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Évaluation de l’efficacité des données dans l’apprentissage par renforcement hors ligne

Shivakanth SUJIT

RÉSUMÉ

L’apprentissage par renforcement (RL) s’est avéré très prometteur avec des algorithmes apprenant

dans des environnements avec de grands espaces d’état et d’action uniquement à partir de signaux

de récompense scalaires. L’un des principaux défis des algorithmes actuels d’apprentissage par

renforcement est qu’ils nécessitent un nombre considérable d’interactions avec l’environnement

pour l’apprentissage. Cela peut s’avérer infaisable dans les situations où ces interactions sont

coûteuses, comme en robotique. Les algorithmes RL hors ligne tentent de résoudre ce problème

en amorçant le processus d’apprentissage à partir des données enregistrées existantes sans avoir

besoin d’interagir avec l’environnement dès le départ. Alors que les algorithmes RL en ligne

sont généralement évalués en fonction du nombre d’interactions avec l’environnement, il n’existe

pas de protocole unique établi pour évaluer les méthodes RL hors ligne. Dans cette thèse, nous

proposons une approche séquentielle pour évaluer les algorithmes RL hors ligne en fonction de la

taille de l’ensemble d’apprentissage et donc de leur efficacité en termes de données. L’évaluation

séquentielle fournit des informations précieuses sur l’efficacité du processus d’apprentissage

et la robustesse des algorithmes aux changements de distribution dans l’ensemble de données,

tout en harmonisant la visualisation des phases d’apprentissage en ligne et hors ligne. Notre

approche est généralement applicable et facile à mettre en œuvre. Nous comparons plusieurs

algorithmes RL hors ligne existants à l’aide de cette approche et présentons les résultats d’une

variété de tâches et d’ensembles de données hors ligne.

Mots-clés: apprentissage par renforcement hors ligne, méthodes d’évaluation





Evaluation of Sample Efficiency in Offline Reinforcement Learning

Shivakanth SUJIT

ABSTRACT

Reinforcement learning (RL) has shown great promise with algorithms learning in environments

with large state and action spaces purely from scalar reward signals. A crucial challenge for

current deep RL algorithms is that they require a tremendous amount of environment interactions

for learning. This can be infeasible in situations where such interactions are expensive; such

as in robotics. Offline RL algorithms try to address this issue by bootstrapping the learning

process from existing logged data without needing to interact with the environment from the

very beginning. While online RL algorithms are typically evaluated as a function of the number

of environment interactions, there exists no single established protocol for evaluating offline RL

methods. In this thesis, we propose a sequential approach to evaluate offline RL algorithms as a

function of the training set size and thus by their data efficiency. Sequential evaluation provides

valuable insights into the data efficiency of the learning process and the robustness of algorithms

to distribution changes in the dataset while also harmonizing the visualization of the offline

and online learning phases. Our approach is generally applicable and easy to implement. We

compare several existing offline RL algorithms using this approach and present insights from a

variety of tasks and offline datasets.

Keywords: offline reinforcement learning, evaluation methods
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INTRODUCTION

Reinforcement learning (RL) is a paradigm for learning when well defined ground truth labels

or behavior are not available for training. In the absence of an explicit ground truth label for

supervision, the agent learns from trial and error, where it is penalised for behavior leading to bad

outcomes and rewarded for behavior that leads to good outcomes. Historically, reinforcement

learning has shown promise in learning agents that can play simple games, such as backgammon

(Tesauro, 1995) or checkers (Samuel, 1959). But such successes were marred by the difficulty in

extending them to play harder games with complex dynamics and interactions. These approaches

were computationally intensive and did not scale to games with high dimensional inputs such as

images. However the rise in the use of deep neural networks for image classification (Krizhevsky,

Sutskever & Hinton, 2012), object detection (Girshick, Donahue, Darrell & Malik, 2013) and

segmentation (Shelhamer, Long & Darrell, 2014) tasks spurred interest in combining these

expressive deep networks with RL. This led to a major breakthrough by Mnih et al. (2013),

where a deep neural network was trained to play Atari games directly from images and reward

signals from the game. The algorithm, named Deep Q Network (DQN) learnt to play seven

Atari games and even achieved human-level performance on three of the games.

The above mentioned approaches used online reinforcement learning for solving these tasks.

Online reinforcement learning assumes that the agent has access to an environment (either in

the real world or a simulator) that it can interact with. This interaction serves two purposes: 1)

it allows the agent to collect more data to be trained on, and 2) it allows the agent to validate

its current beliefs about the world. The former is desirable since deep learning methods tend

to perform better with access to more data (Kaplan et al., 2020), and having a ready source of

new data assists in this purpose. It can be said that the latter objective is a by-product of the

former, but there is a subtle difference. Online RL differs from other forms of deep learning

in that the model has a role to play in the data collection process. The behavior of the model

actively affects the distribution of data that it collects. This is not the case in computer vision or
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natural language tasks in deep learning where the model plays no part in the data collection

process. This model dependence in the data collection process makes RL challenging since a

poor policy can be doomed to remain at sub-optimal behavior since it might not ever collect

data representing optimal behavior, thereby preventing learning such behavior. Interacting in

the environment serves as a kind of grounding whereby the agent can execute behavior that

it believes leads to good outcomes and observe if that is actually the case. This ability to

test the quality of its behavior has been shown to be essential for stable learning (Ostrovski,

Castro & Dabney, 2021; Fujimoto, van Hoof & Meger, 2018). In Ostrovski et al. (2021), the

authors conduct an experiment with two RL agents that train on the same data, but the data is

collected by only one agent. That is, only one agent is allowed to interact with the environment

and collect data, while the other agent can only passively learn from this data. They control for

the sampling of mini-batches from the buffer to ensure that both agents train on the exact same

data and only differ in the initialization of the neural network weights. Their experiments show

that while the online agent is able to improve and solve the task, the passive learner is not able to

solve the task. Even though the agents are trained with exactly the same data, the passive agent

does not learn successfully. They attribute this behavior to the inability of the passive learner

to correct its mistakes. If the online agent overestimated the goodness of its actions, it would

receive corrective feedback from the environment in the form of lower rewards than expected.

The passive learner, on the other hand, does not receive such feedback. If it erroneously believes

that a given action is optimal, it has no ability to correct this mistake. Hence it would continue

to have these beliefs and perform poorly.

This result highlights the difficulty in learning purely from a fixed dataset whose collection

the agent can not influence and the branch of RL that studies this setting is termed offline RL.

Offline RL methods need to create a balance between mimicking the action distribution in the

dataset and generalizing outside of the exact states observed in the dataset. For example, if the

learnt policy overfits to the dataset, it can perform poorly when the environment deviates slightly
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from previously seen behavior. Similarly we have to be careful about how the agent extrapolates

outside of the dataset since it wouldn’t have the ability to check if these extrapolations hold up in

the actual environment.

In this thesis, we do not study algorithm design in offline RL, but focus on devising new

evaluation protocols to test for sample efficiency in offline RL. The traditional approach to

evaluation has been what we term the "mini-batch" style of evaluation, where algorithms are

tested as a function of gradient steps. The agent is given access to the entire dataset from

which it can sample minibatches of data at a time to train on. The algorithms are given a fixed

compute budget, usually around 1M gradient steps, and performance is evaluated periodically

throughout training. The performance curves reported are therefore a function of the compute

afforded to the algorithm. But this style of evaluation does not provide any insights into the

data scaling properties of the algorithm. It is not possible to answer questions pertaining to how

the performance would vary if you doubled the amount of data that the algorithm had access

to, or halved it. These properties are useful to have when performing algorithm selection for

practical applications since final performance might not be the only concern. There could be a

bottleneck in the amount of data available for the task and knowing how the algorithm scales

with data could inform if it is worthwhile to spend extra time collecting more data. Furthermore,

mini-batch style training does not study how the algorithm reacts to changes in data distribution

since it is trained on all data at the same time. But a dataset could have been collected by policies

of varying quality and it can be useful to know if a given algorithm can adapt to new data and

learn from it, or if it would be better to just train from scratch.

To address these concerns, we study a sequential style of evaluation of offline RL algorithms.

Sequential evaluation varies the amount of data available to an algorithm during training and

studies how they improve with dataset sizes and changes in data distribution. We provide a

concrete implementation of this approach and showcase how it can be utilized for performing
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algorithm selection in offline RL. We show this across varied datasets and algorithms to highlight

the generality of the sequential approach. Finally, we provide recommendations for how

algorithm designers can showcase the results of sequential evaluation in through model cards

summarizing key data scaling properties.

The rest of this thesis is organized as follows. Chapter 1 provides an overview of RL formalisms

and definitions, followed by a discussion of online and offline RL methods and challenges

present in training these methods. Chapter 2 describes the organization of the articles in the

thesis. Chapter 3 presents the sequential evaluation framework, main experimental results and

design recommendations. Chapter 4 contextualizes the results of the article with respect to the

rest of the thesis and finally, Conclusion and Recommendations summarizes our work and the

main takeaways that we wish to leave the reader with. Appendix I contains additional results

and descriptions of the datasets and algorithms used.



CHAPTER 1

LITERATURE REVIEW

1.1 Preliminaries

Reinforcement learning (RL) is concerned with learning when ground truth supervision targets

are not available, but the fitness/quality of an action/prediction can be evaluated. In this situation,

the agent learns through trial and error, initially following a random policy, but over time learning

a policy that maximises the "goodness" of its actions.

The RL paradigm follows the structure as given in Fig. 1.1. An agent is assumed to be interacting

in an environment, at each timestep receiving a state 𝑠𝑡 from the environment. Based on the

state, it chooses an action 𝑎𝑡 to execute in the environment. The execution of an action 𝑎𝑡 causes

the environment to transition to the next state 𝑠𝑡+1 and the agent receives a reward 𝑟𝑡 . The reward

is a measure of how good the action 𝑎𝑡 is. The environment is modelled as a Markov Decision

Process (MDP) (Bellman, 1957), described by the tuple < S,A,R,P >. S corresponds to the

set of possible states in the environment, A is the set of valid actions, R : S × A is the reward

function, and P defines the transition dynamics of the environment.

The environment can follow an episodic setting or an infinite horizon setting. In the episodic

setting, the environment will terminate after a finite number of timesteps. In the infinite horizon

setting, there can be situations where an episode does not terminate at all. We define the

discounted return as𝐺 =
∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡 . The discount factor 𝛾 ∈ [0, 1] specifies the tradeoff between

recent rewards and future rewards. A discount factor of 1 means all rewards are treated equally,

whether the rewards were obtained in the first timestep or the thousandth timestep. This can be

problematic in the infinite horizon setting since the sum of rewards will diverge. Furthermore,

we would like to encourage immediate rewards over future rewards and this can be done by

setting 𝛾 ∈ [0, 1). This means that a reward 𝑟𝑡+𝑘 is less important than 𝑟𝑡 by a factor of 𝛾𝑘 . It

also ensures that the return is bounded in infinite-length episodes. The closer 𝛾 is to 0, the more

the agent will value greedy immediate rewards over long term rewards.
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Figure 1.1 Visualization of the Agent-Environment loop in

reinforcement learning.

The agent in RL is modelled through a policy 𝜋(𝑎𝑡 |𝑠𝑡) that provides a mapping from states to

actions. This mapping can be modelled implicitly or explicitly as we will see in value-based

and policy gradient methods. There is no restriction on the type of functions that can be

used to represent this mapping, though in recent years there has been great success in using

neural network based function approximators (Mnih et al., 2013; Schulman, Wolski, Dhariwal,

Radford & Klimov, 2017; Bellemare, Dabney & Munos, 2017; Berner et al., 2019). The

objective in RL is to learn a policy that maximises the discounted return 𝐺. This policy is

sometimes referred to as the optimal policy 𝜋∗. The learning objective in RL can hence be

summarized as finding 𝜋∗ where

𝜋∗ = argmax
𝜋
E𝑎∼𝜋,𝑠′∼P

[
𝑇∑
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠
′
𝑡)

]
. (1.1)

1.1.1 Value Based Methods

The value 𝑉𝜋 (𝑠) of a state s is defined the as the expected discounted return 𝐺𝑡 that can be

obtained from a state 𝑠 by following policy 𝜋. That is,
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𝑉𝜋 (𝑠) = E𝜋

[
𝑇∑
𝑡=𝑡′

𝛾𝑡 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠
′
𝑡)

]
(1.2)

= E𝜋 [𝐺𝑡 |𝑠𝑡 = 𝑠] . (1.3)

Intuitively, the value of a state is a measure of the expected "goodness" of a state. Similarly, the

Q value, 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) of a state, action pair is the expected return from taking action 𝑎𝑡 in state 𝑠𝑡

and thereafter following policy 𝜋 to select actions. That is,

𝑄𝜋 (𝑠, 𝑎) = E𝜋 [𝐺𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] . (1.4)

By inspecting Eqs. 1.2 and 1.4, we see that the Q value can be defined in terms of the value of a

state, 𝑄𝜋 (𝑠, 𝑎) = E𝑠′∼P [𝑟𝑡 + 𝛾𝑉𝜋 (𝑠′)]. Additionally, the advantage of a state-action pair 𝐴𝜋 (𝑠, 𝑎)

is the difference between the Q value, 𝑄𝜋 (𝑠, 𝑎) and the state value, 𝑉𝜋 (𝑠). The advantage

𝐴𝜋 (𝑠, 𝑎) encodes a notion of how much better a given action 𝑎 is compared to other actions you

can take in a state 𝑠.

Value based methods model a policy implicitly by learning 𝑄𝜋 and using it to take the action

that has the maximum Q value. That is 𝜋(𝑎 |𝑠) = argmax
𝑎

𝑄𝜋 (𝑠, 𝑎). The value and Q value of the

optimal policy 𝜋∗ are denoted as 𝑉∗
𝜋 and 𝑄∗

𝜋 respectively.

The Bellman equations define a recursive version of the value and Q value equations of a policy.

𝑉𝜋 (𝑠) = E𝑎∼𝜋,𝑠′∼P [𝑟 + 𝛾𝑉𝜋 (𝑠
′)] , (1.5)

𝑄𝜋 (𝑠, 𝑎) = E𝑠′∼P [𝑟 + 𝛾E𝑎′∼𝜋 [𝑄𝜋 (𝑠
′, 𝑎′)]] . (1.6)
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For the optimal policy, the equations are modified and referred to as the Bellman optimality

equations. They reflect that the optimal policy would predict actions that maximize the value 𝑉

/Q value 𝑄 function and hence are given by

𝑉∗
𝜋 (𝑠) = max

𝑎
E𝑠′∼P

[
𝑟 + 𝛾𝑉∗

𝜋 (𝑠
′)
]
, (1.7)

𝑄∗
𝜋 (𝑠, 𝑎) = E𝜋

[
𝑟 + 𝛾max

𝑎

[
𝑄∗
𝜋 (𝑠

′, 𝑎′)
] ]
. (1.8)

Value based methods utilize the Bellman optimality equation to learn an estimator of the Q value

function. Specifically, they train a network (often termed the Q network 𝑄𝜃 , parameterized

by 𝜃) to satisfy the self-consistency in Eq. 1.7. By definition, an estimator that fulfills the

self-consistency of the optimality equation will be an estimator of the optimal Q value network.

The Q network can be distilled to a policy 𝜋𝜃 by computing the Q values of every action in a

state and then taking the action with the highest Q value. That is, 𝜋(·|𝑠𝑡) = argmax
𝑎

𝑄𝜃 (𝑠𝑡 , 𝑎).

The Q network can be learnt by regressing its output to satisfy Eq. 1.7.

The difference between 𝑄𝜃 (𝑠𝑡 , 𝑎𝑡) and (𝑟𝑡 + 𝛾max
𝑎′

𝑄𝜃 (𝑠
′, 𝑎′)) is termed the temporal difference

(TD) error. Value methods learn 𝑄𝜃 by minimizing its TD error. Since these methods learn

the Q value function, they are also called Q learning methods. The loss function 𝐿𝜃 used for

optimization via gradient descent is given by

𝐿𝜃 = E𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑠𝑡+1∼D

[
(𝑄𝜃 (𝑠𝑡 , 𝑎𝑡) − (𝑟𝑡 + 𝛾max

𝑎′
𝑄𝜃 (𝑠𝑡+1, 𝑎

′)))2
]
. (1.9)

where < 𝑠𝑡, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 > are sampled from a buffer D of previous experience. An important

benefit of the optimization process is that 𝐿𝜃 does not impose any constraints on where the data

is collected from. That is, 𝑄𝜃 can be optimized with data that 𝜋𝜃 did not collect, specifically the

action 𝑎𝑡 need not be produced from𝑄𝜃 . Such types of methods are termed off policy algorithms.

Conversely, algorithms that can be trained only with data generated by the current version of the
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algorithm are termed on policy algorithms. Off policy algorithms tend to have better sample

complexity compared to on policy algorithms since they can reuse old data for optimization.

When on policy algorithm trains on a batch of data, its policy changes and hence that batch can

not be used again, so it is discarded and a fresh batch of data is collected from the environment.

The objective in Eq. 1.9 involves a maximization step to calculate max
𝑎′

𝑄𝜃 (𝑠𝑡+1, 𝑎
′). In

environments with discrete action spaces it can be easy to find the maximum over valid actions.

But in environments with continuous action spaces, it can be difficult since it would involve a

separate optimization step to find the maximum Q value, which adds to the time and complexity

of the process. Instead of performing this step, it has been proposed to train an actor network

𝜇𝜙 that predicts the action that maximizes 𝑄𝜃 . The max operation in Eq. 1.9 is then replaced

with 𝑄𝜃 (𝑠𝑡+1, 𝜇𝜙 (𝑠𝑡+1)) The actor network is trained in parallel with the Q network with the

following loss function (the negative sign indicates that it maximizes this quantity):

𝐿𝜙 = −E𝑠𝑡∼𝐷
[
𝑄𝜃 (𝑠𝑡 , 𝜇𝜙 (𝑠𝑡))

]
, (1.10)

1.1.2 Policy Gradient Methods

While value based methods learn a policy implicitly by estimating the Q value function 𝑄𝜃 ,

policy gradient methods explicitly learn a policy 𝜋𝜃 that maximizes the discounted return of the

agent. That is, the objective of policy gradient methods is

𝐽 (𝜃) = E𝑠∼P [𝐺𝑡] (1.11)

= E𝑠∼P [𝑉𝜋𝜃 (𝑠)] (1.12)

It is difficult to directly optimize this quantity via gradient descent since ∇𝜃𝐽 (𝜃) will need the

gradient with respect to both the action distribution of the policy and the state distribution of the
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environment that is induced by the policy 𝜋𝜃 . While we can compute the gradient with respect

to the policy, it is not simple to calculate the gradient with respect to the state distribution since

it would require a differentiable environment. This can greatly limit the problems that can be

solved as there can be several instances where we interact with an environment that we don’t

have complete access to.

The Policy Gradient Theorem (Sutton & Barto, 2018) derives an estimate of the gradient of

the objective that is free from the derivative with respect to the state distribution and obtains

∇𝜃𝐽 (𝜃) ∝ E𝜋𝜃 [𝑄𝜋 (𝑠, 𝑎)∇𝜃 ln 𝜋𝜃 (𝑎 |𝑠)]. This estimator of the gradient is unbiased but has high

variance and there have been follow up proposals for reducing the variance of the estimator.

REINFORCE (Williams, 1992) uses the Monte Carlo episodic returns 𝐺𝑡 in lieu of 𝑄𝜃 to

estimate the policy gradient. This works because over multiple samples, the expectation of 𝐺𝑡 is

𝑄𝜃 . Additionally, a baseline is subtracted from 𝐺𝑡 to reduce the variance without affecting bias,

with popular options being a running mean of the past episodic returns.

The policy gradient defined above is on policy since the gradient is defined with respect to the

current policy parameters. As mentioned in Section 1.1.1, algorithms that directly use this

version of the gradient can require more data as they need to repeatedly collect new data to

train on. To improve sample complexity, importance sampling (IS) (Precup, Sutton & Singh,

2000) has been used to define an off policy version of the gradient that can reuse data or perform

multiple gradient updates on the same batch of data. IS reweighs the contribution of a sample to

the gradient based on how different the current policy is from the policy that collected the data.

Assuming 𝜋𝑏 is the behavior policy used to collect the data, each sample is reweighed by
𝜋𝜃 (𝑎 |𝑠)
𝜋𝑏 (𝑎 |𝑠)

.

This correction changes the gradient equation as follows,

∇𝜃𝐽 (𝜃) ∝ E𝜋𝑏

[
𝜋𝜃 (𝑎 |𝑠)

𝜋𝑏 (𝑎 |𝑠)
𝑄𝜋 (𝑠, 𝑎)∇𝜃 ln 𝜋𝜃 (𝑎 |𝑠)

]
(1.13)

Notice that the expectation is now with respect to 𝜋𝑏 instead of 𝜋𝜃 . IS is implemented by

performing multiple mini-batch updates where the behavior policy is the policy before starting
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the current step of optimization. IS can diverge during training if the current policy differs

significantly from the behavior policy as the IS weight can explode or vanish. This limits the

number of consecutive mini-batch gradient updates that can be performed before new data must

be collected. There are two popular approaches to minimize the divergence between the current

and behavior policy. Trust Region Policy Optimization (TRPO) (Schulman, Levine, Moritz,

Jordan & Abbeel, 2015) enforces a KL divergence penalty on the distribution of the behavior

policy and the current policy. This creates a constraint on how much the policy distribution

can change with each mini-batch gradient update, that is E𝜋𝑏 [𝐷KL(𝜋𝑏 (·|𝑠) | |𝜋𝜃 (·|𝑠)] ≤ 𝑐.

While this constraint provides a guarantee on the improvement in the policy, it is difficult to

implement it since it involves calculation of higher order gradients at every update which can be

computationally expensive and unstable. Proximal Policy Optimization (PPO) (Schulman et al.,

2017) shows that the policy divergence can be mitigated by simply clipping the IS weight to

remain in the interval [1 − 𝜖, 1 + 𝜖], where 𝜖 is usually set to a small value such as 0.2. This

clipping has the same effect as discouraging gradient updates that drastically change the policy,

while being very simple to implement.

1.2 Offline Reinforcement Learning

Online RL assumes that the agent can learn by acting in an environment and collecting data.

But there can be situations where it is undesirable or infeasible for the agent to interact with the

system. This can be due to the risk associated with interacting in the real system (for example it

can be dangerous in applications related to healthcare), or due to the cost if the interactions are

expensive or time consuming. For this reason it is useful to design RL algorithms that can learn

from offline datasets. This branch of RL is termed offline RL. They learn a policy purely from

previously collected data either from expert demonstrations or even random data. This property

makes offline RL particularly attractive for industrial applications where operators might be

wary of allowing a sub-optimal policy to interact with the system, but there exists logged data

showing what good behavior looks like.
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The lack of a simulator for interaction makes it difficult for offline RL agents to correct

misconceptions about the environment. For example, in online RL if the agent is overly

optimistic about an action, it can execute the action in the environment and correct its estimate,

which is not possible in offline RL. More generally, offline RL algorithms need to generalize to

situations outside of the training data. But at the same time, the algorithm should not deviate too

much from the dataset collecting policy. These two competing objectives need to be carefully

balanced while designing an algorithm.

The simplest form of offline RL is Behavior cloning (BC) which focuses only on the latter

objective. The BC agent is trained to mimic the actions in the dataset. The actions taken

in the dataset are considered to be the ground truth labels for the environment states and the

agent is trained to match these actions as closely as possible. Given a dataset D of 𝑁 samples,

{𝑠𝑖, 𝑎𝑖, 𝑟𝑖}
𝑁−1
𝑖=0

, BC learns a policy 𝜋(𝑎 |𝑠) with the following objective

𝜋 = argmax
𝜋
E𝑠,𝑎∼D [log 𝜋(𝑎 |𝑠)] . (1.14)

BC is particularly useful if there is sufficient quantity and quality of expert demonstrations. But

these agents can be brittle if there is not enough coverage of the state space in the dataset. In

this case, a small deviation from the trajectory followed by an expert can lead the BC agent to

completely fail since it would be in a region of the state space it has not encountered before

during training. Another observed failure mode of BC is when the agent is expected to stitch

desired behavior across different suboptimal episodes (Chen et al., 2021). To address this

concern, there are approaches that assign a heuristic of how useful it is to mimic a particular

action. This way, if there is an episode which overall achieves a poor outcome, but has portions

of the trajectory which are desirable, the agent can assign high importance to those portions

while disregarding the rest. The general form of the objective of such methods is

𝜋 = argmax
𝜋
E𝑠,𝑎,𝑟∼D [Ψ(𝑠, 𝑎, 𝑟) log 𝜋(𝑎 |𝑠)] , (1.15)
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where Ψ(𝑠, 𝑎, 𝑟) is an estimate of how desirable it is to take action 𝑎 in state 𝑠 and can be derived

directly from the dataset without any learning. For example Reward Weighted Regression

(RWR) (Neumann & Peters, 2008) sets Ψ as the return to go from state 𝑠𝑡 . Critic Regularized

Regression (CRR) (Wang et al., 2020b) learns a Q value network from the dataset of collected

experience and weighs samples in the BC objective by their Q value. Advantage Weighted

Regression (AWR) (Peng, Kumar, Zhang & Levine, 2019) learns a network to estimate the

advantage 𝐴(𝑠, 𝑎) of a state-action pair and sets Ψ := 𝑒𝛽·𝐴, where 𝛽 is the temperature to control

how much the advantage is weighted.

There has been recent work on improving generalization while remaining close to the dataset

distribution so as to mitigate the effect of out of distribution (OOD) actions on learning. OOD

actions can create instability in learning due to overestimation bias (Fujimoto, Meger & Precup,

2019). For example, when learning a policy to maximize the Q value, if the Q value is learnt

from the data then there can be extrapolation error when querying the Q network with actions

that were not seen in the data. Policy learning can exploit this vulnerability and learn to only

produce such actions, leading to poor performance in the actual environment.

Conservative Q Learning (CQL) (Kumar, Zhou, Tucker & Levine, 2020) employs a regularization

term on the Q network so that OOD actions are not overestimated. This is done through a

penalty on the Q values of OOD actions. Implicit Q Learning (IQL) (Kostrikov, Nair & Levine,

2022) estimates an upper expectile of the Q network so that the maximum Q value of a state

can be extracted without evaluating actions that are not present in the dataset distribution.

Twin Delayed Deep Deterministic Policy Gradient + BC (TD3+BC) (Fujimoto & Gu, 2021)

proposed a modification to an online off policy RL method, TD3 (Fujimoto et al., 2018), to

encourage policy behavior close to the dataset generating policy by adding a BC term to the

policy optimization term of TD3 (hence the name TD3+BC). They found that this simple change

was sufficient to utilize the online method in the offline setting. The policy optimization term

and the BC objective are balanced using a trade off hyperparameter 𝜆 dependent on the scale of

the Q values of a state. Batch Constrained Q Learning (BCQ) (Fujimoto et al., 2019) learns

a generative model that produces actions most similar to behavior seen in the offline dataset
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and evaluates the Q value network only on these actions. The generative model introduces an

implicit constraint to prevent querying the Q value network on OOD actions.

The Decision Transformer (DT) (Chen et al., 2021) approaches offline RL from a different

perspective. Instead of the objective being to learn a policy from the data, it is modeled as a

sequence learning problem, termed upside-down RL (Schmidhuber, 2019). The key insight is

to train a model that takes past states and actions along with the return to go from the current

state and predicts the next action in the dataset. That is, you predict the next action conditioned

on the return obtained from the current state. During evaluation, you condition the generation

process on the maximum reward in the environment and the model would generate the sequence

of actions to obtain that reward. This approach sidesteps the learning of a value function or a

policy and instead frames offline RL solely as a conditional sequence modelling problem. They

leverage a transformer (Vaswani et al., 2017) for modelling sequences, given its recent success

in sequence modelling problems in natural language processing.



CHAPTER 2

ORGANIZATION OF DOCUMENT

The primary portion of this thesis is the article "Bridging the Gap Between Offline and

Online Reinforcement Learning Evaluation Methodologies" which has been submitted to the

Transactions on Machine Learning Research journal in June 2023. This article introduces the

sequential evaluation (SeqEval) framework for offline RL algorithms. It provides context on the

current state of evaluation in offline RL, their deficiencies and how SeqEval addresses each of

these concerns. We follow up with experimental results on a suite of benchmarks and algorithms,

to show the ease with which SeqEval can be integrated in the current offline RL loop. Finally

we present specific recommendations for how authors can summarize the results from SeqEval

so that practitioners can quickly see the main takeaways.

We provide further discussion of the results in Chapter 4 and present the overall conclusions of

the thesis in the Conclusions and Recommendations chapter.





CHAPTER 3

BRIDGING THE GAP BETWEEN OFFLINE AND ONLINE REINFORCEMENT
LEARNING EVALUATION METHODOLOGIES

S. Sujit1 , P. H. M. Braga2 ,

, J. Bornschein3 , S. E. Kahou1

1 Département de génie logiciel et des technologies de l’information,

École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3
2 Universidade Federal de Pernambuco,

Cidade Universitária, Recife - PE, 50670-901, Brazil
3 DeepMind,

DeepMind, London, United Kingdom

Article submitted to Transactions on Machine Learning Research in July 2023

3.1 Introduction

Reinforcement learning (RL) has shown great progress in recent years with algorithms learning

to play highly complex games with large state and action spaces such as DoTA2 (≈104 valid

actions) and StarCraft purely from a reward signal of whether it won the game (Berner et al.,

2019; Vinyals et al., 2019). However, each of these breakthroughs required a tremendous amount

of environment interactions, sometimes upwards of 40 years of accumulated experience in the

game (Schrittwieser et al., 2019; Silver et al., 2016, 2018). This can be infeasible for applications

where such interactions are expensive, for example robotics.

Offline RL methods tackle this problem by leveraging previously collected data to bootstrap the

learning process towards a good policy. These methods can obtain behaviors that maximize

rewards obtained from the system conditioned on a fixed dataset of experience. The existence

of logged data from industrial applications provides ample data to train agents safely till they

achieve good performance and then can be trained on real hardware. The downside of relying on

offline data without any interactions with the system is that the behavior learned can be limited

by the quality of data available (Levine, Kumar, Tucker & Fu, 2020).
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Levine et al. (2020) point out that there is a lack of consensus in the offline RL community

on evaluation protocols for these methods. The most widely used approach is to train for a

fixed number of epochs on the offline dataset and report performance through the average return

obtained over a number of episodes in the environment. In this article, we propose to evaluate

algorithms as a function of available data instead of just reporting final performance or plotting

learning curves over a number of gradient steps. This approach allows us to study the sample

efficiency and robustness of offline RL algorithms to distribution shifts while also making

it easy to compare with online RL algorithms as well as intuitively study online fine-tuning

performance. We call this approach of evaluation Sequential Evaluation (SeqEval) and present

settings where SeqEval can be integrated into the evaluation protocol of offline RL algorithms.

We also propose a style of model card (Mitchell et al., 2018) that can be designed for offline RL

algorithms to provide relevant context to practitioners about their sample efficiency to aid in

algorithim selection.

3.2 Background and Related Work

3.2.1 Offline RL.

The simplest form of offline RL is behavior cloning (BC) which trains an agent to mimic the

behavior present in the dataset, using the dataset actions as labels for supervised learning.

However, offline datasets might have insufficient coverage of the states and operating conditions

the agent will be exposed to. Hence BC agents tend to be fragile and can often perform poorly

when deployed in the online environment. Therefore, offline RL algorithms have to balance

two competing objectives, learning to generalize from the given dataset to novel conditions

without deviating too far from the action distribution observed in the dataset in novel conditions.

The former can be enabled by algorithms that are able to learn to identify and mimic portions

of optimal behavior from episodes that are suboptimal overall, as pointed out in Chen et al.

(2021). The latter issue is addressed by constraining the agent’s policy around behavior seen

in the dataset, for example, through enforcing divergence penalties on the policy distribution
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(Peng et al., 2019; Nair, Dalal, Gupta & Levine, 2020). Another way of penalizing out of dataset

predictions is by using a regularizer on the Q value to prevent actions that have low support

in the data distribution from having high Q values as done in Conservative Q Learning (CQL)

(Kumar et al., 2020). Decision Transformer (DT) (Chen et al., 2021) does not learn a Q estimate

and instead formulates the RL task as a sequence modelling task conditioned on the return to go

from a given state. The agent is then queried for the maximum return and predicts actions to

generate a sequence that produces the queried return. This is a very brief overview of offline RL

methods, and we direct readers to Levine et al. (2020) for a broader overview of the field.

3.2.2 Metrics and Objectives.

The paradigm of empirical risk minimization (ERM) (Vapnik, 1991) is the prevailing training

and evaluation protocol, both for supervised and unsupervised Deep Learning (DL). At its

core, ERM assumes a fixed, stationary distribution and that we are given a set of (i.i.d.) data

points for training and validation. Beyond ERM, and especially to accommodate non-stationary

situations, different fields have converged to alternative evaluation metrics: In online learning,

bandit research, and sequential decision making in general, the (cumulative) reward or the regret

are of central interest. The regret is the cumulative loss accrued by an agent relative to an

optimal agent when sequentially making decisions. For learning in situations where a single,

potentially non-stationary sequence of observations is given, Minimum Description Length

(MDL)(Rissanen, 1984) provides a theoretically sound approach to model evaluation. Multiple,

subtly different formulations of the description length are in use, however, they are all closely

related and asymptotically equivalent to prequential MDL, which is the cumulative log loss

when sequentially predicting the next observation given all previous ones (Rissanen, 1987;

Poland & Hutter, 2005). Similar approaches have been studied and are called the prequential

approach (Dawid & Vovk, 1999) or simply forward validation. A common theme behind these

metrics is that they consider the agents’ ability to perform well, not only in the big-data regime,

but also its generalization performance at the beginning, when only a few observations are

available for learning. The MDL literature provides arguments and proofs why those models,
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Algorithm 1: Outline of SeqEval

1: Input: Algorithm 𝐴, Offline data D = {𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1}
𝑇
𝑡=1

, increment-size 𝛾, gradient

steps per increment 𝐾
2: Replay-buffer B ← {𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1}

𝑇0

𝑡=1
3: 𝑡 ← 𝑇0

4: while 𝑡 < 𝑇 do
5: Update replay-buffer B ← B ∪ < 𝑠𝑡, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 >

𝑡+𝛾
𝑡

6: Sample a training batch, ensure new data is included: batch ∼ B

7: Perform training step with 𝐴 on batch.

8: 𝑡 ← 𝑡 + 𝛾
9: for 𝑗 = 1, · · · , 𝐾 do

10: Sample a training batch ∼ B

11: Perform training step with 𝐴 on batch.

that perform well in the small-data regime without sacrificing their big-data performance, are

expected to generalize better to future data (Rathmanner & Hutter, 2011).

With these two aspects in mind, that a) RL deals with inherently non-stationary data, and b) that

sample efficiency is a theoretically and practically desirable property, we propose to evaluate

offline RL approaches by their data efficiency.

3.3 Sequential Evaluation of Offline RL Algorithms

a) Minibatch b) Sequential Evaluation

Figure 3.1 Comparison of traditional training schemes with

Sequential Evaluation

As mentioned above, one approach for offline RL evaluation is to perform multiple epochs of

training over the dataset. We contend that there are a few issues with this approach. Firstly,
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this approach does not provide much information about the sample efficiency of the algorithm

since it is trained on all data at every epoch. This means that practitioners do not see how the

algorithm can scale with the dataset size, or if it can achieve good performance even with small

amounts of logged data. Furthermore, there can be distribution changes in the quality of the

policy in the dataset, and evaluating as a function of epochs hides how algorithms react to these

changes. Finally, there is a disconnection in the evaluation strategies of online and offline RL

algorithms, which can make it difficult to compare algorithms realistically.

Instead of treating the dataset as a fixed entity, we propose that the portion of the dataset available

to the agent change over time and that the agents’ performance is evaluated as a function of

the available data. We term this as sequential evaluation of offline algorithms (SeqEval). This

can be implemented by reusing any of the prevalent replay-buffer-based training schemes from

online deep RL. But instead of extending the replay-buffer with sampled trajectories from the

currently learned policy, we instead slowly insert prerecorded offline RL data. We alternate

between adding new samples to the buffer and performing gradient updates using mini-batches

sampled from the buffer. The number of samples added to the buffer at a time is denoted by 𝛾

and the number of gradient steps performed between each addition to the buffer is denoted by 𝐾 .

A concrete implementation of the approach is outlined in Alg. 1.

This approach of evaluation addresses several of the issues with epoch-style training. By varying

𝛾 and 𝐾 we can get information about the scaling performance of an algorithm with respect to

dataset size, which tells us if data is the bottleneck for further improvements, and how quickly

the algorithm can learn with limited data. We can visualize how the algorithm behaves with

shifts in dataset quality directly from the performance curves. There is a direct analogy for

evaluation in the online RL setting since online methods are evaluated as a function of the

number of environment steps, which is a measure of the amount of data it has access to in the

replay buffer and hence can be directly connected to the size of the replay buffer in the offline

method. We can also seamlessly evaluate the performance of the algorithm in online fine-tuning

by adding samples from the environment once the entire offline dataset is added to the replay

buffer. A benefit of the sequential approach is that it does not require a complete overhaul in
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codebases that follow existing training paradigms. For the baselines that we present in this

article, we were able to use the sequential evaluation approach with less than 10 lines of changes

to the original codebases.

The ratio 𝐾
𝛾 is the replay ratio (RR), a hyperparameter commonly found in RL algorithms which

use replay-buffers. The RR determines how many gradient steps are performed for each added

data point. Increasing RR allows some algorithms to extract more utility from the data it has

received, potentially improving sample efficiency. By varying RR we can identify whether

computation is the bottleneck for improving performance, or the amount of available data.

3.3.1 Implementation Details

To ensure that the algorithm sees each data point in the dataset at least once, when a new batch

of data is added to the buffer, the algorithm is trained on that sample of data once before 𝐾

mini-batches are sampled from the buffer for training. If the batch added is smaller than the

mini-batch size, then it can be made part of the next mini-batch that is trained on. In practice,

we found that setting 𝛾 and 𝐾 to 1 worked well in all datasets tested. This means that the x-axis

of all plots directly corresponds to the number of samples available for training and the number

of gradient updates performed. Additionally, we study other values of the RR and report these

results in Appendix 2. We observe that a RR of 1 generally performs well across datasets and

higher RRs lead to overfitting and worse performance. The changes made to the codebase of

each algorithm are as follows: Each codebase had a notion of a replay buffer that was being

sampled, and the only addition required here was a counter that kept track of up to which index in

the buffer data points could be sampled from to create mini-batches. The counter was initialized

to 𝑇0 = 5000 so that there were some samples in the buffer at the start of training. The second

change that needed to be made was changing the outer loop of training from epochs to the

number of gradient updates and incrementing the buffer counter by 𝛾 every 𝐾 update. This way,

the amount of data the algorithm was trained on sequentially increased to the full dataset over the

course of training. Finally, we shuffle the order of the dataset on each seed so that the training
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curves are not specific to only one particular ordering of the dataset. From our experiments we

see that the dataset order does not have a significant impact on the performance of the algorithm.

3.4 Experiments

3.4.1 Baselines and Benchmarks

We evaluate several existing offline RL algorithms using the sequential approach, namely IQL

(Kostrikov et al., 2022), CQL (Kumar et al., 2020), TD3+BC (Fujimoto & Gu, 2021), AWAC

(Nair et al., 2020), BCQ (Fujimoto et al., 2019), Decision Transformer (DT) (Chen et al., 2021)

and Behavior Cloning (BC). These algorithms were evaluated on the D4RL benchmark (Fu,

Kumar, Nachum, Tucker & Levine, 2020), which consists of three environments: Halfcheetah-v2,

Walker2d-v2 and Hopper-v2. For each environment, we evaluate four versions of the offline

dataset: random, medium, medium-expert, and medium-replay. Random consists of 1M data

points collected using a random policy. Medium contains 1M data points from a policy that was

trained for one-third of the time needed for an expert policy, while medium-replay is the replay

buffer that was used to train the policy. Medium-expert consists of a mix of 1M samples from

the medium policy and 1M samples from the expert policy. These versions of the dataset are

useful for evaluating the performance of offline agents across a wide spectrum of dataset quality.

We also created a dataset from the DeepMind Control Suite (DMC) (Tassa et al., 2018)

environments following the same procedure as outlined by the authors of D4RL. We chose the

DMC environments because of their high dimensional state space and action space. Specifically

we chose cheetah run, walker run and finger turn hard and trained a Soft Actor Critic (SAC)

agent (Haarnoja, Zhou, Abbeel & Levine, 2018) on these environments for 1M steps. SAC is

chosen because it is able to solve these tasks in 1M environment steps. A medium and expert

version of the dataset was created for each of the three environments using policies obtained

after 500K and 1M steps respectively.
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3.4.2 Experimental Settings

We study varied ways in which SeqEval can be integrated into offline RL training. The first

setting is the Standard setting in which samples are added periodically to the buffer during

training. The results of the Standard setting on a subset of datasets are given in Fig. 3.2 and the

complete set of datasets, along with an experiment comparing curves with larger 𝐾 are available

in the appendix. Secondly, to highlight how SeqEval can visualize how the algorithm reacts

to changing dataset quality during training, we create a "Distribution Shifts" setting where a

mixed version of each environment is created. In this dataset, the first 33% of data comes from

the random dataset, the next 33% from the medium dataset and the final 33% from the expert

dataset. Each algorithm is sequentially given samples and from the performance curves given

in Fig. 3.5 we can see how each algorithm adapts to changes in the dataset distribution. We

then show how SeqEval can be utilised in multi task offline RL in a similar fashion. Instead of

providing the entire dataset of a new task to the agent at once, we periodically add new samples

of the task to the agent over time. This lets us study the amount of samples required for the agent

to transfer to the new task. Finally we also show how SeqEval supports seamless integration of

online fine-tuning experiments into performance curves. In this setting, once the entire offline

dataset is added to the replay buffer, the agent is allowed to interact with the online simulator for

a fixed number of steps (500k steps in our experiments). Since the curves are a function of data

samples, we can continue evaluating performance as before. The results on a subset of datasets

are given in Fig. 3.7, and curves for all datasets are available in the appendix.

For each dataset, we train algorithms following Alg. 1, initializing the replay buffer with 5000

data points at the start of training. We set 𝛾 and 𝐾 each to 1, that is, there is one gradient update

performed each time a sample is added to the buffer. The results are presented in Fig. 3.2, where

the x-axis represents the amount of data in the replay buffer. In each plot, we also include the

performance of the policy that generated the dataset as a baseline, which provides context for

how much information each algorithm was able to extract from the dataset. This baseline is

given as a horizontal dotted line.



25

3.4.3 Model Cards

Since SeqEval evaluates algorithms as a function of data, it opens up the possibility of

quantitatively analysing how algorithms scale with data. We propose a few additional evaluation

criteria in addition to the training curves. The first one is Perf@50%, which measures the

aggregate performance of algorithms when half the dataset is available to it for training. To further

analyse the role of data scaling, we studied two additional measures, Perf@50% normalised

with respect to performance obtained with the whole dataset (Perf@100%) and the difference

between Perf@100% and Perf@50%. These three metrics give end users valuable insights that

can aid in offline algorithm selection. They can be presented as part of an overall model card

(Mitchell et al., 2018) available to the user.

3.4.4 Results

3.4.4.1 Standard

We present the results of the Standard setting in Figs. 3.2 and 3.3. One striking observation from

Fig. 3.2 is how quickly the algorithms converge to a given performance level and then stagnate.

This is most evident in the medium version of each environment. With less then 300K data

points in the buffer, each algorithm stagnates and does not improve in performance beyond that

point even after another 500K points are added. There are diminishing returns from adding data

beyond 500K points to the buffer. This highlights that most of the tested algorithms are not very

data-hungry. That is, they do not require a large data store to reach good performance, which is

beneficial when they need to be employed in practical applications. The experiment highlights

that the chosen datasets might lack diversity in collected experience since most algorithms

appear to need only a fraction of it to attain good performance. This phenomenon is made more

stark in Fig. 3.4. Most algorithms reach within 90% of final performance with just 50% of the

data. In other words, doubling the data in the D4RL benchmarks provides an aggregated uplift

of 10% at best. This indicates that more effort could be put into designing a harder benchmark.
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The effect is less pronounced in the DMC datasets, where the algorithms continue learning till

about 50% of the dataset is added and then learning begins to stagnate.

In a majority of the datasets tested on D4RL, CQL reaches better performance than other

methods earlier in training and consistently stays at that level as more data is added. TD3+BC

exhibits an initial steep rise in performance but levels out at a lower score overall, or in the case

of Halfcheetah-medium-expert, degrades in performance as training progresses.

Figure 3.2 Performance curves on the D4RL benchmark as a

function of data points seen. Shaded regions represent

standard deviation across 5 seeds.

3.4.4.2 Distribution Shifts

The learning curves for the "mixed" dataset in the D4RL benchmark and DMC are given in

Figs. 3.5 and 3.6. In the mixed dataset experiment, while most of the algorithms do adapt to

the new data, continually improving each time there is a shift in the dataset quality, though

rarely are they able to do so in every single environment. While CQL adapts quickly in both

HalfCheetah and Walker2d, it fails to learn at all in Hopper. TD3+BC outperforms all other
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Figure 3.3 Performance curves on the DMC Dataset as a

function of data points seen. Shaded regions represent

standard deviation across 5 seeds.

a) Perf@50%
Perf@100%

b) Perf@100% − Perf@50% c) Finetuning Uplift

Figure 3.4 a) and b): Analysis of data scaling in the D4RL

benchmark. Perf@X% refers to performance when the

algorithm has seen 𝑋% of the dataset. c) Comparison of the

increase in performance each algorithm achieves after 500k

simulator steps. Aggregated across 12 datasets and 3 seeds.

methods in HalfCheetah, but is the worse performing in Walker2d. DT is able to consistently

adapt to new data in each environment. A surprising result is how well BC performs in each

environment, with BC nearly being the second best performing algorithm in all environments.
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We hypothesise that since there is good coverage of the state spaces and optimal behavior in the

dataset, behavior cloning is able to learn effectively. It does not have to "stitch" behavior from

different episodes and instead just need to replicate the behavior in the dataset. This is in line

with the findings of (Chen et al., 2021) which found that 10% BC, a BC variant trained on only

the top 10% percentile of episodes (based on episodic return), was competitive with specialised

offline algorithms on the D4RL benchmark.

Figure 3.5 Performance curves for Mixed version of D4RL

with varying dataset quality. Dotted line indicates where there

is a change in the dataset generating policy distribution.

Horizontal dotted line indicates the performance of the policy

that generated the data. Shaded regions represent standard

deviation across 5 seeds.

Figure 3.6 Performance curves for Mixed version of DMC

with varying dataset quality. Dotted line indicates where there

is a change in the dataset generating policy distribution.

Horizontal dotted line indicates the performance of the policy

that generated the data. Shaded regions represent standard

deviation across 5 seeds.
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3.4.4.3 Online Finetuning

In online fine-tuning, shown in Fig. 3.7 and Table I-2, CQL reaches higher scores compared to

the other algorithms showing the versatility of CQL in handling both offline datasets and online

interactions with the system. From Fig. 3.4c, we see that in general there are modest gains from

online finetuning in these algorithms.

Figure 3.7 Performance curves for online fine-tuning. Each

algorithm is given 500k steps in the simulator after sequential

evaluation of the offline dataset. Dotted line indicates where

online fine-tuning begins. Shaded regions represent standard

deviation across 3 seeds.

3.4.5 Comparison with Mini Batch Style Training

We compare how algorithms perform when given access to the same amount of compute in the

SeqEval setting and the mini batch setting. The results are given in Fig. 3.8. In the mini batch

style training, the algorithm is given access to the entire dataset at all times during training. The

x axis in Fig. 3.8 is the number of gradient steps, while in the previous figures for SeqEval the

x axis represents the number of data points available for training. However when 𝛾 = 1 and

𝐾 = 1, the x axis can also represent the number of gradient steps, hence we plot the SeqEval and

mini batch training curves together. So while the algorithm has performed a similar amount

of computation when comparing the curves at a given gradient step, the data they have access

to at these points can be very different. As a result, SeqEval would exhibit a slower rise in

performance per gradient step compared to mini batch, but that is because it simply does not
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have access to the same amount of data as mini batch style training. We do see that SeqEval

closes the gap towards the end of training.

Figure 3.8 Comparison of SeqEval training and mini batch

style training.

3.4.6 Additional Metrics for Evaluation

While we have used the evaluation episodic return as the performance metric in our ex-

periments, it is not necessary to do so. For example, if there are environments where a

simulator is not available for periodic cheap evaluation, off-policy evaluation metrics (Thomas,

Theocharous & Ghavamzadeh, 2015; Wang, Gao & Zha, 2020a; Munos & Szepesvári, 2008)

can be used. We provide an example of this in Fig. 3.9 where instead of monitoring the episodic

return during training, we utilize Fitted Q Evaluation (FQE) score (Wang et al., 2020a). We

followed the same implementation as given in Wang et al. (2020a), training the FQE estimator

from scratch each time during an evaluation phase. The FQE estimator was given access to the

entire dataset during its training, while IQL still followed the SeqEval style of training. The exact

FQE metric used was E[𝑄̂(𝑠0, 𝜋(𝑠0))], i.e. the predicted Q value of the start state distribution.
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We would like to emphasize that SeqEval is independent of the evaluation metric used during

training. SeqEval is a style of training and can be used with different evaluation metrics

depending on the constraints, for example simulator return or off-policy evaluation metrics such

as FQE scores. The experiment above is a concrete example of how SeqEval can be used in

situations where there is limited access to a simulator to evaluate performance.

Figure 3.9 Performance of IQL in the SeqEval setting using

FQE as the evaluation metric.

3.5 Conclusion

In this paper, we propose a sequential style of evaluation for offline RL methods so that

algorithms are evaluated as a function of data rather than compute or gradient steps. In this

style of evaluation, data is added sequentially to a replay buffer over time, and mini-batches are

sampled from this buffer for training. This is analogous to online training to deep RL and allows

us to measure the data scaling and robustness of offline algorithms simultaneously from the

training curves. We compared several existing offline methods using sequential evaluation and

showed how their training curves allow for algorithm selection depending on data efficiency

or performance. Finally we compared sequential evaluation to traditional mini batch style

training to highlight the difference in training dynamics induced by each scheme. We believe
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that sequential evaluation holds promise as an established method of evaluation for the offline

RL community.



CHAPTER 4

DISCUSSION OF RESULTS

In this chapter we review the main results of the thesis. We created an instantiation of SeqEval

in two benchmark suites and compared 7 different algorithms across three experimental settings.

The first setting studied was the standard setting of SeqEval, where we used 𝛾 = 1 and 𝐾 = 1,

that is for every data point that was added to the buffer, one mini-batch was sampled and trained

on. From the learning curves in Figs. 3.2 and 3.3 we see that even though the dataset contains

1M data points, most algorithms converge in performance within 500K data points. Among the

methods tested, CQL consistently was the best performing algorithm. We were surprised that

BC performed as well as it did and believe this is due to the good state coverage in the dataset,

allowing the agent to be robust. The second setting was the distribution shifts setting which

tested algorithms on their ability to continuously adapt to new data of higher quality. DT was by

far the best performing algorithm across the 6 environments tested, highlighting the strength of

the transformer architecture. Finally we looked at the online finetuning setting, which has also

been proposed for mini-batch style training Kostrikov et al. (2022); Nair et al. (2020). TD3+BC

and CQL were both competitive in these experiments. Even when pretrained on random data,

algorithms are able to quickly improve once given access to the actual environment.





CONCLUSION AND RECOMMENDATIONS

In this thesis, we presented SeqEval, a framework for training and evaluating offline RL

algorithms with an emphasis on studying their data scaling properties. Our research project

started by identifying drawbacks in the current standard of minibatch style training in offline

RL, followed by formulating the research problem to devise better evaluation strategies for

offline RL to mitigate these drawbacks. To this aim, we proposed that instead of the agent being

given access to the entire dataset at all times during training, we incrementally increase this

training buffer. That way, over the course of training, the agent is exposed to more and more

data, allowing us to visualize the performance curves with respect to dataset size rather than

gradient steps.

A surprising insight from our experiments was how the algorithms studied learnt with a fraction

of the dataset size and learning stagnated after 20-30% of the dataset was added. Further addition

of data did not lead to improvements in performance. This observation was consistent across

environments and algorithms. We can view these results in two ways.

One, the current benchmarks/datasets for offline RL algorithms need to be re-evaluated. If an

algorithm can perform similarly with 20% of the data or 100% of the data, then these datasets

might not be sufficiently difficult to properly evaluate algorithms. We believe that effort should

be invested in designing harder benchmarks for this domain.

The second takeaway is that the algorithms tested were surprisingly data efficient. The model

cards in Figs. 3.4a and 3.4b show that most algorithms reach within 90% of final performance

with less than 50% of the dataset. Presenting such summary statistics can make it easy for

practitioners to 1) perform algorithm selection, and 2) evaluate the benefits of additional data

collection. The latter can be useful in practical domains where data collection is expensive

and time consuming and the model cards can provide insights into the tradeoff between better

algorithmic performance and increased cost of data collection.
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We encourage the offline RL community to utilize SeqEval style training when designing novel

algorithms and believe that the performance curves and model cards can be effective ways of

highlighting the strength of their algorithms. As mentioned previously, future work could look

at alternative evaluation metrics instead of the episodic return for performance curves so that it

can be applied in domains where it is difficult to execute the agent in the environment itself.

This could be through off policy evaluation metrics such as FQE scores (Thomas et al., 2015).



APPENDIX I

ADDITIONAL RESULTS

1. Performance on D4RL Benchmark

We present complete training curves on all twelve datasets that were used in Fig. I-2 and final

performance in Table I-1. In addition to the curves, we compare the algorithms at the end of

training with scores aggregated across environments. This is done using the rliable (Agarwal,

Schwarzer, Castro, Courville & Bellemare, 2021) library to plot interval estimates of normalized

performance measures such as median, mean, interquartile mean (IQM) and optimality gap. The

optimality gap is a measure of how far an algorithm is from optimal performance aggregated

across environments. So, lower values are better. The scores in each dataset are normalized

with respect to the maximum score, which is 100. These results are given in Fig. I-4. In both

the performance curves and aggregated scores we can see that CQL outperforms other tested

methods by a clear margin. A curious phenomenon observed was that AWAC (Nair et al., 2020)

is unable to learn at all in the Walker2d environment with either the medium-expert or the

medium version achieving very low rewards. As a sanity check we set 𝛾 to the size of the dataset

and reran experiments and the method achieved results similar to those reported in the paper,

indicating it was not an implementation problem. This is surprising since AWAC is proposed as

an algorithm that can work for online fine-tuning following offline pretraining, but among all the

methods tested, it had drastic changes in performance when using sequential evaluation. The

final performance in the online fine-tuning task and the mixed version of the environment is also

given in Tables I-2 and I-3. The Perf@50% and Perf@100% results are given in Fig. I-1

Moreover, Fig. I-5 show how the algorithms performed when 𝐾 was set to 2. This experiment

studied if we had not trained the methods for enough gradient steps and if additional performance

could be extracted from the data. However, performance remained essentially the same or even

degraded in some instances, showing that this was not the case.

2. Effect of Replay Ratio in SeqEval
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a) Perf@50% b) Perf@100%

Figure-A I-1 Comparison of performance when a) half the

dataset is available b) full dataset is available.

Table-A I-1 Performance of each algorithm on the D4RL Benchmark

Dataset BCQ TD3+BC AWAC BC CQL DT IQL

halfcheetah-medium-expert-v2 92.25 6.83 59.04 63.44 83.45 71.6 86.0

halfcheetah-medium-replay-v2 37.54 44.26 43.37 36.3 43.54 30.91 41.97

halfcheetah-medium-v2 45.47 48.45 46.58 43.12 49.13 42.65 46.96

halfcheetah-random-v2 8.16 10.09 2.26 2.26 24.43 2.12 8.41

hopper-medium-expert-v2 108.8 69.92 111.88 44.53 111.0 111.38 49.18

hopper-medium-replay-v2 23.9 63.04 65.47 14.02 88.51 74.94 69.09

hopper-medium-v2 53.39 49.77 52.8 55.84 70.53 62.06 67.49

hopper-random-v2 7.16 8.13 9.18 2.26 6.2 7.41 7.63

walker2d-medium-expert-v2 110.36 108.33 1.98 107.58 109.98 108.23 98.51

walker2d-medium-replay-v2 59.94 76.8 82.54 24.63 73.31 55.04 63.12

walker2d-medium-v2 76.85 83.4 1.76 78.78 83.16 65.79 80.85

walker2d-random-v2 0.11 0.49 3.48 0.63 -0.12 2.48 7.82

The experiments in the paper studied a replay ratio (RR) of 1. The results are in Figs. I-6

and I-7. We can directly compare the training and evaluation curves for different RRs and

conclude whether compute (gradient-steps) or training data are the limiting factor. In our main

experiments we study the setting where RR = 1. We utilized this setting since we observed that

increasing the compute budget did not improve performance. Lower RRs do not extract as much

information as possible from the dataset and do worse. These curves provide valuable insights

into the combined data and compute scaling of an algorithm.
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Table-A I-2 Performance of each algorithm in the online fine-tuning

task on the D4RL Benchmark

Dataset BCQ TD3+BC AWAC BC CQL IQL

finetune-halfcheetah-medium-expert-v2 88.02 74.36 83.6 61.77 96.72 87.74

finetune-halfcheetah-medium-v2 47.86 51.9 52.89 42.86 55.29 49.24

finetune-halfcheetah-random-v2 22.29 48.53 30.67 2.26 34.17 50.87

finetune-hopper-medium-expert-v2 43.19 112.71 111.9 48.01 100.25 110.66

finetune-hopper-medium-v2 52.35 63.03 45.45 58.92 94.31 73.59

finetune-hopper-random-v2 14.31 9.85 8.78 2.47 4.56 12.05

finetune-walker2d-medium-expert-v2 108.28 107.77 1.41 108.35 110.73 110.81

finetune-walker2d-medium-v2 71.26 85.01 21.32 66.47 83.7 84.24

finetune-walker2d-random-v2 1.42 8.6 1.67 0.5 0.33 10.56

Table-A I-3 Performance of each algorithm in the mixed version of the

D4RL Benchmark

Dataset BCQ TD3+BC AWAC BC CQL DT IQL

halfcheetah-mixed-v2 66.98 80.65 29.55 57.38 93.47 81.51 68.04

hopper-mixed-v2 55.29 112.42 110.36 86.67 0.75 111.74 51.37

walker2d-mixed-v2 102.77 8.15 98.36 108.79 109.71 107.63 109.83
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Figure-A I-2 Performance curves on the D4RL benchmark of

offline RL algorithms as a function of data points seen. Shaded

regions represent standard deviation across 5 seeds.
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Figure-A I-3 Performance curves for online fine-tuning.

Each algorithm is given 500k steps in the simulator after

sequential evaluation of the offline dataset. Dotted line

indicates where online fine-tuning begins. Shaded regions

represent standard deviation across 3 seeds.

a) Only offline Dataset b) Online fine-tuning

Figure-A I-4 Performance aggregated across environments

using rliable. For IQM higher is better, while for Optimality

gap, lower is better.
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Figure-A I-5 Performance curves on the D4RL benchmark

with 𝐾 increased to 2. Shaded regions represent standard

deviation across 3 seeds.
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Figure-A I-6 Comparison of replay ratios greater than 1.
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Figure-A I-7 Comparison of replay ratios less than 1.
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