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FOREWORD

Looking back six years ago, I wanted to expand my technical knowledge of intelligent machines.

Reading articles and papers about evolving software on my own got me so far (not very far).

This pushed me to want a more structured learning path. Thus began my journey to what ended

up with the thesis you are about to read. At the time, I was finishing my bachelor’s degree

part-time and already had a job in information technology. How hard would it be to take a few

more courses then draft a thesis part-time? I did not think it would take me six years. As I

imagine most newly graduate students who wish to pursue a master’s degree, I was full of hopes

and dreams, going about “artificial intelligence” and “self-modifying code”. I had so little idea

of what I was talking about that every professor I met dismissed me, telling me it was not in

their field of research. Until I met Prof. Patrick Cardinal. He told me the same thing but was

open learn along with me on this journey if we found someone to guide us. This led me to

meet Prof. Nawwaf Kharma, who was able to enlighten me on the strengths (and limitations)

of Genetic Programming and understand how it could help me automate certain parts of my

software development projects. I spent the first two years completing the required courses during

my evenings and learning about Genetic Algorithms, their strengths, and limitations. I ended up

traveling to Vienna, Austria, for a week with my wife and nine months old daughter to present

an application paper about playing iterated Rock-Paper-Scissors with a Genetic Algorithm. It

was a blast.

As the dream of completing my master’s degree in three years was getting crushed slowly but

surely, life continued and kept making it more difficult. I had a second child and decided to

buy a house that would require more than a few weeks of full-time renovations. Meanwhile,

Prof. Kharma continued to provide me with insightful ideas on how to build better Genetic

Programming algorithms and led me to explore other fields such as biology, with a quick stop

at the revolutionary (upcoming) programming language String, which unfortunately did not

make it into this research. We decided to converge on fundamental concepts of evolvability and

robustness, two forces that drive any evolutionary system. This is the main topic covered in this

thesis.
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Mesures améliorées de robustesse et d’évolutivité pour les systèmes évolutifs

Rémi BÉDARD-COUTURE

RÉSUMÉ

Cette recherche passe en revue les définitions existantes de l’évolutivité et de la robustesse et

introduit de nouvelles mesures de référence qui remédient aux inconvénients des définitions

largement utilisées. Ces nouvelles mesures sont appliquées à une variété de systèmes et de

problèmes afin de démontrer leur polyvalence et leur facilité d’utilisation, y compris une nouvelle

approche de modélisation simple (BNK). Cette nouvelle approche de modélisation est similaire

au système NK mais présente l’avantage de fournir à la fois un génotype et un phénotype. Elle

est utilisée pour démontrer la facilité d’évolution d’un circuit oscillatoire à l’aide de différentes

configurations de système et leur robustesse à la perturbation de l’état, tout en examinant la

relation entre la complexité du système et la multimodalité résultante de sa surface de fitness. En

outre, les mesures existantes sont comparées aux mesures proposées utilisant le repliement de

séquences d’ARN pour évaluer leur capacité respective à capturer l’évolutivité et la robustesse.

En outre, une démonstration de l’application des nouvelles mesures aux variantes linéaires

de la programmation génétique est également fournie comme preuve concrète de leur facilité

d’utilisation.

Mots-clés: Évolutivité, Robustesse, Modélisation des Systèmes, Algorithmes Évolutionnaires,

Systèmes Oscillants, Paysages Multimodaux





Improved Measures of Robustness and Evolvability for Evolutionary Systems

Rémi BÉDARD-COUTURE

ABSTRACT

This research reviews existing definitions of evolvability and robustness and introduces new

baseline measures that addresses the drawbacks of the widely used definitions. These new

measures are applied to a variety of systems and problems to demonstrate their versatility

and ease of use, including a new and simple modeling approach (BNK). This new modelling

approach is similar to NK System but with the advantage of providing both a genotype and a

phenotype. It is used to demonstrate the ease of evolving oscillatory circuit using different system

configurations and their robustness to state perturbation, while also reviewing the relationship

between the complexity of the system and the resulting multi-modality of its fitness surface.

Furthermore, the existing measures are compared with the proposed measures using RNA

sequence folding to assess their respective ability to capture evolvability and robustness. In

addition, a demonstration of application of the new measures to linear variants of Genetic

Programming is also provided as concrete evidence of their ease of use.

Keywords: Evolvability, Robustness, Modelling Systems, Evolutionary Algorithms, Oscillating

Systems, Multi-modal Landscapes
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INTRODUCTION

Life of any system, rather be it a living organism or a machine, is driven by a goal of survival,

often through reproduction mechanisms. This process is also prone to the environment in

which life must evolve, and sustained by two major forces: evolvability and robustness. These

concepts have been the subject of multiple studies in various fields of science such as biology

and computer science.

Evolutionary systems are described with a genotype and a phenotype. A genotype is the

complete sequence of genes (or alleles) describing the characteristics of the system. It is a

developmental program, which at the conclusion of several phases of development, results in an

(adult) phenotype. A phenotype is a description of the characteristics of the resulting system,

built from the genotype.

One of the most common definitions of evolvability is the ability of an organism to adapt to a

change in its environment, aiming to improve its fitness. This can be translated into the ease

with which a system, represented by a genotype and phenotype, can reach a desired phenotype

through mutation of its genotype. As for robustness, the widely accepted definition is the ability

to maintain a given state despite perturbations. For example, keeping the same time for running a

marathon under different temperatures is a form of robustness. When applied to an evolutionary

system, this is done by ensuring that phenotype (or fitness) does not change despite changes in

the genotype or the environment. The definitions will be further elaborated later in this research.

In the pursuit of building better evolutionary systems came the need to understand what are

evolvability and robustness and how they can be measured. Accurate measurement is critical to

provide sensible information about the underlying features of a system. It is important that these

measures are versatile enough to be applied to a wide range of evolutionary systems, ensuring a

collective understanding, and that they are easy to apply, facilitating adoption.
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Given the literature review in Chapter 1, it is clear that a unified definition of evolvability and

robustness is lacking from the scientific research community. This makes it hard to compare

experimental results accurately, and it creates a gap between domains that would otherwise

benefit from each other’s advances. The goal of the present research is to provide unified

definitions of evolvability and robustness, along with a framework that allow their measurement.

General applicability can be demonstrated by applying these new measures to both biology and

computer science problems. The results of this research should serve as a foundation for future

studies of the evolvability and robustness of existing or future programming languages, and

hopefully facilitate the development of better evolutionary systems, whether for computing or

other domains.

In the following chapters will be presented: a review of the essential work revolving around

evolvability and robustness, precise definitions of existing and improved measures, and finally a

wide range of applications to understand how evolvability and robustness interact in evolutionary

systems. The main contributions of this research are the improved baseline measures of

robustness and evolvability and a novel modeling approach allowing to explore fitness landscapes

of systems with a phenotype, along with example applications that exhibit the value of both the

measures and the modeling approach. These should help close the gap in some of the open

issues (like the choice of representation and problem hardness) of evolutionary algorithms by

providing an efficient measurement mechanism.

All concepts explained in this research aim to provide comprehensive information, assuming the

reader has no or little prior knowledge of the covered areas. However, a basic understanding of

Genetic Algorithm is recommended. Some foundational books are mentioned in the review of

the literature, which may be of help to readers that wish to perfect their understanding of the

related concepts.



CHAPTER 1

LITERATURE REVIEW

This chapter will review the essential literature supporting the main topics explored in this

research. First, an overview of the foundational literature of genetic programming (GP), including

derived algorithms used in the experimentation, followed by a review of the definitions of

evolvability and robustness.

1.1 Genetic Programming

In short, genetic programming is a genetic algorithm where the population is made of executable

code. It was pioneered mostly by Koza, starting with his first book Koza (1992), where he

covers all the essential components of tree-based GP e.g. representation, initialization, fitness,

genetic operators, and demonstrates its application using the LISP language on a wide variety of

problems. Banzhaf, Nordin, Keller & Francone (1998) is another book that builds upon Koza

(1992) and goes deeper into the influence of biology on the inception of GP and also on the

underlying mathematical aspects such as the importance of randomness in evolutionary search.

However, interested readers are advised to follow the navigation guide presented in the preface

to keep their focus on essential material and avoid getting lost in unnecessary details.

Although the fundamental principles of GP are language agnostic, the examples given by Koza

and Banzhaf can seem a bit outdated. For reference, LISP is currently ranked 35 on the TIOBE

index (Tiobe.com (2000)), down from its second position in 1987. McPhee, Poli & Langdon

(2008) is another book that synthesize all the aspects of both tree-based GP and other types of

genetic programming such as linear, graph and probabilistic genetic programming. It also gives

a modern perspective on its applications, and includes an implementation of TinyGP in Java.

For a broader view of existing evolutionary computing techniques, readers are referred to Eiben,

Smith et al. (2003).

Not only to mention books, there is also a multitude of papers related to GP. Following

the publication of Koza (1992), the research community was quick to explore additional
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applications to different representations and systems. The first work on LGP (Linear Genetic

Programming) first appeared in Nordin, Banzhaf et al. (1995), as the authors demonstrated

noticeable performance improvements by manipulating machine code directly. Although the

paper never mentions LGP, the manipulation of a (linear) machine register is the premise that

gave rise to it. A modern implementation of LGP can be found in Simson & Mayo (2017),

where the author makes an important remark about the construct of LGP:

A linear approach lends itself to programs which have two unique attributes: a
graph-based functional structure and the existence of non-effective instructions

In the same manner, what came to be known as CGP (Cartesian Genetic Programming) originated

from Teller & Veloso (1996); a GP system with a tailored function set that is designed for

signal processing. This system is made of directed graphs of nodes with a limited number of

edges, and the authors argue that this representation allows for the evolution of more complex

programs, given the additional recursion and branching possibilities. Later came the official

CGP terminology in Miller et al. (1999), further detailed by Miller & Harding (2009), where

the representation uses strings of integers as the genotype, and does not only focus on signal

processing, but opens the door to a wide variety of applications. This simplicity also makes

it easier to apply standard genetic operators rather than needing to implement custom-made

unusual operators, such as the “SMART” operators of PADO (Parallel Algorithm Discovery and

Orchestration) in Teller & Veloso (1996).

Grammatical Evolution (GE), first published in Ryan, Collins & Neill (1998), is remarkably

similar to standard GP using tree representation, but leverages a set of grammar rules (Backus

Naur Form) to decode the genotype into a function tree. A GE genotype is a string of bytes

that can vary in length, like GP trees can grow and shrink. The grammar follows a sequence of

interpretation, and the selection of the grammar rule for each byte is obtained by calculating the

modulo of the byte value with the number of rules in the grammar. To increase the likelihood of

generating valid expression trees, GE allows wrapping of the genotype, meaning that it can be

repeated a certain number of times in the hope to fill an incomplete expression tree. With GE,
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there is no validity enforcement of the generated individuals, leading to useless evaluations in

the population.

Gene Expression Programming (GEP), introduced in Ferreira (2001), is another kind of GP

algorithm which uses fixed length strings to represent expression trees. The genotype is made of

multiple chromosomes that all have the same length. Although quite similar to standard GP,

GEP pushes its inspiration from biology to take concepts from molecular structures such as

proteins. The genotype has noncoding regions (genes that do not affect the behaviour of the

system), and each chromosome is divided in two sections (a head and a tail). The head needs at

least one function, and the tail is made of only terminals. The genotype is parsed from left to

right, constructing the expression tree by filling each function node with the next nodes found

in the genome. This often results in part of the genome being unused. The author shows a

significant improvement in terms of efficiency compared to standard GP, unfortunately it lacks

comparison with more recent GP variants.

There exist other types of evolutionary computation (EC) algorithms, more or less inspired

from GP, such as Multi Expression Programming (MEP) from Oltean & Dumitrescu (2002)

and Genetic Algorithm for Deriving Software (GADS) from Paterson (2003), but an extensive

review of all existing GP techniques is beyond the scope of this research, which focuses on more

fundamental features that are measures of evolvability and robustness. The algorithms leveraged

in this research are further detailed in Chapter 5.

With these emerging representations, the research community started to develop frameworks

that would facilitate the exploration and comparison of various evolutionary systems. Brameier,

Kantschik, Dittrich & Banzhaf (1998) proposed a framework, namely SYSGP, that would allow

researchers to experiment with GP, by combining various representations and even testing new

ones. It is unclear if SYSGP was ever made available to the public, however researchers now

have access to multiple Evolutionary Computation frameworks such as DEAP (Distributed

Evolutionary Algorithms in Python) from Fortin, De Rainville, Gardner, Parizeau & Gagné

(2012) and ECJ (Evolutionary Computing in Java) from Luke (1998). Both became popular
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amongst the GP community and provide multiple evolutionary algorithms (EAs) and benchmarks

ready to use. ECJ will be leveraged for the experiments presented in this research since it

comes with more variants of GP. ECJ also comes with extensive documentation, Luke (2010),

which makes it easy to extend the framework and develop new evolutionary algorithms. Beyond

comparison between EAs, comparing with other machine learning (ML) algorithms, such as

Artificial Neural Networks (ANN), is not trivial due to their differing approach and underlying

learning processes, but when done right can provide valuable assessment of the potential of GP.

One example of such assessment can be found in Tackett (1994).

There is also interest by the GP community in understanding the importance of behavioural (or

semantic) phenotype diversity within a population. Vanneschi, Castelli & Silva (2014) review

a few approaches to increasing behavioural diversity, such as new methods of initialization

or specialized genetic operators. Although the reported results are encouraging, the authors

highlight certain drawbacks, which are mostly related to computational efficiency.

Even though GP research has continued to develop over the years, its adoption has not been as

fast as other ML techniques such as ANNs. A comprehensive review of the domain is presented

in O’Neill, Vanneschi, Gustafson & Banzhaf (2010), where the authors detail open issues in GP.

All GP systems have a common approach to search space exploration. For computer manipulation

of the structure, the solution needs to be encoded in a linear structure no matter how the phenotype

looks like. So, the burden of designing a new representation hinges on one question: How should

the algorithm interpret the series of numbers (or characters) that is the genotype? Answering

this question leads to a visual representation of the solution and also dictates constraints to

enforce when generating a new solution.

1.2 Evolvability, robustness and validity

The concepts of evolvability and robustness have been used in different contexts, but with

inconsistent definitions. In order to effectively measure those concepts, harmonizing their
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definitions is mandatory. In this section, a review of the existing definitions found in the literature

will be conducted and refined definitions will be proposed in Chapter 2.

1.2.1 Evolvability

Alberch credited Dawkins (Dawkins (2019)) with the first use of the term Evolvability, which

was meant to describe the ability of a particular group to spawn evolutionary radiations (Pigliucci

(2008)). This gradually came to mean the number of different phenotypes that are accessible

from a given genotype, via mutation.

Evolvability is often used as a synonym to evolution and used as per Darwin’s definition of natural

selection, such as the definition in Koza (1992), Banzhaf et al. (1998) and Wagner & Altenberg

(1996). Adaptation or adaptability are also terms that are used to denote evolvability (Tackett

(1994)). Some authors do not even feel the need to define evolution, like McPhee et al. (2008),

and it is fair to assume they referred to the Darwinian definition too. In this context, natural

selection applied to EAs is a direct function of fitness evaluation, and thus is entirely dependant

on the algorithm’s phenotype representation. Wagner & Altenberg (1996) highlight the problem

of representation and the implication of evolvability being driven by the choice of genetic

operators, by comparing the genotype-phenotype map in evolutionary biology and the same

map in EA.

Altenberg et al. (1994) take a very mathematical approach to GP evolvability by analyzing the

frequency of Automatically Defined Functions (ADFs) and their impact on the fitness of the

offspring. It is based on the concept of a transmission function that maps the probabilities of the

algorithm’s genetic operators to the distribution of solutions in the neighborhood of the parent

solution. In this research, evolvability is defined as the ability of a given set of solutions to

produce fitter variants. This work is expanded in Smith, Husbands & O’Shea (2002), in which

the measure of evolvability is used to assess the fitness landscape of a problem. Although their

results present a clear view of the benefits of this measure, their applications were limited to
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theoretical problems, and would be quite inefficient if applied to benchmark problems (e.g., the

artificial ant) due to the amount of sampling required.

In 2005, an empirical study was reported in Reisinger, Stanley & Miikkulainen (2005) as an

attempt to measure evolvability, which in this context was defined as the ability of a representation

to learn the underlying factors of a fitness function. A distinction is made between the latent

evolvability of the representation and the evolvability acquired through training with a changing

fitness function. They experiment with this idea by training a population on an adaptive

fitness function, then evaluating it against different targets, measuring how quickly the trained

population can reach each test case. An important conclusion from their experiments is that the

use of behavioral phenotype encoding increases the evolvability of a system. This approach for

assessing evolvability is subject to a few hyper-parameters (e.g., the length of the training phase),

which need further investigation to understand how they should be tuned for different problems.

One of the most notable papers on both evolvability and robustness is Wagner (2008). The

concept of evolvability is broken into genotype and phenotype evolvability. In his paper, the

author argues that evolvability and robustness are negatively correlated in genotype space but

positively correlated in phenotype space, for both genotypic and phenotypic spaces. This

contrasts with the more common assumption that evolvability and robustness are opposing forces.

Wagner defines evolvability as the number of mutations it takes for a fit individual to become fit

again in a new environment. More specifically, the measure of genotype evolvability is defined

as the number of different phenotypes found in the first neighborhood (individuals linked by a

single gene mutation) of the genotype and the measure of phenotype evolvability is defined as

the number of different phenotypes found in the first neighborhood of a phenotype. This paper

describes clear measures of evolvability and demonstrates their application with ribonucleic

acid (RNA) sequence folding. A key limitation of these measures is that they are limited to

the first neighborhood, which limits their ability to assess the evolvability of representations

whose fitness may well benefit from more than one mutation. These definitions have become

well-known and often used as-is or as inspiration for measuring evolvability. They will be further

reviewed in Section 2.4.1.
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Another paper explored the Darwinian notion of evolvability through the application of Probably

Approximately Correct (PAC) Learning Model, first described in Valiant (1984). The approach

described in Valiant (2009) models the individuals as hypotheses bounded by polynomial

functions, evaluated against a distribution of the target function. The experimentation is done

only with multi-argument boolean functions (conjunctions and parity), under the rationale that it

is similar to circuits found in living organisms. The conclusions are open-ended, as only one

of two experiments showed positive results. More investigation is needed to understand what

makes a structure evolvable in PAC.

More recently, evolvability has been associated to the engineering process of manufacturing in

Calcott (2014). Using the discipline of software engineering as an analogy, this paper exposes

all major studied concepts related to evolvability such as neutrality and modularity, as well as

more novel concepts of evolvability such as interfaces, while highlighting how they appear in

engineering and how evolvability differs from the notion of adaptationism. Although evolvability

is the core concept of this paper, the author does not define the concept in detail, but rather make

a few references to it as the capacity of a system to facilitate variations.

Following from Wagner (2008), Wagner and Hu continued to explore the relationships between

evolvability and robustness, at the genotypic and phenotypic levels, and also at the fitness level,

in Hu & Banzhaf (2018). This paper generalizes the definition of evolvability as the ability to

generate novel and adaptive phenotypes. Although the textual definition may be a bit generic,

the refined measures bring depth to the concept. The measure for genotype evolvability is the

same as previously defined in Wagner (2008), but the measure for phenotype evolvability has

been adapted to account for their specific experimentation, which leverages a fully connected

graph of all the possible genotypes, linked by single gene mutation (they differ by a single

gene). Although it provides more information, this is only possible due to the small search space

used in their example. Phenotype evolvability is measured as the distribution of single-point

mutations that map to another phenotype. The experimentation is done using LGP on a simple

boolean circuit, allowing the algorithm to exhaustively explore the whole genotype space. There

is a need for a different method to measure evolvability and robustness in EAs using more
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complex representations. The results shown in Hu & Banzhaf (2018) support the hypothesis

that evolvability and robustness are collaborative forces of evolution. This study suffers from the

same issue that the original measures of Wagner (2008) suffered from; it only considers the first

neighborhood. The authors make an interesting suggestion for future research: that evolvability

and robustness could be measured using a probabilistic method such as Markov Chain analysis.

This could have the potential to mitigate the tedious process of empirical analysis for each

problem.

More recently, Mayer & Hansen (2017) refuted Wagner’s suggestion that phenotype evolvability

and robustness are positively correlated. They defined a mathematical approach leveraging

boolean matrices to represent the genotype-phenotype mapping, allowing them to conduct

advanced analysis of the neighborhoods. First, they explore the first neighborhood (using

single point mutation) with controlled boolean genotype and phenotype structures, then explore

higher neighborhoods through increasingly complex 𝐺 → 𝑃 map, pointing out that Wagner’s

definitions are not sufficient as they depend on single random mutation:

An inherent assumption in Wagner’s definitions is that evolvability depends on

finding a single random phenotype through a single random mutation. This stands

in sharp contrast to the traditional neo-Darwinian view of adaptations being built

sequentially through many contingent steps.

Although providing a sound theoretical framework for assessing evolvability and robustness,

the authors had to limit their experimentation to small genotype of only six genes due to

computational constraints, which may indicate that this technique is not well suited for larger

scale applications.

1.2.2 Robustness

De Visser et al. (De Visser et al. (2003)) defines robustness as the invariance of phenotypes in

the face of perturbation. Obviously, perturbations may be environmental in nature (e.g., change



11

in temperature), and may be responded to via mechanisms of stabilization (e.g., gene regulation).

However, perturbation is often taken to mean genetic mutation.

As evolvability can be tied to the exploration of the search space, robustness is often seen as

akin to exploitation, or the ability to keep the same phenotype after a change in the genotype.

There are not as many publications on evolutionary robustness. One good paper on this topic

is Wagner (2008). Not only does it provide a good perspective on evolvability, as reviewed in

Section 1.2.1, but it also details its relationship with robustness. The author defines robustness

of a system as its ability to accept mutation without changing its phenotype. As part of his

experimentation, the proposed measures of robustness are also defined for both the genotype

and the phenotype of a system. The measure of genotype robustness is defined as the number

of genotypes that have the same phenotype in the first neighborhood of a given genotype, and

the measure of phenotype robustness is defined as the number of genotypes that have the same

phenotype in the first neighborhood of all genotypes of a given phenotype. In addition to the

remarks made on this paper in Section 1.2.1, it is to be noted that this definition of phenotype

robustness implies the ability to map a phenotype back to all its genotypes. In the case of RNA,

there exist inverse folders that can find sequences (genotypes) for a given secondary structure

(phenotype), but for most evolutionary problems, it is not possible to find all the genotypes that

map to a phenotype. One could sample the genotype space and group all the genotypes with

the same phenotype together, however this does not guarantee an accurate representation of the

phenotype space.

There are also mentions of concepts that are associated to robustness in Calcott (2014), notably

the notion of neutrality. In this context, neutrality is a genotypic change that has no impact on

the phenotype, but renders the genotype able to attain further phenotypic changes more easily.

The author describes neutrality as an inherent feature of the phenotype encoding, meaning that

the choice of encoding has a direct impact on the robustness of a system.

Similarly, in Schulte, Fry, Fast, Weimer & Forrest (2014), neutrality is studied in the form of

mutational robustness applied to software engineering. In this paper, robustness is defined as
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the ability of a system to maintain its functional behaviour across different environments. This

study reports inherent mutational robustness of computer programs, both with syntax trees and

assembly representations, by inducing random mutations and assessing the functional behaviour

of the mutated programs against a test suite. Mutational robustness is measured as the fraction

of mutated programs that continue to pass all the tests. Unfortunately, there is no perfect way

to assess the effectiveness of a test suite, but the authors have mitigated this issue by carefully

selecting problems with established test cases.

Coming back to Hu & Banzhaf (2018), which can be seen as a continuation of Wagner

(2008), robustness is textually defined loosely as the resilience to constant perturbations of an

evolutionary system. The measures of genotype and phenotype robustness are the same as

originally defined in Wagner (2008). The authors experiment with a small scale LGP system

using boolean functions, allowing them to build then entire genotype-phenotype map. The

results presented for this application suggest that phenotype robustness is strong when exploring

the first neighborhood, since most phenotype are overrepresented in the genotype-phenotype

map.

Many researchers refer to robustness and evolvability as opposing forces. By definition, opposing

forces would mean that they are trying to take over the other. A better qualification would be

complementary, as even with or without correlation as they are always present in evolutionary

systems.

1.2.3 Validity

There is also the notion of validity when programming is involved. It has been left out of this

review since most, if not all, GP algorithms have mechanisms that ensure that every source

code is executable. It is important to acknowledge that enforcing validity has the benefit of

directly yielding working solutions (although not always fit or useful) by restricting the search

space. However, restricting the search space has the effect of potentially discarding evolutionary

shortcuts to ideal solutions.
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The next chapter will provide detailed definitions of all concepts needed to understand and use

the existing measures of robustness and evolvability. Improved measures will be introduced

to address the drawbacks of the existing ones, with a direct comparison of both existing and

improved measures. The methodology used throughout the experiments of this thesis, based on

an EA, will also be described.





CHAPTER 2

MEASURES OF EVOLVABILITY AND ROBUSTNESS

The measures of evolvability and robustness defined by Wagner in Wagner (2008) were innovative

in the sense that they proposed a standard definition for any evolutionary system. However, their

definitions are limited to a small fraction of the search space and do not capture the performance

of applied genetic algorithms due to the nature of the changes induced by their genetic operators.

In this chapter, it will be demonstrated how their definitions can be generalized to expand

the coverage of the search space and propose new measures to address the weaknesses of the

classical definitions.

2.1 Conventions and definitions

Before getting into the detailed measures, some common terms can be defined that will be used

throughout the rest of this thesis.

𝑔 ≡ genotype of an individual

𝑝 ≡ phenotype of an individual

𝑓 ≡ fitness of an individual

𝐺 ≡ set of genotypes in the population

𝑃 ≡ set of phenotypes in the population

𝐹 ≡ set of fitness in the population

𝐷 ≡ the distance between two members of a set

Additionally, sizes of sets such as 𝐺 and 𝑃 are denoted by preceding it with # (e.g., #𝐺).

Members of sets may have a prime (′) or subscripts, usually to denote another member of the set

(e.g., 𝑔′), and the distance function 𝐷 is often specified with subscript to distinguish between

genotype (𝐷𝑔) and phenotype (𝐷𝑝) distances. The inequality symbol appended as a subscript to

a set denotation ({𝑥, 𝑦, 𝑧}≠) means that the set contains only distinct elements. Inherent to EAs,
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the mappings between genotype, phenotype and fitness are also relevant.

Γ(𝑔) → 𝑝 ≡ genotype to phenotype mapping

Φ(𝑔) → 𝑓 ≡ genotype to fitness mapping

Φ(𝑝) → 𝑓 ≡ phenotype to fitness mapping

2.2 Importance of using the right distance measure

For every GA, the choice of genotype and phenotype representation plays a significant role in

its performance. Choosing the right representation is not easy and should consider constraints

relevant to the problem to solve. Additionally, the choice of genetic operators will also dictate

how the algorithm can explore the search space and exploit the areas of interest (potential

solutions). Mutation and crossover are the two most common types of genetic operators, and

each can be realized in multiples ways (e.g., single point mutation, uniform mutation, 1-point

crossover, 2-points crossover). With that in mind, the representation and genetic operators that

act on it should allow for precise measurement of the distance between any two individuals’

genotype or phenotype. This brings the question of how to measure the distance between two

individuals. The Hamming distance is a good way to measure changes in character strings,

especially with GAs where the genotype is represented by its ordered genes as a character string

of fixed length. Levenshtein distance (Levenshtein et al. (1966)), or commonly known as edit

distance, should also be considered if the genetic operators allow for insertion and deletion of

genes. The distance between numerical values can be measured using the mean squared error,

and the distance between binary strings can be measured using the bitwise exclusive or operator

(⊕). Many other distance measures can be devised depending on the genotype-phenotype

mapping and the context of the genetic operators, such as real, integer or other types employed

in the representation of individuals.
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2.2.1 Genotype and Phenotype Encodings

The genotype and phenotype encoding refers to how the genotype and phenotype are written

using ASCII characters in sequence, similar to how RNA sequences can be encoded with a few

capital letters (A,U,C,G). Although sometimes the encoding can be used as the representation

of the genotype or phenotype, they are two distinct concepts. The difference of the genotype

or phenotype representation is that it can leverage graphical features to illustrate itself, such as

tables or diagrams.

For example, a three-dimensional data structure can be flattened by appending the various rows

to each other. Similarly, a tree can be encoded linearly by applying a tree traversal method. This

is also applicable to other GP methods such as GE (Ryan et al. (1998)), GEP (Ferreira (2001)),

and CGP (Miller & Harding (2009)) where the genotype or phenotype can be encoded so that

the system is represented by a string of characters. The choice of encoding has never been

an explicit concern of GP because the algorithm works with the raw (decoded) representation

of the individual, often by leveraging a custom data structure, and implicitly enforcing the

problem constraints. However, an encoded genotype or phenotype facilitates the evaluation

of the distance between two individuals, when standard measures such as Hamming distance

are applicable. As the measures of evolvability and robustness bring valuable information to

improve a GP problem, it will become essential to dissociate representation from encoding.

To illustrate this concept, consider a simple case of the artificial ant on the Santa Fe trail problem,

as originally described in Koza (1992). In this problem, an artificial ant is placed on a toroidal

grid, and follows a set of rules in order to collect all the food on the grid. The ant has access to

six rules to construct its genotype: turn left (left), turn right (right), move (move), check if

there is food ahead (if-food-ahead), execute two rules in order (progn2) and execute three

rules in order (progn3). Using a tree representation of the rules, Figure 2.1 shows the genotype

of a simple ant with ten nodes. For most people, the natural way to read the tree would be by

using the depth-first search; starting from the root node, then descending to each leaf from left

to right. This is the same traversal method used in GP, which would give the following encoding
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Figure 2.1 Example genotype representation of a program solution to the

artificial ant trail problem

(progn3 (progn2 move left) (if-food-ahead (progn2 right move) left) move)

where the parentheses are used to capture branches of the tree. In other scenarios however, a

different traversal method will lead to a different encoding. Take for example the breadth-first

search traversal method used in GEP. In this case, the nodes are read from left to right, one level

at a time, starting from the root. In GEP, this results in an encoding that looks like:

progn3.progn2.if-food-ahead.move.move.left.progn2.left.right.move

where genes are connected by periods.

This example uses verbose gene symbols to ease the reading. In practice, the gene symbols

would be simplified using shorter character sequence. In this case, it could be as simple as
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3.2.i.m.m.l.2.l.r.m for the GEP encoding. The encoding can be adapted to facilitate

distance measurement, allowing the application of standard distance measurement algorithms

directly to the encoded individual. Cases where advanced genetic operators or complex

representations are used would warrant the measurement of distance using specialized context-

specific algorithms.

2.2.2 Phenotype representation

The phenotype of an individual is the resulting structure of the active genes (genes that contribute

to the evaluation of the individual). For example, the phenotype of a human DNA would be

its physical body. With GP languages, the phenotype is the function (or software code), often

represented as rooted trees. The phenotype is what is used to assess the behaviour in a given

environment and assess fitness. Figure 2.2 illustrates the process of decoding a genotype into a

structural phenotype, assessing it’s behaviour, and evaluating fitness. Firstly, the genotype is

decoded to build the structural phenotype. Secondly, a set of inputs are provided to the structural

phenotype to assess its behaviour. Thirdly, the resulting behaviour (outputs) is measured against

the ideal solution to assess the fitness of the individual.

Figure 2.2 An end-to-end example showing how an individual genotype is mapped to a

structural phenotype, then evaluated for fitness
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2.2.3 Genotype distance

The genotype distance between genotypes 𝑔 and 𝑔′ measures the minimum number of mutations

𝑛 needed to get from 𝑔 to 𝑔′.

𝐷𝑔 (𝑔, 𝑔
′) = 𝑚𝑖𝑛𝑛 (𝑔, 𝑔

′, 𝑛) (2.1)

2.2.4 Phenotype distance

The phenotype distance is more flexible as it highly depends on the choice of encoding and

aims at assessing divergence in structure or behavior, given the environment in which the GA

performs. For cases when the phenotype encoding is a fixed length string, a syntactic measure

such as the Hamming distance can be used, while at other times the behavior can be assessed by

fitness as shown in Equation 2.2.

𝐷𝑝 (𝑝, 𝑝
′) = |Φ𝑝 (𝑝) −Φ𝑝 (𝑝

′) | (2.2)

2.2.5 Hamming distance

The Hamming distance is a good fit for most distance measurements where the encoding of the

genotype or phenotype is of fixed length and each character position represents the same feature

in the individual. The drawback is that each feature needs to be represented by a single symbol,

usually alphanumerical. This can be addressed by maintaining a mapping table of characters to

genes, either inside or outside the GA. Equation 2.3 shows how it is computed over sequences 𝑥

and 𝑦, both of length 𝑙.

𝐷 (𝑥, 𝑦) =
𝑙∑
𝑖=1

𝛿𝑖 where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
𝛿𝑖 = 0, if 𝑥𝑖 = 𝑦𝑖

𝛿𝑖 = 1, if 𝑥𝑖 ≠ 𝑦𝑖

(2.3)
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2.2.6 Mean squared error

Some problems such as symbolic regression need to express their results with real values. In

such cases, a numerical distance measure is more appropriate. Mean squared error (MSE) is a

good choice for many GAs since mathematical problems need to be evaluated using multiple

points in a given range. The standard mean squared error (MSE) equation is represented in

Equation 2.4.

𝐷 (𝑥, 𝑦) =
1

𝑛

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑦𝑖)
2 (2.4)

2.2.7 Tree Edit Distance

Non-recursive functions can be represented as rooted tree structures. Koza (1992) used that

rooted tree representation in his demonstration of Genetic Programming using LISP programs. It

will later be shown in Section 5.1 that multiple variants of GP can also represent their structural

phenotypes with trees, given some constraints. Rooted trees are special cases of unrooted

trees, which in turn are special cases of graphs. Each have their own methods of measuring

distance between two structures, such as the Generalized Robinson-Foulds metric presented in

Smith (2020) for unrooted trees and Graph Edit Distance (GED) from Kim (2023) for graphs.

Although both of these could be leveraged to measure the distance between two rooted trees, the

generalization comes at the cost of efficiency. For that reason, the Tree Edit Distance (TED)

remains the most appropriate distance measure when comparing two rooted trees.

The basis of TED is to measure the distance by identifying the minimal number of changes

required to transform one tree into the other. There are three possible edit operations: deletion

of a node, insertion of a node and replacement of a node. By assigning a cost to each operation

(usually 1), dynamic programming is used to measure the minimum edit distance between two

trees, similarly to the Levenshtein distance presented in Levenshtein et al. (1966). An example

application of dynamic programming to measure the distance between two sequences is shown in
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Figure 2.3, where the cost of each operation (insert, delete, replace) is set to 1, and the distance

is the sum of the cost of operations.

Figure 2.3 Example application of dynamic programming to compute

the edit distance between sequences A and B

Although similar in nature, TED is more complex as multiple dynamic programming matrices

need to be computed for all subtrees compared during decomposition. The choice of

decomposition strategy also plays a key role in the performance of this measure. The

decomposition strategy is the method used to decompose a tree into smaller subtrees. The

state-of-the-art TED algorithm is AP-TED+ from Pawlik & Augsten (2016b), which uses a

decomposition strategy called “All Path” that checks for all root-leaf paths. This contrast with any

previous decomposition strategies which focused on either leftmost or rightmost paths. A path

decomposes a tree into subtrees by deleting nodes along the path and recursively decomposing the

resulting subtrees. A complete description of the TED computation and existing decomposition

strategies is beyond the scope of this research. However, interested readers can find a detailed

tutorial of the original TED measure proposed by Zhang & Shasha (1989) in Paaßen (2018).

There are also multiple implementations freely available for various platforms1 for anyone that

wishes to use TED.

1 Visit http://tree-edit-distance.dbresearch.uni-salzburg.at for a review of the latest literature and

available implementations.
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2.3 Mutational neighborhoods

The notion of mutational neighborhood refers to all the individuals or neighbors that are at a

given distance k from a given individual, also denoted as k-neighborhood (𝑁𝑘), and can be

applied to either the genotype (𝑁𝑘 (𝑔)), as shown in Equation 2.5, or phenotype (𝑁𝑘 (𝑝)), as

shown in Equation 2.6.

𝑁𝑘 (𝑔) = {𝑔
′|𝐷𝑔 (𝑔, 𝑔

′) = 𝑘} (2.5)

𝑁𝑘 (𝑝) = {𝑝
′|𝐷𝑔 (𝑔, 𝑔

′) = 𝑘 and Γ(𝑔′) = 𝑝′ ∀ 𝑔 |Γ(𝑔) = 𝑝} (2.6)

Neighbors of a genotype that map to the same phenotype are considered to be neutral and denoted

by 𝑁𝑁𝑘 (𝑔). When 𝑘 = 1, the subscript may be omitted for brevity such that the neighborhood

and neutral neighborhood can be written as 𝑁 and 𝑁𝑁 .

𝑁𝑁𝑘 (𝑔) = {𝑔
′|𝐷𝑔 (𝑔, 𝑔

′) = 𝑘 and Γ(𝑔) = Γ(𝑔′)} (2.7)

We can easily represent this concept using a simple binary string example, using the Hamming

distance and a fixed length of 4. Figure 2.4 shows the first and second neighborhoods of the 0110

binary string. It is easy to compute the neighborhood size of a string that uses a fixed alphabet

like a binary string or RNA sequence using the equation (𝐴 − 1)𝑁
(𝐿
𝑁

)
, where 𝐴 is the alphabet

size, 𝑁 is the target neighborhood and 𝐿 is the length of the string. However, it is not always

trivial (nor necessary) to know the total size of a neighborhood of more complex genotype or

phenotype encodings, where the alphabet can vary depending on the gene or structure of the

genotype.

2.3.1 Illustration of the relationships

Figure 2.5 illustrates the various relationships of the first neighborhood (𝑘 = 1) that can exist in a

population. The rounded boxes represent phenotypes ([𝑝1..𝑝3]) and circles represent genotypes

([𝑔1..𝑔8]) that map to the phenotype they are in. Dashed lines link genotypes that are one
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Figure 2.4 Example of the

first (𝑁 = 1) and second

(𝑁 = 2) mutational

neighborhood of a binary string

mutational step away from each other and full lines link phenotypes in the first neighborhood

of on another. Using the dashed lines to map the genotype neighbors and plain lines to map

the phenotype neighbors, the first neighborhood set can be determined. For example, the first

neighborhood of genotype 𝑔4 is [𝑔2, 𝑔3, 𝑔7, 𝑔8] and the first neighborhood of phenotype 𝑝2 is

[𝑝1].

2.4 Generalization of classical measures

From the definitions of evolvability and robustness introduced in Section 1.2, the only notable

definitions of how they can be measured came from Andreas Wagner in Wagner (2008). By

exploiting the relationship of the first neighborhood, evolvability and robustness can be measured

by counting the number of neutral or non-neutral neighbors, using both genotype and phenotype

encoding.
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Figure 2.5 Simple illustration of the

relationships between genotypes and

phenotypes for the first neighborhood

(𝑘 = 1)

2.4.1 Classical definitions of evolvability and robustness

The measures put forward in Wagner (2008) are referred to as the classical measures, as they are

the first detailed application found in the literature. A total of four measures are devised in the

following subsections.

2.4.1.1 Genotype evolvability

Wagner defines genotype evolvability 𝐸𝑔 as the number of distinct different phenotypes found in

the 1-neighborhood of a genotype 𝑔. For a single genotype, 𝑔:

𝐸𝑔 (𝑔) = #{𝑝′|𝐷𝑔 (𝑔, 𝑔
′) = 1 and Γ(𝑔′) = 𝑝′}≠ (2.8)
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Equation 2.8 can be used to compute the average genotype evolvability of a population:

𝐸𝑔 (𝐺) =
1

#𝐺

∑
𝑔∈𝐺

𝐸𝑔 (𝑔) (2.9)

Taking Figure 2.5 as example, the average genotype evolvability is equal to 1.875. The genotype

evolvability for each genotype can be found in Table 2.1.

Table 2.1 The

genotype evolvability

for each genotype

presented in Figure 2.5

genotype 𝑔 𝐸𝑔 (𝑔)
𝑔1 2

𝑔2 1

𝑔3 2

𝑔4 2

𝑔5 2

𝑔6 2

𝑔7 2

𝑔8 2

2.4.1.2 Phenotype evolvability

Wagner defines phenotype evolvability 𝐸𝑝 as the number of distinct different phenotypes found

in the 1-neighborhood of a phenotype 𝑝. For a single phenotype 𝑝, that is:

𝐸𝑝 (𝑝) = #𝑁 (𝑝)≠ (2.10)

Equation 2.10 can be used to compute the average phenotype evolvability of a population:

𝐸𝑝 (𝑃) =
1

#𝑃

∑
𝑝∈𝑃

𝐸𝑝 (𝑝) (2.11)
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Taking Figure 2.5 as example, the average phenotype evolvability is equal to ≈ 2.333. The

phenotype evolvability for each phenotype can be found in Table 2.2.

Table 2.2 The

phenotype evolvability

for each phenotype

presented in Figure 2.5

phenotype 𝑝 𝐸𝑝 (𝑝)
𝑝1 3

𝑝2 2

𝑝3 2

2.4.1.3 Genotype robustness

Wagner defines 𝑅𝑔 as the proportion of neutral neighbors of a genotype 𝑔:

𝑅𝑔 (𝑔) =
#𝑁𝑁 (𝑔)

#𝑁 (𝑔)
(2.12)

Equation 2.12 can be used to compute the average genotype robustness of a population:

𝑅𝑔 (𝐺) =
1

#𝐺

∑
𝑔∈𝐺

𝑅𝑔 (𝑔) (2.13)

Taking Figure 2.5 as example, the average genotype robustness is equal to 0.5625. The genotype

robustness for each genotype can be found in Table 2.3.

2.4.1.4 Phenotype robustness

Wagner defines 𝑅𝑝 as the number of neutral neighbors averaged over all genotypes with a given

phenotype 𝑝:

𝑅𝑝 (𝑝) =
1

#𝐺𝑝

∑
𝐺 𝑝

#𝑁𝑁 (𝑔) where 𝐺𝑝 = {𝑔 |Γ(𝑔) = 𝑝} (2.14)
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Table 2.3 The

genotype robustness

for each genotype

presented in Figure

2.5

genotype 𝑔 𝑅𝑔 (𝑔)
𝑔1 1/2

𝑔2 2/2

𝑔3 1/2

𝑔4 2/4

𝑔5 1/2

𝑔6 1/2

𝑔7 1/2

𝑔8 1/2

Equation 2.14 can be used to compute the average phenotype robustness of a population:

𝑅𝑝 (𝑃) =
1

#𝑃

∑
𝑝∈𝑃

𝑅𝑝 (𝑝) (2.15)

Taking Figure 2.5 as example, the average phenotype robustness is equal to ≈ 1.166. The

phenotype robustness for each phenotype can be found in Table 2.4.

Table 2.4 The

phenotype robustness

for each phenotype

presented in Figure 2.5

phenotype 𝑝 𝑅𝑝 (𝑝)
𝑝1 6/4

𝑝2 2/2

𝑝3 2/2

2.4.1.5 Limitations of the classical definitions

Wagner’s definitions suffer from the following drawbacks:
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1. They provide incomplete information about evolvability and robustness due to their limitation

to the first neighborhood. Evolution in most GAs happens through consecutive changes to

the genotype of an individual, both from the genetic operators and selection mechanisms

used, leading to the exploration of bigger neighborhoods.

2. The phenotype measures require an inverse mapping function of the 𝐺 → 𝑃 map to find

all the genotypes for a given phenotype. In many problems, this is impossible to achieve.

3. They lack normalization. The number of neighbors may vary with the size of the genotype

space, rendering the comparison of the resulting measure useless between two different

applications.

2.4.2 Generalized definitions of evolvability and robustness

Generalizing these measures is a straightforward process. The measures simply need to allow

for neighborhoods greater then 1. So rather than forcing 𝑘 = 1, the measures can have any value

𝑘 ∈ N. Normalization of the measures is also applied in order to provide a metric that can be

compared across multiple experiments. The four generalized equations are presented below.

As with the classical constrained version, they can be applied to a population of individuals by

averaging the individual values (omitted for brevity).

2.4.2.1 Generalized genotype evolvability

Equation 2.8 is generalized by relaxing the constraint on the neighborhood 𝑘 and normalizing

the set of phenotypes over the size of the neighborhood.

𝐸+𝑔 (𝑔) =
#{𝑝′|𝐷𝑔 (𝑔, 𝑔

′) = 𝑘 and Γ(𝑔′) = 𝑝′}≠

#𝑁𝑘 (𝑔)
(2.16)
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2.4.2.2 Generalized phenotype evolvability

Equation 2.10 is generalized by relaxing the constraint on the neighborhood 𝑘 and normalizing

the set of phenotypes over the biggest phenotype neighborhood found. In the unlikely event that

there exists only a single phenotype in the entire space, this will results in a perfect phenotype

evolvability (𝐸+𝑝 = 1).

𝐸+𝑝 (𝑝) =
#𝑁𝑘 (𝑝)≠

max(#𝑁𝑘 (𝑝)≠ ∈ 𝑃)
(2.17)

2.4.2.3 Generalized genotype robustness

Equation 2.12 is generalized by relaxing the constraint on the neighborhood 𝑘 .

𝑅+𝑔 (𝑔) =
#𝑁𝑁𝑘 (𝑔)

#𝑁𝑘 (𝑔)
(2.18)

2.4.2.4 Generalized phenotype robustness

Equation 2.14 is generalized by relaxing the constraint on the neighborhood 𝑘 and normalizing

the neutral neighborhoods over the entire neighborhood.

𝑅+𝑝 (𝑝) =
1

#𝐺𝑝

∑
𝐺 𝑝

#𝑁𝑁𝑘 (𝑔)

#𝑁𝑘 (𝑔)
where 𝐺𝑝 = {𝑔 |Γ(𝑔) = 𝑝} (2.19)

2.4.2.5 Extent of the generalization

The classical measures, even when generalized, only give partial views of the potential evolvability

and robustness of a system, as will be demonstrated in Section 3.2. It also has the drawback

of needing to validate multiple neighborhoods, ideally all of them, which is often intractable

even for moderate neighborhoods (𝑘 > 5). Inherently, the issue of needing an inverse mapping

function for phenotype measures remains.
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2.5 Proposed baseline measures

The measures proposed by Wagner and Banzhaf tried to capture the evolvability and robustness

of evolutionary system, but failed to do so by limiting the measures to only the first neighborhood.

Even when generalized, the first few neighborhoods hold limited information about the

surrounding search space and do not reflect the search process of genetic operators. The

advantage of the classical measures is that they rely only on the genotype distance, so a single

distance measure needs to be defined. However, one of the major downsides is that the phenotype

measures (𝐸𝑝 and 𝑅𝑝) need an inverse mapping function to discover the genotypes that map to

a phenotype, which is often not possible due to the size of the genotype space and the ability

to form a valid phenotype without using a genotype. A potential workaround is to sample the

genotype space, map all the genotypes and then sample from the set of phenotypes found. This

process is highly inefficient and does not guarantee an accurate representation of phenotype

space.

To address this issue, this research proposes two new complimentary measures that rely on

the notion of minimum genotypic change through evolutionary exploration. These measures,

namely baseline evolvability and baseline robustness, use a baseline mutation to explore the

neighborhoods of an individual and draw conclusions from the ensuing evolutionary walk

processed, which are further detailed in the following sections.

2.5.1 Baseline mutation

The baseline mutation is equivalent to a 1-point mutation, where a single gene from the genotype

is picked randomly and changed to any other possible value for that gene. Applying a baseline

mutation to a parent individual will always result in a mutated individual that has a genotypic

distance of 1 from its parent, landing it in the first neighborhood. All other genetic operations

can be modeled as functions of the baseline mutation. For example, the result of swapping two

genes could be achieved through two coordinate 1-point mutations. The size of the neighborhood

determines the number of genes that must be mutated. A single baseline mutation will land the



32

mutated individual in the first neighborhood, where mutating two genes at random from the

genotype will land the mutated individual in the second neighborhood, etc.

Baseline mutation is used to determine the shortest distance between two genotypes. When

measuring the distance, the genotypes are compared to assess how many baseline mutations would

be needed from the first to reach the second one (and vice-versa). Although the evolutionary

process might take detours, when measuring distance only the shortest possible path is of

importance.

2.5.2 Baseline evolvability

As implied by their name, evolutionary systems aim at building evolvable models. Interpreting

this, evolvability is based on the speed at which any system is able to adapt to a new environment.

In other words, evolvability estimates how fast a genotype that is fit to one environment evolves

to a different genotype with a phenotype that is fit to a different environment.

This means that the measure can be constrained to the same environment or through a changing

environment as the starting population of an evolutionary run is always less fit than the target,

which implies it would be more adapted to a different environment, like two symbolic regression

programs that will behave better or worse than the other one depending on the test cases presented.

Translated to genetic algorithms, this means an algorithm with high evolvability will be able to

find a fit individual with a minimum number of changes to the initial individual.

The main objections being raised to Wagner’s evolvability measures are:

1. There is no evidence that proves exclusive dependency of evolvability (of either type) on the

diversity of the phenotypes (independently, say, of fitness)

2. The evolution from a starting point to another, in genotype space, usually involves multiple

mutations, which may not necessarily occur in series. It is possible for several mutations to

affect an organism simultaneously. It is also logical that an organism may fail to evolve (to a

higher fitness state) even if its mutational neighborhood is carpeted with the most diverse

set of phenotypes, all of lower fitness.
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3. The phenotype measures proposed by Wagner are often impractical since they require

knowledge of the phenotype to genotype map, hence requiring an inverse mapping function

(find all the genotypes for a given phenotype).

Therefore, it is proposed here that evolvability (of a 𝐺 → 𝑃 map) is measured directly by

assessing the average length of random mutational walks between randomly selected start

genotypes and end phenotypes. To be exact, baseline evolvability (𝐸𝑏) is defined algorithmically

as follows:

1. Construct a collection of 𝑚 walks {𝑊1, 𝑊2, .., 𝑊𝑚}; a walk is defined by two genotypes

(probably, but necessarily different), 𝑔𝑠 (start) and 𝑔 𝑓 (finish) with corresponding phenotypes,

𝑝𝑠 and 𝑝 𝑓 , respectively.

2. A walk 𝑊𝑗 goes through a sequence of genotypes 𝑔𝑠, 𝑔1, .., 𝑔𝑘 , .., 𝑔 𝑓 , with corresponding

phenotypes 𝑝𝑠, 𝑝1, .., 𝑝𝑘 , .., 𝑝 𝑓 ; the walk could terminate before reaching the final phenotype

(𝑝 𝑓 ).

3. Consider one step of the walk, 𝑝𝑖 to 𝑝𝑖+1. Single point mutations are applied to the genotype

𝑔𝑖 until a new genotype 𝑔𝑖+1 is found for which 𝑑 (𝑝𝑖+1, 𝑝 𝑓 ) ≤ 𝑑 (𝑝𝑖, 𝑝 𝑓 ). That is, the new

phenotype is no further from the destination phenotype than the old phenotype; 𝑑 is an

appropriate measure of distance.

4. Continue walk 𝑊𝑗 until phenotype 𝑝𝑘 . At this point either 𝑝 𝑓 has been reached or, the

distance 𝑑 (𝑝𝑖, 𝑝 𝑓 ) has stabilized; stabilization is described below.

5. Let 𝑞 =
𝑑 (𝑝𝑘 ,𝑝 𝑓 )

𝑑 (𝑝𝑠 ,𝑝 𝑓 )
, and 𝑡 is the number of steps in the walk. By construction, 𝑑 (𝑝𝑘 , 𝑝 𝑓 ) ≤

𝑑 (𝑝𝑠, 𝑝 𝑓 ) and thus 0 ≤ 𝑞 ≤ 1. If 𝑑 (𝑝𝑠, 𝑝 𝑓 ) = 0, 𝑞 is set to 0.

6. The evolvability of the walk 𝑊𝑗 is 𝐸 𝑗 , where 𝐸 𝑗 =
(1−𝑞)
(1+𝑡) , using 1 + 𝑡 rather than just 𝑡 in the

denominator for the special case where 𝑝𝑠 = 𝑝 𝑓 and 𝑡 = 0. Note that 0 ≤ 𝐸 𝑗 ≤ 1.

7. Continue generating walks in this way until 𝐸𝑏 stabilizes. Stabilization is described below.

Baseline evolvability 𝐸𝑏 is the average evolvability of the walks, 𝐸1 to 𝐸𝑚.

For stabilization, compute the variance 𝑉 of the last 𝑁 terms of the series, and assume that

stabilization has occurred if 𝑉 < 𝑒. Values for 𝑁 and 𝑒 are probably best chosen by experiment
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(empirically). An in-depth methodology of using the variance as a stopping criterion is described

in Bhandari, Murthy & Pal (2012).

When implementing this as an EA, fitness evaluation needs to minimize the distance to the target

phenotype. Hence fitness needs to use the same distance measure as 𝐷𝑝.

A simple application of 𝐸𝑏 for a single walk 𝑊 is presented in Table 2.5. Using fictitious

RNA sequences and secondary structures to represent genotypes and phenotypes respectively,

a random starting genotype, 𝐴𝑈𝐶𝑈𝐴𝐺𝐶𝐺, with corresponding phenotype (......), is mutated

until a random target phenotype, 𝑝 𝑓 = (((..))), is reached. The Hamming distance is used to

measure the phenotype distances 𝐷𝑝, for both the parent phenotype 𝑝𝑖 and offspring phenotype

𝑝𝑖+1, at each step 𝑡. The gene mutated for each offspring is underlined, and the bolded genotype

at each step (between the parent 𝑔𝑖 and offspring 𝑔𝑖+1) represents the genotype selected for the

next generation (shortest distance 𝐷𝑝 to the target phenotype).

Table 2.5 Example process of an evolvability walk, reaching the random target

phenotype (((..)))

Step 𝑡 𝑔𝑖 𝑝𝑖 𝐷𝑝 (𝑝𝑖, 𝑝 𝑓 ) 𝑔𝑖+1 𝑝𝑖+1 𝐷𝑝 (𝑝𝑖+1, 𝑝 𝑓 )
1 AUCUAGCG (......) 4 ACCUAGCG ((....)) 2

2 ACCUAGCG ((....)) 2 ACCUAGUG ........ 6

3 ACCUAGCG ((....)) 2 ACUUAGCG (((..))) 0

In this example, the walk took only three steps to reach the random target phenotype. Thus, the

evolvability of the walk 𝐸𝑤 is computed as below:

𝐷𝑝 (𝑝𝑠, 𝑝 𝑓 ) = 4

𝐷𝑝 (𝑝𝑘 , 𝑝 𝑓 ) = 0

𝑞 =
0

4

𝐸𝑤 =
1 − 𝑞

1 + 𝑡
=

1

4
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with a final evolvability of 0.25. When doing multiple walks, average evolvability 𝐸𝑏 will tend

to stabilize, as illustrated in Figure 2.6.
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Figure 2.6 Example baseline evolvability plot

2.5.3 Baseline robustness

In the context of evolutionary systems, robustness is defined by the number of changes (in its

genotype or environment) a system can sustain before expressing a different behavior. In order

to measure that, a system needs to be changed (mutated) incrementally while the genotype and

phenotype distances from the starting point are measured.

The main objection being raised to Wagner’s robustness measures are that they only look at

the immediate mutational neighborhood of a genotype (𝐺), in case of 𝑅𝑔, and the immediate

mutational neighborhood of the genotypes mapping to a given phenotype (𝑃), in case of 𝑅𝑝.

Both of these measures do not provide the full picture of the relationship between the amount

of mutation applied to genotype 𝐺 (or genotypes mapping to 𝑃) and the amount of divergence
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from the original phenotype. This is why it is proposed here that one forms a scatter plot that

relates the first quantity (amount of mutation) to the other (amount of divergence), and hence,

characterize the correlation among the points using confidence ellipses, as shown in Figure 2.7.

The orientation Θ of the major ellipse axis is representative of the sensitivity of the robustness,

with steeper orientation meaning weaker robustness (lower Θ value means more sensitive), and

the aspect ratio 𝛼, computed by dividing the major axis with the minor axis, is an indication of

the strength of the correlation (higher 𝛼 value means stronger correlation).
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Figure 2.7 Example of baseline robustness plot

Specifically, the set of points between phenotype distance and genotype distance is used as

the baseline measure of robustness. It is defined as the set of points (𝑑𝑔; 𝑑𝑝) in which 𝑑𝑔 is a

genotype distance (𝐷𝑔) and 𝑑𝑝 is the corresponding phenotype distance (𝐷𝑝). I.e., Baseline

robustness, 𝑅𝑏 is:

Scatter plot {(𝐷𝑔 (𝑔, 𝑔
′), 𝐷𝑝 (𝐹 (𝑔), 𝐹 (𝑔

′)))}

Where 𝑔, 𝑔′ belong to 𝐺 and 𝐹 maps any 𝑔 to its phenotype 𝑝.
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In practice, the scatter plot is characterized using a covariance ellipse. The complete set of points

would be overwhelming. Fortunately, there are two obvious methods to sample the scatter plot.

1. Choose two random genotypes 𝑔1 and 𝑔2, compute their phenotypes, 𝑝1 and 𝑝2, and plot

the pair (𝐷𝑔 (𝑔1, 𝑔2), 𝐷𝑝 (𝑝1, 𝑝2)). The Hamming distance is used for both 𝐷𝑔 and 𝐷𝑝.

2. Construct a genotype walk 𝑔1, 𝑔2, .., 𝑔𝑛 with 𝐷𝑔 (𝑔𝑖, 𝑔𝑖+1) = 1 and the corresponding

phenotype walk 𝑝1, 𝑝2, .., 𝑝𝑛 and plot the pairs (𝐷𝑔 (𝑔1, 𝑔𝑖), 𝐷𝑝 (𝑝1, 𝑝𝑖)) for 𝑖 = 1, 2, .., 𝑛.

The distance 𝐷𝑔 (𝑔1, 𝑔2) for random genotypes 𝑔1 and 𝑔2 will typically be large. Since robustness

is mainly about small deviations from an initial genotype, the second of these two methods may

be preferable in practical cases.

Although baseline robustness is best appreciated as a scatter plot, some metrics can help

quantify its behaviour. The main indication of robustness is the orientation of the eigenvector

corresponding to the largest eigenvalue, both obtained from the covariance matrix. A steeper

angle means lower robustness. The equation for orientation Θ is shown in Equation 2.20, where

v1 is the eigenvector corresponding to the largest eigenvalue.

Θ = arctan2

(
v1(𝑦)

v1(𝑥)

)
(2.20)

In addition to orientation, a measure of the spread of points, around the major axis (eigenvector

of the largest eigenvalue), would complement the measure of orientation of that vector (Θ). For

this, the aspect ratio 𝛼 is used, which also comes from the eigenvalues of the data. To compute

𝛼, divide the largest eigenvalue 𝜆1 by the smallest eigenvalue 𝜆2, as shown in Equation 2.21.

𝛼 =
𝜆1

𝜆2
(2.21)

To ease the assessment of the baseline robustness scatter plots, three confidence ellipses (65%,

90% and 95%) are laid on top of the data. The ellipses are positioned at the center of mass of

the data with angle Θ. Assuming normal distribution, the Chi-Squared likelihood 𝑠 associated
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with the confidence interval of the ellipse can be used to compute the length of the major axis 𝛾1

and minor axis 𝛾2, as shown in equations 2.22 and 2.23. For additional details on how to define

a confidence ellipse, readers are referred to Spruyt (2014).

𝛾1 =2
√
𝑠𝜆1 (2.22)

𝛾2 =2
√
𝑠𝜆2 (2.23)

2.6 High-level setup

The experimentation was done using the ECJ library from Luke (1998) which provides

implementation of various Evolutionary Computation algorithms along with common problems

used for benchmarking. Since the goal of this research is to assess different measures of

evolvability and robustness of an evolutionary system, it is more efficient to leverage a state-of-

the-art EC implementation rather then building a new one. This ensures the focus is kept on the

measurement and reduces the risk of introducing new bugs in the software. A high-level view of

the architecture is presented in Figure 2.8 and detailed applications of ECJ will be outlined for

each of the experiments in the following sections. Additionally, the experiments were run on

compute clusters provided by the Digital Research Alliance of Canada. The program used to

execute the experiments is available through the author’s public code repository2.

ECJ’s easy extensibility and extensive documentation facilitated the experimental setup for all

the following experiments. The neighborhood exploration and random walks described in the

definition of the measures can be achieved with a simple EA implementation, akin to a 1+1

EA. The following section describes the generic components of the EA used to conduct the

experiments.

2 The code repository can be accessed at https://github.com/remz1337/VRE_Experiment
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Figure 2.8 High-level architecture of the experimentation software

2.6.1 Evolutionary Algorithm

A high-level flow chart of the EA is followed by separate sub-sections that describe every

component of the EA; this includes: representation and initialization, fitness evaluation, parent

selection, offspring generation (via mutation which requires fitness evaluation of new individuals),

survivor selection and termination criteria.

Figure 2.9 Overall structure of the EA
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Baseline measures build random walk by initializing a random individual and applying baseline

mutation for a number of generations, or until the target is reached in the case of 𝐸𝑏. The only

difference is that 𝐸𝑏 compares the offspring to the parent, while 𝑅𝑏 always keeps the offspring.

This EA can also be adapted to do the neighborhood exploration needed for the classical measures.

The population starts with 𝜇 random individual from which 𝜆 offspring are generated through

mutation for each individual in the starting population. Running this for a single generation and

keeping the offspring yields a resulting population that represents the neighborhood. Then the

classical measures can be evaluated by post-processing the resulting population, as defined in

Section 2.4.2. Using this configuration, 𝜆 needs to be set to the number of samples to be taken

from the neighborhood 𝑁 (𝑁 also dictates the number of genes mutated).

2.6.1.1 Initialization

Random initialization, respecting the range of possible values for a given gene.

2.6.1.2 Termination

Termination occurs when a pre-set maximum number of generations is exceeded or, in the case

of 𝐸𝑏, the EA finds the target phenotype (with ideal fitness).

2.6.1.3 Parent selection

There is no parent selection, as the parents comprise the whole current population.

2.6.1.4 Mutation

Pick 𝑛 (where 𝑛 is the size of the neighborhood, 𝑛 = 1 for baseline measures) genes randomly

from the genotype and change its/their value(s) randomly to another possible value for that gene.
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2.6.1.5 Survivor selection

Survivor selection here means the compilation of the next generation. In the case of 𝐸𝑏, it is

done by comparing the offspring to its parent and keeping the fittest of them, or the offspring

in case of equal fitness. For 𝑅𝑏 or the neighborhood exploration of the classical measure, the

offspring are always kept.

2.6.1.6 Fitness Evaluation

For 𝑅𝑏 and the neighborhood exploration, there is no need for fitness evaluation since the

individuals are not compared (fitness can be set to an arbitrary value). For 𝐸𝑏, the fitness is the

phenotype distance 𝐷𝑝 to the random target phenotype, which needs to be minimized. As will

be demonstrated later, 𝐸𝑏 can also be adapted for specific problems, in which cases the fitness

evaluation is tailored for the problem to be solved. These occurrences will be defined along their

problem definition.





CHAPTER 3

VALIDATION OF THE MEASURES TO SIMPLE RNA SEQUENCE FOLDING

The goal of this first experiment is to compare the applications of all reviewed and proposed

measures and assess how they individually can provide insight with respect to evolvability and

robustness. The application to a different domain than traditional computer science is also a

good demonstration of the potential extensibility of the measures.

RNA is similar to DNA, where protein bases are represented by various characters of the alphabet.

To understand how an RNA sequence behaves, it needs to be “folded” to obtain its secondary

structure. The process of folding tries to identify the most likely way the bases will pair together

in nature. Protein folding has been the subject of many studies, but any review goes outside the

scope of this work. Evolvability and robustness will be measured on RNA sequence folding,

using the RNA sequences as genotypes and secondary structures as phenotypes. RNA sequences

are generated randomly using the four bases (or nucleotides), AUCG, and then evaluated against

a folding algorithm to obtain their secondary structures, represented using the Dot-Bracket

Notation format. The ViennaRNA suite of RNA folding tools was selected for its popularity and

ease of use. A detailed description of the tools and their recent evolution can be found in Lorenz

et al. (2011). Readers interested in comparing various RNA sequence folding tools are referred

to Churkin et al. (2018).

For example, AUUUGCAAAUGGCAACCAUUGGGUGUGAGU is an RNA sequence of 30 bases, and

((((((((((((...)))))...))))))) is its secondary structure in Dot-Bracket Notation,

which would be represented using base pair probabilities like shown in Figure 3.11.

3.1 Experimental setup

This section will detail how the experimentation for the RNA sequence folding problem was

conducted for both the classical and new baseline measures.

1 Image generated using the RNAFold web service, found at http://rna.tbi.univie.ac.at/cgi-bin/

RNAWebSuite/RNAfold.cgi
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Figure 3.1 An example

representation of RNA

sequence folding

3.1.1 Distance measurement between two individuals

Hamming distance for both genotype and phenotype as they are both well-defined and fixed

length strings of characters.

3.1.2 Folding and inverse folding RNA sequences and secondary structures

As the classical genotype measures and baseline measures require a mapping of genotype to

phenotype (Γ(𝑔) → 𝑝), RNAsubopt utility from the ViennaRNA package will do the work of

folding RNA sequences into secondary structures. Any random RNA sequence can be folded

in the sense that the folder will return a secondary structure. However, secondary structures

exclusively comprised of dots are discarded as they mean the folding did not find a suitable

solution. RNAsubopt is used with the default configuration2 and sorted by free energy to provide

the best solution first.

2 The default configuration of RNAsubopt includes using linear MFE structures without structural

constraints at 37 degrees centigrade. Complete configuration can be found at https://www.tbi.univie.ac.

at/RNA/RNAsubopt.1.html.
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The classical phenotype measures require an inverse mapping function to identify the entire

set of genotypes that can map to a given phenotype. There is currently no known method to

achieve this, but the results can be approximated by sampling Γ(𝑔) → 𝑝. Secondary structures

in dot notation are sequences of the same length as their source RNA sequence(s) that uses three

characters: periods, opening parentheses and closing parentheses. However, any arrangement of

periods and parentheses does not mean it is a valid secondary structure. A set of rules also need

to be applied, such as matching the opening parentheses with closing parentheses in the right

order. Yet, a secondary structure may appear to be valid but does not have any genotype that

can fold into it. For this reason, the set of random phenotypes is obtained by folding random

RNA sequences and keeping every valid and unique phenotype found in the process. This can

be processed ahead of the experiment.

ViennaRNA offers a tool to explore the phenotype to genotype map, namely RNAInverse, which

can search for multiple RNA sequences mapping to the provided secondary structure. Additional

constraints can be passed to this inverse folding search algorithm, but are not used in this

experiment. With the set of valid secondary structure in hand, RNAInverse will be used to

search for up to 50 mapping genotypes for each provided phenotype. Sometimes, the inverse

folding will provide RNA structures that can fold into the given phenotype, but would naturally

(using less energy) fold into a different secondary structure. For this reason, the set of genotype

obtained from RNAInverse is folded back again and any genotype that did not fold back into

the original phenotype is discarded. This provides a sampling of the phenotype to genotype

map, allowing to compute the classical phenotype measures. This process is shown in Figure

3.2, using fictitious RNA sequences and secondary structures.

The choice of setting a maximum of 50 genotypes that can be returned by the RNAInverse

program was defined empirically through trial and error. Figure 3.3 shows the distribution of

1,000 random RNA secondary structure (100 bases) processed with RNAInverse, returning an

average of ≈ 17 genotypes found per phenotype. This does not mean that more cannot be found,

but it becomes computationally more expensive to continue searching. It is assumed that the
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Figure 3.2 Process used to build the 𝑃→ 𝐺 map through inverse folding validation

entire phenotype to genotype map for a given phenotype is proportional to the results of the

inverse folder.
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Figure 3.3 The distribution of valid genotypes found through

inverse folding
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3.2 Application of generalized classical measures

The goal of this section is to demonstrate the generalization of Wagner’s measures. For this,

only the first five neighborhoods (𝑁 = 1, 2, 3, 4, 5) will be measured. Since the search space

grows exponentially with 𝑁 , sampling becomes insignificant with higher neighborhoods. Also,

the objective is to understand what information was missed in Wagner’s original measure, which

can be assessed with the first five neighborhoods.

Since the neighborhood distance 𝑁 controls the number of mutated genes, the search space can

be easily computed with 𝑀𝑁
(𝐿
𝑁

)
, where 𝑀 is the number of possible mutations (in this case, each

RNA base has only three possible mutations), 𝑁 is the neighborhood (number of mutated genes)

and 𝐿 is the length of the genotype (number of RNA bases). Figure 3.4 presents the size of the

search spaces on a logarithmic scale for the first ten neighborhoods of RNA sequences of lengths

30, 50 and 100. Although the length of the RNA sequence (𝐿 = [30, 50, 100]) has an impact on

the search space, it is negligible compared to the choice of neighborhood (𝑁 = [1 . . . 10]).

3.2.1 Neighborhood size

As presented in Figure 3.4, the neighborhood sizes increase exponentially as the neighborhood

distance 𝑁 is increased. Following the original definition of the measures defined in Wagner

(2008), the ideal measurement would look at the entire search space. This is possible when

𝑁 = 1, but becomes computationally expensive when 𝑁 > 2. To address this, sampling of the

search space will be leveraged. It would be fair to assume that the bigger the sample the more

accurate the results will be, however the increase in accuracy often diminishes as the sample

size grows. This was demonstrated in Taherdoost (2017), which will be applied to calculate the

sample size for each neighborhood distances, using a population variance of 50%, confidence

level of 99% and error margin of 1%. The sample sizes are presented in Table 3.1.
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Figure 3.4 Figure representing the expansion of the search space

for the RNA problems of varying lengths across the first ten

neighborhoods

Table 3.1 Sample size for each neighborhood

distance 𝑁 , along with the provided coverage of

the search space

𝑁 Sample size Search space Coverage
1 295 300 ≈ 0.9833

2 12,048 44,550 ≈ 0.2704

3 16,451 4,365,900 ≈ 0.0037

4 16,512 317,619,225 ≈ 5.19e−5

5 16,513 18,294,867,360 ≈ 9.02e−7

3.2.2 Population size

With the neighborhood sampling set for each single random starting individual, it is left to define

the number of individuals needed to get representative results from the classical measures. This

will be achieved by assessing the number needed for the measures to stabilize. Stabilization can
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be computed as described in the definition of 𝐸𝑏 in Section 2.5.2. This provides a repeatable

way to address stabilization, however it requires defining additional hyper-parameters for the

threshold and number of terms to include in the variance calculation. It can also lead to bias

when comparing the performance of two algorithms, because the better one is likely to stabilize

sooner. The bias happens when walks are not able to reach the target phenotype within the

given stabilization period, because the walk that goes on for longer will end with a worse 𝐸𝑏.

To address this, the stabilization point can be approximated by visually inspecting the change

in variance of the results and determining a stabilization period applicable to all reviewed

algorithms. For this assessment, the number of walks has been set to 1,000. The results are

shown in Figure 3.5 where stabilization of the variance can be seen happening for all four

measures within approximately 500 walks, so 1,000 walks is sufficient to get representative

results.

3.2.3 Results

The generalized measures can now be evaluated with the parameters defined above. The results

of the measures across the first five neighborhoods with RNA sequences of 100 bases are

presented in Figure 3.6. As expected, the generalization to higher order neighborhoods yields

different results than the first neighborhood. Interesting is the fact that each walk behaves the

same (relative to the other walks) across the neighborhoods, either performing better or worse

throughout the experiment. This hints that a random genotype that performs well in a single

neighborhood will also perform well in all neighborhoods for a given measure. This can be seen

when there is a sharp change happening at a specific walk for all four measures.

Comparing the evolvability measures 𝐸𝑔 and 𝐸𝑝 against the robustness measures 𝑅𝑔 and 𝑅𝑝,

higher neighborhoods provide better evolvability but worse robustness. This goes against

Wagner’s original assessment that robustness and evolvability are positively correlated in

phenotype space. For the RNA problem, the neighborhood does not impact the phenotype

evolvability, where each neighborhood was able to find, proportionally to its size, the same

amount of unique phenotypes.
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Figure 3.5 Stabilization of the average variance for the four classical measures, across the

first five neighborhoods 𝑁 for RNA sequences of length 100

These results show that the original definitions of robustness and evolvability proposed by

Wagner are missing crucial features of a problem representation by limiting its exploration to the

first neighborhood. However, generalizing the measures to include further neighborhoods brings

additional challenges, mainly the computational effort required to measure each neighborhood

and most notably the difficulty of building an inverse mapping function of the 𝑃→ 𝐺 map.

3.3 Application of baseline measures

Following the demonstration of the generalized classical measure, this section will show how the

new baseline measures can be applied. For baseline measures, the number of steps (generations
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Figure 3.6 Results for the four measures across the first five neighborhoods 𝑁 for RNA

sequences of length 100

in terms of EA) per walk needs to be defined. This parameter offers similar control on the

experiment as the sample size of the neighborhood in classical measures in the sense that they

both control the total number of offspring that will be generated in the walk from a single starting

individual. Like for the classical measures, the number of walks (samples) also needs to be set,

which controls the same thing (the amount of random starting individuals).

Ideally, both the number of steps and the number of walks would go until stabilization, as defined

earlier. However, for practical reasons, these parameters will be empirically defined by running

the experiment with large enough number to assess through visual inspection of the results when

the variance stabilizes. If the visual inspection is inconclusive, the experiment is run again with
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a larger number. This has not been an issue with the following experiments as they tend to

stabilize quickly. In all cases, the values fixed for these parameters have been very conservatives.

3.3.1 Walk length

To empirically assess the average number of steps needed before stabilization, a first experiment

of baseline evolvability 𝐸𝑏 will be ran, consisting of 1,000 walks of 50,000 steps. Fitness is the

number of characters in the secondary structure that match the random target phenotype. Ideal

fitness will always be equal to the length of the RNA sequence, hence 100 in this experiment.

Figure 3.7a shows that for RNA sequences of 100 bases, the fitness of the population stabilizes

within approximately 30,000 steps. Defining a maximum number of steps has a direct impact

on the results of baseline evolvability only in the case where the target is not reached in time.

Hypothetically, if a walk needs an infinite number of steps to reach its random target, 𝐸𝑏 would

tend to 0.

The same parameters (1,000 walks of 50,000 steps) are used to determine stabilization of baseline

robustness 𝑅𝑏 by looking at the orientation Θ of the ellipse generated from the data. Figure

3.7b shows that Θ also stabilizes within 30,000 steps. The orientation undergoes some drastic

changes during the first few generations because the distances are changing rapidly with each

mutation, and the ellipse is much more biased with only a few points.

3.3.2 Population size

Like for the classical measures, 1,000 walks of 50,000 steps is enough to assess the stabilization

of the population size (each walk is an individual of the population). Figure 3.8a shows the

average baseline evolvability variance. The variance is so low (≈ 3e−9) that it will be prone

to any slight change of 𝐸𝑏. Nonetheless, it can be considered stable within about 700 walks.

Stabilization for baseline robustness is presented in Figure 3.8b by tracking the variance of Θ.

Stabilization happens within 500 walks in the case of 𝑅𝑏.
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Figure 3.7 Stabilization point of the number of generations for 𝐸𝑏 and 𝑅𝑏
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Figure 3.8 Stabilization point of population size for 𝐸𝑏 and 𝑅𝑏

3.3.3 Results

Evaluating the RNA folding problem (𝐿 = 100) with the baseline measures using 1,000 walks of

50,000 steps, it obtains a baseline evolvability 𝐸𝑏 of ≈ 4e−5. Baselines robustness is measured

with the orientation Θ and aspect ratio 𝛼, which have respective values of ≈ −1.5381 and

≈ 3.056. Both results are presented in Figure 3.9. Interpreting the scatter plot of 𝑅𝑏 (Figure

3.9b), the orientation is steep and the center of mass is almost at its maximum distance (100
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for both axis), indicating overall poor robustness. Although 𝐸𝑏 may seem low, the best way to

assess evolvability is by comparing with another algorithm using the same parameters (number

of walks and steps per walk). This will be demonstrated later in Chapter 5.
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Figure 3.9 Results of the baseline measures for the RNA folding experiment

As opposed to the classical measures, the baseline measures can capture all neighborhoods, and

mimic the natural process of incremental change, as is often used in GAs. This section presented

a successful application of the baseline measures, showing that it integrates easily with common

genetic algorithms. The next section will be a direct comparison of both classical and baseline

measures.

3.4 Comparison of classical and baseline measures

The goal of this section is to compare the classical measures with the baseline measure and

assess if there is any correlation. For measuring 𝐸𝑔, 100 random RNA sequences of 100 bases

(𝐿 = 100) were mutated 100 times to explore their first neighborhood, then 𝐸𝑔 was measured for

each one of them, by counting the number of unique phenotypes found, as described in Equation

2.16. The distribution of the results, grouped in ten uniform bins based on the minimum

and maximum values obtained, are shown in Figure 3.11, with a mean value of ≈ 0.5431.
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This indicates that approximately 54 unique phenotypes were found in the first neighborhoods

(among the 100 mutations) of each RNA sequence. Figure 3.103 is an illustration of the unique

phenotypes found in the first neighborhood of a random RNA sequence, where the initial random

RNA sequence is circled and P1, P2 and P3 are the three phenotypes found across six different

mutations of the initial genotype.

Figure 3.10 Illustration of the unique phenotypes found in the first

neighborhood of a random RNA sequence

Table 3.2 EA Parameters of the

measure comparison experiment

Parameter Setup
RNA length 100 bases

RNA bases AUCG

Initialization Random

Genetic operators 1-point mutation

Population 100

Generations 100

Fitness Hamming

3 The images have been generated from the online RNAFold web service, available at http://rna.tbi.

univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi.
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Figure 3.11 Distribution of genotype evolvability, as per Wagner’s

definition

Comparing this with 𝐸𝑏, the same starting RNA sequences used to measure 𝐸𝑔 were mutated for

100 generations and each mutated RNA secondary structure was compared against its parent to

see which one is closer to the target phenotype. The target phenotypes were obtained by folding

different random RNA sequences, ensuring validity and uniqueness. The one with the best

fitness would be selected for the next generation, as described in the 𝐸𝑏 algorithm of Section

2.5.2. Fitness evaluation is the Hamming distance between the individual’s secondary structure

and the random target secondary structure. Figure 3.12 is a scatter plot of the 100 starting RNA

sequences, used in both 𝐸𝑔 and 𝐸𝑏, positioned according to their resulting 𝐸𝑔 and 𝐸𝑏 value.

The lack of correlation is an indication that the first neighborhood is not sufficient to assess the

evolvability of a population.

Lastly, the robustness measures were evaluated using 𝑅𝑏 with the same starting RNA sequences.

The starting population is mutated for 100 generations, without fitness evaluation (always
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Figure 3.12 Comparison between genotype evolvability 𝐸𝑔 of the

first neighborhood and baseline evolvability 𝐸𝑏

keeping the offspring). The resulting distribution is presented in Figure 3.13 in which can be

observed that lower genotype distances from the starting RNA sequence produce secondary

structures that are closer to the original one. Darker areas mean that more points occur at that

location, following the scale on the right.

The region outlined in green in Figure 3.13 highlights the distribution of phenotype distances

found in the first neighborhood (𝐷𝑔 = 1), which is equivalent to the classical measure 𝑅𝑔. It is

obvious that limiting the measure to the first neighborhood would present only a very limited

slice of the complete picture of robustness, otherwise presented by the whole plot.

As demonstrated in the previous experiments, the proposed baseline measures offer more depth

to the evolvability and robustness assessment while also being more practical, as opposed to the

classical measures. For this reason, the focus will be kept on the new baseline measures for the

following chapters, aiming to further validate the baseline measures with various problems.



58

Figure 3.13 Baseline robustness for 100 random RNA sequences

In this chapter, new and modified measures of evolvability and robustness were applied on RNA

folding. Focusing on the new baseline measures, the next chapter will continue applying the

improved measures to different types of systems in order to further validate the claim that these

measures are applicable to a wide variety of systems. Using a modeling method as a target, it

is possible to apply the measures to models of systems from different domains of application

(though with different levels of fidelity).



CHAPTER 4

EVOLVING OSCILLATING CIRCUIT

Looking for a generic modeling method that allows for the modeling of a variety of real-world

systems, but one that also allows the modeler to increase the complexity (interpreted as multi-

modality) of the system’s fitness surface(s) easily, NK System (Kauffman (1992)) appeared as

an attractive approach, but for one critical deficiency: it maps the genotype of a system directly

to a fitness surface, without first generating any phenotype. In response, BNK System (short

for Binary NetworK) is proposed as a new modeling method which has a genotype mapped to

a phenotype, which in turn can be evaluated using any number of different fitness functions,

depending on the quality (or qualities) of interest to the modeler. Further investigation will

show that, at least in one case, the multi-modality of a BNK system increases with increasing 𝑘 ,

where 𝑘 in a BNK system is the number of inputs to each node (this is detailed below). See

Figure 4.1 for illustrative examples of mappings used by NK and BNK. Subfigure 4.1a shows

the genotype to fitness map used by NK, where the axes represent the design variables (genes

in the genotype), mapped to fitness points (bigger points represent better fitness). Subfigures

4.1b and 4.1c present the genotype to phenotype and phenotype to fitness mappings respectively,

where the five shapes represent different phenotypes.

a) Genotype to fitness map b) Genotype to phenotype map c) Phenotype to fitness map

Figure 4.1 Comparison of genotype to fitness mapping between NK and BNK
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4.1 BNK: Genotype and Phenotype

As an example, BNK(n,k) systems with, say, 𝑛 = 3 and 𝑘 = 2, has exactly three nodes, with

every node accepting between one and two distinct inputs. An input to a node comes from the

output (= current state) of a node, including itself. This is the general form of a BNK model,

and it is the one adopted for the two examples of this section.

4.1.1 BNK Genotype

A BNK system consists of a system diagram (nodes with connections) along with the truth

tables of each node. A graphical representation is great for human readability but poorly

suited for computer manipulation. To facilitate computer manipulations of a BNK system, its

features are encoded in a genotype. The gates are encoded in ascending order. And, each gate

comprises the decimal indexes of its input gates (e.g., 𝐺0, 𝐺1), followed by the binary output of

its truth table (e.g., ‘0001’). The additions of delimiters and conversion of binary values to their

decimal equivalents are done to produce a linear textual representation of the genotype, more

compact and appropriate for computer processing. For the textual representation, the input gates

(connectivity) are separated by commas (,). A colon (:) separates the connectivity from the

functionality (function of the gate) of each gate. Functionality is represented using the decimal

value of the output of the truth table. The encoding of every gate concludes with a semi-colon

(;). An example BNK(3,2) genotype is presented in Figure 4.2. In Figure 4.2d, the first part

(“1,2:1;”) represents the encoding of the first gate (𝐺0), where 1, 2 come from the gate number

of the connected gates and the 1 after the colon comes from the decimal representation of the

output column of 𝐺0’s truth table (shown in Figure 4.2b).

4.1.2 BNK Phenotype

The phenotype of a BNK system represents the structure of the system, comprehensively

captured by a state transition diagram (STD). This STD is computed from the genotype. All

states in a BNK system lead to other states or themselves, thus leading to loops and fixed points in
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Figure 4.2 Example of how a BNK(3,2) system is encoded into a genotype string

the STD. The behaviour is captured by the oscillations found in loops, which are evaluated using

different fitness functions, depending on the problem. Like the genotype, a textual encoding of

the STD allows for easier manipulation by a computer program. Continuing from the BNK(3,2)

example presented in the previous Section 4.1.1, Figure 4.3 shows the process of encoding the

structural phenotype of a BNK system. The caveat of this encoding is that the order of the gates

is fixed and cannot be interchanged. This has the effect to produce multiple phenotypes with the

exact same behaviour (oscillations).

The STD in Figure 4.3b contains two distinct loops: The first loop where all the states except

one lead to a 3-states loop, and another loop for the state ‘010’. The textual encoding in Figure

4.3c is realized by listing the future states of the state transition map, in ascending order of the

initial state, using decimal values. In this case, based on the state transition map presented in
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Figure 4.3a, state 0 (‘000’) maps to 1 (‘001’), state 1 (‘001’) maps to 3 (‘011’), state 2 (‘010’)

maps to 2, etc.

a) State transition map

000

001

011

100

010

101 110

111

b) State transition diagram

(STD)

1; 3; 2; 4; 1; 3; 3; 5;
c) Textual representation of the

phenotype

Figure 4.3 Example phenotype encoding of the same BNK(3,2) system presented in

Figure 4.2

Figure 4.4 shows how to analyze the BNK(3,2) phenotype (STD) of Figure 4.3b. Subfigure 4.4a

demonstrate how to identify loops in the STD. Loops can be identified by traversing each state

until they come back to a previously encountered state (in the same traversal). This example

has two loops: loop #0 which shows an asymmetric oscillation through three states and loop #1

which is a single state loop hence does not oscillate. Subfigure 4.4b shows how each state is

encoded using binary values. The binary values of each state encode the value of a corresponding

gate, depending on the position. An arbitrary choice was made to list the gates from left to right,

starting at index 0 and moving in ascending order of gates (0, . . . , 𝑁 − 1). Subfigure 4.4c is the

timing diagram of loop #0 that goes through states ‘001’ → ‘011’ → ‘100’, starting at state

‘100’. With all loops identified, the timing diagrams for each loop allows to extract the repeating

sequence for each gate. For example, the repeating sequence for gate #1 in Figure 4.4c is ‘001’.
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a) Identification of loops in a

system diagram

b) System state encoding c) Timing diagram of loop #0

Figure 4.4 Interpretation of the BNK(3,2) phenotype presented in Figure 4.3b

4.2 Examples: Digital Circuits and Genetic Networks (using BNK)

4.2.1 The Half-Adder: a simple combinational digital circuit

As shown in Figure 4.5, a half-adder circuit comprises four nodes: two input Yes gates (A is #0

and B is #1), an XOR gate (#2) that generates the sum, and an AND gate (#3) that computes the

carry-out. Typically this is presented as a circuit diagram, like Figure 4.5a.

a) Half-adder circuit diagram

0

2 3

1

0:1; 1:1; 0,1:6;

0,1:1;
b) BNK(4,2) genotype of an

half-adder

c) STD of the BNK(4,2)

half-adder system

Figure 4.5 Representation of a half-adder system
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When represented with a BNK system, like in Figures 4.5b and 4.5c, the STD presents four

loops, one for each possible outcome of the system (gates 2 and 3 are the outputs, which can

theoretically both have binary values of 0 or 1). The genetic representation for the circuit, in

BNK standard comprises a list of nodes, where each node is described by the sources of its

inputs followed by its logical functionality (in the same order as the bits in the output column of

a standard truth table, but converted to its decimal equivalent). As such, the genotype of the

half-adder in Figure 4.5 comes to: (0:1; 1:1; 0,1:6; 0,1:1). On the other hand, the structural

phenotype of the circuit comprises the next state of all current states, in ascending order. These

are (0; 0; 0; 0; 6; 6; 6; 6; 10; 10; 10; 10; 13; 13; 13; 13), where the next states are listed in

ascending order of current states, starting with 0 (decimal) and concluding with 15 (decimal).

4.2.2 The Repressilator: an oscillating genetic network

Oversimplifying, a gene may be viewed as a <condition><action> construct, where the condition

is satisfied (or not) by a combination of proteins, and the action (i.e., protein expression) occurs

upon satisfaction of the condition. Furthermore, one can model a genetic circuit, comprising

multiple genes, as a network of interacting nodes, where each node responds to certain inputs

(proteins) by out outing (or not) its own protein. The repressilator (shown in Figure 4.6) is a

famous example (Elowitz & Leibler (2000)) of a genetic circuit, one that exhibits an oscillatory

behaviour.

A repressilator is made of three nodes, every node accepts one input, which comes from the

preceding node. Every node inverts its input to produce its output. As such, the genetic

representation of the repressilator is (2d:10; 0d:10; 1d:10), showing that every node is an inverter.

The phenotype is (7d; 3d; 6d; 2d; 5d; 1d; 4d; 0d). Looking at the behaviour in Figure 4.6c, it

can be seen that if all genes are initialized with the same values (either all ones or zeros), then

they will all oscillate at every step (top loop), otherwise they will oscillate every three steps

(bottom loop).
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a) Genetic circuit of a

repressilator

1

0

2

2:2; 0:2; 1:2;
b) BNK(3,1) genotype of a

repressilator

c) STD of the BNK(3,1)

repressilator

Figure 4.6 Repressilator system, represented in both the domain specific circuit diagram

and BNK system diagram

This second example makes it enticing to investigate other genetic networks that exhibit oscillating

behaviours. This requires the definition of a fitness function that measures the closeness of the

behaviour of the genetic network to perfect oscillation. Defining perfect oscillatory behavior,

regardless of initial conditions, proved to be a non-trivial exercise. This (fitness evaluation of

oscillators) and the rest of an evolutionary algorithm used to evolve genetic circuits with perfect

and imperfect oscillators, of various sizes (i.e., number of genes) is the subject of the following

Section 4.3.

4.3 Case Study: the Application of 𝐸𝑏 and 𝑅𝑏 to Oscillating Circuits

The EA defined in Section 2.6.1 was used to find genetic circuits exhibiting oscillatory behaviour.

In the EA, every individual has a genotype and a phenotype. BNKe, a slightly constrained

version of BNK, is used, where all the nodes have the same number of inputs, exactly equal

to rather than up to 𝑘 . BNKe allows to define more elegant and efficient data structures and

algorithms, while still allowing to evolve oscillators, which are studied for ease of evolvability

and robustness under perturbation. The genotype and phenotype of a BNKe system are identical

to those presented at the beginning of this chapter, except for the constraint just stated.
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4.3.1 Random initialization and mutation

With regards to random initialization and mutation, the possible values are [0, . . . , 𝑁 − 1] if the

gene represents an input, or [0, 1] if the gene represents a truth table function.

4.3.2 Fitness Evaluation

Fitness evaluation of an oscillating system requires new definitions, including those of System

Symmetry and System Robustness. Each gate of a BNK system have symmetry and robustness

values, which contribute to overall system symmetry and robustness. The fitness of a gate is

obtained by multiplying its symmetry by its robustness (with values lying between 0 and 1).

The gate with the best fitness (where higher values are better), provides system fitness, since in

the case of a perfect oscillator only a single gate is required to exhibit ideal behaviour. Fitness

evaluation is presented in Equation 4.1, where 𝑆(𝑛) is the symmetry of gate 𝑛 and 𝑅(𝑛) is the

robustness of gate 𝑛.

𝐹 = max{𝑆(𝑛) × 𝑅(𝑛) : 𝑛 = 0, . . . , 𝑁 − 1} (4.1)

4.3.2.1 System Symmetry

To compute the symmetry of a BNK system, the state transition diagram (STD) is formed first,

and used to identify every loop (including fixed points). For every gate in a cycle, identify its

repeating sequence (including constant values) and, if applicable, its sub-sequences. Compute

the symmetry of any and all sub-sequences, and use these values to calculate gate symmetry.

Gate symmetry is then multiplied by a penalty, which reflects the ratio of the length of the

shortest sub-sequence to the length of the longest sub-sequence (if sub-sequences exist). Loop

symmetry is the sum of penalized gate symmetries divided by the number of gates. System

symmetry is the weighted average of all loop symmetries, where the weight associated with a

loop symmetry equals the number of states in the associated cycle.



67

In intuitive terms, system symmetry reflects how close the behaviour of every gate in a system is

to a perfectly symmetric oscillation, but without requiring all the gates to have the same length

of oscillation or to oscillate in synchronization with each other.

A worked example of how system symmetry is calculated is shown in Algorithm 4.1, and the

pseudo-code of the general algorithm is presented in additional materials.

Algorithm 4.1 A worked example of symmetry for BNK(3,2) system presented in Section 4.1

1 First loop = ‘001’ → ‘011’ → ‘100’;

2 𝐺0 = ‘001’;

3 First sub-sequence = ‘001’;

4 sub-sequence symmetry = 1
2
∗ 3

3
= 0.5; /* Weighted ratio */

5 𝐺0 symmetry = 0.5 ∗ 3
3
= 0.5; /* Sum of all sub-sequences symmetry

times penalty */
6 𝐺1 = ‘001’; /* Rotate the sequence so that it starts with a

complete low period */
7 First sub-sequence = ‘001’;

8 sub-sequence symmetry = 1
2
∗ 3

3
= 0.5;

9 𝐺1 symmetry = 0.5 ∗ 3
3
= 0.5;

10 𝐺2 = ‘011’;

11 First sub-sequence = ‘011’;

12 sub-sequence symmetry = 1
2
∗ 3

3
= 0.5;

13 𝐺2 symmetry = 0.5 ∗ 3
3
= 0.5;

14 First loop symmetry = 0.5+0.5+0.5
3

= 0.5;

15 Second loop = ‘010’;

16 𝐺0 = ‘0’; /* No oscillation results in no symmetry */
17 Second loop symmetry = 0;

18 System symmetry = 0.5 ∗ 3
4
+ 0 ∗ 1

4
; /* Weighted sum based on the size of

the loop */

4.3.2.2 System Robustness

Robustness of an oscillating circuit is different from the measures of robustness defined earlier.

System robustness is equal to average gate robustness. Gate robustness measures the closeness of

gate behaviour to ideal robustness. A gate is ideally robust if all possible transient perturbations

to its state do not alter its steady-state behaviour. In BNK-modeled systems, perfect robustness
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occurs if all states are part of one loop or the loop’s basin of attraction or, alternatively, if

there are multiple loops and they all exhibit the same gate-level behaviour (and therefore, are

phenotypically equivalent to a single loop).

Intuitively, this means that regardless of the initial state of the system, the system exhibits one

steady-state behaviour.

A worked example of how system robustness is calculated is shown in Algorithm 4.2, and the

standard pseudo-code is can be found in the additional materials.

4.4 Results I: A Tableau of Perfect & Imperfect Oscillators

To find different kinds of oscillators, with varying degrees of symmetry and robustness, a simple

Evolutionary Algorithm (EA) was used to generate random BNKe(4,3) systems and evolve them

towards perfect oscillation. A BNKe system with 𝑛 = 4 nodes and 𝑘 = 3 inputs was empirically

found to provide a good variety of individuals while maintaining a reasonable size for analysis

purposes, but similar results were achieved with different settings of n and k.

The parameter values of the EA are shown in Table 4.1; these summarize the descriptions

of Section 2.6.1. The resulting individuals (from all generations) where assessed for their

respective system symmetry and robustness, and four examples were chosen to exhibit systems

with different values of symmetry and robustness. It is impossible to obtain systems with system

robustness of 0.

4.4.1 Perfect Oscillator

A perfect oscillator is defined as a genotype with a phenotype that exhibits perfect symmetry

with perfect robustness, by at least one of its nodes. Intuitively, this means that at least one

specific node will generate a perfectly symmetric wave, and return to doing so, after any transient

disturbance of state.
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Algorithm 4.2 A worked example of robustness for BNK(3,2) system presented in Section 4.1

1 𝐺0; /* First gate */
2 First loop (𝐿1) = ‘001’ → ‘011’ → ‘100’;

3 𝐺0(𝐿1) = ‘001’;

4 Second loop (𝐿2) = ‘010’; /* Check for same behaviour in other
loops */

5 𝐺0(𝐿2) = ‘0’ ∗3 = ‘000’;

6 For 𝑘 = 0 to 1; /* Rotate the shortest sequence by its
initial length and compare behaviour */

7 if 𝐺0(𝐿1) == 𝐺0(𝐿2);

8 Equivalent loops ← (𝐺0(𝐿1), 𝐺0(𝐿2)); /* Keep track of
equivalent loops */

9 𝐺0(𝐿2) = ‘000’; /* Rotate 𝐺0(𝐿2) by 1 position forward */
10 𝑆𝐿1

= 7, 𝑆𝐿2
= 1; /* Create distribution of states going in each

loop */
11 𝑆 = {7, 1, 0, 0, 0, 0, 0, 0}; /* Merge loops expressing the same

behaviour and fill with zeros until the size of 𝑆 is equal to
the total number of states in the system */

12 𝜎𝑆 = 2.29; /* Compute standard deviation of 𝑆 */
13 𝑆𝑚𝑎𝑥 = {8, 0, 0, 0, 0, 0, 0, 0}; /* Create ideal distribution where all

the loops would express the same gate-level behaviour */
14 𝜎𝑚𝑎𝑥 = 2.64; /* Compute standard deviation of 𝑆𝑚𝑎𝑥 */
15 Gate 0 robustness = 𝜎𝑆

𝜎𝑚𝑎𝑥
= 0.866;

16 𝐺1; /* Second gate */
17 First loop (𝐿1) = ‘001’ → ‘011’ → ‘100’;

18 𝐺1(𝐿1) = ‘001’; /* Rotate the sequence so that it starts with a
complete low period */

19 Second loop (𝐿2) = ‘010’;

20 𝐺1(𝐿2) = ‘1’ ∗3 = ‘111’;

21 For 𝑘 = 0 to 1;

22 if 𝐺1(𝐿1) == 𝐺1(𝐿2);

23 Equivalent loops ← (𝐺1(𝐿1), 𝐺1(𝐿2));

24 𝐺1(𝐿2) = ‘111’;

25 𝑆𝐿1
= 7, 𝑆𝐿2

= 1;

26 𝑆 = {7, 1, 0, 0, 0, 0, 0, 0};
27 𝜎𝑆 = 2.29;

28 𝑆𝑚𝑎𝑥 = {8, 0, 0, 0, 0, 0, 0, 0};
29 𝜎𝑚𝑎𝑥 = 2.64;

30 Gate 1 robustness = 𝜎𝑆

𝜎𝑚𝑎𝑥
= 0.866;

31 𝐺2; /* Third gate, skipped for brevity */
32 Gate 2 robustness = 𝜎𝑆

𝜎𝑚𝑎𝑥
= 0.866;

33 System robustness = 0.866+0.866+0.866
3

= 0.866;
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Table 4.1 EA parameters used to find

various BNKe(4,3) systems

Parameter Setup
Initialization Random

Genetic operators 1-point mutation

Population 10,000

Generations 50

Parent selection None

Survivor selection Best of parent & offspring

Examples of BNKe-modeled systems with different levels of systems symmetry and system

robustness are presented in figures 4.7, 4.8, 4.9 and 4.10, all done with four gates (𝑛 = 4) and

three inputs (𝑘 = 3).

Figure 4.7 shows an oscillating circuit of perfect symmetry (i.e., 1) and robustness (i.e., 1). The

behaviour shown in the state transition diagram (Figure 4.7b) illustrates perfect oscillation as

the only oscillation present is perfectly symmetrical with sequences of lows (0) and highs (1)

alternating at every step for all the gates, and perfect robustness as all states lead to the same

behaviour (oscillation).

Figure 4.8 shows an oscillating circuit with no symmetry (i.e., 0) and perfect robustness (i.e., 1).

This system has no oscillation as the only loop comes from a state leading to itself, meaning

the values of the gates will not change thus producing no oscillation. The system still achieves

perfect robustness as all states lead to the same behaviour.

Figure 4.9 shows an oscillating circuit with high symmetry (≈ 0.6818) and low robustness

(≈ 0.5083). In this example, a good system symmetry is achieved due to all four loops presenting

oscillating behaviour, out of which only one is asymmetric (the loop with three states). All

the other loops express perfect symmetry through all gates, with the 4-states loop oscillating

every two steps while the two small loops (two states) oscillate every step. The robustness

is quite low (in practice all systems have a minimum of level of robustness) and due to the

various behaviours found in the system. With four states oscillating every two steps, seven states
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0
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1,0,3:47; 3,2,0:3;

3,0,2:136; 1,0,2:233;
a) Connectivity diagram
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1100 1010 1101

1110

1111

b) State transition diagram

Figure 4.7 Oscillating circuit of perfect symmetry and robustness

oscillating asymmetrically and five states oscillating every step, there is a fair chance that a

random state change would drive the system to a different behaviour.

Figure 4.10 shows an oscillating circuit with very low symmetry (≈ 0.2777) and low robustness

(≈ 0.5274). This system expresses poor symmetry as across the five loops, only three oscillate.

From the three loops that express oscillation, one is asymmetrical (penalizing the symmetry)

and the other two have perfect oscillation only for a single gate (the other three gates have no

oscillation). This example has low robustness for the same reasons as the previous example
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0,3,2:235; 3,0,1:116;

3,2,1:234; 2,0,3:59;
a) Connectivity diagram
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1101

1001

1000

b) State transition diagram

Figure 4.8 Circuit with no symmetry and perfect robustness

(presenting high symmetry with low robustness), although in this case it is a bit more complex

since not all gates express the same behaviour within the same loop. Please refer to worked

example in Algorithm 4.2 to see how robustness is calculated in detail.

In summary, four different systems were evolved: a system (Figure 4.7) which exhibits perfect

symmetry and perfect robustness, with all its states leading to a single (“1011” → “0100”)

loop; another system (Figure 4.8) with all its states leading to a fixed point (“1011”), a perfectly

robust but non-oscillating system; a third system (Figure 4.9) with four different steady-state
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b) State transition diagram

Figure 4.9 Circuit with high symmetry and low robustness

loops, depending on its initial state; a final system (Figure 4.10) that scores quite badly on both

robustness and symmetry.

4.5 Results II: The Evolvability & Robustness of Perfect Oscillators

The purpose of this section is to answer three questions, which deal with the evolvability and

robustness of oscillating circuits (modeled as BNKe systems) and the relationship between the

value of connectivity 𝑘 and the multi-modality of a fitness surface, where fitness here reflects

the closeness of the phenotype to perfect oscillation.
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b) State transition diagram

Figure 4.10 Circuit with high symmetry and low robustness

4.5.1 How easy is it to evolve a perfect oscillator (which is a phenotype) starting from
arbitrary starting points (genotypes)?

To answer this question, the space of genotypes of a BNKe(𝑛,𝑘) system (with specific 𝑛 and

𝑘 values, such as 𝑛 = 4 and 𝑘 = 3) are sampled, on a uniformly random basis. This sample

represents the starting group of genotypes. Hence, following the general definition of 𝐸𝑏, each

genotype is evolved towards perfect oscillation, until either a perfect oscillator is found or a

pre-set maximum number of generations is exceeded. Hence, 𝐸𝑏, which is a function of the

closeness of the final phenotype to a perfect oscillator and the time it took to reach the final

phenotype, is computed over the whole sample.

This experiment leverages the same EA described in Section 2.6.1, along with the parameters

listed in Table 4.2. Random BNKe systems are generated and mutated every generation until a

perfect oscillator (as defined in Section 4.4.1) is found or the maximum number of generation is

reached.
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Table 4.2 EA parameters used to

assess evolvability of BNKe(1,1) to

BNKe(4,4)

Parameter Setup
Initialization Random

Genetic operators 1-point mutation

Population 100

Generations 200

Selection Best fitness

Five different BNKe systems were explored for this experiment, BNKe(1,1), BNKe(2,1),

BNKe(2,2), BNKe(3,1) and BNKe(3,2). Figure 4.11 presents the evolution of fitness, along with

the walk of one individual across the symmetry × robustness landscape. The fitness evolution

plots demonstrate how the number of gates (𝑛) or inputs (𝑘) impact the ability to find perfect

oscillators, while the evolutionary walks of single individuals facilitate the understanding of how

(in one case) evolution navigates the symmetry × robustness landscape in its journey to perfect

oscillation. The details (genetic circuit, BNK genotype and BNK phenotype) of the resulting

individuals of each sample walk are presented in Figure 4.12.

In Figure 4.11, the plots on the left show the evolution of average fitness of the population

(with the variance 𝜎2 in grey), together with the resulting baseline evolvability 𝐸𝑏 value. Each

figure on the right comprise a sample walk of an individual towards perfect oscillation. The

evolutionary path can be traced by following the numbered dots or the color gradient (from dark

blue to dark red).

In Figure 4.12, the left column shows the equivalent genetic circuits, where each thick black

line is a gene (𝐺). The genes in these examples are regulated by repressors and activators. A

right-angle arrow marks the start of transcription (of the mRNA), while the thick gray line marks

the coding sequence of the protein of the gene (except in the case of gRNA, which is a guide

RNA). dCas9_rep represents a protein that when bound to gRNA acts as a repressor. The red

lines ending with pointed and flat arrows stand for activators and repressors of transcription of

the genes they point to. For all genetic networks presented in Figure 4.12, it is assumed that



76

repression overrides activation and activated genes have a very low non-activated output. Also,

a protein can function as a repressor for one gene and an activator of another (different) gene.

• BNKe(1,1): With a single gate connected to itself, there are only two possible scenarios: the

gate has no oscillation or the gate oscillates perfectly. Hence, it is very easy to find all perfect

oscillators across the population within only a few generations. The sample walk illustrates

the scenario, where the starting individual had no oscillation, until a mutation brought it to

perfect oscillation. The genotype and phenotype of the sampled walk confirm this behaviour.

• BNKe(2,1): In this case, only part of the population evolved into perfect oscillators. Upon

investigation, a genotype (1:1; 0:1;) was found with low fitness, which cannot be improved

via any 1-point mutation. This individual remains sub-optimal. In principle, this situation

can be addressed by genetic operators that apply two or more simultaneous mutations to the

genotype. On the other hand, the perfect oscillator of the sample walk, has a gate that acts as

a pass-through of its value to the other gate, which in turn inverts it and passes it back. This

set-up results in a perfect oscillation with a wavelength of two.

• BNKe(2,2): Perfect oscillators are found quickly across the population even with the slightly

increased complexity. However, baseline evolvability is lower than the previous case due to

the slightly lower density of perfect oscillators in the search space. The evolutionary walk

shows that it needed a mutation that traded away all its robustness for enhanced symmetry,

before landing on a perfect oscillator. The resulting STD of the sampled walk shows perfect

oscillation (with a wavelength of one) on both gates, after a short transition. The first gate

simply represses (inverts) itself continuously, and the second gate activates itself only when

at least one gate is turned off. This eventually leads the system to a stable cycle, where both

gates are oscillating at every step.

• BNKe(3,1): Having three gates with only one input makes it harder to evolve perfect

oscillators, but only by a small margin. The evolutionary walk needed to backtrack to

increase symmetry before achieving perfect oscillation. This perfect oscillator has a length

of two (as in the previous example), but it realizes it through an unusual system. Only the

first gate inverts its input and passes the output to the other two gates. These two gates are

simple pass-through devices that make no contribution to system oscillation.
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• BNKe(3,2): This is the most complex design. The added degree of freedom, due to the

additional input, impacts evolvability positively. This complexity results in more convoluted

evolutionary walks. The individual presented in the sampled walk has a first gate (𝐺0) that

always keeps its initial value, a second gate (𝐺1) that inverts itself, and a third gate (𝐺2) that

turns on only when 𝐺1 is active and 𝐺2 is inactive. This leads to two distinct loops in the

STD of the system, depending on the initial (constant) value of the first gate. However, in

both loops, the second gate oscillates at every step (i.e., exhibiting equivalent behaviour),

which renders the system a perfect oscillator.

4.5.2 How robust is that perfect oscillator under mutation (to its genotype)

To answer this question, a perfect oscillator is picked off each of the five runs (above) and apply

𝑅𝑏 to it, to produce the scatter plot (and overlaid ellipses) exhibiting the relationship between 𝐷𝑝

and 𝐷𝑔. However, to present a summary statistic that reflects the degree of correlation between

genotypes and phenotypes distances from the original perfect oscillator, Θ and 𝛼 are computed

for each plot in Figure 4.13.

As a reminder, a perfectly robust system is one whose states are part of the basin of attraction

of one loop or fixed point. This means that the steady-state behaviour of the system is always

the same regardless of initial state or temporary perturbation. As a reminder, A system that

exhibits perfect oscillation does not require perfect system robustness; it only requires

that (at least) one gate exhibits perfect oscillation, at steady-state, and returns to it despite any

transient perturbation of state.

This experiment leverages the same EA described in Section 2.6.1, along with the parameters

listed in Table 4.3. The resulting perfect oscillators found in Section 4.4.1 are used to initialize

the experiment. No selection is applied after mutation since the goal is to see how random

mutations affect the behaviour (phenotype) of perfect oscillators. Higher 𝐷𝑝 means that the

phenotype of the mutated individual is straying away from perfect oscillation. Hamming distance

is used to measure the distance between genotypes, while difference in fitness reflects phenotype
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Figure 4.11 Evolution of fitness (left-column), along with the walk of one individual

across the symmetry × robustness landscape (right-column)
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distance. The hamming distance will work for measuring genotype distance while 𝑛 ≤ 10, since

the gates can be encoded using a single digit. In the case of 𝑛 > 10, either the gates would need

a different basis of encoding (alphanumeric) or use a different method of distance measurement.

Table 4.3 EA parameters used to

assess robustness of BNKe(1,1) to

BNKe(4,4)

Parameter Setup
Initialization Perfect oscillator

Genetic operators 1-point mutation

Population 100

Generations 200

Selection -

Figure 4.13 illustrates the results of the baseline robustness experiments applied to perfect

oscillators. The figures on the left show the cumulative robustness of perfect oscillators while the

figures on the right are an animation of the progress of robustness during a single walk (animated

figure, best viewed with a professional PDF reader software). A two-dimensional histogram is

laid underneath to illustrate the density of individuals found at various coordinates (the gray

scale indicates density). The red point is the center of the ellipses, and the three confidence

ellipses (65%, 90%, 95%) help visualize the correlation, along with the Θ and 𝛼 values.

In the first example, BNKe(1,1), robustness is balanced, but this is only due to the extremely

limited genotype space. In the other four examples, BNKe(2,1) to BNKe(3,2), robustness is

low, as most oscillators lose their perfect symmetry with very few mutations. However, as the

complexity of the system increases (by increasing 𝑛 and 𝑘), it is able to retain more of the

solutions as perfect oscillators (the center of mass is closer to zero on the vertical axis 𝐷𝑝).

4.5.3 Does increasing 𝑘 increase the multi-modality of the fitness surface (where
fitness here reflects the level of perfection of oscillatory behaviour)

For this experiment, the search space for each problem (𝑛 = 1, 2, 3, 4) was sampled randomly

107 times. Fitness evaluation for a perfect oscillator as described in Section 4.4.1.
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Figure 4.13 Results of the baseline robustness experiments applied to perfect oscillators



82

Taking example from Figure 4.2a, the genotype can be divided into connectivity and functionality.

Figure 4.14 illustrates how each part is extracted from the genotype, with the connectivity

elements identified with red squares and the functionality elements with red circles.

Figure 4.14 Building connectivity and functionality strings from a

BNK genotype

4.5.3.1 Functionality

Functionality being the decimal value of the output of each gate’s truth table, the possible values

always start at 0, and the upper limit will be 22𝑘 − 1, which is 15 for each gate in this example.

Then, find the index of the functionality string in the ordered set of all possible functionality

strings (“0;0;0;”, “0;0;1;”, . . . , “15;15;15;”). The axis represents the indexes in the ordered

set of functionality strings, and is normalized by dividing with the size of that set (163 in this

example). The example functionality string is positioned above the axis approximately, for

illustrative purpose.

4.5.3.2 Connectivity

A BNK system does not allow to be connected to the same gate twice, hence the set of possible

values for each gate of this example is {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)} (the order of

the connected gates matter). As for the connectivity axis, find the index of the connectivity
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Figure 4.15 The scale of functionality, based on all the possible

values in logical ascending order, with the most significant digit

starting from the left

string in the ordered set of all possible connectivity strings. The axis represents the indexes in

the ordered set of connectivity strings, and is normalized by dividing with the size of that set (63

in this example). The example connectivity string is positioned above the axis approximately,

for illustrative purpose.

Figure 4.16 The scale of connectivity, based on all the possible

values in logical ascending order, with the most significant digit

starting from the left

4.5.3.3 Fitness landscape

The two axes of connectivity and functionality form a very dense 2D plane, with every point

having a fitness value on the third axis. For practical reasons, a discrete grid is superimposed on

what may be a very dense 2D plane. If the total number of coordinates along an axis is less or

equal to 103 then the coordinates of the grid points (along each axis) equal the coordinates of the

points. If they are greater than 103 then only 103 are used for that axis. Once that is done and



84

the fitness value is computed, a local 3×3 local maximum filter is applied to the discrete fitness

surface, to identify (and hence count) the total number of local optima Σ found. Σ is obtained

by applying a maximum filter with a 3×3 binary filter (filter values set to 1). This operation

uses the filter to replace the pixel at the center of the filter with the maximum value found in the

connected neighborhood, effectively “dilating” the image. Then the original image is compared

with the dilated image (using ⊕), giving a map of a local peaks, which are then counted. The

number of local optima identified using this filter is used as a measure of multi-modality of the

fitness surface.

4.5.3.4 Measure of multi-modality

The 3D and 2D views of the fitness landscape for each BNKe system with 𝑛 = 4 and 𝑘 = 1, 2, 3, 4

in Figure 4.17 demonstrate how the multi-modality of the fitness landscape increases with 𝑘 . The

figures on the left are an interpolation of all the points sampled, generating a fitness landscape

in three dimensions. The figures on the right are a top view of the fitness landscape capturing

the local optima Σ. An amplification of a 50×50 region better illustrates the density of local

optima in the search space. The fitness value is represented using a red gradient (white when

fitness is 0 up to dark red when fitness is 1). From the entire search space of BNKe(4,1), a total

of 18,053 peaks were identified. For 𝑘 = 2, the estimated number of peaks is 6,857,365, for

𝑘 = 3 the estimated number of peaks is 8,152,073 and for 𝑘 = 4 the estimated number of peaks

is 8,294,400.

Starting with BNKe(4,1), clearly defined regions of perfect oscillators can be observed. In this

case, the entire search space was sampled. With 𝑘 = 2, 3, 4, the search spaces are now much

bigger than the 107 samples taken, which means the shown landscape is less precise. However,

some concentrated regions of perfect oscillators can still be seen with 𝑘 = 2, which dissipate

when 𝑘 = 3 and 𝑘 = 4. The zoomed regions of the 2D landscapes also confirm that the local

optima get sparser as the search space increases.
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Figure 4.17 The multi-modality of the fitness landscape of BNKe(𝑛 = 4, 𝑘 = 1, 2, 3, 4)
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4.5.3.5 Relationship of the number of inputs on the multi-modality

As shown in Table 4.4, the number of local optima Σ increases with 𝑘 . However, the density of

local optima, measured as the fraction of local optima over the entire search space, decreases

with the exponential expansion of the search space. Hence, there are a greater number of ways

to achieve perfect oscillation in larger spaces, but it is also harder to find them, due to the need

for more extensive searches.

Table 4.4 Relationship

between 𝑘 and Σ in a BNKe

system

k Σ density of Σ
1 18,053 ≈ 0.2754

2 6,857,365 ≈ 0.0050

3 8,152,073 ≈ 2.46e−6

4 8,294,400 ≈ 2.5e−6

4.6 Conclusion of the application of the baseline measures to evolving oscillating
circuits

In order to demonstrate the versatility of the baseline measures, a generic modeling approach was

developed to build oscillating circuits. This model, namely BNK, is similar to NK System, but

offers the intermediary phenotype representation necessary to assess evolvability and robustness.

The baseline measures 𝐸𝑏 and 𝑅𝑏 were applied to the specific problem of finding perfect

oscillators, and provided insight into how the complexity of the genotype and phenotype space

affect the evolvability and robustness of such system by changing the number of gates (𝑛) and

inputs (𝑘) in the system.



CHAPTER 5

EVOLVABILITY OF GENETIC PROGRAMMING LANGUAGES

The goal of this chapter is to demonstrate how the baseline measures 𝐸𝑏 and 𝑅𝑏 can be applied

to existing (and future) Evolutionary Algorithms to assess their performance and understand

the potential limitations of these measures. A simple experiment will be conducted with three

different variants of GP languages on three well known benchmark problems, aiming to give a

fair assessment of their performance in terms of baseline evolvability, baseline robustness and

fitness.

5.1 Selecting Genetic Algorithms

One of the key aspects of measuring distances between two genotypes is choosing an appropriate

method that captures the minimum number of genetic operations needed to go from one genotype

to the other. Hence, a GA that leverages advanced genetic operators such as multi-point crossover

will increase the complexity of defining a good distance measurement algorithm. As this chapter

aims to offer a demonstration of application, complex languages with non-linear representation

will be left for further research. Thus, the focus will be kept on GP languages that use integer

strings of fixed lengths for their genotype and enforcing baseline mutation as their only genetic

operator. Given these constraints, the Hamming distance can be used to compute the minimum

number of mutations between two genotypes in all cases.

The three GP languages assessed will be Grammatical Evolution (GE), Gene Expression

Programming (GEP) and Cartesian Genetic Programming (CGP), previously introduced in

Section 1.1. Variants of GP have been reviewed previously by Oltean & Grosan (2003), which

covered these three languages but only in application to symbolic regression problems. In that

paper, the authors demonstrated that CGP performs better (in terms of fitness) for the selected

regression problems. However, their respective evolvabilities were not assessed.

Since all three GP languages also have invariant structures in their genotype, the Hamming

distance can be used to measure the distance between two of their genotypes. In this case,
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Hamming distance does not reflect the difference between characters, but rather the number of

genes with different values, as illustrated in Figure 5.1. The length is defined by the number of

genes. The value of genes 𝑔0 . . . 𝑔4 are compared and the distance is incremented by 1 for each

differing gene.

Figure 5.1 Application of the Hamming distance to

genotypes of identical length

5.1.1 Structural phenotype representation

When evaluating evolvability and robustness, a structural representation is most suited as it is

independent of the environment. Assessing the ability to move from one random phenotype to

another simulates a change of the environment, where the starting structural phenotype had an

ideal fitness in the previous environment, and the target structural phenotype has an ideal fitness

given a new environment. In the case of GP languages, the structural phenotype is the rooted

tree structure of the execution of functions and terminals. The baseline measures of evolvability

and robustness are about changing and keeping their structures, respectively.

As the following experiments are about the baseline measures, the algorithms will use a

structural phenotype representation. The structural phenotype of a GP language program can be

represented as a tree as long as it has a single output, which will be the case with the selected

benchmark problems. The Tree Edit Distance will be used to measure the distance between

two phenotypes. Rooted tree structures can be encoded using the Bracket Notation format, as

represented in Figure 5.2. The choice of bracket does not matter in the Bracket Notation format.

TED algorithms leverage that notation to parse and measure tree structures.
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Figure 5.2 A simple example of rooted tree structure

encoding using the Bracket Notation format

5.1.2 Grammatical Evolution (GE)

In GE, the nodes of a rooted tree are random integer values, which are translated into program

code using a grammar table. The structure of the tree is built by following the sequence of

functions and terminals in the genotype, filling them with the following genes until no more are

needed to build a valid tree. This means that if the first gene is a terminal, the tree will be a

single node, discarding the rest of the genotype.

For the following experiments, the validity of the generated GE individuals will be enforced

at initialization. Any invalid individual generated during random initialization is replaced by

another random individual. Tree size will be limited to exactly 60 nodes, resulting in a genotype

of 60 genes, with each gene represented by an integer between 0 and 255 inclusively.

In GE, fitness is evaluated in the same way as GP, defined by Koza (1992). The fitness evaluation

is set as a minimization problem, and values are normalized to [0, 1], using the worst possible

fitness as the normalizing factor.

The following example illustrates how GE works. The algorithm uses genotypes of length 10

and has access to a single terminal (𝑥) and four arithmetic operators (+, −, ∗, /). The associated
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Backus Naur Form grammar used is

<start> ::=<op>

<op> ::=(+<op><op>)

| (−<op><op>)

| (∗<op><op>)

| (/<op><op>)

| (𝑥)

where the <start> expression translates directly to <op>, and in turn <op> can translate to one

of the five expressions linked to the sets of functions and terminals, in the order stated. Taking

the genotype 34,106,242,99,158,240,239,214,134,214 as an example, the genes are translated

using the grammar rules shown in Table 5.1. The values in the modulo column are computed by

dividing the gene value by the number of choices available from the grammar (<start> has

only one and <op> has five).

Table 5.1 GE genotype decoding using the Backus Naur Form grammar

Gene index Gene value Grammar expression Modulo Translation
0 34 <start> 0 <op>

1 106 <op> 1 - <op><op>

2 242 <op> 2 * <op><op>

3 99 <op> 4 x

4 158 <op> 3 \<op><op>

5 240 <op> 0 + <op><op>

6 239 <op> 4 x

7 214 <op> 4 x

8 134 <op> 4 x

9 214 <op> 4 x

This results in the rooted tree structure shown in Figure 5.3. Given this grammar, the first gene

has no impact on the structural phenotype since its sole purpose is to function as the root of the

tree.
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Figure 5.3 Resulting rooted

tree from decoding the GE

genotype in Table 5.1

5.1.3 Gene Expression Programming (GEP)

GEP also uses a tree representation but differs from GE by splitting the genotype into several

sections (or chromosomes). Each chromosome is a sequence of genes. The chromosomes are

of fixed length and comprise a head and a tail. The head comprises at least one function and

the tail is made of terminals only. This imposes a significant constraint on the complexity of

viable solutions when only a single terminal is available, as the entire tail portion will never

change. Like GE, the structural phenotype is built by decoding the genotype from left to right,

filling the functions until completion. While GE allows a single node tree (terminal only), GEP

enforces a function as the starting node, so the GEP tree will never have less than two nodes. In

GEP, it is also possible to adjust the weight of each function in the function set, adjusting their

respective probabilities to be picked during mutation. All functions will have equal weights in

the following experiments.
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The genes in GEP are represented by unsigned integers. The possible values for a gene are

determined by the sets of available functions and terminals for that gene. Given a set of functions

𝐹 and a set of terminals 𝑇 , the maximum value for a gene would be |𝐹 | + |𝑇 | − 1, assuming the

range starts at 0. In GEP, fitness is maximized, is often normalized to [0, 1], and is sometimes

scaled.

For the following experiments, a single chromosome with a head size of 30 will yield a genotype

of 61 genes. This is due to the tail being of equal size to the head and because there is a linking

gene at the beginning of the genotype. The linking gene can be any function available in the

function set and is defined as part of the hyper-parameters, but is unused when GEP is set up

with a single chromosome.

The following example illustrates how GEP interprets its genotypes, using a single chromosome

with a head size of ten genes, a single terminal (𝑥) and four arithmetic operators (+, −, ∗, /).

Table 5.2 shows how a GEP genotype is decoded, by replacing the gene value within the genotype

with the associated expression, until a complete tree is built (all leaf nodes are terminals).

Table 5.2 GEP genotype decoding

using the sets of functions and

terminals available

Gene value Expression Arity
0 + 2

1 - 2

2 * 2

3 / 2

4 x 0

Taking genotype 3,0,4,4,4,2,2,4,2,4,4,4,4,4,4,4,4,4,4,4,4 as an example, a complete tree is

built using only the first five genes (3,0,4,4,4), which produces the structural phenotype

{/{+{𝑥}{𝑥}}{𝑥}}. The rest of the genotype, including the tail containing only the sole terminal

𝑥, are neglected because all prior functions have already been filled with terminals found in the

head part of the genotype. The resulting rooted tree structure is presented in Figure 5.4.
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Figure 5.4 Rooted tree

from decoding the a GEP

genotype

5.1.4 Cartesian Genetic Programming (CGP)

CGP is more unique than GE and GEP because it uses a graph. Instead of a tree, the nodes

in CGP are organized in rows and columns, in a cartesian fashion, hence its name. It looks

similar to a basic neural network, with input nodes at the left end feeding layers of function

nodes from left to right, leading to the output nodes at the right end. Nodes in a given column

can only accept inputs from nodes in previous columns. The function with the highest arity in

the function set defines the number of inputs for all nodes, which means that some inputs of a

node may get discarded if its function does not need them (inputs are used in sequential order).

An illustrative example is presented in Figure 5.5, where the functions all take two inputs. The

notation of the genotype shows the functions as 𝐹𝑖 where 𝑖 is the index of the function in the

table, to ease readability, however only the index 𝑖 shall be used when implementing this GA,

making the genotype a pure string of integers. When there is only a single output node specified,

which is the case in the selected benchmark problems, CGP can also be represented as a rooted

tree, with the single output representing the root.

For the following experiments, every problem will have a set of functions with a maximum arity

of two and a single output. Considering that each node in CGP will have two inputs, using 20

nodes will yield a genotype with 61 genes. The topology will take the form of a single row, since
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this imposes the least constraints on connectivity and is the choice recommended when there

is no specialist knowledge of the problem. Fitness evaluation in CGP is a matter of function

minimization, and normalization is optional.

Figure 5.5 Example CGP system with four functions, six nodes, two inputs

and three outputs

5.2 Selecting benchmark problems

Certain GP languages can perform better than others on one type of problem or another. For this

reason, the three GP languages will be applied to three types of well-known problems, often used

for benchmarking performance, namely a parity problem, a regression problem and a control

problem. Each problem difficulty can be adjusted, however what is most important is ensuring a

fair basis of comparison. Hence, an arbitrary difficulty level will be chosen for each of the three

problems, and hence, fixed during comparison. Furthermore, the set of functions and terminals

available to the GP languages will be identical for a given problem, regardless of GP language.

Each problem is described below. The test cases and fitness functions defined for each problem

are applicable only to the fitness evaluation experiments, which will be presented in Section

5.3.4. In contrast, when applying the baseline measures, only the set of functions and terminals

are relevant, as fitness evaluation is not involved in the process.
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5.2.1 Parity problem

The boolean parity problem consists of counting the number of active bits (value is 1) in a

binary string. The parity is said to be odd or even based on the total number of ones in the input.

The difficulty can be controlled by the total number of bits to check parity for and by the set of

boolean functions available to the GP language for finding a suitable program. The fitness of a

program is assessed by testing binary strings and comparing the resulting binary values of the

program evaluation with the expected parity values. Usually, all combinations of binary string

are assessed.

This experiment will check for even parity of a string of four bits. However, the choice of

checking for odd or even parity does not matter. With four bits, there will be 24 training samples

(0 to 15 inclusively, in binary format), as shown in Table 5.3.

Table 5.3 Truth table of the even and odd

parities on four bits

𝑏0 𝑏1 𝑏2 𝑏3 Even parity Odd parity
0 0 0 0 0 1

0 0 0 1 1 0

0 0 1 0 1 0

0 0 1 1 0 1

0 1 0 0 1 0

0 1 0 1 0 1

0 1 1 0 0 1

0 1 1 1 1 0

1 0 0 0 1 0

1 0 0 1 0 1

1 0 1 0 0 1

1 0 1 1 1 0

1 1 0 0 0 1

1 1 0 1 1 0

1 1 1 0 1 0

1 1 1 1 0 1

The behaviour is represented with a binary string of the output of the truth table for even parity

in ascending order, encoded from left to right. Fitness evaluation is the Hamming distance
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between the output and the expected parity values for each input. Fitness is a maximization

function normalized in [0, 1].

The algorithms will have access to four terminals (one per bit) and five boolean functions (and,

or, not, nor and nand).

5.2.2 Regression problem

Regression problems are problems where the goal is to find the underlying function, provided

a set of sampled points from said function. Some types of regression can be given a priori

knowledge of the target function, as opposed to symbolic regression which does not know what

the function should look like. The difficulty can be controlled with the choice of function and

the number of samples provided.

For this experiment the quartic function (𝑥4 + 𝑥3 + 𝑥2 + 𝑥) was chosen arbitrarily as it is often

used for symbolic regression and offers a manageable complexity. Twenty (20) samples in the

range of [−1, 1] will be provided as training data to the algorithms. The training data is listed in

Table 5.4.

The algorithms will have access to one terminal (the value of the training point x) and four

functions (add, subtract, multiply and divide).

The phenotype is a list of resulting values from the evaluation of the 20 training points. Fitness

is evaluated by computing the MSE between the output and the expected value of the quartic

function. It is standardized as per Equation 5.1, making it a maximization function. Since

floating point number calculations in computers are prone to approximation errors, the ideal

fitness is relaxed from 𝐹 = 1 to 𝐹 >= 0.99999999.

𝐹 =
1

1 + 𝐸
(5.1)
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In the event that the evaluation of a function produces an infinitely high (or low) value, exceeding

the maximum capacity of a floating point number of the computing system, that value is capped

at the highest (or lowest) value that this computer can handle, using floating point numbers (for

example, in 𝐶++, the maximum value of a double variable is 1.797 69e308).

Table 5.4 Training points used

for the symbolic regression

problem

x y
-0.97678574 -0.044310153

-0.921672563 -0.133518145

-0.917816363 -0.138970296

-0.708543397 -0.310184465

-0.549206795 -0.322255382

-0.542213906 -0.321193061

-0.44333413 -0.295294156

-0.421426863 -0.287129953

-0.331091595 -0.245747851

-0.133366673 -0.117635787

0.067684277 0.072596498

0.105053924 0.11737146

0.129867682 0.149208044

0.204417033 0.25649129

0.238579242 0.312319133

0.267929057 0.364101814

0.376840385 0.592530128

0.539974999 1.074004943

0.821473933 2.506021174

0.86685775 2.834359357

5.2.3 Control problem

A control problem consists of controlling a system in an environment by leveraging its functions

to explore and exploit the environment, maximizing its fitness. One of the most well-known

control problem is the artificial ant problem, where an artificial ant is positioned (with a

direction) on a toroidal grid with food pellets positioned across, and the ant needs to eat as much

food as possible in a given number of movements. The ant can check if there is food ahead,
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move forward, turn left, or turn right. Moving into a grid cell containing food automatically

consumes it, increasing the fitness of the ant. The difficulty of the problem can be adjusted by

changing the size of the grid, the number and geographical distribution of food pellets and the

maximum number of actions allowed by the artificial ant (checking for food ahead, turning left,

turning right, and moving forward all count for one action).

The most popular trail (predefined grid) is called the Santa Fe trail (Figure 5.6), and will be

used for this experiment. It is a 32×32 grid with 89 food pellets at fixed locations, with a fixed

starting position. The ant is allowed a maximum of 400 actions to consume as much of the food

pellets as possible.

Figure 5.6 Figure depicting the Santa Fe

Trail for artificial ant problem. Obtained

from Wikipedia, original submission by

Rdlaw (2011)

The algorithms will have access to three terminals (move, turn left and turn right) and two

functions (check for food ahead and execute two actions sequentially).

The behaviour is represented by a binary string of the state of the 89 food pellets on the trail

after program execution. After an individual has been evaluated, food pellets that have been
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eaten are set to 1, otherwise left at 0. Fitness improves as more food pellets are eaten. Fitness

is a maximization function normalized in [0, 1]. It is calculated by dividing the number food

pellets eaten with the starting number of food pellets on the map.

5.3 Results

This section will review the results of the application of the baseline measures, 𝐸𝑏 and 𝑅𝑏,

to three benchmark problems across three GP variants, as listed previously. It is meant to

demonstrate how a GA can be adapted to assess its evolvability and robustness while preserving

its problem specific representation. Finally, the fitness of each algorithm will be evaluated

against the benchmark problems, and the results compared with 𝐸𝑏 in order to validate a

possible correlation. The results presented are representative of the specific configurations used

for each algorithm. It is possible to achieve different results with different configurations of

the algorithms, such as changing the number of genes or the sets of functions and terminals.

However, the proposed configurations are meant to provide a fair basis of comparison for the GP

variants.

5.3.1 Generating random phenotypes

To conduct a baseline evolvability walk, a random structural phenotype is needed. It is random in

the sense that it is chosen randomly from the set of all possible phenotypes, given the structural

constraints of the genotype (such as its representation, the number of genes and the sets of

functions and terminals). So, if two algorithms use the same sets of functions and terminals but

different representations (e.g., GEP and CGP), they may not have access to the same structural

phenotypes. For this reason, random phenotype selection will be sampled uniformly from the

available phenotypes for each experiment, made of the nine combinations of three GP variants

and three test problems.

For each experiment, one million random phenotypes were generated by conducting 10,000

baseline robustness walks, for 100 steps (mutations) each, and the entire population is kept.
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This was done in order to find more similar structures that can differ by only a few genes, but

with large enough sample it should not matter; one could simply generate a million random

individuals and get a similar distribution. The resulting samples, grouped by problem, are shown

in figures 5.7, 5.8 and 5.9. These figures show short length programs are much more common in

phenotype space. The ability to have a more diverse set of phenotypes, based on length, might

contribute to evolvability.
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Figure 5.7 Distribution of the size of random phenotypes for

GE, GEP and CGP, using the function set of the artificial ant

problem

The distributions might give a hint about evolvability, but since 𝐸𝑏 seeks to assess the ability

to move to a different phenotype, the random target phenotypes will be drawn uniformly from

the set of unique phenotypes {𝑃}≠. The diversity of phenotypes found in the space of each

algorithm provides further information on the robustness of the GP languages. The numbers of

unique phenotypes for each experiment are presented in Figure 5.10



101

0 50 100 150 200 250 300
phenotype length

0

100000

200000

300000

400000

500000

fr
eq
u
en
cy

GE

GEP

CGP

Figure 5.8 Distribution of the size of random phenotypes for

GE, GEP and CGP, using the function set of the boolean parity

problem

5.3.2 Stabilization

Stabilization of both 𝐸𝑏 and 𝑅𝑏 are achieved within 1,000 walks of 100,000 steps each, following

the empirical process described in Section 3.2.2

5.3.3 Baseline measures

The results for baseline evolvability are presented in Figure 5.11. For the artificial ant problem,

GE had significantly higher evolvability then the other GP languages, whereas CGP showed the

highest evolvability in the boolean parity problem. All three algorithms performed similarly for

the symbolic regression problem. This shows that the size of the phenotype space does not have

an impact on its evolvability and most importantly how much the environment (set of functions

and terminals available) can influence evolvability of an algorithm.
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Figure 5.9 Distribution of the size of random phenotypes for

GE, GEP and CGP, using the function set of the symbolic

regression problem

The results for baseline robustness are presented in Figure 5.12. The scatter plots and ellipses are

similar across all problems for a given algorithm. GE is somewhat robust, with an almost vertical

ellipse orientations, as the sampled neighbors stay far from the starting genotype and show

minimal changes in the phenotype. This is likely due to the low number of unique phenotypes

found and the concentration of short length random phenotypes for GE. GEP shows weaker

robustness than GE. It boasts larger ellipses, indicating more spread in the sampled neighbors.

As shown in the scatter plots of GEP, there are always two clusters appearing both with low and

high phenotype distances (the second cluster for the parity problem is barely visible, but sits

right outside the upper bound of the largest ellipse). This also correlates with the distributions

of phenotypes lengths, where GEP had a peak at short length and one at high length. The higher

number of unique phenotypes found with GEP can also be influencing its baseline robustness.

For the regression problem, the maximum genotype distance 𝐷𝑔 for GEP is 30, as there is

only one terminal, preventing any mutation to the tail of the genotype. CGP demonstrates the

strongest robustness of the three algorithms. For all problems, the phenotype distances 𝐷𝑝 of
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Figure 5.10 Number of unique phenotypes found for each of

the three sets of problem functions, across GE, GEP and CGP
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Figure 5.11 Baseline evolvability results for each of the three

sets of problem functions, across GE, GEP and CGP
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CGP are close to zero, and the ellipse orientations are almost perfectly horizontal, meaning that

changes in genotype have negligible impact on the phenotype.

Based on this assessment, there is no indication that 𝐸𝑏 and 𝑅𝑏 are correlated. Evolvability for a

given GP language will depend on the set of functions and terminals available to build programs,

whereas robustness is driven by the choice of representation of the algorithm (how the genome

is decoded to build a solution).
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Figure 5.12 Baseline robustness results for the three problems across GE, GEP and CGP,

where the horizontal axis is the genotype distance 𝐷𝑔 and the vertical axis is the phenotype

distance 𝐷𝑝
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5.3.4 Exploring correlation with fitness

Considering that evolvability is the ability to move from one phenotype to another quickly, then

there it is possible that a correlation exists between evolvability and fitness. In order to find

if there is correlation between the ability to find a fit individual given fixed environment and

evolvability, the fitness will be evaluated for each problem with the three GP variants, using the

most common EA parameters for each GP language.

The performance of the algorithms will be measured using average fitness at termination (AFT).

To measure AFT, an EA is run multiple times and the resulting best fitness for each run are

averaged. There exists other performance metrics for EAs, such as the success rate and average

number of evaluations to solution, but AFT was chosen since it does not require the EA to find

an ideal solution.

The number of runs, size of populations and number of generations are set to allow the

same number of total evaluations (108) for each GP language as in the 𝐸𝑏 experiments. This

configuration, presented in Table 5.5, will be the same for all the fitness experiments. The

choices of parent selection mechanisms and genetic operations are based on the common usage

found in the literature, and presented in the following sections.

Table 5.5 Common

EA parameters used

Parameter Value
Runs 100

Population 100

Generations 10,000

5.3.4.1 GE configuration

In GE, one of the most common configurations is a combination of one point crossover and

probabilistic mutation, and parent selection is done with tournament selection. The tournament

size is set to seven, mutation probability to 1% and probability to apply the crossover operation
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is set to 90%. Tournament selection is done by picking a number of individuals at random from

the population and keeping the one with the best fitness, as illustrated in Figure 5.13. One

point crossover is achieved by selecting a random position in the genotype and exchanging the

sections between two parents, as illustrated in Figure 5.14, and probabilistic mutation uses the

probability to assess each gene for mutation, as illustrated in Figure 5.15, where the blue arrows

demonstrate which gene did not pass the mutation probability threshold, so it is kept as is, while

red crosses indicate the mutation probability threshold was achieved, leading to a mutation of

the gene (bit flip in the case of a binary string). Figure 5.16 presents the evolutionary process

that produces a new generation of the population.

Figure 5.13 Example of selecting a parent from a population

using tournament selection, with a tournament size of three

Figure 5.14 One point crossover genetic operation
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Figure 5.15 Probabilistic mutation

genetic operation

Figure 5.16 Complete evolutionary process used in GE to produce a new

generation

5.3.4.2 GEP configuration

The evolutionary process suggested by the author of GEP is more complex than GE and CGP.

First, elitism is used to always keep the current best individual into the next generation. Elite

individuals are always excluded from parent selection. Parent selection is done by using the

fitness proportionate selection method, as illustrated in Figure 5.17. In fitness proportionate

selection, often called roulette wheel selection, each individual gets a probability of being picked

proportional to its fitness, then the wheel is spun and the individual where the arrow lands gets

selected as the parent. Then, multiple genetic operations are applied in sequence, each with their
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own probability of being applied. First, probabilistic mutation, as defined for GE, is applied

with a 4.4% probability. Then inversion, the process of inverting (or reversing) a section of

the genotype, as illustrated in Figure 5.18a, is applied with a probability of 10%. After that,

transposition, the process of moving a random subsection of the genotype at a different position,

as illustrated in Figure 5.18b, is applied with a probability of 10%. It is also possible to do

crossover in GEP, but only when there is more than one chromosome (which is not the case in

this experiment).

Figure 5.17 Fitness proportionate selection

Figure 5.19 presents the evolutionary process that produces a new generation of the population.

5.3.4.3 CGP configuration

CGP recommends a simple 𝜇 + 𝜆 Evolutionary Strategy (ES) to evolve a population. In this

evolutionary process, 𝜇 parents are selected from the population and inserted into the new

generation. Then, 𝜆 offspring are generated by mutating the parents in the new generation. This

process is illustrated in Figure 5.20. Parent selection is done uniformly at random among all

the individuals of equally best fitness, as presented in Figure 5.21. Probabilistic mutation, as
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a) Inversion genetic operation b) Transposition genetic operation

Figure 5.18 Genetic operations used in GEP

Figure 5.19 Complete evolutionary process used in GEP to produce a

new generation

presented earlier in Figure 5.15, is used with a probability of 4%. For this experiment, 𝜇 = 1

and 𝜆 = 99 in order to have a total population of 100 at each generation.
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Figure 5.20 Illustration of the 𝜇 + 𝜆 breeding pipeline used in

CGP

5.3.4.4 Average fitness at termination

Results are presented in figures 5.22, 5.23 and 5.24 for the artificial ant, boolean parity and

symbolic regression problems respectively. These figures present the average across all runs of

the best fitness in the population at each generation, and the shaded areas represent the variance.

For the artificial ant problem, GEP shows the best performance, followed closely by CGP, while

GE has more difficulty getting close to ideal performance. For the boolean parity problem,

CGP is the only GP language to get close to ideal fitness (1), while GE and GEP stagnate at

an approximate fitness of 0.75. For the symbolic regression problem, both GEP and CGP are

able to achieve ideal fitness quickly, while GE barely passes an average fitness of 0.6 within the

allowed 10,000 generations. These findings are aligned with Oltean & Grosan (2003), except for

the fact that GEP performed closer to CGP in two of the three problems.

Comparing AFT against the baseline evolvability obtained previously in Section 5.3.3, there

seems to be no correlation between the two measures. Figure 5.25 presents the results of 𝐸𝑏 and

AFT for GE. While both measures are at their highest in the artificial ant, symbolic regression

shows a lower AFT but higher 𝐸𝑏 than boolean parity. Figure 5.26 presents the results for GEP.

For GEP, there seems to be some degree of correlation between 𝐸𝑏 and AFT. Figure 5.27 presents
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Figure 5.21 Example of uniform random

selection among the individuals with

equally best fitness

the results for CGP. In that case, CGP demonstrated high AFT across all problems, while 𝐸𝑏 in

the artificial ant and symbolic regression problems are approximately half of the boolean parity

problem. This supports the hypothesis that evolvability and fitness are not correlated.

5.4 Conclusion of the application of baseline measures to GP variants

This section demonstrated the application of the baseline measures to three different benchmark

problems for three different variants of GP. The results showed that evolvability is dependent

on both the choice of representation of the genotype and the set of functions and terminals,

while robustness is reflective of the phenotype landscape. Both baseline measures are thus

complementary and provide valuable insight to understand how different genotype representations

can perform. Furthermore, it was demonstrated that evolvability is not correlated with fitness.
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Figure 5.22 Average fitness on the artificial ant problem
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Figure 5.23 Average fitness on the boolean parity problem

𝐸𝑏 and fitness are two different measures that serve different purposes. It is important to note



113

0 2000 4000 6000 8000 10000
generation

0.2

0.4

0.6

0.8

1.0

fi
tn
es
s

GE

GEP

CGP

Figure 5.24 Average fitness on the symbolic regression

problem
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Figure 5.25 Comparison of 𝐸𝑏 and AFT for GE across the

three benchmark problems
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Figure 5.26 Comparison of 𝐸𝑏 and AFT for GEP across the

three benchmark problems
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Figure 5.27 Comparison of 𝐸𝑏 and AFT for CGP across the

three benchmark problems
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that the evolutionary process used by each GP language varied from the proposed approach of

baseline evolvability.





CONCLUSION AND RECOMMENDATIONS

The popularity of any tool or method is driven by its ease of use and the magnitude of its results.

In the case of performance metrics evaluating evolvability and robustness, frameworks proposed

so far required significant additional manipulations to an existing algorithm in order to get the

results. The baseline measures proposed in this research can be applied with almost no changes

required to an existing GA, while providing meaningful information on the evolvability and

robustness of an algorithm, allowing researchers to experiment and compare different genotype

and phenotype encodings. The baseline measures are still susceptible to hyper-parameters

configuration (e.g., stabilization point), however once discovered and aligned for each algorithm,

they provide a simple and fair comparison without inducing any bias.

First, the limitations of the classical measures proposed by Wagner in Wagner (2008), even

when generalized, were demonstrated using RNA sequence folding problem. The classical

measures suffer from incomplete information due to their restricted neighborhood view (only one

neighborhood assessed at a time) and do not reflect the natural evolution pattern that accumulates

genotypic changes sequentially over a period of time. Another major drawback is the need for

an inverse mapping function to identify the genotypes that map to a given phenotype in order to

evaluate phenotype evolvability.

To address this, new measures of evolvability and robustness (namely the baseline measures

𝐸𝑏 and 𝑅𝑏) were defined. These new measures assess the amount of change in genotype and

phenotype across an evolutionary walk by measuring the genotype and phenotype distances.

This approach makes it suitable for applications that leverage Genetic Algorithms as it can

be applied with seemingly no changes to the GA. Applications of the baseline measures were

demonstrated across various domains such as RNA sequence folding, system modeling and

Genetic Programming. 𝐸𝑏 provides a single value that is easy to understand, but is mostly

relevant when comparing the evolvability of multiple systems. 𝑅𝑏 is more nuanced, as a figure
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is needed to fully capture how phenotypes change along genotype mutations. This is partly

addressed by using the orientation Θ and aspect ratio 𝛼 of the resulting ellipse as proxies for 𝑅𝑏.

It has been demonstrated that baseline measures can provide more information on evolvability and

robustness than Wagner measurements, but still have certain drawbacks. Baseline evolvability

depends on its ability to reach the target phenotype. As with other evolutionary algorithms, the

mutational walk may stall in a local optimum, in which case the walk may continue indefinitely

without ever reaching its target. This has a negative impact on the resulting evolvability, since

𝐸𝑏 considers the number of steps taken. Baseline robustness has the disadvantage of over-

representing high genotypic distances. As the mutational walk continues, the scatterplots of the

distances show stabilization after many changes in genotype. This provides useful information

about the overall phenotype landscape, but robustness should focus at least uniformly on all

neighborhoods, as it is more interesting to understand how many mutations can be sustained

before a change in phenotype occurs.

In the process of applying the baseline measures, the need for a generic modeling approach

arose to ensure versatility, which led to the definition of the BNK System. This system can be

used to model a wide range of problems. It was able to find a diverse set of oscillating genetic

circuits by defining measures of symmetry and robustness of an oscillating circuit. Applying

the baseline measures to the specific problem of evolving perfect oscillators, it was possible to

measure the ease of evolving perfect oscillators using BNK and the robustness of these perfect

oscillators under mutation. As an extension to the NK System, the multi-modality of the fitness

surface of BNK Systems was also demonstrated by increasing the number of inputs for each gate

in the system.

The main requirement when evaluating the baseline measures is that measuring the distance

between two genotypes (𝐷𝑔) should consider the genetic operators available and create the

shortest sequence of genetic operations needed to change one genotype into the other. This is
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simple when only a single gene is mutated randomly per generation, however most evolutionary

systems leverage more advanced operators such as crossover. Finding the shortest distance

between two graphs is a problem that is yet to be solved, and the reason why the proposed

measures are called “baseline”: they assess evolvability and robustness using the smallest

genotypic change possible.

It may be possible to further expand the baseline measures. For now, the applications have been

limited to genotypes of fixed lengths and distance between two genotypes measured using the

Hamming distance. In the case where it is possible to insert or delete a gene, edit distances,

such as the Levenshtein distance, could be used to evaluate the distance and capture an insertion

or deletion the same way a single gene mutation is measured. This would also be required in

the cases where a mutation could change a function arity, since replacing a function using two

arguments with a function using three arguments would require an additional insertion to fill the

new argument. If in order to effectively measure these types of changes, there needs to be a way

to know how many genes were removed or added through each operation.

Although it was demonstrated that fitness and evolvability are not correlated, it would be

worthy to investigate if embedding measures of robustness or evolvability within a genotype

representation can improve the performance of the algorithm to solve a wide range of problems.

This could be done through a measure of effort, such as the number of mutations accumulated

so far, in the fitness evaluation to increase pressure to find evolvable solutions. Another avenue

would be measuring the impact of each gene on evolvability and robustness to get a better

understanding of the genotype representation in a given algorithm. That way, it might be possible

to assign different weights to certain genes in order to control evolvability and robustness. Or

another possibility would be to embed a measure of population diversity that can be used by

an EA to dynamically adjust the probabilities of genetic operators (e.g., focus on crossover for

exploration and mutation for exploitation).
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Ultimately, the goal is to provide standardized measures of evolvability and robustness across

multiple evolutionary domains, and incidentally a framework that allows for easy assessment of

the representation used by an evolutionary system to solve a problem. This is possible using 𝐸𝑏

and 𝑅𝑏 by leveraging a simple genetic operator (baseline mutation), as was demonstrated in this

research.



APPENDIX I

ADDITIONAL MATERIAL

1. Programs and data

The software and scripts used to generate the results are available at https://github.com/remz1337/

VRE_Experiment. The data is available upon request only due to its large size.

2. Symmetry and robustness pseudo-code

Compilation of functions in pseudo-code required to compute symmetry and robustness of BNK

oscillators.

2.1 Loop identification

From the phenotype of a BNK system (State Transition Diagram), identify each loops by

traversing the STD with each state. Details in I-1.

2.2 Gate oscillation

This function allows to build the oscillation strings (binary strings such as “01011”) for each

gate in a given loop. Details in I-2.

2.3 System symmetry

Leveraging loop identification and the derived oscillation for each gate in each loop, compute

the symmetry by counting the lengths of passive (0) and active (1) periods. Details in I-3.

2.4 Identify equivalent oscillations

Algorithm to compare two oscillation strings and assess if they have the same behaviour. First,

the lengths are aligned by repeating the shortest oscillation string, then one of the oscillation
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string is rotated at every possible character in the string and compared against the other oscillation.

For example, “01” and “0101” have the same behaviour. Details in I-4.

2.5 System robustness

Robustness is obtained by counting for each gate the number of states in the STD that produce

the same behaviour. Details in I-5.
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Algorithm-A I-1 Loop identification

1 Initialize the empty map of loops 𝑀𝐿 ; /* Map of loops used to identify
every unique loop and count the number of states that transition
into each loop. */

2 Total number of states 𝑋 = 2𝑁 − 1, where 𝑁 is the number of gates ; /* States are
represented in binary to show the individual gate value, but
encoded in decimal for easier manipulation. */

3 for 𝑆 ← 0 to 𝑋 do
4 Current state 𝑆𝑐 = 𝑆;

5 Initialize empty list of visited states 𝑉 ;

6 while 𝑆𝑐 ∉ 𝑉 do
7 𝑉 ← 𝑆𝑐;
8 𝑆𝑐 = Θ(𝑆𝑐) ; /* Θ is the mapping function from the state

transition map. */

9 end while
10 𝐼𝑠 ← index of 𝑆𝑐 in 𝑉 ; /* Identify the start index of the loop from

the list of visited states. */
11 𝐿𝑠 = 𝑉 [𝐼𝑠, ...] ; /* Extract the looping states from all the visited

states */
12 𝐼𝑚𝑖𝑛 = index of 𝑚𝑖𝑛(𝐿𝑠) in 𝐿𝑠 ; /* Identify the smallest state (decimal

value) in the loop. */
13 𝐿𝑠 = rotate(𝐿𝑠, 𝐼𝑚𝑖𝑛) ; /* Rotate the array of looping states so that

it always start at the same point, no matter where the initial
entry point was. */

; /* Increase the count of number of states transitioning to
this specific loop. */

14 if 𝐿𝑠 ∈ 𝑀𝐿 then
15 𝑀𝐿 (𝐿𝑠) + +
16 else
17 𝑀𝐿 (𝐿𝑠) = 1

18 end if
19 end for
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Algorithm-A I-2 Gate oscillation in a loop

Data: 𝐿: Ordered list of states in the loop, 𝑔:gate index

Result: 𝑂: Binary string representing the gate oscillation

1 𝑂 = []; /* Initialize empty string for the gate oscillation. */
2 foreach state 𝑆 ∈ 𝐿 do
3 𝐵𝑠 =binary(𝑆); /* Convert the state decimal value to a binary

array. */
4 𝐵𝑔 = 𝐵𝑠 [𝑔]; /* Retrieve the binary value of the gate from the

array. */
5 𝑂+ = 𝐵𝑔; /* Append the binary value of the gate to the

oscillation string. */

6 end foreach
7 return 𝑂
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Algorithm-A I-3 Symmetry

1 Identify all loops using algorithm I-1

2 foreach loop 𝐿 in the state transition diagram do
3 foreach gate 𝐺 do
4 𝑂 ← Gate oscillation using algorithm I-2;

5 𝐿𝑙 ← size of 𝑂;

6 if no oscillation then
; /* 𝑂 is either all passive (0) or active(1). */

7 Local symmetry 𝑆𝐿 = 0;

8 Period length 𝐿𝑝 = 1;

9 else
10 Rotate 𝑂 if needed so that it starts with a passive (low) period and end with

an active (high) period;

11 Identify pairs of consecutive passive and active periods;

12 foreach pair p do
13 𝑇𝑝 ← length of the passive periods of the pair;

14 𝑇𝑎 ← length of the active periods of the pair;

15 Period length of the pair 𝐿𝑝 = 𝑇𝑝 + 𝑇𝑎;

16 Local weight 𝑊𝐿 ←
𝐿𝑝

𝐿𝑙
;

17 Local symmetry 𝑆𝐿 ←
min𝑇𝑝 ,𝑇𝑎
max𝑇𝑝 ,𝑇𝑎

;

18 end foreach
19 end if
20 Gate symmetry 𝑆𝑔 ←

∑
(𝑆𝐿 ·𝑊𝐿) ·

min 𝐿𝑝

max 𝐿𝑝

21 end foreach
22 Loop symmetry 𝑆𝑙 ←

∑
𝑆𝑔

# of gates
;

23 Loop weight 𝑊𝑙 ←
loop length∑
all loop sizes

;

24 end foreach
25 Overall symmetry 𝑆𝑜 ←

∑
(𝑆𝑙 ·𝑊𝑙);
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Algorithm-A I-4 Identify equivalent oscillations

Data: 𝑔: gate index

Result: 𝐸 : list of pairs of loops that have the same oscillation

1 𝐸 = {}; /* Initialize empty list of pairs of loops that express the
same oscillation. */

2 foreach pair of loops 𝐿𝑖, 𝐿 𝑗 in the state transition diagram do
3 𝑂𝑖 ← Gate oscillation using algorithm I-2 of loop 𝐿𝑖;
4 𝑂 𝑗 ← Gate oscillation using algorithm I-2 of loop 𝐿 𝑗 ;
5 Δ𝑖 =length(𝑂𝑖);

6 Δ 𝑗 =length(𝑂 𝑗 );

7 if Δ𝑖 > Δ 𝑗 then
8 longest 𝑂𝑙 = 𝑂𝑖;

9 shortest 𝑂𝑠 = 𝑂 𝑗 ;

10 else
11 longest 𝑂𝑙 = 𝑂 𝑗 ;

12 shortest 𝑂𝑠 = 𝑂𝑖;

13 end if
14 Δ𝑙 =length(𝑂𝑙);

15 Δ𝑠 =length(𝑂𝑠);

16 if Δ𝑠 mod Δ𝑠 == 0 then
; /* If they cannot align then it’s impossible for both
oscillations to behave the same. */

17 𝑂𝑠 = 𝑂𝑠 ∗ (
Δ𝑙

Δ𝑠
); /* Repeat the short string in order to check if

the oscillation is the same but repeated over multiple
periods. */

18 for 𝑟 ← 0 to Δ𝑠 do
; /* Check if the oscillations can match by rotating the
shortest one. */

19 if 𝑂𝑠 == 𝑂𝑙 then
20 𝐸 ← (𝐿𝑖, 𝐿 𝑗 );
21 end if
22 𝑂𝑠 =rotate(𝑂𝑠, 1); /* Rotate oscillation string by one

character. */

23 end for
24 end if
25 end foreach
26 return 𝐸
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Algorithm-A I-5 Robustness

1 Identify all loops using algorithm I-1;

2 foreach gate 𝑔 do
3 𝐸 ←List of pairs of loops that have the same oscillation, using algorithm I-4;

4 𝑆 = {}; /* Initialize empty list of number of states that
transition to a loop. */

5 foreach loop 𝐿𝑖 in the state transition diagram do
6 𝑆𝑖 ←number of states that lead to loop 𝐿𝑖;
7 end foreach
8 foreach pair (𝐿𝑖, 𝐿 𝑗 ) of equivalent loops in 𝐸 do

; /* Merge the number of states that lead to a loop if they
have the same oscillation. */

9 𝑆𝑖 = 𝑆𝑖 + 𝑆 𝑗 ;
10 𝑆 𝑗 = 0;

11 end foreach
12 Fill 𝑆 with zeros so that the size of 𝑆 equals 𝑋(the number of states in the state

transition diagram);

13 𝜎𝑔 =std. deviation(𝑆);
14 𝑆𝑚𝑎𝑥 = {𝑋};
15 Fill 𝑆𝑚𝑎𝑥 with zeros so that the size of 𝑆𝑚𝑎𝑥 equals 𝑋(the number of states in the

state transition diagram);

16 𝜎𝑚𝑎𝑥 =std. deviation(𝑆𝑚𝑎𝑥);
17 Gate robustness 𝑅𝑔 =

𝜎𝑔

𝜎𝑚𝑎𝑥
;

18 end foreach
19 Overall robustness 𝑅𝑜 =

∑
𝑅𝑔

# of gates
;
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