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Améliorer la détection des intrusions dans les réseaux de véhicules grâce à des approches
d’apprentissage en profondeur

Kanika AGGARWAL

RÉSUMÉ

L’expansion récente de l’Internet des objets (IoT) a transformé les réseaux de véhicules en

Internet des véhicules (IoV), où les véhicules modernes sont exposés à divers nouveaux types de

cyberattaques. Afin de remédier à ces vulnérabilités, les systèmes de détection d’intrusion (IDS)

jouent un rôle crucial dans la détection efficace des attaques avec une grande précision et un

faible taux de fausses alarmes. Les approches traditionnelles d’apprentissage automatique ont

été utilisées pour identifier les intrus dans le réseau, mais elles souffrent souvent d’une faible

précision de détection et d’une grande complexité, ce qui les rend mal adaptées aux attaques

dynamiques. Par conséquent, il existe un besoin pour un IDS avancé adapté aux scénarios en

temps réel.

Pour améliorer la sécurité de l’IoV, nous proposons un nouveau système de détection d’intrusion

basé sur un modèle d’apprentissage en profondeur (DL) hybride génératif. Le modèle proposé

combine le auto-encodeur variationnel à mémoire longue et à court terme (LSTMVAE), les unités

récurrentes bidirectionnelles fermées (BiGRU) et un classificateur softmax. Le LSTMVAE est

utilisé comme technique d’extraction de caractéristiques statistiques capable d’apprendre des

séries chronologiques et des données multivariées à partir du réseau IoV. Les caractéristiques

extraites sont ensuite introduites dans le classificateur BiGRU et softmax pour l’identification et

la classification des cyber-attaques potentielles dans le réseau IoV. Les résultats expérimentaux

basés sur l’ensemble de données ToN-IoT valident les performances supérieures de l’IDS

proposé par rapport aux techniques de base couramment utilisées.

En tirant parti des atouts du DL et des modèles génératifs, l’IDS proposé offre une solution plus

efficace pour la détection des attaques dans les réseaux IoV. Il répond aux limites des approches

traditionnelles d’apprentissage automatique et démontre une précision et des performances

améliorées dans l’identification et la classification des cyberattaques. Cette recherche contribue à

renforcer la sécurité des systèmes IoV et à atténuer les risques associés aux menaces émergentes.

Mots-clés: Système de détection d’intrusion, Internet des véhicules (IoV), Sécurité, Mémoire

longue à court terme, Apprentissage en Profondeur





Enhancing Intrusion Detection in Vehicular Networks through Deep Learning Approaches

Kanika AGGARWAL

ABSTRACT

The recent expansion of the Internet of Things (IoT) has transformed vehicular networks into

the Internet of Vehicles (IoV), where modern vehicles are exposed to various new types of

cyber-attacks. In order to address these vulnerabilities, Intrusion Detection Systems (IDS) play

a crucial role by effectively identifying and detecting attacks with a high level of accuracy while

minimizing false alarms. Traditional Machine Learning (ML) approaches have been utilized to

identify intruders in the network. However, they often suffer from low detection accuracy and

high complexity, making them ill-suited for dynamic attacks. Therefore, there is a need for an

advanced IDS suitable for real-time scenarios.

To enhance the security of IoV, we propose a novel IDS based on a generative hybrid deep

learning (DL) model. The proposed model combines the Long Short-Term Memory Variational

AutoEncoder (LSTMVAE), Bidirectional Gated Recurrent Units (BiGRU), and a softmax

classifier. The LSTMVAE is employed as a statistical feature extraction technique capable of

learning time series and multivariate data from the IoV network. The extracted features are then

fed into the BiGRU and softmax classifier for the identification and classification of potential

cyber-attacks in the IoV network. Experimental results based on the ToN-IoT dataset validate

the superior performance of the proposed IDS over commonly used baseline techniques.

By leveraging the strengths of DL and generative models, the proposed IDS offers a more

effective solution for attack detection in IoV networks. It addresses the limitations of traditional

ML approaches and demonstrates improved accuracy and performance in identifying and

classifying cyber-attacks. This research contributes to enhancing the security of IoV systems

and mitigating the risks associated with the emerging threats.

Keywords: Intrusion Detection System, Internet of Vehicles (IoV), Security, Long Short-Term

Memory, Deep Learning
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INTRODUCTION

Over the past few decades, metropolitan cities worldwide have been grappling with the challenges

posed by the increasing human population, which has resulted in a rapid growth of autonomous

vehicles (AVs) on the roads. According to a recent report (Placek (2021)), it is projected that

there will be approximately 54.2 million AVs by 2024. While AVs offer convenience, comfort,

and improved safety for individuals, they also bring forth significant challenges in terms of

environmental sustainability and energy conservation.

The proliferation of AVs has exacerbated environmental problems such as carbon emissions,

urban congestion, pollution, fuel consumption, and traffic safety. The sheer volume of vehicles

on the roads contributes to increased carbon emissions, leading to a negative impact on air

quality and climate change. Additionally, the concentration of vehicles in urban areas often

leads to traffic congestion, resulting in reduced mobility, longer travel times, and increased fuel

consumption.

Integrating vehicular ad-hoc networks (VANETs) with the IoT has given rise to a new paradigm

known as the IoV. IoV is a complex network system connecting users, vehicles, and smart devices

through the Internet, leveraging communication and information technologies (Kaiwartya et al.

(2016)). In an IoV system, users refer to the humans involved, including pedestrians, drivers, and

passengers. They consume services provided by the network, such as auto-breaking, emergency

calls, car surveillance, and lane change warnings. Vehicles within the IoV system act as nodes or

smart objects equipped with wireless communication devices (e.g., cellular technology, wireless

antennas) and advanced onboard sensors (e.g., Lidar, On-Board Units, Radar). These vehicles

can communicate with each other and access resources such as cloud storage and computing

(Kaiwartya et al. (2016)).

By leveraging the power of connectivity, data sharing, and advanced technologies, IoV has

the potential to transform transportation systems, making them more efficient, intelligent, and
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sustainable. The integration of AVs with IoV opens up opportunities for innovative services

and solutions to address the challenges of urban congestion, pollution, and energy consumption,

leading to a more connected and intelligent future of transportation.

Within the IoV infrastructure, AVs generate valuable and sensitive road data through the use

of wireless communication devices and onboard sensors. This data can be classified into two

categories: on-road data and on-board data (Sherazi, Iqbal, Ahmad, Khan & Chaudary (2019)).

On-road data includes information related to events occurring on the road, such as traffic lights,

blind spots, pilot camera videos, and inter-vehicle distances. On the other hand, on-board data

refers to the data collected from sensors and systems within the vehicle itself, including engine

parameters (such as temperature), velocity, fuel consumption, and braking information. By

connecting and sharing this data among Vehicle-to-Everything (V2X) nodes, the IoV system

can extend its perception capabilities, enhancing transportation efficiency, alleviating traffic

congestion, and maximizing the existing road capacity.

The goal of IoV is to achieve coordinated development among AVs, the environment, and humans,

resulting in an enhanced driving experience and a reduction in traffic issues through advanced

navigation systems. In addition to safe driving, IoV aims to provide logistics, transportation, auto

insurance, road infrastructure maintenance, and improve automobilism capacity and intelligence

levels. Thus, it will provide users with intelligent, safe, comfortable, and efficient services.

Problem Statement

The interconnected nature of IoV, with its high dynamic topology and extensive internet

connectivity, exposes AVs and the entire network to potential security risks. The dissemination

of large amounts of information throughout the network creates opportunities for malicious

activities such as data theft, tampering, eavesdropping, and malicious routing that can compromise

the security of users and the overall network. These security threats not only endanger the lives
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of users but also compromise the overall security of the network. The IoV network faces security

challenges in four main areas (Man et al. (2021)): IoV communication, IoV cloud platforms,

IoV mobile terminals, and vehicle security.

In addition to security concerns, safety is a crucial issue in the IoV. Hackers and intruders can

exploit network communications to broadcast false or misleading information, take remote

control of vehicles, or launch attacks that compromise the integrity, confidentiality, availability,

authenticity, reliability, and privacy of the network, vehicles, and users. Real-world examples,

such as hackers tricking Tesla’s Autopilot software to change lanes into opposing traffic

(Huddleston (2019)) or hĳacking the digital systems of a Jeep Cherokee over the internet

(Greenberg (2016)), highlight the need to prioritize safety, security, and privacy in IoV systems.

The most common cyber-attacks in the IoV (Li, Zuo, Song & Lv (2021)) include ransomware,

backdoors, password, denial of service (DoS), man-in-the-middle (MITM), scanning, cross-site

scripting (XSS), data injection, and distributed denial of service (DDoS). To address these

threats, there is an urgent need for advanced IDS capable of efficiently detecting attacks with a

high accuracy while minimizing false alarms.

Objective and Methodology

The main objective of this dissertation is to propose an effective solution that ensures privacy,

trust, and security for smart vehicles. The proposed solution involves the development of a

DL-based IDS to identify and classify potential cyber-attacks in the IoV network.

The proposed IDS introduces a generative hybrid DL model known as LSTMVAE-BiGRU,

which combines LSTMVAE with BiGRU. The LSTMVAE performs encoding and decoding in

the LSTMVAE paradigm, capturing the most important features of the training time series data

by constraining the latent space dimensions to be smaller than the input. The BiGRU captures
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local dependencies in a two-way time flow, considering both forward and backward directions

for learning latent representations. The softmax layer is used for multi-class attack detection.

To achieve the primary goal, the dissertation follows a structured approach:

• Theoretical Background: The evolution of IoV networks and the motivation behind their

development are described. The security issues involved in IoV networks are discussed. A

detailed review of Artificial Intelligence (AI) based intrusion detection techniques in the

literature and their associated challenges is presented. The dissertation also provides an

in-depth discussion of neural networks and their types.

• System Model: A detailed description of the system model representing the proposed

solution for identifying and classifying potential cyber-attacks in the IoV network is provided.

• Hybrid DL Model: An in-depth explanation of the hybrid DL model is given, which involves

combining LSTMVAE, BiGRU, and a softmax classifier. The mathematical representations

for each component of the proposed IDS architecture are described.

• Dataset and Simulations: The dataset used for the experiments is described, followed by

simulations conducted to assess the efficacy of the proposed solution. A comparison is made

against baseline techniques found in the literature that utilize supervised ML methods.

• Performance Analysis: The performance of the proposed model is analyzed using different

performance metrics to assess its effectiveness in detecting and classifying cyber-attacks

within the IoV network.

By following this structured approach, the dissertation aims to present a comprehensive solution

to enhance the privacy, trust, and security in smart vehicles within the IoV network while

effectively identifying and mitigating potential cyber-attacks.
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Publications

The research presented in this dissertation has been accepted for publication in the proceedings

of the IEEE Global Communications Conference (GLOBECOM 2023, Kuala Lumpur, Malaysia)

under the title "LSTM-Based Hybrid Intrusion Detection System for Internet of Vehicles".

Dissertation Organization

The organization of this dissertation is structured into three chapters, each addressing specific

aspects of the proposed solution. Here is a detailed breakdown of the chapters:

Chapter 1 provides a comprehensive review of relevant topics related to the dissertation. The

topics covered include:

• IoV network model and security approaches: An overview of the IoV network model, its

characteristics, and the security challenges it faces.

• AI-based intrusion detection techniques: A detailed exploration of intrusion detection

techniques that utilize AI in securing IoV networks.

• Theory and basic concepts of neural networks: An in-depth explanation of the theory

and fundamental concepts underlying neural networks, which form the basis of the proposed

hybrid DL model.

Chapter 2 focuses on the proposed hybrid DL-based intrusion detection model. The contents

include:

• Introduction to the system model: A detailed description of the system model that

represents the proposed solution for identifying and classifying potential cyber-attacks in the

IoV network.

• A generative hybrid DL-based model: A comprehensive examination of the model, which

combines the LSTMVAE, the BiGRU, and a softmax classifier.
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Finally, Chapter 3 focuses on the practical implementation and evaluation of the proposed

solution. It includes:

• Dataset description: An explanation of the dataset used to conduct simulations and evaluate

the proposed solution’s performance.

• Simulation methodology: A detailed description of the methodology used to simulate the

proposed solution and compare it against baseline techniques from the literature that employ

supervised ML methods.

• Performance metrics: An overview of the performance metrics employed to analyze and

evaluate the efficiency of the proposed model.

• Results: The simulation results are presented and compared with the baseline techniques,

highlighting the advantages and effectiveness of the proposed solution.

Figure 0.1 illustrates a visual representation of this thesis contribution.
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Figure 0.1 Chapters Diagram





CHAPTER 1

BACKGROUND AND RELATED WORK

1.1 IoV Networks

The IoV has emerged as a disruptive technology, extending the structure, scale, and applications

of traditional VANETs. VANETs are designed to connect vehicles in an ad hoc manner, enabling

real-time communication among smart vehicles and roadside units. However, VANETs have

faced challenges in generating commercial interest due to various issues, such as lack of cloud

connectivity, ad hoc architecture, limited reach, and limited computation ability. Consequently,

VANETs have been unable to provide sustainable global services and applications to users,

resulting in only a few developed countries like Japan and the USA having basic VANET

implementations.

In contrast, IoV represents a large-scale network that integrates humans, smart vehicles,

the surrounding environment, and other heterogeneous networks (Taslimasa et al. (2023));

(Kaiwartya et al. (2016)). It is an open and dynamic heterogeneous network characterized

by higher controllability, manageability, credibility, and operationalization. Within the IoV

infrastructure, modern vehicles are equipped with advanced onboard sensors and networking

capabilities connected to the Internet. These sensors collect road data and enable communication

and sharing with other vehicles, smart devices, and surrounding objects through V2X wireless

communications. V2X technologies encompass vehicle-to-infrastructure (V2I), vehicle-to-

human (V2H), vehicle-to-network (V2N), vehicle-to-sensor (V2S), and vehicle-to-vehicle (V2V)

communications (Tang, Mao, Kato & Gui (2021)). These technologies have paved the way for

enhanced driving experiences and intelligent transportation systems.

The IoV network possesses several special characteristics, as mentioned in the study by Magaia

et al. (2020):
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• Dynamic Topology: Due to the high mobility of vehicles in the IoV network, the network

topology undergoes frequent changes. The movement of vehicles results in dynamic and

unpredictable connectivity patterns within the network.

• Variable Network Density: The density of the IoV network fluctuates depending on the

quantity of traffic nodes present in a particular area. During peak traffic hours, the network

density can be very high, while it may be lower during normal hours.

• Predictable Mobility: The mobility of nodes in the IoV network follows predictable patterns

due to the constraints imposed by the road layout, network topology, traffic lights, and road

signs. Additionally, nodes communicate with nearby moving nodes, contributing to better

predictability in terms of node mobility.

• Non-uniform Distribution of Nodes: The distribution of nodes in the IoV network is

influenced by various factors, including geographical location and road network topology. As

a result, the network’s connectivity can vary across different areas, leading to a non-uniform

distribution of nodes.

In addition to the special characteristics of the IoV network, several factors contribute to the

complexity of the network:

• External and Internal Sensors: Vehicles in the IoV network are equipped with both

external and internal sensors. External sensors, such as parking sensors and cameras, are

installed outside the vehicle to collect real-time information about the vehicle’s surroundings,

including obstacles and other vehicles. Internal sensors provide data about the vehicle’s

internal conditions, like temperature, localization, and braking system status. These sensors

include light detection and ranging, tire-pressure monitoring systems, and automotive sensors

for monitoring fuel levels and brakes.

• Driver’s Social Profile: The driver’s social profile encompasses their messages, pictures,

tweets, and other information that can help characterize the driver’s state of mind. Analyzing

this data can provide insights into driver preferences, emotions, and potential distractions.

Incorporating the driver’s social profile into the IoV network adds another layer of complexity

in terms of data collection, analysis, and privacy considerations.
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• Beacon Signals/Messages: Beacon messages are responsible for conveying various condi-

tions, such as possible delays on the route or the drivability status of the vehicle. Processing

and interpreting these beacon signals effectively is crucial for ensuring efficient and reliable

communication within the IoV network.

1.1.1 IoV Network Model

The general hierarchical IoV architecture (Kaiwartya et al. (2016)); (Magaia et al. (2020))

comprises three main layers: the perception layer, the network layer, and the application layer.

The architecture is illustrated in Fig. 1.1.

Figure 1.1 IoV three-layer Architecture
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Each layer has specific functions and contributes to the overall functioning of the IoV system.

Here is a brief description of each layer:

1.1.1.1 Perception Layer

The perception layer, also known as the client layer, consists of sensors that collect environmental

information and detect events and situations. This layer consists of external sensors installed

on the vehicle (e.g., cameras, radars) as well as internal sensors (e.g., temperature sensors,

GPS receivers). The sensors monitor the vehicle’s surroundings, capture driving patterns, and

gather data related to road conditions, traffic, and other relevant factors. Additionally, this layer

incorporates technologies like radio frequency identification (RFID) tags for object tracking and

perception of the surrounding environment. The collected data is then processed and transmitted

to higher layers for further analysis and decision-making.

1.1.1.2 Network Layer

The network layer is responsible for facilitating communication among vehicular nodes, as well

as other entities and networks involved in the IoV network. It enables different types of wireless

communication technologies, such as Bluetooth, Wireless Local Area Network (WLAN), Wi-Fi,

or fifth-generation (5G) mobile communications networks. The network layer ensures the

interconnectivity of various communication modes within the IoV network, including V2I, V2N,

V2V, V2S, and V2H interactions.

1.1.1.3 Application Layer

The application layer is responsible for storage, processing, analysis, and decision-making based

on the collected data from the perception layer. It encompasses a range of applications and

services that leverage the IoV network’s capabilities. Some key functions of the application

layer include ensuring road safety, enhancing traffic efficiency, supporting autonomous driving

features, and providing infotainment services to vehicle occupants. The application layer
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processes the data collected from the perception layer, applies various algorithms and techniques

for analysis, and generates actionable insights and responses to different scenarios.

By having these three layers in the hierarchical IoV architecture, the system can handle

scalability, heterogeneity, and the specific requirements of the IoV paradigm effectively. Each

layer performs its designated tasks, enabling seamless communication, data processing, and

intelligent decision-making within the IoV network.

1.1.2 IoV Security

IoV is critical in supporting various applications such as traffic and parking management,

tracking systems, and transport efficiency. The projected growth of AVs further emphasizes the

importance of IoV. According to Statista (Placek (Aug.2021)), the United States is expected to

have approximately 146 million AVs by 2030. However, the increased number of V2I and V2V

communication links resulting from the proliferation of AVs presents a significant challenge in

terms of securing the IoV network.

The interconnected nature of the IoV network, which encompasses smart vehicles, surrounding

environments, and public internet connections, exposes it to various cyber-attacks. The presence

of these attacks represents a major threat to the trust, privacy, and security of modern vehicles,

potentially leading to severe risks to human lives. Furthermore, intrusions in IoV systems target

the integrity, confidentiality, availability, authenticity, reliability, and privacy of both the network

and the vehicles themselves. Thus, the security of IoV is a major concern within vehicular

networks. Security threats in IoV can be broadly categorized into two types (Khraisat, Gondal,

Vamplew & Kamruzzaman (2019)): Inter-Vehicle attacks and Intra-Vehicle attacks.

1.1.2.1 Inter-Vehicle Attacks

Inter-Vehicle communication in the IoV network involves the exchange of information between

smart vehicles and various other entities present on the road, including smart devices, road

infrastructures, other vehicles, and pedestrians. This communication aims to enhance the
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driving experience and ensure safer interactions on the road. However, the establishment of

communication channels, such as global systems for mobile communication and protocols like

DSRC (Dedicated Short-Range Communication) and LTE (Long-Term Evolution), exposes

smart vehicles to various cyber-attacks.

Cyber attackers can exploit vulnerabilities in the communication system to compromise the

integrity, confidentiality, and availability of information exchanged between vehicles. They

may attempt to gain control over the network by modifying information, disseminating false

data, disrupting the network through the transmission of bulk data, or introducing malicious

activities. Several common types of cyber-attacks can target inter-vehicle communication in the

IoV network (Li et al. (2021)). These include:

• Eavesdropping: Attackers intercept and listen to communication between vehicles, poten-

tially gaining access to sensitive information.

• DDoS: Attackers overwhelm the communication channels by flooding them with a massive

volume of data, rendering the network unavailable to legitimate users.

• MITM: Attackers intercept and alter communication between vehicles, allowing them to

manipulate or modify information exchanged between the parties.

• Impersonation Attack: Attackers masquerade as legitimate entities within the IoV network,

deceiving vehicles and other entities into believing they are trustworthy.

• Routing Attack: Attackers manipulate routing information within the network, diverting

communication between vehicles to unauthorized paths or disrupting the network’s normal

operation.

• Phishing: Attackers attempt to deceive vehicle users or other network entities by sending

fraudulent messages or creating fake websites, aiming to trick them into revealing sensitive

information or performing malicious actions.

1.1.2.2 Intra-Vehicle Attacks

Intra-Vehicle communication in the IoV network refers to the communication between Electronic

Control Units (ECUs) and sensors within a vehicle. The Controller Area Network (CAN) bus is
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a widely used protocol in the automotive industry for intra-vehicle communication. It offers

real-time communication, low cost, a serial mechanism, and ease of installation (Taslimasa et al.

(2023)).

However, the CAN bus has certain vulnerabilities that make it susceptible to attacks. One of the

main vulnerabilities is the lack of an encryption protocol, which means that data transmitted

on the bus can be easily intercepted and manipulated by attackers. Additionally, the CAN bus

lacks an authentication mechanism, allowing intruders to insert malicious information into

the intra-vehicle network and potentially gain control over the bus (De Araujo-Filho, Pinheiro,

Kaddoum, Campelo & Soares (2021)). Some common attack types on the CAN bus (Li et al.

(2021)) include:

• Spoofing Attack: Attackers send messages with forged source addresses to deceive the

receiving ECUs. This can lead to unauthorized access or manipulation of critical vehicle

functions.

• Data Falsifying Attack: Attackers modify the data being transmitted on the CAN bus,

leading to false sensor readings or control commands, potentially affecting the vehicle’s

performance or safety.

• DoS Attack: Attackers flood the CAN bus with a high volume of messages, disrupting

normal communication and rendering the bus unavailable for legitimate transmissions.

• Fuzzing Attack: Attackers inject random or unexpected data into the CAN bus to provoke

software or system errors, potentially leading to system crashes or vulnerabilities being

exposed.

Hence, these attacks highlight the importance of robust security measures in the IoV network to

protect against unauthorized access, data manipulation, privacy breaches, and service disruptions.

1.2 Intrusion Detection System

IDS plays a crucial role in identifying potential cyber-security attacks that pose risks to the

integrity, confidentiality, availability, authenticity, reliability, and privacy of the network (Oseni
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et al. (2022)). It is a powerful tool, device, or software application that analyzes network traffic

patterns to detect malicious activities.

The primary responsibility of an IDS is to continuously monitor the system or network for

any suspicious activities or policy violations. When unauthorized behavior or violations are

detected, the IDS typically alerts the system administrator or records the event centrally using

a Security Information and Event Management (SIEM) system (He, Kim & Asghar (2023)).

A SIEM system aggregates and analyzes relevant data from various sources across the entire

network infrastructure, providing valuable insights to security teams for taking appropriate

actions against security threats. IDS can be categorized into two main types: Signature-based

IDS and Anomaly-based IDS.

1.2.1 Signature-based Intrusion Detection System

Signature-based IDS relies on analyzing network packets to identify specific patterns or sequences

that match known malicious patterns or byte sequences, which are referred to as attack signatures.

These signatures can be found in a series of packets, specific data sequences, or even in source

and destination network addresses. To detect known attacks, a signature-based IDS maintains a

database of attack signatures. Incoming network packets are compared against the signatures

in the database, and if a match is found, the IDS triggers an alert or takes appropriate action.

Signature-based approaches are generally simple and efficient, capable of operating in real time.

They are particularly effective in identifying known attacks for which signatures have been

defined.

However, one limitation of signature-based IDS is their inability to detect unknown and zero-day

attacks (Khraisat et al. (2019)). Since these attacks do not have pre-defined signatures in the

database, they can go undetected by the IDS. Therefore, while signature-based IDS are effective

in detecting known attacks, they may not provide sufficient protection against emerging or

previously unseen attack techniques.
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1.2.2 Anomaly-based Intrusion Detection System

Anomaly-based IDS is designed to detect unknown or new attacks, particularly in response to

the increasing number of malware threats. This type of IDS utilizes ML, knowledge-based,

or statistical-based methods to create a model of normal or trustworthy network behavior. It

then compares the observed behavior against this model and flags any deviations as potential

anomalies or attacks. Unlike signature-based IDS that focuses on specific attack patterns,

anomaly-based IDS analyzes behaviors associated with attacks, thereby increasing the chances

of detecting, identifying, and mitigating malicious activity before it compromises the system.

Unlike signature-based IDS, ML-based anomaly detection methods have a more generalized

property since the models can be trained according to specific applications and hardware

configurations. The anomaly-based approach is capable of detecting abnormal behavior and

identifying unknown and zero-day attacks. However, it may be prone to false positives, as

legitimate activities that were previously unknown or unusual may trigger alerts as malicious.

Another challenge faced by existing IDS is the potential performance degradation due to the time

required for the detection process. Additionally, an effective operating algorithm is necessary to

accurately analyze incoming packets and determine if they exhibit anomalous behavior. Efficient

algorithms are required to accurately analyze incoming packets and minimize delays in the

detection and response to potential threats.

1.3 Artificial Intelligence-based Intrusion Detection Techniques

Ensuring the security and safety of pedestrians and AVs within the IoV environment is

paramount. To address the security challenges in vehicular networks, extensive research has

been conducted in recent years. Many studies in the literature have explored the use of AI

techniques (Ahmad, Shahid Khan, Wai Shiang, Abdullah & Ahmad (2021)), specifically ML

methods (Talpur & Gurusamy (2021)) and DL models (Boualouache & Engel (2023)), for IDS

in the context of vehicular networks. These works aim to develop robust and effective security

mechanisms to safeguard the IoV environment.
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1.3.1 Machine Learning-based IDS for IoV

Researchers have explored various ML-based techniques (Hachimi, Kaddoum, Gagnon & Illy

(2020)) to enhance the security of vehicular networks. For example, in a study by Anzer & Elhadef

(2018), a supervised learning-based IDS was developed to identify intruders in the IoV network

based on V2V communications. However, their model was trained on the KDD Cup 1999

dataset, which may not be suitable for vehicular networks. Rani et al. (2023) presented a deep

hierarchical ML-based IDS for Device-to-Device (D2D) communications. Sherazi et al. (2019)

proposed a fuzzy logic-based framework implemented on a 6BR device to detect and prevent

DDoS attacks in IoV communications. The performance of their system was evaluated using

metrics such as response time, energy consumption, throughput, and average buffer usage.

de Araujo-Filho et al. (2020) proposed a novel unsupervised-based IDS framework to identify

different cyber-attacks within cyber-physical systems.

Sharma & Liu (2020) focused on misbehavior detection in IoVs using supervised ML approaches

integrated with plausibility checks. Their model was compared with various supervised ML

algorithms and plausibility checks for effectiveness. Yang, Shami, Stevens & De Rusett (2022)

introduced an ensemble-based IDS model for IoV networks using ML techniques. They integrated

three advanced ML algorithms (Extreme Gradient Boosting (XGBoost), Light Gradient Boosting

Machine, and Categorical Boosting) and identified the best-performing model for each type

of attack. Similarly, an IDS framework was implemented using different ML techniques. In

this study, Kasongo (2023) applied an XGBoost-based feature selection algorithm. Addressing

malicious security failures within software-defined networks (Miranda, Kaddoum, Bou-Harb,

Garg & Kaur (2020)); (Miranda, Kaddoum, Boukhtouta, Madi & Alameddine (2022)), several

intrusion detection schemes have been put forth. For example, Anbalagan et al. (2021) proposed

a distributed ML scheme for software-defined IoV networks, considering the deployment of

Road Side Units (RSUs) to improve transmission efficiency.

Yang, Moubayed, Hamieh & Shami (2019) proposed a tree-based IDS using ML algorithms to

detect threats both on controller area network (CAN) bus and external networks. The proposed
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model outperforms the existing methods by achieving a 2-3% increase in accuracy, detection

rates, F1 scores, and a reduction in false alarms. De Araujo-Filho et al. (2021) introduced a novel

ML intrusion prevention model to detect cyber-attacks in CANs. Pradhan, Mohanty & Seemona

(2022) implemented an IDS model based on various ML algorithms (K-Nearest Neighbors,

Decision Tree, Naive Bayes, Logistic Regression, Support Vector Machine (SVM), and Random

Forest), and an ensemble model. Illy, Kaddoum, Moreira, Kaur & Garg (2019) introduced an

ensemble-based anomaly detection method, in which various learning models, such as random

forest are utilized to create an ensemble model. The proposed model is trained on several

realistic datasets. Yang, Moubayed & Shami (2021) presented a multitiered hybrid IDS to detect

known and unknown cyber-attacks on both external-vehicular and intravehicle networks using

multiple ML algorithms.

However, many of these solutions exhibit drawbacks such as low detection accuracy, high

complexity, and limited generalization capabilities. These limitations make them less suitable

for real-time scenarios with dynamic attacks. Considering the complexity and connectivity of

IoV networks, as well as the resource constraints, novel IDS mechanisms are needed to address

the specific challenges posed by vehicular networks in real-time environments.

1.3.2 Deep Learning-based IDS for IoV

Owing to the explosion of vehicular traffic data, the DL models (Garg, Kaur, Kaddoum,

Garigipati & Aujla (2021)) have garnered considerable interest from academia and the telecom

industry. These are particularly appealing as they have the potential to effectively deal with

heterogeneous, unstructured, and large volumes of data. Several research studies have explored

the application of DL models in IDS for vehicular networks. For instance, the work in (Alladi,

Kohli, Chamola, Yu & Guizani (2021)) deployed the detection engines on multi-access edge

computing (MEC) servers in IoV networks. A DL-based IDS framework is proposed, which

comprises DL engines to identify and classify malicious traffic. However, the proposed approach

has considered fewer cyber-security attacks for simulation. Oseni et al. (2023) employed a

Shapley Additive exPlanations (SHAP) scheme to study the output of a DL-based IDS in IoV



20

systems. After having insights into local and global explanations, the system would be more

resilient to cyber-attacks. However, the considered approach is computationally expensive and

vulnerable to adversarial attacks.

A convolutional neural network (CNN)-based IDS is proposed by Nie et al. (2020) to detect

different intrusion attacks that aim at RSUs. The evaluation results showed that the proposed

method achieves a high threat detection rate and low false rate as compared with principal

component analysis (PCA), traditional shallow Neural Network (NN), and SVM methods using

the same dataset. However, a limited set of attacks were considered in their work. Garg et al.

(2019) designed a hybrid DL approach that combines CNN and grey wolf optimization for

anomaly detection within cloud environments. Another approach in (Ahmed, Jeon & Ahmad

(2021)), where the authors tried to solve the anomaly detection problem in the CAN bus

by leveraging a CNN, specifically the VGG-16 architecture. The model is trained using the

CAN-intrusion dataset, which includes fuzzy attacks, DoS attacks, and normal attacks.

An Intelligent IDS framework has been proposed in (Anbalagan, Raja, Gurumoorthy, Suresh & Dev

(2023)) for a 5G V2X environment to efficiently broadcast messages regarding malicious AVs.

A modified CNN architecture was employed to enhance the intrusion detection and classification

of cyber-attacks. Almutlaq, Derhab, Hassan & Kaur (2022) used the rule extraction method from

deep neural networks (DNNs) and implemented a two-stage IDS for intelligent transportation sys-

tems. The proposed model was evaluated using the car hacking dataset and four other traditional

IDS datasets that represent intra-vehicle and external network communications, respectively. Illy,

Kaddoum, de Araujo-Filho, Kaur & Garg (2022) proposed a hybrid DNN-based IDS framework

in which multiple DNN models collaboratively undergo training.

Although different DL approaches have been proposed in the literature, most yield low detection

accuracy and high false alarm rates. These techniques also face key challenges. Due to the

fast movement of modern vehicles, the topology of IoV changes frequently, and thus, they

access the network randomly. On the other hand, for intrusion detection, DL-based systems

frequently require a large amount of network data to discover abnormalities. However, getting
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such an enormous amount of data is a challenging issue. In addition, extracting the features

of all possible patterns available in the IoV network is a challenging task since these features

constitute the model’s overall performance.

To address the challenges, recent studies have proposed LSTM architecture as one of the

promising solutions for IDS. LSTMs are a special kind of Recurrent Neural Networks (RNNs)

that can handle long-term dependencies (Tang et al. (2021)). The key aspect of LSTM-based

RNNs is to remember the information for long periods, making them well-suited for conducting

experiments on spatial data that exhibits temporal variations. For instance, Ashraf et al. (2020)

presented a LSTM autoencoder-based intrusion detection framework that can identify abnormal

behaviour in both external networks and CANs. Alferaidi et al. (2022) proposed a distributed

DL model that combines CNN and extended LSTM for intrusion detection in IoV networks.

Another DL-based threat intelligence scheme has been presented in (Al-Hawawreh, Moustafa,

Garg & Hossain (2020)) to detect cyber-attacks from space-air-ground-sea (SAGS) networks. A

deep stacked autoencoder (DSAE) was used to extract the hidden patterns of IoT-SAGS network

traffic, and then, a Gated Recurrent Neural Network was applied to detect the cyber-attack types.

However, these approaches are designed to model the univariate sequence representations. Thus,

we propose a hybrid DL model to learn the time series and multivariate data from IoV networks.

To achieve the objective, the primary contributions of this research are summarized as follows:

• A novel IDS based on a generative hybrid DL model that combines LSTM Variational

AutoEncoder with BiGRU is proposed.

• Specifically, a statistical feature extraction technique based on LSTMVAE is designed. The

proposed LSTMVAE can learn time series and multivariate data from the IoV network

efficiently. Second, the extracted features are used by the BiGRU and softmax classifier to

differentiate between reliable and doubtful occurrences in the IoV network.

• The performance of the proposed IDS is evaluated using various evaluation metrics, and

further compared with commonly used baseline techniques and recent state-of-the-art

methods.
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In the following section, we provide an in-depth review of the neural networks and their various

types that have been implemented in our proposed solution.

1.4 Neural Networks

A neural network is a computational model structured like the human brain. It consists of

interconnected artificial neurons or nodes arranged in a layered structure. The basic neural

network architecture includes an input layer, one or more hidden layers, and an output layer. Each

neuron in the network receives input from neurons in the previous layer, performs computations,

and passes the output to neurons in the next layer. Deep neural networks consist of multiple

hidden layers, allowing for more complex and hierarchical representations of data. In what

follows, we will go through different types of neural networks.

1.4.1 Recurrent Neural Network

RNNs are capable of handling sequential data by taking into account not only the current input

but also the previous outputs, as shown in Figure 1.2. All inputs and outputs in traditional neural

networks are independent of each other. However, in some cases, a previous input is required.

For instance, to predict the next word of a sentence, it is better to know which words came

before it. RNNs addressed this challenge by incorporating hidden layers that aid in retaining

information from previous inputs.

Figure 1.2 An unfolded Recurrent Neural Network

Taken from Olah (2015)
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RNNs are useful in numerous applications (Boualouache & Engel (2023)), such as machine

translation, image captioning, time series prediction, speech recognition, optimization, etc.

However, the exploding gradient problem and vanishing gradient problem are two issues

commonly associated with RNNs. These problems arise from the nature of backpropagation, the

algorithm used to train neural networks. During backpropagation, gradients are calculated and

propagated back through time, allowing for the updating of network weights. However, when

the network has many layers or long sequences, the gradients can grow exponentially (exploding

gradients) or diminish exponentially (vanishing gradients).

1.4.2 Long Short-Term Memory Network

LSTM networks are a type of RNNs that are specifically designed to address the vanishing

gradient problem and handle long-term dependencies in sequential data. Unlike traditional

RNNs, LSTMs have a more complex internal structure that allows them to capture and remember

information over long periods of time.

In traditional RNNs, the repeating module consists of a single layer. In contrast, in LSTM

networks, this module is replaced by a memory unit consisting of four interacting layers, as

shown in Figure 1.3. These layers are the input gate, output gate, forget gate, and memory cell.

This gated structure allows LSTM networks to control the flow of information through time and

retain important information while discarding irrelevant or outdated information. In addition,

the combination of these gates and memory cells allows LSTM networks to learn and remember

time series with long time lags, even when the size of the lag is unknown. This makes them

particularly effective in tasks (Boualouache & Engel (2023)) such as speech recognition, natural

language processing, forecasting, etc. In what follows, we provide a detailed explanation of the

functioning of LSTM networks.
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Figure 1.3 LSTM with four interacting layers

Taken from Olah (2015)

Step 1: Determine the amount of past information to remember and forget:

In LSTM, the first step is to evaluate the relevance of the past information stored in the memory

cell. A sigmoid function is used for this decision, also known as forget gate. It decides how

much of the past information should be retained or forgotten from the cell state. 𝑊 and 𝑏 are the

linear weights and offsets associated with the gates, respectively. The forget gate looks at the

output of the previous cell ℎ𝑡−1 and the current input 𝑥𝑡 to output a number between 0 and 1

(Wang, Wang, Jiang, Xu & Wang (2023)). A ‘1’ means to keep this entire piece of information,

while a ‘0’ value represents completely getting rid of the information.

𝑓𝑡 = 𝜎(𝑊𝑓 .[ℎ𝑡−1, 𝑥𝑡] + 𝑏 𝑓 ). (1.1)

Step 2: Decide which new information should be added to the current state:

This step has two parts, namely a sigmoid function and a 𝑡𝑎𝑛ℎ function. A sigmoid function

decides which values will be updated while the 𝑡𝑎𝑛ℎ function creates a vector consisting of all

possible values that can be added to the state and output the values from −1 to 1. Then, the cell

state is updated by combining these two steps (Wang et al. (2023)):
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𝑖𝑡 = 𝜎(𝑊𝑖.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)] . (1.2)

𝐶˜
𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)] . (1.3)

Step 3: Determine the output from the current cell state:

To determine the output of an LSTM, the first step is to apply a sigmoid layer. This layer is

responsible for deciding which portion of the current cell state should be included in the final

output. Then, we multiply the output of a sigmoid function with the cell state having 𝑡𝑎𝑛ℎ

function, where 𝑜𝑡 , ℎ𝑡 , and 𝐶𝑡 are the output gate activation, forget gate activation, and cell state

activation, respectively. Finally, we reach the output of the memory cells (Wang et al. (2023)).

𝑜𝑡 = 𝜎(𝑊𝑜 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜). (1.4)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡). (1.5)

1.4.3 Gated Recurrent Unit

Gated Recurrent Unit (GRU) is the modified version of RNNs that aims to effectively solve

the vanishing gradient problem during training (Kostadinov (2017)). In general, the LSTM

and GRU are designed similarly, except for the combination of forget gate and input gate into a

single gate known as the update gate in GRU. In some cases, these both provide equally good

performances. However, as compared to LSTM, GRU is less complex. Moreover, GRU has less

number of parameters which helps in saving much time when training the neural network with a

large amount of data. Also, it helps in improving the training speed and converges easily. In

addition, the GRU can be trained to keep the information for longer periods of time without

washing or removing information that seems irrelevant to the prediction. GRU networks make

the training significantly more efficient by avoiding the risk of over-fitting.
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1.4.4 Autoencoder

An autoencoder (AE) is a special type of feedforward neural network designed to reduce the

dimensionality of the input data. It is designed in the 1980s by Geoffrey Hinton to solve

unsupervised learning problems (Park et al. (2023)). AE is an unsupervised learning model that

reconstructs the original input to the output by passing it through the tiny middle layer known as

the bottleneck layer. Specifically, an AE consists of two networks: an encoder and a decoder.

The encoder encodes/compresses the raw input data 𝑥 into the encoded space of representation

or latent code

𝑦 = 𝑓 (𝑥𝑤 + 𝑏), (1.6)

where 𝑓 denote the activation function of the encoder, and 𝑏 and 𝑤 denote the bias vector and

the weight matrix, respectively. On the other hand, the decoder tries to decodes/decompresses

the latent code and recreates the representation 𝑦 into the corresponding input data 𝑥

𝑥 = 𝑓1(𝑦𝑤
′ + 𝑏′), (1.7)

where 𝑓1 denote the activation function of the decoder, and 𝑏′ and 𝑤′ denote the bias vector and

the weight matrix, respectively. Thus, an AE is trained to minimize the reconstruction error 𝐿

𝐿(𝑥, 𝑥;𝑤, 𝑤′) = ‖𝑥 − 𝑥‖2
2

= ‖𝑥 − 𝑓1(𝑤
′. 𝑓 (𝑥𝑤 + 𝑏) + 𝑏′)‖ .

(1.8)

1.5 Conclusion

The chapter started by providing a detailed review of IoV networks, including their hierarchical

architecture and the challenges related to security, privacy, and safety. It emphasized the

importance of developing effective IDS to address these issues. Several studies conducted by

researchers were discussed, focusing on the utilization of ML and DL techniques for enhancing
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the security of vehicular networks. In the latter part of the chapter, the focus shifted to neural

networks and their relevance in identifying and mitigating attacks in IoV networks.





CHAPTER 2

SYSTEM MODEL

2.1 Introduction

In this chapter, we will provide a detailed description of the network model developed for our

proposed IDS. We will begin by introducing the theoretical background; then we will provide

an overview of the simulated environment and outline the key aspects. Furthermore, we will

present a detailed explanation of the DL model employed in our system, which is responsible for

feature extraction and multi-class attack classification.

In addition, we will present our proposed IDS solution as an algorithm. This algorithm will

provide a step-by-step explanation of the entire process. Finally, we will present the mathematical

representations of three main components of our system model: the Long Short-Term Memory

Variational AutoEncoder, the Bidirectional Gated Recurrent Units, and the softmax classifier.

2.2 Network model of proposed IDS

The network model for the proposed IDS is shown in Fig. 2.1. The network model contains

three entities: Traffic Command Centres (TCCs) located at cloud servers, RSUs, and OBUs.

Typically, in the IoV network, vehicles are equipped with OBU units that record traffic and

driving data, and share this information with RSUs or other nearby vehicles in the network.

The RSUs are positioned at different geographical locations and share the vehicles’ real-time

information with TCCs. An attacker can easily target the OBUs located on the top of vehicles

and can further attempt to exploit the telematics services of the vehicles. Since most vehicles

have enough memory and computer power, we recommend installing the proposed IDS as a

firmware or software within the OBUs.

Specifically, the proposed IDS is a generative hybrid DL model that combines LSTMVAE

with BiGRU to learn time series and multivariate data from the IoV network, and is capable

of differentiating between reliable and doubtful instances based on the most representative
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Figure 2.1 Network model of proposed IDS

attributes. The LSTMVAE approach is designed to ensure feature extraction, and BiGRU with

softmax classifier is combined for attack classification. In the following section, we will discuss

the proposed architecture in detail.

2.3 The LSTMVAE-BiGRU-based IDS

In the proposed LSTMVAE-BiGRU-based IDS, there are three main parts: LSTMVAE, BiGRU,

and the softmax classifier.

2.3.1 The LSTMVAE-BiGRU Algorithm

In the LSTMVAE-BiGRU-based IDS architecture, the LSTM performs the encoding and

decoding in the LSTMVAE paradigm because it combines the LSTM network with the AE.

Furthermore, by limiting the latent space to have a dimension that is less than the input, the
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Algorithm 2.1 Proposed LSTMVAE-BiGRU

1: procedure Input:(Read the Dataset)

2: OUTPUT: Attack classification

3: Pre-process Dataset
Imputation of missing values

Convert categorical features into numeric data

Normalize data values between 0 and 1

4: Divide Data into Training, Validation, and Testing sets.

5: Feature Extraction using the LSTMVAE technique
Perform encoding and decoding

𝜙 : X→ K := � = 𝜎(KX + S)

𝜓 : K→ X̂ = 𝜎′ (K′
� + S′)

Replace the latent features with

�𝑡 = O𝑇 ◦ 𝜎ℎ (C𝑇 )

Add LSTM layers and perform encoding

C𝑇 = (F𝑇 ◦ C𝑇−1) +
(
I𝑇 ◦ C̃𝑇−1

)

F𝑇 = 𝜎𝐺 (K𝐹X𝑇 + V𝐹�𝑇−1 + S𝐹)

I𝑇 = 𝜎𝐺 (K𝐼X𝑇 + V𝐼�𝑇−1 + S𝐼 )

O𝑇 = 𝜎𝐺 (K𝑂X𝑇 + V𝑂�𝑇−1 + S𝑂)

C𝑇 = 𝜎𝐻 (K𝐶X𝑇 + V𝐶�𝑇−1 + S𝐶 )

6: Build the model using BiGRU and Softmax classifier
−→
𝑅𝑇 = 𝜎

(−−−→
𝐾𝑋𝑅𝑋𝑇 +

−−−→
𝐾ℎ𝑅ℎ𝑇−1 +

−→
S𝑅

)

−→
𝑍𝑇 = 𝜎

(−−−→
𝐾𝑋𝑍𝑋𝑇 +

−−−→
𝐾ℎ𝑍ℎ𝑇 − 1 +

−→
S𝑍

)

−−→
𝐺𝑇 = tanh

(−−−→
𝐾𝑋𝐺𝑋𝑇 +

−−−→
𝐾ℎ𝐺

(−→
𝑅𝑇 � ℎ𝑇−1

)
+
−−→
S𝐺

)

−→
ℎ𝑇 =

(
1 −

−→
𝑍𝑇

)
� ℎ𝑇−1 +

−→
𝑍𝑇 �

−−→
𝐺𝑇 .

Add softmax layer

𝑝 ( �̂�𝑐 = 𝑦𝑐 | 𝑥) = 𝜚(𝑥)𝑦𝑐 = 𝑒𝑥𝑐∑𝐶
𝑗 𝑒𝑥 𝑗

Calculate categorical cross-entropy loss

𝐿 ( �̂�𝑐, 𝑦𝑐) = −
∑𝑛

𝑖=1

∑𝐶
𝑐=1 𝑦

𝑥𝑖
𝑐 · log (𝑝 ( �̂�𝑖𝑐 = 𝑦𝑖𝑐 | 𝑥𝑖))

7: Perform Testing using Testset.
8: Evaluate performance using various metrics
9: end procedure

LSTMVAE is compelled to learn the training time series data’s most prominent characteristics.

On the other hand, BiGRU gathers local dependencies in a two-way time flow, or forward

and backward, to learn latent representations. Finally, the softmax layer is used to perform a

multi-class attack detection process.

Each of the components mentioned, including the LSTMVAE, the BiGRU, and the softmax

classifier, will be explained in detail in the following subsections.
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2.3.1.1 LSTMVAE

Let the AE model takes Dataset ′X′ as an input and performs two major tasks, encoding 𝜙 and

decoding 𝜓 (Al-Hmouz, Pedrycz, Balamash & Morfeq (2022)), as described in Algorithm 1.

These transition functions are given by the below equations.

𝜙 : X→ K := � = 𝜎(KX + S)

𝜓 : K→ X̂ = 𝜎′ (K′
� + S′) ,

(2.1)

where 𝜎, K, and S denote the activation function, weight matrix, and bias for encoder 𝜙,

respectively, and 𝜎′, K′, and S′ denote the activation function, weight matrix, and bias for

decoder 𝜓, respectively. The AE uses backpropagation through time approach to solve the

minimization problem formulated as:

𝜙, 𝜓 = arg min
𝜙,𝜓

‖X − (𝜓 ◦ 𝜙)X‖. (2.2)

The AE calculates the Euclidean distance-based reconstruction error to generate representative

features for reconstruction. This is done by the below equation.

L(X, X̂) = ‖X − 𝜎′ (K′ (𝜎(KX + S)) + S′)‖
2 . (2.3)

Equation 2.1 is regarded as stateless since it can only capture duration-based aspects of the

normalized likelihood sequence. It is also vulnerable to the vanishing gradient problem when the

weight K is back-propagated over time (Chen, Du & Liao (2022)). As network traffic might have

an unknown length in a real-time IoV network without experiencing any temporary changes,

there may be random gaps in training activities. This can be solved by performing the encoding

and decoding with LSTM units, i.e., replacing the latent representation � in Equation 2.1 with

Equation 2.4.

�𝑡 = O𝑇 ◦ 𝜎ℎ (C𝑇 ) , (2.4)

where O𝑇 and C𝑇 denote the output gate and cell state of ℎ LSTM units, respectively. The

relational composition between the previous and antecedent functions is indicated by the symbol

◦.

C𝑇 = (F𝑇 ◦ C𝑇−1) +
(
I𝑇 ◦ C̃𝑇−1

)
, (2.5)
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where a forget gate activation F𝑇 , cell input activation C̃𝑇 , and update activation I𝑇 , control the

state of the cell using the above equation.

Moreover, Equations 2.4 and 2.5 calculate the LSTM unit using the below transitions functions

(Shu, Zhang, Sun & Tang (2021)):

F𝑇 = 𝜎𝐺 (K𝐹X𝑇 + V𝐹�𝑇−1 + S𝐹) (2.6)

I𝑇 = 𝜎𝐺 (K𝐼X𝑇 + V𝐼�𝑇−1 + S𝐼 ) (2.7)

O𝑇 = 𝜎𝐺 (K𝑂X𝑇 + V𝑂�𝑇−1 + S𝑂) (2.8)

C𝑇 = 𝜎𝐻 (K𝐶X𝑇 + V𝐶�𝑇−1 + S𝐶) , (2.9)

where K, V, and S denote the weight matrix of the input X, the weight matrix between the

recurrent connections, and the bias parameters, respectively. These parameters are learned

during the training process of LSTMVAE. The activation functions 𝜎𝐺 and 𝜎𝐻 are calculated

using the below equations.

𝜎𝐺 = 𝑆(𝑋) =
𝑒𝑋

𝑒𝑋 + 1
(2.10)

𝜎𝐻 = tanh 𝑋 =
𝑒2𝑋 − 1

𝑒2𝑋 + 1
. (2.11)

Thus, by limiting the latent space to have a lower dimension compared to the input, the LSTMVAE

is compelled to focus on learning the most critical aspects of the training set.

2.3.1.2 BiGRU

The latent features generated by the LSTMVAE are further passed to BiGRU, which gathers local

dependencies in a two-way time flow, or forward and backward, to learn latent representations.

The BiGRU has only two gate structures, reset gate and update gate. The transition functions of

the BiGRU cell state are calculated using the below equations (Deng, Wang, Jia, Tong & Li

(2019)). The reset gate primarily controls how the past information is merged with the current

input information.
−→
𝑅𝑇 = 𝜎

(−−−→
𝐾𝑋𝑅𝑋𝑇 +

−−→
𝐾ℎ𝑅ℎ𝑇−1 +

−→
S𝑅

)
. (2.12)
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The update gate primarily controls how much prior information is kept in memory.

−→
𝑍𝑇 = 𝜎

(−−−→
𝐾𝑋𝑍𝑋𝑇 +

−−→
𝐾ℎ𝑍ℎ𝑇 − 1 +

−→
S𝑍

)
. (2.13)

A candidate gate contains potential values that might be added to the cell state.

−→
𝐺𝑇 = tanh

(−−−→
𝐾𝑋𝐺𝑋𝑇 +

−−−→
𝐾ℎ𝐺

(−→
𝑅𝑇 � ℎ𝑇−1

)
+
−−→
S𝐺

)
(2.14)

−→
ℎ𝑇 =

(
1 −

−→
𝑍𝑇

)
� ℎ𝑇−1 +

−→
𝑍𝑇 �

−→
𝐺𝑇, (2.15)

where
−→
𝑅𝑇 ,

−→
𝑍𝑇 , and

−→
𝐺𝑇 denote reset gate, update gate, and candidate cell state, respectively.

−−−→
𝐾𝑋𝑅,

−−−→
𝐾𝑋𝑍 ,

−−−→
𝐾𝑋𝐺 ,

−−−→
𝐾𝑋𝐺 , and

−−−→
𝐾ℎ𝐺 are the weight matrices.

−→
S𝑅,

−→
S𝑍 , and

−→
𝑅𝑇 are the bias vectors. The

final state
−→
ℎ𝑇 is calculated by performing elementwise product � between (1 −

−→
𝑍𝑇 ) and (ℎ𝑇−1),

and performing elementwise product � between (
−→
𝑍𝑇 ) and (

−→
𝐺𝑇 ). Finally, at time 𝑇 , BiGRU

calculates its final output by using the previous frame at time (𝑇 − 1) and the upcoming frame at

time (𝑇 + 1) using the below equation:

ℎ𝑇 =
−−−→
ℎ𝑇−1 ⊕

←−−−
ℎ𝑇+1, (2.16)

where ⊕ denotes the elementwise summation for forward and backward vectors.

2.3.1.3 Softmax classifier

Finally, we have used the softmax classifier as the last layer to perform multi-classification.

Let us assume that the proposed LSTMVAE-BiGRU-based IDS has the last layer as a softmax

function. Following that, this layer is given the input sequence 𝑋 =
(
𝑋1, 𝑋2, . . . 𝑋

𝑁
𝑇

)
, and the

output layer of the network produces a one-hot encoded C-dimensional vector 𝑦 while carrying

across 𝑇 timesteps. Hence, the following formula is used to determine the probability that a

single input, 𝑋 , relates to a certain threat category, 𝑦 (Al-Hawawreh et al. (2020)).

𝑝 ( �̂�𝑐 = 𝑦𝑐 | 𝑋) = 𝜚(𝑋)𝑦𝑐 =
𝑒𝑋𝑐

∑𝐶
𝑗 𝑒

𝑋 𝑗
(𝐶 = 1, 2, . . . 𝑐) (2.17)
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𝐿 ( �̂�𝑐, 𝑦𝑐) = −

𝑛∑
𝑖=1

𝐶∑
𝑐=1

𝑦𝑃𝑖
𝑐 · log (𝑝 ( �̂�𝑖𝑐 = 𝑦𝑖𝑐 | 𝑃𝑖)) . (2.18)

The loss during the training procedure is calculated using the categorical cross-entropy loss

function, as given above.

2.4 Conclusion

In this chapter, we have provided a comprehensive overview of our system model, which serves

as a solution to detect and classify various cyber-attacks in IoV networks. Furthermore, we have

presented a detailed description of the hybrid DL model used in our proposed IDS. This model

combines three key components: the LSTMVAE, the BiGRU, and the softmax classifier. We

have explained the purpose and functionality of each component and how they contribute to the

overall performance of the IDS. Lastly, we have provided mathematical representations for each

of the three components in our IDS architecture.





CHAPTER 3

RESULTS

3.1 Introduction

In this chapter, we will delve into the technical aspects of our methodology. We will start

by providing a comprehensive explanation of our ToN-IoT dataset, which includes a detailed

description of the preprocessing steps applied to the dataset.

Next, we will introduce and discuss the different evaluation metrics that we have employed

to assess the performance of our proposed IDS model. Following that, we will present the

experimental setup that we have used to train our hybrid DL model. This will include information

on the parameters and hyperparameters chosen for the model training process. Finally, we will

analyze the performance of our solution using various metrics and compare it against commonly

used baseline techniques and some recent state-of-the-art methods.

3.2 Dataset Description

The ToN-IoT dataset (Moustafa (2021)) is introduced by the UNSW Canberra IoT Labs and

the School of Engineering and Information Technology at UNSW Canberra to evaluate the

efficiency of several AI-enabled intrusion detection applications. To enhance the security of the

IoV network, we have developed an IDS model that utilizes the ToN-IoT dataset. The ToN-IoT

dataset consists of a diverse range of cyber-security attacks, encompassing various types such as

backdoor attacks, DDoS, DoS, injection attacks, MITM attacks, password attacks, ransomware

attacks, scanning attacks, and XSS attacks.

Along with the attack labels, the dataset comprises 44 distinct features that capture relevant

information for detecting and classifying these attacks. Additionally, the dataset includes a

normal class, which represents benign or non-malicious network traffic, providing a baseline for

comparison and enabling the identification of anomalous patterns associated with attacks.



38

The process begins with preprocessing the dataset and is followed by a series of steps as follows:

Imputation of missing values with the mean of that particular row, followed by converting

categorical features into numeric data points using the label-encoding technique. Then, the

dataset values were normalized between 0 and 1 using the min-max scaler technique. The

ToN-IoT dataset is then divided into a 70-30 ratio of training and testing set. Finally, the proposed

approach is compared with some baseline techniques, i.e., Random Forest (Baseline-1), Decision

Trees (Baseline-2), and Naive Bayes (Baseline-3), that are commonly used in the literature.

3.3 Performance Metrics

The performance of the proposed IDS is evaluated using different evaluation metrics. For

instance, we have used False Negative (𝛼), True Negative (𝛽), False Positive (𝛾), and True

Positive (𝛿) parameters to compute different metrics such as Precision Rate (PR), Detection Rate

(DR), Accuracy (AC), False Alarm Rate (FAR), and F1 Score, which are defined as follows:

• Precision: The metric measures the ratio of the samples correctly identified as positive by

the total positive identified samples, correct or incorrect, as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑅) =
𝛿

𝛿 + 𝛾
(3.1)

• Detection Rate: It is defined as the ratio of the samples correctly predicted as positive

by the total positive identified samples, either correctly identified as positive or incorrectly

identified as negative, as follows:

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 =
𝛿

𝛼 + 𝛿
(3.2)

• Accuracy: The metric is defined as the sum of the number of correctly identified predictions

as positive or negative to all type of predictions including correct and incorrect, as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝛿 + 𝛽

𝛾 + 𝛽 + 𝛿 + 𝛼
(3.3)
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• False Alarm Rate: The metric measures the ratio of the samples incorrectly identified as

positive by the total number of negatives, either correctly identified as negative or incorrectly

identified as positive, as follows:

𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑅𝑎𝑡𝑒 =
𝛾

𝛾 + 𝛽
(3.4)

• F1 Score: This metric indicates the harmonic mean of PR and Recall (RC), which can be

formulated as follows:

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑅 ∗ 𝑅𝐶

𝑃𝑅 + 𝑅𝐶
(3.5)

The highest and the lowest possible value of an F1 Score is 1 and 0, respectively.

3.4 Simulation Environment

The proposed approach is implemented using the Tensorflow library and Python 3.5. The

experimental setup to perform the simulations are mentioned in Table 3.1.
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Table 3.1 Hyper-parameters used for designing LSTMVAE-BiGRU-based IDS

Settings Hyperparameters

Input Layer 44 attributes from the ToN-IoT dataset

Encoder
Hidden Layers (HL)=4; Hidden Nodes (HN)= (44,35,25,10),

tanh function

Decoder
HL=4; HN= (10,25,35,44),

3 Layers use tanh, and the last layer uses sigmoid

LSTMVAE Model
loss=’binary crossentropy’, optimizer=’adam’,

batch size=50, epochs=10

Hidden layers HL=5; HN= (30,128,64,15,5)

Output layer
a softmax function

1 normal and 9 attacks

BiGRU Model
optimizer=’adam’, loss=’categorical crossentropy’,

batch size=50, epochs=10

3.5 Results

This section demonstrates the implementation details of the proposed model. We analyze the

performance on the basis of accuracy vs. loss and confusion matrix. Moreover, we perform

per-class prediction analysis to perform a multi-class attack detection process. Afterwards,

we perform the comparison analysis against commonly used baseline techniques in terms of

accuracy, precision, detection rate, and F1 score. Finally, the efficacy of the proposed IDS model

is assessed by comparing it with recent state-of-the-art methods.
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3.5.1 Performance Analysis

Within this subsection, we conduct a thorough analysis of the proposed IDS on various metrics.

A detailed explanation is described below.

3.5.1.1 Accuracy vs. loss

The proposed LSTMVAE technique has efficiently learned the dataset. The hyperparameters

used to design the LSTMVAE technique are mentioned in Table 3.1. In Fig. 3.1, we show the

outcome in terms of accuracy vs. loss, and the IDS obtained a 0.0872% validation loss and

0.9649% validation accuracy. The LSTMVAE technique’s objective is not to discover these

threat observations but to extract important low-dimensional attributes. Thus, the extracted

features are used by the BiGRU with a softmax classifier to detect different attacks present in the

dataset.

Figure 3.1 Accuracy vs. loss for LSTMVAE



42

3.5.1.2 Confusion matrix

The Confusion Matrix (CM) is a useful tool for assessing the performance of an IDS in binary

classifications. All four possible outcomes 𝛾, 𝛼, 𝛿, and 𝛽 are represented in the matrix. In this

context, positive indicates that the IDS identified the traffic record as an attack, while negative

indicates that the IDS classified it as normal data. The diagonal elements in Fig. 3.2 show the

correct classification of various attack vectors and a normal class. It is concluded from the

confusion matrix that the false-positive rate for each class in the ToN-IoT dataset is very low,

and thus the proposed IDS has a high detection rate.

Figure 3.2 Confusion matrix for the proposed model

3.5.1.3 Per-class prediction

The per-class prediction analysis in terms of PR, DR, F1 score, and FAR is illustrated in Table

3.2. This analysis is useful when IDS performs a multi-class attack detection process. It can

be concluded from Table 3.2 that the proposed IDS has achieved PR, DR, and F1 score values
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between 94%-100%. On the other hand, the false alarm for each class in the ToN-IoT dataset is

very low, i.e., 0%, which indicates the success rate of the proposed IDS.

Table 3.2 Per-class prediction results (%) for LSTMVAE-BiGRU-based IDS

Parameters Backdoor DDoS DoS Injection MITM Normal Password Ransomware Scanning XSS

PR 99.99 94.04 99.18 94.70 94.47 99.99 99.83 99.68 97.70 99.31

DR 99.56 94.67 98.08 96.73 94.76 100.00 99.29 99.79 97.54 98.53

F1 99.77 94.36 98.63 95.71 94.62 99.99 99.55 99.74 97.62 98.92

FAR 0.000007 0.002728 0.000370 0.002496 0.000130 0.000041 0.000075 0.000143 0.001058 0.000309

3.5.1.4 ROC Curve

The Receiver Operating Characteristic (ROC) is a useful method for interpreting the results of

multi-class vectors in the dataset. As a visual assessment tool, ROC graphs are particularly

useful for assessing the efficacy of classifiers. The 𝛿 and 𝛾 axes are typically extended within the

bounds of the two-dimensional ROC space. Based on Fig. 3.3, the following details are deduced:

the reported micro-average Area under the ROC Curve (AUC) for the LSTMVAE-BiGRU-based

IDS is significantly high, i.e., 0.99996, and the macro-average AUC value is 0.99977. On the

other hand, it can be seen that the AUC values for the different attacks and a normal class are

between 0.99887 to 1.00. This indicates that the proposed IDS can easily distinguish between

different attacks and a normal class in the ToN-IoT dataset.

3.5.2 Comparison with baselines techniques

In this subsection, we compare the performance of the proposed LSTMVAE-BiGRU model

against commonly used baseline techniques. First, we compare the performance in terms of

per-class DR (multi-class attack detection) scenario. Table 3.3 shows the comparison for various

attacks and a normal class present in the dataset. It is worth noting that the values for DR metrics

are between 94%-100% for LSTMVAE-BiGRU-based IDS. On the other hand, Baseline-2 has

achieved higher values for most attacks, but for injection and MITM attacks, the DR is 0%. This

table indicates that the proposed IDS has outperformed its competitive models.
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Figure 3.3 ROC for the proposed LSTMVAE-BiGRU-based

IDS

Table 3.3 Comparison of DR with baseline techniques

Techniques Backdoor DDoS DoS Injection MITM Normal Password Ransomware Scanning XSS

Baseline-1 99.98 90.40 91.97 93.53 0.00 100.00 97.81 99.40 95.74 85.47

Baseline-2 100.00 100.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00

Baseline-3 99.22 26.80 91.70 92.96 95.11 100.00 75.32 79.98 96.91 19.02

Proposed IDS 99.56 94.67 98.08 96.73 94.76 100.00 99.29 99.79 97.54 98.53

Finally, we have compared the performance of the proposed IDS with baseline techniques in

terms of accuracy, precision, detection rate, and F1 score. Fig. 3.4 shows this comparison. It

can be concluded that the proposed IDS has achieved higher values for these parameters. We

have also compared the performance of the proposed IDS with some recent state-of-the-art

methods Alsaedi, Moustafa, Tari, Mahmood & Anwar (2020); Abdel-Basset et al. (2022); Oseni

et al. (2023); Booĳ, Chiscop, Meeuwissen, Moustafa & Hartog (2022) using accuracy metrics.

Table 3.4 highlights this comparison, and we may conclude that LSTMVAE-BiGRU-based IDS

performs better in recognizing the cyber-attacks for the IoV networks.
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Figure 3.4 Performance comparison with baseline techniques

Table 3.4 Performance comparison with other models

Works Year Method Data Source Accuracy

Alsaedi et al. (2020) 2021 Classification And Regression Tree ToN-IoT 88.00%

Abdel-Basset et al. (2022) 2022 Federated IDS ToN-IoT 94.85%

Booĳ et al. (2022) 2022 Random Forest ToN-IoT 98.07%

Oseni et al. (2023) 2023 Convolutional Neural Networks ToN-IoT 90.55%

Proposed IDS 2023 LSTMVAE-BiGRU ToN-IoT 99.30%

3.6 Discussion

The evaluation results from the previous section provide insights into the proposed solution

presented in this project:

• Architecture: The proposed architecture combines statistical feature extraction with the

robust learning mechanism of the LSTMVAE paradigm, along with BiGRU and a softmax

layer. This integration aims to create an effective hybrid DL model.
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• Feature Extraction: The LSTMVAE plays a crucial role in feature extraction by extracting

low-dimensional attributes. These extracted features are then fed to the BiGRU with a softmax

classifier, enabling the model to learn latent representations and perform attack classification.

This feature extraction process contributes to improving the overall performance of the

model.

• Accuracy Comparison: The proposed LSTMVAE-BiGRU algorithm outperforms baseline

techniques such as Random Forest, Decision Trees, and Naive Bayes in terms of accuracy.

Additionally, when compared with recent state-of-the-art methods like Classification And

Regression Tree, Federated IDS, random forest, and CNNs, the proposed technique achieves

higher accuracy.

• Attack Detection: The proposed IDS demonstrates strong performance in both binary

classification and multi-class attack detection. Unlike systems that only detect specific types

of attacks, the proposed model can detect different attack types effectively. Moreover, it

achieves a low FAR while maintaining higher PR, DR, and F1 score, indicating its superior

performance.

3.7 Conclusion

Based on the simulation results, our proposed LSTMVAE-BiGRU algorithm has proven to be

highly effective in identifying and classifying potential cyber-attacks within the IoV network.

The LSTMVAE-BiGRU algorithm outperforms commonly used baseline techniques, showing

superior AC, PR, DR, while maintaining a low FAR. Furthermore, the proposed algorithm also

outperforms state-of-the-art approaches in terms of accuracy.

It can be concluded that the proposed hybrid DL model is a robust and reliable solution for

detecting and classifying cyber-attacks within the IoV network, offering superior performance

compared to baseline techniques and state-of-the-art approaches.



CONCLUSION AND RECOMMENDATIONS

The emergence of smart cities and advancements in telecommunication technologies have made

the IoV more vulnerable to cyber threats. The lack of sufficient security implementations in

IoVs exposes them to various network attacks. In order to protect IoVs, ensure the safety of

individuals, and prevent physical harm, IDSs offer effective solutions.

The goal of this dissertation was to propose a solution for identifying and classifying potential

cyber-attacks in the IoV network. The proposed approach involved developing a novel IDS

based on a generative hybrid DL model. The proposed model focused on learning time series

and multivariate data from the IoV network, distinguishing between trustworthy and uncertain

instances by leveraging the most significant attributes.

The proposed IDS, based on LSTMVAE-BiGRU architecture, consists of three main components:

LSTMVAE, BiGRU, and the softmax classifier. Within this architecture, the LSTM network is

responsible for encoding and decoding using the LSTMVAE paradigm, which combines LSTM

with AE capabilities. By constraining the latent space to be smaller than the input dimension,

the LSTMVAE is compelled to capture the most significant characteristics of the training time

series data. Additionally, BiGRU captures local dependencies in both forward and backward

time flow, enabling the learning of latent representations. Finally, the softmax layer performs

the multi-class attack detection process. The experimental results substantiate that the proposed

IDS outperformed widely employed baseline techniques and state-of-the-art approaches. It has

demonstrated superior performance, achieving higher values in terms of accuracy, precision,

detection rate, and F1 score.

Future research directions include testing the proposed IDS on diverse datasets to evaluate its

effectiveness and performance across various scenarios and data characteristics. Developing an

IDS that can operate effectively in large-scale IoV environments is a significant challenge and

an important area for further investigation. Additionally, addressing the detection of complex
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attack scenarios, such as zero-day attacks, would contribute to strengthening the security of IoV

systems and mitigating emerging threats.
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Abstract—The recent growth of the Internet of Things (IoT)
has revolutionized vehicular networks into the Internet of Ve-
hicles (IoV). Within the IoV infrastructure, modern vehicles
are vulnerable to different and new types of cyber-attacks.
Consequently, Intrusion Detection Systems (IDS) are extremely
helpful in coping with such attacks, and there is a pressing need
for the development of an advanced IDS that can efficiently detect
attacks with a high detection rate and accuracy, and a low false
alarm rate. Toward this end, we present a deep learning-based
IDS for the identification and classification of potential cyber-
attacks in the IoV network. Specifically, a generative hybrid
deep learning model that combines Long Short-Term Memory
Variational AutoEncoder with Bidirectional Gated Recurrent
Units (LSTMVAE-BiGRU) is proposed. Due to the integration
of the LSTM network and the VAE in this architecture, the
LSTM performs the encoding and decoding in the LSTMVAE
paradigm. The LSTMVAE is forced to learn the most salient
features of the training time series data by restricting the latent
space to have a dimension that is less than the input. On the
other hand, to learn latent representations, BiGRU collects local
dependencies in a two-way time flow, or forward and backward.
Lastly, the multi-class attack detection method is carried out
using the softmax layer. Experimental findings demonstrate that
the proposed IDS outperforms both baseline techniques that are
widely used and cutting-edge approaches.

Index Terms—Intrusion Detection System, Internet of Vehicles
(IoV), security, Long Short-Term Memory, deep learning

I. INTRODUCTION

W ITH the rapid advances in the IoT, IoV has emerged as

a disruptive technology. Within the IoV infrastructure,

modern vehicles are equipped with advanced onboard sensors

and networking capabilities connected to the Internet. The

sensors embedded in modern vehicles collect road data and

allow them to communicate and share with other vehicles,

smart devices, and surrounding objects through vehicle-to-

everything (V2X) wireless communications. V2X can fur-

ther take the form of vehicle-to-infrastructure (V2I), vehicle-

to-human (V2H), vehicle-to-network (V2N), and vehicle-to-

vehicle (V2V) technologies [1]. These technologies have

paved the way for enhanced driving experience and intelligent

transportation.

Along with the services offered, IoV plays a crucial role in

supporting a wide range of applications, including autonomous

vehicles (AVs), traffic and parking management, tracking sys-

tems, infotainment, etc. According to Statista [2], it is expected

to have around 146 million AVs in the United States by 2030.

However, the massive growth in AVs results in an increased

number of V2I and V2V communication links, which poses a

major challenge to securing the IoV network. Furthermore,

IoV is an open and dynamic heterogeneous network that

interconnects smart vehicles, nearby surroundings, and public

internet connections. This growing connectivity makes them

vulnerable to multiple types of cyber-attacks, thus; threatening

the trust, privacy, and security of modern vehicles and causing

serious risks to human lives [3].

The most common cyber-attacks on IoV comprise ran-

somware, backdoor, password attack, denial of service (DoS),

man-in-the-middle (MITM), scanning, cross-site scripting

(XSS), data injection, and distributed denial of service (DDoS)

[3]. In this direction, IDS is considered a powerful mean

to detect possible cyber-security attacks that compromise the

integrity, confidentiality, availability, authenticity, reliability,

and privacy of vehicular networks. To address the aforemen-

tioned security issues, several existing works presented in the

literature use artificial intelligence-based IDS techniques. For

example, Anzar et al. [4] designed a supervised learning-based

IDS to efficiently identify the intruders in the IoV network

based on V2V communications. However, they trained their

model based on the KDD Cup 1999 dataset, which is unsuit-

able for vehicular networks. Sherazi et al. [5] designed a fuzzy

logic-based framework and implemented it on a 6BR device

to identify and prevent DDoS attacks in IoV communications.

Similarly, focusing on malicious security failures, the au-

thors in [6] proposed a distributed Machine Learning (ML)

scheme for software-defined IoV networks. Yang et al. in [7]

proposed a novel ensemble-based IDS model for IoV networks

using ML approaches. However, most of these security solu-

tions suffer from low detection accuracy, high complexity, and

lack of generalization capabilities, making them unsuitable for

dynamic attacks. Therefore, considering the high connectivity,

the complexity of IoV network topology, constraints of storage

and computing resources, and multiple cyber-attacks being

launched, the traditional IDS mechanisms are not applicable

in real-time scenarios.

Owing to the explosion of vehicular traffic data, the Deep

Learning (DL) models [3] have gained significant attention

from academia and the telecom industry due to their po-

tential to effectively deal with heterogeneous, unstructured,

and large volumes of data. For instance, the work in [8] de-

ployed the detection engines on multi-access edge computing
978-1-6654-3540-6/22 © 2022 IEEE



(MEC) servers in IoV networks. A DL-based IDS framework

is proposed, which comprises DL engines to identify and

classify malicious traffic. However, the proposed approach

has considered fewer cyber-security attacks for simulation.

Oseni et al. [9] employed a Shapley Additive exPlanations

(SHAP) scheme to study the output of a DL-based IDS in IoV

systems. However, the considered approach is computationally

expensive and vulnerable to adversarial attacks.

A convolutional neural network (CNN)-based IDS is pro-

posed by Nie et al. [10] to detect different intrusion attacks

that aim at Road Side Units (RSUs). However, a limited set

of attacks were considered in their work. Another approach in

[11], where Ahmed et al. tried to solve the anomaly detection

problem in the controller area network (CAN) bus by leverag-

ing a CNN, specifically the VGG-16 architecture. The model is

trained using the CAN-intrusion dataset, which includes fuzzy

attacks, DoS attacks, and normal attacks. Almutlaq et al. [12]

used the rule extraction method from deep neural networks

and implemented a two-stage IDS for intelligent transportation

systems.

Although different DL approaches have been proposed in

the literature, most yield low detection accuracy and high false

alarm rates. These techniques also face key challenges. Due

to the fast movement of modern vehicles, the topology of IoV

changes frequently and thus they access the network randomly.

On the other hand, for intrusion detection, DL-based systems

frequently, require a large amount of network data to discover

abnormalities. However, getting such an enormous amount of

data is a challenging issue. In addition, extracting the features

of all possible patterns available in the IoV network is a

challenging task since these features constitute the model’s

overall performance.

To address the challenges, recent studies have proposed

Long Short-Term Memory (LSTM) architecture as one of the

promising solutions for IDS. LSTMs are a special kind of

recurrent neural networks (RNNs) that can handle long-term

dependencies [1]. The key aspect of LSTM-based RNNs is

to remember the information for long periods, which makes

them suitable for performing experiments on spatial data that

changes over time. For instance, Ashraf et al. [13] presented a

LSTM autoencoder-based intrusion detection framework that

can identify abnormal behaviour in both external networks

and CANs. Another DL-based threat intelligence scheme has

been presented in [14] to detect cyber-attacks from space-

air-ground-sea (SAGS) networks. A deep stacked autoencoder

(DSAE) was used to extract the hidden patterns of IoT-SAGS

network traffic, and then, a Gated Recurrent Neural Network

was applied to detect the cyber-attack types. However, these

approaches are designed for modeling the univariate sequence

representations. Thus, we propose a novel IDS for the identi-

fication and classification of potential cyber-attacks in the IoV

network. In our work, a hybrid DL model that combines LSTM

Variational AutoEncoder with Bidirectional Gated Recurrent

Units to learn time series and multivariate data from IoV

networks is presented.

Fig. 1: Network model of proposed IDS.

II. CONTRIBUTION

The main contributions of this article are as follows:

• A novel IDS based on a generative hybrid deep learning

model is proposed.

• Specifically, a statistical feature extraction technique

based on LSTMVAE is designed. The proposed LSTM-

VAE can learn time series and multivariate data from the

IoV network efficiently. Second, the extracted features are

used by the BiGRU and softmax classifier to differentiate

between reliable and doubtful occurrences in the IoV

network.

• The performance of the proposed IDS is evaluated using

various evaluation metrics and further compared with

some commonly used baseline techniques and state-of-

the-art methods using the ToN-IoT dataset [15].

III. PROPOSED MODEL

A. Working Architecture of the proposed IDS

Fig. 1 shows the network model for the proposed IDS. The

network model contains three entities: Traffic Command Cen-

tres (TCCs) located at cloud servers, Road Side Units (RSUs),

and On-Board Units (OBUs). Typically, in the IoV network,

vehicles are equipped with OBU units that record traffic and

driving data, and share this information with RSUs or other

nearby vehicles in the network. The RSUs are positioned at

different geographical locations and share the vehicles real-

time information with TCCs. An attacker can easily target

the OBUs located on the top of vehicles and can further

attempt to exploit the telematics services of the vehicles. Since

most vehicles have enough memory and computer power,

we recommend installing the proposed IDS as a firmware

or software within the OBUs. Specifically, the proposed IDS

is a generative hybrid DL model that combines LSTMVAE-

BiGRU to learn time series and multivariate data from the

IoV network, and is capable of differentiating between reliable

and doubtful instances based on the most representative at-

tributes.The LSTMVAE approach is designed to ensure feature

extraction, and BiGRU with softmax classifier is combined for



attack classification. The proposed architecture is explained

below:

B. LSTMVAE-BiGRU-based IDS

The proposed LSTMVAE-BiGRU-based IDS has three main

parts: LSTMVAE, BiGRU, and the softmax classifier. In this

architecture, the LSTM performs the encoding and decoding

in the LSTMVAE paradigm because it combines the LSTM

network with the AutoEncoder (AE). Furthermore, by limiting

the latent space to have a dimension that is less than the

input, the LSTMVAE is compelled to learn the training time

series data’s most prominent characteristics. On the other hand,

BiGRU gathers local dependencies in a two-way time flow, or

forward and backward, to learn latent representations. Finally,

the softmax layer is used to perform a multi-class attack

detection process. Each of them is explained below:

1) LSTMVAE: Let the AE model takes Dataset ′�′ as an

input and performs two major tasks, encoding φ and decoding

ψ [16], as described in Algorithm 1. These transition functions

are given by the below equations.

φ : �→ � := � = σ(��+ �)

ψ : �→ �̂ = σ′ (
�

′
�+ �′) , (1)

where σ, �, and � denote the activation function, weight

matrix, and bias for encoder φ, respectively, and σ′, �′, and

�
′ denote the activation function, weight matrix, and bias for

decoder ψ, respectively. The AE uses backpropagation through

time approach to solve the minimization problem formulated

as:
φ, ψ = argmin

φ,ψ
‖�− (ψ ◦ φ)�‖. (2)

The AE calculates the Euclidean distance-based reconstruction

error to generate representative features for reconstruction.

This is done by the below equation.

�(�, �̂) =
∥∥�− σ′ (

�
′(σ(��+ �)) + �′)∥∥2

. (3)

Equation 1 is regarded as stateless since it can only capture

duration-based aspects of the normalized likelihood sequence.

It is also vulnerable to the vanishing gradient problem when

the weight � is back-propagated over time [17]. As network

traffic might have an unknown length in a real-time IoV

network without experiencing any temporary changes, there

may be random gaps in training activities. This can be solved

by performing the encoding and decoding with LSTM units,

i.e., replacing the latent representation � in Equation 1 with

Equation 4.
�t = �T ◦ σh (�T ) , (4)

where �T and �T denote the output gate and cell state

of h LSTM units, respectively. The relational composition

between the previous and antecedent functions is indicated

by the symbol ◦.

�T = (�T ◦�T−1) +
(
	T ◦ �̃T−1

)
, (5)

where a forget gate activation �T , cell input activation �̃T ,

and update activation �T , control the state of the cell using

the above equation.

Algorithm 1 Proposed LSTMVAE-BiGRU

1: procedure INPUT:(Read the Dataset)
2: OUTPUT: Attack classification
3: Pre-process Dataset

Imputation of missing values
Convert categorical features into numeric data
Normalize data values between 0 and 1

4: Divide data into Training, Validation, and Testing sets.
5: Feature Extraction using the LSTMVAE technique

Perform encoding and decoding
φ : �→ � := � = σ(��+ �)
ψ : �→ �̂ = σ′ (�′

�+ �′)
Replace the latent features with
�t = �T ◦ σh (�T )
Add LSTM layers and perform encoding

�T = (�T ◦�T−1) +
(
�T ◦ �̃T−1

)

�T = σG (�F�T +	F�T−1 + �F )
�T = σG (�I�T +	I�T−1 + �I)
�T = σG (�O�T +	O�T−1 + �O)
�T = σH (�C�T +	C�T−1 + �C)

6: Build the model using BiGRU and softmax classifier−→
RT = σ

(−−−→
KXRXT +

−−→
KhRhT−1 +

−→
�R

)
−→
ZT = σ

(−−−→
KXZXT +

−−→
KhZhT − 1 +

−→
�Z

)
−→
GT = tanh

(−−−→
KXGXT +

−−→
KhG

(−→
RT � hT−1

)
+

−→
�G

)
−→
hT =

(
1−−→

ZT

)
� hT−1 +

−→
ZT �−→

GT .

Add softmax layer

p (ŷc = yc | x) = �(x)yc = exc
∑C

j e
xj

Calculate categorical cross-entropy loss
L (ŷc, yc) = −∑n

i=1

∑C
c=1 y

xi
c · log (p (ŷic = yic | xi))

7: Perform Testing using Testset.
8: Evaluate performance using various metrics
9: end procedure

Moreover, Equations 4 and 5 calculate the LSTM unit using

the below transitions functions [18]:

�T = σG (�F�T +
F�T−1 + �F ) (6)

	T = σG (�I�T +
I�T−1 + �I) (7)

�T = σG (�O�T +
O�T−1 + �O) (8)

�T = σH (�C�T +
C�T−1 + �C) , (9)

where �, 	, and � denote the weight matrix of the input �,

the weight matrix between the recurrent connections, and bias

parameters, respectively. These parameters are learned during

the training process of LSTMVAE. The activation functions

σG and σH are calculated using the below equations.

σG = S(X) =
eX

eX + 1
(10)

σH = tanhX =
e2X − 1

e2X + 1
. (11)

Thus, by limiting the latent space to have a lower dimension

than the input, the LSTMVAE is compelled to learn the most

important aspects of the training set.

2) BiGRU: The latent features generated by the LSTMVAE

are further passed to BiGRU, which gathers local dependencies

in a two-way time flow, or forward and backward, to learn

latent representations. The BiGRU has only two gate struc-

tures, reset gate and update gate. The transition functions of the

BiGRU cell state are calculated using the below equations [19].



The reset gate primarily controls how the past information is

merged with the current input information.

−→
RT = σ

(−−−→
KXRXT +

−−→
KhRhT−1 +

−→
R
)
. (12)

The update gate primarily controls how much prior informa-

tion is kept in memory.

−→
ZT = σ

(−−−→
KXZXT +

−−→
KhZhT − 1 +

−→
Z
)
. (13)

A candidate gate contains potential values that might be added

to the cell state.
−→
GT = tanh

(−−−→
KXGXT +

−−→
KhG

(−→
RT � hT−1

)
+

−→
G
)

(14)

−→
hT =

(
1−−→

ZT

)
� hT−1 +

−→
ZT �−→

GT , (15)

where
−→
RT ,

−→
ZT , and

−→
GT denote reset gate, update gate, and

candidate cell state.
−−−→
KXR,

−−−→
KXZ ,

−−−→
KXG,

−−−→
KXG, and

−−→
KhG are

the weight matrices.
−→
R,

−→
Z, and

−→
RT are the bias vectors. The

final state
−→
hT is calculated by performing elementwise product

� between (1−−→
ZT ) and (hT−1), and performing elementwise

product � between (
−→
ZT ) and (

−→
GT ). Finally, at time T , BiGRU

calculates its final output by using the previous frame at time

(T − 1) and the upcoming frame at time (T + 1) using the

below equation:

hT =
−−−→
hT−1 ⊕←−−−

hT+1, (16)

where ⊕ denotes the elementwise summation for forward and

backward vectors.
3) Softmax classifier: Finally, we have used the softmax

classifier as the last layer to perform multi-classification. Let

us assume that the proposed LSTMVAE-BiGRU-based IDS

has the last layer as a softmax function. Following that, this

layer is given the input sequence X =
(
X1, X2, . . . X

N
T

)
,

and the output layer of the network produces a one-hot

encoded C-dimensional vector y while carrying across T
timesteps. Hence, the following formula is used to determine

the probability that a single input, X , relates to a certain threat

category, y [14].

p (ŷc = yc | X) = �(X)yc =
eXc

∑C
j eXj

(C = 1, 2, . . . c) (17)

L (ŷc, yc) = −
n∑

i=1

C∑
c=1

yPi
c · log (p (ŷic = yic | Pi)) . (18)

The loss during the training procedure is calculated using

categorical cross-entropy loss function as given above.

IV. RESULT ANALYSIS

The proposed approach is implemented using the Tensor-

flow library and Python 3.5. The experimental setup to perform

the simulations are mentioned in Table I. The proposed IDS

uses the ToN-IoT dataset that includes multiple types of cyber-

security attacks, including backdoor, DDoS, DoS, injection,

MITM, password attack, ransomware, scanning, and XSS.

This dataset includes 44 features and the above mentioned

labeled attack-types with a normal class. The proposed model

TABLE I: Hyper-parameters used for designing LSTMVAE-BiGRU-
based IDS.

Settings Hyperparameters
Input Layer 44 attributes from the ToN-IoT dataset

Encoder
Hidden Layers (HL)= 4; Hidden Nodes (HN)= (44,35,25,10),
tanh function

Decoder
HL= 4; HN= (10,25,35,44),
3 Layers use tanh and the last layer uses sigmoid

LSTMVAE Model
loss=’binary crossentropy’, optimizer=’adam’,
batch size= 50, epochs= 10

Hidden layers HL= 5; HN= (30,128,64,15,5)

Output layer
a softmax function
1 normal and 9 attacks

BiGRU Model
optimizer=’adam’, loss=’categorical crossentropy’,
batch size= 50, epochs= 10

Fig. 2: Accuracy vs. loss for LSTMVAE.

tries to solve the multi-class attack detection challenge. The

performance of the proposed IDS is evaluated using different

evaluation metrics. For instance, we have used False Negative

(α), True Negative (β), False Positive (γ), and True Posi-

tive (δ) parameters to compute different metrics: Precision

(PR) = δ
δ+γ , Detection Rate (DR) = δ

α+δ , Accuracy (AC)

= δ+β
γ+β+δ+α , False Alarm Rate (FAR) = γ

γ+β , and F1 Score

= 2∗ PR∗RC
PR+RC . First, we pre-processed the dataset and followed

a series of steps: Imputation of missing values with the mean

of that particular row, followed by converting categorical

features into numeric data points using the label-encoding

technique. Then, the dataset values were normalized between

0 and 1 using the min-max scaler technique. The ToN-IoT

dataset is then divided into a 70-30 ratio of training and

testing set. Finally, the proposed approach is compared with

some baseline techniques, i.e., random forest (Baseline-1),

decision trees (Baseline-2), and naive bayes (Baseline-3), that

are commonly used in the literature.

A. Performance Analysis

In this subsection, we analyze the performance of the

proposed IDS on various metrics. A detailed explanation is

described below.

1) Accuracy vs. loss: The proposed LSTMVAE technique

has efficiently learned the dataset. The hyperparameters used

to design the LSTMVAE technique are mentioned in Table I.

In Fig. 2, we show the outcome in terms of accuracy vs. loss,

and the IDS obtained a 0.0872% validation loss and 0.9649%

validation accuracy. The LSTMVAE technique’s objective is

not to discover these threat observations but to extract impor-



TABLE II: Per-class prediction results (%) for LSTMVAE-BiGRU-based IDS.

Parameters Backdoor DDoS DoS Injection MITM Normal Password Ransomware Scanning XSS
PR 99.99 94.04 99.18 94.70 94.47 99.99 99.83 99.68 97.70 99.31

DR 99.56 94.67 98.08 96.73 94.76 100.00 99.29 99.79 97.54 98.53

F1 99.77 94.36 98.63 95.71 94.62 99.99 99.55 99.74 97.62 98.92

FAR 0.000007 0.002728 0.000370 0.002496 0.000130 0.000041 0.000075 0.000143 0.001058 0.000309

TABLE III: Comparison of DR with baseline techniques.

Techniques Backdoor DDoS DoS Injection MITM Normal Password Ransomware Scanning XSS
Baseline-1 99.98 90.40 91.97 93.53 0.00 100.00 97.81 99.40 95.74 85.47

Baseline-2 100.00 100.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00

Baseline-3 99.22 26.80 91.70 92.96 95.11 100.00 75.32 79.98 96.91 19.02

Proposed IDS 99.56 94.67 98.08 96.73 94.76 100.00 99.29 99.79 97.54 98.53

Fig. 3: Confusion matrix for the proposed model.

Fig. 4: ROC for the proposed LSTMVAE-BiGRU-based IDS.

tant low-dimensional attributes. Thus, the extracted features

are used by the BiGRU with a softmax classifier to detect

different attacks present in the dataset.

2) Confusion matrix: Confusion Matrix (CM) is a useful

tool that provides details on how well an IDS model performs

in binary classifications. All four possible outcomes γ, α, δ,

and β are represented in the matrix. It is important to note

that positive indicates the IDS expected the traffic record as

attack data, whereas negative indicates the IDS anticipated the

traffic record as normal data. The diagonal elements in Fig. 3

show the correct classification of various attack vectors and a

normal class. It is concluded from the confusion matrix that

the false-positive rate for each class in the ToN-IoT dataset

is very low and thus the proposed IDS have a high detection

rate.

3) Per-class prediction: The per-class prediction analysis

in terms of PR, DR, F1 score, and FAR is illustrated in Table

II. This analysis is useful when IDS performs a multi-class

attack detection process. It can be concluded from Table II that

the proposed IDS has achieved PR, DR, and F1 score values

between 94%-100%. On the other hand, the false alarm for

each class in the ToN-IoT dataset is very low, i.e., 0%. This

indicates the success rate of the proposed IDS.

4) ROC Curve: The Receiver Operating Characteristic

(ROC) is a useful method for interpreting the results of multi-

class vectors in the dataset. As a visual assessment tool, ROC

graphs are particularly useful for assessing the efficacy of

classifiers. The δ and γ axes are typically extended within the

bounds of the two-dimensional ROC space. Based on Fig. 4,

the following details are deduced: the reported micro-average

Area under the ROC Curve (AUC) for the LSTMVAE-BiGRU-

based IDS is significantly high, i.e., 0.99996, and the macro-

average AUC value is 0.99977. On the other hand, it can be

seen that the AUC values for the different attacks and a normal

class are between 0.99887 to 1.00. This indicates that the

proposed IDS can easily distinguish between different attacks

and a normal class in the ToN-IoT dataset.

B. Comparison with baselines techniques

In this subsection, we compare the performance of the

proposed LSTMVAE-BiGRU model against commonly used

baseline techniques. First, we compare the performance in

terms of per-class DR (multi-class attack detection) scenario.

Table III shows the comparison for various attacks and a

normal class present in the dataset. It is worth noting that the

values for DR metrics are between 94%-100% for LSTMVAE-

BiGRU-based IDS. On the other hand, Baseline-2 has achieved

higher values for most attacks, but for injection and MITM

attacks, the DR is 0%. This table indicates that the proposed

IDS has outperformed its competitive models. Finally, we have

compared the performance of the proposed IDS with baseline

techniques in terms of accuracy, precision, detection rate, and

F1 score. Fig. 5 shows this comparison. It can be concluded

that the proposed IDS has achieved higher values for these



Fig. 5: Performance comparison with baseline techniques.

TABLE IV: Performance comparison with other models.

Works Year Method Data Source Accuracy
[20] 2021 Classification And Regression Tree ToN-IoT 88.00%
[21] 2022 Federated IDS ToN-IoT 94.85%
[22] 2022 Random Forest ToN-IoT 98.07%
[9] 2023 Convolutional Neural Networks ToN-IoT 90.55%

Proposed IDS 2023 LSTMVAE-BiGRU ToN-IoT 99.30%

parameters. We have also compared the performance of the

proposed IDS with some recent state-of-the-art methods [20],

[21], [9], [22] using accuracy metrics. Table IV highlights this

comparison, and we may conclude that LSTMVAE-BiGRU-

based IDS performs better in recognizing the cyber-attacks

for the IoV networks.

V. CONCLUSION

To enhance the IoV security, we have proposed a novel

IDS based on a generative hybrid deep learning model. The

proposed model is designed by combining LSTMVAE, Bi-

GRU, and a softmax classifier. The LSTMVAE is used as

a statistical feature extraction technique that can learn time

series and multivariate data from the IoV network. To evaluate

the performance, we feed the extracted features to BiGRU

and a softmax classifier for identification and classification

of potential cyber-attacks in the IoV network. Experimental

results based on the ToN-IoT dataset confirm the superiority

of the proposed IDS over commonly used baseline techniques.

Future research will include testing the proposed IDS on

different datasets.
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