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Un cadre intelligent pour explorer et détecter les odeurs de la communauté en génie
logiciel.

Nuri ALMARIMI

RÉSUMÉ

L’ingénierie logicielle peut être définie comme l’effort coordonné de diverses entités, y compris

des organisations et des individus, pour construire des produits logiciels. Ainsi, la structure

sociale au sein d’une communauté de développement logiciel, y compris les interactions entre les

développeurs, est cruciale pour le succès des projets logiciels. Les communautés de projets sont

de plus en plus sollicitées dans les systèmes logiciels modernes pour améliorer la productivité des

développeurs et garantir la livraison de logiciels de haute qualité. Cependant, ces communautés

manquent souvent d’un suivi suffisant de leurs structures organisationnelles, en particulier dans

les communautés plus grandes avec des structures explicites où le soutien managérial peut faire

défaut. Les communautés de développement logiciel doivent donc coordonner activement leurs

efforts pour favoriser une collaboration efficace et promouvoir le bien-être de la communauté

de développement. Des recherches récentes ont introduit le terme "odeurs de la communauté"

pour décrire une série de modèles socio-techniques ayant un effet préjudiciable sur la santé

organisationnelle d’un projet. Les odeurs de la communauté sont associées à des circonstances

résultant de mauvaises pratiques organisationnelles et sociales, ce qui contribue à l’accumulation

de dettes sociales. Cette thèse présente une série d’études empiriques visant à comprendre les

défis de la détection des odeurs de la communauté dans le domaine de l’ingénierie logicielle,

à mettre en évidence la valeur des odeurs de la communauté dans le développement logiciel

et à proposer de nouvelles approches pour soutenir les développeurs et les gestionnaires dans

l’amélioration de l’efficacité de l’ingénierie logicielle au sein de communautés sub-optimales.

Plus précisément, nous abordons trois aspects du problème de détection des odeurs de la

communauté. Tout d’abord, nous présentons une étude pour explorer et détecter les odeurs

de la communauté dans des projets open-source. Grâce à cette étude, nous développons un

modèle utilisant une approche d’apprentissage automatique qui apprend à partir d’un ensemble

de symptômes organisationnels-sociaux pour caractériser la présence potentielle d’odeurs de la

communauté. Ensuite, nous menons une étude empirique qui applique un modèle d’apprentissage

multi-étiquettes (MLL) pour traiter les symptômes entrelacés des odeurs de la communauté

existantes. Enfin, nous proposons un cadre et une approche pour améliorer la détection des

odeurs de la communauté dans le domaine de l’ingénierie logicielle. Notre cadre intègre

plusieurs sources de données, notamment l’analyse des réseaux sociaux, l’analyse des sentiments

et les métriques de facteur de camion. Enfin, nous introduisons un nouvel outil automatisé basé

sur le cadre proposé pour détecter les odeurs de la communauté dans des projets open-source.

Cette approche surpasse les techniques existantes et les approches de pointe.

Les résultats de la thèse mettent en évidence un changement significatif dans le paysage de

la communauté de développement logiciel. Les résultats présentés fournissent de nouvelles

perspectives sur la détection des odeurs de la communauté au sein de la communauté de
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développement logiciel. De plus, ils mettent en lumière des approches novatrices pour la

détection précoce des odeurs de la communauté potentielles dans un projet logiciel, qui peuvent

être utilisées par la communauté logicielle, y compris les développeurs, les gestionnaires et les

organisations.

Mots-clés: Community smells, Dette sociale, Génie logiciel basé sur la recherche, Génie

logiciel empirique, Apprentissage



An intelligent framework to explore and detect community smells in software engineering

Nuri ALMARIMI

ABSTRACT
Software engineering can be defined as the coordinated effort of various entities, including

organizations, and individuals, to build software products. Thus, the social structure within a

software development community, including the interactions among developers, is crucial for

the success of software projects. Project communities are increasingly relied upon in modern

software systems to enhance developers’ productivity and ensure the delivery of high-quality

software. However, such communities often lack sufficient monitoring of their organizational

structures, especially in larger communities with explicit structures where managerial support

may be lacking. Software development communities, therefore, need to actively coordinate

their efforts to foster effective collaboration and promote the well-being of the development

community. Recent research has introduced the term ’community smells’ to describe a range of

socio-technical patterns that have a detrimental effect on the organizational health of a project.

Community smells are associated with circumstances resulting from poor organizational and

social practices, which contribute to the accumulation of social debt. This thesis presents a series

of empirical studies that aim to understand the challenges of detecting community smells in the

software engineering domain, highlight the value of community smells in software development,

and propose novel approaches to support developers and managers in improving the efficiency

of software engineering within sub-optimal communities.

Specifically, we address three aspects of the community smells detection problem. First, we

present a study to explore and detect community smells in open-source projects. Through

this study, we develop a model using a machine-learning approach that learns from a set of

organizational-social symptoms to characterize the potential presence of community smells.

Second, we conduct an empirical study that applies a multi-label learning (MLL) model to deal

with the interleaving symptoms of existing community smells. Third, we propose a framework

and approach to enhance the detection of community smells in the software engineering domain.

Our framework integrates multiple data sources, including social network analysis, sentiment

analysis, and truck factor metrics. Finally, we introduce a novel automated tool based on the

proposed framework for detecting community smells in open-source projects. This approach

outperforms existing techniques and state-of-the-art approaches.

The findings of the thesis highlight a significant shift in the software development community

landscape. The presented results provide fresh insights into the detection of community smells

within the software development community. Furthermore, they shed light on innovative

approaches for the early detection of potential community smells in a software project, which

can be utilized by the software community, including developers, managers, and organizations.

Keywords: Community smells, Social debt, Search-based Software Engineering, Empirical

Software Engineering, Machine learning.
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INTRODUCTION

0.1 Research context

Software engineering has increasingly come to depend on open-source communities more than

ever before. However, the nature of such communities often involves organizational structures

with limited monitoring (Tamburri, Palomba, Serebrenik & Zaidman (2019c)). For larger

communities with an explicit structure, there is often insufficient managerial support.(Tamburri,

Kazman & Fahimi (2016)). Hence, software development communities are required to coordinate

their efforts to provide effective collaboration to produce the well-being of the development

community (Tamburri, Kruchten, Lago & Vliet (2015b)). The social aspects related to the

organizational structure of a software development community and a project social network are

the most important factors that influence the start-up and continued success of the software project

(Tamburri et al. (2019c)). Recent studies on open-source community failure demonstrate an

increasing need for automated and semi-automated support to measure the social, organizational,

and socio-technical characteristics of such communities (Tamburri, Kruchten, Lago & van Vliet

(2013)).

Community researchers, such as architects guiding the social and organizational structure

of development projects (Tamburri et al. (2016)), could utilize tools to identify undesirable

changes and organizational distress within a community. This would enable them to make

informed decisions aimed at reorganizing the community (Tamburri et al. (2019c)). In fact, by

using tools such as automated monitoring systems that observe people and software artifacts

together, community researchers could gain a better understanding of the characteristics of other

open-source communities and then replicate these characteristics in their own communities.

Improving the quality of software projects success involves detecting community smells.

Typically, community smells are unfavorable conditions in open-source communities that can
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result in social debt, which is an unexpected project cost associated with suboptimal development

communities (Tamburri, Kruchten, Lago & van Vliet (2013b)). Social debt can cause ripple

effects leading to technical debt (Tamburri, Palomba & Kazman (2019b)). One of the widely

used techniques to detect community smells is social network analysis. Metrics such as density,

centrality, betweenness and closeness in a developer social network are relevant factors to

consider when detecting and predicting the emergence of community smells. These metrics

indicate that the community structure can impact the occurrence of smells.(Palomba & Tamburri

(2021)).

0.2 Problem statement

Software products are the result of collaborative efforts by teams working together to produce

high-quality software. Negative organizational efforts can lead to poor software quality. Hence,

communication and coordination in large software development teams must be well organized

within software development communities. Understanding the nature of these communities

is crucial to ensuring the success of software projects. The socio-technical decisions related

to the organizational structure of a software development community are the most important

factors that affect how people work and interact with each other. Therefore, detecting community

smells in negative community structures can have a significant impact on the success of software

projects and can help improve the quality of software products and the software development

process. These concerns and motivations led to the formulation of this thesis problem statement,

which is stated as follows:

"With the nature of open-source communities and given that the community smells can have a

negative impact on project success, we believe that there is untapped potential in detecting and

exploring community smells within software development communities".
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In this section, we highlight the different problems addressed in this thesis that are related to the

social aspects connected to sub-optimal organizational communities as follows:

0.2.1 Problem 1: Automating community smells detection.

Like any software detection problem, there are many open issues and challenges that need to be

addressed when defining a detection strategy. In the following, we highlight these open issues.

• Although there is a definition of community smells in an industrial environment, there

is no consensus on the definition of community smells in open-source projects. If such

smells definitions exist, translating these definitions into detection rules becomes a subject of

community smell detection.

• Community smells detection requires an automatic approach to define detection rules for

smells. The process of manually defining detection rules, and exploring the community-smell

candidates, is time-consuming, tedious, and not always profitable. Furthermore, community

smells detection requires an expert to manually write and validate detection rules.

0.2.2 Problem 2: Limited empirical knowledge of interleaving symptoms of existing
community smells types.

• Detecting a set of symptoms for each community smell type does not necessarily mean

that the actual community smell is effectively detected; moreover, in most cases, different

community smells exhibit similar symptoms. The majority of existing detection methods do

not consider the interleaving symptoms of existing community smell types. In these cases,

the same symptom could be associated with multiple smell types, which compromises the

precise identification of community smell types.
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0.2.3 Problem 3: Lack of empirical knowledge of developers’ communications.

The existing approaches provide limited empirical knowledge of community smell detection

through communication channels i.e., sentiment analysis, pull requests, and issue report

discussions.

• The communication channels between developers play a crucial role and are key aspects in

detecting community smells. Capturing more communication channels between developers

leads to providing better detection of community smells. While previous research has shown

the feasibility of extracting interactions between developers from online platforms, it has

not specifically focused on detecting community smells through these channels, such as

sentiment analysis, pull requests, and issue report discussions.

0.3 Research objectives

The main goal of this thesis is to improve the detection of community smells in open-source

projects. The sub-objectives are summarized as follows:

Objective 1: Develop an automatic approach that accurately detects community smells and

their symptoms in open-source projects and translate the formal definitions and symptoms of

community smells into actionable detection rules.

Objective 2: Handle the overlapping symptoms of existing community smells and enhance the

community smells detection.

Objective 3: Leverage the rich information provided by the communication’s channels, such

as sentiment analysis, pull requests, and issue discussions on online platforms to gain a better

detection of community smells in open-source projects.
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0.4 Main contributions

To overcome the previously identified problems, we propose the following contributions:

Contribution 1: Automating community smells detection.

To automate the detection of community-smells we propose machine learning (ML) approaches.

In this contribution, we applied ML to accurately detect community smells and their symptoms

in open-source projects. Firstly, we collected a large dataset and provided a comprehensive

list of socio-technical metrics for community smell detection. Secondly, we conducted and

designed an approach to improve the detection of community smells and investigate the impact

of socio-technical characteristics on such smells in open-source software projects. Then, we

are presenting an automated approach to implement the proposed framework for detecting

community smells in open-source software projects. Furthermore, we have made the tools,

approaches, and datasets used in this thesis publicly available to accelerate future research on

community smells in the software engineering domain.

Contribution 2: An approach to handle the interleaving symptoms between community

smell types.

We introduce an approach based on a set of interleaving organizational-social symptoms that

characterize the existence of community smell instances in a software project. We have devel-

oped a multi-label learning model to detect several common types of community smells. For

this purpose, we have employed the ensemble classifier chain (ECC) model that transforms

multi-label problems into several single-label problems. Then, we used genetic programming

(GP) to find the optimal detection rules for each smell type.
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Contribution 3: A comprehensive framework for improving the detection of community

smells.

In the third contribution, we build a comprehensive framework based on new communication

channels (pull requests, issue reports, and sentiment analysis). We present a study that highlights

the community smells challenges in open source projects. The study introduces a framework

for detecting community smells that integrates multiple data sources, including social network

graph analysis (commits, pull requests, and issue reports discussions), sentiment analysis, and

truck factor metrics. Our framework illustrates the potential benefits in a real-life scenario by

asking SE practitioners to give feedback about the community smells in their projects.

0.5 Thesis organization

The thesis consists of three parts and six chapters that are organized as follows: Chapter 2

provides the necessary background related to community smells in software engineering and

research related to sentiment analysis. Chapter 3 presents the first part of this thesis’s goals

“Understanding the challenges of community smells and exploring their attributes” and provides

the results of empirical studies related to community smells challenges and attributes. In Chapter

4, we propose an approach that supports the automated detection of community smells. We

formulated the community smells detection problem as an optimization problem to find the

optimal detection rules for each smell type by using genetic programming (GP). Chapter 5,

presents the third part of this thesis, “Improving community smell detection” and show our

results for improving community smell detection in open source projects. Finally, Chapter 6

summarizes the thesis and discusses some directions for future work. The whole picture of this

thesis is presented in the following figure 0.1:
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Part 1
Machine learning approach

Learning to detect community smells 
in open source software projects

On the Detection of Community 
Smells Using Genetic Programming-
based Ensemble Classifier Chain.

Part 2
Applying MLL approach 

Improving the detection of community 
smells through sociotechnical
and sentiment analysis

Part 3
An intelligent framework

Chapter 2
-Background & basic concepts
-Literature review

Chapter 6
Conclusion & Recommendations

Chapter 3 Chapter 4 Chapter 5

Figure 0.1 Thesis organization
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CHAPTER 1

STATE OF THE ART

1.1 Introduction

In this chapter, we present a literature review that is connected to the research work presented in

this thesis. We begin by providing essential background information necessary for comprehending

the thesis. Following that, we survey the relevant research that relates to the primary themes of

this research work.

1.2 Background

In this section, we provide the necessary background for Social debt and community smells,

developer’s social networks, and search-based software techniques.

1.2.1 Social debt and community smells

Social debt is connected to poor organization structures that often lead to short and/or long-term

social issues within a project (Tamburri, Kruchten, Lago & van Vliet (2013a)). These problems

generate unforeseen additional costs in a software development environment, where non-optimal

or uniform socio-technical decisions influence both the social and technical aspects of the

software development communities. Moreover, such issues are not easily detectable and visible

as well as can be postponed in time (Tamburri et al. (2013a, 2015b)).

Much like the concept of technical debt, social debt impacts heavily on software development

success, and over time this debt will continue to accumulate interest and is not repaid until the

tasks are completed, which creates problems in the long term and makes it harder to implement

changes in the future (Tamburri et al. (2015b)). The social debt is similar to the technical debt

while decisions in technical debt are about technologies and their applications, the decisions that

cause social debt are about people themselves and their interactions (Tamburri et al. (2015b)).
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In the same meaning of the code smells concept, the social debt researchers defined “Community

smells” as social related anti-patterns useful to understand negative characteristics and trends

(Tamburri et al. (2019c); Caballero-Espinosa, Carver & Stowers (2022)). Community smells

are defined as “socio-technical anti-patterns that may appear normal but in fact, reflect unlikable

community characteristics” (Tamburri, Palomba & Kazman (2021)). Thus, community smells

are useful to understand negative organizational and social aspects and developer behaviors

within a community. In other words, community smells are a set of social and organizational

circumstance that happened over time with implicit additional cost to a project, the consequence of

this problem cause social dept in the form of delays, mistrust, uninformed and miscommunication

architectural decision-making (Tamburri et al. (2021, 2019c)).

Tamburri et al. identified several community smells by analyzing social characteristics and

technical metrics in open-source projects, which may affect the health of OSS communities

Tamburri et al. (2016). As an extension of their research, Tamburri et al. introduced a tool called

YOSHI that automates the discovery of community patterns in open-source projects Tamburri,

Palomba, Serebrenik & Zaidman (2018). This tool characterizes open software projects based on

measurable attributes and formal detection rules for community factors. Siemens also introduced

a tool called CodeFace that builds social developer networks based on community maps Joblin,

Mauerer, Apel, Siegmund & Riehle (2015a). Later, Tamburri et al. Tamburri et al. (2021)

built upon CodeFace4smell scenarios to detect various types of smells in OSS projects, using

statistical metrics from the GitHub repository and mailing lists among developers Tamburri,

Palomba & Kazman (2019). The tool tracks the history of a repository and the mailing lists of

projects to build social networks of developers.

1.2.2 Developer social networks

In a software system community could be formed the interactions and relationships between

developers as a self-organized network, which can be considered as a developer social network

(Hong, Kim, Cheung & Bird (2011)). Based on the developer network concept a socio-

technical developer network can be generated from socio-technical connections which present



11

the collaboration and communication channels. The researchers have created developer social

networks from every possible development source information to allow the usage of social

network analysis methodologies and metrics. Such social networks can be generated from code

source history and mostly from other open and accessible data sources used within software

development such as bug reporting, pull requests, and version control systems (Lopez-Fernandez,

Robles, Gonzalez-Barahona et al. (2004)).

Social network analysis could be presented by actors and how they are related to each other

through relationships. Such a relationship could be extracted by mining software development

code and the consequences of this mining that able to study all the possible ways in which

people interact through all the available information sources used to develop software. Recently

studies in empirical software engineering apply social network analysis methodologies since

they have a solid systematic and quantitative framework (Meneely & Williams (2011a)). A

social network and its actors have main two properties connectivity and distance (Lin & Chen

(2004)). Connectivity could be measured using metrics density, size, centrality, and reachability

of the social network, it could be defined as a member of the social network is more power on

a network where this developer is more connected and can be considered more influential in

the community. Distance in a social network represents by the closeness metrics where the

closeness of two actors within the network may identify properties differences like distribution

and consistency. Connection and distance are the main characteristics to enable the identification

of sub-communities within a social network, which are defined as “subsets of actors among

whom there are relatively strong, direct, intense, frequent, or positive ties” (Lin & Chen (2004)).

With such resource information, the researchers can easily and freely analyze defects, communica-

tions, and distributed collection habits of open-source software developers. The communication

and coordination activities between developers are public and accessible to anyone and this

allows researchers to track coordination and communication activities and mine them through

the usage of developer social networks (Bird, Gourley, Devanbu, Gertz & Swaminathan (2006)).
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1.2.3 Sentiment Analysis for Software Engineering

Sentiment analysis has been used widely in software engineering. It has been applied to many

tasks across different software engineering artifacts, including technical elements such as commit

messages and issues, and crowd content such as forum messages and user reviews (Lin et al.

(2018)). Developers frequently express sentiment in the commit messages and issues in open

source projects i.e., GitHub (Jurado & Rodriguez (2015)). In their study, (Guzman, Azócar & Li

(2014)) analyzed the sentiment of commit comments in GitHub and found that projects with

more distributed teams generally exhibit more positive emotional content, while comments

written on Mondays tend to express more negative emotions. Sinha (Sinha, Lazar & Sharif

(2016)) conducted a similar study, analyzing 28,466 projects over a seven-year year time-frame.,

and found that the majority of sentiment expressed was neutral, with Tuesdays having the

most negative sentiment overall. They also identified a strong positive correlation between the

number of files changed and the sentiment expressed in the associated commits. Ortu (Ortu et al.

(2015a)) analyzed 560,000 JIRA comments and found that positive sentiment expressed in the

issue description may improve issue-fixing time. Finally, Souza (Souza & Silva (2017)) explored

the relationship between developers’ sentiment and continuous integration server builds and

discovered that negative sentiment can both impact and be impacted by the build process results.

Sentiment analysis has been employed to detect the emotional state of developers due to

the potential impact of emotions on their productivity, job satisfaction, and task completion

quality (Rousinopoulos, Robles & González-Barahona (2014)). Guzman and Bruegge (Guz-

man & Bruegge (2013a)) leveraged sentiment analysis to explore the significance of emotional

awareness in development teams, while Gachechiladze and colleagues (Gachechiladze, Lanubile,

Novielli & Serebrenik (2017)) used sentiment analysis to create a detailed model for detecting

anger. Additionally, the study by Pletea and colleagues (Pletea, Vasilescu & Serebrenik (2014))

presented evidence that developers have a tendency to express negativity when discussing

security-related topics. Finally, Garcia and colleagues (Garcia, Zanetti & Schweitzer (2013))

examined the relationship between emotions and contributor activity in the GENTOO Open

Source Software project and determined that contributors are more likely to become inactive
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when they exhibit strong positive or negative emotions in the issue tracker or deviate from the

anticipated range of emotions in the mailing list.

Several research works have recently been conducted on various social and sentiment polarity

analyses in open-source projects. Guzman et al. performed a sentiment polarity analysis of

commit comments in GitHub and provided evidence of a correlation between negative sentiment

and commit activity performed on Mondays in 29 GitHub projects (Guzman et al. (2014).).

Pletea et al. (2014) studied GitHub discussions related to security, extracted from discussions

around commits and pull requests, and found that more negative emotions are expressed in

security-related discussions compared to other discussions Pletea et al. (2014). Murgia et al.

(2014) manually analyzed whether development discussions, such as bug repositories, carry

emotional information about software development. The results of their study indicate that issue

reports do express emotions towards design choices, maintenance activity, or colleagues Murgia,

Tourani, Adams & Ortu (2014). Guzman and Bruegge (2013) proposed a sentiment analysis

approach for discussions in different platforms, such as mailing lists and web-based software

collaboration tools like Confluence, to enhance emotional awareness in software development

teams. They analyzed the sentiment emotions expressed in commit comments with respect to

different factors, such as programming language and different periods of time, and found that

negative emotions appear more frequently in projects developed in Java and in commit comments

written on Mondays Guzman & Bruegge (2013b). Ortu et al. (2015) empirically analyzed the

relationship between sentiment, emotions, and politeness of developers in over 560K comments

of the Jira issue tracking system. They found that the shorter the issue-fixing time, the more

likely emotional expressions such as JOY and LOVE are found in the comments Ortu et al.

(2015b). Similarly, Gachechiladze et al. developed an approach to detect anger emotions

in issue reports and built a classifier capable of analyzing emotions expressed in developer

communication Gachechiladze et al. (2017). More recently, Islam and Zibran (2016) studied

the impacts of emotions on software artifacts, specifically commit messages, and explored the

potential for exploiting emotional variations in software engineering activities. They found that

while the polarities of developers’ emotions vary significantly depending on the type of tasks
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they are engaged in, the majority (65%) of commit messages are neutral in emotion, with positive

emotions accounting for 13% of the commit comments and negative emotions accounting for

22% Islam & Zibran (2016).

1.2.4 Search-based software engineering (SBSE)

The term "SBSE" was initially introduced by Harman and Jones in 2001, who defined it as

the use of search-based approaches to tackle optimization problems in software engineering

(Harman & Jones (2001)). The fundamental concept behind SBSE is to transform software

engineering problems into search problems, by defining them based on solution representation,

fitness function, and solution change operators. Once a software engineering problem is

reformulated as a search problem, a range of metaheuristic techniques can be employed to

identify near-optimal solutions to the problem.

Indeed, in recent few years, many SBSE approaches have been applied to a wide variety of

software-engineering problems, including involving single to many-objective techniques that can

be used to solve the problem (Harman, Mansouri & Zhang (2012b); Ouni, Kessentini, Sahraoui,

Inoue & Deb (2016a); Ouni, Kula & Inoue (2016b); Ouni, Kessentini & Sahraoui (2013a);

Ouni, Kessentini, Sahraoui & Hamdi (2013c)). We will investigate in this thesis the use of

SBSE techniques for automating the detection of community smells. More specifically, we used

multi-objective metaheuristic techniques Genetic Programming (MOGP). Genetic Programming

(GP) (Koza (1992)) is a powerful heuristic search optimization method. The basic idea is to

explore the search space by making a population of candidate solutions, also called individuals,

evolve toward a “good” solution to a specific problem.

1.3 Related Work

This section presents the related work that is relevant to the main themes of this research work.

In particular, the related work can be divided broadly into three research areas: (1) Open source

community’s health, (2) Community smells detection, and (3) Sentiment analysis detection.
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1.3.1 Open source community’s health

Recently many papers showed that community health can impact software quality (Catolino,

Palomba & Tamburri (2019a); Palomba et al. (2018b,a)). In their study, Tamburri, Palomba, and

Kazman (Tamburri, Palomba & Kazman (2020)) conducted a thorough and extensive review

of the literature and developed a grounded theory comprising of more than 500 factors that

contribute to both success and failure. These factors were divided into 14 distinct clusters, which

were manually validated.

In open source projects, several socio-technical metrics can be found to determine community’s

health i.e., stickiness and magnetism (Yamashita, Kamei, McIntosh, Hassan & Ubayashi

(2016); Yamashita, McIntosh, Kamei & Ubayashi (2014)), and turnover and communicability

(Palomba & Tamburri (2021)).

Cataldo et al. (Cataldo, Herbsleb & Carley (2008)) utilized the idea of congruence to explore

the correlations between various technical and work-related dependencies among software

developers, and how these dependencies affect their productivity. Similarly, Tamburri et al.

(Tamburri et al. (2019b))discovered that the socio-technical congruence, as defined by Cataldo

et al. (Cataldo et al. (2008)), is linked to a reduced number of community smells, making it a

useful tool for monitoring community health. Another study have also identified health metrics

associated with community smells (Palomba & Tamburri (2021)). Catolino et al. (Catolino,

Palomba, Tamburri & Serebrenik (2021)), for instance, identified community health metrics for

four specific community smells.

According to Crowston and Howison (Crowston & Howison (2006)), a healthy open-source

community has a hierarchical structure with core developers and leaders at the center, surrounded

by distinct layers of codevelopers, active users, and passive users. The authors suggest that the

health of a community can be identified by how it deals with challenging tasks, and healthy

communities should address these issues openly. Jansen offers a framework to assess the health

of an open-source ecosystem at a higher level, beyond individual projects (Jansen (2014)).

Goggins, Lumbard, and Germonprez (Goggins, Lumbard & Germonprez (2021)) conducted
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an extensive review of the current methods used for analyzing project health and identified

their limitations. They found that repository histories are often compressed, and there is little

consideration given to changes over time when making inferences. Moreover, they noted that

activity is frequently used as a proxy for assessing project health, but this is inadequate in

open-source projects as studies are often conducted at a small unit level, such as a software

commit. For instance, Onoue et al. (Onoue, Kula, Hata & Matsumoto (2017)) used workforce

and gross product pull requests as activity indicators to determine project health, and Xia et

al. (Xia, Fu, Shu & Menzies (2020)) developed predictors for seven project health indicators,

including the number of commits and closed issues, but these indicators are all limited to project

activity.

Prior work focused on community health and its impact on software quality using socio-technical

metrics. However, these works achieved a limited list of socio-technical metrics as well as

community smells types. One of the main objectives of this thesis is to conduct empirical studies

to explore new community smells that may impact community health.

1.3.2 Community smells detection approaches and tools

Community smells could be defined as sets of social-organizational structures and circumstances,

which may lead to social debt (Tamburri et al. (2015b)). Developers consider community

smells significant risks to community health (Tamburri et al. (2019b)). Many approaches and

tools have been proposed to detect community smells in open-source projects. Tamburri et

al. (Tamburri et al. (2019b)) proposed the CodeFace4Smells tool, as an automated approach

that used social network metrics to detect four types of community smells. Palomba and

Tamburri (Palomba & Tamburri (2021)) conducted a study where they investigated the ability of

socio-technical metrics to predict community smells. They developed a model that uses machine

learning that uses a random forest algorithm for this purpose. Avelino et al. (Avelino, Passos,

Hora & Valente (2016b)) proposed Truck Factor, a specialized tool for identifying the number

of team members whose absence or quit (hit by a truck) before the project is completed, would

cause a significant negative impact on a project. A low truck factor is considered a community
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smell as it can result in a loss of critical knowledge when developers leave the team. In another

study, Paradis and Kazman (Paradis & Kazman (2021)) introduced Kaiaulu, an API that analyzes

different sources of software development data, including git logs, mailing lists, and files, among

others. Kaiaulu facilitates data interoperability through author and file linkage, filters, and

popular code metrics. It can identify three types of community smells using the same detection

rules as CodeFace4Smells but employs a more robust community detection algorithm. Recently,

the developers introduced a CADOCS tool (Voria et al. (2022)) a client-server conversational

agent that builds on top of a previous community smell detection tool csDETECTOR (Almarimi,

Ouni, Chouchen & Mkaouer (2021)) and makes it available as a readily-usable SLACK bot.

Several studies have found correlations between community smells and other factors. For

instance, Catolino et al. (Catolino, Palomba, Tamburri, Serebrenik & Ferrucci (2019c,b))

investigated the relationship between community smells and team composition, specifically

how gender diversity affects the occurrence of community smells. Tamburri et al. (Tamburri,

Kazman & Van den Heuvel (2019a)) examined the co-occurrence of community smells with

software architecture smells. Palomba et al. (Palomba et al. (2018a)) provided evidence that

code- and community smells in software engineering are interrelated. In their subsequent

work (Palomba et al. (2018b)), they concluded that community-related factors contribute to the

intensity of code smells.

Common to these approaches and tools is that they propose techniques to detect and investigate

the community smells. They mostly devise a limited and generic list of characteristics and

symptoms to generate smells detection rules that characterize community smells. One of the

main goals of this thesis aims at learning from existing smells to detect new ones to help

developers better allocate their resources and save time and efforts through automated detection

of smells.
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1.3.3 Sentiment analysis detection approaches and tools

In recent years, there has been an increase in the utilization of techniques and tools for extracting

opinions from online platforms through automated means. (Lin et al. (2022); Lin et al. (2018)).

The sentiment analysis tools have been widely adopted by the software engineering community

for diverse purposes. These tools have been utilized to evaluate the polarity of app reviews (Goul,

Marjanovic, Baxley & Vizecky (2012); Panichella et al. (2015)), identify negative opinions

regarding APIs (Zhang & Hou (2013)), detect happiness or distress within a development team

(Tourani, Jiang & Adams (2014)), and determine the probability of inactivity among developers

who express strong emotions in issue trackers (Garcia et al. (2013)). Additionally, researchers

have studied the impact of sentiment expressed on issues’ comments and the issue resolution

time (Ortu et al. (2015a)), as well as the sentiment of developers’ commits (Sinha et al. (2016)).

There are many sentiment analysis tools applied to software engineering applications. The most

widely used sentiment analysis tool is SentiStrength (Thelwall, Buckley, Paltoglou, Cai & Kappas

(2010)), which was initially trained on MySpace5 comments. SentiStrength’s foundation is based

on a sentiment word strength list, which is made up of 298 positives and 465 negative terms with

an associated positive or negative strength value. Additionally, SentiStrength utilizes a spelling

correction algorithm and other word lists, such as a booster word list and a negating word list, to

improve the sentiment assessment. The sentiment score of each word in a sentence under analysis

is determined by SentiStrength, which sums up the individual scores to derive the sentence’s

overall sentiment. SentiStrength’s straightforward methodology allows for customization to a

specific context by establishing a list of domain-specific terms with corresponding sentiment

scores.

NLTK (Tausczik & Pennebaker (2010)) is a sentiment analysis tool based on a lexicon and

rule system, with VADER (Valence Aware Dictionary and sentiment Reasoner) as its primary

component. VADER is uniquely designed to analyze social media texts and incorporates

a "gold-standard" sentiment lexicon extracted from microblog-like contexts that have been

manually validated by multiple independent human judges. Stanford CoreNLP (Danescu-
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Niculescu-Mizil, Sudhof, Jurafsky, Leskovec & Potts (2013b)) utilizes a Recursive Neural

Network as its foundation, which distinguishes it from SentiStrength and NLTK in its capability

to assess a sentence’s sentiment based on how words contribute to the sentence’s meaning, rather

than simply adding up the sentiment of each individual word. It was trained using movie reviews.

Werder and Brinkkemper (2018) developed MEME, a tool that extracts emotions from software

engineering text based on data sources from GHtorrent and GitHub, and achieved better

performance compared to state-of-the-art tools, such as the Syuzhet R package for emotion

analysis Werder & Brinkkemper (2018). Recently, Murgia et al. (2018) analyzed emotional

information in issue reports and found that developers express emotions such as gratitude, joy,

and sadness. Based on their results, the authors advocated for the feasibility of a machine

learning classifier to identify issue comments containing gratitude, joy, and sadness Murgia,

Ortu, Tourani, Adams & Demeyer (2018). Lin et al. (2018) reported their experience in building

a software library recommender by exploiting developers’ opinions mined from Stack Overflow

using various sentiment analysis tools. They highlighted issues with the accuracy of existing

sentiment analysis tools found in the literature Lin et al. (2018). Later, El Asri et al. (2019)

investigated perceived sentiments during code review and found that contributors frequently

express positive and negative sentiments during code review activities, depending on their

position within the social network of the reviewers, such as core vs. peripheral contributors

El Asri, Kerzazi, Uddin, Khomh & Idrissi (2019). More recently, Raman et al. (2020) attempted

to find and understand unhealthy interactions in software development teams by developing and

demonstrating a measurement instrument to detect toxic discussions in GitHub issues. They

used an SVM classifier to analyze trends over time and in different GitHub communities and

found that toxicity varies by community and tends to decrease over time Raman, Cao, Tsvetkov,

Kästner & Vasilescu (2020).

While previous research has demonstrated the feasibility of extracting sentiment analysis from

online platforms, it has not specifically focused on identifying community smells through

sentiment analysis. The main objective of this thesis is to empirically validate the challenges

associated with identifying community smells using sentiment analysis.
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1.4 Chapter Summary

This chapter presented background about the community smells and their relevant research.

Then, it surveys previous work on community smells in the software engineering domain. Next,

it presents prior research on using tools and approaches to detect community smells in the

software engineering domain. While the existing approaches attempt mainly to characterize

and analyze organizational social structures in software development communities, they do not

cover multi-perspective characteristics of software projects. They mostly devise a limited and

generic list of characteristics and symptoms to generate smell detection rules that characterize

community smells. However, such rules will need substantial human effort and expertise to

calibrate these rules for each smell type and adapt them to different projects, organizations, and

contexts. Hence, we believe that an appropriate detection is needed to fill this gap. In the next

chapters, we describe our empirical study to identify and explore community smells detection

challenges. Also, we introduce our proposed tool to help developers in the early detection of

community smells.
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Abstract

Community smells are symptoms of organizational and social issues within the software

development community that often lead to additional project costs. Recent studies identified a

variety of community smells and defined them as sub-optimal patterns connected to organizational-

social structures in the software development community. To early detect and discover existence

of potential community smells in a software project, we introduce, in this paper, a novel machine

learning-based detection approach, named csDetector, that learns from various existing bad

community development practices to provide automated support in detecting such community

smells. In particular, our approach learns from a set of organizational-social symptoms that

characterize the existence of potential instances of community smells in a software project. We

built a detection model using Decision Tree by adopting the C4.5 classifier to identify eight

commonly occurring community smells in software projects. To evaluate the performance of our

approach, we conduct an empirical study on a benchmark of 74 open source projects from Github.

Our statistical results show a high performance of csDetector, achieving an average accuracy

of 96% and AUC of 0.94. Moreover, our results indicate that the csDetector outperforms two

recent state-of-the-art techniques in terms of detection accuracy. Finally, we investigate the most

influential community-related metrics to identify each community smell type. We found that the

number of commits and developers per time zone, the number of developers per community,
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and the social network betweenness and closeness centrality are the most influential community

characteristics.

Keywords. Community smells detection , Social debt, Socio-technical metrics, Machine

learning.

2.1 Introduction

Software engineering can be primarily described as an organized effort of “social" activity

of organizations, individuals, and stakeholders to build a software product. Therefore, the

organizational social structure in a software development community, including the interactions

among developers, is an essential prerequisite for a successful software product.

An intrinsic characteristic of software projects resides in their (rapid) evolution involving a large

number of clientele and stakeholders (Lehman (1980)). Although such growth is beneficial

for the project’s success, there reveals another set of challenges that go beyond maintaining

the software quality and functionality, and that impact the socio-managerial structure of the

project. Hence, several researchers and practitioners revealed how critical is the evolution of

organizational aspects to prevent it from decay, and consequently software projects failures

(Navarro (2001); Avelino et al. (2016b)). Recent studies coined the set of socio-technical patterns,

negatively impact the organizational health of the project, as community smells (Tamburri et al.

(2013b)). Community smells are connected to circumstances based on poor organizational

and social practices that lead to the occurrence of social debt (Tamburri et al. (2016, 2015b)).

Social debt is connected to poor organization structures that often lead to short and/or long term

social issues within a project. These problems could manifest in several forms, e.g., lack of

communications or coordination among members in a software community. Indeed, M. Scott

Peck pointed out that: "There can be no vulnerability without risk; there can be no community

without vulnerability; there can be no peace, and ultimately no life, without community" Peck

(2002).



23

For example, one of the common community smells, is the “organizational silo effect” (Palomba

et al. (2019); Tamburri, Lago & Vliet (2013c); Bindrees, Pooley, Ibrahim & Bental (2014)) which

manifests as a recurring social network sub-structure featuring highly decoupled developers

community structures. From an analytical perspective, this community smell can be seen as

a set of patterns over a social network graph and could be detectable using different graph

connectivity measurements.

To early detect potential instances of poor community practices during a software project,

efficient and automated techniques are needed (Tamburri et al. (2016, 2015b)). Although there

have been a few studies to define, characterize, and detect community smells in open source

projects, they are applied, in general, to a limited set of projects, and their generalizability

requires a manual effort and human expertise to define and calibrate a set of detection rules to

match the symptoms of a community smell with the actual characteristics of a given software

project (Avelino et al. (2016b); Palomba et al. (2018b); Tamburri et al. (2019c,b)).

We build on top of previous studies to develop a model that learns from previously detected

community smells, by considering the patterns of their characteristics into features, which allows

their classification. In this paper, we introduce a novel machine learning based approach for

community smell detection, named csDetector. The proposed approach learns from a set of

organizational-social symptoms that characterize the existence of a potential community smell.

csDetector adopts a detection model to provide a learn-by-example process to automatically

detect community smells from various software projects. The proposed approach allows

practitioners to choose project examples that are mostly similar to their context, as it learns from

their associated community smells, to provide a personalized detection model for their project.

To evaluate our approach, we experiment several existing machine learning algorithms, including

C4.5, JRip, Random Forest, Nave Bayes, SMO, and LibSVM, on eight commonly occurring

community smell types (Tamburri et al. (2015b); Avelino et al. (2016b)) extracted from 74

open-source software systems. Results show that the experimented techniques can provide high

performance for all the considered community smells. However, the highest performance was
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achieved by the C4.5 classifier. In particular, the obtained results indicate that C4.5 is able to

detect the different types of community smells with an average accuracy of 96%, an F-measure

of 92% and an Area Under the receiver operating characteristic Curve (AUC) of 94%. The main

contributions of the paper can be summarized as follows:

• We introduce a novel approach, named csDetector, for community smells detection using

decision tree to learn from a set of organizational-social symptoms that characterize the

existence of potential instances of community smellsin active real word open source software

projects.

• We report the results of an empirical study with an implementation of our approach on a

benchmark of 74 open source projects from Github and eight common community smells.

Results show a high performance of the proposed approach, achieving an average accuracy of

96% and AUC of 0.94. Moreover, we found that the C4.5 decision tree algorithm outperforms

5 widely used machine learning algorithms including JRip, random forest, Naïve Bayes,

SMO, and LibSVP. Moreover, the statistical analysis of the obtained results show that our

approach outperforms two recent state-of-the-art techniques in terms of detection accuracy.

• We conduct a set of experiments to investigate the most influential community-related metrics

to identify each community smell type. We found that the number of commits and developers

per time zone, the number of developers per community, and the social network betweenness

and closeness centrality are the most influential community characteristics. We also conduct

a sensitivity analysis to assess if there exists influential data points than may influence the

stability of our model.

• We provide our comprehensive dataset collected and used in this study publicly available for

replication purposes, and to foster research in the field of community smells and social debt

(Almarimi (2019)).

Replication package. We provide our comprehensive dataset collected and used in this study

publicly available for replication purposes.

Paper organization. The remainder of the paper is organized as follows. Section 2 provides

the necessary background on community smells. In Section 3, we describe our approach for
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community smells detection. In Section 4, we present our empirical evaluation setup, and then

present and discuss the obtained results in Section 4. We discuss, in Section 6, the threats to

validity. Finally, in Section 7, we conclude and outline our future work.

2.2 Background

In this section, we present the necessary background related to community smells. Then, we

discuss the related work that translated the definition of community smells into actionable

detection rules.

2.2.1 Community smells definitions

Community smells are defined as a set of social-organizational circumstances that occur within

the software development community, and that have a negative effect on the relations health

within the development community and may cause social debt over time (Tamburri et al. (2015b)).

In our work, we investigate the detection of common community smells that are identified and

defined in the literature. We refer to following list of existing community smell types (Tamburri

et al. (2015b); Avelino et al. (2016b)).

• Organizational Silo Effect (OSE): The Organizational Silo Effect smell is manifested when

a too high decoupling between developers, isolated subgroups, and lack of communication

and collaboration between community developers occur. The consequence of this smell is an

extra unforeseen cost to a project by wasted resources (e.g., time), as well as duplication of

code (Tamburri et al. (2016, 2015b)).

• Black-cloud Effect (BCE): The black-cloud effect smell occurs when developers have a

lack of information due to limited knowledge sharing opportunities (e.g., collaborations,

discussions, daily stand-ups, etc.), as well as a lack of expert members in the project that are

able to cover the experience or knowledge gap of a community. The BCE smell may cause

mistrust between members and creates selfish behavioral attitudes (Tamburri et al. (2015b)).

• Prima-donnas Effect (PDE): The prima-donnas effect smell occurs when a team of people is

unwilling to respect external changes from other team members due to inefficiently structured



26

collaboration within a community. The presence of this smell may create isolation problems,

superiority, constant disagreement, uncooperativeness and raise selfish team behavior, also

called “prima-donnas” (Tamburri et al. (2016, 2015b)).

• Sharing Villainy (SV): This smell is caused by a lack of high-quality information exchange

activities (e.g., face-toface meetings). The main side effect of this smell limitation is that

community members share essential knowledge such as outdated, wrong and unconfirmed

information (Tamburri et al. (2016, 2015b)).

• Organizational Skirmish (OS): This community smell is caused by a misalignment

between different expertise levels and communication channels among development units

or individuals involved in the project. The existence of this smell leads often to dropped

productivity and affects the project’s timeline and cost (Tamburri et al. (2015b)).

• Solution Defiance (SD): The solution defiance smell occurs when the development com-

munity presents different levels of cultural and experience background, and these variances

lead to the division of the community into similar subgroups with completely conflicting

opinions concerning technical or socio-technical decisions to be taken. The existence of the

SD smell often leads to unexpected project delays and uncooperative behaviors among the

developers (Tamburri et al. (2015b)).

• Radio Silence (RS): The radio silence smell occurs when a high formality of regular

procedures takes place due to the inefficient structural organization of a community. The RS

community smell typically causes changes to be retarded, as well as a valuable time to be lost

due to complex and rigid formal procedures. The main effect of this smell is an unexpected

massive delay in the decision-making process due to the required formal actions needed

(Tamburri et al. (2015b)).

• Truck Factor Smell (TFS): The truck factor smell occurs when most of the project

information and knowledge are concentrated in one or few developers. The presence of

this smell eventually leads to a significant knowledge loss due to the turnover of developers

(Avelino et al. (2016b)).
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In this paper, we focus primarily on the above-mentioned smells that are frequently occurring

in the software industry (Tamburri et al. (2016, 2015b, 2019b); Avelino et al. (2016b)). We

selected these smells as they are defined and investigated in recent studies and known to have

negative effects in practice, which may lead to social debt (Tamburri et al. (2013a)) and poor

source code quality (Tamburri et al. (2021)).

2.3 csDetector: Community smells detection using machine learning

In this section, we present our approach, csDetector, for detecting community smells. csDetector

aims at detecting various social-technical issues that can take place in open source projects. Figure

2.1 presents an overview of our proposed approach which consists of three main components (1)

training data collection and organizational-social metrics extraction, (2) training model building

using J48 classifier, and (3) community smells detection. In the following, we explain each of

these components.

Figure 2.1 An overview of the proposed csDetector approach.

2.3.1 Data collection

To build a base of real-world community smell examples that occur in software projects, we select

a set of software projects which are diverse in nature (e.g., size, application domain, popularity,

etc.) that are most likely to experience community smells. Additionally, we considered open-

source projects to access to their development history to calculate their social-organizational
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characteristics. We selected a set of projects from github that exhibit various characteristics by

considering the following criteria :

• Commit size: the projects vary from medium size >10 KLOC, large size (10- 60) to very

large size < 60 KLOC.

• Community size: the projects team size vary from medium <100 members, large (100-900)

members, to very large > 900 members.

• Programming language: the selected projects are implemented in different programming

languages including Java, C#, Python and C.

• Existence of community smells: the project contains at least one community smell.

From the obtained projects we randomly selected among them. We, then, manually inspected

all of these projects to identify the potential existence of community smells using a crawler

to collect and analyze their change history based with the assistance of existing guidelines

from the literature (Tamburri et al. (2015b, 2013c,b, 2016, 2019b); Avelino et al. (2016b)) to

summarize and visualize different aspects, e.g., social networks, metrics variations, developers

commits contributions and collaborations, etc. Each author independently identified potential

community smells. In case of a conflict about a smell, i.e., there is a disagreement about the

presence of a smell, the authors attempt to resolve it through an open discussion to reach an

agreement about the salient symptoms of the candidate smell. All projects for which there was

no agreement about a candidate community smell, were excluded from our ground truth dataset.

We finally ended up with 74 projects from an initial list of 107 projects that have diverse types

of community smells (Almarimi (2019)). The details of the collected dataset are reported in

Table 4. Each system repository can have one or many projects. Each project is one data point,

so the total number of data points is 74 for each smell type. The dependent variable is a specific

smell type. Moreover, Table 2.1 and Fig. 2.2 provides more statistical details about our analyzed

dataset in terms of the distribution of smells, developers, commits and days lived.
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Table 2.1 Dataset statistics.
Data Statistic

Number of systems 23
Number of projects 74
Number of projects having at least one smell 74
Total number of smells 236
Average number of smells per project 3.18
Number of projects with <50 developers 30
Number of projects with 50 − 150 developers 21
Number of projects with >150 developers 23
Average number of commits per project 1103
Average number of days in each project 3233

Figure 2.2 Beanplots for the distribution of smells, developers, commits, and lifetime

among the studied projects.

2.3.2 Metrics framework

To capture community smells symptoms, we rely on (1) et set of metrics defined in previous

studies (Avelino et al. (2016b); Tamburri et al. (2019b); Nagappan, Murphy & Basili (2008b);

Pinzger, Nagappan & Murphy (2008b); Nordio et al. (2011)). and (2) a new set of metrics

that we introduce to capture more community-related proprieties that can be mined from the

projects history. These metrics analyze different aspects in software development communities

including organizational dimensional, social network characteristics, community developer’s

collaborations, and truck numbers. Table 2.2 depicts our list of metrics as well as state-of-the-art

ones used in this research study. Our proposed metrics extend existing metrics to provide more

project characteristics generalizations including developer social network, community structures,
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geographic dispersion, and developer network formality. For instance, the geographic dispersion

metrics, e.g., the average number of commits per time zone and the average number of developers

per time zone would provide a whole view of the distribution of commits and developers per

time zone.

Table 2.2 Metrics framework.
Dimension Acronym Definition Ref.

Developer

Social Network

metrics

NoD Number of developers (NoD): is the total number of Developers who have changed the code in a project. The more

developers modify the same files, the higher the need for collaboration between developers.

Nagappan

et al. (2008b)

TAP Number of active days of an author on a Project (TAP): is ratio of the total number of active days for each developer

with respect to a project’s lifetime by the total number of developers in a project.

New

LCP Number of changed lines of a code per author in a project (LCP): is the total number of times that the code has been

changed by a developer with respect to the total number of lines of code and the total number of developers in a project.

Nagappan

et al. (2008b)

CD Number of core developers (CD): is the total number of core developers in a project. A developer is considered as a

core community member if he has a high degree of centrality of more than > 0.5 within the developer’s social network.

Tamburri

et al. (2021)

RCD Ratio of core developers (RCD): is the ratio of the number of core developers with respect to the total number of

developers in a project.

Tamburri

et al. (2021)

SD Number of sponsored developers (SD): is the total number of sponsored developers in a project. We consider a

developer that hold a sponsored status if at least 95% of her/his commits are executed during weekdays and the working

day time between 8am and 5pm.

Tamburri

et al. (2021)

RSD Ratio of sponsored developers (RSD): is the ratio of the number of sponsored developers by the total number of

developers in a project.

Tamburri

et al. (2021)

Social Network

Analysis metrics

DC Graph Degree centrality (DC): is the number of connections that a developer has. The more connections with others a

developer has, the more important the developer is.

Pinzger et al.
(2008b)

BC Graph Betweenness centrality (BC): is a measure of the information flow from one developer to another and devised as

a general measure of social network centrality. It represents the degree to which developers stand between each other.

A developer with higher BC would have more control over the community as more information will pass through

her/him.

Pinzger et al.
(2008b)

CC Graph Closeness centrality (CC): is a measure of the distance between a developer to other developers in the network.

This metric is strongly influenced by the degree of connectivity of a network.

Pinzger et al.
(2008b)

ND Network Density (ND): is a measure of a social network as a dense or sparse graph. Tamburri

et al. (2021)

Community metrics

NC Number of communities (NC): is the total number of communities in a project and a measure of the strength of the

structure of a project community.

Tamburri

et al. (2021)

RCC Ratio of commits per community (RCC): is the ratio of the number of commits assigned to each community with

respect to the total number of commits in a project. It provides a view of the distribution of the commit per community.

New

RDC Ratio of developers per community (RDC): is the ratio of the number of developers assigned to each community in a

project with respect to the total number of developers in a project. .

New

Geographic Dispersion

metrics

TZ Number of time zones (TZ): is the total number of different time zones of developers in a project. Nordio et al.
(2011)

RCZ Ratio of commits per time zone (RCZ): is the ratio of the number of commits in each time zone by the total number of

time zones in a project. It provides a view of the distribution of the commit per time zone.

New

RDZ Ratio of developers per time zone (RDZ): is the ratio of the number of developers per time zone in a project by the total

number of time zones in a project. It provides a view of the distribution of the developers per time zone.

New

Formality metrics

NR Number of Releases in a project (NR): is the total number of releases present in a project. New

RCR Ratio of Commits per Release (RCR): is the ratio of the number of commits assigned to each release with respect to the

total number of releases in a project.

New

FN Formal network (FN): is calculating by the ratio of milestones assigned to the project and lifetime of the project. Cataldo,

Mockus,

Roberts & Herb-

sleb (2009)

Truck Number metrics

BFN Bus Factor Number (BFN): is the ratio of core developers present in a project with respect to the total number of

developers in a project.

Avelino et al.
(2016b)

TFN Truck Factor Number: is the total number of key developers in a project who can be unexpectedly lost, i.e hit by a

truck before the project is discontinued.

Avelino et al.
(2016b)

TFC Truck Factor Coverage (TFC): is the percentage of core developers and their associated authored files in a project. Avelino et al.
(2016b)
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Our metrics framework calculates the set of metrics from a target open source software project

by analyzing its repository through commit information history available in its version control

system (GitHub).

Fig. 2.3 presents an overview our metrics framework which consists of two core steps to extract

metrics.

Step 1. Mine developers aliases: The author alias mining and consolidation consists of the

following substeps (Avelino et al. (2016b)) 3]: (i) Retrieval all unique dev-emails, where for

each git commit has a devemail associated with it, (ii) Retrieval of GitHub logins related to

developers,(iii) Similarity matching of emails and logins: by applying Levenshtein distance

(Navarro (2001)), all aliases are compared and, with a certain degree of threshold value,

consolidated, and (iv) Replacement of author emails by their respective aliases. The final

transformation goes through all the commits once again and replacing original authors by their

primary alias. As a result, if there is a developer associated with commits with different names,

we consider them as a single developer, and the output will be presented in a new aliases list. For

example, “Bob.Rob” and “Bob Rob” are different names for a single developer, correspondent

to commits, we consider them under the same developer, in a new aliases list, as a single

identical substitution. We used a threshold value of 0.8 for the Levenshtein distance to identify

different aliases used by the same developer, following the of Joblin et al. (Joblin, Mauerer,

Apel, Siegmund & Riehle (2015b)). As future work, we will investigate different similarity

techniques and threshold values to assess the accuracy of our approach.

Step 2. Build a social network graph: Social network analysis (SNA) has been used for

studying and analyzing the collaboration and organization of developers who are working in

teams within software development projects (Meneely & Williams (2011a)). Our developers

network model is based on a socio-technical connections during a software project development.

Different social network analysis metrics have been devised to describe a community structure

and predict quality factors in a software development project. Our approach builds a developer

network from the version control system and tracks the change logs. Our adopted developers
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Figure 2.3 An overview of our social-organizational metrics framework.

network is presented as a graph of nodes and edges, where the nodes represent developers and

edges are the connections between two developers that are working on the same file and where

they make a version control commit within one month of each side. Such social network allows

then to calculate the different metrics including the degree centrality, betweenness centrality,

closeness centrality, network density, etc. (cf. Table 2.2).

2.3.3 Training model

To prepare our detection model, it is important to perform a correlation analysis within the used

metrics. We use our collected dataset to carry out a multi-collinearity analysis between the

different metrics using Spearman 𝜌 (Zar (1972b)). Figure 2.4 shows a visualization of the initial

auto-correlations among all the variables in the dataset. We observe a few number of correlated

metrics (dark-coloured circles in blue or red for positive and negative correlations, respectively).

To minimize collinearity among our detector variables, for each pair of metrics having a 𝜌

correlation higher than 0.8, we remove one of the variables. We repeated the technique until

there was no pair of metrics that met the criteria. After the correlation analysis, we excluded the

following metrics with the highest correlation: NoD, CC, RCD, and ND.



33

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1TFC
TZ SD NoD CC CD NR NC BFN

RDC
RCC

RCZ
RDZ

DC LC
P

RCR
TA

P
BC RSD

TFN
RCD

ND

TFC

TZ

SD

NoD

CC

CD

NR

NC

BFN

RDC

RCC

RCZ

RDZ

DC

LCP

RCR

TAP

BC

RSD

TFN

RCD

ND

Figure 2.4 Visualization of the metrics correlation analysis.

2.3.4 Data preparation pipeline

As several ML algorithms are available, we considered in our study the adopted C4.5 model,

along with five widely used ML models, JRip, Random Forest, Naïve Bayes, and two SVM

algorithm instances, SMO, and LibSVM implemented in Weka (Hall et al. (2009a)). We first

randomly divided our dataset (cf. Section 2.3.1) into training, validation, and test datasets

following Hastie et al. guidelines (Hastie, Tibshirani, Friedman & Friedman (2009)). We used

the training dataset to fit each individual classifier model, and used the validation dataset to

estimate the prediction error for our models comparison and selection as well as hyperparameters

tuning, and finally left the test dataset to assess the final chosen models. In our experiments,
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we used 50% of the data as training dataset, 25% as validation dataset, and 25% as test dataset

(Hastie et al. (2009)).

Moreover, as we deal with an imbalanced dataset, we opted for a common resampling technique

by applying the Synthetic Minority Oversampling TEchnique (SMOTE) to over-sample minority

classes as suggested by Turhan (Turhan (2012)) in building software engineering prediction

models. As for the models training and testing, we randomly split our dataset into three parts:

training (50%), validation (25%), and test (25%). We use the training dataset to fit each individual

classifier model, and the validation dataset to estimate the prediction error/performance for the

model’s comparison and selection, finally the test dataset to assess the performance of the final

studied models.

2.4 Empirical study setup

In this section, we present our empirical study to evaluate our approach. We define four research

questions to be addressed and present the experimentation motivation and setup. We then present

and discuss the obtained results.

RQ1: To what extent can the employed learner model efficiently detect community smells?

Motivation This first RQ is a sanity check to validate whether our machine learning model could

accurately detect the different types of community and does not have a bias toward the detection

of any specific smell type.

Approach. To answer RQ1, we perform a comparative study between our used machine learner

C4.5 and five widely used models, JRip, Random Forest, Naïve Bayes, and two SVM algorithm

instances, SMO, and LibSVM. The data preparation pipeline is explained in Section 2.3.4.

Our models performance comparison is based on widely-used machine learning performance

metrics, mean accuracy, FMeasure, and AUC (Area Under The Curve) (Baeza-Yates, Ribeiro-

Neto et al. (1999); Hastie et al. (2009)). Furthermore, we measure for each algorithm its kappa

statistic, and the Root Mean Squared Error (RMSE). Moreover, to compare the different classifiers
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performance with respect to the eight community smells, we use the non-parametric statistical

test Wilcoxon in a pairwise fashion to detect performance differences between the compared

algorithms. While the Wilcoxon test verifies the statistical significance of the outcomes, it does

not control the difference in magnitude. Hence, we use the non-parametric effect Cliff’s delta (𝛿)

(Cliff (1993)). to compute the effect size. The value of effect size is statistically interpreted as:

• Negligible if | 𝑑 |< 0.147,

• Small if 0.147 ≤| 𝑑 |< 0.33,

• Medium if 0.33 ≤| 𝑑 |< 0.474, or

• High if | 𝑑 |≥ 0.474.

Moreover, to ensure a fair comparison between the used algorithms, we provide in Table 2.3 the

different default parameters used in our comparative study.



36

Table 2.3 Algorithms parameters configuration.

Algorithm Parameter Value

J48

minNumObj 2

subteeRaising True

confidenceFactor 0.25

unpruned False

useLaplace False

JRip

batchSize 100

checkErrorRate True

numDecimalPlaces 2

Random Forest

maxDepth 0

numfeatues 0

numTree 100

seed 1

Naïve Bayes
usekernelEstimator False

useSupervisedDiscretization False

SMO

buildLogisticsModels False

c 1.0

epsilon 1.0e-12

filterType Nomalize training data

kernel PolyKernel

casheSize 250007

exponent 1.0

toleranceParamter 0.001

LibSVM

SVMType C-SVC classification

doNotReplaceMissingValues False

batchSize 100
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RQ2: How does the proposed approach perform compared to state-of-the-art community smells

detection approaches?

Motivation. While the first research question serves as a sanity check to assess the efficiency

of machine learning techniques for the community smells detection problem, RQ2 aims at

evaluating the efficiency of the proposed approach compared to recent state-of-the-art techniques

for community smells detection to see what improvement can our approach bring.

Approach. We apply our approach, to detect the set of community smells identified from our

test dataset of 74 open-source software projects as detailed in Section 2.3.1 using a 10-fold

cross validation. We, thereafter, compare our approach with two recent state-of-the-art tools,

namely CodeFace4Smells Tamburri et al. (2021), and Truck Factor Avelino et al. (2016b).

CodeFace4Smells is implemented based on a Siemens tool Tamburri et al. (2019b) which can

detect the four following community smells considered in our experiments: Organizational Silo

Effect (OSE), Radio-silence (RS), Prima-donnas Effect (PDE), and Black Cloud Effect (BCE).

Truck Factor is another specialized tool that is designed to particularly detect the Track Factor

Smell (TFS). Our comparison is based on the detection accuracy. The accuracy is calculated as

follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
(2.1)

where TP refers to True Positive, FP for False Positive, FN for False Negative, and TP for True

Negative. The values are calculated according the confusion matrix in Table 2.4
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Table 2.4 The confusion matrix

to calculate the accuracy.

Actual

Positive Negative

Detected
Positive TP FP

Negative FN TN

RQ3. What are the most influential characteristics that can indicate the presence of community

smells?

Motivation. The C4.5 classifier results show that we can use a variety of metrics to identify

community smells. In addition to the detection accuracy, it is interesting to chart community

smells management plans to examine the influence of characteristics of each community smell

type (i.e., smells symptoms that are characterized through metrics). Identifying the most

influential characteristics of each community smell could be used as an indicator by software

project manager to avoid such smells in their organizations. Therefore, in this RQ3, we set out

to analyze our model to investigate the characteristics that influence the existence of community

smells.

Approach. To answer RQ3, we evaluate the influence and contribution of each metric on the

different types of community smells achieved by our C4.5 classifiers. We design an experimental

study to estimate variables importance in a random classification (Breiman (2001b); Liaw,

Wiener et al. (2002)). For each community smell type, we use this technique to compute the

Mean Decrease Accuracy (MDA) for each metric. The larger the MDA of the metric is, the more

influential the metric to the model is. This experiment is performed using the environment of the

importance function of the R randomFoest package. Moreover, we measure the direction of the

relationship between each metric and the likelihood of the occurrence of community smell. To

do so, we use a Spearman rank correlation (𝜌) (Zar (1972b)) to estimate the correlation between

each metric and the response (e.g., 1 if a metric indicates the occurrence of a community smell,
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and 0 if no smell). A positive correlation in terms of a Spearman rank indicates that the metric

has a positive relationship with the likelihood of the occurrence of a community smell, whereas

a negative correlation identifies an inverse relationship.

RQ4. Can the proposed metrics improve the performance of community smells detection?

Motivation. Just like code smells (Fowler (2018)), community smells definitions and symptoms

are subject to various interpretations, and therefore it can be captured using various metrics.

To this end, our aim in extending the list of existing soci-organizational and technical metrics

(i.e., metrics tagged as “New” in the last column of Table 2.2) was to cover more salient smells

symptoms. Indeed, extending the base of metrics allows to properly characterize community

smells properties along with extending the feature space for the classifiers.

Approach. We measure the classification performance, with and without the set of newly

introduced metrics (cf. Table 2.2), e.g., Number of active days of an author on a project,

Ratio commits per community, Ratio developers per community, Ratio commits per time zone,

Ratio developers per time zone, Number of releases in a project and Ratio commits per release.

An increase in terms of detection accuracy indicates that the new metrics are useful to better

capture the salient characteristics of community smells, whereas a non-increase indicates that

the introduced metrics do not extend the classifiers feature space, and thus, they are not relevant

to capture smells properties.

RQ5. What is the sensibility of our model with respect to outlier/ influential data points?

Motivation. While we deal with a relatively limited size dataset, we observe from the dataset

that the majority of the examined projects come from either the Apache, Eclipse and KDE

communities. In particular, we observe that there are clusters of similar projects in the whole

dataset, with notable differences among them as can be seen in figure 2.3 and table 2.1 impact on

the accuracy and reliability of the obtained results. This suggests the importance of conducting

a sensibility analysis to evaluate the possible presence of outliers and/or influential data points

that may exert an impact on the classification results. Studying influential instances helps
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to identify which training instances should be checked for errors and give an impression on

the robustness of the model. Indeed, we might not trust a model if a single instance has a

strong influence on the model predictions and parameters (Molnar (2020); Scholbeck, Molnar,

Heumann, Bischl & Casalicchio (2020)).

Approach. We study the presence of outliers and/or influential data points. We study the extent

to which deleting one of the training instances can affect the resulting model using the deletion

diagnostics (Molnar (2020)). A training instance is considered “influential” if its deletion from

the training data considerably changes (increases or decreases) the prediction performance of

the trained model. The measurement of the influence for all 74 training instances requires to

train the model once on the training data and then retrain it n times (i.e., the size of training

data) with one of the instances removed each time. We use the influence measure defined by

Molnar (Molnar (2020)) for the effect on the model predictions which is defined as follows:

𝑖𝑛 𝑓 𝑙𝑢𝑒𝑛𝑐𝑒(−𝑖) = |𝑦
∧

𝑗 − 𝑦
∧(−1)
𝑗 | (2.2)

where 𝑖𝑛 𝑓 𝑙𝑢𝑒𝑛𝑐𝑒(−𝑖) returns the differences between prediction performance value of the model

with and without the ith instance, over the dataset. The general form of deletion diagnostic

measures consists of choosing a performance measure and calculating the difference of the

measure for the model trained on all instances and when the instance is deleted. In our experiment,

we use the accuracy measure as a proxy of the model performance. We apply the deletion

diagnostic of each model of the eight community smell types.

2.5 Results and discussions

In this section, we present and discuss the results of our empirical study with respect to our

research questions RQ1–5 set out in Section 2.4.
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Results for RQ1: Detection accuracy

Tabale 2.5 reports the obtained results for RQ1 to compare the six considered machine learners

C4.5, Random Forest, JRip, SMO, LibSVN and Naïve Bayes in terms of accuracy, Kappa

statistic, RMSE and AUC. In more details, figure 2.5 shows the boxplots of each of the eight

considered community smells. We observe from both the table and the figure that the C4.5

classifier is the most accurate algorithm achieving an average accuracy score of 96.93% while

the LibSVM turns out to be the worst algorithm with a limited average accuracy of 61.65%. A

high performance is also achieved by the C4.5 classifier in terms of both performance metrics,

Kappa (0.89) and RMSE (0.14). However, in terms of AUC, Random Forest performs better

than the other classifier by an average AUC of 0.95 which is slightly better than C4.5 (0.94).

The Wilcoxon statistical analysis of the results depicted in the boxplots of Fig. 2.5 indicates that

C4.5 is statistically different from the five other classifiers with a high effect size, except the

AUC metric when comparing C4.5 and Random Forest. We thus conclude that C4.5 is the best

algorithm choice among the compared machine learners.

Table 2.5 The average algorithms performance in terms

of Accuracy, Kappa statistic, RMSE, and AUC.

Algorithm Accuracy Kappa RMSE AUC

J48 96.93 0.89 0.14 0.94

Random Forest 92.22 0.62 0.24 0.95

JRip 92.90 0.79 0.24 0.92

SMO 75.67 0.79 0.49 0.8

LibSVM 69.76 0 0.53 0.7

Naïve Bayes 67.56 0.30 0.55 0.5

To get more detailed results, we assess the accuracy detection for each individual community

smell type. Table 2.6 reports the precision, recall and F-measure results achieved by the

compared algorithms for both classes, i.e., smelly class (S), and non-smelly class (NS). For
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Figure 2.5 Boxplots of the achieved Accuracy, AUC, Kappa, and RMSE results for the

eight considered community smells by each of the considered machine learners, C4.5, JRip,

LibSVM, Naïve Bayes, Random Forest and SMO.

the smelly class, we observe, from all the considered community smells, that our approach

achieved promising detection results with an average precision of 96% and a recall of 91%. The

lowest detection results were achieved in the detection of the Sharing Villainy smell (SV), with a

precision of 81% and a recall of 59%. This could be due to the low number of smell instances (7

instances) in the base of examples that could be extended to improve the detection performance.

Table 2.6 The achieved results
OSE PCE PDE SV OS SD RS TF Average

Classifier class
P R F P R F P R F P R F P R F P R F P R F P R F P R F

S 0.98 0.96 0.97 0.94 0.96 0.95 1 0.96 0.98 0.81 0.59 0.68 0.94 0.97 0.95 0.97 0.96 0.96 1 0.91 0.95 1 0.94 0.97 0.96 0.91 0.93
C4.5

NS 0.88 0.93 0.95 0.96 0.92 0.94 0.98 1 0.99 0.95 0.98 0.97 0.97 0.95 0.96 0.97 0.97 0.97 0.98 1 0.99 0.95 1 0.97 0.96 0.97 0.97
S 0.98 0.96 0.97 0.89 0.83 0.86 0.82 0.9 0.86 0.42 0.42 0.42 1 0.91 0.95 1 0.9 0.94 1 0.9 0.94 0.96 0.8 0.87 0.88 0.83 0.85

Jrip
NS 0.87 0.93 0.9 0.8 0.87 0.83 0.96 0.92 0.94 0.94 0.94 0.94 0.93 1 0.96 0.93 1 0.96 0.98 1 0.99 0.87 0.97 0.92 0.91 0.95 0.93
S 0.8 1 0.89 0.58 1 0.73 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0.17 0.25 0.27

LibSVM
NS 0 0 0 0 0 0 0.72 1 0.84 0.9 1 0.95 0.57 1 0.72 0.6 1 0.75 0.86 1 0.92 0.6 1 0.75 0.53 0.75 0.62
S 0.93 0.47 0.62 0.87 0.69 0.77 0.54 0.61 0.57 0.2 0.71 0.32 0.82 0.7 0.76 0.6 0.2 0.3 0.26 0.8 0.4 0.45 0.9 0.6 0.58 0.64 0.54

NB
NS 0.29 0.86 0.44 0.68 0.87 0.76 0.84 0.79 0.81 0.96 0.71 0.82 0.77 0.87 0.82 0.62 0.9 0.74 0.95 0.65 0.77 0.8 0.27 0.4 0.74 0.74 0.7
S 0.92 0.96 0.94 0.95 0.9 0.92 0.91 0.9 0.9 0.37 0.16 0.22 0.96 0.91 0.93 0.93 0.96 0.95 1 0.6 0.75 0.91 0.73 0.81 0.87 0.77 0.8

RF
NS 0.84 0.68 0.75 0.89 0.93 0.91 0.96 0.96 0.96 0.91 0.97 0.94 0.92 0.97 0.95 0.97 0.95 0.96 0.94 1 0.97 0.85 0.95 0.9 0.91 0.93 0.92
S 0.81 0.96 0.88 0.77 0.73 0.75 0.83 0.47 0.6 0 0 0 0.92 0.67 0.78 0.5 0.23 0.31 0 0 0 0.8 0.53 0.64 0.58 0.45 0.5

SMO
NS 0 0 0 0.68 0.71 0.69 0.82 0.96 0.88 0.9 1 0.95 0.77 0.95 0.85 0.61 0.84 0.71 0.86 0.98 0.92 0.74 0.9 0.81 0.67 0.79 0.73
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An interesting aspect that is noticed from our study is related to the nature of our dataset which is

highly imbalanced. Indeed, not all community smell types are frequent in real-world systems (cf.

2.7). For example, the Sharing Villainy (SV) smell has the lowest number of smelly instances (7

projects) while 67 projects are not smelly, as it is less frequent compared to other more common

smells. On the other side, the Organization Silos Effect (OSE) smell is found in 59 projects while

the remaining 15 projects in our datset are non-smelly. Indeed, the class imbalanced datasets

occur in many real-world applications and in particular in software engineering, where the

class distributions of data are often highly imbalanced. Data resampling is a common approach

to solve this problem. We used the Synthetic Minority Over-sampling Technique (SMOTE)

(Chawla, Bowyer, Hall & Kegelmeyer (2002)) to deal with such severely imbalanced data. To

get more detailed results, we present the precision, recall and F-measure for both classes, i.e.,

smelly and non-smelly classes, in table 2.6. We observe from the results that C4.5 achieves

an average precision and recall score of 96% and 91%, respectively, for the smelly class (S).

For the nonsmelly class (NS), the average precision and recall are 96% and 97%, respectively.

In particular, for the most imbalanced smell, i.e., SV, C4.5 achieved a relatively acceptable

precision and recall of 81% and 59%, respectively for the smelly class (S) even only 7 instances

are available. The achieved precision and recall scores are 95% and 98%, respectively, for

the non-smelly class (NS). On the other hand, the libSVM and SMO turn out to be the worst

classifiers, in particular for the smelly class, as can be shown Table 2.6. Regarding the balance

between precision and recall, the best classifier is C4.5 which achieved the highest F-measure in

both classes S and NS for the 8 smell types.
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Table 2.7 A summary of the identified smells in each studied system.

System #projects OSE BCE PDE SV OS SD RS TF

Apache 38 29 20 7 2 13 21 3 13

Eclipse 7 4 5 1 0 4 2 0 4

KDE 9 9 3 5 3 5 2 4 4

Ganttproject 1 1 0 0 0 0 1 0 1

Qemu/qemu 1 1 1 0 0 1 0 0 0

Nginx/ngin 1 1 0 0 0 0 1 0 0

Bitcoin/bitcoin 1 0 1 1 0 1 0 0 0

Python/cpython 1 0 1 1 0 1 0 0 0

Rails 1 1 1 1 0 1 0 0 0

Audacity 1 1 0 0 0 1 0 1 0

GitLab 1 1 1 1 0 1 0 0 0

Scala 1 0 1 1 0 1 0 0 0

Torando 1 1 1 1 1 1 0 1 1

Arduino 1 1 1 1 0 1 0 0 1

Capistrano 1 1 1 1 1 1 0 1 0

liferay 1 1 1 0 0 0 1 0 1

The practical dev 1 1 1 1 1 0 0 0 1

Floweisshardt/atf 1 1 0 0 0 0 1 0 0

Cloudera 1 1 1 0 0 1 0 0 1

Pdfsam 1 1 0 0 0 0 0 0 0

Squirrel-sql 1 1 0 0 0 0 0 0 1

Direct memory 1 1 1 1 0 0 0 0 1

Flue 1 1 1 0 0 1 1 0 1

Total 74 59 42 21 7 34 30 10 30
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To get a more qualitative sense, we present in Table 2.8 six examples from our experiments that

are detected by our approach. Looking, for instance, at the Apache/mahout project, we observe

that this project experiences two community smells, the organizational silo effect (OSE), and the

solution defiance (SD). Hence, the project has been developed in a time window that starts on

January 14th, 2008 as a first commit until June 26, 2018 with a life time of 3815 active days

when we analyzed it. The Apache mahout project has a total number of 44 developers (NoD)

from which 6 are sponsored developers (SD), and 3 communities (NC) and a low graph degree

centrality (DC) of 0.008 based on its developers social network. In addition, the total number of

time zones is 10 to which developers involved in the project belong to. Indeed, the number of

communities in a project indicates the strength and size of the structure for which the different

sub-communities in a project and low social network degree centrality may reveal potential

disconnections within a community (Tamburri et al. (2019b)).

Table 2.8 Examples of projects and related smells.

Project OSE BCE PDE SV OS SD RS TFS

Apache/mahut � �

Ganttproject � � �

Qemu/qemu � � �

Bitcoin/bitcoin � � �

GitLab � � � �

KDE/okular � � � � �

On the other hand, the SD smell occurs in this project with different levels of cultural and

background within the software development community, and could be related to the high

number of different time zones in a project (TZ) which is 10 time zones, and relatively low social



46

network density (ND) which is equals to 0.257. Indeed, the high TZ metric indicates a high

geographical location dispersion within the community, where different cultural backgrounds

may contribute to dividing developers into subgroups based on cultural and linguistic differences

(Nordio et al. (2011)). Hence, different circumstances lead to the occurrence different smells

such as organizational silo effect smell (OSE) and a social defiance smell (SD) in the project.

Summary for RQ1. Our machine learning-based approach, csDetector, using C4.5

achieves a high performance for the community smells detection problem with an average

accuracy of 96.9%, and an AUC of 0.94.

Results for RQ2: State-of-the-art comparison

Table 2.9 shows the comparison results achieved by csDetector compared to two recent state-

of-the-art techniques, Code-Face4smell (Tamburri et al. (2021)) and Truck Factor (Avelino

et al. (2016b)). CodeFace4smell can detect only four out the eight considered community

smells namely, OSE, BCE, PDE and RS, while Truck factor is particularly design to detect the

TFS smell. We observe from the table that the csDetector outperforms both state-of-the-art

techniques in terms of the detection accuracy. For the eight considered smells, csDetector

achieves an accuracy in the interval from 94% (for the BCE smell) to 98% (for PDE and RS),

while CodeFcae4Smell achieved an accuracy score within the interval 33% (for the OSE smell )

to 86% (for the RS smell). Moreover, as shown in table 2.9, although the Truck Factor approach

is particularly designed for the detection of the TFS, its accuracy does exceed 84%, while our

approach achieves 97% for the truck factor smell.
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Table 2.9 The comparison results of csDetector,

CodeFace4smell and Truck Factor tools for community

smells detection in terms of detection accuracy.

Smells
Detection Accuracy

csDetector CodeFace4Smell Truck Factor

OSE 95% 33% -

BCE 94% 75% -

PDE 98% 75% -

SV 94% - -

OS 95% - -

SD 97% - -

RS 98% 86% -

TFS 97% - 84%

Indeed, one of the limitations of CodeFace4Smells resides in its adopted smells-based detection

rules which are based mainly on generic collaboration and communication metrics through a

developer social network (based on the change history and mailing lists). Such rules may need

a high calibration effort to be adapted to particular contexts. Moreover, its accuracy highly

depends on the availability and completeness of the mailing communication traces. On the

other hand, our approach learns from real world instances of community smells and uses a wide

variety of socio-organizational and technical metrics to capture the key symptoms from different

smell types which resulted in an improved detection accuracy.

Summary for RQ2. Our approach, csDetector, outperforms two recent state-of-the-art

techniques Code- Face4smell and Truck Factor with a high detection accuracy from 94%

to 98% for the eight considered community smells.
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Results for RQ3: Influential characteristics

Table 2.10 summarizes all the existing correlations between each community smell type and the

list of organizational-social metrics, as well as the average MDA for each metric. To identify the

metrics that are highly influential in the detection of a particular community smell, we compute

the average MDA for each metric. From table 2.10, we observe that the most influential metrics

belong initially to the geographic dispersion metrics dimension and the social network analysis

metrics dimension. In particular, the five most influential metrics are the Ratio of commits

per time zone (RCZ), the Ratio of developers per time zone (RDZ), the Ratio of developers

per community (RDC), the social Graph betweenness centrality (BC), and the social Graph

closeness centrality (CC).

Furthermore, we identify the influential characteristics of the analyzed projects and the direction

of their relationships with the likelihood of the occurrence of a community smell. The positive

correlations are identified by the plus sign (+) while the negative ones are identified with a minus

sign (-) in the table. For instance, the NoD metric (the number of developers who modified the

code) is identified as an influential metric to the occurrences of the following community smells:

Organizational Silo Effect, Prima-donnas Effect, Sharing Villainy, Organizational Skirmish,

Radio Silence as it has a positive correlation relationship with these smells and negative ones for

others. Looking also at the number of time zones (TZ) metric, we observe that it has a positive

correlation with the following smells, Black Cloud Effect (BCE), Sharing Villainy (SV) and

Solution Defiance (SD). These findings suggest that more attention should be payed to these

particular socio-organizational characteristics within the software project community to avoid

such smells.



49

Table 2.10 The analysis results of the most influential

metrics on community smells detection.

Metrics

Acronym
OSE BCE PDE SV OS SD RS TFS MDA

NOD + - + + + - + - 3.31

TAP - + - + + + - - -0.99

LCP + - - - + - - - -0.83

DC + - - - - - + - 2.29

BC - + - + - - - - 4.23

CC - + + - + - + - 4.21

TZ - + + + - + - - 2.24

CD + - + + - - + - 3.96

RCD - + - - - - + 1.33

SD + - + - - - - - 1.67

RSD + - - - - + - - 1.35

ND - + - + + + + - 1.09

NR - - + - - - - - 0.39

RCR + - - - - - - - 2.28

RDC + + + + - + + - 4.92

NC - + - - - + + - 0.12

RCZ - - + + - - - - 8.76

RDZ + - + - - + + - 6.23

RCC - - - - + - - - 1.59

BFN + + - + - - + + -1.70

FN - - - - + - - - 0.50

TFP + - - - - - + + -0.57

TFC - + + - - - + + 1.96
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Summary for RQ3. Our approach identifies the high influential metrics that can be used

as indicators of the existence of community smells. The five most influential metrics

are Ratio of commits per time zone, the Ratio of developers per time zone, the Ratio of

developers per community, the social Graph betweenness centrality, and the social Graph

closeness centrality.

Results for RQ4: Impact of the new metrics

Table 2.11 shows the results of our approach for each community smell, with and without the

set of new metrics (cf. Table 2.2), based on the percentage of correctly classified instances

(accuracy), kappa statistic, and Root Mean Squared Error (RMSE). We clearly observe from the

table that the set of new metrics significantly improves the performance of community smells

detection accuracy in all the eight community smell types. For instance, for the OSE smell, the

new metrics improved the accuracy from 89% (without the new metrics) to 96% (with the new

metrics). Different accuracy improvements were observed also for the PDE, SV, and RS, while

the accuracy remains relatively constant for the BCE, OS, SD, and TFS. On average for the

eight smell types, the statistical results indicate that the csDetector approach, with the set of new

metrics, achieves a high average performance score in terms of accuracy (96.5%), kappa (0.89),

and RMSE (0.16) than without the new metrics.

Summary for RQ4. The set of new introduced metrics (cf. Table 2.2) improves the

detection performance of four community smell types (OSE, PDE, SV and RS), while

maintaining a constant performance in the four remaining smells (BCE, OS, SD and TFS).
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Table 2.11 The achieved accuracy, Kappa and RMSE results by

csDetector with and without the newly considered metrics.

MLADCS with new metrics MLADCS without new metrics

Smell Accuracy Kappa RMSE Accuracy Kappa RMSE

OSE 95.94% 0.877 0.201 89.18% 0.681 0.304

BCE 94.59% 0.889 0.232 94.59% 0.889 0.232

PDE 98.64% 0.966 0.116 93.24% 0.831 0.258

SV 94.59% 0.638 0.229 91.89% 0.457 0.278

OS 95.94% 0.918 0.201 95.94% 0.918 0.201

SD 97.29% 0.943 0.028 97.29% 0.943 0.164

RS 98.64% 0.939 0.116 95.94% 0.833 0.203

TFS 97.29% 0.943 0.164 97.29% 0.943 0.164

Average 96.61% 0.889 0.161 94.42% 0.182 0.225

Results for RQ5: Sensibility analysis

The results of the deletion diagnostics analysis are reported in Fig. 2.6. We train the C4.5

models for each considered smell and check if some training instances were influential overall

and for a particular community smell type using the deletion diagnostics. Since the detection of

smells is a binary classification problem, we measure the influence as the difference in the model

accuracy. An instance is influential if the model accuracy considerably increases or decreases

on average in the dataset when the instance is removed from the model training data. The mean

value of influence measures for all the eight models over all possible deletions is 1.15%. As can

be seen in Fig. 2.6. all the models achieve a median influence score ranging from 0.03% to 2.8%.

The most stable models were the track factor (TF), organizational silo effect (OSE) and solution

defiance (SD), while other models such as the black cloud effect (BCE) and sharity villainy (SV)

exhibited slightly higher sensitivity. We also observe some outlier values in the OSE, PDE, RS

and the SD models. Such influence variability could be related to the highly imbalanced dataset
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for some smell types such as the SV which have only very few instances. For example, in the

SV model, the most influential instance has an influence measure of 4.2% on the accuracy. An

influence of 4.2% means that if we remove the instance, the detection accuracy changes by 4.2%

on average. This influence is rather low considering that the average accuracy of the SV model

is 94.6%. To get a more qualitative sense, we examined this influential instance which is the

Apache/Thrift project. Looking in deep into the project’s characteristics, we found it with a

medium number of developers (293) among all SV smell instances in the dataset, however it

has the highest number of time zones (21 different time zones across all developers) making

it the project with the lowest number of developers per time zone (16). Indeed such project

characteristics make it hard to share knowledge among developers due to a potential lack of

synchronized communication. Overall, the generated C4.5 models seem to be stable across all

the eight community smells. As part of our future work, we plan to extend the training dataset

and study the stability of our models on a larger scale.

Summary for RQ5. The sensibility analysis of our models indicates that the built model

is relatively stable with a median sensibility to influential data instances of 1.15%.

Figure 2.6 Results of the influential instances analysis on the models accuracy.
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2.6 Threats to validity

In this section, we discuss the potential threats that might have affected the validity of our results.

2.6.1 Construct validity

Threats to construct validity describe concerns about the relationship between theory and

observation and, generally, this type of threats is mainly constituted by imprecisions in performed

measurements. Most of what we measured in our approach was based on standard metrics

such as precision and recall that are widely accepted as good metrics for the quality of smells

detection (Avelino et al. (2016b); Fontana, Zanoni, Marino & Mäntylä (2013)). Moreover, we

exploited the implementation of prediction models by the Weka framework (Hall et al. (2009a)),

which is commonly considered as a reliable tool. Another potential threat could be related to

the selection of classification techniques. Although we use the C4.5 technique which is known

to have high overall accuracy, there are several other classification models that may produce

a better classification performance. Hence, to mitigate this threat, we built classifiers using

different techniques such as JRip, Random Forest, Naïve Bayes, SMO, and LibSVM. We found

that our C4.5 classifiers achieve the highest performance.

The different algorithms used in this study are among the popular and widely applied to

recent similar software engineering problems (Tamburri et al. (2019c); Avelino et al. (2016b);

Thongtanunam, Shang & Hassan (2019); Robles & Gonzalez-Barahona (2005)). There could

be of course several other decision-tree learning algorithms that could be used in our problem,

yet we believe that C4.5 well represents this family of algorithms with high performance. As

for overfitting, the optimal solution to challenge our model is through another dataset. But

since there is no publicly available set of community smells, we have tested the model using

training-validation-test datasets. Our experiments allow the tuning of hyper-parameters with

the validation set, and keeps the test set as a truly unseen dataset for assessing the final models

performance. One of the issues we had is related to the high data imbalance. Another technical

challenge could be related to the amount of data collected to train the machine learning algorithms
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which is highly imbalanced. While we used the SMOTE technique, we believe that having a

larger dataset would allow more generic and reliable data and best performance. Thus, our

future work on community smells will focus on how the problem of imbalanced data can be

assessed. Moreover, we plan to assess different other algorithms from different families with

different parameter settings to reach higher performance.

Moreover, some threats to internal validity could be related to the social network analysis

between committers. Indeed, an inherent characteristics of OSS projects is that they may undergo

a radical evolution of their committer base, especially, popular projects with large communities

and multi-year history. As a result, some of the committers considered in the social network

analysis (SNA) metrics computed from these data could be not active anymore. This inherent

issue can exert a powerful influence on the calculated metrics as they may change as the project

and the development evolve. As part of our future work, we plan to consider the time factor in

our SNA (collaboration recency) and see how community smells may evolve over time.

2.6.2 Internal validity

The internal threat to validity concerns our ability that might have influenced our results, based

on the relation between the outcome and the set of organizational-social metrics that are used as

independent instances. While we used a collected set of metrics from six different dimensions (i.e.,

developer social network, social network analysis, community metrics, geographic dispersion,

developer network formality, and truck number metrics), adding other new metrics could improve

the performance of the classifier. Another important threat to validity could be related to the

dataset. The manual identification of community smells is up to the point of a certain degree

of error. To mitigate at least potential errors, the authors focused on individually identifying

the organizational-social symptoms that characterize the existence of a potential community

smell based on established state of the art definitions and guidelines (Tamburri et al. (2016);

Palomba et al. (2018b); Avelino et al. (2016b)). For the sake of a clean data, all projects for

which there was no total agreement by the three authors was excluded from the dataset. As part

of our future work, we plan to validate and extend our dataset in an industrial context. Another
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threat to validity could be related to our technique to solve potential committer aliases, based

on the Levenshtein distance. This technique may not be robust and may represent some noise

in the collected developers identifiers. To better mitigate this issue, we will filter common id

strings to increase accuracy, and taking into account the length of e-mail ids as suggested in

(Robles & Gonzalez-Barahona (2005)).

2.6.3 External validity

Threats to external validity are connected to the generalization of the obtained results. The

influence of the considered metrics on our model is based on the project characteristics. In

this study, we investigated the influence of organizational-social metrics that occur as the most

influential metrics. Although some projects may not have the same metrics that are highly

influential, nevertheless we believe that our results are still of value to determine what kind

of organizational-social metrics can be used as an indicator of community smell. Moreover,

our approach currently identifies and quantifies eight different community smells and considers

them as indicators that may influence social debt existence; on the other hand, there could exist

additional community smells not operationalized yet, that may act as critical indicators of the

risk of social debt.

Furthermore, rebalancing was not applied to counteract majority class bias that inherently

affects our data. Learning from imbalanced data poses new emerging challenges that need to be

addressed to build robust models of knowledge from raw data (He & Garcia (2009)). Although

the results show that our approach can reasonably learn from both smelly and non-smelly

instances for all community smells, replications are needed with larger datasets, using learning

techniques specifically designed to deal with skewness in class distribution, to further assess

the generality of our models. As part of our future work, we plan to extend our dataset with

our industrial partner to add more instances of such smells in order to alleviate possible issues

related to such imbalanced datasets.
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2.7 Chapter Summary

In this paper, we introduced a community smells detection approach, named csDetector, using

C4.5 classifier. We built a learning model based on a set of socio-organizational and technical

metrics to detect eight common community smells. We also introduced seven novel metrics

to better capture and characterize the key symptoms of community smells. To evaluate our

approach, we conducted a set of experiments to assess our adopted C4.5 classifier on eight

known community smells to a benchmark of 74 open source projects. Results show that the C4.5

classifier achieves an average AUC of 0.94, suggesting that our classifier can be used to detect

community smells. Our experiments indicate also that C4.5 achieves the highest performance

compared to five widely used classifiers namely, JRip, Random Forest, Naïve Bayes, SMO and

LibSVM. Moreover, our results show that our approach outperforms two recent state-of-the-art

community smells detection approaches in terms of accuracy. Our study shows also that the

ratio of commits and developers per time zone, the social graph betweenness and closeness

centrality are the most influential metrics that indicate the presence of community smells

As future work, we plan to extend our study to other community smell types and projects

socio-technical characteristics, while providing ampler empirical evaluation, over multiple open

source projects in Github and other software repositories. Moreover, we plan to extend our

approach to provide software project manager with community change recommendations to

avoid such social debt in their projects. We also plan to assess the impact of community smells

on different aspects of software projects.
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Abstract

Community smells are symptoms of organizational and social issues within the software

development community that often increase the project costs and impact software quality. Recent

studies have identified a variety of community smells and defined them as sub-optimal patterns

connected to organizational-social structures in the software development community such as

the lack of communication, coordination and collaboration. Recognizing the advantages of

the early detection of potential community smells in a software project, we introduce a novel

approach that learns from various community organizational and social practices to provide

an automated support for detecting community smells. In particular, our approach learns

from a set of interleaving organizational-social symptoms that characterize the existence of

community smell instances in a software project. We build a multi-label learning model to

detect 8 common types of community smells. We use the ensemble classifier chain (ECC) model

that transforms multi-label problems into several single-label problems which are solved using

genetic programming (GP) to find the optimal detection rules for each smell type. To evaluate

the performance of our approach, we conducted an empirical study on a benchmark of 103

open-source projects and 407 community smell instances. The statistical tests of our results show

that our approach can detect the eight considered smell types with an average F-measure of 89%

achieving a better performance compared to different state-of-the-art techniques. Furthermore,
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we found that the most influential factors that best characterize community smells include the

social network density and closeness centrality as well as the standard deviation of the number

of developers per time zone and per community.

Keywords: Community smells, Social debt, Socio-technical factors, Multi-label learning,

Genetic programming, Search-based software engineering.

3.1 Introduction

Modern software engineering is increasingly dependent on the well-being of large globally

distributed communities and their social networks in software development. Knowing more

about the organizational structures of these communities and their social characteristics as well

as the factors that affect their quality is critical to software projects success (Nagappan et al.

(2008b); Saeki (1995)).

Recent studies explored a set of socio-technical patterns that can negatively impact the organiza-

tional health of software projects and coined them as community smells (Tamburri et al. (2013b,

2015b)). Community smells are connected to circumstances based on poor organizational and

social practices that lead to the occurrence of social debt (Tamburri et al. (2016, 2015b)). Social

debt is connected to negative organized structures that often lead to short and/or long term

social issues within a project. These problems could manifest in several forms, e.g., lack of

communications, collaboration or coordination among members in a software development

community. For example, one of the common community smells, is the “organizational silo

effect" (OSE) (Palomba et al. (2018b); Tamburri et al. (2019b)) which manifests as a recurring

social network sub-structure featuring highly decoupled developer’s community structure. From

an analytical perspective, the OSE smell can be interpreted as a set of patterns over a social

network graph and could be detectable using different graph connectivity characteristics.

Detecting community smells is still, to some extent, a difficult, time consuming, and manual

process. Indeed, there is no consensual way to translate formal definition and symptoms into

actionable detection rules. Typically, the number of potential bad organizational practices often
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exceeds the resources available to address them. In many cases, mature software projects are

forced to be developed with both known and unknown poor socio-technical community practices

for lack of resources to deal with every individual community smell. Furthermore, recent studies

showed that different types of community smells can have similar symptoms and can thus co-exist

in the same project. That is, different symptoms can be used to characterize multiple community

smells making their identification even harder and error-prone (Avelino, Passos, Hora & Valente

(2016a); Tamburri et al. (2019c); Palomba et al. (2018b); Tamburri et al. (2019b)). For example,

the Organizational Silo Effect (OSE) smell is typically associated with the Solution Defiance

(DF) smell which manifests in the form of independent subgroups in the development team due

to the variance in their cultural and experience levels. Although there have been few studies

to define, characterize, and identify community smells characteristics/symptoms in software

projects, they are applied, in general, to a limited scope, and their generalizability requires a

manual effort and human expertise to define and calibrate a set of detection rules to match the

symptoms of each community smell type with the actual characteristics of a given software

project (Avelino et al. (2016a); Tamburri et al. (2019c); Palomba et al. (2018b); Tamburri et al.

(2019b)).

In this paper, our aim is to provide an automated technique to detect community smells in

software projects. We formulate the problem as a multi-label learning (MLL) problem to

deal with the interleaving symptoms of existing community smells by generating multiple

smells detection rules that can detect various community smell types. We use the ensemble

classifier chain (ECC) technique (Read, Pfahringer, Holmes & Frank (2011)) that converts

the detection task of multiple smell types into several binary classification problems for each

individual smell type. ECC involves the training of 𝑛 single-label binary classifiers, where each

one is solely responsible for detecting a specific label, i.e., community smell type. These 𝑛

classifiers are linked in a chain, such that each binary classifier is able to consider the labels

identified by the previous ones as additional information at the classification time. For the binary

classification, we exploit the effectiveness of genetic programming (GP) (John R. Koza (1992);

Glover & Kochenberger (2006); Deb, Pratap, Agarwal & Meyarivan (2002); Ouni, Kessentini,
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Inoue & Cinnéide (2017); Kessentini & Ouni (2017); Ouni, Kessentini, Sahraoui & Boukadoum

(2013b)) to find the optimal detection rules for each community smell. The goal of GP is to learn

detection rules from a set of real-world instances of community smells. In fact, we use GP to

translate regularities and symptoms that can be found in real-world community smell examples

into detection rules. A detection rule is a combination of socio-technical attributes/symptoms

with their appropriate threshold values to detect various types of community smells.

We implemented and evaluated our approach on a benchmark of 103 open source projects hosted

in GitHub. We first conducted a survey with developers to validate the identified instances of

community smells found in the studied projects. To evaluate the performance of our GP-ECC,

the statistical analysis of our results shows that the generated detection rules can identify the

eight considered community smell types with an average F-measure of 89% and outperforms

state-of-the-art MLL techniques. Moreover, we conducted a deep analysis to investigate the

symptoms, i.e., features, that are the best indicators of community smells. We find that standard

deviation of the number of developers per time zone and per community, and the social network

betweenness, closeness and density centrality within the social network are the most influential

characteristics.

To sum up, the paper makes the main following contributions:
• We introduce a GP-based ensemble classifier chain (GP-ECC) approach to detect multiple

community smell types that can exist in software projects as a multi-label learning (MLL)

problem. To the best of our knowledge, this the first approach that uses MLL and GP for the

problem of community smells detection.

• We conduct an empirical study to evaluate our approach on a benchmark of 103 software

projects. Our results show that GP-ECC outperforms state-of-the-art single- and multi-label

learning techniques.

• We conduct a survey with developers to validate the existence of community smells in our

benchmark dat (2020).

• We conduct an exploratory investigation to assess the factors that best characterize community

smells in software projects.



61

Replication package. Our dataset is available online for future extension and replication dat

(2020).

Paper organization. Section 3.2 provides the necessary background. In section 3.3, we describe

our GP-ECC approach for community smells detection. Section 3.4 presents our empirical

evaluation, and discusses the obtained results. Section 3.5 discusses the threats to validity.

Finally, in Section 3.6, we conclude and outline our future work.

3.2 Background

3.2.1 Community Smells Definitions

Community smells are defined as a set of social-organizational circumstances that occur within

the software development community, having a negative effect on the relations health within

the development community which may cause social debt over time Tamburri, Kruchten,

Lago & Vliet (2015a). A number of community smells have been defined in the literature. We

refer to the following community smell types Tamburri et al. (2015a); Avelino et al. (2016a):

• Organizational Silo Effect (OSE): The OSE smell is manifested when too high decoupling

between developers, isolated subgroups, and lack of communication and collaboration

between community developers occur. The consequence of this smell is an extra unforeseen

cost to a project by wasted resources (e.g., time), as well as duplication of code Tamburri

et al. (2015a, 2016).

• Black-cloud Effect (BCE): The BCE smell occurs when developers have a lack of information

due to limited knowledge sharing opportunities (e.g., collaborations, discussions, daily stand-

ups, etc.), as well as a lack of expert members in the project that are able to cover the

experience or knowledge gap of a community. The BCE may cause a mistrust between

members and creates selfish behavioral attitudes Tamburri et al. (2015a).

• Prima-donnas Effect (PDE): The PDE smell occurs when a team of people is unwilling to

respect external changes from other team members due to inefficiently structured collaboration

within the community. The presence of this smell may create isolation problems, superiority,
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constant disagreement, uncooperativeness and raise selfish team behavior, also called

“prima-donnas" Tamburri et al. (2015a, 2016).

• Sharing Villainy (SV): The SV smell is caused by a lack of high-quality information exchange

activities (e.g., face-to-face meetings). The main side effect of this smell limitation is that

community members share essential knowledge such as outdated, wrong and unconfirmed

information Tamburri et al. (2015a).

• Organizational Skirmish (OS): The OS smell is caused by a misalignment between different

expertise levels and communication channels among development units or individuals

involved in the project. The existence of this smell leads often to dropped productivity and

affect the project’s timeline and cost Tamburri et al. (2015a).

• Solution Defiance (SD): The solution defiance smell occurs when the development com-

munity presents different levels of cultural and experience background, and these variances

lead to the division of the community into similar subgroups with completely conflicting

opinions concerning technical or socio-technical decisions to be taken. The existence of the

SD smell often leads to unexpected project delays and uncooperative behaviors among the

developers Tamburri et al. (2015a).

• Radio Silence (RS): The RS smell occurs when a high formality of regular procedures takes

place due to the inefficient structural organization of a community. The RS community smell

typically causes changes to be retarded, as well as a valuable time to be lost due to complex

and rigid formal procedures. The main effect of this smell is an unexpected massive delay

in the decision-making process due to the required formal actions needed Tamburri et al.

(2015a).

• Truck Factor Smell (TFS): It occurs when most of the project information and knowl-

edge are concentrated in one or few developers. The presence of this smell eventually

leads to a significant knowledge loss due to the turnover of developers Ferreira, Avelino,

Valente & Ferreira (2016); Avelino et al. (2016a).
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In this paper, we focus primarily on these smells as they are widely studied and most occurring

in the software industry as well as in open-source projects based on recent studies Tamburri

et al. (2016, 2015a); Palomba et al. (2018b); Ferreira et al. (2016).

3.2.2 Search Based Software Engineering

Search-Based Software Engineering (SBSE) consists of the application of a computational

search to solve optimization problems in software engineering Harman & Jones (2001). The

term SBSE was coined by Harman and Jones in 2001, and the goal of the field is to move

software engineering problems from human-based search to machine-based search, using a

variety of techniques from the metaheuristic search and evolutionary computation paradigms

Harman & Jones (2001); Harman (2007).

SBSE provides best practice in formulating a software engineering problem as a search problem,

by defining a suitable solution representation, fitness function, and solution change operators.

Indeed, there are a multitude of search algorithms ranging from single to many-objective

techniques that can be applied to solve that problem Harman et al. (2012b); Ouni et al. (2016a,b,

2013a,c); Ouni et al. (2017); Ouni, Kessentini, Sahraoui & Hamdi (2012).

In this paper, we apply SBSE to the problem of community smells detection in software projects.

Hence, we show how genetic programming (GP) can effectively explore a large space of solutions,

and provide intelligible detection rules with ECC.

3.2.3 Multi-label learning

Multi-label learning (MLL) is the machine learning task of automatically assigning an object

into multiple categories based on its characteristics de Carvalho & Freitas (2009); Tsoumakas,

Katakis & Vlahavas (2010a); Tsoumakas & Katakis (2007); Read et al. (2011). Single-label

learning is limited by one instance with only one label. MLL is a non-trivial generalization by

removing the restriction and it has been a hot topic in machine learning de Carvalho & Freitas

(2009); Tsoumakas et al. (2010a). MLL has been explored in many areas in machine learning
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and data mining fields through classification techniques Tsoumakas & Katakis (2007). There

exists different MLL techniques including (1) problem transformation methods and algorithms,

e.g., the classifier chain (CC) algorithm Read et al. (2011), the binary relevance (BR) algorithm

Tsoumakas & Katakis (2007), label powerset (LP) algorithm Tsoumakas, Katakis & Vlahavas

(2010b), and (2) algorithm adaptation methods such as the K-Nearest Neighbors (ML.KNN)

Zhang & Zhou (2007), as well as (3) ensemble methods such as the ensemble classifier chain

(ECC) Read et al. (2011) and random k-labelset (RAKEL) Tsoumakas & Katakis (2007).

MLL was successfully applied to solve different software engineering problems McIlroy,

Ali, Khalid & Hassan (2016); Podgurski et al. (2003); Feng & Chen (2012); Xia, Feng, Lo,

Chen & Wang (2014).

The Classifier Chain (CC) model. The CC model combines the computational efficiency of the

BR method while still being able to take the label dependencies into account for classification.

With BR, the classifier chains method involves the training of q single-label binary classifiers

and each one will be solely responsible for classifying a specific label 𝑙1, 𝑙2, ..., 𝑙𝑞. The difference

is that, in CC, these 𝑞 classifiers are linked in a chain {ℎ1 → ℎ2 → ... → ℎ𝑞} through the

feature space. That is, during the learning time, each binary classifier ℎ 𝑗 incorporates the labels

predicted by the previous ℎ1, ..., ℎ 𝑗−1 classifiers as additional information. This is accomplished

using a simple trick: in the training phase, the feature vector 𝑥 for each classifier ℎ 𝑗 is extended

with the binary values of the labels 𝑙1, ..., 𝑙 𝑗−1.

The Ensemble Classifier Chain (ECC) model. One of the limitation of the CC model is that the

order of the labels is random. This may lead to a single standalone CC model be poorly ordered.

Moreover, there is the possible effect of error propagation along the chain at classification time,

when one (or more) of the first classifiers predict poorly Read et al. (2011). Using an ensemble

of chains, each with a random label order, greatly reduces the risk of these events having an

overall negative effect on classification accuracy. A majority voting method is used to select the

best model. Moreover, a common advantage of ensembles is their well-known effect of generally

increasing overall predictive performance Read et al. (2011).



65

In our study, we bridge the gap between MLL and SBSE based on the ECC method to solve the

problem of community smells detection, where each project may contain different interleaving

community smells, e.g., OSE SV and BCE. For the binary labels, our ECC model adopts a

search-based approach using genetic programming (GP) to learn detection rules for each smell

type.

3.3 Approach

In this section, we provide the problem formulation for community smells detection as a MLL

problem. Then, we describe our approach.

3.3.1 Problem formulation

We define the community smells detection problem as a multi-label learning problem. Each

community smell type is denoted by a label 𝑙𝑖. A MLL problem can be formulated as follows. Let

𝑋 = 𝑅𝑑 denote the input feature space. 𝐿 = {𝑙1, 𝑙2, ...𝑙𝑞} denote the finite set of 𝑞 possible labels,

i.e., smell types. Given a multi-label training set 𝐷 = {( 𝑥1, 𝑦1) , ( 𝑥2, 𝑦2) , .....( 𝑥𝑁, 𝑦𝑁 ) }( 𝑥𝑖 ∈

𝑋, 𝑦𝑖 ⊆ 𝐿) , the goal of the multi-label learning system is to learn a function ℎ : 𝑋 → 2𝐿 from

𝐷 which predicts a set of labels for each unseen instance based on a set of known data.

In our approach, we used the ensemble classifier chain (ECC) model Read et al. (2011). While

the existing MLL methods, e.g., BR and LP are flexible for solving MLL problems, they have

the limitation of ignoring the correlations between labels. To address this issue in our approach,

we adopt the ECC model Read et al. (2011), an extension of BR to exploit the advantage of label

correlations, i.e., smells correlation.

3.3.2 Approach Overview

Our approach starts from the observation that it is easier for developers to identify a set of

detection rules to match the symptoms of a community smell with the actual characteristics of

a given software project rather than relying on manual effort and human expertise Tamburri
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et al. (2013b). The main goal of our approach is to generate a set of detection rules for each

community smell type while taking into consideration the dependencies between the different

smell types and their interleaving symptoms.

Figure 3.1 presents an overview of our approach to generate community smells detection rules

using the GP-ECC model. Our approach consists of two phases: training phase and detection

phase. In the training phase, our goal is to build an ensemble classifier chain (ECC) model

learned from real-world community smells identified from software projects based on several

GP models for each individual smell. In the detection phase, we apply this model to detect

the proper set of labels (i.e., types of community smells) for a new unlabeled data (i.e., a new

project).

Our framework takes as inputs a set of software projects with known labels, i.e., community

smells (phase A). Then, extracts a set of features characterizing the considered community smell

types from which a GP algorithm will learn (phase B). Next, an ECC algorithm will be built

(phase C). The ECC algorithm consists of a set of classifier chain models (CC), each with a

random label order. Each CC model, learns eight individual GP models for each of the eight

considered smell types. The 𝑖𝑡ℎ binary GP detector will learn from the training data while

considering the existing 𝑖 already detected smells by the 𝑖 − 1 detected smells generate the

optimal detection rule that can detect the current 𝑖𝑡ℎ smell. In total, the ECC trains 𝑛 multi-label

CC classifiers 𝐶𝐶1, ..., 𝐶𝐶𝑛; each classifier is given a random chain ordering; each CC builds 8

binary GP models for each smell type. Each binary model uses the previously predicted binary

labels into its feature space. Then, our framework searches for the near optimal GP-ECC model

from these 𝑛 multi-label chain classifiers using an ensemble majority voting schema based on

each label confidence Read et al. (2011). In the detection phase, the returned GP-ECC model is

a machine learning classifier that assigns multiple labels, i.e., community smells types, to a new

project based on its current features, i.e., its socio-technical characteristics (phase D). In the next

subsections, we provide the details of each phase.
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Figure 3.1 The community smells detection framework using the GP-ECC model.

3.3.3 Phase A : Training data collection

An important step to solving the problem of community smells detection is to prepare the

learning dataset.

Projects selection: To build a base of real-world community smell examples that occur in

software projects, we selected a set of software projects which are diverse in nature (e.g., size,

application domains, etc.) that have experienced community smells. We considered a set of

open-source projects from Github to access to their development history. The considered filters

to collect the training data are the following:

• Commit size: the projects vary from medium size >10 KLOC, large size (10- 60) to very

large size < 60 KLOC.

• Community size: the projects team size vary from medium (<100 members), large (100-900),

to very large (> 900).

• Programming language: the selected projects are implemented in different programming

languages, including Java, C#, Python and C.

• Existence of community smells: the project should contain at least one community smell.
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Base of examples: One of the main aspects of any attempt to apply a machine learning approach

is to collect a base of examples to be used to train the model. We collected a set of community

smell instances based on the symptoms and guidelines provided in the literature Tamburri et al.

(2019); Tamburri et al. (2016, 2015a); Palomba et al. (2018b); Tamburri et al. (2018); Tamburri

et al. (2019, 2013); Ferreira et al. (2016). We manually analyzed the selected projects to identify

potential smell occurrences.

Table 3.1 Questionnaire filled in by the study participants.

Part 1: Background Information:

1 What is your project name on GitHub ? * [Required Answer]

2 How do you describe your occupation in this project? [Student − Part-time employee − Full-time employee − Unemployed − Retired − Other]

3 How long time you have been working in open-source projects? [Less than 3 years − 3 years or more − Other]

Part 2: Social aspects perception

4 Do you think there is a lack of communication and cooperation within the development team (share knowledge, experiences, exchange activities, etc.) in your project?

5 Do you think there is a delay in communications between developers in your project?

6 Do you think there is/are developer(s) in your project working on the same code and communicating by means of a third person?

7 Do you think there is/are in your project developer(s) who have selfish and/or egoistical behaviors?

8 Do you think there are different communication and expertise levels that may cause misalignment within the development team in your project?

9 Do you think there are different levels of cultural and experiential backgrounds in the development team?

10 Do you think there is/are isolated subgroup(s) within the development team of your project?

11 Do you think there is in your project a formal and complex organizational structure (with potentially unnecessary “regular procedures")?

12 Do you think there is in your project some unique knowledge and information brokers toward different developers?

13 Do you think there is in your project a risk that a core developer who can unexpectedly leave the project and can influence the development process?

14 Do you think there is in your project a waste of resources (e.g., time) over the development life-cycle?

To collect our base of examples, the authors checked individually all identified community

smells if they match with the state-of-the-art definitions, characteristics and symptoms. All

community smell instances that did not reach a full agreement were excluded from our base of

examples. After the manual inspection of potential existence of community smells, we finally

ended with 103 projects that have diverse types of community smells dat (2020).

As an attempt to validate our identified smells, we conducted a survey with the original

developers of the selected projects to get their feedback by following an opt-in strategy Hunt,

Shlomo & Addington-Hall (2013) for our survey. While the survey will help us to validate our

identified symptoms, it can also help to understand whether developers are conscious of the

presence of such smells in their projects. We extracted from GitHub the email address of the

developers who have acted in a project at least 30 commit changes during the last 12 months
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and participated in the project in the last 3 years. In such a way, we focused only on developers

having adequate experience with the project’s community Sugar (2014). Before we sent the

survey’s questions, we first sent an email asking permission to participate in our study. As a

result, we obtained a positive response from 62 out of 432 developers (14%) who were later

contacted with the actual survey. We received answers from developers of 31 different projects

in the dataset, which covered 29.3% of all considered smells. In our study, we are aware that the

different opinions on this survey may not be necessarily generalized, but this analysis helps us to

confirm whether our smells symptoms analysis match with the participants perception on such

smells in their projects.

The survey’s link was sent via email to all participants with a brief introduction. The list

of questions is divided into two main parts as shown in Table 4.1. The first part consists of

three control questions on the project name and background information about the participants

occupation and experience with the project.

Then, we asked developers to rate the validity of 11 statements that we extracted from the

community smells definitions (cf. Section 3.2) using a 5 point Likert scale Likert (1932) ranging

between “Strongly Disagree" to “Strongly Agree". This part presents typical situations in which

community smells occur without mentioning the term social debt or smells in the questionnaire.

To avoid any possible bias in the responses, we did not ask the developers directly to rate how

healthy was their community. For instance, the statement “Do you think there is a lack of

communications and cooperation within the development team (share knowledge, experiences,

exchange activities, etc.) in your project?" was aimed at understanding whether developers

actually recognize the presence of the symptoms of an OSD smell in their project. The complete

questions list of our survey presented in Table 4.1. After collecting the participants answers, we

compared their answers with the smell instances detected manually in our base of examples to

make sure that they match.
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3.3.4 Phase B : Features Extraction Module

To capture community smells symptoms, we rely on a set of metrics defined in previous studies

Avelino et al. (2016a); Damian A. Tamburri,Simone Gatti (2016); Tamburri et al. (2019);

Nagappan, Murphy & Basili (2008a); Pinzger, Nagappan & Murphy (2008a); Nordio et al.

(2011), as well as a new set of generated metrics to capture more community-related proprieties

that can be mined from the projects history. These metrics analyze different aspects in software

development communities including organizational dimensional, social network characteristics,

developers collaborations, and truck numbers. Table 2.2 depicts our list of considered features.

Our proposed metrics extend existing metrics to provide more details including developers

social network, community structures, geographic dispersion, and developer network formality.

For instance, the geographic dispersion metrics, e.g., the average number of commits per time

zone and the standard deviation of developers per time zone would capture the distribution of

commits and developers per time zone. Our features extraction module calculates the set of

metrics from a given project by analyzing its repository through commit information history

available in its version control system, e.g., GitHub. Figure 3.2 depicts an overview of our

features extraction module which consists of two main steps to extract metrics.

Step 1. Mine developers aliases: The author alias mining and consolidation consists of the

following sub-steps Avelino et al. (2016a): (i) retrieval all unique dev-emails, where for each git

commit has a dev-email associated with it, (ii) Retrieval of GitHub logins related to developers,

(iii) similarity matching of emails and logins: by applying Levenshtein distance Avelino et al.

(2016a), all aliases are compared and, with a certain degree of threshold value at most one,

consolidated, and (iv) replacement of author emails by their respective aliases Avelino et al.

(2016a). The final transformation goes through all the commits once again and replacing original

authors by their main alias. As a result, if there is a developer associated with commits with

different names, we consider them as a single developer, and the output will be presented in

a new aliases list. For example, “Bob.Rob" and “Bob Rob" are different names for a single

developer associated to commits. Thus, we consider them as the same developer in a new aliases

list as a single identical substitution.
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Figure 3.2 An overview of the features extraction module.

Step 2. Build a social network graph: Social networks analysis (SNA) have been used for

studying and analyzing the collaboration and organization of developers who are working in

teams within software development projects Meneely & Williams (2011b). Our developers

network model is based on a socio-technical connection during a software project development.

Different social network analysis metrics have been devised to describe a community structure

and predict quality factors in a software development project. Our approach builds a developer

network from the version control system by tracking the change logs. Our adopted developers

network is presented as a graph of nodes and edges, where the nodes represent developers

and edges are the connections between two developers that are working on the same file and

where they make a version control commit within one month of each side. Such social network

allows then to calculate the different metrics including the degree centrality, closeness centrality,

network density, etc. (cf. Table 3.2).
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Step 3. Compute Socio-technical Metrics: In this step, we use the collected informations and

social network graph to compute a variety of 30 socio-technical metrics as described in Table 3.2

Table 3.2 Socio-technical metrics framework.
Dimension ID Definition Ref.

Developer

Contributions

metrics

NoD Number of developers (NoD): the total number of developers who have changed the code in a project. Nagappan et al.
(2008a)

NAD Number of Active Days of an author on a project (NAD) : the percentage of the total number of active days for each developer with

respect to a project’s lifetime on the total number of developers in a project.

Nagappan et al.
(2008a)

NCD Number of Commits per Developer in a project (NCD) : the total number of times that the code has been changed by a developer with

respect to the total number of commits and the total number of developers in a project.

Nagappan et al.
(2008a)

SDC Standard Deviation of Commits per developer in a project (SDC) : the standard definition of commits per developer in a project. It

provides a view of the distribution of the developers contributions.

Nagappan et al.
(2008a)

NCD Number of Core Developers (NCD): the total number of core developers in a project. A developer is considered as a core community

member if he/she has a larger degree than peripheral developers within the developer’s social network.

Tamburri et al.
(2019)

PCD Percentage of Core Developers (PCD): the percentage of core developers with respect to the total number of developers. Tamburri et al.
(2019)

NSD Number of Sponsored Developers (NSD): the total number of sponsored developers in a project. We consider a developer that hold a

sponsored status if at least 90% of her/his commits are performed during weekdays and the working day time (8am-6pm).

Tamburri et al.
(2019)

PSD Percentage of Sponsored Developers (PSD): the percentage of sponsored developers over the total number of developers. Tamburri et al.
(2019)

Social

Network

Analysis

metrics

GDC Graph Degree Centrality (GDC): the number of connections that a developer has. The more connections with others a developer has,

the more important the developer is.

Pinzger et al.
(2008a)

SDD Standard Deviation of a graph Degree centrality in a project (SDD) : the standard deviation of the degree centrality (DC) of each

developer in a project. It provides a view of the distribution of DC in a project.

Tamburri et al.
(2019)

GBC Graph Betweenness Centrality (GBC): a measure of the information flow from one developer to another and devised as a general

measure of social network centrality. It represents the degree to which developers stand between each other. A developer with higher

BC would have more control over the community as more information will pass through her/him.

Pinzger et al.
(2008a)

GCC Graph Closeness Centrality (GCC): a measure of the distance between a developer to other developers in the network. This metric is

strongly influenced by the degree of connectivity of a network.

Pinzger et al.
(2008a)

ND Network Density (ND): a measure of a social network as a dense or sparse graph. Tamburri et al.
(2019)

Community

metrics

NC Number of Communities (NC): the total number of communities in a project. Tamburri et al.
(2019)

ACC Average of Commits per Community (ACC): the average number of commits per community in a project. New

SCC Standard deviation of Commits per Community (SCC): the standard deviation of commits performed by each community with respect

to the total number of commits in a project.

New

ADC Average number of Developers per Community (ADC): the average number of developers per community in a project with respect to the

total number of developers in a project.

New

SDC Standard deviation of Developers per Community (SDC): the standard deviation of commits performed by each community with respect

to the total number of commits in a project.

New

Geographic

Dispersion

metrics

TZ Number of Time Zones (TZ): the total number of different time zones of developers in a project. Nordio et al.
(2011)

ACZ Average of Commits per time Zone (ACZ): the average number of commits per time zone in a project. New

SCZ Standard deviation of Commits per time Zones (SCZ): the standard deviation of commits performed in each time zone with respect to

the total number of commits in a project.

New

ADZ Average number of Developers per time Zone (ADZ): the average number of developers per time zone in a project. New

SDZ Standard deviation of Developers per time Zones (SDZ): the standard deviation of developers per time zones in a project. New

Formality

metrics

NR Number of Releases in a project (NR): the total number of releases delivered in a project. A. Gopal & S.

Krishnan (2002)

PCR Parentage of Commits per Release (PCR) : the percentage of commits of each release over the total number of releases in a project. New

SCR Standard deviation of Commits per Release (SCR) : the standard deviation of developers per release in a project. New

FN Formal Network (FN): the number of milestones assigned to the project with respect to the lifetime of the project. Damian A. Tam-

burri (2016)

Truck

Number

metrics

BFN Bus Factor Number (BFN): is the percentage of active developers present in a project with respect to the total number of developers. Cosentino,

Izquierdo & Cabot

(2015)

TFN Truck Factor Number (TFN): the number of key developers in a project who can be unexpectedly lost, i.e., hit by a truck before the

project is discontinued.

Avelino et al.
(2016a)

TFC Truck Factor Coverage (TFC): the percentage of core developers and their associated authored files in a project. Avelino et al.
(2016a)
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3.3.5 Phase C : Genetic Programming-based Ensemble Classifier Chain (GP-ECC)

As explained earlier in Sections 3.3.2 and 4.2.3, our approach is based on the ECC method Read

et al. (2011) that transforms the multi-label learning task into multiple single-label learning tasks.

Our multi-label ECC model aims at building a detection model to detect different instances of

community smells in a software project. Each classifier chain (CC) builds a GP model for each

smell type while considering the previously detected smells (if any), i.e., each binary GP model

uses the previously predicted binary labels into its feature space. Our choice for GP is motivated

by the high performance of GP in solving challenging software engineering problems including

design defects, code smells and anti-patterns detection Kessentini & Ouni (2017); Ouni et al.

(2017); Ouni et al. (2013b); Ouni, Gaikovina Kula, Kessentini & Inoue (2015).

Algorithm 3.1 High level pseudo code of the adopted MOGP

1: Create an initial population 𝑃0

2: Create an offspring population 𝑄0

3: 𝑡 = 0

4: while stopping criteria not reached do
5: 𝑅𝑡 = 𝑃𝑡 ∪𝑄𝑡

6: F = fast-non-dominated-sort(𝑅𝑡 )

7: 𝑃𝑡+1 = ∅ 𝑎𝑛𝑑 𝑖 = 1

8: while | 𝑃𝑡+1 | + | 𝐹𝑖 |� 𝑁 do
9: Apply crowding-distance-assignment(𝐹𝑖)

10: 𝑃𝑡+1 = 𝑃𝑡+1 ∪ 𝐹𝑖
11: 𝑖 = 𝑖 + 1

12: end while
13: 𝑆𝑜𝑟𝑡 (𝐹𝑖 , ≺ 𝑛)

14: 𝑃𝑡+1 = 𝑃𝑡+1 ∪ 𝐹𝑖 [𝑁− | 𝑃𝑡+1 |]

15: 𝑄𝑡+1 = create-new-pop(𝑃𝑡+1)

16: t = t+1

17: end while=0

In our approach, we adopted the Multi-objective Genetic Programming (MOGP) as search

algorithm to generate smells detection rules. MOGP is a powerful and widely-used evolutionary

algorithm which extends the generic model of GP learning to the space of programs. Unlike

other evolutionary search algorithms, in MOGP, solutions are themselves programs following a
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tree-like representation instead of fixed length linear string formed from a limited alphabet of

symbols John R. Koza (1992).

As described in Algorithm 3.1, MOGP starts by randomly creating an initial population 𝑃0

of individuals encoded using a specific representation (line 1). Then, a child population 𝑄0

is generated from the population of parents 𝑃0 (line 2) using genetic operators (crossover

and mutation). Both populations are merged into an initial population 𝑅0 of size 𝑁 (line 5).

Fast-non-dominated-sort Deb et al. (2002) is the technique used by MOGP to classify individual

solutions into different dominance levels (line 6) Deb et al. (2002). The whole population

that contains 𝑁 individuals (solutions) is sorted using the dominance principle into several

fronts (line 6). Solutions on the first Pareto-front 𝐹0 get assigned dominance level of 0. Then,

after taking these solutions out, fast-non-dominated-sort calculates the Pareto-front 𝐹1 of the

remaining population; solutions on this second front get assigned dominance level of 1, and so

on. Fronts are added successively until the parent population 𝑃𝑡+1 is filled with 𝑁 solutions (line

8). When MOGP has to cut off a front 𝐹𝑖 and select a subset of individual solutions with the

same dominance level, it relies on the crowding distance Deb et al. (2002) to make the selection

(line 9). This parameter is used to promote diversity within the population. The front 𝐹𝑖 to be

split, is sorted in descending order (line 13), and the first (N- |𝑃𝑡+1 |) elements of 𝐹𝑖 are chosen

(line 14). Then, a new population 𝑄𝑡+1 is created using selection, crossover and mutation (line

15). This process will be repeated until reaching the last iteration according to stop criteria (line

4).

We describe in the following subsections the three main adaptation steps: (i) solution rep-

resentation, (ii) the generation of the initial generation (iii) fitness function, and (iv) change

operators.

(i) Solution representation. A solution consists of a rule that can detect a specific type of

community smells in the form of IF-THEN:

In MOGP, a solution is represented as a tree composed of terminals and functions. The terminals

correspond to different socio-technical specific features (cf. Table 3.2) with their threshold
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values. The functions that can be used between these metrics are logic operators OR (union),

AND (intersection), or XOR (eXclusive OR). A solution is represented as a tree a binary tree

such that: each leafnode (Terminal) contains one of metrics described in Table 3.2 and their

corresponding threshold values generated randomly. Each internal-node (Functions) belongs to

the Connective (logic operators) set 𝐶 = {𝐴𝑁𝐷,𝑂𝑅, 𝑋𝑂𝑅}. The threshold values are selected

randomly along with the comparison and logic operators. Figure 4.4 shows a simplified example

of a solution for the OSE smell using the metrics GDC, ADC, GBC and SDZ.

Figure 3.3 A simplified example of a solution for OSE smell.

(ii) Generation of the initial population. The initial population of solutions is generated

randomly by assigning a variety of metrics and their thresholds to the set of different nodes of

the tree. The size of a solution, i.e., the tree’s length, is randomly chosen between lower and

upper bound values. These two bounds have determined and called the problem of bloat control

in GP, where the goal is to identify the tree size limits. Thus, we applied several trial and error

experiments using the HyperVolume (HP) performance indicator Angeline (1994) to determine

the upper bound after which, the sign remains invariant.

(iii) Fitness function. The fitness function evaluates how good is a candidate solution in

detecting community smells. Thus, to evaluate the fitness of each solution, we use two objective

functions, based on two well-known metrics Kessentini & Ouni (2017); Ouni et al. (2017);

Harman & Clark (2004), to be optimized, i.e., precision and recall. The precision objective
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function aims at maximizing the detection of correct community smells over the list of detected

ones. The recall objective function aims at maximizing the coverage of expected community

smells from the base of examples over the actual list of detected smells. Precision and recall of a

solution 𝑆 are defined as follows.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑆) =
|{Detected smells} ∩ {Expected smells}|

|{Detected smells}|
(3.1)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆) =
|{Detected smells} ∩ {Expected smells}|

|{Expected smells}|
(3.2)

(iv) Change operators. Crossover and mutation are used as change operators to evolve candidate

solutions towards optimality.

Crossover. We adopt the “standard" random, single-point crossover. It selects two parent

solutions at random, then picks a sub-tree on each one. Then, the crossover operator swaps

the nodes and their relative subtrees from one parent to the other. Each child thus combines

information from both parents.

Mutation: It can be applied either to a function node or a terminal node. This operator can

modify one or many nodes. For a selected solution, the mutation operator first randomly selects

a node in the tree. Then, if the selected node is a terminal (metric), it is replaced by another

terminal (metric or another threshold value); if the selected node is a function (AND-OR-XOR

operators), it is replaced by a new function (e.g., AND becomes OR). If a tree mutation is to be

carried out, the node and its sub-tree are replaced by a new randomly generated sub-tree.

ECC majority voting. As shown in Figure 3.1, for each CC, MOGP will generate an optimal

rule for each community smell type, i.e., binary detection. Then, ECC allows to find the best

CC that provides the best MLL from all the trained binary models. Each 𝐶𝐶𝑖 model is likely

to be unique and able to achieve different multi-label classifications. These classifications are

summed by label so that each label receives a number of votes. A threshold is used to select

the most popular labels which form the final predicted multi-label set. This is a generic voting
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scheme and it is straightforward to apply an ensemble of any MLL transformation method Read

et al. (2011).

3.3.6 Phase D : Detection Phase

After the GP-ECC model is constructed, in the training phase, it will be then used to detect a set

of labels for a new project. It takes as input the set of features extracted from a given project

using the feature extraction module. As output, it returns the detection results for each individual

label, i.e., community smell type.

3.4 Evaluation

This section reports our empirical study to evaluate our approach including the research questions,

experiments setup and results.

3.4.1 Research Questions

We designed our empirical study to answer the three following research questions.

• RQ1: (Performance) How accurately can our GP-ECC detect community smells?

• RQ2: (Sensitivity) What types of community smells does our GP-ECC approach detect

correctly?

• RQ3: (Features influence) What are the most influential features that can indicate the

presence of community smells?

3.4.2 Analysis method

To evaluate our approach, we collected a set of community smells as discussed in Section

4.3.1. Table 3 summarizes the collected smells. Furthermore, as a sanity check, all smells were

manually inspected and validated based on guidelines from the literature as well as through

our survey with the original developers. Furthermore, our dataset is available online for future

extension and replication dat (2020).
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We considered eight common types of community smells, i.e., organisational silo effect (OSE),

black-cloud effect (BCE), prima-donnas effect (PDE), sharing villainy (SV), organisational

skirmish (OS), solution defiance (SD), radio silence (RS), and truck factor (TF), (cf. Section

3.2). In our experiments, we conducted a 10-fold cross-validation procedure to split our data

into training data and evaluation data.

Table 3.3 Dataset statistics.

Data Statistic

Number of projects 103

Number of projects having at least one smell 103

Total number of smells 407

Average number of smells per project 4.6

Average number of developers per project 229

Number of projects with <50 developers 40

Number of projects with 50 − 150 developers 34

Number of projects with >150 developers 29

Average number of commits per project 1,103

Average number of days in each project 3,233

To answer RQ1, we carry out a set of experiments to justify our GP-ECC approach. We first

compare the performance of our meta-algorithm ECC to two well-known meta-algorithms with

proven success in MLL, random k-labelset (RAKEL) Tsoumakas & Katakis (2007) and binary

relevance (BR) Tsoumakas & Katakis (2007). We next used GP, decision tree (J48) and random

forest (RF) as their corresponding underlying classification algorithms. We also compared

with the widely used MLL algorithm adaptation method, K-Nearest Neighbors (ML.KNN)

Zhang & Zhou (2007). Thus, in total, we have 10 MLL algorithms to be compared. One fold is

used for the test and 9 folds for the training.

To compare the performance of each method, we use common performance metrics, i.e.,

precision, recall, and F-measure Read et al. (2011); Ouni et al. (2017); Kessentini & Ouni

(2017); Xia et al. (2014). Let 𝑙 a label in the label set 𝐿. For each instance 𝑖 in the smells

learning dataset, there are four outcomes, True Positive (𝑇𝑃𝑙) when 𝑖 is detected as label 𝑙 and it

correctly belongs to 𝑙; False Positive (𝐹𝑃𝑙) when 𝑖 is detected as label 𝑙 and it actually does not
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belong to 𝑙; False Negative (𝐹𝑁𝑙) when 𝑖 is not detected as label 𝑙 when it actually belongs to

𝑙; or True Negative (𝑇𝑁𝑙) when 𝑖 is not detected as label 𝑙 and it actually does not belong to 𝑙.

Based on these possible outcomes, precision (𝑃𝑙), recall (𝑅𝑙) and F-measure (𝐹𝑙) for label 𝑙 are

defined as follows:

𝑃𝑙 =
𝑇𝑃𝑙

𝑇𝑃𝑙 + 𝐹𝑃𝑙
; 𝑅𝑙 =

𝑇𝑃𝑙

𝑇𝑃𝑙 + 𝐹𝑁𝑙
; 𝐹𝑙 =

2 × 𝑃𝑙 × 𝑅𝑙

𝑃𝑙 + 𝑅𝑙

Then, the average precision, recall, and F-measure of the | 𝐿 | labels are calculated as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

| 𝐿 |

∑

𝑙∈𝐿

𝑃𝑙 ; 𝑅𝑒𝑐𝑎𝑙𝑙 =
1

| 𝐿 |

∑

𝑙∈𝐿

𝑅𝑙 ; 𝐹1 =
1

| 𝐿 |

∑

𝑙∈𝐿

𝐹𝑙

Statistical test methods. To compare the performance of each method, we perform Wilcoxon

pairwise comparisons Cohen (2013) at 99% significance level (i.e., 𝛼 = 0.01) to compare

GP-ECC with each of the 9 other methods. We also used the non-parametric effect Cliff’s

delta (𝑑) Cliff (1993) to compute the effect size. The effect size 𝑑 is interpreted as Negligible

if | 𝑑 |< 0.147, Small if 0.147 ≤| 𝑑 |< 0.33, Medium if 0.33 ≤| 𝑑 |< 0.474, or High if

| 𝑑 |≥ 0.474.

To answer RQ2, we investigated the community smell types that were detected to find out

whether there is a bias towards the detection of specific smell types.

To answer RQ3, we aim at identifying the features that are the most important indicators of

whether a project has a given community smell or not. For each smell type, we count the

percentage of rules in which the feature appears across all obtained optimal rules by GP. The

more a feature appears in the set of optimal trees, the more the feature is relevant to characterize

that smell.
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Algorithms parameters. For all the GP, RF and J48 algorithms, the maximum depth of the tree

is set to 10. For GP, the population size is 200, number of iterations is 3,000, crossover and

mutation rates are 0.9 and 0.1, respectively. For RF and J48, we used the default parameters of

Weka. The number of neighbors of ML.KNN is set to 10. For ECC, we set the ensembles size

𝑛 = 20. For RAKEL, we set 𝑛 = 20, and the labels subset 𝑘 = 4.

3.4.3 Results

Results for RQ1 (Performance). Table 4.4 reports the average precision, recall and F-measure

scores for the 10 methods. We observe that ECC competes well against the other 2 meta

algorithms RAKEL and BR methods. Looking at the base learning methods (GP, J48 and RF),

we used GP-ECC as the base for determining statistical significance. In particular, the GP-ECC

method achieves the highest F-measure with 0.89 compared to the other methods with medium

and large effect sizes, except with GP-RAKEL for which the results were statistically different

but with small different effect size. The same performance was achieved in terms of precision

and recall, with 0.87 and 0.91, respectively. Moreover, we observe that GP-ECC achieves

comparable performance as GP-RAKEL in terms of recall which confirms the suitability of the

GP formulation compared to decision tree and random forest algorithms. We can also see overall

superiority for GP-ECC compared to the transformation method ML.KNN in terms of precision,

recall and F-measure with large effect size. One of the reasons that BR does not perform well is

that it ignores the label correlation, while RAKEL and ECC consider the label correlation by

using an ensemble of classifiers. Moreover, among the 3 base learning algorithms, GP performs

the best, followed by decision tree (J48) and random forest (RF).

Results for RQ2 (Sensitivity). Figure 4.7 reports the sensitivity analysis of each specific

community smell type. We observe that GP-ECC does not have a bias towards the detection of

any specific smell type. As shown in the figure, GP-ECC achieved good performance and low

variability in terms of both precision (ranging from 0.84 to 0,9) and recall (ranging from 86 to

92) across the 8 considered smell types. The highest precision and recall was obtained for the

organisational silo effect (OSE), the track factor (TF), and solution defiance (SD) which heavily
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Table 3.4 The achieved results by each of the

meta-algorithms ECC, RAKEL and BR with their base

learning algorithms GP, J48, and RF; and ML.KNN.

Algorithm Precision Recall F1

score p-value (d)* score p-value (d)* score p-value (d)*

GP-ECC 0.87 - 0.91 - 0.89 -

J48-ECC 0.84 <0.01 (M) 0.89 <0.01 (S) 0.86 <0.01 (M)

RF-ECC 0.84 <0.01 (M) 0.87 <0.01 (M) 0.85 <0.01 (M)

GP-RAKEL 0.85 <0.01 (S) 0.91 No. Stat. Sig. 0.88 <0.01 (S)

J48-RAKEL 0.83 <0.01 (L) 0.88 <0.01 (M) 0.85 <0.01 (L)

RF-RAKEL 0.84 <0.01 (M) 0.86 <0.01 (M) 0.85 <0.01 (M)

GP-BR 0.83 <0.01 (L) 0.85 <0.01 (M) 0.84 <0.01 (L)

J48-BR 0.81 <0.01 (L) 0.82 <0.01 (M) 0.81 <0.01 (L)

RF-BR 0.82 <0.01 (L) 0.82 <0.01 (L) 0.82 <0.01 (L)

ML.KNN 0.82 <0.01 (L) 0.84 <0.01 (L) 0.83 <0.01 (L)

* p-value(d) reports the statistical difference (p-value) and effect-

size (d) between GP-ECC and the algorithm in the current row.

The effect-size (d) is N : Negligible − S : Small − M : Medium −

L : Large

relies on the notion of developers social network and sub-groups. This higher performance is

reasonable since the existing guidelines Tamburri et al. (2019); Ferreira et al. (2016); Tamburri

et al. (2016, 2015a, 2018); Tamburri et al. (2019, 2013) rely heavily on the notion of social

network. But for smells such as organisational skirmish (OS) and radio silence (RS), the notion

of social network is less important and this makes this type of smells hard to detect using such

information.

Results for RQ3 (Features influence). To better understand what features are most selected

by our GP to generate detection rules among all the generated rules, we count the percentage

of rules in which the feature appears. Table 3.5 shows the statistics for each smell type with

the top-10 features (cf. Table 2.2), from which the three most influencing features values are

in bold. We observe that the graph betweeness, closeness and degree centrality (GBC, GCC,

and GDC), the network density (ND), the standard deviation of developers per community and

per time zone (SDC and SDZ) as well as the number of communities (NC). We thus observe

that different social network patterns play a crucial role in the emergence of community smells.

These findings suggest that more attention has to be paid to these particular socio-organizational
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Figure 3.4 The achieved precision and recall scores by GP-ECC for each communiy smell

type.

characteristics within the software project community to avoid the presence of smells and their

impact on the software project.

Table 3.5 The most influential features for each smell.
metric OSE BCE PDE SV OS SD RS TF

GDC 95 91 92 92 90 83 96 95
GCC 91 88 89 95 93 91 91 93
SDZ 87 53 89 88 62 88 72 63

ND 96 81 82 88 90 92 92 93

GBC 93 92 90 71 91 96 92 92

NC 82 62 72 43 52 62 95 72

SDC 91 88 89 88 91 66 82 95
TZ 76 48 72 62 53 92 97 47

TFN 18 15 21 41 22 42 39 100
PSD 53 21 18 45 32 62 65 81

3.5 Threats to validity

Threats to construct validity could be related to the performance measures. We basically used

standard performance metrics such as precision, recall and F-measure that are widely accepted
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in MLL and software engineering Read et al. (2011); Ouni et al. (2017); Kessentini & Ouni

(2017); Xia et al. (2014); Ouni et al. (2013b). Another potential threat could be related to the

selection of classification techniques. Although we use the GP, J48 and RF techniques which

are known to have high performance, there are other techniques. To mitigate this threat, we plan

to compare with other ML techniques.

Threats to internal validity relate to errors in our experiments. We have double checked our

experiments and the datasets collected following the literature guidelines and a survey with

developers Tamburri et al. (2019); Tamburri et al. (2016, 2015a, 2013b), still there could be

errors that we did not notice.

Threats to external validity relate to the generalizability of our results. We have analyzed a total

of 407 smell instances from 103 different open source projects, different community sizes and

programming languages. In the future, we plan to reduce this threat further by analyzing more

projects from more industrial and open-source software projects.

3.6 Chapter Summary

We introduced in this paper an automated approach to detect community smells in software

projects. We formulate the problem as a multi-label learning problem using the ECC meta-

algorithm with an underlying GP model. Our GP-ECC aims at generating detection rules

for each smell type. We use GP to translate regularities and symptoms that can be found in

real-world community smell examples into detection rules. A detection rule is a combination of

socio-technical attributes/symptoms with their appropriate threshold values to detect various

types of community smells. We evaluated our approach on a set of 103 projects and 407

smell instances across 8 common types of community smells. Results show that our GP-ECC

approach can identify all the considered community smell types with an average F-measure of

89% and outperforms 9 state-of-the-art MLL techniques that rely on different meta-algorithms

(ECC, BR and RAKEL) and different underlying learning algorithms (GP, J48, and RF); and a

transformation method ML.KNN. Moreover, we conducted a deep analysis to investigate the
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symptoms, i.e., features, that are the best indicators of community smells. We find that the

standard deviation of the number of developers per time zone and per community, and the social

network betweenness, closeness and density centrality are the most influential characteristics.

As future work, we plan to extend our approach with more open source and industrial projects to

provide ampler empirical evaluation. We plan also to extend our approach to provide software

project managers with community change recommendations to avoid social debt in their projects.

We also plan to assess the impact of community smells on different aspects of software projects.
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Abstract Open source software development is regarded as a collaborative activity in which

developers interact to build a software product. Such a human collaboration is described as

an organized effort of the “social” activity of organizations, individuals, and stakeholders,

which can affect the development community and the open source project health. Negative

effects of the development community manifest typically in the form of community smells

which represent symptoms of organizational and social issues within the open source software

development community that often lead to additional project costs and reduced software quality.

Recognizing the advantages of the early detection of potential community smells in a software

project, we introduce a novel approach that learns from various community organizational,

social, and emotional aspects to provide automated support for detecting community smells. In

particular, our approach learns from a set of interleaving organizational-social and emotional

symptoms that characterize the existence of community smell instances in a software project.

We build a multi-label learning model to detect 10 common types of community smells. We use

the ensemble classifier chain (ECC) model that transforms multi-label problems into several

single-label problems which are solved using genetic programming (GP) to find the optimal

detection rules for each smell type. To evaluate the performance of our approach, we conducted

an empirical study on a benchmark of 143 open-source projects. The statistical tests of our

results show that our approach can detect community smells with an average F-measure of 93%
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achieving a better performance compared to different state-of-the-art techniques. Furthermore,

we investigate the most influential community-related metrics to identify each community smell

type.

Keywords: Human factors in software engineering, Software organization and properties.

4.1 Introduction

Open Source Software (OSS) development is a collaborative activity in which developers interact

between each other to develop and maintain a software system Christley & Madey (2007);

Gamalielsson & Lundell (2014). Nowadays, OSS is becoming an essential part in the software

economy. The number of OSS projects and their size has been growing at exponential rate

(Deshpande & Riehle (2008)). The success of OSS development leads to building sustainable

software systems Feitelson (2012); Gamalielsson & Lundell (2011, 2014). Unlike proprietary

software, OSS projects can be developed and maintained by the whole community providing

more transparency on the source code, development processes and technologies as well as

developers communications. As there exist a substantial number of OSS projects, there is a

continuous concern about these projects’ health Palomba et al. (2018b); Tamburri et al. (2019).

Understanding the characteristics of factors of healthy and thriving OSS communities is crucial

to evaluate existing efforts and to identify improvement opportunities Gonzalez-Barahona,

Sherwood, Robles & Izquierdo (2017); Goggins et al. (2021).

Recent works found that the interactions between developers not only affect OSS social debt

De Stefano, Pecorelli, Tamburri, Palomba & De Lucia (2020) but also software code quality

Bettenburg & Hassan (2010). Several organizational-social structures challenges can arise

in OSS sub-optimal communities, (e.g., poor communication sub-teams, different cultures

levels, as well as expertise Sharp, Robinson & Woodman (2000a); Jaakkola (2012); Hofstede,

Jonker & Verwaart (2008); Greenhoe (2016a)). As a result, such organizational and social patterns

may impact the OSS community’s health and lead to community smells Tamburri et al. (2013b,

2015a); Almarimi et al. (2021). Community smells are introduced as sub-optimal organizational



87

patterns and social characteristics that may cause the emergence of social debt Tamburri et al.

(2016, 2015a). Social debt is defined as unforeseen costs of sub-optimal organizational and

social characteristics that hamper to shorten and/or lengthen the straightforward operation,

production, and evolution of software. Such issues could manifest in different forms, e.g., lack

of cooperation, communication or coordination within software community teams.

Moreover, collaboration artifacts of OSS projects are a place where development teams can

express their emotions, in such a way that may affect their collaboration either positively

or negatively Murgia et al. (2014). A recent study has found that emotions impact soft-

ware development communities i.e., task quality, productivity, creativity, and job satisfaction

De Choudhury & Counts (2013). In different cases, poor circumstances and bad practice

are enforced within established software projects life cycle. Moreover, the big challenges of

community smells can be found in the same project with similar symptoms. Therefore, such

symptoms make the detection of community smells even harder and error-prone Avelino et al.

(2016a); Tamburri et al. (2018); Damian A. Tamburri (2016); Palomba et al. (2018b); Tamburri

et al. (2019). For instance, some of the common smells are Organizational Silo Effect(OSE)

Tamburri et al. (2015a); Tamburri et al. (2019) and the Solution Defiance(DF) Tamburri et al.

(2015a); Tamburri et al. (2019) are typically associated in the form of lack of communication

and lack of cooperation due to the independent subgroups through the development team.

Detecting community smells to explore open source community’s health has become important

to help developers and software projects managers in picking up smells in an easier and more

accurate fashion. Regardless the impact of such smells on the OSS projects and community

health, they are organizational patterns that can help us understand the health of a community.

Despite the effort of current works to characterize, identify, and define community smells’

patterns, there is a lack of knowledge on how to define and calibrate a set of detection rules to

match the symptoms of a community smell with the actual characteristics of a software project

Avelino et al. (2016a); Tamburri et al. (2019c); Palomba et al. (2018b); Tamburri et al. (2021).

To address these issues, we introduced an automated approach based on Genetic Programming

to learn from the symptoms of real-world instances of community smells Almarimi, Ouni,
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Chouchen, Saidani & Mkaouer (2020a). However, the proposed approach is mainly based on

commit changes to identify developers working on the same files, and we consider two important

factors (1) the communications between developers through "issues channels discussion" and

"pull requests", and (2) the sentiments and emotions of developers in their communications.

In this paper, we introduce an approach to detect community smells in open source projects

namely, extended Genetic Programming-based Ensemble Classifier Chain (eGP-ECC). We

design the problem as a multi-label learning (MLL) problem to solve the interleaving symptoms

of community smells’ issues, by generating multiple detection rules that can identify various of

community smells. Our technique is used to detect each smell type individually by convert the

detection problem into multiple binary classification problems. Our Ensemble Classifier Chain

(ECC) technique Read et al. (2011) involves the training of n single-label binary classifiers,

where each one is solely responsible for detecting a specific label, i.e., community smell type.

These n classifiers are linked in a chain, such that each binary classifier is able to consider the

labels identified by the previous ones as additional information at classification time. For the

binary classification, we exploit the effectiveness of genetic programming (GP) John R. Koza

(1992); Glover & Kochenberger (2006); Deb et al. (2002); Ouni et al. (2017); Kessentini & Ouni

(2017); Ouni et al. (2013b) to find the optimal detection rules for each community smell. The

goal of GP is to learn detection rules from a set of real-world instances of community smells. In

fact, we use GP to translate regularities and symptoms that can be found in real-world community

smell examples into detection rules. A detection rule is a combination of socio-technical

attributes/symptoms and their relative threshold values, in order to detect various types of

community smells.

Moreover, to better capture and analyze developers communications, we build a developer’s

social network based on two important communication channels including (1) issues and (2) pull

requests discussion channels. Furthermore, we incorporate sentiments and emotions analysis to

analyze developers communications.



89

We implemented and evaluated our approach on a benchmark of 143 open source projects

hosted in GitHub. We first conducted a survey with developers to validate the identified

instances of community smells found in the studied projects. Evaluating the performance of our

extended GP-based Ensemble Classifier Chain approach (referred as the eGP-ECC hereinafter),

the statistical analysis of our results shows that the generated detection rules can identify the

ten considered community smell types with an average F-measure of 93% and outperforms

state-of-the-art MLL techniques. Moreover, we conducted a deep analysis to investigate the

symptoms, i.e., features, that are the best indicators of community smells. We find that the

standard deviation of the number of developers per time zone and per community, and the social

network betweenness, closeness and density centrality and the ratio of issues with negative

sentiments,anger words and polite comments in PR and issue discussions are the most influential

characteristics.

4.1.1 Novelty statement

In this paper, we build in top of our previous work published in the 15th IEEE/ACM International

Conference on Global Software Engineering Almarimi et al. (2020a) for community smells

detection and extend it in the following ways:

1. We extend our study with two additional and common types of community smells, namely,

unhealthy interaction (UI) Tourani et al. (2014); Mäntylä, Adams, Destefanis, Grazi-

otin & Ortu (2016), and Unfriendly communication (UC) Raman et al. (2020); Murgia et al.

(2018); Ortu et al. (2015b).

2. We extend our developers social network with common communication channels from

(i) pull requests, and (ii) issues reports to better capture direct communications between

developers in a project.

3. We extend our metrics suite to better capture the different symptoms of community smells

by considering additional (i) category of socio-technical characteristics based on sentiments

analysis such as sentiments polarity, politeness and anger emotions to better capture
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community smell symptoms, and (ii) developers communication and productivity metrics

based on pull requests and issues tracking related information.

4. We extend our experimental setup and dataset with (i) the newly studied community smells,

(ii) new developers social network based on pull requests and issue reports, and (iii) the new

features based on sentiments analysis dat (2020).

5. We extend the related work to cover more aspects of community smells, OSS projects health

and sentiments analysis.

4.1.2 Replication package

Our comprehensive replication package is available online for future replications/extensions dat

(2020).

4.1.3 Paper organization

The remainder of the rest paper is organized as follows. Section 4.2 presents the necessary

background. In section 4.3, we discuss our eGP-ECC approach for community smells detection.

Section 4.4 provides our empirical evaluation, and discusses the obtained results. Section 4.5

examines the threats to validity. Finally, in Section 4.6, we conclude and outline our future work.

4.2 Background

4.2.1 Community Smells in Open Source Software

Community smells are defined as a set of social-organizational circumstances that occur within

the software development community, having a negative effect on the relations health within

the development community which may cause social debt over time Tamburri et al. (2015a);

Tamburri & Palomba (2021); Tamburri et al. (2018); Avelino et al. (2016a). A number of

community smells have been defined in the literature. We refer to the following community



91

smell types as theoretical lens to explore open source community health Tamburri et al. (2015a);

Avelino et al. (2016a):

• Organizational Silo Effect (OSE): The OSE smell is manifested in OSS project when too

high decoupling between developers, isolated subgroups, and lack of communication and

collaboration between community developers occur. The consequence of this smell is an

extra unforeseen cost to a project by wasted resources (e.g., time), as well as duplication of

code Tamburri et al. (2015a, 2016, 2018).

• Black-cloud Effect (BCE): The BCE smell occurs when developers have a lack of information

due to limited knowledge sharing opportunities (e.g., collaborations, discussions, daily stand-

ups, etc.), as well as a lack of expert members in the project that are able to cover the

experience or knowledge gap of a community. The BCE may cause mistrust between

OSS community members and creates selfish behavioral attitudes Tamburri et al. (2015a);

Tamburri et al. (2019); Tamburri et al. (2018).

• Prima-donnas Effect (PDE): The PDE smell occurs when a team of people is unwilling to

respect external changes from other team members due to inefficiently structured collaboration

within the community. The presence of this smell may affect OSS community health and

create isolation problems, superiority, constant disagreement, uncooperativeness, and raise

selfish team behavior, also called "prima-donnas" Tamburri et al. (2015a, 2016); Goggins

et al. (2021).

• Sharing Villainy (SV): The SV smell is caused in OSS community by a lack of high-quality

information exchange activities (e.g., face-to-face meetings). The main side effect of this

smell limitation is that community members share essential knowledge such as outdated,

wrong and unconfirmed information Tamburri et al. (2015a); Sen, Singh & Borle (2012).

• Organizational Skirmish (OS): The OS smell is caused by a misalignment between different

expertise levels and communication channels among development units or individuals

involved in OSS project. The existence of this smell often leads to dropped productivity and

affects the project’s timeline and cost Tamburri et al. (2015a); Jansen (2014); Tantisuwankul

et al. (2019).
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• Solution Defiance (SD): The solution defiance smell occurs when the OSS development

community presents different levels of cultural and experience background, and these

variances lead to the division of the community into similar subgroups with completely

conflicting opinions concerning technical or socio-technical decisions to be taken. The

existence of the SD smell often leads to unexpected project delays and uncooperative

behaviors among the developers Tamburri et al. (2015a); Rastogi (2016).

• Radio Silence (RS): The RS smell occurs when a high formality of regular procedures takes

place due to the inefficient structural organization of a community. The RS community smell

typically causes changes to be retarded, as well as a valuable time to be lost due to complex

and rigid formal procedures. The main effect of this smell is an unexpected massive delay

in the decision-making process due to the required formal actions needed Tamburri et al.

(2015a); Rastogi (2016); Tsay, Dabbish & Herbsleb (2014).

• Truck Factor (TF): It occurs in OSS community when most of the project information and

knowledge is concentrated in one or few developers. The presence of this smell eventually

leads to a significant knowledge loss due to the turnover of developers Ferreira et al. (2016);

Avelino et al. (2016a); Sen et al. (2012).

• Unhealthy Interaction (UI): This smell occurs when discussions between developers are

slow, light, brief and/or contains poor conversations. It manifests with low developers

participation in the project discussions (e.g., pull requests, issues, etc.) having long delays

between messages communications Tourani et al. (2014); Mäntylä et al. (2016). Such

unhealthy interactions may impact the project (e.g., increased issues resolution time, pull

request acceptance), and demotivate and burn out developers, which can in turn create

challenges for sustaining the project. This smell also leads to individual contributions or

selfish characteristics of developers within OSS project.

• Unfriendly Communication (UC): This smell occurs when communications between

developers are subject to negative sentiments containing unpleasant, anger or even conflicting

opinions towards various issues that people discuss. Developers in OSS project may have

negative interpersonal interactions with their peers, which express feelings of sadness towards
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a problem. These negative interactions may ultimately result in developers abandoning

projects Raman et al. (2020); Murgia et al. (2018); Ortu et al. (2015b); Tourani et al. (2014).

In this paper, we focus primarily on these smells as they are widely studied and most occurring

in the software industry as well as in open-source projects based on recent studies Tamburri

et al. (2016, 2015a); Palomba et al. (2018b); Ferreira et al. (2016); Almarimi et al. (2020a);

Almarimi, Ouni & Mkaouer (2020b); Almarimi et al. (2021).

4.2.2 Search Based Software Engineering

Recently Search-Based Software Engineering (SBSE) has attracted attention to solving soft-

ware engineering challenges that required a search for near-optimal or optimal solutions

Harman & Jones (2001). SBSE has presented new ways, which transform software engineering

problems from human-based search to machine-based search techniques Harman & Jones (2001);

Harman (2007). Thus, the use of SBSE mainly on heuristics that follow the automated search to

avoid the boring human-in-the-loop search tasks. The main goal of this technique is to formulate

software engineering problems into search problems through define activities of suitable solution

representation, fitness function, and solution change operators. However, the powerfully of this

approach has many of search algorithms involve single to many-objective techniques that can be

used to solve the problem Harman et al. (2012b); Ouni et al. (2016a,b, 2013a,c, 2017, 2012). In

this work, we introduce the community smells detection problem as a SBSE problem. Therefore,

we applied genetic programming (GP) to solve our problem and generate detection rules with

ECC.

4.2.3 Multi-Label Learning

Multi-Label Learning (MLL) is the classification technique that use machine learning approach

to move the problem into multi-class classification problem de Carvalho & Freitas (2009);

Tsoumakas et al. (2010a); Tsoumakas & Katakis (2007); Read et al. (2011). MLL has been

applied in several areas that assigned to multi-label classification problem using machine
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learning and data mining Tsoumakas & Katakis (2007). The existing of the MLL techniques and

algorithms including (i) Classifier Chain (CC) Read et al. (2011), Label Powerset (LP), and the

Binary Relevance (BR) algorithm that used as transformation methods Tsoumakas & Katakis

(2007) (ii) the K-Nearest Neighbors (ML.KNN) algorithm that use as adaptation methods

Zhang & Zhou (2007) (iii) The Ensemble Classifier Chain (ECC) algorithm and RAndom

K-labELset (RAKEL). MLL algorithms has been applied successfully as ensemble methods to

solve different search problems McIlroy et al. (2016); Podgurski et al. (2003); Feng & Chen

(2012); Xia et al. (2014).

The Classifier Chain (CC) model. The CC model combines the computational efficiency of the

BR method while still being able to take the label dependencies into account for classification.

With BR, the classifier chains method involves the training of q single-label binary classifiers

and each one will be solely responsible for classifying a specific label 𝑙1, 𝑙2, ..., 𝑙𝑞. The difference

is that, in CC, these 𝑞 classifiers are linked in a chain {ℎ1 → ℎ2 → ... → ℎ𝑞} through the

feature space. That is, during the learning time, each binary classifier ℎ 𝑗 incorporates the labels

predicted by the previous ℎ1, ..., ℎ 𝑗−1 classifiers as additional information. This is accomplished

using a simple trick: in the training phase, the feature vector 𝑥 for each classifier ℎ 𝑗 is extended

with the binary values of the labels 𝑙1, ..., 𝑙 𝑗−1.

The Ensemble Classifier Chain (ECC) model was introduced to improve the CC model

limitations and solve the problem of random labels and may lead to being poorly ordered.

Furthermore, this issue course an inaccurate detection when one or more beginner’s labels

predict poorly Read et al. (2011). To mitigate the issue mentioned, the ensemble of chains was

applied with a random label order to avoid a negative impact on classification accuracy. The

best solution is selected by a majority voting method. In addition, the approach of ensembles

has been applied successfully in search problems and achieve high predictive performance Read

et al. (2011).

Furthermore, there exists various other traditional classifiers for MLL in the literature including:
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RAndomk-labELsets (RAKEL) transforms multi-label problems into several single-label

problems, and considers label correlations using single-label classifiers that are trained using a

different small random subset of the set of labels Tsoumakas & Katakis (2007).

Binary Relevance (BR) transforms a multi-label problem into multiple binary problems;

for each problem one label, and adopted without considering correlations among the labels

Tsoumakas & Katakis (2007).

Multi-label K-nearest neighbor (ML-KNN) is a multi-label lazy learning algorithm that

identify the label set of the test instance using the maximum a posteriori principle, based on

prior and posterior probabilities for the frequency of each label within the k nearest neighbours

Zhang & Zhou (2007). In this work, we build the ECC method that linked the lack between MLL

and SBSE and applied it to the community smells detection problem, where a single project

may contain several types of community smells with mutual symptoms.

For the binary classifications, the ECC model adopts a search-based approach using genetic

programming (GP) to learn detection rules for each smell type. To gain a deeper understanding,

we present in Figure 4.1 a real word example of SD smell. The SD smell occurs with different

levels of cultural and background diversity within the software development community, and

these variances lead to the division of the community into similar subgroups. This SD smell

could be detected by features such as graph closeness centrality (GCC), graph degree centrality

(GDC), standard deviation of a graph degree centrality in a project (SDD), average number of

comments per issue report (ANCI), ratio of issues with negative sentiments (RINC), Formal

network (FN), The average number of authors per issue report (ANAI), and standard deviation

of authors per issue report (SDAI). Figure 4.1 presents social-technical metrics along with

threshold values. These values can be used as conditions to provide software project managers

with community change recommendations, helping them avoid social debt in their projects.
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Figure 4.1 A real-world example of SD smell.

4.3 Approach

Our approach consists of identifying a set of detection rules to match the symptoms of a

community smell with the actual characteristics of a given software project, rather than relying

on manual effort and human expertise Tamburri et al. (2013). The main goal of our approach is

to infer a set of detection rules for each community smell type while taking into consideration

the dependencies between the different smell types and their interleaving symptoms.

Figure 4.2 presents an overview of our approach to generating community smells detection rules

using the GP-ECC model. Our approach consists of two phases: training phase and detection

phase. In the training phase, our goal is to build an ensemble classifier chain (ECC) model

learned from real-world community smells identified from software projects based on several

GP models for each individual smell. In the detection phase, we apply this model to detect the

proper set of labels (i.e., types of community smells) for new unlabeled data (i.e., a new project).

Our framework takes as inputs a set of software projects with known labels, i.e., community

smells (phase A). Then, extracts a set of features characterizing the considered community

smell types from which a GP algorithm will learn (phase B). Next, an ECC algorithm will

be built (phase C). The ECC algorithm consists of a set of classifier chain models (CC), each

with a random label order. Each CC model, learns ten individual GP models for each of the

ten considered smell types. The 𝑖𝑡ℎ binary GP detector will learn from the training data while

considering the existing 𝑖 already detected smells by the 𝑖 − 1 detected smells generate the
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optimal detection rule that can detect the current 𝑖𝑡ℎ smell. In total, the ECC trains 𝑛 multi-label

CC classifiers 𝐶𝐶1, ..., 𝐶𝐶𝑛; each classifier is given a random chain ordering; each CC builds 10

binary GP models for each smell type. Each binary model uses the previously predicted binary

labels into its feature space. Then, our framework searches for the near optimal GP-ECC model

from these 𝑛 multi-label chain classifiers using an ensemble majority voting schema based on

each label confidence Read et al. (2011).

In the detection phase, the GP-ECC model obtained from the training phase that assigns multiple

labels, i.e., community smells types, to a new project based on its current features, i.e., its

socio-technical characteristics (step C). In the next subsections, we provide the details of each

step.
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Figure 4.2 The community smells detection framework using the GP-ECC model.

4.3.1 Step A : Training data collection

An important step to solving the problem of community smells detection is to prepare the

learning dataset. To build a base of real-world community smell examples that occur in software

projects, we selected a set of software projects which are diverse in nature (e.g., size, application
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domains, etc.) that have experienced community smells. We considered a set of open-source

projects from GitHub to access their development history. The considered filters to collect the

training data are the following:

• Commit size: the projects vary from medium size >10 KLOC, large size (10 − 60) to very

large size < 60 KLOC.

• Community size: the projects team size vary from medium (<100 members), large (100-900),

to very large (> 900).

• Programming language: the selected projects are implemented in different programming

languages, including Java, C#, Python and C.

• Availability of communication channels: the selected projects use (1) pull requests and (2)

issue tracking systems hosted in their GitHub repositories.

• Existence of community smells: the project should contain at least one instance of community

smell.

Table 4.1 Questionnaire filled in by the study participants.

Part 1: Background Information:

1 What is your project name on GitHub ? * [Required Answer]

2 How do you describe your occupation in this project? [Student −Part-time employee − Full-time employee −Unemployed −Retired − Other]

3 How long time you have been working on open source projects? [Less than 3 years −3 years or more −Other]

Part 2: Social aspects perception

4 Do you think there is a lack of communication and cooperation within the development team (share knowledge, experiences, exchange activities, etc.) in your project?

5 Do you think there is a delay in communications between developers in your project?

6 Do you think there is/are developer(s) in your project working on the same code and communicating by means of a third person?

7 Do you think there is/are in your project developer(s) who have selfish and/or egoistical behaviors?

8 Do you think there are different communication and expertise levels that may cause misalignment within the development team in your project?

9 Do you think there are different levels of cultural and experiential backgrounds in the development team?

10 Do you think there is/are isolated subgroup(s) within the development team of your project?

11 Do you think there is in your project a formal and complex organizational structure (with potentially unnecessary “regular procedures")?

12 Do you think there is in your project some unique knowledge and information brokers toward different developers?

13 Do you think there is in your project risk that a core developer can unexpectedly leave the project and can influence the development process?

14 Do you think there is in your project a waste of resources (e.g., time) over the development life-cycle?

To collect our base of examples, the authors checked individually all identified community smells

if they match with the state-of-the-art definitions, characteristics and symptoms. All community
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smell instances that did not reach a full agreement were excluded from our base of examples.

After the manual inspection of potential existence of community smells, we finally ended with

143 from an initial set of 160 projects projects that have diverse types of community smells dat

(2020). As an attempt to validate our identified smells, we conducted a survey with the original

developers of the selected projects to get their feedback by following an opt-in strategy Hunt

et al. (2013) for our survey. While the survey will help us to validate our identified symptoms, it

can also help to understand whether developers are conscious of the presence of such smells in

their projects. We extracted from GitHub the email address of the developers who have acted in

a project at least 30 commit changes during the last 12 months and participated in the project in

the last 3 years. In such a way, we focused only on developers having adequate experience with

the project’s community Sugar (2014). Before we sent the survey’s questions, we first sent an

email asking permission to participate in our study. As a result, we obtained a positive response

from 62 out of 432 developers (14%) who were later contacted with the actual survey. We

received answers from developers of 31 different projects in the dataset, which covered 29.3%

of all considered smells. In our study, we are aware that the different opinions on this survey

may not be necessarily generalized, but this analysis helped us to confirm whether our smells

symptoms analysis match with the participants perception of such smells in their projects.

The survey’s link was sent via email to all participants with a brief introduction. The list

of questions is divided into two main parts as shown in Table 4.1. The first part consists of

three control questions on the project name and background information about the participants

occupation and experience with the project. Then, we asked developers to rate the validity of 11

statements that we extracted from the community smells definitions (cf. Section 4.2) using a

5 point Likert scale Likert (1932) ranging between “Strongly Disagree" to “Strongly Agree".

This part presents typical situations in which community smells occur without mentioning the

term social debt or smells in the questionnaire. To avoid any possible bias in the responses,

we did not ask the developers directly to rate how healthy was their community. For instance,

the statement “Do you think there is a lack of communications and cooperation within the

development team (share knowledge, experiences, exchange activities, etc.) in your project?"
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was aimed at understanding whether developers actually recognize the presence of the symptoms

of an OSD smell in their project. The complete questions list of our survey is presented in

Table 4.1. After collecting the participants answers, we compared their answers with the smell

instances detected manually in our base of examples to make sure that they match. Overall, 8

smells did not match the manual analysis, and therefore we excluded them to avoid potential

noise in our experimental dataset.

4.3.2 Step B: Features Extraction Module

To capture community smells symptoms, we rely on a set of metrics defined in previous studies

Avelino et al. (2016a); Damian A. Tamburri (2016); Tamburri et al. (2019); Nagappan et al.

(2008a); Pinzger et al. (2008a); Nordio et al. (2011), as well as a new set of generated metrics to

capture more community-related proprieties that can be mined from the projects history. These

metrics analyze different aspects in software development communities including organizational

dimensional, social networks characteristics, developers collaborations, and truck numbers.

Table 4.2 depicts our list of considered features. Our proposed metrics extend existing metrics

to provide more details including developers social network, community structures, geographic

dispersion, and developer network formality. For instance, the geographic dispersion metrics,

e.g., the average number of commits per time zone and the standard deviation of developers per

time zone would capture the distribution of commits and developers per time zone. Our features

extraction module calculates the set of metrics from a given project by analyzing its repository

through commit information history available in its version control system, e.g., GitHub. Figure

4.3 depicts an overview of our features extraction module which consists of two main steps to

extract metrics.

Step 1. Mine developers aliases: The author alias mining and consolidation consist of the

following sub-steps Avelino et al. (2016a): (i) retrieval all unique dev-emails, where for each git

commit has a dev-email associated with it, (ii) Retrieval of GitHub logins related to developers,

(iii) similarity matching of emails and logins: by applying Levenshtein distance Avelino et al.

(2016a), all aliases are compared and, with a certain degree of threshold value at most one,
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Figure 4.3 An overview of the features extraction module.

consolidated, and (iv) replacement of author emails by their respective aliases Avelino et al.

(2016a). The final transformation goes through all the commits once again and replacing original

authors with their main alias. As a result, if there is a developer associated with commits with

different names, we consider them as a single developer, and the output will be presented in

a new aliases list. For example, “Bob.Rob" and “Bob Rob" are different names for a single

developer associated with commits. Thus, we consider them as the same developer in a new

aliases list as a single identical substitution.

Step 2. Build a social network graph: Social network analysis (SNA) has been used to study

and analyze the collaboration and communications among developers who are working in teams

within software projects Meneely & Williams (2011b). Our developers social network model is

based on various socio-technical communications during their software project development.

Our approach builds a developer network from the version control system by tracking the change

logs at three levels (1) commits, (2) issues, and (3) pull requests. Our adopted developers

networks are presented as a graph in which nodes represent individual developers and the
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edges are the connections between two developers, when they have participated in the same

issue or in the same pull request. Moreover, our developers social network is augmented by

considering connections between two developers who are working on the same files for which

they make a version control commit within one month of each side Almarimi et al. (2020a).

Such social networks allow the calculation of various communication-based metrics such the

degree centrality, closeness centrality, network density, etc. (cf. Table 4.2).

Step 3. Compute socio-technical and sentiment metrics: In this step, we use the project’s

version control system and the extracted developers social network graph to compute a variety

of socio-technical metrics as described in Table 4.2. Moreover, we considered various sentiment

metrics using the state-of-the-art SentiStrength Thelwall, Buckley & Paltoglou (2012) tool 1,

a widely used tool to estimate the degree of positive and negative sentiments in short texts

Raman et al. (2020); Lin et al. (2018); Guzman et al. (2014); Murgia et al. (2018); Ortu et al.

(2015b). It is a lexical sentiment extraction tool based on a list of words. We used SentiStrenght

to measure the sentiments polarity of developers in commits, issues and pull request comments.

SentiStrength assigns various scores for sentiment two polarizations in the interval [-5,5] as

follows:

• Negative: -1 (slightly negative) to -5 (extremely negative).

• Positive: 1 (slightly positive) to 5 (extremely positive).

Moreover, we used the Stanford’s Politeness detector tool Danescu-Niculescu-Mizil et al.

(2013b); Ribeiro, Singh & Guestrin (2016) to estimate the politeness level in the developers

communications. We also used the Google’s Perspective API AI which scores the perceived

impact that a comment might have on a conversation and identifies whether the comment could

be perceived as toxic to a discussion. Finally, to better capture poor communication symptoms,

we used the LIWC lexicon Tausczik & Pennebaker (2010) that detects anger conversations.

Our full list of socio-technical and sentiment metrics is described in Table 4.2. In particular,

our extended metrics suite can be summarized as follows: we introduced (1) a set of 6 new

1 http://sentistrength.wlv.ac.uk/
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developer’s contribution metrics based on pull requests and issue contributions (cf. developer

contribution metrics in Table 4.2), (2) a set of 5 new communication metrics based on pull

requests and issues discussions (cf. communication metrics in Table 4.2), and (3) a set of 9

sentiment-based metrics (cf. Sentiment Analysis metrics in Table 4.2).
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Table 4.2 Socio-technical metrics framework.
Dimension ID Definition Ref.

Developer

Contributions

metrics

NoD Number of developers (NoD): the total number of developers who have changed the code in a project. Nagappan et al.
(2008a)

NAD Number of Active Days of an author on a project (NAD) : the percentage of the total number of active days for each developer with respect to a project’s lifetime on the total number of developers in

a project.

Nagappan et al.
(2008a)

NCD Number of Commits per Developer in a project (NCD) : the total number of times that the code has been changed by a developer with respect to the total number of commits and the total number of

developers in a project.

Nagappan et al.
(2008a)

SDC Standard Deviation of Commits per developer in a project (SDC) : the standard definition of commits per developer in a project. It provides a view of the distribution of the developers contributions. Nagappan et al.
(2008a)

NCD Number of Core Developers (NCD): the total number of core developers in a project. A developer is considered as a core community member if he/she has a larger degree than peripheral

developers within the developer’s social network.

Tamburri et al.
(2019)

PCD Percentage of Core Developers (PCD): the percentage of core developers with respect to the total number of developers. Tamburri et al.
(2019)

NSD Number of Sponsored Developers (NSD): the total number of sponsored developers in a project. We consider a developer that holds a sponsored status if at least 90% of her/his commits are

performed during weekdays and the working day time (8am-6pm).

Tamburri et al.
(2019)

PSD Percentage of Sponsored Developers (PSD): the percentage of sponsored developers over the total number of developers. Tamburri et al.
(2019)

NPR Total number of Pull Requests (NPR): The total number of pull requests (PR) (closed and open) in a project. New

SAPR Standard deviation of authors per PR (SAPR): Standard deviation of the authors count per PR in a project. New

ANAP Average number of authors per PR (ANAPR): The average number of authors per pull request in a project. New

NIS Number of Issues (NI): The total number of issues in a project. New

SDAI Standard deviation of authors per issue report (SDAI): Standard deviation of authors per issue in a project. New

ANAI The average number of authors per issue report (ANAI): The average number of authors that contribute in issue reports. New

Social

Network

Analysis

metrics

GDC Graph Degree Centrality (GDC): the number of connections that a developer has. The more connections with others a developer has, the more important the developer is. Pinzger et al.
(2008a)

SDD Standard Deviation of a graph Degree centrality in a project (SDD) : the standard deviation of the degree centrality (DC) of each developer in a project. It provides a view of the distribution of DC

in a project.

Tamburri et al.
(2019)

GBC Graph Betweenness Centrality (GBC): a measure of the information flow from one developer to another and devised as a general measure of social network centrality. It represents the degree to

which developers stand between each other. A developer with higher BC would have more control over the community as more information will pass through her/him.

Pinzger et al.
(2008a)

GCC Graph Closeness Centrality (GCC): a measure of the distance between a developer to other developers in the network. This metric is strongly influenced by the degree of connectivity of a network. Pinzger et al.
(2008a)

ND Network Density (ND): a measure of a social network as a dense or sparse graph. Tamburri et al.
(2019)

Community

metrics

NC Number of Communities (NC): the total number of communities in a project. Tamburri et al.
(2019)

ACC Average of Commits per Community (ACC): the average number of commits per community in a project. New

SCC Standard deviation of Commits per Community (SCC): the standard deviation of commits performed by each community with respect to the total number of commits in a project. New

ADC Average number of Developers per Community (ADC): the average number of developers per community in a project with respect to the total number of developers in a project. New

SDC Standard deviation of Developers per Community (SDC): the standard deviation of commits performed by each community with respect to the total number of commits in a project. New

Geographic

Dispersion

metrics

TZ Number of Time Zones (TZ): the total number of different time zones of developers in a project. Nordio et al.
(2011)

ACZ Average of Commits per time Zone (ACZ): the average number of commits per time zone in a project. New

SCZ Standard deviation of Commits per time Zones (SCZ): the standard deviation of commits performed in each time zone with respect to the total number of commits in a project. New

ADZ Average number of Developers per time Zone (ADZ): the average number of developers per time zone in a project. New

SDZ Standard deviation of Developers per time Zones (SDZ): the standard deviation of developers per time zones in a project. New

Formality

metrics

NR Number of Releases in a project (NR): the total number of releases delivered in a project. A. Gopal & S. Kr-

ishnan (2002)

PCR Parentage of Commits per Release (PCR) : the percentage of commits of each release over the total number of releases in a project. New

SCR Standard deviation of Commits per Release (SCR) : the standard deviation of developers per release in a project. New

FN Formal Network (FN): the number of milestones assigned to the project with respect to the lifetime of the project. Damian A. Tam-

burri (2016)

ADPR Average number of days per PR (ADPR) : the average number of days since a pull request is opened and closed in a project. New

ADI Average number of days per issue report (ADI): the average number of days since an issue report is opened and closed in a project. New

Truck Number

and Community

Members metrics

BFN Bus Factor Number (BFN): the percentage of active core developers present in a project with respect to the total number of developers. Cosentino et al.
(2015)

TFN Global Truck Number (GTN): the ratio of non-core developers in a project which can be unexpectedly lost, i.e., hit by a truck before the project is discontinued. Avelino et al.
(2016a)

TFC Truck Factor Coverage (TFC): the percentage of core developers and their associated authored files in a project. Avelino et al.
(2016a)

Communication

metrics

ANCPR Average number of comments per PR (ANCPR): The average number of comments per pull request in a project. New

SCPR Standard deviation of commits per PR (SCPR): Standard deviation of the number of commits per PR in a project. New

NCI Number Comments in issues (NCI): The total number of comments in issues in a project. New

ANCI Average number of comments per issue report (ANCI): The average number of comments found in issues. New

SDCI Standard Deviation of Comments Count per issue report (SDCI): Standard deviation of Comments per issue in a project. New

Sentiment

Analysis

metrics

RTCPR Ratio of toxic comments in PR discussions (RTCPR): Ratio of toxic comments in PRs with respect to the total number of PR comments as per Google’s Perspective API AI. New

RTCI Ratio of toxic comments in issue discussions (RTCI): Ratio of toxic comments in issues with respect to the total number of issue comments as per Google’s Perspective API AI. New

RPCPR Ratio of polite comments in PR discussions (RPCPR): Ratio of politeness in PR comments with respect to the total number of PR comments as per the Stanford’s politeness detector

Danescu-Niculescu-Mizil et al. (2013b).

New

RPCI Ratio of polite comments in issue discussions (RPCI): Ratio of politeness in issue comments with respect to the total number of issue comments as per the Stanford’s politeness detector

Danescu-Niculescu-Mizil et al. (2013b).

New

RINC Ratio of issues with negative sentiments (RINC): The ratio of the number of issues having negative sentiments in the comments over the total number of issues in a project. An issue is considered to

be negative sentiment if the number of comments with negative sentiments is higher than 50% of the total number of comments as per the SentiStrength tool Thelwall et al. (2010).

New

RNSPRC Ratio of negative sentiments in PR comments (RNSPRC): The ratio of the number of PR having negative sentiments in the comments over the total number of PRs in a project. A PR is considered

to be negative sentiment if the number of comments with negative sentiments is higher than 50% of the total number of comments as per the SentiStrength tool Thelwall et al. (2010).

New

RAWPR Ratio of anger words in PR discussions (RAWPR): Ratio of anger words in PR discussions with respect to the total number of words in PR comments as per the LIWC lexicon Tausczik & Pennebaker

(2010).

New

RAWI Ratio of anger words in PR discussions (RAWI): Ratio of anger words in issue discussions with respect to the total number of words in issue comments as per the LIWC lexicon Tausczik & Pennebaker

(2010).

New

ACCL Average Communication Comments Length (ACCL): The average length of comments in the developer’s communication channels (PR communication issues). New
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Algorithm 4.1 High-level pseudo code of the adopted MOGP

1: Create an initial population 𝑃0

2: Create an offspring population 𝑄0

3: 𝑡 = 0

4: while stopping criteria not reached do
5: 𝑅𝑡 = 𝑃𝑡 ∪𝑄𝑡

6: F = fast-non-dominated-sort(𝑅𝑡 )

7: 𝑃𝑡+1 = ∅ 𝑎𝑛𝑑 𝑖 = 1

8: while | 𝑃𝑡+1 | + | 𝐹𝑖 |� 𝑁 do
9: Apply crowding-distance-assignment(𝐹𝑖)

10: 𝑃𝑡+1 = 𝑃𝑡+1 ∪ 𝐹𝑖
11: 𝑖 = 𝑖 + 1

12: end while
13: 𝑆𝑜𝑟𝑡 (𝐹𝑖 , ≺ 𝑛)

14: 𝑃𝑡+1 = 𝑃𝑡+1 ∪ 𝐹𝑖 [𝑁− | 𝑃𝑡+1 |]

15: 𝑄𝑡+1 = create-new-pop(𝑃𝑡+1)

16: t = t+1

17: end while=0

4.3.3 Step C: Genetic Programming-based Ensemble Classifier Chain (GP-ECC)

As explained earlier in Sections 3.3.2 and 4.2.3, our approach is based on the ECC method Read

et al. (2011) that transforms the multi-label learning task into multiple single-label learning tasks.

Our multi-label ECC model aims at building a detection model to detect different instances of

community smells in a software project. Each classifier chain (CC) builds a GP model for each

smell type while considering the previously detected smells (if any), i.e., each binary GP model

uses the previously predicted binary labels into its feature space. Our choice for GP is motivated

by the high performance of GP in solving challenging software engineering problems including

design defects, code smells and anti-patterns detection Kessentini & Ouni (2017); Ouni et al.

(2017); Ouni et al. (2013b, 2015).

In our approach, we adopted Multi-objective Genetic Programming (MOGP) as a search

algorithm to generate smells detection rules. MOGP is a powerful and widely used evolutionary

algorithm that extends the generic model of GP learning to the space of programs. Unlike

other evolutionary search algorithms, in MOGP, solutions are themselves programs following a
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tree-like representation instead of fixed-length linear string formed from a limited alphabet of

symbols John R. Koza (1992).

As described in Algorithm 4.1, MOGP starts by randomly creating an initial population 𝑃0

of individuals encoded using a specific representation (line 1). Then, a child population 𝑄0

is generated from the population of parents 𝑃0 (line 2) using genetic operators (crossover

and mutation). Both populations are merged into an initial population 𝑅0 of size 𝑁 (line 5).

Fast-non-dominated-sort Deb et al. (2002) is the technique used by MOGP to classify individual

solutions into different dominance levels (line 6) Deb et al. (2002). The whole population

that contains 𝑁 individuals (solutions) is sorted using the dominance principle into several

fronts (line 6). Solutions on the first Pareto-front 𝐹0 get assigned dominance level of 0. Then,

after taking these solutions out, fast-non-dominated-sort calculates the Pareto-front 𝐹1 of the

remaining population; solutions on this second front get assigned dominance level of 1, and so

on. Fronts are added successively until the parent population 𝑃𝑡+1 is filled with 𝑁 solutions (line

8). When MOGP has to cut off a front 𝐹𝑖 and select a subset of individual solutions with the

same dominance level, it relies on the crowding distance Deb et al. (2002) to make the selection

(line 9). This parameter is used to promote diversity within the population. The front 𝐹𝑖 to be

split, is sorted in descending order (line 13), and the first (N- |𝑃𝑡+1 |) elements of 𝐹𝑖 are chosen

(line 14). Then, a new population 𝑄𝑡+1 is created using selection, crossover and mutation (line

15). This process will be repeated until reaching the last iteration according to stop criteria (line

4).

We describe in the following subsections the three main adaptation steps: solution representation,

the generation of the initial generation, fitness function, and change operators.

(i) Solution representation. A solution consists of a rule that can detect a specific type of

community smells in the form of IF-THEN:

In MOGP, a solution is represented as a tree composed of terminals and functions. The terminals

correspond to different socio-technical specific features (cf. Table 4.2) with their threshold

values. The functions that can be used between these metrics are logic operators OR (union),
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AND (intersection), or XOR (eXclusive OR). A solution is represented as a binary tree such

that: each leaf-node (Terminal) contains one of the metrics described in Table 4.2 and their

corresponding threshold values generated randomly. Each internal-node (Functions) belongs to

the Connective (logic operators) set 𝐶 = {𝐴𝑁𝐷,𝑂𝑅, 𝑋𝑂𝑅}. The threshold values are selected

randomly along with the comparison and logic operators. Figure 4.4 shows a simplified example

of a solution for the OSE smell using the metrics GDC, ADC, GBC and SDZ.

Figure 4.4 A simplified example of a solution for OSE smell.

(ii) Generation of the initial population. The initial population of solutions is generated

randomly by assigning a variety of metrics and their thresholds to the set of different nodes of

the tree. The size of a solution, i.e., the tree’s length, is randomly chosen between lower and

upper bound values. These two bounds have been determined and called the problem of bloat

control in GP, where the goal is to identify the tree size limits. Thus, we applied several trial

and error experiments using the HyperVolume (HP) performance indicator Angeline (1994) to

determine the upper bound after which, the sign remains invariant.

(iii) Fitness function. The fitness function evaluates how good is a candidate solution in

detecting community smells. Thus, to evaluate the fitness of each solution, we use two objective

functions, based on two well-known metrics Kessentini & Ouni (2017); Ouni et al. (2017);

Harman & Clark (2004), to be optimized, i.e., precision and recall. The precision objective
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function aims at maximizing the detection of correct community smells over the list of detected

ones. The recall objective function aims at maximizing the coverage of expected community

smells from the base of examples over the actual list of detected smells. Precision and recall of a

solution 𝑆 are defined as follows.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑆) =
|{Detected smells} ∩ {Expected smells}|

|{Detected smells}|
(4.1)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆) =
|{Detected smells} ∩ {Expected smells}|

|{Expected smells}|
(4.2)

(iv) Change operators. Crossover and mutation are used as change operators to evolve candidate

solutions towards optimality.

Crossover. We adopt the “standard" random, single-point crossover. It selects two parent

solutions at random, then picks a sub-tree on each one. Then, the crossover operator swaps

the nodes and their relative subtrees from one parent to the other. Each child thus combines

information from both parents. Figure 4.5 shows a simplified example of a crossover change

operator.

Mutation: It can be applied either to a function node or a terminal node. This operator can

modify one or many nodes. For a selected solution, the mutation operator first randomly selects

a node in the tree. Then, if the selected node is a terminal (metric), it is replaced by another

terminal (metric or another threshold value); if the selected node is a function (AND-OR-XOR

operators), it is replaced by a new function (e.g., AND becomes OR). If a tree mutation is to be

carried out, the node and its sub-tree are replaced by a new randomly generated sub-tree. Figure

4.6 shows a simplified example of a mutation change operator.

ECC majority voting. As shown in Figure 4.2, for each CC, MOGP will generate an optimal

rule for each community smell type, i.e., binary detection. Then, ECC allows finding the best

CC that provides the best MLL from all the trained binary models. Each 𝐶𝐶𝑖 model is likely
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OR TFN <= 22

ND <= 0.17 BC >= 0.01

AND

Offsprings

Parents

AND RSD <= 58.52

TFP >= 19.82 TFN <= 22

ANDP1 P2

ORTFN <= 22

ND <= 0.17 BC >= 0.01

AND

AND RSD <= 58.52

TFP >= 19.82 TFN <= 22

ANDC1 C2

Figure 4.5 A simplified example of a crossover operator.

to be unique and able to achieve different multi-label classifications. These classifications are

summed by label so that each label receives a number of votes. A threshold is used to select

the most popular labels which form the final predicted multi-label set. This is a generic voting

scheme and it is straightforward to apply an ensemble of any MLL transformation method Read

et al. (2011).
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OR TFN <= 22

ND <= 0.17 BC >= 0.01

AND

Parent

P1

TFN <= 22

AND

AND

TFP >= 19.82

C1

Offsprings

BC >= 0.01

Mutated nodes

Figure 4.6 A simplified example of a mutation operator.

4.3.4 Step D : Detection Phase

After the GP-ECC model is constructed, in the training phase, it will be then used to detect a set

of labels for a new project. It takes as input the set of features extracted from a given project
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using the feature extraction module. As output, it returns the detection results for each individual

label, i.e., community smell type.

4.4 Empirical Evaluation

This section reports our empirical study to evaluate our extended approach eGP-ECC. We first

define our research questions, then we describe our experiments setup and explain and discuss

the obtained results.

4.4.1 Research Questions

We designed our empirical study to answer the four following research questions.

• RQ1: (Performance) How accurately can our GP-ECC approach detect community smells?

• RQ2: (Sensitivity) What types of community smells does our GP-ECC approach detect

correctly?

• RQ3: (Impact of the new sentiment and communication metrics) Can the sentiment and

communication-based metrics improve the performance of community smells detection?

• RQ4: (Features influence) What are the most influential features that can indicate the

presence of community smells?

4.4.2 Analysis method

To evaluate our approach, we collected a set of community smells as discussed in Section

4.3.1. Table 4.3 summarizes the collected smells. Furthermore, as a sanity check, all smells

were manually inspected and validated based on guidelines from the literature. Moreover, we

conducted a survey with the original developers to help us to validate our identified symptoms.

Furthermore, our dataset is available online for future extension and replication dat (2020).

We considered ten common types of community smells, i.e., organisational silo effect (OSE),

black-cloud effect (BCE), prima-donnas effect (PDE), sharing villainy (SV), organisational

skirmish (OS), solution defiance (SD), radio silence (RS), truck factor (TF), unhealthy interaction
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(UI), and Unfriendly Communication (UC), (cf. Section 4.2). In our experiments, we conducted

a 10-fold cross-validation procedure to split our data into training data and evaluation data.

Table 4.3 Dataset statistics.

Data Statistic

Number of projects 143

Number of projects having at least one smell 143

Total number of smells 696

Median number of smells per project 4

Median number of developers per project 42

Number of projects with <50 developers 82

Number of projects with 50 − 150 developers 46

Number of projects with >150 developers 15

Median number of commits per project 1035

Median number of issues per project 246.5

Median number of pull requests per project 371

Median number of days in each project 118.15

Number of projects written in Python 38

Number of projects written in Java 42

Number of projects written in Javascript 24

Number of projects written in C/C++/C# 26

Number of projects written in HTML/PHP/Ruby 13

To answer RQ1, we carry out a set of experiments to justify our eGP-ECC approach. We first

compare the performance of our meta-algorithm ECC to two well-known meta-algorithms with

proven success in MLL, random k-labelset (RAKEL) Tsoumakas & Katakis (2007) and binary

relevance (BR) Tsoumakas & Katakis (2007). We next used GP, decision tree (J48) and random

forest (RF) as their corresponding underlying classification algorithms. We also compared

with the widely used MLL algorithm adaptation method, K-Nearest Neighbors (ML.KNN)

Zhang & Zhou (2007). Thus, in total, we have 10 MLL algorithms to be compared. One fold is

used for the test and 9 folds for the training.

To compare the performance of each method, we use common performance metrics, i.e.,

precision, recall, and F-measure Read et al. (2011); Ouni et al. (2017); Kessentini & Ouni

(2017); Xia et al. (2014). Let 𝑙 a label in the label set 𝐿. For each instance 𝑖 in the smells

learning dataset, there are four outcomes, True Positive (𝑇𝑃𝑙) when 𝑖 is detected as label 𝑙 and it

correctly belongs to 𝑙; False Positive (𝐹𝑃𝑙) when 𝑖 is detected as label 𝑙 and it actually does not
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belong to 𝑙; False Negative (𝐹𝑁𝑙) when 𝑖 is not detected as label 𝑙 when it actually belongs to

𝑙; or True Negative (𝑇𝑁𝑙) when 𝑖 is not detected as label 𝑙 and it actually does not belong to 𝑙.

Based on these possible outcomes, precision (𝑃𝑙), recall (𝑅𝑙) and F-measure (𝐹𝑙) for label 𝑙 are

defined as follows:

𝑃𝑙 =
𝑇𝑃𝑙

𝑇𝑃𝑙 + 𝐹𝑃𝑙
; 𝑅𝑙 =

𝑇𝑃𝑙

𝑇𝑃𝑙 + 𝐹𝑁𝑙
; 𝐹𝑙 =

2 × 𝑃𝑙 × 𝑅𝑙

𝑃𝑙 + 𝑅𝑙

Then, the average precision, recall, and F-measure of the | 𝐿 | labels are calculated as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

| 𝐿 |

∑

𝑙∈𝐿

𝑃𝑙 ; 𝑅𝑒𝑐𝑎𝑙𝑙 =
1

| 𝐿 |

∑

𝑙∈𝐿

𝑅𝑙 ; 𝐹1 =
1

| 𝐿 |

∑

𝑙∈𝐿

𝐹𝑙

Statistical test methods. To compare the performance of each method, we perform Wilcoxon

pairwise comparisons Cohen (2013) at 99% significance level (i.e., 𝛼 = 0.01) to compare

eGP-ECC with each of the 9 other methods. We also used the non-parametric effect Cliff’s delta

(𝑑) Cliff (1993) to compute the effect size. The effect size 𝑑 is interpreted as follows:

• Negligible if | 𝑑 |< 0.147

• Small if 0.147 ≤| 𝑑 |< 0.33

• Medium if 0.33 ≤| 𝑑 |< 0.474

• High if | 𝑑 |≥ 0.474

To answer RQ2, we investigated the efficiency of our eGP-ECC approach in detecting the

different community smell types to find out whether there is a bias towards the detection of

specific smell types. We use both precision and recall measures for each considered community

smell in our study.

To answer RQ3, we aim at assessing the usefulness of our improved set of features that consists of

(1) a set of 6 new developer’s contribution metrics based on pull request and issue contributions
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(cf. developer contribution metrics in Table 4.2), (2) a set of 5 new communication metrics

based on pull requests and issues discussions (cf. communication metrics in Table 4.2), and (3)

a set of 9 sentiment-based metrics (cf. sentiment analysis metrics in Table 4.2).

We hypothesize that extending our metrics suite allows to better capture the community smells

properties along with extending the feature space for our eGP-ECC. We measure the smells

detection performance, with and without the set of newly introduced metrics.

To answer RQ4, we aim at identifying the features that are the most important indicators of

whether a project has a given community smell or not. For each smell type, we count the

percentage of rules in which the feature appears across all obtained optimal rules by GP. The

more a feature appears in the set of optimal trees, the more the feature is relevant to characterize

that smell.

Algorithms parameters. For all the GP, RF and J48 algorithms, the maximum depth of the tree

is set to 10. For GP, the population size is 200, number of iterations is 3,000, crossover and

mutation rates are 0.9 and 0.1, respectively. For RF and J48, we used the default parameters of

Weka. The number of neighbors of ML.KNN is set to 10. For ECC, we set the ensembles size

𝑛 = 20. For RAKEL, we set 𝑛 = 20, and the labels subset 𝑘 = 4.

4.4.3 Results

This section reports and discusses our experimental results for each research question.

Results for RQ1 (Performance)

Table 4.4 reports the average precision, recall and F-measure scores for the 10 methods being

compared. we observe that the meta-algorithm ECC outperforms the other 2 meta algorithms

RAKEL and BR. Looking at the base learning methods (GP, J48 and RF), we used GP-ECC

as the base for assessing statistical significance with each of the other methods. In particular,

the GP-ECC method clearely achieved the highest F-measure with 0.93 as compared to the

other methods with medium and large effect sizes, except with GP-RAKEL for which the F1
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effect sizes were small. The same performance was achieved in terms of precision and recall,

with 0.93 and 0.94, respectively. Moreover, we observe that GP-ECC achieves comparable

performance as GP-RAKEL in terms of recall (with negligible effect size) which confirms the

suitability of the GP formulation compared to decision tree and random forest algorithms. As

for the binary relevance (BR) meta-classifier, we can also see overall superiority for GP-ECC

compared to it in terms of precision, recall and F-measure with large effect size. BR is known to

be a straightforward multi-label classification technique Tsoumakas & Katakis (2007), which

decomposes the problem into a set of single-label multi-class problems. This simple method,

however, totally neglects the potential dependencies among multiple labels, i.e., community smell

symptoms. In practice, the various community smells typically have interleaving characteristics

and symptoms. For example, the Organizational Silo Effect (OSE) smell typically shares various

socio-technical characteristics with the Solution Defiance (DF) smell which manifests in the

form of independent subgroups in their development team social network due to the variance

in their cultural and experience levels. Hence, the ECC and RAKEL meta-classifiers clearly

outperform BR as they exploit the labels correlation along with an ensemble of classifiers to

improve the detection performance. Moreover, among the 3 base learning algorithms, GP

performs the best, followed by decision tree (J48) and random forest (RF).

Finally, the multi-label k nearest neighbor method (ML.KNN) turns out to be the wort method

in terms of precision (0.84), recall (0.85) and F-measure (0.84). LkNN is not competitive with

the other meta-classifiers, ECC, RAKEL and BR mainly due to the inadequacy of modeling

label dependency. These findings advocate for the importance of leveraging multi-label learning

with label dependency for the problem of community smells detection.

Results for RQ2 (Sensitivity) Figure 4 reports the sensitivity analysis for considered interleaving

community smells. The figure shows the results for each specific community smell type, and

overall we found that our approach is relatively stable across the different types of community

smells. Overall, eGP-ECC achieved good performance and low variability in terms of both

precision (ranging from 89% to 96%) and recall (ranging from 89% to 97%) across the 10

considered smell types. The highest precision and recall was obtained for the truck factor (TF)
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Table 4.4 The achieved results by each of the

meta-algorithms ECC, RAKEL and BR with their base

learning algorithms GP, J48, and RF; and ML.KNN.

Algorithm
Precision Recall F1

score p-value (d)* score p-value (d)* score p-value (d)*

GP-ECC 0.87 - 0.91 - 0.89 -

J48-ECC 0.84 <0.01 (M) 0.89 <0.01 (S) 0.86 <0.01 (M)

RF-ECC 0.84 <0.01 (M) 0.87 <0.01 (M) 0.85 <0.01 (M)

GP-RAKEL 0.85 <0.01 (S) 0.91 No. Stat. Sig. 0.88 <0.01 (S)

J48-RAKEL 0.83 <0.01 (L) 0.88 <0.01 (M) 0.85 <0.01 (L)

RF-RAKEL 0.84 <0.01 (M) 0.86 <0.01 (M) 0.85 <0.01 (M)

GP-BR 0.83 <0.01 (L) 0.85 <0.01 (M) 0.84 <0.01 (L)

J48-BR 0.81 <0.01 (L) 0.82 <0.01 (M) 0.81 <0.01 (L)

RF-BR 0.82 <0.01 (L) 0.82 <0.01 (L) 0.82 <0.01 (L)

ML.KNN 0.82 <0.01 (L) 0.84 <0.01 (L) 0.83 <0.01 (L)

* p-value(d) reports the statistical difference (p-value) and

effect-size (d) between GP-ECC and the algorithm in the

current row.

The effect-size (d) is N : Negligible − S : Small − M :

Medium − L : Large

and the organizational silo effect (OSE), which heavily relies on the notion of developers social

network and sub-groups. This higher performance is reasonable since the existing guidelines

Tamburri et al. (2021); Ferreira et al. (2016); Tamburri et al. (2016, 2015a, 2019c); Raman et al.

(2020); Murgia et al. (2018); Ortu et al. (2015b); Tourani et al. (2014) rely heavily on the notion

of social network and sentiments polarity analysis. However, for smells such as sharing villainy

(SV) and solution defiance (SD), the notion of social network is less important and this makes

this type of smell harder to detect using such information.

To get a more qualitative sense, we present in Table 4.5 three examples from our experiments that

cover various community smell types. Looking for instance at the tensorflow/ranking project,

we observe that this project is affected by three community smells, namely the organizational

silo effect (OSE), Black-cloud Effect (BCE), and Prima-donnas Effect (PDE). In particular,

the project has been developed in a time window that starts on December 3, 2018 as a first

commit until August 8, 2020 with a lifetime of 624 active days involving 20 developers when

we analyzed it. Firstly, the key differentiating attributes for the OSE smell include 1) the low
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degree centrality of the social network having a score of 0.25, which means that the immediate

possibility that a developer can smoothly capture information through the project is low, 2) a low

total number of sponsored developers (8 sponsored developers) which is typically correlated with

low attractiveness and health of an Open-Source community as pointed out by prior research

Tamburri et al. (2019); Fenton & Bieman (2019). Secondly, the BCE smell is characterized

by 1) a low betweenness centrality oof 0.07, which is associated with additional occurrences

of BCE smell as suggested by Tamburri et al. Tamburri et al. (2019), 2) a low social network

density score of 0.38, which classifies the social network as a sparse graph indicating low

communications between developers. 3) the subdivision of community members into 3 different

sub-communities within the project which typically results into isolated communications among

developers Tamburri et al. (2019). Thirdly, the identification pattern of the PDE smell is

alsoo based on the existence of isolated sub-communities that have a lack of cooperation and

communication in a project. The main community measures that characterize this smell include

1) a low closeness centrality having a low value of 0.13 which indicates the average number

of steps that information has to take in order to reach every other node belonging to the social

network, 2) a high number of time zones, with a value of 9, which increases the number of

different levels of cultural and backgrounds in the development team.

Looking at the organizational structure of the google/tangent project (Table 4.5), we observe

that it is affected by three community smells, the Organizational Skirmish (OS), Truck Factor

(TF), and Unhealthy Interaction (UI). In particular, the project has been developed in a time

window that starts on November 1, 2017 as a first commit until August 8, 2018 with a life time

of 280 active days involving 15 developers when we analyzed it. The OS smell is measured

by the modularity of the community based on the number of community sub-groups. This

project has 3 communities with high standard deviation of commits per community (SCC) of

36.66 and a low average number of developers per community (ADC) of 5, and a high standard

deviation of commits per time zone (SCZ) of 15.49 which indicates a misalignment between

different expertise levels and communication channels between developers. On the other side,

the TF smell manifests in the form of few developers having high density in the developers
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social network. Indeed, we observe in this project that 5 developers have a coverage percentage

of 45.19% which indicates that the project’s information and knowledge are concentrated in

few developers. Furthermore, a few comments in issues and pull requests channels lead to low

developers participation in the project discussions and lead to UI smell, whereas average number

of comments per PR (ANCPR) 1.27, and average number of comments per issue report (ANCI)

2.63.

We also observe that the Microsoft/BotFramework-Composer project experiences various

instances of community smells including the Black-cloud Effect (BCE), Sharing Villainy (SV),

Solution Defiance (SD), and Radio Silence (RS). In particular, the project has been developed

in a time window that started from February 13, 2019 to July 10, 2020 with a life time of 512

active days involving 78 developers when we analyzed it. The BCE smell is characterized by

1) a low betweenness centrality of 0.01, which represents the degree to which developers (i.e.,

nodes in the social network) stand between each other, and 2) a low closeness centrality of 0.12

that indicates the low connectivity of the developers social network. Furthermore, the main side

effect of the sharing villainy (SV) smell is the limited opportunity for developers (face to face)

meetings to share knowledge and meaningful experiences which manifests in this project by a

total number of 78 developers (NoD), and 13 time zones (TZ) making synchronous developers

communication hard. Furthermore, the high number of time zones presents different levels of

cultural and experience background which increases the probability of having the SD smell.

Table 4.5 Examples of projects and their related community smells.

Project Name OSE BCE PDE SV OS SD RS TF UI UC

Tensorflow/ranking � � �

Google/tangent � � �

Microsoft /BotFramework-Composer � � � � �

Regarding in sentiments analysis, figures 4.8, 4.9, 4.10, 4.11 present examples from our dataset

to show negative sentiments in open-source projects.

Results for RQ3 (Impact of the new sentiment and communication metrics) To better

understand the impact of the sentiments polarity analysis and the improved social network
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Figure 4.7 The achieved precision and recall scores by eGP-ECC for each community

smell type.

incorporating both pull requests and issue tracking communications into our eGP-ECC model,

we compare our approach with (eGP-ECC) and without (GP-ECC Almarimi et al. (2020a)) the

metrics (cf. Table 4.2).

Figure 4.12 shows the results of both eGP-ECC and GP-ECC approaches for each community

smell type, based on the detection performance in terms of precision and recall. Looking at the

precision results from Figure 4.12-(a), we clearly observe that eGP-ECC achieves 92.9% which

represents a significant improvement over GP-ECC achieving 79.7% for the ten considered

community smell types. Similar finding are also observed in terms of recall from Figure 4.12-(b)

where eGP-ECC and GP-ECC achieved 93.6%, and 81.6%, respectively. In particular, for

the Black-cloud Effect (BCE) smell, the new communication and sentiment polarity metrics

improved the detection precision from 83% (without the new metrics) to 94% (with the new

metrics). We can also see a clear improvement in terms of the detection precision of eGP-ECC

over GP-ECC for the Prima-donnas Effect (PDE), Solution Defiance (SD), Unhealthy Interaction

(UI) and Unfriendly Communication (UC) smells. Indeed, in these particular community smells,

the developer’s social network and the quality of communications play an important role where
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negative emotions or poor interactions may hinder developers from expressing themselves or

may make them uncooperative when contributing in a project.

The obtained results provide more evidence on the importance of considering the analysis

of various sources of communications among developers as well as the valuable knowledge

embodied in the content of these communications to gain better understanding on the developers

cooperative behaviors and quality of interactions.

To provide better understanding and get a more qualitative sense of the sentiments and emotions

analysis, we report some illustrative examples from our dataset. Figure 4.8 shows developer

comment that expresses sadness feeling from the IntelLabs/nlp-architect project, where

the collaborator feels guilty towards the work. Furthermore, using the SentiStrength tool,

the results show that this developer comment has negative sentiments (-1). We also observe

in Figure 4.9 a comment that expresses a feeling of dissatisfaction towards work from the

android/android-test project. The comment in Figure 4.10 is also extracted from the

android/android-test project and expresses negative emotion (emotional tone 25.8). A

negative tone below 50 indicated a more negative emotional tone based on LIWC tool analysis.

Hence, the dominance of such negative emotions may hinder the productivity of developers and

the quality of the project. Finally, the example in Figure 4.11 was selected from the Eclipse

project, showing that brief comments with negative emotions may lead to poor communication

practices among developers, and that is likely to make people leave a discussion.

Figure 4.8 Sadness comment sentiments as an example.
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Figure 4.9 Anger comment sentiments as an example.

Figure 4.10 Negative emotion comment as an example.

Figure 4.11 Brief comment as an example.
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a) Precision b) Recall

Figure 4.12 The achieved precision and recall results by eGP-ECC (with the new metrics)

and GP-ECC (without the new metrics).

2

Results for RQ4 (Features influence)

To better understand what features are most selected by our eGP-ECC classifier to generate

detection rules among all the generated rules, we count for each feature the percentage of optimal

rules in which it appears. Our analysis is based on the assumption that the more a feature appears

in the generated non-dominated smells detection rules, the more the feature is important for the

detection of the corresponding smell Saidani, Ouni, Chouchen & Mkaouer (2020); Almarimi

et al. (2020a); Saidani, Ouni & Mkaouer (2022).

Table 4.6 shows the statistics for each smell type with the top-20 features (cf. Table 4.2). We

observe different community smell types have different influential features while sharing some

other similar features.

For all the considered community smell types, we observe that the developers social network

related metrics including the graph betweeness, closeness and degree centrality (GBC, GCC, and

GDC) and the ratio the network density (ND) are the most influential in various community smell

types such as the Organizational Silo Effect (OSE), Black-cloud Effect (BCE), the Organizational

Skirmish (OS) and the Truck Factor (TF). Moreover, we observe that sentiment analysis related
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metrics such as the ratio of issues with negative sentiments (RINC), the ratio of toxic comments

in PR discussions (RTCPR), the ratio of anger words in PR discussions (RAWI) and the ratio of

polite comments in PR discussions (RPCPR) are the most influential in various community smell

types such as the Toxic Communication (TC), Solution Defiance (SD), Unhealthy Interaction

(UI) and the Organizational Skirmish (OS). Furthermore, we also see from Table 4.6 that several

direct communication and developer contribution metrics such the average number of authors

per issue (ANA), the average number of comments per pull request (ANCPR), the standard

deviation of developers per community and per time zone (SDC and SDZ) as well as the number

of communities (NC) are influential in the vast majority of the community smell types.

These results indicate that different social network patterns, politeness, and anger related related

aspects play a crucial role in the emergence of community smells. These findings suggest that

more attention has to be paid to these particular socio-organizational characteristics within the

software project community to avoid the presence of smells and their impact on the software

project which may help software development communities to maintain healthy, productive and

sustainable environment among the project participants.
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4.5 Threats to validity

Threats to construct validity could be related to the performance measures. We basically used

standard performance metrics such as precision, recall and F-measure that are widely accepted in

MLL and software engineering. Read et al. (2011); Ouni et al. (2017); Kessentini & Ouni (2017);

Xia et al. (2014); Ouni et al. (2013b). Therefore, We believe there is little threat to construct

validity. Moreover, threats to construct validity could be linked to the generalizability of our

experimental results. To address this threat, we have followed guidelines from the literature

Tamburri et al. (2021, 2016, 2015a, 2013b) to construct an oracle of 143 open-source software

systems hosted on GitHub. Moreover, the selection of these active projects was driven by two

factors. First, we focused on communities having at least 10 contributors and 60 commits

performed in their history to properly observe the community smells. Secondly, we aimed

at studying systems that are active to mitigate threats due to outdated issues. However, other

projects can be considered to further explore different contexts. Moreover we manually validated

each community smell instance while excluding all smell instances for which there no agreement

from the individual authors. We also attempted to mitigate this threat to validity by conducting

a survey with the original developers to make sure whether the observed symptoms correctly

match with the developers perception. While this validation makes us confident of the reliability

of our smell instances in our dataset, there could still be errors that we did not notice. Moreover,

we believe it is important to further test the validity of the studied community smells as an

appropriate conceptual framework for OSS and extend the specific the study to collect more

developer perceptions of their communities.

Related to our survey instrument, there is potential that the survey may influence the replies

from the respondents. To address this issue, we made sure to ask for free-form responses and

we publicly share our survey and all of our anonymized survey responses. On the other side,

developer’s aliases can also be a potential threat. This does not exclude possible errors when

combining developer aliases could lead to erroneous combinations. Another potential threat

could be related to the selection of classification techniques. Although we use the GP, J48
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and RF techniques which are known to have high performance, there are other techniques. To

mitigate this threat, we plan to compare with other MLL techniques.

Threats to internal validity relate to errors in our experiments. We have double checked our

experiments and the datasets collected following the literature guidelines and a survey with

developers Tamburri et al. (2021, 2016, 2015a, 2013b). Indeed, toxicity and sentiment analysis

are hard to capture and may involve subjective judgment. To avoid this issue, we used common

sentiment analysis tools such as Google’s Perspective API AI, Stanford’s Politeness detector tool,

Danescu-Niculescu-Mizil et al. (2013b), LIWC lexicon Tausczik & Pennebaker (2010), and the

SentiStrength tool Thelwall et al. (2012) that have been recently used in software engineering

Raman et al. (2020); Lin et al. (2018); Guzman et al. (2014); Murgia et al. (2018); Ortu et al.

(2015b); Ribeiro et al. (2016). We also used widely acknowledged techniques and tools to

collect our metric suite based on . While these tools are reliable and widely used still there

could be errors in estimating sentiments that we did not notice. Moreover, our study is limited to

commits messages pull request, and issue discussions on GitHub. It does not include other forms

of communication, such as forums, mailing lists, or face-to-face interactions. To mitigate this

issue, we plan to consider other developers communication platforms such as Slack, Discord,

etc., mailing lists and other issue tracking systems such JIRA.

Threats to external validity relate to the generalizability of our results. All of our findings were

derived from open source projects hosted on GitHub. To minimize the threat to external validity,

we chose open source projects from different domains. Furthermore, we chose the projects as a

sample of the universe of OSS with different characteristics (i.e., commit size, community size,

programming languages, availability of communication channels such Pull Requests and issues

discussions).Since there could be a large number of valid projects, we must select a convenient

sample to be studied, given the required manual inspection to identify existing smells. While we

considered four different known organizations such as Microsoft projects (53 projects), Google

(16 projects), Tensorflow (16 projects), and Eclipse (12 projects), we also considered other

random projects from different organizations (46 projects). The majority of the projects selected

in this study showed high levels of corporate engagement so our results may not generalize to
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other OSS or commercial. However, we do not claim the generalizability of our results, and

we consider the validity of our results limited to the contexts of the studied projects. Future

replications of our analysis on other projects and organizations are needed.

4.6 Chapter Summary

We introduced in this paper eGP-ECC, an automated approach to detect community smells

in software projects. We formulate the problem as a multi-label learning problem using the

ECC meta-algorithm with an underlying GP model. Our eGP-ECC method aims at generating

detection rules for each smell type. We use GP to translate regularities and symptoms that can

be found in real-world community smell examples into detection rules. A detection rule is a

combination of socio-technical attributes/symptoms with their appropriate threshold values to

detect various types of community smells. We evaluated our approach on a set of 143 projects

and 696 smell instances across 10 common types of community smells. Results show that our

eGP-ECC approach can identify all the considered community smell types with an average

F-measure of 93% and outperforms 9 state-of-the-art MLL techniques that rely on different

meta-algorithms (ECC, BR and RAKEL) and different underlying learning algorithms (GP, J48,

and RF); and a transformation method ML.KNN. Moreover, we conducted a deep analysis to

investigate the symptoms, i.e., features, that are the best indicators of community smells. We

find that the standard deviation of the number of developers per time zone and per community,

and the social network betweenness, closeness and density centrality and the ratio of issues with

negative sentiments, the ratio of toxic comments, anger words and polite comments in PR and

issue discussions are the most influential characteristics.

In future work, we plan to extend our approach with more open-source and industrial projects to

provide ampler empirical evaluation. We plan also to extend our approach to provide software

project managers with community change recommendations to avoid social debt in their projects.

We also plan to assess the impact of community smells on different aspects of software quality

and evolution.





CHAPTER 5

DISCUSSION AND LESSONS LEARNED

5.1 Discussion

Our research addresses key research contributions related to community smells detection using

the csDetector approach. Our machine learning-based method employing C4.5 demonstrates

exceptional performance, achieving an average accuracy of 96.9% and an AUC of 0.94 in

detecting community smells. csDetector tool surpasses two recent state-of-the-art techniques,

Code-Face4smell and Truck Factor, exhibiting a high detection accuracy ranging from 94%

to 98% for eight considered community smells. Additionally, our approach identifies five

highly influential metrics, including the Ratio of commits per time zone, Ratio of developers

per time zone, Ratio of developers per community, social graph betweenness centrality, and

social graph closeness centrality, serving as robust indicators of community smells. Moreover,

the introduction of new metrics significantly enhances the detection performance for specific

community smell types while maintaining consistent performance for others. Finally, the

sensitivity analysis reveals the stability of our models, with a median sensitivity to influential

data instances at a low 1.15%. Overall, our findings underscore the effectiveness and robustness

of the csDetector approach in advancing community smells detection methodologies.

For further investigate the challenges associated with the detection of community smells, we

conducted an empirical study . Specifically, we focused on the issue of interleaving organizational

and social symptoms that serve as indicators of community smell instances within a software

project. To address this, we propose an automated technique for detecting community smells in

software projects. We formulate the problem as a multi-label learning (MLL) problem to handle

the interleaving symptoms of existing community smells, generating multiple smell detection

rules capable of detecting various types of community smells. We utilize the ensemble classifier

chain (ECC) technique, which transforms the detection task of multiple smell types into several

binary classification problems for each individual smell type. Our study demonstrates that the

proposed technique achieves an average F-measure of 89% in detecting the eight considered
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smell types. These findings contribute to the improvement and adaptation of the community

smells detection problem, thereby assisting in ensuring the quality and success of software

projects.

To enable the early detection of potential instances of poor community management during the

software development life cycle, efficient and automated techniques are essential. In our study,

we conduct an empirical study using a benchmark comprising 143 open-source projects from

GitHub. We enhance an existing framework for detecting community smells by integrating

multiple data sources, including social network analysis, sentiment analysis, pull requests, and

issue discussions. Our framework demonstrates its potential benefits in a real-life scenario by

soliciting feedback from software engineering practitioners regarding the community smells

observed in their projects. Our findings indicate that the proposed approach successfully

identifies the ten considered community smell types with an average F-measure of 93%.

5.2 Lessons Learned

Importance of Community Structures: Understanding the social and organizational dynamics

within open-source communities is crucial for successful software development, emphasizing

the fundamental role of social structures alongside technical aspects. The rapid evolution

of software projects involving diverse stakeholders brings challenges in maintaining quality

and functionality, highlighting the vital need for continuous attention to the socio-managerial

structure of the project. Poor organizational and social practices manifest as community smells,

causing social debt and potentially impacting projects negatively. Early identification and

resolution of these issues are paramount. Our research showcases the feasibility of automated

machine learning-based approaches, such as csDetector, for efficient community smell detection,

offering personalized models adaptable to specific project contexts and improving detection

accuracy. Moreover, our approach identified key community-related metrics, including social

network graph analysis, developer features, truck factor features, and geographic dispersion

features. Furthermore, our contribution to the research community by providing a publicly
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accessible dataset fosters collaboration and advances research in community smells and social

debt within software engineering.

Automated Detection Challenges: Community smells detection requires automated approaches

but defining detection rules and handling overlapping symptoms stance challenges. In addressing

the challenges of automated community smells detection, our research employs advanced

techniques to navigate complexities. Recognizing the intricate nature of community smells, we

formulate the problem as a Multi-Label Learning (MLL) issue, allowing simultaneous detection

of multiple smell types. The innovative use of Ensemble Classifier Chain (ECC) technique

enhances the classification process by leveraging previously identified labels, showcasing the

importance of ensemble methods in tackling intricate detection tasks. Genetic Programming (GP)

becomes instrumental in generating optimal detection rules from real-world instances, translating

patterns from community smell examples into effective rules. Through a comprehensive

empirical study involving 103 software projects, our research validates the GP-ECC approach,

demonstrating an average F-measure of 89% and outperforming state-of-the-art Single- and

Multi-Label Learning techniques.

Role of Communication Channels: The effective detection of community smells necessitates

a meticulous analysis of diverse communication channels among developers, encompassing

sentiment analysis, pull requests, and issue discussions. Our research goes beyond conven-

tional metrics, integrating a detailed examination of developers’ communication avenues. By

constructing a social network grounded in discussions from issues and pull requests, coupled

with sentiments and emotions analysis, our study delves deep into the social dimensions of

open-source projects, offering profound insights into developer interactions and enriching the

comprehension of community smells. This comprehensive communication analysis identifies

specific socio-technical attributes and communication metrics as influential indicators of com-

munity smells. Moreover, our research underscores the significance of continuous adaptation

in detection methods. By expanding the study to incorporate additional community smell

types, integrating new communication channels, enriching the metrics suite, and updating the

dataset, our approach ensures the relevancy and adaptability of detection techniques to evolving
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project dynamics. A robust experimental setup, including the introduction of new community

smells, expanded social network analysis, and incorporation of features from sentiments analysis,

enhances the depth and accuracy of your experiments, highlighting the importance of meticulous

experimental design and dataset preparation in software engineering research. Furthermore, our

work demonstrates the value of a comprehensive literature review, encompassing various aspects

of community smells, open-source projects’ health, and sentiments analysis. This thorough

review not only informs our research but also aids in understanding the existing knowledge

landscape, identifying research gaps, and situating our contributions within the broader context

of related studies.



CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion and Findings

The primary objective of this thesis is exploring and detecting community smells in software

development, as well as propose approaches to aid developers and managers for the early

detection of potential community smells in a software project. In this chapter, we provide

a summary of the thesis by outlining the main work and contributions made in each chapter.

Furthermore, we discuss future research directions concerning community smells detection

within the software engineering domain.

The three chapters of this thesis collectively contribute to the overarching goal of exploring and

detecting community smells in software development, with a focus on aiding early detection in

software projects. Chapter 3 initiates the exploration by conducting a qualitative analysis of 74

open-source projects on GitHub, unveiling various organizational and social symptoms indicative

of potential community smells. This lays the foundation for Chapter 4, where an empirical study

is conducted to delve deeper into the challenges associated with detecting community smells.

The proposed automated technique, formulated as a multi-label learning (MLL) problem and

utilizing ensemble classifier chain (ECC) technique, demonstrates substantial success in detecting

different types of community smells. Chapter 5 builds upon these findings, emphasizing the

importance of efficient and automated techniques for early detection. The empirical study in this

chapter, incorporates multiple data sources and new common communication channels including

pull requests, issues reports, and sentiment analysis to further refine the community smells

detection framework. The enhanced framework, validated on a benchmark of 143 open-source

projects, showcases significant improvement with an average F-measure of 93% in identifying

ten community smell types. Collectively, these chapters offer a comprehensive progression from

initial exploration and understanding of community smells to advanced automated detection

techniques. The discussions and insights from each chapter feed into the overarching narrative



134

of advancing community smells detection within the software engineering domain. Looking

forward, the research paves the way for future investigations and refinements in the field of

community smells detection, contributing to the ongoing improvement of software project

management.

6.2 Future Work

While this Ph.D. work has made significant contributions to understanding the problem of

detecting community smells in software development, there are still numerous unexplored

avenues for future research. In the following, we outline some of the main directions for future

work.

Enhancing the detection of community smells in open source projects platforms:

In addition to our main findings in this thesis, we believe that the techniques proposed for

detecting community smells from GitHub can be further extended in future research to enhance

and facilitate the investigation of other phenomena on open-source project platforms. Replicating

and adapting our work on other open-source platforms would allow for the generalization of our

approaches and results, benefiting a broader range of developers. To support such future work,

we have provided detailed technical implementations of our experiments and approaches within

this thesis. Furthermore, we have published our data and scripts to facilitate future replications.

Replication in an industrial setting:

The results presented in this thesis explore and address the challenges associated with the

detection of community smells. However, it is important to note that these results are based

on the analysis of open-source projects exclusively. While we have made every effort to select

representative and large open-source project platforms such as GitHub, and utilized appropriate

data analysis techniques to mitigate threats to internal validity, we believe that software project



135

managers need to understand how these community smells impact the quality of their projects.

Conducting future research that investigates and studies the impact of community smells in an

industrial setting would allow us to generalize our results further.

Investigation the relation between community smells and a software quality:

The work of this thesis focused on understanding the problem of community smell detection

in open-source projects. We believe that there are additional challenges that extend beyond

maintaining software quality and functionality, impacting the socio-managerial structure of the

project. Hence, several researchers and practitioners have highlighted the criticality of evolving

organizational aspects to prevent decay and, consequently, software project failures. In future

work, we plan to assess the impact of community smells on various aspects of software projects,

including code smells and continuous integration (CI).

Investigation the interactions in software engineering:

In this thesis, we propose approaches and techniques to detect and identify interactions

between developers in open-source projects. Future research should investigate and characterize

interactions in various aspects of software engineering. As a software product encompasses

different stages like design, development, deployment, and maintenance, and involves specific

roles such as programmers, systems analysts, and project managers, it is essential to distinguish

between these roles and investigate the affect-related metrics for each group separately. Doing

so can lead to more precise findings. By analyzing their interactions, we can determine which

types of interactions contribute to a more positive working environment.
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