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Conception de capteurs tactiles à capacité mutuelle et réduction de l’écart
simulation-réalité pour la préhension robotique

Abed Al Rahman AL MRAD

RÉSUMÉ

L’aptitude tactile des êtres humains est remarquable et elle est cruciale pour une multitude de

tâches de la vie réelle. Transférer cette capacité exceptionnelle aux robots présente un grand

potentiel dans diverses applications, en particulier dans des environnements dynamiques et

inconnus où la vision par ordinateur n’est pas pratique. En conséquence, l’objectif de ce projet

est de créer un capteur tactile économique capable de recouvrir entièrement un préhenseur

robotique anthropomorphe et de tester sa fonctionnalité en évaluant sa capacité à représenter

des formes primitives sous forme de nuages de points dans l’espace en 3D et à discerner ces

formes. Ce projet représente une première étape vers la libération du potentiel futur permettant

à un manipulateur robotique de fouiller dans des environnements encombrés, même en cas

de capacités de vision par ordinateur limitées ou inexistantes. De plus, nous avons recréé la

fonctionnalité du capteur dans un environnement de simulation pour reproduire des données

tactiles synthétiques proches de celles générées dans la vie réelle pour une formation efficace

des futurs modèles d’IA (Intelligence artificielle). Les modèles d’IA contemporains et à venir

requièrent des larges ensembles de données pour un entraînement adéquat, et les simulations

peuvent exploiter la puissance de la programmation parallèle, entre autres outils, pour accélérer

et rationaliser le processus de génération de ces ensembles de données, améliorant ainsi son

efficacité.

Après la conception du capteur tactile, nous l’avons monté sur un poste de travail robotique réel

pour effectuer des expériences de préhension et de reconnaissance des formes. De plus, une

réplique du système robotique a été utilisée en simulation pour générer des données tactiles

synthétiques. Minimiser l’écart entre la simulation et la réalité est un objectif primordial

garantissant que les données tactiles synthétiques générées reflètent étroitement les interactions

du monde réel. Le capteur développé a réussi à capturer avec succès les formes de certains

objets primitifs et à les discerner aussi bien en simulation qu’en réalité, et l’écart initial entre la

simulation et la réalité a été considérablement réduit.

En résumé, nous avons développé un capteur tactile économique qui peut être intégré aux

systèmes robotiques pour la reconnaissance des formes sans dépendre de la vision, et nous

avons élaboré un cadre de simulation permettant de générer efficacement des données tactiles

synthétiques réalistes qui pourront être utilisées pour former des algorithmes d’intelligence

artificielle à l’avenir. Cependant, certaines modifications doivent être apportées pour améliorer

la fiabilité et les performances du capteur tant en situation réelle qu’en simulation.

Mots-clés: capteur tactile, simulation, données tactiles synthetiques, reconnaissance de formes





Mutual Capacitance Tactile Sensor Design and Sim-to-Real Bridging for Robotic Grasping

Abed Al Rahman AL MRAD

ABSTRACT

The humans’ tactile sensing ability is remarkable and it is crucial for a multitude of real-life

tasks. Transferring this exceptional capability to robots presents a lot of potential across various

applications, especially in dynamic and unknown environments where computer vision is not

practical. As a result, the aim of this project is create a cost effective tactile sensor that can

entirely cover an anthropomorphic robotic manipulator and test its functionality by assessing

its ability to represent primitive shapes as point clouds in the 3D space and to discern these

shapes. This project represents a first step towards unlocking the future potential of enabling

a robotic manipulator to rummage in cluttered environments, even in instances of limited or

absent computer vision capabilities. Furthermore, we recreated the sensor’s functionality in a

simulation environment to reproduce synthetic tactile data that are close to the ones generated in

real-life for an efficient future AI models training. Contemporary and forthcoming AI models

require large datasets for a proper training and simulations can leverage the power parallel

programming among many other tools to expedite and streamline the datasets generation process

, thereby enhancing its efficiency.

After designing the tactile sensor, we mounted it on a real-life robotic workstation to perform

objects grasping and shape recognition experiments.Furthermore, a simulation replica of the

robotic system was to generate synthetic tactile data. Minimizing the sim-to-real gap is a

paramount objective, ensuring the generated synthetic tactile data closely mirrors real-world

interactions.

The developed sensor was successfully able to capture the shapes of some primitives objects and

to discern them in both simulation and reality and the initial sim-to-real gap was significantly

reduced.

In sum, we have developed a cost-effective tactile sensor that can be integrated with robotic

systems for shape recognition without relying on vision and we have developed a simulation

framework to efficiently generate realistic synthetic tactile data that can be used to train AI

(Artificial intelligence) algorithms in the future. However, some modifications should be

implemented to improve the reliability and performance of the sensor in both real-life and

simulation.

Keywords: tactile sensor, simulation, synthetic tactile data, shape recognition
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INTRODUCTION

Humans possess an astonishing ability to employ tactile sensing for a multitude of tasks including

object manipulation and recognition, even in cluttered environments. An illustrative example of

this proficiency is when individuals effortlessly identify items concealed within their pockets

through touch alone. This innate capability showcases the finesse of human tactile perception

that enables us to navigate and interact with our surroundings effectively.

Transferring this exceptional tactile sensing capability to robotic systems holds immense promise

across various applications. In the realm of manufacturing, robots equipped with tactile sensors

can delicately handle objects with dexterity, ensuring precision and quality control. Moreover

in collaborative work environments where humans and robots cooperate, tactile sensors could

play a pivotal role in ensuring safety. These sensors enable robots to sense human presence and

adjust their actions accordingly, mitigating potential risks. Furthermore, despite its significant

strides in robotics, the limitations of computer vision become apparent in dynamic and unknown

environments, especially those that are partially occluded, obscured, or lack adequate lighting.

In such scenarios, relying solely on visual perception is impractical and unreliable. This is where

tactile sensing emerges as a complementary and, in some cases, indispensable sensory modality

that equips robots with the adaptability to navigate and manipulate objects effectively, or in

other words it provides robotic systems with the ability to "feel" their surroundings. Therefore

integrating tactile sensing capabilities into robotic systems partly bridges the perceptual gap and

enhances their autonomy and versatility.

As a result, the aim of this project is to create a cost effective tactile sensor that can entirely cover

a relatively large, anthropomorphic robotic gripper with 16 DoF (Degrees of freedom) and test it

for shapes identification. This project is a first step towards allowing a robotic manipulator to

rummage in cluttered environments and reach a target object with limited or no visual perception.

As a first step, a design for a capacitive tactile sensor that leverages the fringe effect in capacitors

is proposed. Unlike other tactile sensors in the market nowadays like optical-based ones such
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as Gelsight and magnetic-based ones, our particular design is cost effective since it requires

easily-available materials and a relatively simple production process as will be shown in details

in chapter 4. Moreover, the introduced sensor can be easily applied to an entire relatively large

robotic gripper and this offers a better perception which is particularly useful for rummaging in

cluttered environments.

Another important aspect that was considered in our project is simulations, which stand as a

cornerstone in the realm of robotics, offering an indispensable resource for researchers and

engineers engaged in the development and advancement of robotic systems, particularly in the

area of synthetic data generation and this significance emanates from multifaceted advantages

that simulations bring to the forefront. Firstly, simulations grant an unprecedented degree of

flexibility, enabling the comprehensive exploration of diverse scenarios and environmental

conditions, spanning a broad spectrum of parameters and contexts, without the constraints

associated with physical prototypes. For instance, domain randomization is a well known

approach in the field of robotics which involves the deliberate introduction of variability and

uncertainty into simulated environments and this is used for training robotic algorithms and

machine learning models that require large training datasets. Factors such as lighting conditions

as well as object appearances, friction coefficients and physical properties can be randomized

within these virtual worlds and therefore allowing the trained robotic algorithms to better

generalize their learning from simulated environments to the unpredictability of the physical

world. Secondly the concept of parallel programming can be applied to train multiple robots

simultaneously in different simulation environments and therefore speeding up the overall

needed training time. This heightened versatility results in both time and cost savings, essential

considerations in research and development endeavors.

Ergo, after mounting the developed sensor on a robotic manipulator and driven by previously

discussed advantages of simulation in robotics, we decided to create a simulation replica of
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our robotic system with the aim to accelerate the tactile data collection for future training of

AI (Artificial intelligence) algorithms while providing a cheaper and more convenient data

collection approach. Therefore, as another objective followed up for this project, we aimed for

minimizing the sim-to-real gap as much as possible to make our simulations generate realistic

synthetic tactile data which can further boost the performance of the future AI algorithms.

In this thesis we first perform a literature review in chapter 1 to introduce the different transduction

mechanisms used for tactile sensors by the researchers in the robotics field nowadays and we

compare them to our selected mechanism and design. We also review the state of the art

approaches for tactile sensors simulation and synthetic data generation. Then, in chapter 2 we

go over the theory and operating principles of the proposed tactile sensor. In chapter 3, we

describe in details our sensor design and we go over the hardware setup. Afterward, we discuss

our simulator selection and simulation environment setup in chapter 4. Finally, we describe our

experimental setup and our analysis for the generated results in chapter 5 before concluding and

opening on potential future research avenues.





CHAPTER 1

LITERATURE REVIEW

Before discussing our developed sensor, we present the state of the art research work that has

been recently done in the tactile sensing field. In this chapter, we first go over the different

transduction mechanisms that were developed for tactile sensing while assessing each work and

comparing it to our project. Furthermore, since the generation of synthetic tactile data through

simulation was a major focus of our project, we cover the recent research in the area of tactile

sensors simulation that spans different simulators and simulation techniques or approaches.

1.1 Tactile Transduction Mechanisms

Over the past couple of decades, a variety of tactile sensors based on different transduction

mechanisms have been developed. The major technologies in this regard can be mainly classified

into capacitive, piezoresistive, magnetic, optical, vision-based, piezoelectric and barometric

sensors.

1.1.1 Capacitive Tactile Sensors

This type of sensors relies on the variation of capacitance to measure the applied pressure/force.

For instance, in the case of parallel plate capacitors, the capacitance can be expressed as in

equation 1.1.

𝐶 = 𝜖0𝜖𝑟
𝐴

𝑑
(1.1)

where 𝜖0 is the vacuum permittivity, 𝜖𝑟 is the dielectric layer relative permittivity, 𝐴 is the

overlapping area between the two electrodes and 𝑑 is the distance between the electrodes.

Therefore, a force applied to the sensor leads to a change in 𝐴 and/or 𝑑 and various designs of the

dielectric layer and the electrode structure lead to different types of capacitive sensors with unique

capabilities. For instance, a compressible dielectric layer is commonly used to promote the

sensitivity of the capacitive sensors. Mannsfeld et al. (2010) have developed a capacitive tactile
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sensor with a compressible dielectric layer to create unprecedented short response time and high

sensitivity. The permittivity variation that results from the deformation of the pyramids in the

developed PDMS (Polydimethylsiloxane) based pyramid-microstructured dielectric allowed to

detect ultra-small pressures. Despite their high performance, these sensors cannot measure shear

forces. To realize the measurement of the normal and shear components of external three-axis

forces, Liang, Wang, Mei, Xi & Chen (2015) developed a four capacitors based sensor unit that

translates the normal and shear forces into capacitance difference. In this study, the previously

discussed pyramid-microstuctured PDMS from Mannsfeld et al. (2010) was used as a dielectric

but the pyramid tips were truncated to improve the capacitors robustness to shear forces while

maintaining a relatively high sensitivity and short response time. There are other designs for the

dielectric layer that have been tested such as nano-needles (Kim, Nga Ng & Soo Kim, 2012) and

fluid (Ridzuan, Masuda & Miki, 2012). While these designs offer highly sensitive sensors, the

response time is very high since the used materials take a relatively long time to recover to their

initial states. Moreover, several electrodes designs were proposed to increase both robustness

and sensitivity. For instance, Dobrzynska & Gĳs (2012) developed a polymer-based capacitive

sensor with finger-shaped electrodes to increase the sensitivity to shear forces. Surapaneni, Xie,

Guo, Young & Mastrangelo (2012) created a three-axis capacitive sensor with electrodes that

float in a PDMS layer on top of two sets of electrode lines integrated inside a FPCB (Flexible

printed circuit board): drive and sense lines. While the four capacitors created by this setup

experience the same capacitance variation when pure normal forces are applied however the

shear forces create a shift in the overlap with the floating electrodes. It was claimed that this

design improved the capacitive sensing reliability, robustness and shear sensitivity. Another

work that is worth mentioning was done by Sicotte-Brisson, Bernier, Kwiatkowski & Duchaine

(2022). The research paper focuses on the development and characterization of a novel capacitive

tactile sensor that relies on the mutual capacitance technology to detect normal forces in a 2D

(Two dimensional) array for robotics applications. The electrodes layout in the proposed design

follows a grid like structure and a shielding fabric was used to provide a sensor’s isolation

and prevent undesirable electrical interference from external conductive objects. Based on

their conducted experiments, according to the authors the proposed design offers a superior
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spatial resolution without compromising the sensor’s sensitivity, as well as operational range

and frequency. However, unlike our proposed design the sensor was printed on a rigid PCB

the thing that limits its flexibility and compliance with the robotic surfaces. Also, the authors

acknowledge the need to further optimize the sensor’s dielectric and shielding fabric flexibility.

Finally, Ruth et al. (2021) introduced a fringe effect sensor with an interdigitated electrode

design mounted by a microstructured dielectric. According to the authors, the developed sensor

combines both pressure and proximity sensing without compromising the performance in one

for the other. In more details, a thorough analytical and numerical analysis of various capacitive

sensors with different designs was performed in this paper, including a parallel plate sensor and a

fringe field sensor with various electrodes layouts. The fringe field sensors, which capitalize on

the fringe effect caused by disruptions in the electric field, demonstrate a remarkable sensitivity

to approaching objects in the noncontact mode. However, the authors proposed an interdigitated

electrodes layout to enhance the noncontact sensitivity by increasing the electric field strength

of the tactile sensor. As a result, the sensor was able to distinguish between conductive and

nonconductive objects in noncontact mode. Furthermore, the paper achieves a breakthrough by

demonstrating that electrode interdigitation significantly enhances pressure sensing in contact

mode making it suitable for human touch-like applications. Finally, in their work Ruth et al.

(2021) integrated the interdigitated sensor into a robotic gripper and showcased its exceptional

proximity and pressure sensing capabilities. This sensor design was adopted in our project as part

of our collaboration with the BDML (Biomimetics and dextrous manipulation lab) at Stanford

university. Furthermore, it is worth mentioning that our developed sensor was employed by our

collaborators from Stanford for object motion classification and this work was presented in a

research paper by Thomasson, Roberge, Cutkosky & Roberge (2022). In this work, the sensor

was installed only on the back of an allegro hand and was used to formulate tactile cues and infer

the object motion during incidental contacts. According to the authors, this allows a robotic

manipulator to safely navigate in cluttered environments and rearrange objects with no explicit

motion planning or object recognition. While with the proposed approach many classification

challenges are met however the method has shown high accuracy levels for prototypical objects

with simple geometries.
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1.1.2 Piezoresistive Tactile Sensors

These sensors transform external forces into resistance changes. The most common

approaches in this area include nanocomposites, strain gauges and doped silicon cantilever beams.

Nanocomposites-based sensors rely on the advancement of nanomaterial and microstructure

fabrication and are generally composed of soft polymer matrices with embedded nanoscale

conductive fillers that can be either metal-based or carbon-based. Such sensors can be classified

into two categories: those that rely on materials volumetric changes (Castellanos-Ramos,

Navas-González, Fernández & Vidal-Verdú, 2015) and those that use the change in the contact

area at the microscopic scale (Strohmayr, Wörn & Hirzinger, 2013) Strain gauge on the other

hand is composed of a patterned metallic foil printed on a flexible substrate. Such a sensor will

stretch or compress with the structure over which it is placed therefore capturing mechanical

deformations and transducing them into electrical resistance change. Strain gauges are typical

for contact force measurements (da Silva, de Carvalho & da Silva, 2002). A doped silicon

beam is another type of piezoresistive sensors that is more sensitive and provides a wider

measurement range compared to strain gauges but both sensors suffer from the fragility of

silicon material and the inability to conform to curved surfaces. Takahashi, Nakai, Thanh-Vinh,

Matsumoto & Shimoyama (2013) developped a triaxial tactile sensor using doped silicon beams

for both normal and shear force sensing.

In a recent work, Wang, Lu, Mei & Zhu (2020) presented a wearable tactile sensor that relies

on galinstan liquid metal for a simultaneous force and temperature measurement. The authors

introduced a unique design that includes a fingerprint patterned microfluidic channels and a

top oval-shaped protrusion to increase the sensor’s force sensitivity. Moreover, a Wheatstone

bridge circuit is employed for force and temperature signals decoupling. While it is reported

that the presented sensor is cost-effective and demonstrates a good repeatability and a high

force sensitivity down to 0.32 N (Newton), a limited measurement range for both force and

temperature was presented in this paper (i.e. 0-13.5 N and up to 80°C (Degrees Celsius)and it is

worth mentioning that the sensor’s performance can be influenced by different factors such as

electromagnetic interference, humidity and mechanical wear and tear. For our developed sensor
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the force range as will be later presented in chapter 3 is much higher and can reach 50 N and

light forces down to 0.06 N can be detected. Moreover, Zhao et al. (2021) proposed a flexible

dual-parameter tactile sensor that combines a pressure-sensitive module and a strain-sensitive

module to simultaneously measure both the magnitude and direction of the applied force. On

one hand, the pressure-sensitive module is made from 3D (Three dimensional)tubular graphene

sponge, which is a highly compressible material whose electrical resistance varies significantly

upon the application of external forces. On the other hand, the strain-sensitive module is

made from a hybrid nanocomposite of silver nanowires and carbon nanotubes and is built

with spider’s web like structure that can stretch in specific directions when external forces are

applied leading to electrical resistance variations that can detect the forces directions. The

authors have successfully achieved a resistance matching between the two combined modules

and therefore enabling highly accurate force measurements and the sensor’s high performance

and force monitoring capabilities were clearly demonstrated. Nonetheless, the presented work

needs additional sensor characterization and performance analysis under different environment

conditions. Also, the fabrication processes proposed in this paper like chemical vapor deposition

and spray embedding are complicated and require special equipment and expertise. However

the material used in our project are readily available and the proposed fabrication methods are

mainstream and scalable.

While piezoresistive sensors present excellent performance results, hysteresis and lack of

reproducibility remain the major challenges. Moreover, in some cases these sensors are

expensive to fabricate compared to our proposed interdigitated mutual capacitance based tactile

sensor.

1.1.3 Magnetic Tactile Sensors

This is another type of sensors that relies on magnetism to detect contact forces. Known

for their robustness and their lack of mechanical hysteresis, these sensors can detect external

forces that lead to mechanical deformation mainly through one of two operating principles:

Either the measurement of magnetic field intensity variation by the Hall effect or the use of the
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electromagnetic induction principle. For instance, Ledermann, Wirges, Oertel, Mende & Woern

(2013) developed a magnetic tactile sensor using a permanent magnet and a 3D (Three

dimensional) Hall sensor AS54xx. The permanent magnet is embedded in an elastic material

such that when external forces are applied, the elastic material will deform and the permanent

magnet position will change which leads to a distortion in the magnetic field vector that can be

captured by the AS54xx underneath. Given the big size of the developed sensor prototype, which

negatively affects the spacial resolution of tactile sensing, Alfadhel, Khan, de Freitas & Kosel

(2016) developed a more compact tactile sensor that can capture normal and shear force and

therefore allowing the recognition of small changes in surface texture. The sensor is composed

of nanocomposite cilia placed on magnetic micro-sensors. The nanocomposite is a mix of

PDMS and iron nanowires that result in permanent magnet properties. It was shown that the

sensor has extremely low power dissipation and can measure 3D forces in liquid environments.

On the other hand, Wattanasarn, Noda, Matsumoto & Shimoyama (2012) embedded flexible

induction coils in elastomeric substrates to create a 3D tactile sensor. The coils are embedded

in two layers that sandwich a PDMS spacer layer. The coils underneath the PDMS are called

excitation coils and an alternating current passes through them to generate a magnetic field. This

field is detected by the coils near the external surface of the sensor, which are called detection

coils and as a result they generate an induced voltage. The voltage variation in the detection coils

whenever a mechanical deformation of the sensor is caused by external forces is the key behind

this sensor’s functionality. Moreover, Bhirangi, Hellebrekers, Majidi & Gupta (2021) proposed

ReSkin, a novel magnetic-based soft tactile sensor for robotic applications. The authors present

a design that combines machine learning with magnetic sensing technology to provide a long

lasting, versatile and high resolution tactile sensor. Reskin can be molded into different shapes

and thicknesses since it consists of a soft magnetized skin that is embedded with magnetic

micro-particles and and a flexible magnetometer-based sensing mechanism. Under external

forces, the relative distance between the magnetic particles and the magnetometer changes

leading to a detectable variation of the magnetic flux. The authors demonstrated the robustness

of developed sensor to wear and tear, its adaptability through the integrated machine learning

models and its effectiveness to diverse real-life applications. Magnetic tactile sensors can
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achieve high spacial resolution and they present a low power consumption alternative compared

to other sensors, especially when permanent magnets are used. However, there performance

can be hampered by parasitic effect like eddy current and stray capacitance in the case of

electromagnetic induction sensors.

1.1.4 Optical Tactile Sensors

Optical sensors relate tactile data to an output light changes. These sensors that typically employ

optical fibers as the medium for light transmission, operate most commonly using one of two

principles: light intensity modulation and FBG (Fiber bragg grating). As the name implies

tactile sensors based on light intensity analysis infer tactile data by measuring the variation in

the intensity of the light coming out of the fiber optics, which occurs because of fibers bending

under external contact forces. Ahmadi, Packirisamy, Dargahi & Cecere (2011) developed an

optical tactile sensor that detects the position of the contact forces by measuring the power

loss in each of the fibers but the power used by the sensor as well as its size were inadequately

high. Xie, Jiang, Seneviratne & Althoefer (2012) proposed a mirror based optical sensor array

that measure normal contact forces. When a normal force is applied on a sensing element

the correspondent fiber’s light intensity increases and the related pixel in the output camera

video gets activated. On the other hand, the FBG technology consists of placing gratings in the

optical fibers, which diffracts the transmitted light and filters out specific wavelengths at a time

depending on the effective refractive index of the optical fiber core and the spatial period of the

grating. External forces applied to the sensor affect the latter factors and therefore cause a shift

in the filtered wavelengths. Ledermann, Hergenhan, Weede & Woern (2012) developed FBG

based tactile sensors for MIS (Minimally invasive surgeries). The developed sensor analyzes the

reflected light spectrum to detect minimal external strains. Moreover, in their recent work Li

et al. (2022) developed an optical-based tactile sensor that can detect normal forces on 3D curved

surfaces that are typically encountered in surgical instruments during MIS. The proposed sensor

operates based on the optical waveguides and TIR (total internal reflection) principles. More

specifically, the sensor is composed of an optical fiber core and a surrounding cladding. During
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normal state, the light transmitted through the core remains confined within this core, but when

an external force is applied, the subsequent core’s deformation leads to the TIR phenomenon

that dictates a light leakage from the sensor’s core to the surrounding cladding. Since there

is a direct relationship between the amount of escaping light and the amount of undergone

deformation, the change in the light’s intensity at the sensor’s output can be used to measure the

magnitude of the applied force. The authors have validated the the proposed sensor’s design

through simulation and the sensor displayed a high precision, a high resolution of 0.026 N as

well as an excellent repeatability, a low hysteresis and a rapid response time, making it effective

for scenarios involving MIS. However the sensor’s detection is limited to normal forces and does

not address shear forces which restricts its range of applications. Also, the sensor’s fabrication

involves some complicated procedures which can increase the manufacturing costs and can pose

some scalability challenges.

Optical tactile sensors have a small response time and can be small in size in addition to being

immune to electromagnetic interference, which makes them compatible with MRI (Magnetic

resonance imaging) and therefore suitable for an array of medical applications. However

researchers claim that these sensors are susceptible to temperature influence, can suffer from

light loss due to fibers micro-bending and the light analysis to extract tactile information is

relatively speaking computationally expensive.

1.1.5 Vision-based Tactile Sensors

In this review, vision-based tactile sensors are distinguished from optical-based ones. While

optical-based sensors rely on the analysis of light properties to detect contact and infer its

properties, vision-based sensors involve the use of a camera to depict the area of contact and

analyze it to infer the contact information. It is worth noting that vision-based tactile sensing is

a hot research area nowadays because they provide an improved robotic perception compared

to other tactile sensor and they present a great potential. One of the earliest and well-known

vision-based tactile sensors is GelSight that was developed by Yuan, Dong & Adelson (2017).

The core of the proposed sensor is made from a compliant elastomer layer coated with a reflective
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material and illuminated by LEDs (Light emitting diodes) that are placed underneath. The

elastomer layer conforms to the external object’s shape upon contact and a reflection that captures

the object’s surface details is created. A camera is placed beneath the elastomer to capture

images of this reflection which are analyzed by image processing algorithms to measure the

applied forces and torques as well as reconstruct the object’s 3D shape and to identify other

tactile properties. The authors claim that the proposed sensor provides high-resolution tactile

data. It can also measure both normal and shear contact forces and can recognize different

materials based on the perceived surface texture. However, the fabrication process of GelSight

is complicated which makes its mass production challenging and expensive. Also, the sensor

has a small field of view limited to 60 mm (Millimeter) x 40 mm which restricts its application

just small object and tasks that requires a narrow view of the environment. Another work

by Donlon et al. (2018) and that was inspired by GelSight sensing techniques, presented an

enhanced vision-based tactile sensor known as GelSlim. Similarly to GelSight, the proposed

sensor capture contact data by analyzing the images of a camera placed under an illuminated

elastomer layer. However, the main focus of the authors was to introduce a more compact and a

more durable tactile sensor than the original GelSight. To acheive this goal Donlon et al. (2018)

integrated acrylic wave guides and mirrors into their design for a more efficient direction and

control of the LEDs light while maintaining the quality of the reflection image. Moreover a

parabolic reflection technique was employed to direct the light rays onto the elastomer in a

parallel way which minimizes light intensity loss and ensures a consistent illumination. This

optical path optimization allows for a better placement of the camera and the LEDs to allow

for a slimmer sensor and a more compact design. Furthermore, according to the authors the

elastomer layer in GelSight is covered with a textured fabric skin which provides more protection

and durability while enhancing the sensor’s sensitivity. However, despite these improvements

the fabrication procedure of GelSlim is still complicated and requires specific tools and skill

sets which leads to a higher manufacturing cost. GelSight wedge is another vision-based tactile

sensor that was inspired by GelSight and it was proposed by Wang, She, Romero & Adelson

(2021a) with a higher compactness and enhanced perception resolution. The proposed design

has even a higher compact form factor than the previously discussed GelSlim and the authors
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claim that they down scaled the sensor to match the size of a human finger. Moreover, the

authors addressed the problem of missing lights in some configurations by employing a trained

neural network for gradient estimation, the thing that along with the versatility in the lighting

configurations that GelSight wedge has to offer leads to an improved image gradients calculation

and 3D shape reconstruction. However just like its predecessor sensors, GelSight wedge is still

complicated to fabricate and some factors like shadows can affect the accuracy of the 3D shape

reconstruction, not to mention the high computational cost for real-time operation especially

after integrating a neural network for image gradient estimation. Another interesting work by

Padmanabha et al. (2020) introduced OmniTact, a novel vision-based tactile sensor that provides

a high-resolution and multi-directional tactile sensing on curved surfaces. While the proposed

sensor shares the same fundamental principles of the previously discussed GelSight sensor and

its derivates, OmniTact has a curved outer surface that is equipped with multiple strategically

positioned micro-cameras allowing it to depict the elastomer deformations from different angles

and directions. This added feature makes a major difference since it allows for an interaction

between robots and external objects from different angles and positions. In this paper, the authors

have used CNNs (Convolutional neural networks) to demonstrate the sensor’s effectiveness in

tactile-based control tasks. For instance, OmniTact was able to successfuly able to insert an

electrical connector into an outlet by solely relying on tactile feedback. Despite OmniTact’s

improved sensitivity and its multi-directional contact detection ability, the authors acknowledge

the high cost of the cameras and the complexity of the fabrication process as a limitation and

propose alternative approaches to increase the sensor’s affordability. As a further step towards

improving the performance of vision-based tactile sensors while reducing their manufacturing

complexity, researchers from Facebook have introduced DIGIT as a low cost and high resolution

tactile sensor for in hand robotic manipulation. While the sensor’s operational principles are the

same as the previously discussed vision-based tactile sensors, in their paper Lambeta et al. (2020)

present many added advantages of their proposed design. For instance, DIGIT is composed of a

three-pieces plastic enclosure that encapsulates the camera, the LEDs, the elastomer and the rest

of the sensor’s components. This modular design allows for an ease of assembly, the thing that

simplifies maintenance and leads to a more streamlined fabrication process which in its turn
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results in a lower sensors’ cost. At the time of writing the paper, the authors claim that DIGIT

costs around 15 USD (United States dollar) per sensor when produced in batches of 1000. This is

half the price of the Gelsight sensor (Lambeta et al., 2020). Moreover, the authors have integrated

a video predictive model with the sensor for tactile data processing and a model predictive

control for in-hand objects manipulation based on tactile feedback. These features allow DIGIT

to anticipate the future elastomer deformations based on the current ones and to learn and

adapt to the rolling dynamics of object manipulation. Finally, it is worth mentioning that CoRo

(Control and robotics) lab has been also involved with vision-based tactile sensors recently, and

StereoTac is one of these sensors that was presented by Roberge, Fornes & Roberge (2023). The

proposed sensor presents a novel combination of tactile sensing and 3D vision to improve robotic

manipulation and perception. Similarly to the previously discussed GelSight and its derivative

sensors, StereoTac relies on the photometric stereo technique to reconstruct the shapes of the

objects that enter in contact with its semi-transparent membrane. However, the proposed sensor

has stereoscopic vision capabilities that rely on the incorporated two 2D neighbouring cameras

which allows for capturing a 3D representation of the external environment before contact.

Therefore, StereoTac overcomes this traditional vision-based tactile sensors’ limitation. Despite

its added value, StereoTac presents many limitations that should be addressed. For instance, the

14 mm spacing between the 2D cameras dictates a limited depth range which might affect the

depth perception accuracy, especially for objects lying at longer distances.Moreover, the authors

acknowledge the influence of noise on the quality of the generated data and this needs to be

addressed. Finally, the current design is bulky and needs to be significantly more compact to be

suitable for a variety of robotics applications like rummaging in cluttered environments.

For this project, the proposed capacitive tactile sensing design allows to cover the whole surface

of an anthropomorphic robotic gripper using FPCB based tactile sensors for an increased

perception, which cannot be practically achieved using the previously discussed optical and

vision-based sensors because of their relatively complex setup. Moreover, our proposed design

allows for simultaneous contact and proximity or non-contact sensing which allows for the
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identification of a wider range of surrounding objects properties including material and shape

among others.

1.1.6 Other Transduction Mechanisms

Other adopted transduction mechanisms for tactile sensing that were found in the literature

include the piezoelectric-based and the barometric-based ones. For instance, in their paper Yeo,

Jung, Sim, Jang & Choi (2020) discuss the development of an AlN (Aluminum Nitride) based

tactile sensor array using MEMS (Micro-electro-mechanical systems) technology. The proposed

sensor array consists of a compact area of 2.5 x 2.5 𝑐𝑚2 (centimeter squared) over which 2304

tactile sensor units were integrated with an AlN thin film as the core of each individual sensor

and PDMS supporting layers . AlN is a piezoelectric material that converts the external forces

applied to its surface into a proportional electrical signal that can be processed to identify the

magnitude and distribution of these forces. The authors claim that their sensor exhibits a high

flexibility, a high sensitivity allowing it to detect forces as low as 0.2 N and a negligible crosstalk

among the sensor’s electrical channels. However, the range of force applied to the sensor in this

paper was limited with values between 0.2 N and 1.2 N which is not sufficient for many robotics

applications and the authors mentioned that the sensor’s output signal falls within the electrical

noise range sometimes which affects the accuracy of the sensor’s response. Moreover, the used

materials in the presented design like AIN are expensive and the used micro-fabrication processes

such as photolithography and reactive sputtering are complex and poses significant challenges

especially in mass production. Furthermore, Li, Yin, Wee, Chinnappan & Ramakrishna (2023)

have focused on the development of a piezoelectric tactile sensor using a nanofibrous membrane

made from the PVDF (Polyvinylidene fluoride) material. The authors have also successfully

improved the sensor’s performance by adding carbon nanotubes and barium titanate to the PVDF

membrane. The resultant sensor displayed a high sensitivity over a wide range of pressures and

it also exhibited a great durability and a rapid response time. However, the authors have tested

the developed tactile sensor only for human motion monitoring and recognition. While this is

a remarkable application, this sensor can be used and tested in other fields such as robotics.
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Furthermore, in this paper the researchers have tested the sensor only in a controlled laboratory

environment and a real-world validation is necessary to confirm the sensor’s utility.

In general, piezoelectric-based tactile sensors are expensive and require complex fabrication

procedure, but in our project, we employed readily accessible materials and commonly used

fabrication methods.

Another type of tactile sensors that deserves to be mentioned is the barometric-based ones. In

their work, Kõiva et al. (2020) presented a novel tactile sensors array that relies on barometers

to detect contact on the Shadow dexterous hand. Barometers are normally used to measure

atmospheric pressure but in this work, upon the application of external forces on the robotic hand

the barometers’ membranes deform which changes the pressure within the sensors and these

pressure variation are converted into electrical signals. Therefore, by analyzing the pressure

distribution across the developed tactile sensor array, the distribution and magnitude of the

forces applied on the shadow hand can be identified allowing the robotic hand to interact with

its surrounding. The authors have used a readily available barometers from Bosch sensortec and

they modified their orifices to enhance their performance. The modified sensors array exhibited

a high stability and robustness and was able to classify the stiffness of different objects using a

recurrent neural network with an 80% accuracy. However, the presented sensor array does not

cover the whole robotic hand and the electronic setup is not well optimized and it was mentioned

in the paper that the sensors array integration on the robotic hand can be further improved by

eliminating external connections and adding more arrays to cover the remaining parts of the

shadow hand. While the barometric-based tactile sensors can be accurate and reliable over a

wide range of external pressures in a contact mode, unlike our developed sensor they do not

have the potential to distinguish different material properties in a non-contact mode such as

electrical conductivity. Moreover for this project, capacitive tactile sensing was used because as

previously discussed it allows to cover the whole surface of a robotic hand, which cannot be

practically achieved using other more complicated transduction mechanisms. Also, a relatively

high spatial resolution can be achieved using the capacitive technology which allows to draw

more semantic data from the robotic hand interaction with its surrounding, the thing that is very
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convenient for rummaging cluttered environments which is the long-term ultimate goal of this

project in the future.

1.2 Tactile Sensors Simulation and Synthetic Data Generation

In order to equip the robotic manipulators with advanced grasping and environment navigation

capabilities, many AI algorithms in the realm of reinforcement, supervised and unsupervised

learning are essential. However, the reliability and robustness of an AI algorithm is heavily

influenced by the amount of data available for training. In most cases, the complexity and the

high expenses of the hardware setups needed to collect the needed data, push the researchers to

redirect their efforts toward synthetic data generation, which consists of collecting all or part of

the training data virtually in simulation environments. Given the highly accessible computational

resources nowadays and the ability to run multiple simulations in parallel, synthetic data present

themselves as an excellent alternative for AI models training and/or testing and simulated tactile

data are no exception.

1.2.1 Miscellaneous Tactile Sensors Modeling Techniques

Habib, Ranatunga, Shook & Popa (2014) proposed "SkinSim", a Gazebo simulator based

framework for multi-modal artificial skin. After specifying the skin parameters in the framework’s

user interface, like skin density, patch size and model structure, the robot placed in the simulation

environment gets covered by a skin layer that consists of multi-element mass-damper-spring

systems. Each skin element has a spherical geometry that minimizes the number of contacts per

element and is connected to the robot’s surface using a prismatic joint. Therefore, the proposed

skin structure overcomes the limitation of the contact reduction schemes applied by the underlying

physics engine, which is ODE (Open dynamics engine) in this case, and allows to simulate soft

contact deformations. Underneath the skin layer, tactile sensors are placed as rectangular blocks

connected with prismatic joints leading to another mass-damper-spring model with a relatively

high stiffness this time. Although Gazebo has the ability to report the values for the applied

contact forces, its data is noisy and inaccurate. Therefore in another work, Habib et al. (2014)
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relied on the dynamics equations of a mass-damper-spring system to calculate the contact forces

from the Gazebo reported positions and velocities of the skin elements. However, this work did

not address the contact forces diffusion across the tactile elements which should be a direct result

of the skin layer compliance and elasticity. Therefore, Kappassov, Corrales-Ramon & Perdereau

(2020) relied on an empirical characterization procedure to simulate tactile sensing arrays.

The sensors were represented in Gazebo simulation environment as single solid bodies with

a triangular mesh to represent the arrays of sensing elements. Given that Gazebo is a rigid

multi-body kinematics simulator and the simulated tactile sensors are usually installed under a

soft dielectric and/or protective layer in real applications, a two-dimensional Gaussian-based

PSF (Point spread function) was used to simulate the effects of the deformation of a soft layer

on top of the sensor by modeling the spread of the applied contact forces throughout the sensing

elements. It is worth noting that the Gaussian’s standard deviation and the stiffness parameter

used in the PSF were calculated empirically from the characterization of real tactile sensors

using a 3 axes manual manipulation platform.

Moisio, León, Korkealaakso & Morales (2013) also created a simulation model for a tactile

sensor but this time as an OpenRAVE plugin. The model took into account both the function or

contact forces and positions measurement and the physical properties of the sensor like friction

properties and elasticity. In their work, the contact forces were calculated using the soft contact

approach that allows inter-objects penetration and taking into account the local deformation.

As for the physical properties mainly related to the normal force and the tangential friction

force, they were calculated by conducting a set of experiments on a real-life piezoresistive

tactile sensor. It is worth mentioning that the modeled sensor was attached to a parallel jaw

gripper and its performance was tested and compared to the real-life sensor. While the simulated

sensor’s behaviour aligns with the theoretical expectations like showing consistent results

and displaying similar readings for the different taxels in the case of evenly applied external

pressure however it fails to reflect the real sensor’s behaviour. These deviations from the ideal

simulation responses might be attributed to the real sensor’s noise as well as hysteresis, creep

and other factors that should be added to the simulation to minimize the gap with reality. Driess,

Hennes & Toussaint (2019) introduced a foundational simulation framework, which laid the
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groundwork for subsequent research. In their paper, they proposed an entropy-based active

tactile exploration strategy of non-convex objects using multiple end-effectors. Their approach

revolved around modeling sensor-object interactions, contact mechanics, and sensor noise.

The simulation setup featured the representation of objects as point clouds, synthetic contact

force generation and deformations based on contact interactions. While commendable for its

simplicity, the basic contact models and point-cloud representations might limit its applicability

to accurately replicate complex tactile interactions or dynamic responses. However, this work

contributes valuable insights into enhancing exploration efficiency, which can be relevant for

generating more realistic tactile data in our simulation context.

1.2.2 FEA(Finite element analysis)-based Tactile Sensors Modeling

Wang, Huang, Fang, Sun & Li (2021b) introduced a method called "Elastic Interaction of

Particles" for simulating the physical interaction between a tactile sensor and an object during

robot manipulation. This involved a voxelization of both the sensor and the objects and

a simulation of the sensor’s deformation upon contact using elastic theory and numerical

techniques. In this work, FEA (Finite element analysis) played a pivotal role, enabling accurate

tactile response predictions and the simulation setup was an intricate combination of detailed

object geometries, force application, and mechanical equations solving. Also, Sferrazza,

Bi & D’Andrea (2020) trained a deep neural network using simulation-generated data to predict

the 3D contact force distribution on the soft surface of a real-life vision-based tactile sensor.

FEM (Finite element method) was used to handle the hyperelastic material models of the

soft materials that are used to simulate the vertical indentations on the soft sensor’s surface

during the experiments while generating accurate force distribution data for each indentation

scenario. The simulations aim to replicate real-world indentation scenarios, considering a range

of depths and normal forces. These meticulous approaches demonstrated an impressive level of

accuracy, rendering it suitable for tasks demanding precise force estimation and highly accurate

object and shape recognition. However, the computational demands associated with FEA could

hinder the real-time application of such approaches, especially in scenarios involving rapid
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interactions. In our project, we wanted to avoid highly computationally demanding solutions and

therefore we adopted a solid bodies simulator that is relatively not computationally demanding.

Similarly, Narang, Sundaralingam, Macklin, Mousavian & Fox (2021) relied on FEM to create a

3D model for the BioTac sensor using NVIDIA’s GPU-based Isaac Gym simulator but this time

they pushed the boundaries of tactile sensors to encompass material recognition tasks while

substantially reducing the simulation time by relying on Isaac Gym’s parallelization capabilities.

The model was designed to predict contact forces and deformation fields for various contact

interactions involving the BioTac. Similarly to the work done by Wang et al. (2021b) voxelization

was used to represent the BioTac’s external and internal surfaces to simulate the deformations and

interactions accurately. The proposed FEM model uses a co-rotational linear-elastic constitutive

model for internal dynamics of deformable bodies and an isotropic Coulomb contact model for

interactions with external rigid objects and this model was shown to generalize well across a

diverse range of objects and indentations. The developed FEM model offers an accurate and

fast way to simulate contact interactions involving the BioTac tactile sensor but nontheless, it’s

worth noting that the simulations might still struggle to fully encapsulate the intricate tactile

interactions inherent to real-world materials. While no details were presented about the specific

setup of the tactile sensors, Khadivar, Yao, Gao & Billard (2023) evaluated the effectiveness of

multiple algorithms for exploring the geometry of unknown objects using multi-fingered robotic

hands and this included single and multi-contact exploration strategies, as well as exploration

methods with dynamic hand pose adaptation and an integrated impedance controller. The

algorithms were shown to adapt hand poses to object surfaces, improve kinematic properties

and collect data efficiently in various scenarios, even for objects with complex shapes and this

provides some insight to explore effective ways in our project to collect tactile points to represent

the objects shapes efficiently through point clouds. While the proposed approach’s appeal lies

in its capacity to facilitate tactile simulation within realistic virtual environments and therefore

enhancing algorithm development and validation, fine-tuning the simulation parameters for

high-fidelity tactile data might be necessary.
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1.2.3 Vision-based Tactile Sensors Modeling

With more researchers putting work into vision-based tactile sensors, several simulation models

for such sensors have been developed. For instance, Agarwal, Man & Yuan (2021) introduced

an optical simulation system specifically designed for vision-based tactile sensors, with a focus

on the GelSight sensor. The authors used physics-based rendering and path tracing to accurately

model the interaction of light with the deformable sensor surface and produce realistic images as

seen by the vision-based tactile sensor. Moreover, the translucent supporting structure (gelcore)

inside the sensor and the deformable elastomer surface were modeled using microfacet theory

and a diffuse material model with matching reflectance properties respectively. The use of

physics-based rendering for simulating tactile data is a noteworthy contribution as it allows for the

creation of highly realistic synthetic datasets but one potential limitation is that the accuracy of

the simulated data heavily depends on the accuracy of the physical properties and the simulation

parameters used. It is worth noting that while simulating tactile sensors, which involves contact

and force calculations like in our project, can also be computationally intensive however these

simulations are usually less demanding than vision-based simulations as they primarily deal

with physics calculations and collision detection rather than complex rendering and image

processing tasks. Also, in their article, Wang, Lambeta, Chou & Calandra (2022) presented

TACTO, a fast, realistic and flexible simulator that is designed specifically for vision-based

tactile sensors. The software architecture of TACTO serves as a bridge between the physics

simulation engine and the rendering engine, by preloading gel surface and object meshes into an

OpenGL scene, synchronizing their poses with the physics simulation and efficiently generating

depth and RGB images for tactile simulations. Moreover TACTO’s flexibility lies in its ability to

simulate contact forces and deformations using a user-defined deformation function and to being

calibrated using real-world sensor data for more realistic simulations as well as in its adaptability

to different sensor designs by allowing easy changes to configuration files. The introduction of

TACTO offers a significant contribution by providing a comprehensive, open-source simulator

for high-resolution vision-based tactile sensors. The focus on real-time interactions and GPU

acceleration enhances the efficiency of data generation and therefore allowing researchers to
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create large-scale synthetic datasets rapidly. However, while TACTO addresses the need for fast

and flexible simulations, the trade-off between simulation speed and physical accuracy could

potentially affect the realism of the generated tactile data. Moreover, Si & Yuan (2022) presented

"Taxim," a simulation model tailored specifically for GelSight tactile sensors with the focus on

by combining optical and marker motion field simulations to replicate the behavior of GelSight

sensors in a virtual environment and therefore facilitating data generation and analysis for tactile

perception research. The simulation setup involves replicating the GelSight sensor’s behavior

through an example-based approach. In other words, real-life GelSight measurements are used as

input and the model is designed to predict the real sensor’s response to various deformations and

interactions with objects with a minimum sim-to-real gap. The development of an example-based

simulation model like Taxim is particularly valuable for replicating the complex behavior of

GelSight tactile sensors but its applicability to other types of tactile sensors may be limited.

Additionally, the accuracy of the simulation heavily relies on the quality and diversity of the

example-based dataset, potentially leading to challenges in accurately representing the sensor’s

behavior in all scenarios. Finally, Dikhale et al. (2022) combined visual and tactile data to

estimate the 6D pose of in-hand objects during a robotic gripper’s interaction with its external

environment. The simulation aspect of the paper focuses on generating a synthetic dataset

for training a machine learning network. The simulation setup was built in Unreal Engine 4

and consisted of a gripper mounted on a robotic arm and equipped with tactile sensors, and

virtual cameras attached to each finger’s phalanx. The mounted tactile sensors were simulating

pressure-based tactile sensors and the authors used forward kinematics to keep track of the

3D positions of their taxels (tactile sensing elements) that enter in contact with the object’s

surface. As for the virtual cameras, these were simulating optical-based tactile sensors like

Gelsight sensors and they were used to capture color and depth images when the gripper makes

contact with the object in the simulation environment. Moreover, the authors applied domain

randomization to the simulation environment by varying the backgrounds, floor surfaces as well

as lighting and other factors to increase the generalizability of the the machine learning network

to be trained and make it more adaptable to real-world conditions. While similarly to our project

the activated taxels positions were tracked for point cloud generation, the proposed approach’s



24

addition of optical-based simulated sensors showcased its accuracy, particularly under occlusion

and highlighted the potential of multi-sensory fusion. However, the method’s robustness and

adaptability across various interaction scenarios requires further exploration.

1.3 Tactile Sensing for Object or Shape Recognition

Tactile sensing for object recognition represents a groundbreaking fusion of human-inspired

perception and cutting-edge robotics technology. By leveraging the sense of touch, robots

equipped with tactile sensors can gather rich and detailed information about the physical

characteristics of objects they interact with. This includes data on an object’s shape, size, texture

and rigidity. These tactile cues provide valuable insights that complement traditional visual

perception methods, making it possible to recognize and identify shapes, and sometimes even

objects with a higher degree of accuracy, especially in scenarios where visual cues may be

limited or unreliable. Many researchers have leveraged the information provided by tactile data

for object and shape identification. For instance, Zhang, Atanasov & Daniilidis (2017) used

contact coordinates based point clouds to classify the objects grasped by a robotic hand. The

objective of the project was to minimize both the object misclassification probability and the

number of needed grasps. The object and shape recognition was formulated as a MDP (Markov

decision process) where the optimal grasping sequence was approximated by Monte Carlo tree

search. Zhang, Kennedy, Hsieh & Daniilidis (2016) presented a haptic descriptor for 3D objects

classification that is invariant to the object pose or motion. After a few probing touches of

an object, the recorded contact positions are sampled as sets of three points on the surface of

the grasped object and the resulting triangular mesh is used to generate a 3D histogram that

describes this object. In order to build the previously mentioned histogram descriptor, three

parameters that uniquely define a triangle are selected (i.e. a combination of angles and side

lengths) and the distribution for each parameter is presented along an axis with a specific number

of bins. These robust descriptors were then fed into a SVM (Support vector machine) and a

FFNN (Feed forward neural network) to associate different objects with specific triangular

parameters-based 3D histograms.
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In our project, we focused in the identification of only primitive shapes. And unlike the

previously described methodologies, we did not use AI algorithms for the identification process

but instead we applied a matching between the tactile point clouds generated by our sensors

while grasping the shapes and CAD (Computer-aided design) models of these shapes and we

have finally relied on statistical distance metrics to assess the quality of each match.

1.4 Simulator Selection

As previously discussed in the introduction, simulation was a major aspect in our project and

as such, a literature review was conducted to compare the different simulators used in the

robotics field nowadays and therefore make an informed selection of a simulator that meets our

requirements for this project. Given that ROS (Robot operating system) is a widely adopted

robotics cross-platform firmware, and many researchers from our laboratories have previous

experience with it including me and my supervisor, our review exclusively covered the simulators

that provided a ROS compatibility in one way or another. For instance Farley, Wang & Marshall

(2022) compared four of the most widely used simulators in the robotics field: CoppeliaSim or

formerly known as V-REP, Gazebo, MORSE and Webots. The investigated simulators were

compared both qualitatively and quantitatively. On the qualitative level, the simulators were

compared based on the key attributes presented in table 1.1.

While CoppeliaSim and Gazebo support multiple physics engines including Bullet, ODE among

others and multiple programming languages including C++ and Python on top of offering a

plethora of simulation assets including models for mobile robots and environments, each of

MORSE and Webots are relatively limited in terms of physics engines support and simulation

models libraries. As for the quantitative level the simulators were compared relative to a ground

truth real life experiments after creating an adequate virtual world in each. More specifically

IMU (Inertial measurement unit) data were collected from a real Husky A200 robot driving

on mixed terrains and compared to the synthetic data generated by each simulator. As a result,

Gazebo displayed a poor CPU (Central processing unit) efficiency but it showed excellent IMU

data accuracy levels.
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Table 1.1 Simulators qualitative features evaluation

Retrieved from Farley, Wang & Marshall (2022)

Metric name CoppeliaSim Gazebo MORSE Webots

Free to use True True True True

Open source False True True True

ROS
compatibility

A built-in

plugin

provided

out of the box Out of the box

A built-in

plugin

provided

Programming
languages

C/C++,

Python, Lua,

MATLAB,

Java, Octave

C/C++,

Python
Python

C/C++,

Python, Java,

MATLAB

UI
functionality

Full

functionality

Full

functionality

Visualization

only

Full

functionality

Model format
support

URDF, SDF,

Stl, Obj, Dxfm

Collada

URDF, SDF,

Stl, Obj,

Collada

Blend Proto Nodes

Physics
engine
support

Bullet, ODE,

Vortex,

Newton

Bullet, ODE,

DART,

Simbody

Bullet ODE

Moreover, Ayala et al. (2020) have conducted a quantitative comparison among Gazebo, Webots

and CoppeliaSim. Each of the three simulators have executed 20 times the same scenario during

which a NAO robot must navigate an obstacles filled environment to reach a specific goal

position. During these experiments, the CPU, memory footprint and disk access were monitored.

The experiments results are shown in figure 1.1.

It seems that Webots required the least processing power with an average of 11.05% for

CPU usage, followed by Coppeliasim or V-REP with around twice of CPU usage. Gazebo

required the highest amount of CPU usage, with an average of 42.38%. As for the memory

footprint Coppeliasim presented the most stable amount of required memory as opposed to

Gazebo where the variation in the memory requirements varied significantly among the different

executions. Finally, Coppeliasim required the highest amount of disk access with an average of

8.16%, followed by Gazebo with 5.96% and finally Webots with 0.12%. Therefore, Webots

has excelled, requiring the least amount of computational resources to perform the simulation task.
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Figure 1.1 Performance results for the different simulators after executing the

same scenario for 20 times

Retrieved from Ayala et. al. (2020)

Although other robotics simulators were shown to be superior like V-REP and Webots, Gazebo’s

descent performance, its open source nature, native ROS compatibility encouraged its selection

among other simulators for this project. Moreover, its large library of models reflect how active

is the community that stands behind Gazebo which goes a long way for our project in terms of

support and continuous improvement. Finally, the previous expertise that specifically I and my

supervisor had with Gazebo, has fortified further our adoption of this simulator for the project.





CHAPTER 2

TACTILE SENSOR: THEORY AND FUNDAMENTAL PRINCIPLES

2.1 Introduction

The aim of this chapter is to present the proposed capacitive tactile sensor that completely covers

the Allegro anthropomorphic robotic hand. First, we go over the physics theory behind the

sensor’s operation, then we explain the employed mutual capacitance sensing technology before

finally presenting the sensor’s characterization. As previously mentioned in the literature review

the presented sensor is based on the previous work done by Bao group at Stanford university.

2.2 General Principle

The developed tactile sensor in this project was based on the capacitive technology. As previously

discussed in the literature review section, this technology was selected among many because it

offers an excellent trade-off between resolution, precision, measurement range, responsiveness

and design flexibility. Moreover, our developed sensor has a relatively simple design, allowing

it to easily and comprehensively cover an anthropomorphic robotic hand and in addition to

measuring contact forces, it can be used for proximity sensing.

The presented sensor is designed to measure the static forces applied on the surface of the

allegro hand. As previously mentioned in the literature review, the applied forces are reflected

as capacitance changes which are translated in our design into digital readings by relying on the

electrical properties of capacitive objects. For instance, a votlage difference V applied to an

object with capacitance C will create an electric field with charge Q as per equation 2.1.

𝑄 = 𝐶𝑉 (2.1)

As it will be explained in a subsequent section, an external force applied to the sensor will

disturb the established electrical field by changing the dielectric permittivity of the medium.
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2.3 Fringe Effect and Interdigitated Design

In order to efficiently interact and navigate with their environment, humans rely on the

simultaneous inputs from multiple sensors. Similarly, robotics applications could greatly benefit

from multiple sensory inputs. More specifically, providing both pressure and proximity sensing

capabilities allows to develop robotic systems that can interact autonomously and safely in

cluttered environments. For instance, robots that can only detect pressure contact cannot

decrease their speed while approaching fragile objects and therefore risk to accidentally destroy

them. Furthermore, previous research has shown the importance of the robotic distinction

between materials for a better autonomous interaction with the surroundings (Kirchner, Hordern,

Liu & Dissanayake, 2008), (Alagi, Heiligl, Navarro, Kroegerl & Hein, 2018) and (Ding,

Zhang & Thomas, 2018).

Therefore, it would be very useful to equip the robots with a multitude of sensory inputs.

However, this often requires the use of multiple sensors that occupy more space and therefore

reduce the density of sensors that can be integrated on a robotic surface and therefore limiting

the sensory resolution. Alternatively and in order to overcome the multi-sensory input challenge

the fringe fields in capacitive sensors have been lately used to design sensors with both contact

pressure and non-contact proximity sensing abilities like in the work presented by Ruth et al.

(2021).

A capacitor is typically composed of two electrodes that are separated by a dielectric. When

voltage difference is applied to these electrodes, an electrical field appears not only between

the electrodes but it also extends to a certain distance beyond that and therefore giving what is

called fringe fields or fringing effect. The concept is depicted in image 2.1.

Incoming objects create a disturbance in the fringe field and therefore can be detected by the

fringe field sensors. However, the proximity sensing capabilities introduce negative impacts on

the contact pressure sensing sensitivity, which can be problematic especially when it becomes

challenging to distinguish between contact and noncontact signals for a low pressure sensitivity.

Therefore the work done by Ruth et al. (2021) and previously discussed in the literature review

section, allowed to create a sensor that has a strong performance in both pressure and proximity
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Figure 2.1 Fringe effect: The drawn lines show the extents of

the electrical field that is created by a parallel plates capacitor

Retrieved from Maslyczyk et. al. (2016)

sensing by relying on the fringe effect and the interdigitated electrode design. The interdigitated

design adopted in our project and inspired by the work of Ruth et al. (2021) is presented in figure

2.2. On the left side the taxel, which is a portmanteau for tactile pixels and the sensory unit for

the developed tactile sensor, illustrates the interdigitated electrodes layout. These electrodes

are connected to an electric signal TX (Transmitter) line and a RX (Receiver) line that are

crucial for sensory readings and will be discussed in the subsequent section. As for the right

side the sensor setup is presented. In this setup, a silicone-based dielectric with a surface

featuring microstructural cylindrical heads is placed on top of the electrodes and therefore

directly interfering with the fringe field.
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Figure 2.2 Interdigitated capacitive tactile sensor: The

interdigitation amplifies the electrical field between the TX and

the RX lines located under the Silicone-based dielectric layer

Given that the area of the overlapping electrode surfaces as well as the distances among these

electrodes are constants, the variation of the permittivity of the electric field medium is the only

parameter that controls the variation in the capacitance of the developed tactile sensors. For

instance, an approaching object disrupts the fringe field in the air above the sensor and therefore

can be detected by the triggered capacitance variation even without direct contact whatsoever.

Moreover, if such an object makes contact with the sensor, the dielectric layer will be compressed

and the air in the gaps between the cylindrical protrusions will be displaced. Given that the

dielectric constant of the air is lower than that of the dielectric material, this compression will

lead to an increase in the effective dielectric constant and therefore a higher capacitance value.

Interdigitating the electrodes in a capacitive sensor allows to increase the number of electrode

pairs within a given area, which leads to an enhanced electric field strength that is reflected in

a higher sensitivity for both contact and non-contact modes. This was the driving reason for

adopting such a design over other alternative models of fringe field sensors for this project.

2.4 Mutual-Capacitance Sensing Technology

In order to monitor the capacitance value of the developed tactile sensors, we used a PSoC

(Programmable system-on-chip) 4200 microcontroller from Cypress and we adopted the CSX
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(Capsense crosspoint) mutual capacitance tactile sensing method. This Infineon patented

technology is well known for its best-in-class SNR(Signal to noise ratio) (AG, 2022).

In our project, a total of 17 sensors were developed based to cover an Allegro hand. The sensors

can be grouped into seven different categories according to the part of the robotic hand that they

are covering, as shown in table 2.1.

Table 2.1 The different types of the developed

tactile sensors and their characteristics

Sensor’s hand part Total taxels Total RX Total TX
Back of hand 118 12 11

Fingertip 66 9 13

Medial back 30 8 8

Medial front 27 4 8

Palm 121 11 13

Proximal back 78 11 11

Proximal front 65 11 10

Each tactile sensor type has a specific number of taxels which is dictated by the surface area

available for each of the allegro hand’s part. These taxels are arrayed into matrices of different

sizes where each taxel is the formed by the interdigitation of a TX and a RX electrodes as

previously shown in figure 2.2. More specifically, all the taxels lying on the same row or column

in a matrix, share the same electrode which is connected to either a TX or a RX line on the

PSoC. This electrodes’ layout is depicted in figure 2.3.
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Figure 2.3 Electrodes layout and connectivity for the back of

hand tactile sensor

Using the previously mentioned CSX tactile sensing method, the capacitance between two

electrodes, a TX and a RX is measured using electrical pulses. In more details, a a square wave

digital voltage signal switching between high and ground is sent to the active TX electrode. Given

the previously discussed electrodes layout, this TX line basically forms a series of capacitors

with the neighbouring RX lines. Therefore, when the voltage signal is high, the active TX line is

charged through the microcontroller and when the voltage signal becomes low, the electrical

charge is transmitted to the corresponding RX lines which are then individually and sequentially

fed into a multiplexer and therefore each RX electrode gets discharged, generating a series of

currents that are subsequently fed into a current to digital converter to give digital readings

called raw counts that are directly proportional to the 𝐶𝑀 (Mutual capacitance) between the

corresponding two electrodes as per equation 2.2.

𝑅𝑎𝑤𝑐𝑜𝑢𝑛𝑡 = 𝐺𝐶𝑀𝐶𝑀 (2.2)
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where 𝐺𝐶𝑀 is the capacitance to digital conversion gain.

The same procedure is applied to the next TX line and so on, until a complete sensor cycle

iterates though all the taxels of a single sensor. At this stage the developed PSoC firmware

goes over the stored raw counts for each taxel before communicating them to a computer. It is

worth noting that this whole process was described for a single sensor and the different sensors

were actually connected through a network with a specific communication protocol to ensure a

smooth and reliable sensory data transfer and this work will be detailed in the next chapter.

The complete measurement process for a single sensor is depicted in figure 2.4.

Figure 2.4 Simplified diagram of the CSX mutual capacitance sensing method:

The PSoC microcontroller transmits electrical signals through the TX lines and

receives a signal response though the RX lines to analyze the capacitance

variation at each taxel

2.5 Sensor Characterization

Each of the previously discussed sensor types was printed on a FPCB with 3x3 mm taxels that was

connected to a corresponding PCB on which a dedicated PSoC microcontroller was integrated

and covered with a Silicone-based dielectric. While the design will be further discussed in

details in the next chapter, this section is dedicated to better understand the behaviour and

performance of the developed sensor. As part of our project, experiments were conducted on

the back of hand sensor whose layout was previously shown in figure 2.3. A probe with a 12
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mm diameter was used to progressively load and unload the sensor up to 50 N. The sensor’s

response was recorded and is shown in figure 2.5.

Figure 2.5 Signal variation with respect to the force applied to the back of hand

sensor: The mean signal of 10 taxels during loading and unloading are shown by

the solid and dashed lines respectively. The standard deviation is represented by

the shaded regions

Each taxel provides a different constant digital raw count reading at the initial state with no

externally applied force and it seems obvious that as applied force increases, the raw count

decreases until reaching a saturation level that was spotted at 50 N in this case. It is worth noting

that each taxel’s reading was normalized relative to its corresponding initial unloaded value to

standardize the responses of the different taxels, ensuring that their readings fall within the same

range between 0 and 1. Moreover, using a 1.9 mm diameter probe we verified that the sensor

can detect point contact forces as light as 0.06 N.

Finally, it is worth mentioning that given the small dimensions of the designed taxels, the
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developed electrical fields at the electrodes interdigitation were not powerful enough to allow the

sensor to effectively display its proximity sensing capabilities. To address this issue, additional

larger electrodes pathways can be added to the current sensor’s layout in future design iterations.

However, this capability was not needed in this project and therefore no additional work was

done in this area.





CHAPTER 3

SENSOR REAL LIFE SETUP

3.1 Introduction

In order to validate the functionality of the tactile sensor that was previously discussed in chapter

2, a hardware setup was created to build an interconnected network of tactile sensors and mount

it on a robotic manipulator. In this chapter, we go over the design of the network and the

mounting mechanism and finally the robotic manipulator’s control and the sensory data handling

are discussed.

3.2 Sensory Network Design

Given the 16 DoF of the used Allegro hand, it was decided to design and equip each part of it

with a dedicated sensor in order to preserve its dexterity and maintain reliable sensory readings.

Towards this goal and as previously described in chapter 2, a total of 17 sensors with 7 different

designs were created to cover as much as possible of the hand’s surface. All the mounted sensors

are shown in figures 3.1 and 3.2.

In view of the distinctive taxels count and layout inherent to each sensor design, which is

intricately shaped by its spatial dimensions, influenced by its placement on the allegro hand, it is

noteworthy that all sensors collectively adhere to a common foundation of design principles and

manufacturing methodologies that will be thoroughly discussed throughout this chapter. Figure

3.3 shows the different components of the back of hand sensor.

In accordance with the previous discussion in chapter 2, a dedicated PSoC microcontroller was

employed with the purpose of monitoring the capacitance variation for each sensor. Each PSoC

unit was seamlessly integrated into a distinct PCB, alongside additional electronic components

to ensure an uninterrupted flow of capacitance data from each sensor. The design of these

PCBs was meticulously executed within the Altium PCB design software, adhering to the
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Figure 3.1 Allegro Hand With Mounted Front Sensors

guidelines provided by Cypress Semiconductor company. The design process encompassed

strategic optimization of the placement of the electronic components, enabling appropriate

power supply, mitigating sensory signal noise levels, and establishing efficient pathways for

signal communication. Figure 3.4 shows the first version of the Altium PCB design (on the left
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Figure 3.2 Allegro Hand With Mounted Back Sensors

Figure 3.3 Back of Hand Sensor Components

side) and the final version of the actual PCB after component soldering (on the right side) of the

medial back sensor.
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Figure 3.4 Medial back PCB design

The tactile sensors were also designed in Altium software but printed on FPCBs. More

specifically, the RX and TX electrodes that were previously discussed in chapter 2 were printed

on a polyamide substrate to create a flexible sensor that conforms to its installation surface and

can be easily connected to the previously discussed rigid PCBs. Figure 3.5 shows the design for

the palm sensor.

The PCBs were securely mounted on the allegro hand, alongside the associated sensors, utilizing

specifically designed plastic brackets manufactured in the CoRo lab. The 3D printed components

were meticulously designed to ensure a sufficient space for accommodating the PCBs, their

connection cables, and the tactile sensors while ensuring no interference with the natural motion

of the allegro hand’s joints during the grasping process. The 3D printed brackets are illustrated

in figure 3.6, where the palm, back of hand and central hub brackets are shown on the left side

and the finger brackets are show on the right side.

Finally, a Silicone-based mictostructured dielectric was encapsulated on top of the FPCB layer

in order to translate any external contact pressure into a permittivity and therefore a capacitance

change as previously discussed in chapter 2. The procedure for preparing the dielectric for each

sensor is depicted in figure 3.7.
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Figure 3.5 Palm FPCB Design: The sensor’s electrodes were

printed on a flexible paper-like substrate that can be directly

connected to a rigid PCB with an onboard PSoC for sensory

data processing

Figure 3.6 Allegro Hand Brackets: Used to mount the tactile

sensors and their corresponding PCBs on the Allegro hand
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Figure 3.7 Dielectric fabrication procedure: (a) Silicone is mixed with platinum

to form the Ecoflex-30,(b) The dielectric liquid is degazified in a vaccum

container to prevent any trapped air in the final dielectric layer, (c) The dielectric

liquid is cast in a plastic mold that was engraved using a laser cutter

Ecoflex-30 was used to prepare the dielectric layer of the sensor. This material is a platinum-cured

or platinum-catalyzed silicone that was prepared by first mixing the silicone with the platinum

catalyst in a container. Then, the mixture was degasified using a pump and finally the dielectric

was cast in plastic molds that were created using the laser cutter available in the CoRo laboratory

for the different sensor types. The mold for the back of hand sensor and a close up view of the

corresponding dielectric layer are shown in figure 3.8

The textured dielectric’s surface features 0.8 mm diameter and 0.8 mm height cylindrical pillars

with gaps in between so that when compressed, the dielectric constant of this layer changes

which leads to semantic sensory readings as previously discussed in chapter 2.

Ecoflex-30 is known for a multitude of attractive properties that guided its selection as a

dielectric material in our project. For instance, this material has a relatively low dielectric

constant which helps minimizing the capacitive crosstalk among the tactile sensor’s taxels. It is

worth mentioning that this dielectric constant is still higher than that of air, which is an essential

criteria for our sensor’s functionality that is based on the relative permittivity change of the

medium upon contact. Furthermore, this silicon type is elastic and flexible and therefore can

conforms well with the different surfaces of the Allegro hand. Moreover, platinum-catalyzed

silicons are known for their low compression set, which means that they can recover their
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Figure 3.8 Dielectric mold used for casting and dielectric layer showing the

cylindrical pillars on the surface

initial properties and shape after being compressed. This property makes the Ecoflex material

ideal for our sensor application since this will facilitate the restoration of the aforementioned

cylindrical pillars to their original states. Therefore, this enables the sensor to consistently yield

closely similar initial readings, mitigating the impact of compression and thereby enhancing the

repeatability of the sensory data. Moreover, the Ecoflex-30 is suitable for casting since it releases

easily from molds and this is crucial to avoid the destruction of the cylindrical microstructures

on the surface of our cast dielectric.

One of the main objectives is to achieve a comprehensive sensory coverage of the allegro hand by

integrating multiple live streaming tactile sensors. To ensure efficient connectivity, flexible flat

cables were utilized to accommodate both power and communication lines for interconnecting

the sensors.

The chosen wiring scheme for this sensory network was a star configuration, wherein the

principal PCB serves as the central hub and is connected to the back of hand sensor from

which multiple branches are extended towards the palm and each of the allegro hand fingertips
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and therefore facilitating a well-organized and effective system architecture. This wiring

configuration was selected for its several advantages. Firstly, it allows for a better organization

and management of the electrical connections since each branch originates from a central point

which simplifies troubleshooting and maintenance as individual branches can be easily isolated

and tested. Secondly, the star configuration reduces the impact of a single point of failure. In

other words, if one branch or device encounters an issue, the other branches remain unaffected,

promoting overall system reliability.

The sensory network was powered with an external DC power supply was connected to the

central hub PCB, delivering a 5.7 volts. The same voltage was delivered to each of the network’s

PCBs through the previously mentioned flat cables and each PCB was equipped with a linear

voltage regulator IC (Integrated circuit) on board to deliver 3.3 volts to the correspondent PSoC.

The reason behind this design is to avoid any fluctuations in the electrical power delivered to the

PSoCs.

As for the inter-sensory communication, the I2C (Inter-integrated circuit) protocol was adopted

for several reasons. One of the key features of I2C is its simplicity and ease of implementation.

The protocol requires minimal hardware: pull-up resistors on the SCL (Serial clock) and SDA

(Serial data) lines. Another I2C feature, is its built-in bus arbitration and collision detection

mechanisms, which means if multiple devices attempt to communicate simultaneously, the

protocol automatically resolves the conflicts, ensuring reliable and efficient data transmission.

Moreover, the I2C protocol enables easy interfacing and control of multiple devices on the same

bus. Particularly in this project, each sensor connected to the I2C bus has a unique address that

allows for individual sensor selection and communication. Figure 3.9 shows the hexadecimal

addresses of all the sensors that were mounted on the Allegro hand.

Within this project, the PCB of each sensor is designated as an I2C slave, while the central hub

PCB functions as the I2C master. Communication initiation on the I2C bus occurs when the

master sends a start condition, asserting the SDA line while maintaining a high SCL line and

thereby signifying the start of a communication sequence. The master transmits the address of

the intended slave device, referencing one of the addresses previously depicted in Figure 3.9.
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Figure 3.9 I2C slaves addresses used for intercommunication among the tactile

sensors mounted on the Allegro hand

Following the transmission of the slave device’s address, the master releases the SDA line and

awaits an acknowledgment from the addressed slave device.

Upon successful address acknowledgment, the slave proceeds to transmit a tactile message to the

master. Each slave’s tactile message encompasses the raw counts of the corresponding sensor’s

taxels, which were discussed in Chapter 2, accompanied by the corresponding timestamp and

sensor address. Subsequently, this message is directed to a USB (Universal serial bus) to Full

Handshake UART (Universal asynchronous receiver-transmitter) IC integrated on the central

hub PCB. This configuration facilitates the final transmission of the message via a USB cable to

a computer, where it is published on a dedicated ROS topic specific to that particular sensor.

The sensory data was constantly acquired and published on the corresponding ROS topics at a

rate of six Hz(Hertz). The parsing process of the sensory data is illustrated in figure 3.10.
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Figure 3.10 I2C Data flow from the sensory network to ROS: The sensory data

are cyclically received via USB port. A parser extracts the reported taxels’ tactile

information from these data and sends them to a ROS publisher

After receiving the data from the sensory network through a USB connection, a c++ program is

used to setup a serial port that reads the incoming data into a reading buffer that was set to the

maximum allowable size. From there, the data is fed into a circular or ring buffer that can hold

multiple incoming messages at a time. Moreover, after reaching its full capacity, this buffer

accommodates the new data by cyclically moving its elements in a FIFO or (First-In, First-Out)

way to allow for a continuous data flow while maintaining a fixed allocated memory size. In

other words, each new batch of read bytes gets pushed into the end of this buffer which forces

the oldest data at its start to get discarded. Circular buffers offer many advantages, including an
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efficient memory usage given their fixed size which discards the need for dynamic memory

allocation and therefore prevents memory leaks and fragmentation. Moreover, in our case the

circular buffer’s ability to retain multiple messages at the same time before parsing them allows

to catch more sensory input and prevent data loss. Afterward, the data is parsed into a sensor

address to identify the source of the tactile data, a corresponding timestamp and the raw counts

for the corresponding taxels. This information is finally published on the ROS topic dedicated

to received data’s originating sensor.

3.3 CAD Model

After building the sensory data acquisition and parsing system, the Allegro hand along with the

sensory network were mounted on a robotic arm. The robotic arm was installed on a workstation

that was purchased from Vention and was readily available in the CoRo (Control and robotics)

laboratories. This setup was prepared in order to place the test objects on the workstation and

conduct the objects grasping experiments that will be thoroughly discussed in chapter 5. But

before reaching the experiments phase and in order to control the robotics system and acquire

all the needed data, an accurate CAD model had to be created for the entire robotic system. The

model consists of three major parts: The workstation, the robotic arm and the robotic hand used

for objects grasping.

The CAD model for the used workstation was custom created on Vention’s official website and

the models for the objects to be grasped were created using Onshape and were attached to this

workstation.

Among the various robotic arms available in the laboratories, we decided to use the UR5-e

robotic arm from UR (Universal Robots). The CAD for this arm was retrieved from Universal

Robots Official Website (Robots, 2023).

Finally the Allegro hand, a 16 DoF (Degrees of freedom) torque controlled robotic hand was

employed. The CAD of the hand was supplied upon request from Wonik Robotics company

(Robotics, 2023). As previously disscused in this chapter, the capacitive sensors were printed on

FPCBs and attachable brackets were designed to mount them on the Allegro hand. The brackets
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CAD models were designed in Onshape for each of the 20 different sensors that were used to

cover the Allegro hand. On top of these brackets models, the sensors’ FPCB electrodes layouts

that were designed in Altium were projected and used as blueprints for placing the taxels or

tactile sensing units that were represented by small rectangular entities attached to the brackets.

The setup of the complete robot is shown in figure 3.11. Moreover, in figure 3.12 the CAD

assembly of the Allegro hand with the installed brackets is shown on the left side and the taxels

entities are shown on the right side.

3.4 Robot Control and Sensory Data Handling

In order to control the previously described robotic system, its CAD model has to be converted

into a URDF(Unified Robot Description Format). URDF is an XML-based file format that

is used to describe the kinematic structure of robots and specify their physics and dynamics

properties. More specifically, in this type of files a robot is represented as a hierarchical structure

of of links that possess both visual appearances and collision geometries and properties like

mass, inertia etc. can be attributed to them. These links are connected using joints whose

properties like joint type (i.e. revolute, prismatic etc.), joint limits, friction etc. can also be

specified. Our robotic model has a total of 22 revolute joints and in order to control them, a

URDF description file is essential. The strategy that was followed to control our robotic system

in real-life is depicted in figure 3.13.

The control of the entire robotic manipulator can be divided in two major parts: The control of

the UR5-e robotic arm whose control box was connected to the controlling computer using an

ethernet cable and the control of the Allegro robotic hand that was connected to the computer

using a PCAN-USB adapter.

For the first part, since we were interested in controlling the position and the orientation of the

end effector of the robotic arm, we decided to control the UR5e using MoveIt. This robotic

manipulation and path planning software was used as the top control layer to perform all the

kinematics calculation needed to bring the robot’s end effector from location A to location B in



51

Figure 3.11 Real-life robotic workstation setup with a test

object to grasp

the 3D space. Moreover, MoveIt API offers the ability to control the robotic arm using python

scripts and this is necessary to automate the grasping experiments that will be discussed in

chapter five. However, Moveit cannot directly interact with the UR5e robotic arm and therefore

a series of steps was taken to make this interaction possible.

One of the interesting features offered by Universal Robots is URCaps which are plugins
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Figure 3.12 Simulated Allegro hand and taxels: The taxels are represented by

small rectangular entities to track their 3D coordinates

or software packages that extend the functionalities of the UR robots by allowing them to

communicate and interact with external hardware or software components such as sensors as

well as programmable logic controllers, software development kits, etc. So first, in our case the

external control URCap was used to allow the control and integration of the robotic arm with

the external computer. More specifically, this URCap acted as the user interface for the UR

ROS2 driver inside the CB3 control box of the UR5e robot.

Second, the ros-control framework was used as the intermediary layer between the URCap and

the MoveIt software. This framework offers various types of controllers. In our case, three types

of controllers were implemented: First, the joint position controller was used to command the

desired positions of the UR5e joints using PID (Proportional-integral-derivative)controllers. In

the case of our robotic arm, six different revolute joints were commanded by a joint trajectory

controller that commands a joint to follow a series of trajectory waypoints within a specific time

frame based on the received target position command to provide a smooth motion with reduced

jerky movements that were not favorable in our later to be discussed grasping experiments.

Second, the joint state controller was responsible for reporting the joint states of the robotic

arm at all times and finally the robot status controller was responsible for reporting the robot

status at all times and this includes: e-stopped, in motion, accepting motion etc. This is an
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Figure 3.13 Real-life Robot control strategy: the ros-control framework includes

controllers and hardware interfaces to communicate with the UR5e robotic arm

while exposing the control to the manipulation and path planning software MoveIt.

As for the allegro hand, ROS topics are used to directly command the Allegro

robotic hand. The controlled robotic system is visualized in RViz

essential piece of information before sending commands through the joints controller. All of the

controllers are managed by a controller manager that dictates the life cycles of these controllers

and handles resource conflicts among them.

As previously mentioned, the URDF file for the robotic system is crucial for the control

scheme since this file defines the kinematics and dynamics description of the entire robot while

specifying the the properties of the corresponding joints to be controlled. Moreover, ros-control

offers many packages and software libraries to address many hardware related functionalities and

some of which require a declaration in the URDF file of the robot. For instance in our project

each of the robotic arm joints was coupled with a rotary motor actuator and wrapped within

a direct drive transmission element in the used URDF file. Moreover, the joints physics and

dynamics properties such as position, velocity and torque limits, internal friction and damping
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were also declared in the URDF file.

Finally, one of the most important features of the ros-control framework is the provided hardware

abstraction layer known as hardware_interface::RobotHW class which models the robot’s

real or simulated hardware resources such as actuators, sensors and encoders. In other words

using this class in our project, commands like desired joint positions or efforts can be sent to the

previously mentioned external control URCap which communicates them with the corresponding

embedded controllers in the CB3 control box of the UR5e arm in order to finally move the

corresponding arm’s actuators. Also, information like joint states can be received from the

robot’s encoders and communicated through messages provided by this hardware abstraction

layer. This data traffic is indispensable for the implemented feedback-based PID controllers.

As for the second part of our implemented control scheme, the previously mentioned PCAN-USB

adapter was used to allow the controlling computer to directly communicate with the CAN

(Controller area network) that connects all the electronic control units inside the Allegro hand.

An allegro hand driver was used to handle the CAN messages communicated with the Allegro

hand and transfer their data through ROS topics. More specifically, the Allegro joint positions

received from the hand’s encoders were published to an Allegro joint states topic and 16 separate

topics were used to command the Allegro’s 16 joints through position and torque PID controllers

in order to generate the adequate PWM signals to the hand’s electric motors and generate the

desired behaviour. It is worth mentioning that PID position controllers were used to control the

fingers bases and maintain their positions throughout any specific grasp, while torque controllers

were used to control the rest of the joints since they were needed to fully open and close the

allegro hand.

During the robot’s control and operation, the sensory readings were monitored at all times. The

activation of each taxel was decided based on its raw counts data variation. In other words

whenever the raw count variation of a certain taxel exceeds a threshold value of 150 counts, it is

considered as active otherwise it is considered non-active and not experiencing any significant

contact. This value was selected to be slightly above the sensory signals variation levels that

were introduced by noise during the absence of contact. This way, we avoid missing a generated
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contact and confusing a genuine contact for noise. Moreover, it was essential in our project

to track the positions of the taxels in the 3D space in order to generate semantic tactile data.

Towards this goal the previously discussed CAD model of the entire robotic system was used to

approximate the 3D coordinates of the centers of the sensory taxels with respect to the brackets

frames. Given that the FPCBs’ taxels are rigidly fixed to the plastic brackets, the aforementioned

coordinates remain constant regardless of the robotic system’s motion and as such these values

were registered in a data structure. Moreover, one of the interesting packages offered by ROS

is tf2. tf2 is a powerful library used for managing coordinate transformations in a robotic

system and it was used in our project to broadcast coordinate transformations between all the

connected parts of our robotic workstation, from the table to taxels on the Allegro hand surface.

Moreover this library can automatically perform the proper mathematical calculation to generate

the needed transformation between any two parts that are connected in a kinematic chain or tree.

Some parts of the tf2 kinematic chain that was generated for our robotic system is depicted in

figure 3.14.

As we can see, the different workstation components from the workstation table to the different

links of the robotic arm and the finger parts of the Allegro hand are inter-connected in a

hierarchical structure and a complete kinematic chain from the uppermost world frame down to a

sensor’s bracket is highlighted. Between each two connected parts, a coordinates transformation

is being constantly broadcast by the robot-state-publisher ROS node.

Therefore, upon registration all the mathematical calculations needed to express the coordinates

of the brackets located at the bottom of the kinematic tree with respect to the world frame located

at the top of the tree, are performed. And in order to keep track of the positions of the centers of

all the taxels that are mounted on the allegro hand with respect to one common static frame of

reference, which is the world frame attached to the UR5-e workstation’s table in this case, the

already calculated coordinates transformations between the world frame and the brackets are

applied on the already registered taxels coordinates with respect to their corresponding brackets.
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Figure 3.14 Portions of the tf2 tree showing the

hierarchical connection among the different parts of

the robotic workstation that was used during our

grasping experiments

Therefore at any given moment, the 3D positions of the centers of the active and non-active

taxels with respect to the static world frame can be registered and a corresponding point cloud

can be generated.



CHAPTER 4

SENSOR SIMULATION

4.1 Introduction

As previously mentioned in the introduction, the desired outcome of the simulation is to create

a robotic model equipped with tactile sensing abilities that can be controlled to replicate the

developed capacitive sensor’s behaviour and produce reliable synthetic tactile data that could be

used later on for training artificial intelligence models for objects recognition. Towards this

objective, a digital representation for the robotic workstation that was previously described in

chapter three was created and and placed in the open source Gazebo simulation environment

to simulate the physics of the robot’s operation during the grasping experiments that will be

discussed in chapter five. In this chapter, we present the simulation setup for our specific

application , we describe the followed methodologies to control the simulated robot and to

generate the synthetic tactile data during grasping and finally we go over the simulation’s

imperfections while giving potential fixes.

It is worth mentioning that a literature review has been already conducted and included in chapter

one to compare Gazebo with other simulators for robotics applications.

4.2 Simulation Setup

4.2.1 Modified CAD and SDF (Simulation description format) Models for the Robotic
System

In order to simulate the robotic system that was previously described in chapter three, a proper

digital representation must be created and placed in the simulation environment.Towards this

goal, first the CAD model that was previously used in chapter three has to be modified given

that it was previously created for the sole purpose of controlling the real-life robotic setup.

However since the main purpose of the simulation is to create reliable synthetic tactile data

that are as close as possible to the real-life data, a digital representation of the sensor setup that
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was previously discussed in chapter three should be built. While the taxels were represented by

rectangular entities that allowed tracking their 3D positions at all times, the dielectric layer that

covers the sensor was absent in the model. Ideally speaking, a layer that reflects the dielectric’s

elastic behaviour should be added on top of the taxels. However, since it is a rigid body simulator

Gazebo is not equipped with the tools to simulate the aforementioned behaviour. Therefore

a rigid layer with a specific thickness seemed enough for our project. The thickness of the

simulated layer was approximated by that of the real-life dielectric layer while undergoing

an external force of 50 N and in this case it was around one mm. We acknowledge that the

external forces applied to the sensor during the grasping experiments that will be discussed in the

chapter five are not 50 N for all contacts at all times and other thickness values could have been

adopted, however for our application the current selection was considered a good approximation.

However, Gazebo could not accurately detect the contact of the simulated dielectric layer with

external objects when the contact covered relatively large surfaces because of the big amount of

contact points that needs to be processed in this case. Therefore, in order to reduce the amount of

generated contact points and allow Gazebo to process them more accurately, the dielectric layer

was instead represented by a pattern of micro-structural cones placed on top of the taxels. More

specifically the center of each cone was perfectly aligned with the center of its corresponding

taxel. The microstructural cones placed on top of the Allegro hand’s palm in the simulation

environment are shown in figure 4.1.
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Figure 4.1 The conical microstructural pattern created to

simulate the real-life dielectric

Also, the contact points detected by Gazebo when the Allegro hand’s flat palm enters in contact

with a flat object’s face before and after placing the microstructural cones are illustrated in figure

4.2.

Figure 4.2 Gazebo contact detection over relatively wide collision surfaces:

Before adding the microstructural cones, only a non-representative portion of the

actual contact between the flat Allegro hand’s palm and an external object’s flat

face is detected. After adding the microstructural cones, the detected contact is

more accurate and representative. The contact normals in green reflect the contact

on the palm but it is seen from the back of the hand
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As we can see, before placing the microstructural pattern on the palm’s surface, Gazebo only

detects a small portion of the total contact points near the lower borders of the palm. But after

placing the microstructural cones, the contact area decreases so Gazebo is able to handle it

and report all the points of contact between the cones tips and the external object’s flat face

leading to a better contact representation. Finally, while Gazebo contact detection limitation is

illustrated using the hand’s palm the same applies for the rest of the hand’s parts.

Afterward, a modified URDF file was extracted from the CAD model and was used once again

to control the robot.

Unfortunately, Gazebo supports SDF formats instead of URDF formats. However, the simulator

supports a built-in converter that was used to generate a SDF file for our robotic system. Similarly

to URDF, the SDF files are XML-based texts that define the robot’s visual as well as physics and

dynamics properties. However, they also define the world environment and most importantly

they allow to define the sensors to add to the model and the plugins to load during the simulation.

Plugins are software components that allows to interact with the simulation environment and this

includes processing the data generated from the running simulation and add custom behaviours

to the simulation environment and the entities that are present inside of it. The plugins and

sensors that were added to our robotic model in Gazebo will be thoroughly discussed in the next

section.

The simulated setup of the complete robot is shown in figure 4.3 and the workflow using the

different file formats is depicted in figure 4.4.

As we can see, the CAD model for the entire robotic system is converted into both URDF and

SDF files. As previously discussed, the URDF is essential to declare the controllable joints

along with their properties which are then used by the ros-control framework to command the

real-life or simulated robotic system.

As for the SDF file, it is crucial to digitally represent the robot in the Gazebo simulation

environment. While the SDF files are very similar to the URDF files, they offer additional

functionalities. For instance, in our project, readily available simulated tactile sensors were

attached to the simulated model’s SDF to generate synthetic tactile data during the grasping
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Figure 4.3 Simulated robotic grasping workstation with a test

object to grasp

experiments to be discussed later. Also, gazebo-ros-control was attached to the robot’s SDF and

this is a ROS package that acts as the middle-man between the ros-control framework and the

Gazebo simulator.

4.2.2 Robot Control and Sensory Data Handling

The control scheme that was followed for the simulated robot is depicted in figure 4.5.

The simulated robotic system was controlled in the same way the real-life robot was controlled as

previously described in chapter 3. However, in this case the Allegro hand was mounted the UR5e

robotic arm in the URDF file and its joints were coupled with rotary motor actuators, declared

inside direct drive transmissions and their physics and dynamics properties were specified.

Moreover, instead of sending the controllers commands to real-life robotic components, the
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Figure 4.4 The different types of files used in our project and

the purpose for each: URDF file was used for control and SDF

file was used for Gazebo simulation and both were connected

through a gazebo-ros-control plugin

commands were directed towards the simulated robotic system that was represented by a SDF

file. The gazebo-ros-control package discussed earlier was attached as a plugin to the robot’s

SDF model and used to communicate the ros-control messages to the simulated robot.

In order to generate the synthetic tactile data using the Allegro hand, we relied on the collision

detection ability that is built-in within the ODE adopted in Gazebo. But no semantic data

can be generated solely by ODE’s contact information and therefore a filtering algorithm was
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Figure 4.5 Simulation control strategy: the same strategy as the one followed in

chapter three to control the robot in real-life was applied in simulation. However,

the allegro hand was added to the robotic system’s URDF and its joints are

commanded using ROS topics that go through the ros-control framework. Also,

instead of interacting with the real robotic arm and hand, ros-control interacts

with gazebo-ros-control package that is attached to the SDF model of the robotic

system in the simulation environment

developed in order to detect the activated sensory taxels on the robotic hand. Figure 4.6 presents

an overview of the contact detection pipeline that was implemented in our project.

Among the capabilities offered by Gazebo which are important for this pipeline are the sensor

elements and the plugins. In our case, a contact sensor was used and this is essentially an entity
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Figure 4.6 Simulation contact detection procedure: Gazebo simulator relies on

ODE physics engine to detect the contact points on the Allegro hand upon

collision with external objects. These points are compared against the tracked

taxels locations to decide which taxels to activate before saving the data into CSV

(Comma separated value) files

that can be attached to any body in Gazebo in order to publish its contact data to a topic during

the interaction with the surrounding simulation environment. Such a sensor is based on the

selected the collision detector of the selected physics engine which is ODE in our project.

Moreover, Gazebo abilities can be extended using the previously discussed plugins, which

are external chunks of C++ code that allow to interact with the simulation environment and

control almost any aspect of Gazebo at runtime and this includes: actuators control, sensory

data processing, models insertion/deletion etc. In this pipeline, a plugin is used to compare the

previously discussed tracked taxels positions to the contact positions reported by Gazebo sensors

and finally report the active taxels as 3D coordinates. More specifically, the plugin goes over

each of the taxels in each sensor and measures the Euclidean distance between the previously

registered taxel’s 3D position and the contact position reported by Gazebo. If this distance is
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below a specified threshold value, the taxel will be registered as active, otherwise the taxel will

be registered as inactive. The threshold distance value was calculated as depicted in figure 4.7.

Ideally, the distance between the center of the taxel that is supposed to be activated and the

contact point reported by Gazebo is supposed to be equal to one millimiter and while any other

value that is slighly higher than one millimiter would have worked well, the used threshold

distance was calculated in a way to cover a cone with a base radius that is equal to half of the

diagonal distance of a single taxel. The higher threshold distance value previously calculated in

figure 4.7 not only provides a safety margin in reporting the active taxels without compromising

the accuracy of the data but its calculation method also provides us with the flexibility to emulate

the contact propagation effect in the real-life sensor’s dielectric by controlling this threshold

distance value. In other words, in the same way followed in figure 4.7 we can calculate a

threshold distance value for a cone whose base goes beyond the corresponding taxels and covers

multiple neighbouring taxels and in this case not only we activate the taxel that is directly located

under the microstructural cone but we also activate its immediate surrounding.
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Figure 4.7 Simulation contact filter distance threshold: In simulation,

the dielectric is represented by a conic mistrostructural pattern and the

distance threshold is calculated as the distance between the simulation

contact point, which is ideally located at the tip of the cone, and any

point on the circumference of the cone’s base

4.3 Simulation Imperfections

Initially, many factors in the created simulation model have increased the gap between the real

and synthetic generated data and while some have been accounted for, others are yet to be solved

in the future. For instance, the dielectric layer of the developed tactile sensor was not replicated

in the simulation along with its elastic properties but rather it was replaced by micro-structural

cones on top of the Allegro hand brackets to account for Gazebo limitations when it comes to

contact points in case of collisions that cover relatively large surface areas. But in the future, a

model can be created to properly simulate the dielectric using another simulator.

Finally, as it will be discussed in chapter 5 despite the meticulous building process, the real-life

setup of the workstation cannot be completely reflected in the simulation in terms of positioning



67

and measurements, for example the six dimensional pose of the object to be grasped during

the experiments cannot be perfectly reflected in simulation. Therefore, a proper calibration

process that will be discussed in chapter five was performed to rectify this issue and reduce the

simulation to reality gap.





CHAPTER 5

EXPERIMENTAL SETUP AND RESULTS

5.1 Introduction

As outlined in the introductory section, this thesis aims to achieve two primary objectives:

the development of tangible sensors in both physical and simulated forms. This undertaking

necessitates the generation of authentic real-world and synthetic data, enabling a comprehensive

assessment of the efficacy of each approach and facilitating a comparative analysis between

them. In this chapter, we first describe the data generated in both real-life and simulation then

we go over the experimental configurations employed to generate each and we present our data

analysis along with the qualitative and quantitative comparison before finally discussing the

applied data treatment techniques that allowed us to bridge the sim-to-real gap which is essential

to create both semantic and realistic synthetic tactile data.

5.2 Data Description

For the performed experiments, a total of three different test objects of primitive shapes were

used: a rectangular prism, a cylinder and a triangular prism. All the 3D printed test objects

are depicted in figure 5.1. Each object was grasped from different AoAs (Angles of approach)

including from the top and the sides, to insure a comprehensive tactile interaction with all the

object’s surfaces. Moreover, each grasp from a specific angle was performed multiple times.

Table 5.1 presents all the performed grasps. It is worth mentioning that for the performed

experiments we were only interested in the taxels installed only on the frontal side of the allegro

hand, therefore the tactile sensors on the backside were totally ignored. However, it is worth

noting that these backside sensors have been employed in the previously discussed work by

Thomasson et al. (2022) to classify object motions in cluttered environments. Moreover because

of connectivity issues the middle and pinkie fingertips sensors were providing unstable readings
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and were therefore ignored as well. These connectivity issues are further discussed along with

suggested solutions in the conclusion.

Figure 5.1 The three test objects used in the grasping

experiments
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Table 5.1 Experiments grasps

Object shape Grasp AoA Iterations

Rectangular prism

Wide side face 1 6

Narrow side face 1 10

Wide side face 2 8

Narrow side face 2 10

Top face 10

Side edge 10

Cylinder

Side 1 10

Side 2 10

Side 3 10

Side 4 10

Top face 10

Triangular prism

Side face 1 10

Side face 2 10

Side face 3 10

Top face 10

5.3 Simulation Setup

After spawning the UR5-e workstation in the simulation environment, which was previously

described in chapter three, and setting it to the initial state as shown in figure 5.2, Moveit is used

to send the robotic arm’s end effector to a goal pose that is convenient to grasp the object from a

specific AoA. Subsequently, rostopic commands will be sent to properly position the allegro

hand’s fingerbase joints and close the robotic hand against the test object.
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Figure 5.2 UR5e Workstation Initial Pose

Upon hand closure, all the contact point detected by ODE on the allegro hand are registered

and compared against the taxels locations to recognize which taxels to activate before finally

recording the corresponding tactile point cloud. The point cloud of a grasp against the cylindrical

object in both real-life and simulation is depicted in figure 5.3 where both the active and

non-active taxels are shown. For each of the grasps previously shown in table 5.1 the workstation

is respawned and the same action sequence is repeated. This whole process was automated

using a python script.
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Figure 5.3 Real-life Vs. simulation contact point clouds for the cylindrical prism

5.4 Real-Life Setup

The same data generation procedure followed in simulation was used in the real-life experiments

but with minor modifications and can be summarized as follows: After powering up the tactile

sensors and setting the workstation to its initial state, an average raw count for each taxel on

the allegro hand was calculated based on 100 sampled readings to create a base value before

grasping the test objects. Similarly, Moveit is used to command the robotic arm’s end effector

goal pose for a desired AoA. Afterward, rostopic commands were used to adjust the fingerbase

joints of the allegro hand and securely grasp the test object. After grasping the object, this

time the taxels activation is decided based on their raw count differential readings as previously

discussed in chapter four and the coordinates of both the active and inactive taxels are registered

to form a point cloud. Just like in simulation, the process was automated using a python sctipt.

One of the real-life grasps is illustrated in figure 5.4
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Figure 5.4 Real-life Grasp against the cylinder object

5.5 Hardware Calibration

Since the simulation experiments are expected to replicate the real-life scenarios as accurately

as possible, a calibration was done to accurately reproduce the details of the real-life setup in the

simulation environment, more specifically the 6DoF position of the grasped object relative to

the robot’s base. This way we make sure that the sources of sim2real errors exclude any setup

misrepresentation in the simulation environment and get to focus on the other potential sources

of error mainly related to the developed tactile sensor. Towards this end, the C-Track 780 dual

camera sensor provided by Creaform was used to measure the coordinates of the test objects

with respect to the robotic arm’s static base frame in order to accurately replicate the test object’s

position in the simulation environment. It is worth mentioning that the C-Track’s measurement

accuracy can go down to the order of micrometers and therefore allowing the real-life grasps to
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be replicated in simulation with a high degree of accuracy. The C-Track 780 is shown in figure

5.5

Figure 5.5 C-Track 780
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5.6 Results

After generating both the real-life and synthetic tactile data, for each object the contact points

collected from all the performed grasps were accumulated and analyzed. A summary of the

results is presented in table 5.2. Therefore throughout the whole analysis in this section, the

accumulation point clouds were exclusively used.

Table 5.2 Grasping Results

Object shape Total grasps Real-life contact points Simulation contact points
Rectangular prism 54 3504 2092

Cylinder 50 3131 1682

Triangular prism 40 3157 2174

While contact accumulation point clouds were generated for the three different previously

mentioned shapes, those of the cylindrical object in both real-life and simulation are depicted in

figure 5.6

Figure 5.6 Real-life and simulation accumulation point

clouds for the cylinder object before data treatment
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In order to analyze and compare the real-life to simulation data, a CAD matching was performed

on each. In other words, each point cloud was aligned with its corresponding object’s CAD

model and point to point distance statistics were performed in CloudCompare software. The

CAD to point cloud alignment for the rectangular prism is shown for both simulation and real-life

data in figure 5.7. Moreover, a matching between the real-life and the corresponding simulation

point clouds was performed and the alignment between both clouds for the cylindrical prism

before any filtering and adjustment is depicted in figure 5.8

Figure 5.7 Rectangular prism CAD alignment for both real-life and simulation

point clouds before data treatment
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Figure 5.8 Alignment between real-life and

simulation point clouds before data treatment for the

cylindrical prism

For the alignment, the ICP (Iterative closest point) algorithm was used, with 1000 iterations, a

final overlap of 100 % and a random sampling limit equal to the number of points in the cloud.

As for the cloud to mesh distance calculation, the Octree spatial partitioning method was used

with a level of six in this case along with unsigned distances. These alignment and distance

calculation methodologies were applied to all of the three testing shapes.
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5.6.1 Matching Metrics

In order to evaluate the mesh to point cloud or point cloud to point cloud matching quality, three

main metrics were used: RMS (Root mean square) distance of the ICP algorithm, mean distance

and visualization.

The RMS distance, an essential metric derived from the ICP algorithm, serves as a fundamental

measure of alignment accuracy in the realm of point cloud registration. This algorithm iteratively

refines the transformation between two datasets (i.e. point clouds and meshes), seeking to

minimize the RMS distance between corresponding points. The RMS distance quantifies the

root mean square of the Euclidean distances between the paired points that belong to the aligned

entities (i.e. point clouds and meshes), encapsulating the quality of spatial congruence achieved.

Please note that unless otherwise specified, the RMS distance in until the end of this thesis refers

to the one measured by the ICP algorithm.

Moreover, the mean distance is calculated as the average of the distances between each point in

a source dataset (such as a point cloud) and the nearest point on a target dataset (such as a mesh

or another point cloud). The mean distance provides a measure of the overall proximity between

two datasets, regardless of the alignment method used. It offers an assessment of how closely

points in one dataset are located to the points in the other dataset.

while both the RMS distance and the mean distance assess the match between datasets, the

RMS distance is specific to the accuracy of point cloud registration achieved through the ICP

algorithm, whereas the mean distance provides a broader measure of the proximity between

datasets, irrespective of the alignment method. These metrics can be complementary, offering

different perspectives on the alignment quality and match between datasets.

Finally, it is worth mentioning that blindly following numerical metrics to assess the matching

quality in this case is not advisable ans it is necessary to take the visualization of the matching

results into account. For example, in some case as it will be shown later when presenting

the tabulated results, while its RMS and mean distances are really low, the point cloud being

assessed is not semantic and does not provide a descent representation of the grasped object and

therefore cannot be considered a good selection.
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5.6.2 Data Treatment

A simple observation of the generated point clouds, some of which are presented in figures 5.6

as well as 5.7 and 5.8, reveals that the real-life data are noisy which is inherent in the sensor’s

operation while in simulation the noise level is much less significant. Moreover, the point

clouds generated in real-life have a higher density compared to the ones generated in simulation

which can be attributed to contact propagation along the elastic dielectric surface that covers the

tactile sensors in real-life. Furthermore, in addition to being visually more compatible with the

corresponding CAD models, the simulation point clouds present better RMS and mean distances

compared to real-life data and this is depicted in table 5.3.

Table 5.3 A comparison between real-life and simulation points

clouds CAD matching results for the different tested shapes and

before any data treatment

Rectangular Cylindrical Triangular
Metric Real-life Simulation Real-life Simulation Real-life Simulation

ICP RMS (m) 0.00379 0.000805 0.0035 0.000645 0.00512 0.00171

Mean (m) 0.0033 0.00074 0.0033 0.00057 0.00482 0.00153

As we can see both the RMS distance of the ICP algorithm and the mean distance between the

point clouds and their corresponding CAD meshes are significantly lower for the simulation

data compared to the real-life data and this holds for the three different shapes.

A major point of interest in this project is to generate clean real-life contact point clouds

that semantically represent the shapes of the grasped object while also generating synthetic

equivalents that are as close to reality as possible. Therefore, starting from this objective along

with the previously mentioned observations, three different data treatment techniques were

applied to both real-life and synthetic point clouds to minimize the sim-to-real gap. This data

treatment is basically improving the CAD matching quality of the real-life point clouds while

doing the opposite for the simulation point clouds.
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Figure 5.9 Data treatment for sim-to-real gap

minimization

As seen in figure 5.9, as a first step towards reducing the simulation to reality gap, the real-life

data were filtered by incrementally increasing the contact threshold, which means that the taxels

with less significant contact pressure were considered as noise and were therefore eliminated. As

previously mentioned in chapter three, the initial force threshold value was selected to be slightly

higher than the sensory signals variations that were introduced by noise in non-contact state.



82

Nonetheless, the sensor still detects some contact points with low contact forces higher than

the set threshold that are actually false contact points and should be eliminated by increasing

the threshold level. This filtering process was done while monitoring the variation in both the

final RMS distance of the ICP algorithm and the cloud to mesh distance statistics of the cloud to

mesh matching. The results for the three different object shapes are presented in tables I-1, I-2

and I-3 of the appendix.

Based on the distance curves presented in figure 5.10, it seems that there is a common trend in

the variation of the CAD matching distances as function of the force filtering threshold. For

instance, at the beginning both the RMS and mean distances decrease as function of the force

threshold until we notice a sudden surge followed by a non-semantic trend. Apparently at first

the force filter is effectively removing noisy points from the contact cloud and therefore the

quality of the CAD matching which is correlated to the presented distances improves up until

reaching a force value of 190 in this case where the semantic data removal becomes more evident

which explains the surge in the distance values. Moreover, it is worth noting that despite the fact

that the minimum distances are reached at a force threshold much higher than 190, the visualized

point clouds at such levels were not semantic and did not properly depict the object’s shape.

Upon these observations, it seems that all the tactile reading variations from our developed

sensor do not represent meaningful contacts and are mostly generated by the noise inherent in

the sensor unless they are above the threshold value of 190. As such, the force filter threshold

was set to 190 for all of the grasped shapes and this value selection was based on a combination

of the RMS and mean distances as well as the resultant point clouds visualized quality.

While contact force filtering improved the simulation to reality gap, it has its own limitations

based on our previous discussion. Therefore, to further improve quality of the real-life data and

decrease the sim-to-real gap, SOR (Statistical outlier removal) filters were applied. SOR filters

are powerful tools employed in point cloud processing to enhance data quality by identifying

and eliminating outliers, which are data points significantly distant from the majority of points

in a dataset. These filters operate based on statistical analysis, by calculating the local mean

and standard deviation of point distances within a defined neighborhood around each point in
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Figure 5.10 CAD matching evolution with force filter threshold for the

rectangular, cylindrical and triangular prism shapes

the point cloud. Points deviating beyond a certain threshold of standard deviations from the

local mean are flagged as outliers and subsequently removed or adjusted. The filtering process

effectively mitigates the impact of noise, sensor inaccuracies, and anomalies, resulting in cleaner

and more reliable point clouds. In this project, the potential of SOR filters was harnessed

by experimenting with parameters such as "N" (Number of points to use for mean distance

estimation) and "nSigma"(Standard deviation multiplier) while also monitoring the RMS and

mean distances of the CAD matching for each shape, the thing that along with point clouds

visualization helped us in identifying the optimal filter settings that yielded the most favorable

outcomes, which in this case just like the force filtering scenario were based on a combination of

minimal RMS and mean distances as well as a semantic point cloud visualization. The optimal

SOR parameters for each shape are presented in table 5.4.
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Table 5.4 A comparison among the optimal SOR parameters

for the different grasping test shapes

SOR Parameter Rectangular Cylindrical Triangular
N 20 20 716

nSigma 1 2 2

It seems obvious that the optimal SOR parameters varied from one shape to another. These

optimal parameters are influenced by many factors like the robotic hand interaction with each

shape the thing that affects the distribution of the generated contact points in the 3D space as

well as the total number of contact points collected across the different grasps for each shape and

the varying geometric surface complexity. For instance in our experiments, while the rectangular

shape possesses wider flat faces and therefore has relatively simple surfaces, the cylindrical

shape has a more complex curvature and the triangular shape has a higher number of edge to flat

areas ratio. These surface complexity differences affect the distribution of the generated contact

points for each shape and their respective distances from the ideal ground truth surface.

More specifically, for the optimal filtering results a larger number of points was used for the

mean distance estimation for the more complex triangular shape and this can be attributed to the

need to consider a larger number of points to capture the irregularities and shape complexities.

However, it seems that the rectangular and cylindrical prisms presented less surfaces complexities

and in this case a lower lower number of mean estimation points was favorable to capture the

simple surfaces and eliminate the anomalies and irregularities. As for the standard deviation

multiplier, a higher threshold value was used for the more complex shapes like the curved

cylindrical prism and the edgy triangular prism to accommodate the higher irregular contact

patterns and deviations inherent in these shapes but for the more consistent contact patterns

that are present in the simpler rectangular prism a lower standard deviation multiplier is more

favorable to preserve this consistency.

In the end it is worth noting that despite the differences among the SOR parameter values among

the different grasped shapes, it is still possible to select one set of parameter values for all the

shapes if we were seeking a generalizable rather than an optimal data treatment scheme.

Finally, in order to further decrease the sim-to-real gap, we attempted to increase the density
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of the simulation point clouds by activating the taxels in the immediate neighbourhood of the

already active taxels in the original simulation point clouds. This was done in order to emulate

the contact propagation effect through the dielectric of the real-life sensor, which was displayed

during the grasping experiments. The CAD matching results of the synthetic point clouds for

the different shapes before and after emulating the contact propagation effect are shown in table

5.5. Apparently, the contact propagation emulation has decreased the CAD matching quality

of the simulation point clouds. This can be attributed to the fact that the emulated effect has

resulted in additional points that deviated from the corresponding ground truth shape surface

the thing that increases the noise level and decreases the quality of the simulation point clouds

and by that bringing them closer to reality.

Table 5.5 A comparison between the simulation generated tactile point clouds’ CAD

matching qualities before and after adding the contact propagation effect for all shapes

Rectangular Cylindrical Triangular

Metric
Before

Contact

Propagation

After

Contact

Propagation

Before

Contact

Propagation

After

Contact

Propagation

Before

Contact

Propagation

After

Contact

Propagation

ICP RMS (mm) 0.81 1.67 0.65 1.3 1.71 2.21

Mean (mm) 0.74 1.52 0.57 1.2 1.53 1.9

The results of the different data treatment stages that were previously discussed are shown for

the rectangular prism object in figure 5.11 and similar results were generated for the other test

shapes and depicted in figures I-2 and I-3 of the appendix.

Initially, the real-life point cloud in orange seems to be denser than the simulation point cloud

in red and it presents extra outlier points. As previously mentioned, these observations can

be attributed to the real-life sensor contact propagation effect and inherent noise respectively.

However, as the treatment progresses, the simulation cloud’s density increases as seen in yellow

after emulating the real-life contact propagation effect and the real-life data gets cleaner with

little to no outliers as seen in green after applying the force and SOR filters.

In addition to visualization, the sim-to-real gap progression was monitored by numbers by

performing a matching between the point clouds generated in real-life and the corresponding

ones that were generated in simulation just like previously shown in figure 5.8. The matching
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Figure 5.11 Sim-to-real gap progression for the rectangular prism

was performed after each data treatment step and the results were registered in tables I-10, I-11

and I-12 for the three different shapes and the ICP RMS and mean distances progressions among

other metrics progressions were extracted and presented in figure 5.12.

A continuous decrease in both distances is observed for all the different shapes and this indicates

the added value of each treatment phase in the minimization of the gap between simulation and

reality.

Finally further analysis was performed to assess the contribution of each data treatment step to

the minimization of the sim-to-real gap and the results for the three object shapes are illustrated

in figure 5.13
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Figure 5.12 Sim to real gap progression by RMS and mean distances for all the

test shapes

It is worth mentioning that in addition to the mean distance, the ICP algorithm’s RMS was

also monitored to calculate the contribution of each data treatment technique to the sim-to-real

gap minimization and the results are presented in the appendix. However, since the same

contributions trend was observed only the mean distance based contributions are discussed here.

Moreover, the used data treatment techniques were not intended to be applied separately on the

real-life and simulation point clouds and as such while it is important to show the progress of

there cumulative contribution it would not make sense to measure the contribution of each data

treatment technique in isolation as the latter would lead to different and irrelevant results. For

example, the contribution of an SOR filter applied on a raw real-life point cloud is different

from that of the same filter applied on the force filtered version of the same cloud since these

two different filters will interfere with each other and the "outlier" versus "non-outlier "points

distribution will change between the point cloud version that went through the force filter and

the version that did not.
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Figure 5.13 Sim to real gap minimization contribution for each data treatment

phase for the different shapes: The mean distance for the real-life point cloud to

simulation point cloud matching was measured before the data treatment and its

decline was monitored after the application of each data treatment technique to

register the latter’s contribution to the sim-to-real data gap

As depicted in the presented diagrams, while all the applied data treatment techniques present

an added value towards the sim-to-real gap minimization objective, the force filtering effect

has the smallest contribution for all the shapes while the SOR filtering has directly the higher

contribution level. This observation reveals that the developed tactile sensor is more susceptible

to outlier noise than contact force related noise. This might be attributed to the fact that the

majority of the detected contact points have significant contact forces that are higher than the

set force filter threshold. However, more noise is coming from more contact points that are

generated in isolated locations with respect to the entire point cloud that represents the grasped

shapes and this can be explained by the fact that upon contact at specific locations, in addition to

activating the corresponding taxels at these locations, the sensor inadvertently activates distant

taxels that are unrelated to the immediate tactile interaction. This can be explained by the fact

that the electrodes layout of our developed sensor previously discussed in chapter three, was
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designed as a matrix structure that dictates sharing each electrode among multiple taxels and this

can lead to electrical signals interference or a crosstalk among the taxels. While the SOR filter

eliminates most of the noise related to this crosstalk, other steps can be taken to mitigate this

problem. For instance, in addition to the right selection of the dielectric material as previously

discussed in chapter three, the electrodes layout can be further optimized to reduce the impact of

the crosstalk among the taxels.

Furthermore, the contribution of the contact propagation effect emulation to the sim-to-real gap

minimization seems to be higher than that of the SOR filtering. This can be explained first

from the SOR filter side, where one factor that is limiting its contribution might be attributed to

the fact that the tactile point clouds that are being filtered are accumulations of multiple point

clouds that were collected from multiple grasping attempts. As such, some contact points at

certain locations might have been only detected by a small subset of these grasps. As a result

this might lead to isolated contact points and low-density contact locations that are genuine but

are not consistently present in all the grasping attempts. When the SOR filter is applied, it may

remove these legitimate points that are probably detected in simulation and therefore the SOR

filter contribution to the sim to real minimization will be negatively affected. This sheds the

light on the challenges of combining the data collected from multiple trials or attempts and in

this case, in order to allow the SOR filter to retain more of the legitimate or valuable contact

points, several data fusion techniques or algorithms can be investigated to combine the data

from multiple grasping attempts while having little or no isolated genuine contact points. For

example instead of a simple points accumulation, the 3D coordinates of the detected contact

points can be averaged across the different attempts of the same grasp which helps in reducing

the variations caused by different grasp executions which leads to less isolated genuine contact

points occurrences.

Furthermore, the contact propagation effect emulation has the highest contribution to the

sim-to-real gap minimization probably because this effect occurs with varying degrees not only

across all the sensors covering the Allegro robotic hand used in our experiments but also across

all the experiments’ grasping executions while the previously discussed force and outlier related

noise are more localized and sporadic and may not be as consistently present across all the
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grasping executions. Therefore adding this effect to the simulation generated tactile point clouds

will have a more prevalent effect on the sim to real gap minimization than the force and outlier

noise filtering.

Another interesting observation that was made is that the contribution of the force filter in the

case of the triangular prism is much lower compared to the rectangular and cylindrical shapes.

Since, the triangular prism has smaller dimensions than the other shapes and has a higher number

of edges to flat face areas ratio, therefore the same grasping forces that were applied to the other

shapes lead to higher pressure distribution and therefore more sensor dielectric deformation

which might have probably lead to higher forces readings in the case of the triangular prism.

Consequently, the contact forces are shifted to a higher level leaving a small amount of noise to

be removed by the force filter. Moreover, the contribution of the contact propagation effect is

the lowest for this shape and this can be attributed to the small triangular prism size, leading to

fewer contact points between the grasped shape and the Allegro hand and as such the contact

propagation effect has fewer opportunities to manifest compared to the larger rectangular and

cylindrical prism shapes.

Finally, we were able to came up with a data treatment sequence not only to minimize the

sim-to-real gap but also to improve the matching of the real-life and simulation point clouds

with their corresponding shapes CAD models. However, we were also interested in showing

that matching of the treated point clouds with the CAD models of different shapes yields

comparatively worse results. We believe that this further documents the effectiveness of our

proposed data treatment plan and the specificity and robustness of the CAD matching approach

in correctly identifying the right shape. Our analysis results are shown in figure 5.14.
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Figure 5.14 Real-life and simulation point cloud matching with all the test

shapes’ CAD models: The treated point clouds that yielded the best matching

results with their corresponding shape CAD models were used in the analysis and

the ICP’s RMS and the mean distances were used to track the matching quality

As we can a common trend is shared among the three different shapes, the ICP’s RMS and the

mean distance of the real-life and simulation point clouds matching is at its minimum with their

corresponding shape’s CAD model. This means that the the treated tactile point clouds that

were generated from both our real-life and simulation experiments not only capture the right

geometry of the grasped shape but one can also use them to identify the shapes that were not

grasped by relying on the statistical distance metrics.





CONCLUSION

The field of robotics holds immense promise, with applications ranging from manufacturing

precision to collaborative human-robot interactions and the navigation of dynamic and complex

environments. Object and shape recognition in cluttered surroundings plays a pivotal role in

realizing these applications, enabling robots to perform tasks with precision and adaptability.

However, the challenges posed by cluttered environments, partial occlusions, and unreliable

visual data highlight the need for alternative sensory modalities. This project addresses this

need by developing a cost-effective tactile sensor and leveraging the power of simulation to

enhance the performance and capabilities of robotic systems.

By recognizing shapes, this project paves the way towards the future recognition of objects and

their properties.Moreover, the significance of this project becomes evident when considering

the potential real-world scenarios that could be accomplished in the future. For instance in

manufacturing, robots that will be equipped with future iterations of our developed tactile

sensor could delicately handle fragile or intricate bodies, ensuring quality control and precision.

Moreover, in dynamic and unstructured environments, where visual perception can be unreliable,

tactile sensing could equip the robots in the future with adaptability, enabling them to navigate

and manipulate objects effectively. Recapping the journey undertaken in this thesis, we initiated

with a comprehensive literature review, exploring various transduction mechanisms used in

tactile sensors and state-of-the-art approaches to tactile sensor simulation and synthetic data

generation. We then ventured into the theory and operating principles of the proposed capacitive

tactile sensor. The subsequent chapter delved into the selection and setup of a suitable simulator

environment. Following this, we meticulously detailed the sensor’s design and hardware setup

while offering insights into its cost-effectiveness and ease of application.

An important aspect of our research work included the use of the simulations with the aim to

generate realistic synthetic tactile data, providing a cost-effective and convenient approach for

AI algorithm training. This undertaking aligned with the advantages simulations offer, including
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flexibility, the introduction of variability and uncertainty for robust algorithm training, and

parallel programming for efficiency gains.

In this research endeavor, we have achieved significant milestones. Our primary accomplishments

include the design of a cost-effective tactile sensor capable of precisely detecting the contact

force and location, accommodating up to four contact points per 𝑐𝑚2, and operating at a sampling

rate of six Hz. Notably, we successfully implemented this sensor across the entire Allegro

robotic hand, ensuring comprehensive coverage.

Our rigorous validation process involved conducting real-life grasping experiments on three

distinct primitive shapes and generating tactile point clouds to represent these shapes using

our developed tactile sensor. Furthermore, we extended our achievements into the realm of

simulation, faithfully replicating the sensor’s functionality and meticulously recreating the

previously mentioned experiments within a simulation environment and generating realistic

synthetic tactile point clouds. Subsequently, we employed a meticulously devised data treatment

plan that refined the synthetic tactile point clouds, aligning them closely with the real-world

counterparts and therefore resulting in the minimization of the sim-to-real disparity.

Perhaps most notably, our research has demonstrated the practical utility of these treated tactile

point clouds to accurately identify the specific shape that was grasped during their generation.

We believe that our work holds promise for a wide range of future applications in the field of

robotics manipulation and object and shape recognition. Most notably, our developed simulation

framework can be used in the future to effectively generate large sets of synthetic tactile point

clouds to train AI models for shape and potentially object recognition tasks. However, this

research project acknowledges its limitations and challenges on both the hardware and simulation

levels that are worthy of mentioning.

On the hardware level, the dielectric described in chapter 4 was encapsulated on top of the

FPCBs using adhesive tape as part of the current design. While this approach provided a

relatively reliable support, it comes with some imperfections. To be specific, the adhesive
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tape layer had to be changed from time to time to ensure a reliable adhesion of the dielectric

layer against the FPCBs and therefore generating more reliable and repeatable tactile data.

An alternative approach that is worth investigating, is to cast the polyurethane material, from

which the dielectric was fabricated, directly on the FPCBs. This is believed to provide a

more reliable and a more consistent long term adhesion, which enhances both the quality and

repeatability of the generated tactile data in the real-life experiments. Another challenge that

was faced in this project involved the vulnerable connectivity among the developed network

of sensors that was previously described in chapter 4. This problem was caused by the fragile

inter-PCBs connections that were used for both power and communication delivery among the

interconnecting sensors. In order to solve this problem, more robust connections should be

used and the developed PCBs should be redesigned to accommodate such connections and it is

worth mentioning that the connections design employed in the Allegro hand can be used as an

inspiration.

On the simulation level, while a conic microstructure was used to represent the dielectric layer

on top of the FPCBs, optimally speaking a simulation model should be created for this layer

to replicate its elastic behaviour and accurately predict the contact behaviour of the real-life

sensor upon interaction with external objects. Unfortunately, this was one of the limitations of

using a relatively computationally cheap solid bodies simulator. Another limitation that was

noticed in the context of our conducted experiments was the simulator’s inability to accurately

represent of the real-life interaction between the Allegro hand and the grasped objects. More

specifically, upon contact the surfaces deformations of the colliding bodies should be simulated

to reflect the grasped object’s tilting and the workstation’s table surface deformation during the

grasping experiments. Moreover, the interference between the colliding objects should be better

simulated to allow minimal penetration. These specifications and requirements can be used to

guide a future selection of an alternative simulator. Looking ahead, many research avenues

can be explored and many improved versions or even different applications can be built on top
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of the work conducted in this research project. For instance, the FPCBs can be redesigned to

activate the proximity sensing capabilities of the sensor and reap this functionality’s potential by

using it for material detection for example. Also, instead of representing the robotic grasping

workstation as a separate simulation entity, a digital twin can be created to synchronize the

real-life and the simulation worlds for a more efficient and a more accurate validation of the

simulation experiments. Moreover, the developed system can be used for the future application

and/or development of new tactile exploration strategies to efficiently identify objects with

more complicated shapes and different material types. Finally, after establishing the adequate

frameworks, large synthetic datasets can be generated to train sophisticated AI algorithms and

test them for object recognition in real-life as a one step closer towards the ultimate goal of

granting the robotic manipulator with the ability to rummage in cluttered environments with

minimal or no incorporation of computer vision capabilities.

In conclusion, this thesis project not only contributes to the development of a cost-effective

tactile sensors and its integration with simulations but also paves the way for future research and

advancements, furthering the perception capabilities of robots in diverse real-world scenarios.



APPENDIX I

REAL-LIFE AND SIMULATION POINT CLOUDS ANALYSIS

1. Figures in annexes

1.1 Sim-to-Real Gap Progression

Figure-A I-1 Sim-to-real gap progression for the rectangular prism
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Figure-A I-2 Sim-to-real gap progression for the cylindrical prism
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Figure-A I-3 Sim-to-real gap progression for the triangular prism
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1.2 Sim-to-Real Gap Minimization Contribution

Figure-A I-4 Rectangular prism sim-to-real gap minimization contribution

Figure-A I-5 Cylindrical prism sim-to-real gap minimization contribution

Figure-A I-6 Triangular prism sim-to-real gap minimization contribution
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2. Tables in annexes

2.1 Force Filtering Tables

Table-A I-1 Rectangular prism force filtering CAD matching results (Pts =

Points and Std =Standard deviation)

Threshold Pts RMS (m) Max (m) Mean (m) Std (m) Filtered out (%)

150 3504 0.00379 0.02354 0.0033 0.00119 0

160 3387 0.00375 0.02019 0.00327 0.00112 3.339041096

170 3276 0.00371 0.02176 0.00327 0.00113 6.506849315

180 3161 0.0037 0.02176 0.00325 0.00109 9.788812785

190 3069 0.00366 0.02175 0.00323 0.00108 12.41438356

200 2510 0.00392 0.02176 0.0035 0.00128 28.36757991

210 2342 0.00387 0.02175 0.0034 0.00124 33.16210046

230 2111 0.00381 0.02006 0.00343 0.00121 39.75456621

260 1098 0.00383 0.0191 0.00341 0.00119 68.66438356

290 774 0.00374 0.01661 0.00322 0.00114 77.9109589

320 543 0.0036 0.01501 0.00312 0.00111 84.50342466

Table-A I-2 Cylindrical prism force filtering CAD matching results (Pts = Points
and Std =Standard deviation)

Threshold Pts RMS (m) Max (m) Mean (m) Std (m) Filtered out (%)
150 3131 0.0035 0.01938 0.0033 0.00156 0

160 3052 0.00347 0.01938 0.00326 0.00154 2.523155541

170 2949 0.00328 0.01953 0.00297 0.00102 5.812839348

180 2851 0.00317 0.01953 0.0029 0.00087 8.942829767

190 2760 0.00305 0.01953 0.00281 0.00139 11.84924944

200 1902 0.00355 0.01844 0.00336 0.00128 39.25263494

210 1763 0.00355 0.01945 0.00331 0.00117 43.69211115

230 1469 0.00342 0.01679 0.00334 0.00123 53.0820824

260 1122 0.00331 0.01095 0.00312 0.00103 64.16480358

290 851 0.00327 0.01201 0.00313 0.00107 72.82018524

320 610 0.00328 0.01196 0.00314 0.0011 80.51740658
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Table-A I-3 Triangular prism force filtering CAD matching results

Threshold Pts RMS (m) Max (m) Mean (m) Std (m) Filtered out (%)
150 3157 0.00512 0.0145 0.00482 0.00168 0

160 3100 0.00509 0.0145 0.0048 0.00163 1.805511562

170 2987 0.0049 0.01235 0.0046 0.00165 5.384859043

180 2874 0.00486 0.01235 0.00459 0.00158 8.964206525

190 2866 0.00476 0.01235 0.00449 0.00158 9.217611657

200 2472 0.00486 0.01199 0.00465 0.00168 21.69781438

210 2462 0.00485 0.012 0.00463 0.00169 22.0145708

230 2225 0.00482 0.01199 0.00463 0.00163 29.52169781

260 458 0.004 0.01011 0.00359 0.00253 85.49255622

290 441 0.0038 0.01012 0.00352 0.00263 86.03104213

320 428 0.00382 0.01013 0.00351 0.00268 86.44282547

2.2 SOR Filtering Tables

Table-A I-4 Rectangular prism SOR filtering CAD matching results (N=Number
of points to use for mean distance estimation and nSigma=Standard deviation

multiplier)

N nSigma Points RMS (m) Max (m) Mean (m) Standard deviation (m) Filtered out (%)

20

1 2823 0.0033 0.00764 0.0029 0.00089 8.015640274

2 2937 0.00338 0.01092 0.00301 0.00105 4.301075269

3 2981 0.00344 0.01263 0.00302 0.00104 2.867383513

4 3024 0.00349 0.01263 0.00306 0.00108 1.46627566

2806

1 2444 0.0042 0.01944 0.00385 0.00093 20.36493972

2 3020 0.00349 0.02275 0.00332 0.0015 1.596611274

3

4

701

1 2650 0.00343 0.02105 0.00315 0.00109 13.65265559

2 2962 0.00338 0.02275 0.00311 0.0013 3.48647768

3 3032 0.00347 0.02275 0.00331 0.00148 1.205604431

4 3053 0.00351 0.02275 0.00334 0.00149 0.521342457

1403

1 2452 0.00404 0.01746 0.00366 0.00079 20.10426849

2 2998 0.00345 0.02274 0.00327 0.00146 2.313457152

3 3065 0.00352 0.02275 0.00335 0.00149 0.130335614

4
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Table-A I-5 Cylindrical prism SOR filtering CAD matching results (N=Number
of points to use for mean distance estimation, nSigma=Standard deviation

multiplier, Pts = Points and Std = Standard deviation)

N nsigma Pts RMS (m) Max(m) Mean (m) Std (m) Filtered out (%)

20

1 2483 0.00302 0.01063 0.00282 0.00109 10.03623188

2 2656 0.003 0.00786 0.00271 0.0009 3.768115942

3 2707 0.00305 0.01155 0.00283 0.00114 1.920289855

4 2735 0.003 0.01375 0.00287 0.00122 0.905797101

2759

1 2115 0.00343 0.02183 0.00327 0.00165 23.36956522

2 2735 0.003 0.02193 0.00271 0.00151 0.905797101

3

4

690

1 2301 0.00303 0.01256 0.00283 0.00119 16.63043478

2 2675 0.00311 0.01293 0.00289 0.00129 3.079710145

3 2754 0.00302 0.02001 0.00271 0.0014 0.217391304

4

1380

1 2201 0.00341 0.01357 0.00329 0.0013 20.25362319

2 2655 0.00305 0.02137 0.00292 0.00152 3.804347826

3

4

Table-A I-6 Triangular prism SOR filtering CAD matching results (N=Number
of points to use for mean distance estimation and nSigma=Standard deviation

multiplier, Pts = Points and Std = Standard deviation)

N nSigma Pts RMS (m) Max(m) Mean (m) Std (𝑚) Filtered out (%)

20

1 2712 0.00474 0.00958 0.0045 0.0015 5.373342638

2 2766 0.00475 0.00911 0.0045 0.00152 3.489183531

3 2817 0.00474 0.00914 0.00448 0.00157 1.70969993

4 2833 0.00475 0.00914 0.00449 0.00156 1.151430565

2865

1 2439 0.00488 0.00954 0.00467 0.00139 14.89881368

2 2543 0.00483 0.01025 0.00462 0.00141 11.27006281

3

4

716

1 2395 0.00479 0.00908 0.00456 0.00148 16.43405443

2 2656 0.00472 0.01027 0.00442 0.00163 7.327285415

3 2842 0.00474 0.01136 0.00448 0.00155 0.837404047

4

143

1 2501 0.00484 0.00923 0.00462 0.00144 12.73551989

2 2543 0.00483 0.01025 0.00462 0.00141 11.27006281

3 2850 0.00475 0.0107 0.00449 0.00156 0.558269365

4
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2.3 Simulation Data Tables

Table-A I-7 Rectangular prism simulations CAD matching results (Sim =

Simulation)

Points RMS (m) Max (m) Mean (m) Standard deviation (m)

Original sim 2092 8.05E − 04 0.0056 0.00074 0.00026

Sim+ contact
propagation 3468 0.00167 0.00891 0.00152 0.00077

Table-A I-8 Cylindrical prism simulations CAD matching results

Points RMS (m) Max (m) Mean (m) Standard deviation (m)

Original sim 1682 6.45E − 04 0.00297 0.00057 0.00027

Sim+contact
propagation 3236 0.0013 0.00596 0.0012 0.0004

Table-A I-9 Triangular prism simulations CAD matching results

Points RMS (m) Max(m) Mean (m) Standard deviation (m)

Original sim 2174 1.71E − 03 0.00608 0.00153 0.00075

Sim+contact
propagation 2959 0.00221 0.01011 0.0019 0.00113
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2.4 Sim-to-Real Data Comparison Tables

Table-A I-10 Rectangular prism simulation-reality cloud matching results (Std =

Standard deviation and Pts = Points)

Real-life Pts Simulation Pts RMS (m) Max (m) Mean (m) Std (m)

Pre-treatment 3504 2092 0.00429 0.02995 0.00399 0.00135

Force filter 3069 2092 0.00406 0.0299 0.00372 0.0013

Force+
SOR filters 2823 2092 0.00349 0.01098 0.00312 0.00102

Force+
SOR filters+

contact
propagation

2823 3468 0.00242 0.00901 0.0021 0.00084

Table-A I-11 Cylindrical prism simulation-reality cloud matching results(Std =

Standard deviation and Pts = Points)

Real-life Pts Simulation Pts RMS (m) Max (m) Mean (m) Std (m)

Pre-treatment 3131 1682 0.0043 0.02267 0.0039 0.00196

Force filter 2760 1682 0.00403 0.02282 0.00362 0.00144

Force+
SOR filters 2656 1682 0.00385 0.01253 0.00342 0.00104

Force+
SOR filters+

contact
propagation

2656 3236 0.00258 0.00743 0.00218 0.00062

Table-A I-12 Triangular prism simulation-reality cloud matching results(Std =

Standard deviation and Pts = Points)

Real-life Pts Simulation Pts RMS (m) Max (m) Mean (m) Std (m)

Pre-treatment 3157 2174 0.00433 0.01814 0.0039 0.00187

Force filter 2866 2174 0.00422 0.014357 0.00383 0.00178

Force+
SOR filters 2656 2174 0.00385 0.010434 0.00358 0.00143

Force+
SOR filters+
contact
propagation

2656 2971 0.00337 0.009768 0.00309 0.0013
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2.5 Point Clouds Matching Results with all the Shapes’ CAD Models

Table-A I-13 Real-life rectangular prism point cloud matching with all CAD

shapes(N=Number of points to use for mean distance estimation ,

nSigma=Standard deviation multiplier and Std = Standard deviation)

Real-life Rect-Prism Point Cloud

CAD Shape Threshold N nSigma Points RMS (m) Max (m) Mean (m) Std (m)

Rect-Prism

190 20 1 2823

0.003296 0.00764 0.002896 0.000889

Cyl-Prism 0.012737 0.02417 0.010608 0.007044

Tri-Prism 0.017091 0.03101 0.014989 0.008211

Table-A I-14 Simulation rectangular prism point cloud matching with all CAD

shapes

Simulation Rect-Prism Point Cloud

CAD Shape Points RMS (m) Max (m) Mean (m) Standard deviation (m)

Rect-Prism

3468

0.001667 0.00891 0.00152 0.00077

Cyl-Prism 0.011431 0.02042 0.00946 0.006421

Tri-Prism 0.015742 0.02789 0.01419 0.006804

Table-A I-15 Real-life cylindrical prism point cloud matching with all CAD

shapes(N=Number of points to use for mean distance estimation,

nSigma=Standard deviation multiplier and Std = Standard deviation)

Real-life Cyl-Prism Point Cloud

CAD Shape Threshold N nSigma Points RMS (m) Max (m) Mean (m) Std (m)

Rect-Prism

190 20 2 2656

0.00485 0.0169 0.00358 0.00328

Cyl-Prism 0.0033 0.00786 0.00271 0.000904

Tri-Prism 0.00862 0.02025 0.00741 0.004393
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Table-A I-16 Simulation cylindrical prism point cloud matching with all CAD

shapes

Simulation Cyl-Prism Point Cloud

CAD Shape Points RMS (m) Max(m) Mean (m) Standard deviation (m)

Rect-Prism

3236

0.00449 0.0168 0.00285 0.00347

Cyl-Prism 0.0013 0.006 0.0012 0.0004

Tri-Prism 0.00781 0.0166 0.00689 0.00367

Table-A I-17 Real-life triangular prism point cloud matching with all CAD

shapes(N=Number of points to use for mean distance estimation,

nSigma=Standard deviation multiplier and Std=Standard deviation)

Real-life Tri-Prism Point Cloud

CAD Shape Threshold N nSigma Points RMS (m) Max (m) Mean (m) Std (m)

Rect-Prism

190 716 2 2656

0.00594 0.0169 0.00492 0.00544

Cyl-Prism 0.00614 0.0118 0.00525 0.00426

Tri-Prism 0.00472 0.0103 0.00442 0.00163

Table-A I-18 Simulation triangular prism point cloud matching with all CAD

shapes

Simulation Tri-Prism Point Cloud

CAD Shapes Points RMS (m) Max (m) Mean (m) Standard deviation (m)

Rect-Prism

2959

0.00587 0.0168 0.00391 0.00437

Cyl-Prism 0.00528 0.0095 0.00431 0.00305

Tri-Prism 0.00221 0.0101 0.0019 0.00113
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