested a combination of

LSTM and SVM techniques for identifying and categorizing fault within China southern power

grid. Whereas the LSTM will predict the occurrence the fault by capturing the temporal features

for the system characteristics such as current, voltage, and active power; the SVM model will

classify the fault according to trained model.

1.3 Research Gap within the Existing Literature

There is a shortage of research in the area of adaptive protective schemes that cover fault

classification and the appropriate setting of directional overcurrent relays based on the type of

fault, as well as adjusting relay settings based on the specific fault type as shown in Table 1.1.
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Table 1.2 Summary of machine learning methods for fault classification

Reference Approach Signal
Type

Overall
Accuracy

Pre-processing
phase

Noise
Tolerant

Wang & Zhao (2009) SVM

Voltages &

currents

angels &

magnitude

Error =

0.07
Normalized No

Youssef (2009) SVM

Currents

phase

angles

Not

discussed

Wavelet

transformation
No

Malathi & Marimuthu

(2008)

SVM Currents 98.8%
Wavelet

transformation
No

Ramesh Babu & Jagan

Mohan (2017)

SVM Voltages 95.33%
EMD & IMF

& HHT
No

Ray & Mishra (2016)
SVM &

PSO
Voltages 99.21%

Wavelet &

Normalization
No

Fonseca et al. (2022)
Random

forest
Voltages 91.49%

Fourier

transformer

and notch filter

No

Chakraborty et al.
(2019)

Random

forest
Voltages 81%

Random

sampling
No

Elnozahy et al. (2019)
Feed-forward

NN

Voltages

& currents
100% Normalization No

Jamil et al. (2015)

Back

propagation

NN

Currents
Correlation:

0.93788
Normalization No

Ngaopitakkul & Bun-

jongjit (2013)

Back

propagation

NN

Currents 97.22%
Wavelet

transformation
No

Yu et al. (2019)

Back

propagation

NN

Current

magnitudes
97.55%

Discrete Wavelet

transformation
Yes

Mitra et al. (2022) CNN Currents 99.75%

Combined

three-

phase currents

Yes

Rai et al. (2021) CNN
Voltages &

currents
99.97% No No

Tong et al. (2021) CNN
Voltages

magnitudes
98.28%

Rearrange

topology by

graph theory

Yes

Zhang et al. (2018)
LSTM +

SVM

Voltages &

currents

& active

power

97% Normalization No

Additionally, there is a lack of papers that provide optimal relay settings for different types of

faults.
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Table 1.2 shows the previous studies on fault classification using machine learning involved

variety of using of conventional methods like SVM and random forest, as well as neural networks

models such as backpropagation NN, CNN and LSTM. By utilizing both types of algorithms,

researchers have made progress to classify faults using variation of system’s characteristics and

noise. The objective of improving fault classification accuracy with removing noise was not

successfully met. Instead, the approach employed in this study involved utilizing time-series

imaging to extract relevant features, which were then used to train a CNN model. This method

was selected to leverage the advantages of CNNs in image classification.

The objective of this research is to fulfill the research gap in adaptive protection schemes by

creating a novel adaptive protection scheme that is specifically designed to modify relay settings

according to the type of fault encountered. This will enable a more accurate response to faults

without sacrificing the coordination or sensitivity of the protection equipment, the aim is to

establish a protection scheme that is exceedingly robust and resilient.

In the upcoming chapters, this work will provide a detailed discussion of the proposed approach

and the mathematical representation of achieving the best possible coordination among relays

and accurately identifying faults.



CHAPTER 2

POWER SYSTEM PROTECTION

2.1 Introduction

This chapter presents an overview of protective relay principle and the approach used to

identifying the primary and backup relays. Additionally, outlines the mathematical model of

relay coordination in a meshed power system, focusing on coordinating the primary and backup

relays. Also, a brief overview for inverse-time and directional overcurrent relays.

This chapter is organized as follows Section 2.2 represents an overview of power system

protection along with function of directional overcurrent relays. Section 2.3 describes the

approach for identifying the primary and backup relays and a case study. The coordination

between the primary and backup relays is demonstrated in Section 2.4. A conclusion is provided

in Section 2.5.

2.2 Protective Relay Principle

Protective relaying is a branch of power protection that deals with the protection of electrical

power system from unpredicted faults. A protective relay is an electrical device that automatically

detects faults in an electrical system and operates a circuit breaker to isolate the faulty portion of

the system to prevent damage or power flow irruption throughout the power systems.

The fundamental concept of protective relaying is to identify any irregularities or abnormal

conditions in the electrical power system, such as transmission line faults. The protection system

has to be adequate to quickly detect the faults and efficiently response to fault conditions to

minimize damage to the power system.

Power system protection is a crucial component of an electrical power system. The main

components of power system protection, as shown in Figure 2.1, are:
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Bus 1

CB

VT

Relay

CT

Figure 2.1 Protection system principle

• Sensing devices: These are the devices that detect power system parameters. They include

current transformers (CT) to monitor the current, voltage transformers (VT) to monitor the

voltage, and directional elements. These devices provide the input signals to the protective

relays.

• Control devices: These are the electronic devices that receive input signals from the sensing

devices and make decisions to isolate faults in the power system. They include overcurrent

relays, distance relays, and differential overcurrent relays.

• Circuit breakers: These are the mechanical switches that physically isolate faults in the

power system. They are usually operated by the protective relays.

These main components work concurrently to provide the required protection with integrity and

reliable power system protection scheme, guaranteeing the secure and dependable operation

of the power system. Additionally, in modern power system protection, as mentioned by

Leelaruji & Vanfretti (2012), communication devices are integrated to enable communication

channels between the relays, different network assets, and control systems. This integration

enables the implementation of digital relay protection using multiple communication protocols.

2.3 Identifying the Primary and Backup Relays

In this section, a comprehensive overview is provided of the operational principles of the

Directional Over-Current Relay (DOCR). Besides, describes the approach to select the backup

relay or set of backup relays to a specific primary relay in power systems.
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2.3.1 Directional Over-Current Relays

The directional over-current relay is a type of protection relays that is based on two parameters

the current direction and the current magnitude. Glover et al. (2012) defined Inequality 2.1, a

relay operates within the specified angle difference, which is represented by 𝜙 − 𝜙1, where 𝜙1 is

a variable that determines the desired direction and 𝜙 is the angle difference between the current

and the reference voltage. When current flow within this range, the relay identifies this as a fault

condition and open the associated circuit breaker.

−180◦ < (𝜙 − 𝜙1) < 0◦ (2.1)

However, the current is considered as normal operation, when the current flow outside the

defined range. Figure 2.2 illustrates a 4-bus power system that utilizes DOCR. For example,

when the fault occurred in transmission line 3, the fault current will flow towards the least

impedance. Which in this case the current will flow from bus 3 and bus 4 towards to the fault

point.

Bus 1

B1 B2

Bus 2

Line 1 B3 B4

Bus 3

Line 2 B5 B6

Bus 4

Line 3

Figure 2.2 4-bus system

To clear the fault, the pair relays (B5, B6) are considered the primary DOCR relays to respond

and disconnect line 3 from the power source and the load. However, if the fault is not cleared

by the primary relay (B5) due to any inoperative circumstances, the subsequent backup relays

to respond to (B5) will be a sequence of relays according to their proximity to the fault, with

(B3) being the closest to respond and isolate the fault and (B1) being the farthest to the latest to

respond the fault.
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However, to avoid overlapping between the primary and backup relays, an introduction to have a

time delay between the relays is elaborated in Section 2.4.

Although identifying the DOCR relay pairs of protection in the previous simple 4-bus system

is relatively straightforward using graph theory in Al-Roomi (2022), larger and more complex

systems require more effective and complex algorithms to identify these pairs. The next

subsection 2.3.2 represents the LINKNET method to identify the primary and the backup relays.

2.3.2 LINKNET Method

Warford (2002) presented the linked-list as a linear data structure used for data storage and

organization. The list consists of a sequence of elements called nodes, each node has two

parameters value and pointer. The value stores the data whereas the pointer refers to the next

node in the list to link all the nodes. However, the last node in the list typically has a pointer to a

null, indicating the end of the list.

The LINKNET is type of linked-list structure that was utilized by Laway & Gupta (1994) to

identify the primary and backup relays. This structure has the advantage of changing the list

according to power network topology by to adjust the list size based on the number of buses in

the power system.

This linked-list consists of three main vectors: List, Next, and Far. Constructing the vectors is

based on power network topology, such number of the buses and the location of the buses.

• List: is a vector that has all the buses for given system and the vector’s size equal to total

number of the buses. Each value in this vector represents the DOCR that direction points

towards that bus.

• Next: this vector stores the all DOCRs that are related to a specific bus and the pointer refer

to the next DOCR.

• Far: unlike List vector, this vector has the DOCR that is located close to a bus and the DOCR

direction points away from that bus.
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The flowchart in Figure 2.3 provides the detailed steps of Birla et al. (2004) implantation

of LINKNET method. Firstly, the List vector is constructed by recording all the buses with

corresponding DOCRs in this vector by scanning all the branches. The branch is defined as a

transmission line that connects two different buses along with their corresponding relays. Then,

the Next vector is constructed from List vector containing all the DOCRs whose directions are

directed towards.

Start

Constitute vector

NEXT using LINKNET

Read 𝑗 total no. of 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 × 2

and 𝑖 = 1 for fault lo-

cation at branch end 1

𝑁𝐸𝑋𝑇 (𝑖) = 0 &

𝑖 = 𝑁𝐸𝑋𝑇 (𝑘)?

𝑁𝐸𝑋𝑇 (𝑖) = 0?

𝑖 = 𝑁𝐸𝑋𝑇 (𝑘)?
𝑘 = 1𝑡𝑜 𝑗

Perform block 𝑌 steps to find

backup relays for location 𝑖

𝑖 = 𝑖 + 1

𝑖 > 𝑗?

End

Perform both block

𝑋,𝑌 steps, add both

resulting groups

of backup relays

to find backup

relays for location 𝑖

No backup relay ex-

its for fault location 𝑖

Perform block 𝑋 steps to find

backup relays for this location 𝑖

No

No

No

Yes

Yes

Yes

No

Yes

Figure 2.3 LINKNET flowchart

Taken from Birla et al. (2004)

Subsequently, the Next vector has different scenarios according to its values. For example, when

the Next vector has pointed to zero value and position k, then, it indicates that is no backup relays.
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However, when Next vector has pointed to zero value in specific direction such as clockwise

around a bus, thus, continue searching in counterclockwise until find all the backup relays.

Then, proceed to the next value in the List vector, the flowcharts block X and block Y ("see

Appendix I, Figure-A I-1a,b") respectively, assets the main flowchart in Figure 2.3 to obtain the

backup relays. This process should be repeated until all available backup relays associated with

a particular bus are acquired and the Next vector reaches a zero pointer. Finally, the Far vector

assists in determining relay pairs by identifying the inverse of Far vector which corresponds to

the far-bus faults that are associated with the respective primary relay.

2.3.3 Case Study: 5-Bus System

Line 1

Line 2

Line 5

Line 4

Line 6

Line 3

Bus 1 Bus 2 Bus 5

Bus 4Bus 3

b3
b1 b2

b4

b6

b11

b5

b7

b9

b12

b8
b13

b10

b14

Line 7

Figure 2.4 5-bus system with directional overcurrent relays

Figure 2.4 illustrates a 5-bus system with directional overcurrent relays installed near to each

bus. This system consists of a power source connected to bus 1 and four loads distributed from

bus 2 to bus 5. All the buses are connected via seven transmission lines creating seven different

branches. In this system, a 14 DOCRs are installed in the transmission lines, where each relay

has an ongoing direction from its nearby bus, as depicted in Figure 2.4. The numbering of

DOCRs depends on the labeling of the transmission lines, starts from bus 1 to bus 2, then, bus 2
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to bus 3,4, and 5, respectively. The line 7 connects the bus 4 and 5. This numbering scheme is

crucial to determine the relay pairs using LINKNET.

To identify the primary and backup relays pairs for 5-bus system, LINKNET method is

constructed and solved using MATLAB. Figure 2.5 illustrates the LINKNET structure for the

List and Next vector. The List has two variables (Bus, nearby relays), while the Next vector acts

as a pointer. Considering the blue arrows points from List towards Next vector, whereas the red

arrows indicate the next backup relay in List.

List Next 

1st iteration

2nd iteration

3rd iteration

Figure 2.5 Graphical representation of

LINKNET for List and Next vectors

To provide an example of selecting backup relays for (b2) relay. Starting with (b10), which is

the last element that bus 2 has and it is located as the 10th element in List. Subsequently, this

element points to the 10th element in Next vector which has value of 8. Then, track the pointer

from Next vector to the 8th element in the List. Hence, the (b10) and (b8) are initial backup

relays, nevertheless, this process is required to be iterated until the Next vector reaches zero

values. In this case, the process is iterated three times and produced a set of backup relays (b10,
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b8, and b6) for the (b1) relay. The detailed LINKNET structure and vectors are presented in

("see Appendix I, Table-A I-1").

The Primary relays can have multiple backup relays. For example, the relay (B2), located at

nearby bus 2, is considered as the primary relay and responsible to respond if a fault occurred in

line 1. When the fault occurred, the current tends to flow through the path of least impedance.

Therefore, it is necessary to interrupt the current flowing towards bus 2. Then, the relays (b6,

b8, and b10) are considered as the backup relays for (b2). This set of backup relays is selected

because they are directed towards to bus 2. Table 2.1 summarizes all the primary and backup

relays for each line.

Table 2.1 Primary and backup pairs relays for 5-bus system

Line Primary relay Backup B1 Backup B2 Backup B3

Line 1
1 4 – –

2 10 8 6

Line 2
3 2 – –

4 12 5 –

Line 3
5 10 8 –

6 12 3 –

Line 4
7 10 6 –

8 14 11 –

Line 5
9 8 6 –

10 13 – –

Line 6
11 5 3 –

12 14 7 –

Line 7
13 7 – –

14 9 – –

2.4 Primary and Backup Relays Coordination

This section covers the mathematical representation and an overview of inverse-time directional

overcurrent relays. Additionally, after identify the primary and the backup relays in previous

Section 2.3, this section demonstrates the process of coordinating relay pairs to ensure their

simultaneous operation, which involves introducing a time delay between the relays.
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2.4.1 Inverse-time Directional Overcurrent Relay

After specifying the direction of the relays in Section 2.3.1, it becomes essential to integrate

time into the DOCR relays. This allows for better control over their operation, ensuring that the

backup relays do not trigger simultaneously during a fault event.

Glover et al. (2012) presents an inverse-time overcurrent relay to measure the current flowing

through a circuit and compares it to a predetermined magnitude set-point. When the fault current

exceeds the pickup current, then, the relay energized and trips the corresponding circuit breaker

to protect the power system, this called pickup current 𝐼𝑝. Besides, the Time Dial Setting (TDS)

is an adjustable parameter in the relay to have a time delay and consequently enabling the

adjustment of the relay’s operating time.

Furthermore, the operating time of an inverse overcurrent relay is a decisive parameter in

determining the effectiveness of the protection scheme. The relay’s operating time 𝑡, according

to Al-Roomi (2022), is the following Equation 2.2:

𝑡 = 𝑇𝐷𝑆 ×
𝐴

(
𝐼

𝐼𝑝
)𝐵 − 1

(2.2)

Where is:

• 𝑇𝐷𝑆: is time dial setting,

• 𝐼: is the current measured from CT sensor.

• 𝐼𝑝: the pick-up current is the current level at which the relay starts to respond to an overcurrent

condition.

• 𝐴, 𝐵: are prefixed parameters that are depending on the specific application and the desired

time-current characteristic of the relay.

The shape and position of the time-current curve are determined by the design of the protective

device and the requirements of the system being protected, where 𝐴, 𝐵 determines the slope
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and the curvature of the time-current curve and the influence on to relay’s response to the fault.

According to Al-Roomi (2022), the IEC-60255 standard, the relay’s mode of operations are

standard inverse, very inverse, extremely inverse, and long-time standby earth fault as Table 2.2:

Table 2.2 Inverse-time parameters

Relay characteristics A B
Standard inverse 0.14 0.02

Very inverse 13.5 1

Extremely inverse 80 2

Long time standby Earth fault 1 120

The inverse-time directional overcurrent relay has some key characteristics such as adjustable

settings for the pickup current, time delay, and current direction, these characteristics enable the

relay to be adjusted according to the specific requirements of the power system.
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Figure 2.6 Inverse-time overcurrent relay

characteristics

The operating time of the relay depends upon the level of fault current. That is, the time of

operation of a relay depends on the configuration (𝐼𝑝, TDS) and the severity of the fault current.

Hence, the inverse overcurrent relay’s response to overcurrent is inversely proportional to the

duration and the magnitude of the current, this relation is plotted as a time-current curve as
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shown in Figure 2.6. This graph can determine the total time taken by a relay to respond and

rectify a fault. Thereby, the relay can be configured to swiftly respond or in extremely manner.

2.4.2 Definition of Relay Coordination

Coordinating relays in a power system is crucial to guarantee that only the relay closest to a fault

operates to isolate the faulted section, while the backup relay operate after a specified time delay,

allowing the primary relay sufficient time to respond.

This approach prevents unnecessary tripping and minimizing power flow disruptions for the

unaffected areas. Thus, provides an extra layer of protection and adds redundancy to improve

the reliability and effectiveness of the protection scheme. This time delay between the primary

relay and backup relay is defined as Coordination Time Interval (CTI).
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Figure 2.7 Relays operating time in 5-bus

Figure 2.7 shows different operating times for set of relays during the occurrence of a fault in

4-bus in Figure 2.2. It is noticeable that the (b5) relay have the shortest operating time and

operate faster response, whereas the (b1) relay requires a longer time to activate.
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Consequently, a well-designed protection schemes will have a time-current characteristic that is

optimized for the specific application, providing rapid and effective protection against faults

while minimizing unnecessary tripping. The optimization for obtaining the relay’s parameters is

further described in details in subsequent Chapter 4.

2.5 Conclusion

In conclusion, identifying primary and backup relays are important components in the protection

scheme of power systems. Whereas the primary relays are considered the main relays to initialize

a response to nearby faults occurred in the transmission lines, the backup relays provide a second

layer of protection in case the primary relays were failed due to any circumstances. Using

LINKNET approach to identify the relay pairs. Together, the List and Next vectors enable

efficient execution of identifying the relay pairs for the entire system.

The inverse-time directional overcurrent relays has various parameters, including time, direction,

and fault current magnitude to be configured for each relay. Moreover, the CTI represents the

time delay between the activation of the primary and backup relays. This parameter is critical to

ensure that the primary relay operates first, and the backup relay only intervenes if the primary

relay fails to operate within the designated time. The time-current curve is typically based on

the specific requirements of the system being protected, taking into account factors such as the

expected range of fault currents, the sensitivity of the protection scheme, and the response time

needed to minimize damage to the system.



CHAPTER 3

FAULT CLASSIFICATION USING GRAMIAN ANGULAR FIELD AND NEURAL
NETWORKS

3.1 Introduction

This chapter proposes the concept of a fault classifier based on image transformation and

neural networks. The purpose of this approach is to utilize convolutional neural networks in

collaboration with image transmission to extract the features from a given time-series signals

and fully connected neural networks are used to perform the classification process.

This chapter provides a comprehensive overview for the transmission lines faults in Section

3.2. Furthermore, the proposed model will be introduced in Section 3.3. Besides, provides a

background and mathematical representation for converting time-series into images in Section

3.4 and feature extraction using convolutional layers in Section 3.5. In addition, addressing the

issue of overfitting in a classifier in Section 3.6 and proposed neural network architecture in

Section 3.7. Lastly, a case study focusing on a particular power system is presented in Section

3.8 and conclusion in Section 3.9.

3.2 General Overview of Transmission Line Faults

The power system is a crucial infrastructure for modern society, and its stable operation is

essential for ensuring the continuity of various services. However, power system faults can occur

due to various reasons such as equipment failure or natural disasters.

Fault classification is the process of recognizing and categorizing different types of faults in a

power system. It is a major part of power system protection, as it is used to differentiate between

normal and abnormal conditions and classification the type of fault, the location of the fault, and

the duration of the fault. Common types of fault include short-circuit and grounding.
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Figure 3.1 Overview for transmission line faults

Figure 3.1 depicts the three primary categories of power system situations, including symmetrical

and asymmetrical faults, as well as normal operation.

• Symmetrical fault occurs when there is an equal amount of current flowing in all three

phases of a three-phase system. Symmetrical faults produce equal current magnitudes in

each phase and are usually easier to detect and diagnose compared to asymmetrical faults.

For example:

- Three-Phase fault: This fault occurs when all three phases of the line connected

simultaneously. This can cause a large amount of current to flow through the system,

which can damage equipment and potentially cause a power outage.

- Three-Phase-to Ground fault: alike three-phase fault, this fault is when all the phase

are connected to each other and connected to the ground.

• Asymmetrical fault occurs when the current flowing in each phase is not equal. Which

results more complex faults than symmetrical faults because of in unbalanced currents and

voltages situations in the power system. For example:

- Single-Line-to-Ground fault: where single line of the transmission line is affected and

contacted with a ground reference point. It can be caused by equipment failure, insulation

failure, or loose connections.
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- Line-to-Line fault: occurs when a short circuit occurs between two transmission lines,

where two phases were connected together. Falling a tree branch or other debris across

could impose such a fault.

- Line-to-Line-to-Ground fault: similar to line-to-line fault, this fault comes when two

phases connected conjointly and into contact with the ground.

In any of these scenarios, the power flow in the line will be disrupted potentially causing in

lack of power and damage to the transmission line. Additionally, the extent and severity of the

damage caused by the fault will depend on factors such as the type of fault, its location, and how

long it persists. Hence, it is crucial to design a protection system capable of withstanding all

types of faults, detect, and respond to faults in a timely manner.

3.3 Proposed Architecture for Fault Classifier

To fulfill the research’s objective, a fault classifier that is based on machine learning is developed.

The phases to produce the proposed fault classifier are illustrated in Figure 3.2.

Current

Signals

Voltage

Signals

Image Trans-

formation

Feature

Extraction:

Convolu-

tional Layers

Concatenation

Train

Neural

Network

Figure 3.2 Stages for proposed fault classification

The preliminary phase is to collect the raw data from the transmission lines and provide these

data as input to the neural network to classify and whether the fault occurred in the transmission

lines or not and determine fault type. Since the voltages and the currents are obtained from a

power system networks as variation between the amplitudes and time, it is necessary to obtain the

data at a predefined sampling rate. In order to ensure the compliance with standards, this research
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has been conducted with considering the established standards. As outlined in Bishop & Nair

(2023) IEC 61850-9-2, the signals are required to be sampled at 4,800 samples per second (Hz).

Thereafter, the fault signals are visually represented using GAF and each voltage and current

phases are transformed as a separate a RBG image. This is accomplished through mapping the

time-series data to a 2D matrix, where each element of the matrix represents a pixel of from an

image. The details of the transformation are elaborated in Section 3.4.1.

The next phase is to extract the temporal features from the generated images using sequence

of convolutional layers, where in this research, the selected architecture for performing the

convolutional operations is AlexNet as proposed in Krizhevsky et al. (2017). Each generated

image from both the voltages and the currents will pass through this architecture creating six

vectors of features.

Then, a concatenation layer is applied to produce a single vector that contains all the image’s

features. Whereas, the last phase is to do the classification task using customized fully connected

neural network. Further details and various techniques that were implemented to address the

issues associated with deep learning are provided in the subsequent Section 3.6.

3.4 Transforming Time-Series Signal to Images

In this section, a brief overview of transforming time-series to images is presented using Gramian

Angular Field with its mathematical expressions.

3.4.1 Gramian Angular Field

Gramian Angular Field (GAF) is an approach that aims to capture the dynamics of the time-series

in a visual format as an image. Figure 3.3 represents the essential phases for time-series

transformation, as indicated by Wang et al. (2015). Starts by normalizing the time-series to

mitigate the effect of anomalies and extreme values. The next step is to transform the signals
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from Cartesian coordinates, Figure 3.3a, to Polar coordinates, Figure 3.3b, to gain the advantage

of preserving its temporal dependency.
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Figure 3.3 The conversion of a signal from time-series into GASF image

For a given time-series 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑖}, where 𝑥𝑖 represents value at a given time. Then,

Equation 3.1 is used to normalize the signal, where the minimum value in the time-series will

be transformed to −1, and the maximum value will be transformed to 1. Hence, the values in the

given interval will be scaled proportionally between −1 and 1 .

𝑥𝑖 =
(𝑥𝑖 − max(𝑋)) + (𝑥𝑖 − min(𝑋))

max(𝑋) − min(𝑋)
(3.1)

Expression 3.2 transforms the normalized time-series 𝑥𝑖 into an angular representation using

the inverse cosine function. The radius 𝑟𝑖 is then calculated by dividing the time stamp 𝑡𝑖 by a

constant factor 𝑁 to regularize the span of the polar coordinate system.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝜙𝑛 = arccos(𝑥𝑖), −1 ≤ 𝑥𝑖 ≤ 1, 𝑥𝑖 ∈ �̃�

𝑟𝑖 =
𝑡𝑖
𝑁 , 𝑡𝑖 ∈ N

(3.2)

Consequently, the amplitude changes as the sequence values vary with time and are transformed

into angular changes in the polar coordinate system. In Wang et al. (2015), a temporal correlation
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is established between every pair of points. That is, the cosine summation of their respective

angles yields the identified temporal correlation; therefore, it leads to generating the Gramian

Angular Summation Field (GASF), as shown in relation 3.3. Hence, each pixel in the image

corresponds to the value in the GASF.

𝐺𝐴𝑆𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(𝜙1 + 𝜙1) cos(𝜙1 + 𝜙2) . . . cos(𝜙1 + 𝜙𝑛)

cos(𝜙2 + 𝜙1) cos(𝜙2 + 𝜙2) . . . cos(𝜙2 + 𝜙𝑛)
...

...
. . .

...

cos(𝜙𝑛 + 𝜙1) cos(𝜙𝑛 + 𝜙2) . . . cos(𝜙𝑛 + 𝜙𝑛)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

Figure 3.4 shows different generated images. When a transmission line experienced a fault, the

generated images will produce visually similar images in Figures 3.4a,b,c. However, Figure 3.4d

depicts the signal with normal operation or in case where this phase is not affected by the fault,

as will be elaborated in Section 3.8.5.2.

The reconstruction of the GASF matrix from the image format and the subsequent restoration of

the original time-series can present a significant challenge due to the uncertainty arising from

the randomness as elaborated in Wang et al. (2015). This uncertainty is directly influenced

by factors such as the resolution of the images, number of pixels, and its mapping in the color

spectrum.

a) Far fault current

signal from a bus

b) Near fault current

signal from a bus

c) Voltage fault signal d) No fault signal

Figure 3.4 Comparison between faulty and no-faulty images
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3.4.2 Data Acquisition

Choosing an appropriate sampling plays a crucial role in determining the characteristics of the

signal and the ability to capture finer details and variations within the sampled signal. Therefore,

adjusting the sampling time allows to control the level of detail captured in the GAF matrices. A

shorter sampling time means that more data points are available within a given time interval,

resulting in a higher resolution GAF matrix, providing a more detailed representation of the

essential dynamics. Thus, the images will be affected directly with the desired level of accuracy

and the quality of temporal features that will be extracted for classification task.

Choosing an appropriate sampling time depends on the specific application’s standard. Con-

sequently, the data are sampled at 4,800 samples per second (Hz), following the established

standards of data acquisition in digital substations the IEC 61850-9-2. The number of samples

and the duration of the fault which will be addressed in the Section 3.8.

3.4.3 Difference Between Image’s Size

a) 224 pixel b) 64 pixel

Figure 3.5 Comparison between current signals with

different images sizes

Selecting the size of GASF matrix will leads to different image sizes, each with different pixel

intensities. Figure 3.5 illustrates the comparison between the image sizes 224px and 64px,

respectively. With an increase in GASF dimensions, the number of pixels increases accordingly.
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Consequently, this allows for the preservation of more temporal features, affecting the image

quality and maintain the details to the original time-series data.

The selection of the GASF matrix size is made while taking into consideration the recommended

resolution and ensuring compatibility with commonly used convolutional layers such as AlexNet

or VGG-16. These convolutional layers are specifically designed to optimize computational

performance and maximize the extraction of essential features. This will be further elaborated

in Section 3.5.

3.5 Features Extraction using Convolutional Layers

In this section, a discussion is presented to elaborate the methodology to extract the essential

features from the generated images utilizing AlexNet.

3.5.1 Convolutional Layers

The function of these layers is to execute mathematical operations on the input images and further

convoluted layers, which enables the extraction of relevant features after each convolutional

operation. O’Shea & Nash (2015) defined the convolution operations as performing an element-

wise multiplication with the corresponding pixel of an image by sliding a small matrix, referred

to as a filter or kernel, over the image. Figure 3.6 shows the multiplication between the numerical

values of an image and the kernel, where the sum of that operation generating new layer of

features. However, the movement of a kernel over the pixels depends on an architecture’s

structure. This parameter known as the stride, which dictates whether the window could be fully

or partially multiplied with next window of pixels.

Once the convolutional layer is produced, then passed through a nonlinear activation function,

such as a ReLU (Rectified Linear Unit) or sigmoid functions, to introduce nonlinearity in the

model. This nonlinearity helps to determine whether to activate the associated neuron with its

corresponding label by saturating the output.
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Figure 3.6 CNN operation

Taken from O’Shea & Nash (2015)

3.5.2 Pooling Layers

Albawi et al. (2017) outlined these layers as they used to reduce the dimensions the convolutional

layers and further filtering the redundant features, thereby reducing the computational resources

and time, while extracting more important features and minimizing the number of unnecessary

features. This is achieved by dividing the input layer into smaller windows and returns either the

max or the average value within each window as depicted in Figure 3.7.

4211
8765
0123
4321

86
43

Max pool
2x2 filter and stride 2

Single depth slice Output layer

Figure 3.7 Map-pooling operation

Taken from Albawi et al. (2017)

3.5.3 AlexNet Architecture

Krizhevsky et al. (2017) proposed the architecture of AlexNet that consists of five convolutional

layers. The first and the second convolutional layers followed by max-pooling layers, whereas

the third, the fourth and the fifth are connected in series without any pooling layers between them.
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Table 3.1 summarizes the AlexNet architecture, displaying the details of each layer including its

size, kernel, stride, and padding.

In this model, the Rectified Linear Units (ReLU) are utilized as activation functions. Moreover,

the authors introduced the concept of using Graphics Processing Units (GPUs) for training

the deep neural networks, which significantly accelerated the learning process. Hence, this

architecture is selected in this research to extract the temporal features from the images.

Table 3.1 AlexNet architecture, Krizhevsky et al. (2017)

Layer Size Kernel Stride Padding
Input layer (image) 224 × 224 × 3

Convolution layer 1 11 × 11 96 4 –

Max pooling 3 × 3 – 2 –

Convolution layer 2 5 × 5 256 1 2

Max pooling 3 × 3 – 2 –

Convolution layer 3 3 × 3 384 1 1

Convolution layer 4 3 × 3 384 1 1

Convolution layer 5 3 × 3 256 1 1

Max pooling 3 × 3 – 2 –

Output Layer 256 × 5 × 5

In the context of fault classification in transmission lines, a total of six measurements are gathered

from a bus, which are divided into three from voltage readings and three from current readings,

representing the three different phases (A, B, and C).

Figure 3.8 illustrates the process of extracting temporal features from the generated images

discussed in the previous Section 3.4. In this process, the AlexNet is utilized to extract these

features from each image. As a result, a flatten feature vector of size 6,400 is generated for each

image which also indicates for each phase. The output features obtained from this step will be

utilized in the subsequent Section 3.7.
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Figure 3.8 Extracting features from images using CNN

3.6 Handling Overfitting in Classifier

In neural networks, the overfitting problem is the main issue when training the neural networks.

It occurs when the neural network model becomes more specific and starts to memorise the

dataset. Hence, the model loses its ability to provide a general model and its capability to predict

the correct class when an external instance is given to the model.

To classify the faults from the transmission lines, the collected voltages and currents will be

sampled from the same transmission line, forming the dataset. However, it is important to note

that training a classifier with such a dataset, which exhibits similarities, could potentially lead to

overfitting issues during the training process. To avoid such an issue during the training, the

proposed solutions are discussed as follows:

3.6.1 K-fold Cross-Validation

The concept behind K-fold cross-validation is to provide insights into the trained neural network

model in generalization capabilities and to assess the model’s performance to accurately classify

the dataset. The implementation for this technique is based on dividing the training dataset into
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equal K-fold subsets. For each fold, the elements within each subset are selected randomly for

both training and validation subsets shown in Figure 3.9.

The model is trained and validated K times. During each training iteration, one of the K folds is

selected as the validation set, while the remaining folds are used as the training set.

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Test DatasetTraining Dataset

All Dataset

Figure 3.9 K-Fold cross validation

Thus, the validation subset is used as testing subset in each iteration to assess and validate

the model’s performance. This approach provides more comprehensive evaluation and helps

mitigate the variance associated with a single train-test split.

3.6.2 Dropout

Srivastava et al. (2014) discussed the concept of introducing the dropout layers between the

dense layers in the neural network. The proposed approach is to randomly drop or neglect

neurons and backward passes between the layers during each training iteration. As a result, there

are different neurons and distinct backward passes after each training iteration are activated,

leading to more robust model and resistant to the redundant data and generalizes better to any

external data.
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3.7 Classification Task

This section provides the proposed neural network architecture with overview about softmax

activation function and cross-entropy loss.

3.7.1 Proposed neural network architecture

In this research, a modification is made to AlexNet architecture to accommodate the model’s

requirements. The produced feature vectors from the convolutional layers from the previous

Section 3.5 are concatenated into a single vector. The resulting vector, consisting of features

extracted from three-phase voltages and three-phase currents has 38,400 features in 1-dimensional

vector as shown in Figure 3.10.

V1

6,400 Features

V2

6,400 Features

V3

6,400 Features

I1

6,400 Features

I2

6,400 Features

I3

6,400 Features

Fully concatenated vector

38,400 Features

Figure 3.10 Fully concatenated feature vector

The proposed neural network architecture is presented in Table 3.2. The sizes of the hidden

layers were selected to have 2𝑛 multiples to simplify the computing effort. The neural network

was coded as Python code and executed using Google Colaboratory tool to get the access to

powerful GPUs capabilities, thereby reducing computational time.

3.7.2 Softmax classifier

The softmax is an activation function whose objective is to predict the instance’s label in the

training phase in categorizing multi-classes classifier. This function is employed as the last layer

of a dense neural network by assigning a probability to each class. To converts the output vector,
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Table 3.2 Proposed hidden layers

Layer Input features Output features
Hidden Layer 1 38,400 8,192

Hidden Layer 2 Dropout (25%)

Hidden Layer 3 8,192 4,096

Hidden Layer 4 Dropout (25%)

Hidden Layer 5 4,096 512

Softmax 512 8

from the numerical values into probabilities with range lies between [0,1] and sum equal to 1.

The mathematical representation is expressed in the following Equation 3.4:

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖∑𝐾
𝑗=1 𝑒

𝑧
𝑗

(3.4)

Since the output vector from the dense neural network is subset from real numbers 𝑧𝑖 ∈ R, the

exponential 𝑒𝑧𝑖 function is applied to ensure that all the elements have positive values. Whereas
∑𝐾

𝑗=1 𝑒
𝑧
𝑗 is a normalization term, creating a valid probability distribution with range (0, 1) and

sum to 1.

3.7.3 Cross-entropy loss

Cross-entropy loss is a loss function that used in classification tasks. Zhang & Sabuncu

(2018) explained the cross-entropy loss as an approach to quantifies the predicted output labels

probability with true labels to enhance the likelihood of an event. Subsequently, improve the

model’s parameters by adjusting the weights parameters to minimize the loss. The multi-class

cross-entropy loss function can be expressed as the negative summation between the true

probability and the logarithm of predicted probability as follows:

𝐿𝑜𝑠𝑠 = −

𝑁∑
𝑛=1

𝑦𝑛 × log �̂�𝑛 (𝑥𝑖) (3.5)
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Whereas 𝑦𝑛 presented the true label probability and �̂�𝑛 (𝑥𝑖) the predicted class probability for

a given example 𝑥𝑖. Penalizing the model more when it predicts low probabilities for the true

class or high probabilities for the incorrect classes. Thereafter, any optimization algorithm can

be used to minimize the cross-entropy loss function to enhance the model’s performance.

3.8 Case Study: 3-bus System

This section presents a 3-bus system benchmark to test and validate the proposed classifier by

generating, training, and testing the fault data.

3.8.1 Data Generation

Figure 3.11 3-Bus system with fault occurred in line 1

Figure 3.11 illustrates the 3-bus system case study that is implemented in the research. The 3-bus

system consists of: Three-phase transmission lines extended to distance of 200km and operating

at 138kV, a 30 MVA generator as a power source connected to bus 1, and two loads with 10-20

MW connected to buses 2-3, respectively. The power flows through the transmission lines from

bus 1 to feed the buses 2-3. The transmission lines have identical electrical characteristics as

shown in Table 3.3.
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In order to produce the data, the system was simulated multiple times to acquires the voltages

and currents. The transmission line 1 is considered as the faulty line and is used to collect the

measurement data from bus 1 using measurement tools from Simulink library. The measurements

considered the phase-to-ground and Root Mean Square (RMS) for both voltages and currents.

The duration of simulation is 300 ms with fault occurred at t = 150 ms. The data are sampled at

4,800 samples per second (Hz). The fault location varied along the transmission line 1 to collect

the data for at every 5 km interval, hence, the transmission lines were modelled as two separate

three-phase PI section lines blocks with a sum equal to 200 km and three-phase fault block in

the middle.

Consequently, each simulation generated 1,441 samples for each instance, totaling 8,646 data

points for the voltage and current instances across all three phases. The simulated data are

exported and saved as MATLAB Data format.

Various fault combinations were formed and simulated in between phases A, B, C, and ground,

the detailed fault combination is presented in subsection 3.8.2.

Table 3.3 Transmission lines characteristics

Resistances Ω/km Inductance H/km Capacitance F/km

Positive Zero Positive Zero Positive Zero

Transmission Line 1,2,3 0.01273 0.3864 0.9337e-3 4.1264e-3 12.74e-9 7.751e-9

3.8.2 Dataset Labelling

The dataset in this research consists of different 8 classes distributed between normal and

abnormal situations. Where the transmission lines could examine various types of faults between

the phases or with grounds. This research considered both symmetrical faults such three-phase

fault and asymmetrical faults such as single line-to-ground and double line-to-line faults and the

normal operation without fault occurring.
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Table 3.4 indicates the different fault combinations between the phases and the ground with the

values of fault resistances. Additionally, to convert the categorical values into numerical format,

the one-hot encoder transformed the class’s label into one-of-K scheme.

Table 3.4 Fault classes and one-hot representation

Fault Type Selected Phases Fault Resistance One-hot encoder
Single Line-to-Ground A 0.001 Ω [0,0,1,0,0,0,0,0]

Single Line-to-Ground B 0.001 Ω [0,0,0,0,1,0,0,0]

Single Line-to-Ground C 0.001 Ω [0,0,0,0,0,1,0,0]

Double Line-to-Line A,B 0.001Ω [1,0,0,0,0,0,0,0]

Double Line-to-Line A,C 0.001Ω [0,1,0,0,0,0,0,0]

Double Line-to-Line B,C 0.001Ω [0,0,0,1,0,0,0,0]

Three Phase Fault A,B,C 0.001Ω [0,0,0,0,0,0,1,0]

Normal Operation – – [0,0,0,0,0,0,0,1]

3.8.3 Dataset Split

The dataset is divided into two main sets, the training set and test set as shown in Table 3.5. The

training set represents 70% portion of the total dataset, whereas, the test set is 30%. Moreover,

the training set is further divided into training sets and validation sets with fixed percentage

80% and 20%, respectively, to be able to implement the k-fold cross validation as discussed in

previous Section 3.6.1.

Table 3.5 Distribution of dataset

Total number of images Training set Validation set Test set
320 179 45 96

Since the data are distributed and shuffled randomly using built-in functions in Python, this

ensures that the training and testing phases are based in a more representative and unbiased

manner.
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3.8.4 Setting the Neural Network Hyper-Parameters

To determine the neural network behavior and architecture, this section introduces the hyper-

parameters that were settled in this research such as training by batches. Batching refers to

dividing the training dataset into smaller batches. Thus, reducing the memory allocation and

having faster convergence rates and lower computational time.

Additionally, the learning rate controls the model learning behavior after each iteration to update

model’s weights. Setting lower or higher learning rate can impact the training performance,

as higher learning rates results faster convergence time; however, using higher learning rates

carries the risk of potential divergence in the training process as it could overshoot the minimum.

In contrast, lower learning rates have slower convergence to reach the minima with more precise

adjustments to the model’s weights.

The k-fold, dropout, activation function and pooling parameters were discussed in sections 3.6

and 3.5, receptively. The neural network hyper-parameters are summarized in the following

Table 3.6.

Table 3.6 Proposed neural

network hyper-parameters

Parameter Value
Learning rate 0.000001

Number of K-fold 5 folds

Number of epoch 100

Batch size 4

Dropout rate 25%

Optimizer Adam

Number of hidden layers 6 layers

Activation function ReLU

Pooling Max-pooling
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3.8.5 Results and Discussion

The objective of the proposed classifier is to accurately classify and provide a general model

to determine the fault type in the transmission lines or whether it is normal operation. This is

possible using the neural networks proposed in the previous Section 3.7, where the objective

function is to minimize the loss function using Adam optimizer.

Figure 3.12a,b shows the learning and loss curves over time, respectively. Whereas the learning

curve depicts the model’s accuracy behavior after each epoch, the loss curve illustrates the

optimizer performance to minimize the objective function, Equation 3.5, to achieve the optimal

weights by quantifying the losses during the training. Despite there are some fluctuations and

variations in Figure 3.12b, the overall pattern indicates a decrease in the losses, hence, the

optimizer is converging towards optimal values as the model continue training after each epoch.

Moreover, in the initial training phase, the model’s accuracy increases rapidly, reaching 80%

within 60 epochs. Subsequently, the learning curve shows a steady and gradual increase,

eventually reaching approximately 89% in the last 40 epochs. This consistent improvement

indicates that the learning process is approaching its saturation point before starts memorizing

the training dataset and causing overfitting, consequently, the training process was stopped after

100 epochs.

3.8.5.1 Confusion and Performance Matrices

The evaluation process to determine the performance of the network model by assessing different

criteria.

Confusion matrix is a heatmap that visualizes the relationship between the predicted and

the actual labels in 2-dimensional axes. The x-axis represents the actual labels, whereas the

predicted labels are in y-axis. The confusion matrix in Figure 3.13 shows the misclassifications

in test set from actual label to wrong predicted label. In this case, a particular sample of a fault

A&C was classified to fault B&C class.



52

0 20 40 60 80 100

Epoch

10

20

30

40

50

60

70

80

90

A
cc

u
ra

cy
, %

2-Fold

a) Accuracy curve

0 20 40 60 80 100

Epoch

0

0.5

1

1.5

2

2.5

L
o

ss

2-Fold

b) Loss curve

Figure 3.12 2-fold in training process

The difference between the actual and the predicted values are analyzed using True Positive (TP),

True Negative (TN), False Positive (FP), and False Negative (FN), using the following metrics:

Figure 3.13 Predicted and true classes as confusion matrix



53

Accuracy: represents the percentage between the total predict values and the total true values as

the following equation 3.6:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (3.6)

After the model completed 100 epochs of training, the training accuracy for 5-folds were varying

between 88.09% and 88.88% over 179 instances. Additionally, the validation accuracy was in

between 95.5% and 100%, in this case, there are 2 instances that incorrectly classified or the

total validation set is correctly classified. The summary was represented in Table 3.7. Whereas

in test set, the trained neural network was able to classify 94 instance correctly. That represents

a 97.9% of total test set.

Table 3.7 Training

model’s accuracy

Accuracy
Fold Training Validation

1 88.09% 100%

2 88.71% 97.7%

3 88.78% 100%

4 87.89% 95.5%

5 88.88% 100%

Sensitivity quantifies how the model can detect the positive instances in multi-class situation as

indicated in the following Equation 3.7:

Sensitivity =
TP

TP + FN
(3.7)

Precision is a performance metric that measures how many correctly instances classified are

relevant to the target class as shown in Equation 3.8:
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Precision =
TP

TP + FP
(3.8)

F1-score to measure the harmonic mean between the sensitivity and the precision in combined

format as given in Equation 3.9

F1-score =
2 × precision × sensitivity

precision + sensitivity
(3.9)

Table 3.8 compares the classifier’s performance for each class based on the previous metrics. The

fault A&G and fault B&C exhibit slightly lower precision scores of 0.94 and 0.92, respectively.

In terms of sensitivity, it reveals a misclassifications correlation between the fault A&C and

three phase fault classes for misclassifation.

Table 3.8 Performance of the classifier

Faults Precision Sensitivity f1-score
Fault A&B 1.00 1.00 1.00

Fault A&C 1.00 0.90 0.95

Fault A&G 0.94 1.00 0.97

Fault B&C 0.92 1.00 0.96

Fault B&G 1.00 1.00 1.00

Fault C&G 1.00 1.00 1.00

Normal Operation 1.00 1.00 1.00

Three Phase Fault 1.00 0.92 0.96

3.8.5.2 Effects of Six-Phases Features on Accuracy

The explanation of the high accuracy results beside tuning model’s hyper-parameters as shown

in previous Section 3.8.4, is because of the similarity induced within the neural network. This

occurs due to the presence of six phases, three phases for both voltages and currents.

Figure 3.14 illustrates the image’s difference between fault A&B and fault B&C, when a fault

occurs between phases A and B, phase C is slightly affected and maintains similar values
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throughout the dataset to this specific fault for both the voltages and the currents, as Figure 3.4

shows.

Therefore, there are two feature vectors from both voltages and currents that remain unchanged

for the unaffected phase, while the other four vectors will have more significant manner to the

fully concatenated vector and to the classification task as discussed in Section 3.7. Consequently,

two particular feature vectors remains constant during training.

However, this relies primarily on the selection of appropriate hyper-parameters and the architec-

ture of the neural network. In different architecture, the classifier may reach saturation, causing

the optimizer to struggle to converge. Thus, lose its ability to maintain the similarity propriety.

a) Fault A&B

current: Phase A

b) Fault A&B

current: Phase B

c) Fault A&B

current: Phase C

d) Fault B&C

current: Phase A

e) Fault B&C

current: Phase B

f) Fault B&C

current: Phase C

Figure 3.14 Comparing between fault A&B and fault B&C images

3.9 Conclusion

In conclusion, this chapter introduced a fault classifier that utilizes time-series transformation

into images using GAF and employs CNN for feature extraction from these images. The

proposed model was comprehensively described, encompassing various aspects such as an
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overview of transmission line faults, the architecture of the fault classifier, feature extraction

using convolutional layers, and measures to address overfitting.

Additionally, 3-bus case study was conducted to evaluate the performance of the proposed fault

classifier model, achieving an impressive 97.9% classification accuracy on the test set. This

outcome demonstrates the model’s ability to accurately classify faults in transmission lines.



CHAPTER 4

OPTIMAL RELAY COORDINATION TIME

4.1 Introduction

In order to fulfill with the research’s objective, this chapter will apply the methods outlined

earlier for identifying relay pairs and fault classification. The 9-bus test system will be used for

this purpose and subsequently determining the optimal replay coordination and compare the

results with existing literature.

This chapter is structured as follows: Section 4.2 will outline the optimization problem by

identifying the variables, constraints, and objective function. Section 4.3 will provide details

about the 9-bus test system and present the results for each method. Lastly, the conclusion will

be provided in Section 4.4.

4.2 Optimal Relay Coordination

The optimization is a mathematical operation where the main objective is to find the optimal

solution for certain variables for an objective function by either minimize of maximize the

objective function.

This section present the optimization for obtaining the optimal relay coordination time by

obtaining the relay parameters that are discussed in Chapter 2. Specifically, the primary and

backup relays will be coordinated to prevent any relay of misoperation. This coordination is

achieved by short-circuit analysis, where the type of fault plays a crucial role in identifying the

parameter 𝐼 in Equation 2.2. The selection of variables, constraints and the objective function

are discussed in the following subsections:



58

4.2.1 Optimization Variables

In an optimization problem, the design variables are the inputs or parameters that are being

optimized. The design variables are the decision variables in the problem. The main objective

is to identify the optimal values for these variables, which can involve either minimizing or

maximizing them with respect to the objective function. However, the variables in this case may

be integers or continues variables, hence, changing the optimization model.

In context of relay coordination, the optimization variables are the 𝐼𝑝 and TDS, as mentioned in

Chapter 2. While the values for TDS are defined as positive continuous variable, some literature

such as Amraee (2012) and Zeienldin et al. (2004) proposed that 𝐼𝑝 can be either discrete or

continuous variable. In this research, the 𝐼𝑝 is considered to be positive continuous variable.

4.2.2 Optimization Constraints

In addition to the variables, it is crucial to consider the constraints and the limitation associated

with the optimization problem. These constraints help define a feasible region where optimal

solutions can be discovered. Therefore, it is important to limit the optimization problem with

constraints to enhance the feasibility of the solutions.

Coordination time interval, as discussed in Chapter 2, it is important to ensure the coordination

between all the relays to be operative independently. According to Al-Roomi (2022), the CTI,

time delay between primary and backup relays is indicated by the following expressions 4.1 with

value 0.2 seconds:

𝑇𝑏𝑎𝑐𝑘𝑢𝑝 − 𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 ≥ 𝐶𝑇𝐼 (4.1)

Relay settings bounds is to guarantee that the relays operate within their designed operating

settings. Each relay typically has settings of TDS and 𝐼𝑝 that must be configured to ensure

that the relays operate within their intended operational range. Hence, both TDS and 𝐼𝑝 have

minimum and maximum values that are expressed as inequality constraints in expressions 4.2



59

and 4.3, respectively.

𝑇𝐷𝑆𝑖,𝑚𝑖𝑛 ≤ 𝑇𝐷𝑆𝑖 ≤ 𝑇𝐷𝑆𝑖,𝑚𝑎𝑥 (4.2)

𝐼 𝑝𝑖,𝑚𝑖𝑛 ≤ 𝐼 𝑝𝑖 ≤ 𝐼 𝑝𝑖,𝑚𝑎𝑥 (4.3)

The CTI value, as well as the minimum and maximum values of TDS and 𝐼𝑝, are defined

according to the system’s requirements. In this research, the minimum and maximum values of

𝐼𝑝 and TDS are defined according to Alam et al. (2015) as the following Equations 4.4 and 4.5,

respectively. 𝑇𝐷𝑆𝑖,𝑚𝑖𝑛 is set to 0.1, whereas 𝑇𝐷𝑆𝑖,𝑚𝑎𝑥 is set to 1.1.

𝐼 𝑝𝑖,𝑚𝑖𝑛 = 𝑚𝑎𝑥 [0.5, 𝑚𝑖𝑛[1.25 × 𝐼𝐿𝑚𝑎𝑥, 1/3 × 𝐼𝐹𝑚𝑖𝑛]] (4.4)

𝐼 𝑝𝑖,𝑚𝑎𝑥 = 𝑚𝑖𝑛[2.5,
2

3
× 𝐼𝐹𝑚𝑖𝑛] (4.5)

Where 𝐼𝐿𝑚𝑎𝑥 is the maximum load current in the transmission lines and 𝐼𝐹𝑚𝑖𝑛 is the minimum

fault current for a relay. Table 4.1 summarizes the minimum and maximum values of 𝐼𝑝 for

9-bus test system, whereas ("see Appendix I, Table-A I-2") shows the 𝐼𝐿𝑚𝑎𝑥 and 𝐼𝐹𝑚𝑖𝑛 for the

corresponding relays.

Table 4.1 Summary of relay 𝐼𝑝 bounds

Relay 𝐼 𝑝𝑚𝑖𝑛 𝐼 𝑝𝑚𝑎𝑥 Relay 𝐼 𝑝𝑚𝑖𝑛 𝐼 𝑝𝑚𝑎𝑥
1 0.183 0.304 13 0.046 0.076

2 0.319 0.530 14 0.046 0.076

3 0.033 0.054 15 0.046 0.076

4 0.033 0.054 16 0.046 0.076

5 0.117 0.196 17 0.662 1.103

6 0.117 0.196 18 0.662 1.103

7 0.117 0.196 19 0.616 1.027

8 0.117 0.196 20 0.616 1.027

9 0.033 0.196 21 0.662 1.103

10 0.033 0.196 22 0.662 1.103

11 0.183 0.196 23 0.760 1.266

12 0.183 0.196 24 0.760 1.266
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4.2.3 Objective Function

An objective function is a mathematical function that is used to describe the objective of an

optimization problem, to find the optimal solution that satisfies all the constraints. In the context

of this research, the objective function is a nonlinear mathematical function.

Equation 2.2 represents the operating time of a relay. Hence, the objective function is to

minimize the total operating time across all the primary relays 𝑖 in a power system protection is

defined in the following Equation 4.6:

𝑚𝑖𝑛
∑
𝑖=1

𝑇𝐷𝑆𝑖 ×
𝐴

(
𝐼

𝐼𝑝𝑖
)𝐵 − 1

(4.6)

Consequently, the choice of an appropriate optimizer or algorithm is crucial to effectively

support the nonlinear approach to find the optimal solution. In this research, the optimization

is modeled as a Non-Linear Programming (NLP) and the chosen solver in GAMS was the

CONOPT, utilizing Sequential Quadratic Programming (SQP) techniques.

4.3 Case Study: 9-Bus Test System

In this section, all the methods previously introduced in Chapter 2 and Chapter 3 are applied

to a 9-bus system as part of the implementation process. The purpose of this implementation

is to evaluate and test the effectiveness of the fault classification in the context of the 9-bus

system. Furthermore, allowing for a more detailed performance optimization in comparison

with existing literature in different fault scenarios.

To illustrate the identifying relays pairs in transmission line protection system and fault

classification using proposed classifier in Chapter 3 , a 9-bus test system from Alam et al. (2015)

is used as shown in Figure 4.1. As part of a 33kV transmission system, this test system consists

of 12-transmission lines L1-L12 and one 100 MVA power source at bus 1.
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The remaining buses are connected eight loads that are varied between 11.5MW and 3.3MW.

All the 24-relays are DOCR type installed, with two opposite direction relays positioned at each

transmission line.

Figure 4.1 9-bus test system

Taken from Alam et al. (2015)

4.3.1 Identifying the Primary and the Backup Relays

The process of identifying the primary and backup relays is discussed in Chapter 2. Using

LINKNET approach to determine the primary and the backup relays in 9-bus test system. The

results of LINKNET are summarized in Table 4.2.

Although relays R17, R19, R21, and R23 have the sets of three backup relays for every individual

relay, these backups cannot be utilized in the system due to certain constraints. The power

source, which is located at bus 1, meaning that if a fault occurs at point "I", the primary relays

responsible for rectify the fault are R17 and R18. The backup relays for R18 are provided in

Table 4.2. However, in the case of R17, disconnecting R24 could result in an outage for bus

2. As a consequence, the remaining transmission lines could become overloaded, leading to

unintended trips for the other relays and ultimately causing a blackout.
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This scenario applies similarly to the backup relays R22 and R20. A similar scenario is also

considered for R19, R21, and R23 due to their proximity to the generator.

Table 4.2 Primary and backup relay pairs for 9-bus test system

Primary
Relay

Backup
Relay 1

Backup
Relay 2

Primary
Relay

Backup
Relay 1

Backup
Relay 2

Backup
Relay 3

1 17 15 13 21 11 —

2 4 — 14 19 16 —

3 1 — 15 19 13 —

4 6 — 16 17 2 —

5 3 — 17 24 22 20

6 23 8 18 15 2 —

7 23 5 19 24 20 18

8 10 — 20 16 13 —

9 7 — 21 24 20 18

10 12 — 22 14 11 —

11 9 — 23 22 20 18

12 21 14 24 8 5 —

4.3.2 Fault Classification

Figure 4.2 illustrates the 9-bus test system modelled in Simulink. Within this system, the line "I"

is considered for fault classification using data acquired from measuring instruments installed at

Bus 7. The line "I" is between bus 6 and bus 7, with a length of the transmission line 200 km

and the transmission line modelled as two separate ’Three-Phase PI Section Line’ block. To

simulate faults occurring along the transmission line, in-line faults are produced at distances of

5 km, starting from near bus 6 and progressing towards bus 7. Consequently, a total of 40 faults

are produced for each fault type.

Similar to Section 3.8, the faults in the dataset were sampled at a rate of 4,800 samples per

second. The classification task is categorized into eight fault classes, and the dataset was divided

into training, validation, and test sets. The size of each table is shown in Table 3.5 and fault

classes are presented in Table 3.4.
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Figure 4.2 9-bus test system modelled in Simulink

Additionally, the neural network architecture implemented in the case study is identical to the

one described in Section 3.5. The training process utilized a 5-fold approach, as explained in

Section 3.6.1. Figure 4.3a illustrates the training accuracy over 100 epochs for each fold. The

accuracy steadily increased, reaching approximately 90% by the end of each training iteration.

Figure 4.3b represents the optimizer performance, the loss tended to decrease with fluctuations

throughout the training process, indicating a convergence.

As a result of the training process, the performance of the classifier was evaluated using the

test dataset, and the outcomes are depicted as a confusion matrix in Figure 4.4. Remarkably,

the classifier achieved exceptional accuracy by successfully identifying all 96 fault instances in

the test dataset. This outcome shows the proposed neural network performance of accurately

classify and detect faults in the 9-bus system.
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Figure 4.3 Training curves of the 9-bus test system

Figure 4.4 The results as confusion matrix for 9-bus test system

Moreover, when the signal is acquired from bus 7, it clearly reveals the presence of faults and

enabling the fault to be easily detected from this particular bus. A comparison between the

voltage signals acquired from bus 7 and bus 1 is presented in Figure 4.5. In Figure 4.5a, it is

evident that bus 7 provides a clear view of the fault that occurred at t=0.15s, whereas bus 1 in

Figure 4.5 lacks the necessary detail to observe the fault signal.
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However, when acquiring data from bus 1, voltage and current signals appears similar for all

different fault classes as shown ("see Appendix I, Figure-A I-2"), making it challenging for

the classifier to differentiate between the faults. Similarly, when the signals obtained from bus

6, the appearance of the fault in the signal is not clear as shown ("see Appendix I, Figure-A

I-3"). Therefore, the choice of the bus from which the signal is acquired is crucial, as it directly

impacts the clarity and sensitivity of the signal, thereby affecting the transforming time-series to

an image and classifier’s performance accordingly.
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b) Voltage signal at bus 7

Figure 4.5 Comparison between voltage signals acquired from two buses

4.3.3 Relay Coordination

After the fault classification process, the final step in this research is to obtain the optimal

relay coordination, where both primary and backup relays must be coordinated together, as

described in Section 4.2, using the GAMS software to solve the objective function in Equation

4.6. The optimization solutions are compared with those given in Alam et al. (2015) in Table

4.3. In this research, the GAMS was used to obtain the total primary operating time of 10.973s,

which outperforms other methods such as GA, Particle Swarm Optimization (PSO), and Seeker

Optimization Algorithm (SOA) to find the minimum total primary relay operating time. However,

Differential Evolution (DE) and Harmony Search (HS) were able to enhance the optimization
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problem further, achieving a lower total operating time of 8.6822s in DE. Despite, GAMS still

demonstrates a faster time to reach the optimal solution compared to all other methods.

Table 4.3 Comparison between different optimization approaches

GA PSO DE HS SOA CONOPT

Objective function 14.5426 13.9472 8.6822 9.2339 14.2238 10.973

Elapse time (s) 314.44 3.97 15.06 155.56 33.74 0.047

Figure 4.6 illustrates the values of TDS and 𝐼𝑝 for the different optimization methods in Alam

et al. (2015). It is evident that the GAMS algorithm, along with DE and HS methods, successfully

maintains the lowest value of TDS, as shown in Figure 4.6a. However, in finding the optimal

value for 𝐼𝑝, the GAMS approach fluctuates between the minimum and maximum constraints,

similar to GA, PSO, and SOA as depicted in Figure 4.6b. Detailed optimal values for TDS and

𝐼𝑝 are provided ("see Appendix I, Table-A I-3").
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Figure 4.6 Comparison between the optimization methods

Once faults are classified, it becomes crucial to coordinate the relays based on the type of the

fault.This ensures that the relays respond differently to each fault scenario, depending on the

nature of the fault. GAMS offers the advantage of generating optimal coordination in less time,

allowing for adaptive changes in relay’s parameters more rapidly in context to those given in

Alam (2019). Figure 4.7 demonstrates different CTI values for various faults conditions as SLG,
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L-L, and Three-Phase faults that occurred in line ’I’ of the 9-bus system. The primary relay

R15, along with backup relays R19 and R13, as well as the primary relay R16 with R2 and

R17, adapt their parameters (TDS, 𝐼𝑝) according to fault types. However, the remaining relays

maintain their original parameters.
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Figure 4.7 Different CTI values for the relay pairs

4.4 Conclusion

In conclusion, to achieve the research objective, this chapter implemented the previously methods

for identifying relay pairs and the model for classifying faults. The 9-bus test system is used to

examine these approach. Furthermore, model the relay coordination as optimization problem

and find the optimal relay’s parameters using GAMS and compare the results with existing

literature. Lastly, change the relay’s parameters according to fault type to enhance the CTI and

decrease the relay operating time.





CONCLUSION AND RECOMMENDATIONS

In conclusion, this research discussed the importance of identifying primary and backup relays

for the transmission lines. As the primary relays initiate responses to faults in transmission

lines, while backup relays provide an additional layer of protection in case the primary relays

fail. The utilization of the LINKNET approach, along with the List and Next vectors, enables

the method to identify the relay pairs for a transmission line. Besides, controls the operating

time by introducing the inverse-time directional overcurrent relays by customized the relay’s

parameters according to time-current curve. The CTI parameter is particularly important as it

represents the time delay between the activation of primary and backup relays. Ensuring that the

primary relay operates first and the backup relay intervenes only if the primary relay fails within

the designated time is critical.

Furthermore, introducing a fault classifier that transforms time-series data into images using

GAF and applies CNN for feature extraction. The voltage and current signals were transformed

into 224px images to be complied with the AlexNet architecture for feature extractions. The

features from the images were concatenated into a signal vector to be ready to feed it into

six-hidden layers of fully connected layers. The proposed model was described comprehensively,

covering aspects such as an overview of transmission line faults and addressing the solution

for overfitting. A case study on a 3-bus system demonstrates the proposed fault classifier’s

impressive 97.9% accuracy in classifying eight transmission line faults.

To achieve the research objective, a 9-bus test system was implemented to examine the overall

previously discussed methods for identifying relay pairs and the fault classification model.

Furthermore, the relay coordination was modeled as an optimization problem, by defining the

constraints for relay’s parameters and formulate the objective functions as minimizing the total

operating time for all primary relays. Using GAMS software, the optimization results of the

objective function were compared with existing literature. Eventually, the CONOPT approach
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in GAMS software outperform the time elapsed to obtain the local minima for the objective

function in 0.047 seconds, in comparison to PSO 83.4 % less time, while by with DE and HS

finds the optimal solution in 15.06 and 9.233 seconds, respectively. Finally, the relay parameters

were adjusted according to the fault type to enhance the CTI and reduce the relay operating

time. Overall, the combined efforts of identifying relay pairs, implementing fault classification

models, and optimizing relay coordination parameters contribute to the efficient and accurate

protection of power systems, minimizing false tripping and ensuring reliable operation.

5.1 Recommendations for Future Works

As the fault classifier is used to classify the fault within the transmission lines, there is a need to

improve the classifier to create more adaptive power system protection. Therefore, the future

work includes:

• Extend the classifier to find the location of the faults to increase the versatility in classifying

both the location and type of faults within a power system.

• Evaluate the classifier by introducing artificial noise to the images and during training,

allowing it to learn and adapt to noisy conditions.

• Optimize the selection of data acquisition locations to identify the most suitable positions

for gathering data. This approach minimize the number of measurement tools required and

reduce the input data, thereby enhancing the performance of the fault classifier.

• Integrate communication protocols like IEC 61850 to facilitate enhanced communication

between relays, allowing for instance modification of relay parameters. This enables more

efficient and immediate adjustment of relay settings.

• Develop real-time monitoring and control capabilities to enable proactive fault management.

This could involve implementing the proposed fault classifier that can detect and respond to

faults in real-time, enabling swift corrective actions to power system protection.
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• Develop real-time monitoring and control capabilities to enable proactive fault management.

This could involve implementing the proposed fault classifier that can detect and respond to

faults in real-time, enabling swift corrective actions to power system protection.

• Explore the possibility of utilizing the raw signals directly. For instance, employing

approaches such as 1D-CNN, combined CNN and LSTM, and SVM for fault classification

and compare the performance between the classifiers.





APPENDIX I

SUPPORTING MATERIALS

1. Supporting Materials for Chapter 2

Figure-A I-1a,b represents the Block X and Block Y in LINKNET methods, where these

flowcharts assist Figure 2.3 to determine the relay pairs.

Table-A I-1 shows the LINKNET structure for the 6-bus system as explained Chapter 2 with

detail about the List, Far, Next , and End vectors.

Table-A I-1 The detailed List and vectors for LINKNET structure

for 5-bus system

Line Relay Opposite Bus End List Far (Relay) Next

Line 1
1 2 1 List 2 1 1 0

2 1 2 List 1 2 2 0

Line 2
3 3 3 List 3 3 1 0

4 1 5 List 1 4 3 2

Line 3
5 3 5 List 3 5 2 3

6 2 6 List 2 6 3 1

Line 4
7 4 7 List 4 7 2 0

8 2 8 List 2 8 4 6

Line 5
9 5 9 List 5 9 2 0

10 2 10 List 2 10 5 8

Line 6
11 4 11 List 4 11 3 7

12 3 12 List 3 12 4 5

Line 7
13 5 13 List 5 13 4 9

14 4 14 List 4 14 5 11
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a) Block x b) Block y

Figure-A I-1 Block x and Block Y as part of LINKNET structure

Taken from Birla et al. (2004)
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2. Supporting Materials for Chapter 4

Figure-A I-2, I-3, and I-4 illustrates the voltage and current signal acquired from bus 1, bus 6,

and bus 7, respectively. These signals were obtained in Three-Phase fault in L8 in 9-bus system,

further details are explained in Chapter 4.
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Figure-A I-2 Voltage and current signals acquired from bus 1
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Figure-A I-3 Voltage and current signals acquired from bus 6
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Figure-A I-4 Voltage and current signals acquired from bus 7

Table-A I-2 shows the 𝐼𝐿𝑚𝑎𝑥 and 𝐼𝐹𝑚𝑖𝑛 bounds for a corresponding relay. These values are

essential to determine the optimal relay setting as they represents the constraints for the

optimization problem.

Table-A I-2 Summary of 𝐼𝐿𝑚𝑎𝑥 and 𝐼𝐹𝑚𝑖𝑛 bounds

Taken from Al-Roomi (2022)

Relay 𝐼𝐿𝑚𝑎𝑥 𝐼 𝑝𝑚𝑎𝑥 Relay 𝐼𝐿𝑚𝑎𝑥 𝐼𝐹𝑚𝑖𝑛
1 121.74 1361.6 13 30.44 1031.7

2 212.74 653.6 14 30.44 1168.3

3 21.74 1124.4 15 30.44 1168.3

4 21.74 1044.2 16 30.44 1031.7

5 78.26 711.2 17 411.3 1293.9

6 78.26 1226 18 411.3 1953.7

7 78.26 1226 19 410.87 1264.1

8 78.26 711.2 20 410.87 2256.8

9 21.74 1044.2 21 441.3 1293.9

10 21.74 1124.4 22 441.3 1953.7

11 121.74 653.6 23 506.52 1345.5

12 121.74 787.2 24 506.52 1432.3

In Table-A I-3 shows the optimal TDS and 𝐼𝑃 values for all relays in 9-bus test system using

GAMS.
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Table-A I-3 Obtained TDS and 𝐼𝑃 using GAMS

Relay TDS Ip Relay TDS IP
1 0.105 1.815 13 0.1 0.946

2 0.1 0.517 14 0.119 1.558

3 0.1 1.184 15 0.1 1.311

4 0.1 0.977 16 0.1 1.051

5 0.1 0.716 17 0.116 1.725

6 0.102 1.635 18 0.1 1.103

7 0.102 1.635 19 0.117 1.685

8 0.135 0.948 20 0.1 1.027

9 0.1 0.977 21 0.181 1.725

10 0.113 1.499 22 0.1 1.103

11 0.1 0.517 23 0.122 1.794

12 0.279 0.5 24 0.1 0.955

Whereas Tables-A I-4, I-5, and I-6, summarized the CTI values between the primary and

backup relay in 9-bus system for Single-Line-Ground fault, Line-to-Line fault, Three Phase

Fault situations.

Table-A I-4 Summary of CTI between the primary and backup relay 𝐼𝑝 for

9-bus system in SLG fault situation

Primary Relay Backup Relay CTI Primary Relay Backup Relay CTI

1 15 0.257 13 11 0.353

1 17 0.2 13 21 0.654

2 4 0.2 14 16 0.2

3 1 0.2 14 19 0.2

4 6 0.2 15 13 0.225

5 3 0.2 15 17 0.291

6 8 0.333 16 2 0.312

6 23 0.2 16 17 0.255

7 5 0.2 18 2 0.2

7 23 0.2 18 15 0.2

8 1 0.2 20 13 0.2

9 7 0.2 20 16 0.266

10 12 0.2 22 11 0.2

11 9 0.2 22 14 0.501

12 14 0.2 24 5 0.2

12 21 0.2 24 8 0.2
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Table-A I-5 Summary of CTI between the primary and backup relay 𝐼𝑝 for

9-bus system in LL fault situation

Primary Relay Backup Relay CTI Primary Relay Backup Relay CTI

1 15 0.257 13 11 0.353

1 17 0.2 13 21 0.654

2 4 0.2 14 16 0.2

3 1 0.2 14 19 0.2

4 6 0.2 15 13 0.219

5 3 0.2 15 17 0.285

6 8 0.333 16 2 0.306

6 23 0.2 16 17 0.249

7 5 0.2 18 2 0.2

7 23 0.2 18 15 0.2

8 1 0.2 20 13 0.2

9 7 0.2 20 16 0.266

10 12 0.2 22 11 0.2

11 9 0.2 22 14 0.501

12 14 0.2 24 5 0.2

12 21 0.2 24 8 0.2

Table-A I-6 Summary of CTI between the primary and backup relay 𝐼𝑝 for

9-bus system in Three-Phase fault situation

Primary Relay Backup Relay CTI Primary Relay Backup Relay CTI

1 15 0.257 13 11 0.353

1 17 0.2 13 21 0.654

2 4 0.2 14 16 0.2

3 1 0.2 14 19 0.2

4 6 0.2 15 13 0.251

5 3 0.2 15 17 0.317

6 8 0.333 16 2 0.335

6 23 0.2 16 17 0.278

7 5 0.2 18 2 0.2

7 23 0.2 18 15 0.2

8 1 0.2 20 13 0.2

9 7 0.2 20 16 0.266

10 12 0.2 22 11 0.2

11 9 0.2 22 14 0.501

12 14 0.2 24 5 0.2

12 21 0.2 24 8 0.2
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Table-A I-7 The detailed List and vectors for LINKNET structure

for 9-bus system

Line Relay Opposite Bus End List Far (Relay) Next

Line 1
1 8 1 List 8 1 7 0

2 7 2 List 7 2 8 0

Line 2
3 9 3 List 9 3 8 0

4 8 5 List 8 4 9 0

Line 3
5 2 5 List 2 5 9 0

6 9 6 List 9 6 2 3

Line 4
7 3 7 List 3 7 2 0

8 2 8 List 2 8 3 5

Line 5
9 4 9 List 4 9 3 0

10 3 10 List 3 10 4 7

Line 6
11 5 11 List 5 11 4 0

12 4 12 List 4 12 5 9

Line 7
13 6 13 List 6 13 5 0

14 5 14 List 5 14 6 11

Line 8
15 7 15 List 7 15 6 2

16 6 16 List 6 16 7 13

Line 9
17 7 17 List 7 17 1 15

18 1 18 List 1 18 7 0

Line 10
19 6 19 List 6 19 1 16

20 1 20 List 1 20 6 18

Line 11
21 5 21 List 5 21 1 14

22 1 22 List 1 22 5 20

Line 12
23 2 23 List 2 23 1 8

24 1 24 List 1 24 2 22
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