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Protection de la vie privée dans l’analyse d’images médicales

Ngoc Bach, KIM

RÉSUMÉ
Ces dernières années, le développement d’algorithmes basés sur l’intelligence artificielle (IA)

a fait des pas de géant, notamment grâce à l’essor de l’apprentissage automatisé basé sur les

réseaux de neurones profonds. Les travaux de recherche dans ce domaine se sont traduits en un

large éventail d’applications, principalement en vision par ordinateur et en analyse du langage

naturel. En revanche, les applications médicales de l’IA tardent toujours à s’imposer, en grande

partie dû aux contraintes de confidentialité et d’accès aux données médicales.

L’objectif principal de cette thèse est de développer des modèles d’apprentissage profond destinés

à l’analyse d’images médicales dans un contexte client-serveur, et ce en protégeant la vie privée

des patients. Pour ce faire, trois méthodes sont proposées, chacune associée à un chapitre

distinct de la thèse. Les trois méthodes suivent une stratégie similaire à haut niveau, où un client

(par exemple, un hôpital) encode une image de manière à masquer l’information confidentielle,

avant d’envoyer celle-ci à un serveur. Le serveur traite l’image encodée à l’aide d’un réseau de

neurones spécifiquement conçu pour ces données, et renvoie ensuite le résultat au client où il est

décodé. Une contrainte importante à respecter dans ce contexte est de ne jamais transmettre de

données contenant des informations pouvant permettre d’identifier un patient.

La première méthode comprend trois réseaux entraînés de bout en bout: un réseau encodeur

retirant d’une image les caractéristiques spécifiques à l’identité du patient correspondant, un

réseau discriminateur qui tente d’identifier le patient à partir de l’image encodée, et un réseau

de segmentation pouvant extraire des régions d’intérêt dans cette même image. En entraînant

l’encodeur de manière à simultanément tromper le discriminateur et maximiser la performance

du réseau de segmentation, celui-ci apprend à supprimer les caractéristiques confidentielles

tout en conservant celles qui sont essentielles à la tâche de segmentation. La capacité de cette

approche à offrir une segmentation de qualité, tout en masquant l’identité des patients, est

démontrée sur la segmentation d’IRM de cerveaux provenant de la base de données Parkinson
Progression Marker Initiative (PPMI).

Une limitation de cette première approche est de ne pas encoder les cartes de segmentation

produites par le réseau pouvant également être employées pour identifier le patient. La deuxième

méthode présentée dans la thèse protège l’identité du patient en appliquant une déformation

spatiale non linéaire pseudo-aléatoire à l’image d’entrée. Il en résulte une image distorsionnée

qui est envoyée au serveur pour traitement. Le réseau de segmentation produit alors une carte

déformée de segmentation où l’identité du patient est protégée. Cette carte est renvoyée au client

qui remet celle-ci sous une forme canonique. Ce système comporte trois différentes composantes:

un générateur de champ de flux qui produit une fonction de déformation pseudo-aléatoire, un

discriminateur siamois qui tente de prédire l’identité du patient à partir de l’image traitée et un

réseau de segmentation qui analyse le contenu des images encodées. Comme dans l’approche

précédente, le système est entraîné de bout en bout avec une approche d’optimisation antagoniste.
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En trompant le discriminateur, le générateur de champ de flux apprend à produire une déformation

non linéaire réversible pouvant supprimer l’identité du patient à la fois dans l’image et la carte

de segmentation correspondante. La méthode proposée est à nouveau validée sur la tâche de

segmentation d’IRM de cerveaux provenant de deux ensembles de données différents. Les

résultats montrent que cette méthode offre une précision de segmentation similaire à celle

obtenue sur des images non encodées et, de plus, réduit considérablement la capacité à récupérer

l’identité du sujet.

Les deux premières approches reposent sur l’apprentissage antagoniste à base de discriminateurs

siamois pour encoder les images à protéger. Or, l’entraînement de tels discriminateurs nécessite

plusieurs images pour un même patient, ce qui est rarement possible en pratique. De plus,

l’entraînement antagoniste du modèle est souvent instable, et le modèle entraîné peut être

sensible aux changements dans la distribution des images. La dernière méthode explore une

stratégie différente pour préserver la confidentialité. Dans cette méthode, le client protège

l’image du patient à segmenter en la mélangeant à une image de référence, rendant celle-ci

inexploitable par une personne non autorisée. Cette image mélangée est envoyée à un serveur

pour traitement. Le serveur renvoie ensuite au client le mélange de cartes de segmentation qui la

ramène enfin à la segmentation cible. Le système complet comporte deux composantes: un

réseau de segmentation du côté serveur qui traite le mélange d’images, et un réseau de “démixage”

qui récupère la bonne carte de segmentation à partir du mélange de segmentations. Une fois

de plus, le système est entraîné de bout en bout. Les résultats d’expériences sur différents

jeux de données montrent que cette méthode obtient une segmentation de qualité supérieure ou

comparable aux approches précédentes, tout en étant plus simple à implémenter et nécessitant

moins de calculs que celles-ci.

Mots-clés: vie privée, segmentation d’images médicales, apprentissage antagoniste, apprentis-

sage de représentations



Privacy Preservation in Medical Image Analysis

Ngoc Bach, KIM

ABSTRACT
In recent years, the development of artificial intelligence (AI) algorithms has been the subject of

tremendous progress brought namely by the rise of deep neural networks. Research works in AI

have been translated into a broad range of applications, particularly, in the field of computer

vision and natural language processing. In contrast, medical applications of AI have been slower

to appear until now, largely due to privacy constraints on medical data.

The primary objective of this thesis is to develop novel deep learning methods for client-server

medical image analysis, which also protect patient privacy. Toward this goal, three methods are

proposed, each one associated with a distinct thesis chapter. These methods follow the same

high-level strategy where a client (for instance, a hospital) encodes an image so that the sensitive

information is obfuscated, before sending it to a server for analysis. The server processes the

encoded image with a neural network designed to handle this data, and then sends the result

back to the client where it is finally decoded. An important constraint to satisfy in this setting is

never sending information that can be used to identify patients.

The first method, based on adversarial learning, is composed of three networks trained end-to-end:

an encoder network which removes identity-specific features from the input image, a discriminator

network that attempts to identify the corresponding subject from the encoded image, and a

segmentation network which tries to extract regions of interest in the same image. By training

the encoder to simultaneously fool the discriminator and maximize segmentation performance, it

can learn to remove private features while keeping those essential for the segmentation task. The

method’s ability to provide a high-quality segmentation, while also obfuscating patient identity,

is demonstrated on the segmentation of brain MRI from the large-scale Parkinson Progression

Marker Initiative (PPMI) dataset.

A limitation of the first approach is that it does not encode the segmentation maps produced by

the network, which may also be used to identify the patient. The second method presented in

the thesis, which aims to alleviate this problem, protects patient identity by applying a pseudo-

random non-linear deformation to the input image. This results into a proxy image which is sent

to the server for processing. The segmentation network then produces a deformed segmentation

map in which the patient’s identity is protected. This map is sent back to the client where it

is reverted back to a canonical form. The overall system has three components: a flow-field

generator which produces a pseudo-random deformation function, a Siamese discriminator

that tries to recover the patient identity from the processed image, and a segmentation network

that analyzes the content of the proxy images. As in the first approach, the system is trained

end-to-end in an adversarial manner. By fooling the discriminator, the flow-field generator learns

to produce a reversible non-linear deformation which allows to remove information related

to patient identity from both the input image and resulting segmentation map. The proposed

method is once again validated on the task of MRI brain segmentation using images from two
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different datasets. Results show this method to offer a segmentation accuracy similar to a system

trained on non-encoded images, while also reducing considerably the ability to recover subject

identity.

The first two approaches use an adversarial learning strategy based on Siamese discriminators to

encode the images to protect. However, training such discriminators requires to have several

images for the same patient, which is not always possible in practice. Moreover, the adversarial

training of the model is often unstable and the trained model can be sensitive to changes in the

distribution of images. The last method explores a different strategy to preserve privacy. In this

method, the client protects the to-be-segmented patient image by mixing it to a reference image,

making it unworkable and unrecognizable for an unauthorized person. This proxy image is sent

to a server for processing. The server then returns the mixture of segmentation maps to the

client, which can revert it to a correct target segmentation. The system has two components: a

segmentation network on the server side which processes the image mixture, and a segmentation

“unmixing” network which recovers the correct segmentation map from the segmentation mixture.

Once more, the whole system is trained end-to-end. The results of experiments on different

datasets show that this method achieves a high or comparable segmentation accuracy with respect

to previous approaches, while also being simpler to implement and requiring less computations

than these approaches.

Keywords: privacy-preserving, medical image segmentation, adversarial learning, representa-

tion learning
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INTRODUCTION

0.1 Motivation

Deep learning (DL) is a branch of machine learning (ML) based on artificial neural networks

(ANNs), which is particularly suited for resolving complex and high-dimensional problems.

Although DL is not a novel concept, improvements in computing power, increased data

availability, and higher algorithm performances have contributed to the recent rise of artificial

intelligence (AI) applications. Developments in DL have enabled significant progress in a

variety of fundamental domains, including computer vision, speech recognition, natural language

processing and gaming. Algorithms based on deep learning have also been shown to be highly

effective in strategic areas, such as healthcare, autonomous driving or surveillance, among others.

In particular, in medical imaging analysis, these models have yield to improved accuracy and

speed compared to more traditional methods. Their capability of detecting subtle patterns and

anomalies in complex medical images make them highly useful for numerous tasks, such as

diagnosis, treatment and follow-up of various diseases (Litjens et al., 2017), with the potential

to improve personalized medicine. While research in deep learning for medical imaging has

exploded in recent years, so far, few advances have translated to clinical practice due to three

main challenges:

1. Infrastructure complexity: First, the infrastructure required for running deep learning

applications in clinical environments is complex. Nowadays, most healthcare organizations

use PACS/DICOM servers as a standard approach to store and access data. A Picture

Archiving and Communication System (PACS) server is a centralized computing system that

acts as a repository for medical images created through different modalities, such as X-ray,

Magnetic Resonance Imaging (MRI), and Computed Tomography (CT), among others.

By using a Digital Imaging and Communications in Medicine (DICOM) viewer software,

authorized PACS clients can easily access and view these images. On the other hand, deep
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learning models often require specialized hardware with powerful graphical processing

units (GPUs) to process large amounts of data using neural networks having millions

of parameters. However, the integration of this specialized hardware into the existing

PACS/DICOM systems is troublesome. Therefore, cloud-based image analysis services

is an appealing solution for these issues as they allow easy trouble-shooting, immediate

software updates and, most importantly, do not require a specialized hardware deployment

and management on the clients’ site.

2. Low availability of labeled data: Secondly, deep learning models are notoriously data

hungry. In order to achieve satisfactory performances, these models often need a massive

amount of labeled training data. Crowd-sourcing has emerged as a viable and effective

technique for the collection and labeling of data where user expertise is not required (Su,

Deng & Fei-Fei, 2012; Deng et al., 2009). However, labeling medical images requires the

expertise of one or more highly-trained radiologists, limiting the ability to “crowd-source”

the needed information. Hence, most public labelled datasets of medical images are often

small compared to other datasets in computer vision, resulting in insufficient training data. It

is thus essential to deploy learning mechanisms that can pool and exploit data from various

sources.

3. Data privacy: The confidential aspect of patient data is another issue impeding the creation

and use of large datasets in medical image analysis. In many countries, it is illegal to

access, use or share protected health information without patients’ consent. For example,

in 2021, the government of Quebec enacted a new law called “Law 25” – previously

known as “Bill 64” (Minister Responsible for Access to Information and the Protection

of Personal Information, 2021) – requiring all organizations operating in Quebec to comply

with regulations on access, use, and disclosure of personal data. The acquisition of personal

information for research purposes cannot be limited to legal queries alone. Access to such

information is restricted and subject to a number of strict constraints. As an example, these
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constraints may include assuring the use of personal information in a manner that follows

stringent confidentiality measures and communicating only what is necessary. In the context

of the release of medical images, it is standard to anonymize the images by removing

metadata and pixel data that could potentially reveal the identity of patients (Freymann,

Kirby, Perry & Clunie, 2012). Nevertheless, this anonymization and curation procedure

requires considerable time and resources, and is susceptible to human fatigue and errors

(Rutherford et al., 2021). In addition, previous studies (Packhäuser et al., 2022; Wachinger,

Golland, Kremen, Fischl & Reuter, 2015; Kumar, Desrosiers, Siddiqi, Colliot & Toews,

2017; Shamir, 2013; Esmeral & Uhl, 2022) suggest that patient information can be extracted

from medical image examinations. Therefore, in order to develop a cloud-based medical

image analysis application, it is critical to address the privacy restriction problem in medical

data.

Although various methods have been proposed to deal with privacy issues in machine learning,

none of them are fully suitable for a cloud-based medical image analysis system. Federated

Learning addresses privacy restrictions by enabling the decentralized training of machine learning

clients without the need to share raw data across clients (McMahan, Moore, Ramage & y Arcas,

2016). However, Hatamizadeh et al. (2023) demonstrated that this learning paradigm may

be insecure due to its vulnerability to model inversion attacks. Another issue with Federated

Learning is that the resulting trained models must also be deployed in a decentralized manner

as the input data and output results are not encoded, making it unsuitable for a client-server

application model. Another approach for privacy-preserving AI leverages Homomorphic

Encryption (Dowlin et al., 2016; Hesamifard, Takabi & Ghasemi, 2017; Nandakumar, Ratha,

Pankanti & Halevi, 2019). This approach enables to perform computations on encrypted data

without having to decrypt this data, thereby providing full privacy protection. However, due to

its very high computational complexity, it is unfeasible for large deep learning models.
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0.2 Objectives

Based on the aforementioned motivations, the main goal of this research is to develop novel

deep learning methods for client-server privacy-preserving medical image analysis, which can

perform a given image analysis task both accurately and efficiently, while also protecting the

private information of users. In this thesis, we consider image segmentation as the main image

analysis task to solve. This task, which consists in assigning a class label to each pixel/voxel of

an input 2D/3D image, is essential in various medical applications such as surgical planning,

radiotherapy treatment planning or implant design, where it enables a more precise analysis by

isolating specific structures.

To achieve this main goal, three specific objectives are proposed:

1. As first objective, we explore adversarial learning as a way to encode medical images

so that patient identity is obfuscated, yet encoded images can be still used to obtain

accurate segmentation results. While adversarial learning has already been used for privacy-

preserving image classification, this approach has never been investigated for segmentation,

or in scenarios where the private information cannot be encoded as a fixed set of classes

(e.g., patient IDs in our case).

2. Although it encodes images so that patent identity cannot be recovered, the above-mentioned

adversarial approach does not encode the segmentation output computed on the server.

This poses a potential problem since the segmentation contours in the output also contain

information that can be used to identify patients. As second objective, we seek to enhance

the previous adversarial approach to encode both the input image and segmentation

output. Toward this objective, we propose a novel method based on a reversible geometric

transformation, learned from training data, which preserves privacy while also providing an

accurate segmentation.



5

3. The approaches proposed for the first and second objectives use an adversarial learning

strategy to encode images so that patient identity is discarded or hidden, yet the information

necessary for the downstream segmentation task is preserved. While useful, such approaches

suffer from three problems. First, they require having several images for the same patient,

which may not be feasible in some applications. Second, the adversarial training of the

model is often unstable, as it involves solving an optimization problem with opposite

objectives, and can be sensitive to changes in the image distribution. As a result, it may

give poor results for images with different characteristics than the ones seen in training. As

third and last objective of the thesis, we aim to design a simpler, yet robust approach for

the privacy-preserving segmentation of medical images, which does not rely on adversarial

learning. For this objective, we explore a technique based on “mix-up” where a data

sample’s private information is obfuscated by mixing the sample with other ones known

only to the client.

0.3 Contributions

As contributions to the field, we developed three novel methods that enable client-server medical

image segmentation while protecting patients’ identity. These contributions are detailed below:

1. Privacy-Net: An Adversarial Approach for Identity-Obfuscated Segmentation of Medical

Images: We introduce the first client-server system based on adversarial learning for

medical image segmentation. Unlike previous adversarial approaches for privacy-preserving

image analysis, where a standard classification network (the discriminator) tries to recover

the private information (e.g., gender), the proposed method uses a Siamese discriminator for

this task. As a result, it can be employed to obfuscate information which cannot be reduce

to a fixed set of known classes, for instance, the ID patients in the system. As additional

contribution, we analyze our method from the perspective of information theory and show
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that its learning objective is related to minimizing the mutual information between the

encoded image and patient ID.

2. Privacy Preserving for Medical Image Analysis via Non-Linear Deformation Proxy: As

second contribution, we devise a novel approach for the privacy-preserving segmentation of

medical images which can encode both the input image and segmentation output. Although

it also exploits adversarial learning for encoding images to segment, this approach proposes

a very different strategy: applying a pseudo-random non-linear transformation that distorts

both the input image and its corresponding segmentation output, and which can be reserved

to recover the true segmentation. In contrast to standard adversarial encoders that map an

image to a representation, the encoder in our model generates a pseudo-random reversible

flow-field, conditioned on a private key only known to the client, which is used to distort

the image. This method provides a segmentation accuracy comparable to the standard

adversarial approach, while offering the additional benefit of obfuscating patient identity in

the segmentation output.

3. Mixup-Privacy: A simple yet effective approach for privacy-preserving segmentation: For

the third contribution, we propose a straightforward, yet efficient method inspired by

mix-up (Chang et al., 2020) that encodes 3D patches of a target image by blending

them with reference patches with known ground-truth segmentation. Unlike federated

learning approaches, which require extensive training or homomorphic encryption that are

computationally infeasible, our method operates within a normal training setup and incurs

low computational cost. Moreover, compared to approaches based on adversarial learning,

the proposed method does not require to have multiple training images for each patient (e.g.,

from difficult-to-obtain longitudinal datasets), provides a more stable training, and is less

sensitive to distribution shifts.
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0.4 List of Publications

The work presented in this thesis has resulted in the publication of three peer-reviewed papers,

each one in top, yet very selective venues:

1. B. N. Kim, J. Dolz, P. -M. Jodoin and C. Desrosiers, “Privacy-Net: An Adversarial Approach

for Identity-Obfuscated Segmentation of Medical Images”, in IEEE Transactions on Medical

Imaging, vol. 40, no. 7, pp. 1737-1749, July 2021, doi: 10.1109/TMI.2021.3065727.

2. B. N. Kim, J. Dolz, C. Desrosiers and P. -M. Jodoin, “Privacy Preserving for Medical Image

Analysis via Non-Linear Deformation Proxy”, The British Machine Vision Conference

(BMVC) 2021.

3. B. N. Kim, J. Dolz, P. -M. Jodoin and C. Desrosiers, “Mixup-Privacy: A simple yet effective

approach for privacy-preserving segmentation”, Information Processing in Medical Imaging

(IPMI) 2023. This paper was selected for oral presentation.

All of these three venues are considered among the most prestigious journals and conferences

in medical image computing and computer vision. The Institute of Electrical and Electronics

Engineers (IEEE) publishes a monthly peer-reviewed scientific journal titled IEEE Transactions

on Medical Imaging. This journal is devoted to advancing the technical aspects of medical

imaging. According to Google scholar, the journal has an impact factor of 11.037, making it one

of the two most influential medical imaging journals. The British Machine Vision Conference

(BMVC) is an annual conference on machine vision, image processing, and pattern recognition

hosted by the British Machine Vision Association (BMVA). It is one of the largest international

conferences on computer vision and related topics. BMVC is a highly respected conference.

The average acceptance rate of BMVC is 33.6%, and it is top-ranked in Google Scholar Metrics

(11th) among all the journals and conferences in the discipline of Computer Vision and Patter

Recognition. Information Processing in Medical Imaging (IPMI) is a conference held every

two years that focuses on applied mathematics, computer science, image processing, and
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medical imaging analysis. IPMI is considered one of the flagship conferences in medical

image processing, with a general acceptance rate of nearly 30%, and an acceptance rate for oral

presentations of around 12%.

0.5 Thesis outline

The rest of the thesis is divided into five chapters, as follows:

1. Chapter 1: This chapter introduces the basic concepts to understand the various techniques

presented in the thesis. The background chapter includes the basics of CNNs, supervised

learning with CNNs, representation learning and adversarial learning.

2. Chapter 2: This chapter gives an up-to-date summary of research in the field of privacy-

preserving learning for computer vision. Specifically, we present recent approaches based

on federated learning, homomorphic encryption and adversarial learning for preserving

privacy in visual tasks.

3. Chapter 3: This chapter presents our first client-server system based on adversarial learning

for the privacy-preserving segmentation of medical images.

4. Chapter 4: This chapter details our second solution for the privacy-preserving analysis

of multi-centric medical images, based on the generation of pseudo-random non-linear

transformations.

5. Chapter 5: This chapter presents the proposed approach for privacy-preserving segmentation,

which employs a mix-up strategy to obfuscate patient identity.

6. Chapter 6: In the final chapter of the thesis, we conclude by summarizing our contributions,

discussing the main findings and limitations, and suggesting potential improvements in

future work.



CHAPTER 1

BACKGROUND

In this chapter, we cover several basic concepts used in this work, including convolutional neural

networks and their application in image classification and image segmentation, contrastive

learning, autoencoders, and generative adversarial networks.

1.1 Convolutional Neural Network

Figure 1.1 The basic structure of a CNN, consisting of convolutional, pooling,

and fully-connected layers. Taken from (Albelwi & Mahmood, 2017)

A Convolutional Neural Network (CNN) (Lecun, Bottou, Bengio & Haffner, 1998) is a type

of neural network that utilizes the spatial arrangement of the inputs. It has a typical design

consisting of repetitive convolution and pooling layers, with a few fully-connected layers at

the end. The final layer is often a softmax classifier, as depicted in Fig 1.1. CNNs are usually

trained using back-propagation with Stochastic Gradient Descent (SGD). During training, the

network’s parameters (i.e., weights of convolution filters and fully-connected layers) are adjusted

to minimize a loss function measuring the discrepancy between the network’s prediction and

desired output. The fundamental components of a CNN are the following.
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1.1.1 Convolution Layer:

This type layer, which is the corner stone of a CNN, is comprised of a set of learnable kernels

or filters that are trained to extract local features from the input. These kernels are employed

to construct a feature map. Only a small portion of the input, known as the receptive field, is

connected to the units on the feature map. To generate a new feature map, the filter is slid across

the input, and the convolution operation is computed as follows:

𝑦(ℓ+1)
𝑖, 𝑗 ,𝑘 =

𝐻ℓ−1∑
ℎ=0

𝑊ℓ−1∑
𝑤=0

𝐷ℓ−1∑
𝑑=0

𝑓 (ℓ)
ℎ,𝑤,𝑑,𝑘 ·𝑥

(ℓ)
𝑖+ℎ, 𝑗+𝑤,𝑑 + 𝑏(ℓ)

𝑘 , 𝑘 = 0, . . . , 𝐷ℓ+1−1 (1.1)

Here, 𝑥(ℓ) is the input to the convolution operation at layer ℓ, comprised of 𝐷ℓ channels, 𝑓 (ℓ) is

the set of 𝐷ℓ+1 filters of size 𝐻ℓ ×𝑊ℓ and depth 𝐷ℓ, 𝑏
(ℓ) the biases, and 𝑦(ℓ+1) the output having

𝐷ℓ+1 channels. Moreover, 𝑑 denotes the channel of the input/output, 𝑙 the 𝑙𝑡ℎ layer, (𝑖, 𝑗) the

spatial position and 𝑏(ℓ) is the biases. In this equation, (𝑖, 𝑗) is a spatial position corresponding

to pixel (or voxel in 3D), while 𝑑 and 𝑘 are channel indexes.

Convolution layers exploit the strategy of parameter sharing, where all units in a feature map use

the same weights (filters), which reduces the number of parameters and allows the detection of

the same feature regardless of its position in the input.

1.1.2 Non-linear Activation:

The output of the convolution is followed by the application of a non-linear activation function to

introduce non-linearity in the model. Initially, the logistic activation, also known as the sigmoid

was used to simulate biological neurons. The logistic function can be defined as follows:

sigmoid(𝑥) =
1

1 + 𝑒−𝑥
(1.2)
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Because the derivative of the sigmoid becomes very small for input values far from the origin,

networks based on this activation tend to suffer from the vanishing gradient problem which

impedes their training. Nowadays, non-saturating activations like the Rectified Linear Unit

(ReLU) or its variants (leaky ReLU, eLU, parametric ReLU, etc.) are preferred as they do not

have the same problem. The ReLU also has the advantage of being simple to compute:

ReLU(𝑥) = max(0, 𝑥) (1.3)

1.1.3 Pooling Layer:

This layer, also known as down-sampling layer, decreases the resolution of the previous feature

maps which reduces the number of parameters to learn. It also helps to make the network

invariant to small changes or distortions of the input image. Pooling involves dividing the

input into non-overlapping regions with a size of (𝑅 × 𝑅) and producing a single output from

each region. Due to the destructive nature of the pooling layer, the size of the pooling region

is typically chosen as 2 × 2. There are two main types of pooling, namely, max-pooling and

average-pooling.

1.1.4 Fully-connected Layer:

The last part of a CNN is normally comprised of one or more fully-connected layers, similar

to those of a feed-forward neural network, where units are connected to every neurons in the

previous layer. In CNNs for classification, fully-connected layers are typically implemented by a

simple linear operation,

𝑦 = 𝑊𝑥 + 𝑏 (1.4)

where 𝑥 is the output of previous layer, 𝑦 is the output vector, 𝑊 is the weights and 𝑏 is the

biases.
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In CNNs designed for dense prediction tasks such as image segmentation, fully-connected layers

are often implemented with a series of convolutions with a kernel size of 1 × 1. By employing

this strategy, we obtain what is called a fully-convolutional neural network (FCN).

1.1.5 Softmax function:

In many prediction tasks, such as classification, the output of the network corresponds to a

probability distribution over a set of 𝐾 classes. In those cases, a softmax function is usually

employed in the final layer to obtain probability values, as follows:

[softmax(𝑥)]𝑖 =
𝑒𝑥𝑖∑𝐾
𝑗=1
𝑒𝑥 𝑗

(1.5)

where 𝑥 = (𝑥1, ..., 𝑥𝐾) ∈ R𝐾 .

1.2 Supervised Learning with CNN

1.2.1 Image classification

Image classification is a fundamental problem in most modern computer vision tasks (Chen

et al., 2021). This problem is essential for numerous applications, including object recognition,

scene understanding, and content-based image retrieval. Prior to deep learning, the accuracy

of image classification approaches was limited by their need to extract features manually. In

contrast, deep learning methods leverage the representational capability of deep neural networks

to learn complex image representations that can be used for classification. Over the years, many

deep CNN architectures have been proposed for image classification, including LeNet (Lecun

et al., 1998), Inception-Net (Szegedy et al., 2015), ResNet (He, Zhang, Ren & Sun, 2016) and

VGGnet (Simonyan & Zisserman, 2015).
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The selection of a suitable loss function is another crucial aspect of deep learning-based image

classification. This function measures the difference between the predicted label and the actual

label and is used to update the network’s training parameters. Cross-entropy is a common choice

for image classification, as it measures the difference between the predicted class probabilities

and the true class label. In the case of binary classification, this loss can be defined as

L𝐶𝐸 (𝑦, 𝑦̂) = −𝑦 log(𝑦̂) − (1−𝑦) log(1− 𝑦̂) (1.6)

where 𝑦 ∈ {0, 1} is the target (ground-truth) label and 𝑦̂ ∈ [0, 1] the predicted probability of the

foreground class. This loss can be extended to the 𝐾-class prediction setting as follows:

L𝐶𝐸 (𝑦, 𝑦̂) = −
𝐾∑
𝑘=1

𝑦𝑘 log(𝑦̂𝑘 ) (1.7)

In this case, 𝑦𝑘 ∈ {0, 1} and 𝑦̂𝑘 ∈ [0, 1] are the ground-truth label and predicted probability for

class 𝑘 .

1.2.2 Image segmentation

Image segmentation is another important task of computer vision that involves dividing a

given image into multiple regions with distinct meaning. This task is key to a wide range of

applications related to autonomous vehicles, robotics, agriculture, gaming, and biomedical

imaging. In the past, image segmentation was performed using approaches that are not based on

machine learning, for instance, active-contours (Hemalatha et al., 2018; Qian, Wang, Guo & Li,

2013; Kass, Witkin & Terzopoulos, 1988), level-sets (Lin, Zheng, Yang & Gu, 2004; Jiang,

Zhang & Nie, 2012) and graph-cuts (Boykov & Jolly, 2000; Yi & Moon, 2012). However, these

approaches often require the manual design of features by experts and tend to suffer from a slow

iterative computation.
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Figure 1.2 U-Net architecture for image segmentation.

Taken from (Islam et al., 2020)

In recent years, deep learning has emerged as the de facto solution for image segmentation. As

in classification, deep learning methods for segmentation utilize deep neural networks to learn

image representations directly from data. A key approach for this problem is based on fully

convolutional neural networks (FCNs). Specifically designed for segmentation, FCNs consist of

a series of convolutional, down-sampling and up-sampling layers. Unlike CNNs, which were

developed for image classification and only use pooling layers to gradually reduce the spatial

resolution of the input image, FCNs also employ up-sampling layers to increase the spatial

resolution of the feature maps. This allows the network to produce segmentation masks with

high spatial resolution. Moreover, by replacing fully-connected layers with 1×1 convolutions, as

described before, FCNs can process input images of arbitrary size.

Various FCNs architectures have been proposed for image segmentation such as SegNet

(Badrinarayanan, Kendall & Cipolla, 2017) and PSP-Net (Zhao, Shi, Qi, Wang & Jia, 2017).

The majority of these networks use an encoder-decoder architecture. As the first component of
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the network, the encoder gradually reduces the spatial resolution of the feature maps and obtains

a high-level contextual representation of the input image. In contrast, the decoder reconstructs

the spatial information of the input and then predicts the probability of segmentation classes at

each pixel as its output.

1.2.3 U-Net Architecture for Image Segmentation

The U-Net model (Ronneberger, Fischer & Brox, 2015), depicted in Fig 1.2, is one of the

most popular networks for medical image segmentation. This network employs a symmetric

architecture for both the encoder and the decoder. Each block consists of multiple layers of

ReLU-activated convolutions and a down-sampling or up-sampling module. By processing

input image at multiple scales, this model promotes segmentation results that combine both

contextual and spatial information.

An important innovation of U-Net is the skip connection which connects blocks of the encoder

and decoder with the same spatial resolution. This type of connection offers two advantages. First,

segmenting regions frequently necessitates boundary information. A simple FCN is incapable

of providing such high-resolution information because it is lost during the spatial compressing-

reconstruction process. Skip connections resolve this issue by passing the information directly

from the encoder to the decoder at higher spatial resolutions. Secondly, the gradient can better

flow from the decoder to the encoder using skip connections, which helps update the parameters

in the network’s shallow layers and accelerates convergence.
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1.2.4 Loss Functions for Segmentation:

Image segmentation can be regarded as a pixel-wise classification problem. Therefore, classifi-

cation losses like cross-entropy loss can also be used to train the segmentation network:

L𝐶𝐸 (𝑦, 𝑦̂) = −
𝐾∑
𝑘=1

∑
𝑝

𝑦𝑝,𝑘 log(𝑦̂ 𝑝,𝑘 ) (1.8)

In this equation, 𝑦𝑝,𝑘 ∈ {0, 1} and 𝑦̂ 𝑝,𝑘 ∈ [0, 1] respectively denote the ground-truth label and

predicted probability for class 𝑘 at pixel 𝑝.

A problem with cross-entropy for segmentation is that it gives a greater importance to classes

corresponding to large regions in the image. The Dice loss is another popular loss for the same

task, which avoids this issue by measuring the overlap between the predicted segmentation mask

and the ground-truth mask. In the case of binary segmentation (foreground versus background),

it can be defined as

L𝐷𝑖𝑐𝑒(𝑦, 𝑦̂) = 1 −
2
∑
𝑝 𝑦𝑝 𝑦̂𝑝∑

𝑝 𝑦𝑝 +
∑
𝑝 𝑦̂𝑝

(1.9)

where 𝑦𝑝 ∈ {0, 1} is the segmentation ground-truth of pixel 𝑝 and 𝑦̂ 𝑝 ∈ [0, 1] the predicted

probability for the foreground class at the same pixel. In some cases, the Dice loss can result in

a slower convergence compare to the cross-entropy loss. Therefore, a common practice is to

combine both Dice and cross-entropy to train the network.

1.3 Contrastive Learning

The objective of contrastive learning (Oord, Li & Vinyals, 2018) is to find a good representation

of data points in a high-dimensional feature space, with the least amount of supervision. A

well-known method based on this principle is to compare pairs of similar and dissimilar examples

and learn representations so that similar examples are close to one another in the feature space,
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Figure 1.3 A basic siamese network architecture implementation accepts

two input images, has identical CNN subnetworks for each input to compute

the image embedding, and training with contrastive loss

while dissimilar examples are far apart. This method has been used with success in various

computer vision tasks, including image classification, object detection and segmentation.

Contrastive learning is typically implemented using a deep neural network architecture known

as a Siamese network (Bromley et al., 1993) as shown in Fig 1.3. A Siamese network consists

of two identical sub-networks that share the same weights and architecture. During training,

pairs of examples are fed into the network, and the weights are optimized using a contrastive

loss function measuring the difference between the representations of similar and dissimilar

examples. An example of such loss, stemming from metric learning, is the following:

L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 =
∑
𝑖, 𝑗

𝑦𝑖, 𝑗 · ‖𝑥𝑖 − 𝑥 𝑗 ‖
2 + (1 − 𝑦𝑖, 𝑗 )·max (0, 𝑚 − ‖𝑥𝑖 − 𝑥 𝑗 ‖

2) (1.10)

In this loss, 𝑥𝑖, 𝑥 𝑗 are the embedding vectors of sample pairs, and 𝑦𝑖, 𝑗 ∈ {0, 1} is a label equal to

1 if the two samples are from the same class. Moreover, 𝑚 is a hyperparameter defining the

lower bound distance between dissimilar samples. Another popular loss for contrastive learning,
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used in recent methods such as SimCLR (Chen, Kornblith, Norouzi & Hinton, 2020a), is as

follows:

L′
𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 = −

∑
𝑖, 𝑗

𝑦𝑖, 𝑗 log
𝑒sim(𝑥𝑖 ,𝑥 𝑗 )/𝜏∑
𝑘 �= 𝑗 𝑒sim(𝑥𝑖 ,𝑥𝑘)𝜏

(1.11)

Here, sim(·, ·) is a vector similarity function and 𝜏 is a hyper-parameter known as temperature-

scaling, which sharpens or smooths the softmax probability distributions.

The losses in (1.10) and (1.11) require to have class labels for the training samples. Recent work

in self-supervised learning (Chen et al., 2020a; Grill et al., 2020; Caron et al., 2021) has focused

on developing contrastive learning approaches that do not have this constraint. A typical strategy

for unsupervised contrastive learning consists in generating two augmented version of training

images and, for a pair of embedding vectors 𝑥𝑖, 𝑥 𝑗 , having 𝑦𝑖 𝑗 = 1 if the embedding are from the

same image.

One key advantage of contrastive learning is its ability to learn compact and discriminative

representations of data points. The method has been shown to outperform traditional supervised

learning methods, such as supervised classification, in various computer vision tasks. This is

due to the fact that the method can learn representations that capture the underlying relationships

between data points, rather than simply memorizing the training data. Contrastive learning also

improve the performance when the number of classes is large but the number of training samples

for each class is low.

1.4 Autoencoders

An autoencoder (Rumelhart & McClelland, 1987; Baldi, 2012; Hinton & Salakhutdinov, 2006;

Hinton, Osindero & Teh, 2006), as shown in Fig 1.4, is a neural network architecture that is

trained to reconstruct the input data from a compressed representation. This architecture, which

is particularly well-suited for unsupervised learning tasks, consists of two main components:

an encoder network, which maps the input data to a lower-dimensional representation, often
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Figure 1.4 The basic structure of an autoencoder,

including encoder, decoder, and bottle-neck layer.

Taken from (Vachhani et al., 2017)

called latent variable, and a decoder network, which maps the lower-dimensional representation

back to the original input data. During the training process, the encoder and decoder are trained

simultaneously, with the encoder network trying to produce a more compact representation of

the input data, and the decoder network trying to reconstruct the input data from the compressed

representation.

As with unsupervised contrastive learning methods, autoencoders can be used to learn useful

representations of the input data without the need for labeled data. This makes autoencoders

useful for tasks such as dimensionality reduction (Wang, Huang, Wang & Wang, 2014), feature

extraction (Liu, Li, Yu & Qin, 2017) and anomaly detection (Chen, Yeo, Lee & Lau, 2018b),

among others.
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Figure 1.5 Generative Adversarial Network training consists of two networks,

a generator and a discriminator

1.5 Generative Adversarial Network

As depicted in Fig 1.5, a Generative Adversarial Network (GAN) (Goodfellow et al., 2014) is

a deep learning model with two main components, a generator network and a discriminator

network. The generator network is trained to generate new samples that are similar to a given set

of training data, while the discriminator network is trained to distinguish between the generated

samples and the real samples. This is achieved by training the generator network to “fool” the

discriminator (i.e., maximize its error), while the discriminator is trained to correctly identify

the generated samples. The process of training the generator and discriminator networks is

done simultaneously, with the generator network trying to produce samples that are increasingly

similar to the real samples, and the discriminator network trying to correctly identify the

generated samples.

Formally, GANs are a structured probabilistic model with latent variables 𝑧 and observed

variables 𝑥. The discriminator is a function 𝐷 that takes 𝑥 as input, and the generator is defined

as a function 𝐺 whose input is 𝑧. Both functions are differentiable with respect to their inputs
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and parameters. The cost function for the discriminator is typically defined as follows:

𝐽 = −E𝑥∼𝑃𝑑𝑎𝑡𝑎(𝑥) [ log𝐷(𝑥)] − E𝑧∼𝑃𝑧(𝑧) [ log(1 − 𝐷(𝐺(𝑧)))] (1.12)

By treating the two-player game as a zero-sum game (or mini-max game), the solution

involves minimization/maximization in an outer/inner loop, yielding the objective function for

discriminator 𝐷 and generator 𝐺:

𝐿(𝐷,𝐺) = min
𝐺

max
𝐷
E𝑥∼𝑃𝑑𝑎𝑡𝑎(𝑥) [ log𝐷(𝑥)] + E𝑧∼𝑃𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))] (1.13)

The main advantage of GANs is their ability to generate new samples that are similar, but not

identical to the training data. This makes them useful for tasks such as image synthesis (Karras,

Aila, Laine & Lehtinen, 2018), image-to-image translation (Isola, Zhu, Zhou & Efros, 2017),

and speech synthesis (Kong, Kim & Bae, 2020).

However, these models also have important limitations. One of the main challenges in training

GANs is that the generator and discriminator networks can get stuck in a sub-optimal equilibrium,

where the generator produces samples that are not very realistic, and the discriminator is unable to

tell them apart from the real samples. Another problem, known as mode collapse (Bhagyashree,

Kushwaha & Nandi, 2020; Bau et al., 2019), arrives when the generator learns to output the

same, very plausible image for any input. To overcome these problems, several techniques

have been proposed such as using a different loss function (Arjovsky, Chintala & Bottou, 2017;

Gulrajani, Ahmed, Arjovsky, Dumoulin & Courville, 2017), using different architectures for the

generator and discriminator networks (Zhang, Li & Yu, 2018b; Li, Fan, Wang, Ma & Cui, 2021),

and using regularization techniques (Tran, Bui & Cheung, 2018; Bang & Shim, 2021).
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1.6 Summary

In this chapter, we presented key concepts in deep learning, such as Convolutional Neural

Networks (CNNs), image classification, image segmentation, contrastive learning, representation

learning, and adversarial learning, which serve as the basis for the research conducted in

this thesis. In our work, CNNs are employed predominantly for image segmentation, image

transformation and predicting the identity of patients from images. Our research also leverages

a strategy based on contrastive learning and Siamese networks to compare encoded features of

different patients. Last, adversarial learning is at the core of two of our methods proposed for

privacy-preserving segmentation.



CHAPTER 2

LITERATURE REVIEW

In this chapter, we review the three main categories of privacy-preserving methods for machine

learning, which are based on federated learning, homomorphic encryption and adversarial

learning.

2.1 Federated Learning

Client 1 Client 2 Client K 

Federated Learning 
Server Model Aggregation 

Local Update 

Parameters 
Broadcasting 

Figure 2.1 Federated Learning approach for iterative learning process where

multiple clients work together to learn a model that is aggregated on a

federated learning server without the requirement for client data to be sent

over the network

Despite being a relatively new technology, Federated Learning (FL) has demonstrated significant

promise and outstanding progress since it was first introduced by Google in 2015 (Mohri,
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Sivek & Suresh, 2019; Gao et al., 2022; Kang et al., 2020; Wang, Yurochkin, Sun, Papailiopou-

los & Khazaeni, 2020; Konecný, McMahan, Ramage & Richtárik, 2016; McMahan et al., 2016;

McMahan, Moore, Ramage, Hampson & Arcas, 2017).

Federated Learning is a machine learning setting in which different clients (or users) collaborate

to learn a model stored on a central server without the need for client data to be transmitted over

the network (Kairouz et al., 2021). This setting is useful in scenarios where data is distributed

across multiple devices, organizations, or even countries, and where privacy concerns make

it infeasible to collect and centralize the data. As depicted in Fig 2.1, the basic idea behind

federated learning is to have each participating party train a local model on their own data,

and then send updates (gradients or updated weights) to a central server, which aggregates the

updates and improves a global model. The global model can then be used to make predictions or

perform other computations on new data. Formally, the server aggregates the weights sent from

the 𝐾 clients (Wei et al., 2020) as follows:

W =
𝐾∑
𝑖

𝑝𝑖W𝑖 (2.1)

In this formulation, W𝑖 contains the weights trained by client 𝑖, W is the aggregated weights at

the server, 𝐾 is the total number of clients, and 𝑝𝑖 =
|D𝑖 |
|D|

, with
∑
𝑖 𝑝𝑖 = 1 and |D|=

∑
𝑖 |D𝑖 | is the

total size of data samples. Based on this definition, the optimization problem can be formulated

as:

W∗ = argmin
W

𝐾∑
𝑖

𝑝𝑖L𝑖(W) (2.2)

where L𝑖(·) is the local loss function of the 𝑖-th client.

Similarly, in case of gradients aggregation (McMahan et al., 2017), the server first sends

the global model weights 𝑤 to all participant clients, which then compute one-step gradients

𝑔𝑖 = ∇WL𝑘 (W, 𝐷𝑖). Next, the server collects the gradients of all clients and applies the update
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using a weighted average:

W∗ ← W − 𝜇
𝐾∑
𝑖

𝑝𝑖𝑔
𝑖 (2.3)

where 𝜇 is the global learning rate.

Thus, the training process of a federated learning system typically includes the following four

steps:

1. Local training: All active clients compute gradients or parameters locally and send them to

the server.

2. Model aggregating: The server performs a secure aggregation of parameters or gradients

uploaded by 𝐾 clients without knowing their local data.

3. Parameters broadcasting: The server transmits aggregated parameters to the 𝐾 clients for

next training round.

4. Model updating: All clients update their model with the aggregated parameters and test its

performance.

The ability to train models on much larger and more diverse datasets than would be possible if

the data were centralized is one of the primary advantages of federated learning. This can result

in more accurate models with better generalization capabilities (Nguyen et al., 2022). Moreover,

because the data remains decentralized, there are fewer privacy and security concerns compared

to conventional centralized machine learning techniques.

2.1.1 Types of Federated Learning

Federated learning can be categorized according to the distribution of the data. Assuming

that the data matrix 𝐷𝑖 denotes the information possessed by individual data owners, where

each sample and characteristic are respectively represented by rows and columns in the matrix.

Hereby, we define a collection of samples is referred to as the sample space which is the rows of

the data matrix 𝐷𝑖, and a set of features is called feature space which is the columns of the data

matrix 𝐷𝑖. The training dataset includes a set of samples with their features. Federated learning



26

Sa
m

pl
es

 

Features 

Data from A 

Data from B La
be

ls
 

Sa
m

pl
es

 

Sa
m

pl
es

 

Features Features 
Data from B La

be
ls

 

Data  
from A 

Data  
from A 

Data from B La
be

ls
 Horizontal 

Federated Learning 
Vertical Federated Learning 

Federated 

Transfer Learning 

Horizontal Federated Learning Vertical Federated Learning Federated Transfer Learning 

Types of Federated Learning 

Figure 2.2 Illustration of three Federated Learning types including Horizontal

Federated Learning, Vertical Federated Learning and Transfer Federated Learning

is categorized depending on how the data is dispersed among different parties in the feature

space and sample space.

As illustrated in Fig 2.2, there are three main federated learning architectures: Vertical

Federated Learning, Horizontal Federated Learning, and Federated Transfer Learning (Yang,

Liu, Chen & Tong, 2019; Prayitno et al., 2021; Liu, Zhang, Ge & Li, 2020b).

2.1.1.1 Vertical Federated Learning:

Also known as feature-based federated learning (Yang et al., 2020c), this architecture is typically

employed in situations where two or more client datasets share a similar sample space but distinct

input feature spaces. This type of learning enables clients to aggregate the feature information

they have for a specific sample by utilizing a third party to ensure that no information about the

unique sample is shared during the feature sharing process. Consequently, vertical federated

learning computes the cost function and gradients of a machine learning model while preserving

the privacy of the unique sample data and collaboratively sharing the sample’s unique features

collected under various clients.
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2.1.1.2 Horizontal Federated Learning:

Often referred to as sample-based federated learning (Yang et al., 2020b), this architecture is

implemented when client datasets have different sample spaces but share the same feature space.

Horizontal federated learning is accountable for sharing information with cross-users in different

clients in order to enrich the dataset for the machine learning model. It can also be utilized in a

multitasking system in which multiple clients are permitted to learn distinct tasks while sharing

knowledge across their various samples and protecting the confidentiality of sensitive data in the

datasets. Horizontal federated learning ensures that no data leaks occur during client-to-client

sharing, thereby protecting and preserving data. In (Aledhari, Razzak, Parizi & Saeed, 2020),

authors state that horizontal federated learning focuses on security and its primary benefit to

allow for independence in learning across clients.

2.1.1.3 Federated Transfer Learning:

This last architecture is typically applied to situations where two client datasets share a very

small sample space but have different feature spaces (Yang et al., 2020a). Unlike vertical

federated learning which is only applicable for an entire intersecting dataset sample space,

Federated Transfer Learning provides an intermediate solution through transfer learning that

enables learning across the entire dataset even if only a small intersection exists across a similar

sample.

2.1.2 Challenges in Federated Learning

There are a number of challenges to be overcome in order to make federated learning practical, such

as dealing with data heterogeneity, managing communication and computation overheads, and

maintaining the privacy and security of the data (Banabilah, Aloqaily, Alsayed, Malik & Jararweh,

2022).

The first challenge in federated learning is dealing with the varying data distributions across

different clients. Since each client trains its model using local data, variability in data distributions
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may lead to sub-optimal performance of the global model. The assumption that training data are

independent and identically distributed (IID) is frequently made in standard machine learning.

However, this assumption rarely holds true in FL systems. In (Duan et al., 2019), the authors

proposed a framework called Astraea to address the issue of imbalanced distributed training data

which causes accuracy degradation in FL settings. This framework eliminates global imbalance

by runtime data augmentation. It also creates a mediator to reschedule the training of clients

based on the Kullback–Leibler divergence across the different client data distributions in order

to calculate average local imbalances.

Managing the communication and computation costs associated with FL is another challenge.

Because each party must send updates to the central server, and the server must aggregate the

updates before broadcasting the updated global model back to its clients, the amount of data

transmitted can be substantial. Additionally, as long as the data is decentralized, the computation

must be performed on each client’s device, which can be a burden. In (Yao, Huang & Sun,

2018), the authors demonstrate that a two-stream model with Maximum Mean Discrepancy

constraints decreases FL communication costs by 20%. In (Chen, Sun & Jin, 2020b), an

asynchronous strategy is proposed for model update with a weighted aggregation technique. The

outcomes demonstrated that the proposed architecture outperformed standard algorithms. Yao

et al. proposed two solutions to address the communication and performance issues taken by

the FL algorithm (Yao, Huang, Wu, Zhang & Sun, 2019). The first solution, called FedMMD,

employs a two-stream model with Maximum Mean Discrepancy as opposed to a single model

like Federated Averaging. The second solution is FL with FedFusion, which aggregates features

from local and global models, resulting in increased precision and decreased communication

costs. To solve the problem of communication overhead in FL, Wang, Wang & Li (2019b)

introduced an algorithm called Communication Mitigated Federated Learning, which eliminates

irrelevant client-side updates when training with client-specific, biased data.

In (Hatamizadeh et al., 2023), the authors demonstrated that FL may be unsafe due to its

vulnerability to model inversion attacks. Hence, maintaining the privacy and security of the

data is also a major concern in FL. Since the data remains decentralized, it is important to
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ensure that the updates sent to the central server do not reveal any sensitive information about

the data. In (Xu, Li, Liu, Yang & Lin, 2020), the authors used VerifyNet to address two

issues with deep neural networks in FL settings: maintaining the confidentiality of user data

during the training process, and verifying the accuracy of the model outcomes (or predictions)

broadcasted by the server. The authors proposed a method called FedLDA that employs FL in

Latent Dirichlet Allocation frameworks to mitigate the risks associated with data collection. Lu,

Liao, Lio & Hui (2020) introduced a Privacy-Preserving Asynchronous Federated Learning

Mechanism (PAFLM) for edge network computing, which achieves a more effective federated

training without sharing private user data. Differentially Private Federated Learning (DP-FL)

(Huang et al., 2020) is another framework proposed for imbalanced data scenarios, which

operates on the cloud. Truex, Liu, Chow, Gursoy & Wei (2020) presented LDP-Fed, a novel

FL system with a formal privacy guarantee based on local differential privacy. The authors of

(Liu, Li, Xu, Lu & He, 2020a) observe that if security is high in differential privacy settings,

accuracy will be compromised. Consequently, they proposed an Adaptive Privacy-preserving

Federated Learning (APFL) framework that maintains the privacy and precision of trained

models in FL settings. Wang et al. (2019c) presented a solution for FL model privacy leakage.

They use Generative Adversarial Networks with a multi-task discriminator to retrieve private

client information and perform invisible updates on the server-side, unlike traditional federated

learning which operates on the client-side.

In (Bhagoji, Chakraborty, Mittal & Calo, 2019), it is shown that federated model training

is susceptible to data poisoning, also known as model poisoning, small malicious attempt

to destroy the global model by making it misclassify specific inputs, resulting in negative

effects on other participating clients. One of the primary challenges of federated learning is

the malicious participation of clients who may inject the model with false input in order to

corrupt the global model. Chen et al. (2020c) proposed a training-integrity protocol for Trusted

Execution Environment in to detect and eliminate malicious attacks in early stages. Mowla, Tran,

Doh & Chae (2020) developed a security architecture for flying ad-hoc networks that detects
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on-device jamming attacks based on frequency hopping. When updating the global model, the

method can better identify client groups.

In summary, despite the numerous studies conducted on federated learning in recent years,

several challenges remain open. It offers an attractive way to train a neural network with data

hosted over different clients and provides an additional layer of privacy protection. However,

this approach does not permit the use of a centralized cloud-based model for making test-time

predictions without transmitting patient data, as the trained global model will eventually deployed

on the client-side.

2.2 Homomorphic Encryption

Figure 2.3 Homomorphic encryption in healthcare.

Taken from Munjal & Bhatia (2022)

Homomorphic encryption (Dowlin et al., 2016; Hesamifard et al., 2017; Nandakumar et al.,

2019) is a type of encryption that allows computations to be performed on ciphertext. It produces

an encrypted result that, when decrypted, matches the result of the operations as if they had

been performed on plaintext.
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Encryption methods typically prohibit the processing of encrypted data, meaning that data

are always processed in their original form. In contrast, homomorphic encryption permits

computation on encrypted data and provides the user with encrypted results. Homomorphic

encryption not only enables the processing of encrypted data, but also maintains privacy in the

process.

Homomorphic encryption is founded on the mathematical concept of homomorphism. A

homomorphism is a structure-preserving map between two algebraic structures, such as groups, in

abstract algebra (Yi, Paulet & Bertino, 2014). There are two main types: group homomorphisms

and ring homomorphisms. Let (𝐺,★) and (𝐻,
) be groups, the map 𝜑 : 𝐺 → 𝐻 is a group

homomorphism if

𝜑(𝑥 ★ 𝑦) = 𝜑(𝑥) 
 𝜑(𝑦), ∀𝑥, 𝑦 ∈ 𝐺 (2.4)

On the other hand, a ring homomorphism is defined as follows. Let 𝑅 and 𝑆 be rings with

addition and multiplication, the map 𝜑 : 𝑅 → 𝑆 is a ring homomorphism if

1. 𝜑 is a group homomorphism on the additive groups (𝑅, +) and (𝑆, +)

2. 𝜑(𝑥, 𝑦) = 𝜑(𝑥)𝜑(𝑦), ∀𝑥, 𝑦 ∈ 𝑅

One of the primary benefits of homomorphic encryption is that it enables computations to be

performed on sensitive data without first decrypting it. This is especially useful in situations

where data must be shared across multiple parties for the purpose of computation, but the data

itself must remain private. For example, in Fig 2.3, Munjal et al. describe an application of

homomorphic encryption for a cloud-based healthcare system in which a user sends sensitive

data to the cloud in order to predict certain outcomes. Homomorphic encryption allows the users

to encrypt the data, send it to the cloud, have the service provider perform the computations

on the encrypted data, and then receive the encrypted result back without the service provider

ever having access to the plaintext data. According to (Munjal & Bhatia, 2022), the application

protocol consists of four distinct steps, as follows:

1. Step 1: The client (patient or physician) must initially encrypt the data. The client then

transmits the encrypted data to the cloud-server for processing.
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2. Step 2: The cloud-service executes operations using the homomorphic encryption property

with some function 𝑓 (·).

3. Step 3: The cloud-service returns the client’s encrypted results.

4. Step 4: Client performs decryption at its end using the decryption function and recovers the

encrypted results.

2.2.1 Types of Homomorphic Encryption

Homomorphic encryption seeks to develop an algorithm that permits an arbitrary number of

additions and multiplications on encrypted data. The final result should be the ciphertext that

would be generated if the same operations were performed on the corresponding plaintexts

and then encrypted. Designing such an encryption algorithm is a difficult problem. Existing

homomorphic encryption approaches can be categorized based on how close they are to achieving

this objective. According to (Munjal & Bhatia, 2022), there are three types of homomorphic

encryption: partially homomorphic encryption (PHE), somewhat homomorphic encryption

(SWHE), and fully homomorphic encryption (FHE). Partially homomorphic encryption allows

for a specific type of computation, such as addition or multiplication, to be performed on

ciphertext. Somewhat homomorphic encryption supports a limited amount of operations, i.e., it

evaluates the circuit up to a certain depth or limit. Fully homomorphic encryption allows for

any computation to be performed. Fully homomorphic encryption is considered to be most

powerful, but also the most computationally expensive and less practical approach to implement

in practice.

2.2.1.1 Partially homomorphic encryption:

Partially homomorphic encryption algorithms enable the infinite repetition of a specific operation.

An algorithm may be additively homomorphic, meaning that adding two ciphertexts produces

the same result as encrypting the sum of two plaintexts.
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Designing partially homomorphic encryption algorithms is relatively simple. There are numerous

available partial homomorphic encryption schemes. Rivest, Adleman & Dertouzos (1978) first

proposed the term “privacy homomorphism” when they introduced an asymmetric encrypted

system that supports the multiply operation over ciphertext. Their proposed system relies on

the difficulty of the prime factorization problem. In (Goldwasser & Micali, 1982), the authors

introduced the first scheme with semantic security proof, based on the hardness of quadratic

residuosity assumption described by Kaliski (2011). Diffie & Hellman (1976) presented a key

exchange algorithm that minimizes the need for secure key distribution channels and supplies the

equivalent of a written signature. This key exchange algorithm was then improved by Elgamal

(1985). In (Fousse, Lafourcade & Alnuaimi, 2011), the authors proposed dense probabilistic

encryption, a homomorphic encryption scheme over the addition operator with an improved

expansion factor. Compared to prime residuosity, Paillier (1999) offered a “trapdoor” technique

based on composite residuosity classes that are advantageous to public-key cryptosystems.

Originally, this cryptosystem allowed additions to be done over encrypted data, but subsequent

enhancements to the method demonstrated that multiplications could also be accomplished. Due

to the difficulty of lattice operations, the author of (Kawachi, Tanaka & Xagawa, 2007) presented

a homomorphic cryptosystem, dubbed pseudohomomorphic, with addition over a huge cyclic

group. In (Galbraith, 2001), authors presented a more natural adaptation of the cryptography

method in Paillier (1999). This approach is applied to elliptic curves, while retaining the other

homomorphic characteristics of Paillier (1999).

2.2.1.2 Somewhat homomorphic encryption:

Somewhat homomorphic encryption is the next step over partially homomorphic encryption. A

relatively homomorphic encryption technique enables a finite number of operations, compared

to an infinite number of a single operation as in partially homomorphic encryption. Each

addition operation increases noise, and each multiplication operation multiplies noise. Similar to

fully homomorphic encryption, somewhat homomorphic encryption is a unique but incomplete

solution. For instance, a somewhat homomorphic encryption technique for encrypting data may
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support any combination of up to five additions or multiplications. A sixth operation of either

type, however, would produce an invalid result.

Boneh, Goh & Nissim (2005) introduced a mechanism for adding and multiplying encrypted

data that is semantically secure. This mechanism permits an infinite amount of additions with a

single multiplication on ciphertext of a defined length, and supports quadratic formula evaluation

over ciphertexts. The proposed method hardness depends on the subgroup decision problem as

described in (Gjøsteen, 2005), in which one must determine if a given element 𝑔1 of a finite

group 𝐺 is a member of subgroup 𝐺1. The work in (Yao, 1982) is an early attempt to perform

function operations on the ciphertext. As a solution to the Millionaires’ Issue, authors devised a

two-party communication protocol that compares the wealth of two affluent individuals without

revealing the exact amounts. Moreover, in this method, the ciphertext grows linearly at most

when each gate in the circuit is calculated. Ishai & Paskin (2007) presented an encryption

method based on the evaluation of a branching algorithm on encrypted data. In (Sander, Young,

Yung & Inc, 2001), the authors introduced the first somewhat homomorphic encryption scheme

over a semi-group for NC1 is a class of circuits with poly-logarithmic depth and polynomial

dimension. With a single OR/NOT gate, the proposed method enabled polynomially many

ANDing of ciphertexts. After each multiplication, the ciphertext grows in size.

On the path to completely homomorphic encryption, somewhat homomorphic encryption

methods are crucial stepping stones. Even for a fixed number of operations, it is more difficult

to build an algorithm that supports both addition and multiplication of ciphertexts than it is to

design one that permits limitless addition or multiplication of ciphertexts.

2.2.1.3 Fully homomorphic encryption:

A fully homomorphic encryption algorithm allows to perform an infinite number of ciphertext

additions and multiplications while still producing valid results. This type of encryption has a

great potential of making privacy and functionality compatible by keeping information both

secure and accessible. In contrast to other forms of homomorphic encryption, it is capable of
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performing arbitrary computations on the ciphertexts. Fully homomorphic encryption methods

can be divided into four distinct groups: lattice based cryptography, learning with errors

(LWE/RLWE), integer based and NTRU. These sophisticated cryptographic methods serve as

prerequisites for fully homomorphic encryption algorithms (Munjal & Bhatia, 2022).

Lattice-based encryption is an advanced form of cryptography. Cryptosystems based on this

approach are built on difficult tasks such as the Shortest Vector Problem to discover the shortest

non-zero vector in the grid, or the Closest Vector Problem to identify the lattice vector that is

closest to the provided vector. A lattice in 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 space is any regular grid of points.

Technically, 𝑛 independent vectors known as the lattice’s basis {𝑏1, 𝑏2, 𝑏3, ..., 𝑏𝑛} are formed

as a vector set follows:

L(𝑏1, 𝑏2, 𝑏3, ..., 𝑏𝑛) =
𝑁∑
𝑗=1

𝑥 𝑗 𝑏 𝑗 , 𝑥 𝑗 ∈ Z (2.5)

Gentry (2009) introduced the first fully homomorphic encryption algorithm, which is based on

ideal lattices with the bootstrappable property.

Learning with errors is a fundamental principle that is at the core of advanced cryptographic

methods. It generalization the problem of Learning Parity with Noise. Learning with errors can

be conceptualized as two closely connected sub-problems. Decision Learning with Errors and

Search Learning with Errors. Learning with errors is a potent cryptography tool because its

difficulty is equivalent to that of lattice-based problems, namely the shortest vector problem and

the nearest vector problem. In (Regev, 2009), the hardness of worst-case lattice problems was

reduced from Shortest Vector Problem to Learning with Errors, indicating that if an algorithm

can solve the Learning with Errors problem in a reasonable amount of time, it can also handle

the Shortest Vector Problem. The work in (Lyubashevsky, Peikert & Regev, 2010) introduces

the Ring Learning with Errors problem, which is a significant improvement to the Learning

with Errors problem and enables the development of new applications. It showed that Ring

Learning with Errors problems might be reduced to worst-case problems on ideal lattices, which

is a difficult task for polynomial-time quantum algorithms. Using squashing and bootstrapping
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techniques as in (Gentry, 2009), a more realistic fully homomorphic encryption scheme was

developed in (Brakerski & Vaikuntanathan, 2011a).This scheme uses a straightforward form

of Ring Learning with Errors, called Polynomial Learning with Errors, which can also be

reduced to worst-case situations similar to Shortest Vector Problem on perfect lattices. The

authors of (Brakerski, Gentry & Vaikuntanathan, 2012) developed a leveled homomorphic

encryption technique to limit the noise development associated with each operation. In contrast

to the multiplicative depth of the circuit, the noise’s expansion is linear. The proposed strategy

was based on a mechanism for modulus switching known as the BGV scheme. In (Gentry,

Halevi & Smart, 2012), this mechanism was also employed with AES to achieve a better

performance. However, it requires many versions of the public key, necessitating a huge amount

of memory on the system. Brakerski (2012) introduced a scale-invariant approach for leveled

homomorphic encryption algorithms. In contrast to modulus switching, the modulus of the

ciphertext is maintained during the homomorphic evaluation. Hence, only one copy of the scale-

invariant evaluation key must be kept. This scheme was transformed from Learning with Errors to

Ring Learning with Errors through a comprehensive investigation of numerous subroutines, such

as multiplication, bootstrapping, and re-linearization. In (Brakerski & Vaikuntanathan, 2011b),

a re-linearization strategy that creates a somewhat homomorphic encryption without assuming

ideal hardness was introduced. With the intent of converting somewhat homomorphic encryption

to fully homomorphic encryption without using squashing and Sparse Subset Sum Problem,

a dimensional-modulus reduction was also provided. In prior Learning with Errors schemes,

the multiplication step was difficult and costly to perform due to re-linearization. In (Gentry,

Sahai & Waters, 2013), the authors proposed a novel methodology for fully homomorphic

encryption, the approximate eigenvector method, which does all addition and matrix operations

through matrices, making it asymptotically faster. Without the re-linearization stage, matrices

were simply added and multiplied.

The work in (Van Dĳk, Gentry, Halevi & Vaikuntanathan, 2010) describes a fully homomorphic

encryption scheme based on integers, where the hardness of the algorithm comes from the

Approximate Greatest Common Divisor problem (Galbraith, Gebregiyorgis & Murphy, 2016).
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While this approach was symmetric, a basic symmetric homomorphic encryption technique

that can be transformed into an asymmetric homomorphic encryption strategy was presented

by Van Dĳk et al. (2010). In (Cheon et al., 2013), the batch fully homomorphic encryption

technique over integers was proposed as an extension of integer-based fully homomorphic

encryption. Using the well-known Chinese Remainder Theorem, 𝑙 plaintexts {𝑚0, 𝑚1, ..., 𝑚𝑙}

were packed into a single ciphertext using the DGHV method. This technique is capable of

encrypting not only bits but also elements from ZQ rings. Further fully homomorphic encryption

techniques have also been developed over integers: a scale-invariant fully homomorphic

encryption over integers (Coron, Lepoint & Tibouchi, 2014), a technique with integer plaintext

(Ramaiah & Kumari, 2012), a symmetric fully homomorphic encryption scheme that does

not require bootstrapping (Aggarwal, Gupta & Sharma, 2014), and a somewhat homomorphic

encryption method for conducting arithmetic operations on large integer values without converting

to bits (Pisa, Abdalla & Duarte, 2012). All of these methods, as their names imply, improved

fully homomorphic encryption over integers.

Hoffstein, Pipher & Silverman (1998) proposed the NTRU-based encryption approach, which

is the first attempt at encrypting lattice problems. In (López-Alt, Tromer & Vaikuntanathan,

2012), the authors employ on-the-fly multiparty computation, wherein each user is responsible

for delivering encrypted data to the cloud and decrypting it when outputs are received. Their

approach employs a novel type of encryption, multikey fully homomorphic encryption, which

is capable of operating on inputs encrypted with many distinct and unrelated keys. The

multikey fully homomorphic encryption protocol was built on NTRU, an efficient public-key

encryption protocol. Despite the fact that NTRU was not initially fully homomorphic, its

transformation into a fully homomorphic structure decreases its efficiency but increases its

capacity. Yet, the decisional small polynomial ratio assumption relating to the uniformity

of public-key cryptography is necessary (Stehlé & Steinfeld, 2011). The authors of (Bos,

Lauter, Loftus & Naehrig, 2013) avoid this additional assumption and propose a secured

fully homomorphic encryption system under Ring Learning with Errors with simply circular

security assumptions. In (Qin, Huang & Fan, 2021), a fully homomorphic encryption approach
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based on the power-of-prime cyclotomic ring was proposed. The Ring Learning with Errors

assumption-based method does not require the decision small polynomial ratio assumption. The

effectiveness of the approach results in enhanced noise management, which improves ciphertext

storage, processing, and communication.

In summary, fully homomorphic encryption aims to enable anyone to perform useful operations

on encrypted data without having access to the encryption key. This can enhance security in

various cloud computing applications.

2.2.2 Problems with Homomorphic Encryption

Currently, the main issue with fully homomorphic encryption is that it is computationally intensive.

By complying with the requirements of full homomorphism (i.e., permitting ciphertexts to be

added or multiplied an infinite number of times without corrupting the result), these algorithms

are slow and may have extremely high storage requirements.

In 2018, IBM released an updated version of its HElib C++ library for homomorphic encryption

(Halevi & Shoup, 2018). This version is 25-75 times faster than its predecessor, which was 2

million times faster than the original version released three years before. However, the original

version performed mathematical operations approximately 100 quadrillion times slower than

the corresponding plaintexts, hence the new and improved version remains approximately one

million times slower than plaintext operations on average. A million-factor slowdown is quite

significant. Using the 2018 version of HElib, a calculation that would take a second using

plaintexts would take an average of 11,5 days. Clearly, institutions that would otherwise be

interested in homomorphic encryption cannot accept such a trade-off. However, a 100 million-

fold acceleration over three years is quite impressive. Currently, homomorphic encryption may

not be a viable option, but this could change in the near future.

Another problem with homomorphic encryption is the processing of activation functions in

neural networks. Current homomorphic encryption method cannot handle nonlinear functions

as popular activation functions, such as the sigmoid and ReLU functions (Pulido-Gaytan
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et al., 2021; AboulAtta, Ossadnik & Ahmadi, 2019). Some methods substitute conventional

functions with the nonlinear low-degree square function (Dowlin et al., 2016; Brutzkus,

Gilad-Bachrach & Elisha, 2019). However, the unbounded derivation of the square function

induces problems during training for networks with more than two non-linear layers (Chabanne,

De Wargny, Milgram, Morel & Prouff, 2017). The limitation of the polynomial approximation

of the activation function is addressed by a number of methods, including Taylor series and

Chebyshev polynomials (Chabanne et al., 2017; Hesamifard et al., 2017; Al Badawi et al., 2020;

Takabi, Hesamifard & Ghasemi, 2016; Shokri & Shmatikov, 2015; Bakshi & Last, 2020; Bourse,

Minelli, Minihold & Paillier, 2018). Nevertheless, approximating with polynomials of the lowest

possible degree remains a challenging problem.

Overall, homomorphic encryption is a powerful tool that has the potential to revolutionize

the way sensitive data is shared and used for computation. While there are still challenges

to overcome in terms of practical implementation and performance, it is a promising area of

research that will likely continue to evolve and grow in importance in the coming years. Due to

the computational cost, however, homomorphic encryption cannot be currently used in practical

applications.

2.3 Adversarial Learning for Preserving Privacy

2.3.1 Introduction

The recent success of adversarial learning has led to the increased adoption of this technique for

the protection of sensitive information, particularly in visual data. A large number of works

(Pittaluga, Koppal & Chakrabarti, 2019; Wu et al., 2018; Yang, Brinton, Mittal, Chiang & Lan,

2018; Roy & Boddeti, 2019) leveraged adversarial training to jointly optimize privacy and utility

objectives. In these studies, the mapping functions for the adversarial and task-specific terms are

standard classification models where the number of classes is fixed. In (Chen, Konrad & Ishwar,

2018a), a model which integrates a Variational Autoencoder (VAE) and a GAN is proposed to

create an identity-invariant representation of face images. To explicitly control the features to be
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preserved, this model includes a discriminator which predicts the identity of the subject in a

generated image. As the number of possible labels corresponds to the number of subjects to

identify, this approach is not suitable for large-scale applications. To alleviate this problem,

Oleszkiewicz, Kairouz, Piczak, Rajagopal & Trzciński (2018) use a Siamese architecture for

the discriminator, which predicts whether two encoded images come from the same subject or

not. In this previous work, an auto-encoder loss is employed as task-agnostic utility objective to

avoid the encoder from generating trivial images.

Figure 2.4 Basic adversarial training framework for

privacy-preserving visual recognition.

Taken from Wu et al. (2018)

2.3.2 Adversarial Training Framework for Privacy-preserving Visual Recognition

In (Wu et al., 2018), the authors proposed an adversarial training framework for privacy-

preserving visual recognition. The proposed framework explicitly learns a degradation applied
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to the original inputs to optimize the trade-off between target task performance and the associated

privacy budgets on the degraded video.

The proposed framework is illustrated in Fig 2.4. In this framework, 𝑋 is the training data,

𝑓𝑇 the model to perform a target task 𝑇 , 𝑌𝑇 the data label associated with the target task, 𝐿𝑇

is the loss function which is defined to evaluate the target task performance, 𝐿𝐵 is a privacy

budget loss function which is defined to evaluate the privacy leakage, and 𝑓𝑑 is the active

degradation function which is used to distort the input data 𝑋 . The goal of privacy-preserving

visual recognition is expressed as:

min
𝑓𝑇 , 𝑓𝑑

𝐿𝑇 ( 𝑓𝑇 ( 𝑓 𝑓 (𝑋)), 𝑌𝑇 ) + 𝛾𝐿𝐵( 𝑓𝑑(𝑋)) (2.6)

The desired 𝑓𝑑 visually degrades the input 𝑋 as the common input for both the target task and

the privacy budget in such a way that: 1) the target task performance is minimally affected, i.e.,

min
𝑓𝑇 , 𝑓𝑑

𝐿𝑇 ( 𝑓𝑇 ( 𝑓 𝑓 (𝑋)), 𝑌𝑇 ) ≈ min
𝑓 ′𝑇

𝐿𝑇 ( 𝑓 ′𝑇 (𝑋), 𝑌𝑇 ) (2.7)

and 2) the privacy budget is greatly reduced

𝐿𝐵( 𝑓𝑑(𝑋)) � 𝐿𝐵(𝑋) (2.8)

The definition of the privacy budget loss 𝐿𝐵 poses two main challenges. First, the privacy

budget-related annotations, 𝑌𝐵, are not always available. Secondly, it is not sufficient to merely

suppress the success rate of one 𝑓𝑏 model. The author proposed to define a privacy prediction

function family P : 𝑓𝑏(𝑋) → 𝑌𝐵. The ideal active degradation function 𝑓𝑑 must suppress every

possible model 𝑓𝑏 from P. Based on this idea, the problem becomes as follows:

min
𝑓𝑇 , 𝑓𝑑

𝐿𝑇 ( 𝑓𝑇 ( 𝑓 𝑓 (𝑋)), 𝑌𝑇 ) + 𝛾max
𝑓𝑏∈P

𝐿𝐵( 𝑓𝑏( 𝑓𝑑(𝑋)), 𝑌𝐵) (2.9)

For the solved 𝑓𝑑 , the two goals should be simultaneously satisfied. Thus, there exists at least

one 𝑓𝑇 function that can predict 𝑌𝑇 from 𝑓𝑑(𝑋), and no function 𝑓𝑏 ∈ P can predict 𝑌𝐵 from
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𝑓𝑑(𝑋). In this method, all three modules, 𝑓𝑑 , 𝑓𝑇 and 𝑓𝑏 are learnable and implemented by neural

networks. The entire system is trained under the combination of 𝐿𝑇 and 𝐿𝐵 in an adversarial

manner.

By providing a solid foundation, this framework not only facilitates the development of

novel privacy-preserving methods, but also serves as a point of reference for researchers and

practitioners in the field.

2.3.3 Adversarial Learning Based Privacy-preserving Method

In the field of image recognition, Xu et al. (2019) proposed a method that added carefully-

designed noise to gradients during the learning procedure in order to train a differentially-private

GAN. In (Raval, Machanavajjhala & Cox, 2017), the authors presented a perturbation mechanism

leveraging adversarial learning that optimises both privacy and utility objectives. During the

training process, an unsupervised utility loss minimised based on the assumption that the

encoded representations can be generated by removing sensitive attributes from an image while

minimising alterations to the remaining components. These encoded representations are then

used to learn a downstream task. Due to the fact that the encoding is performed independently

of the downstream task, it may not be optimal for this task. Several studies used adversarial

learning to simultaneously optimise privacy preservation and utility (Pittaluga et al., 2019;

Wu et al., 2018; Yang et al., 2018; Roy & Boddeti, 2019). Standard classification models are

employed as mapping functions for adversarial and task-specific components in these studies.

Notably, throughout the optimisation process, the number of classes within these models remains

unchanged. Chen et al. introduced a model that integrates a Variational Autoencoder (VAE) and

a Generative Adversarial Network (GAN) to generate identity-invariant representations for facial

images (Chen et al., 2018a). The model includes a discriminator which is used to predict the

subject’s identity within a synthesised image in order to explicitly regulate the preservation of

specific features. Due to the requirement of a one-to-one correspondence between the number

of possible classes and the number of subjects to be identified, the applicability of this method

to large-scale scenarios, such as the one in this thesis, is limited.
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In (Li & Choi, 2021), the author introduced DeepBlur, a straightforward yet efficacious

approach to image obfuscation through the application of blurring within the latent space

of a unconditionally pre-trained generative model capable of synthesizing facial images with

photo-realistic attributes. In (Wu, Lim, Davis & Goldstein, 2020), to mount adversarial attacks on

object detectors, the author employed conventional detection datasets to train patterns designed

to attenuate the objectness scores generated by a spectrum of widely utilized detectors and

detector ensembles. In (Li & Lin, 2019), the author introduces a novel framework named

AnonymousNet, aimed at systematically mitigating concerns pertaining to the de-identification

of face images, with a concerted emphasis on achieving a harmonious balance between usability

and augmenting privacy in a discernible and intrinsic manner. The framework comprises four

distinct stages: facial attribute estimation, face obfuscation guided by privacy metrics, targeted

synthesis of natural images, and the introduction of adversarial perturbations.

In order to address the issue arising from a variable number of classes, Oleszkiewicz et al.

(2018) introduced a Siamese architecture for the discriminator component. This architecture is

designed to predict if two encoded images originate from the same subject or not. By employing

this method, the researchers expected to circumvent the limitation posed by variable number of

classes. Nevertheless, the objectives pursued by this method is significantly different from those

of our own study. This approach’s primary objective is to identify the minimal transformation

required to remove identity-related information from an image, thereby enabling its subsequent

use by non-specific applications. In contrast, the objective of our research in this thesis is to

implement a highly robust image obfuscation transformation technique. The primary objective

is to ensure that the subject’s identity remains unrecoverable while facilitating the use of the

encoded image for training image analysis tasks, particularly in the segmentation domain.

2.4 Subject re-identification from image:

In this thesis, we adopt MS-SSIM score and similarity score produced by a Siamese network

as the metrices to measure the similarity between image. Hence, we proceed the subject
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re-identification experiment based on the similarity score. In the literature, there are also feature

based method to compute the similarity between two MRI images.

In (Chauvin et al., 2020), the authors presented a novel pairwise brain similarity measure by

leveraging a distinct keypoint signature —namely, a collection of unique, localized patterns

identified automatically in each image through a generic saliency operator. The quantification

of the similarity between a pair of images is accomplished by assessing the proportion

of keypoints they share, employing a novel Jaccard-like measure indicative of set overlap.

Experimental validations demonstrated the notable efficiency and accuracy of the keypoint

method, involving a dataset of 7536 T1-weighted Brain MRIs amalgamated from four publicly

available neuroimaging repositories, encompassing subjects such as twins, non-twin siblings,

and 3334 distinct individuals.

In (Toews, Wachinger, Estepar & Wells, 2015), the authors proposed an inference methodology

particularly suitable for extensive collections of medical images. This approach is rooted in

a framework where distinctive 3D scale-invariant features are efficiently indexed, enabling

the identification of approximate nearest-neighbor (NN) feature matches with a computational

complexity of 𝑂(𝑙𝑜𝑔𝑁), where N represents the number of images. Consequently, this method

demonstrates scalability to large datasets, a notable departure from approaches reliant on pair-

wise image registration or feature matching, which incur𝑂(𝑁) complexity. A key innovation lies

in the incorporation of a density estimator founded on a generative model that extends beyond

conventional kernel density estimation and K-nearest neighbor (KNN) methods. The efficacy

of the proposed method is substantiated through validation on an extensive multi-site dataset

comprising 95,000,000 features extracted from 19,000 lung CT scans.

2.5 Summary

In this chapter, we reviewed the domain of privacy-preserving deep learning, examining a

variety of innovative techniques designed to protect sensitive data and protect individual
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privacy. Federated learning, homomorphic encryption, and adversarial strategies were among

the prominent strategies discussed.

Federated learning emerged as a revolutionary paradigm that permits multiple parties to train a

machine learning model collaboratively without sharing their raw data. This paradigm ensures

data privacy by distributing the learning process across decentralized devices, allowing the model

to learn from diverse sources and capture a more comprehensive representation of real-world

scenarios. Nonetheless, the implementation of federated learning (FL) in cloud-based solutions

is restricted by the need for hardware resources to facilitate training at each individual site.

Homomorphic encryption, another potent technique, permits computations on encrypted data

without the need for decryption, preserving the privacy of this data throughout the entirety of

the computation process. This method provides a robust solution for secure deep learning, as it

enables the analysis of sensitive data without compromising confidentiality, thereby minimizing

the risk of exposing personal information. However, the computational burden associated with

this approach imposes constraints on its wide-ranging applicability.

Adversarial techniques were also studied for the purpose of preserving privacy in deep learning.

The objective of such techniques is to mitigate the risks associated with the disclosure of sensitive

information by training an encoder so that a discriminator cannot recover private information.

However, the application of this method to image segmentation remains challenging. Currently,

the use of adversarial method is mainly restricted to situations in which the downstream task is

classification.

This chapter shed light on recent advancements in privacy-preserving deep learning. By

employing federated learning, homomorphic encryption and adversarial approaches, researchers

and practitioners try to strike a balance between data utility and privacy protection, thereby

opening up new horizons for the safe and responsible use of deep learning technologies across a

variety of domains.
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This chapter presents the article “Privacy-Net: An Adversarial Approach for Identity-Obfuscated

Segmentation of Medical Images” by Kim, Dolz, Jodoin, and Desrosiers accepted by the IEEE

Trans. Medical Imaging 40(7) journal for publication in 2020. The objective of this research is to

propose a new method for privacy-preserving in medical image segmentation. Our approach is

illustrated on the problem of segmenting brain MRI from the large-scale Parkinson Progression

Marker Initiative (PPMI) dataset. we show that the discriminator learns to heavily distort input

images while allowing for highly accurate segmentation results. Our results also demonstrate

that an encoder trained on the PPMI dataset can be used for segmenting other datasets, without

the need for retraining.

3.1 Introduction

Machine learning models like deep convolutional neural networks (CNNs) have achieved

outstanding performances in complex medical imaging tasks such as segmentation, registration,

and disease detection (Zhou, Greenspan & Shen, 2017; Litjens et al., 2017). However, privacy

restrictions on medical data including images impede the development of centralized cloud-based

image analysis systems, a solution that has its share of benefits: no on-site specialized hardware,

immediate trouble shooting or easy software and hardware updates, among others.



48

While server-to-client encryption can prevent attacks from outside the system, it cannot prevent

cybercriminals within the system from gaining access to private medical data. Another approach

to obfuscate the identity of a patient is to anonymize its data. In case of images, this is done by

removing the patient-related DICOM tags or by converting it into a tag-free format such as PNG

or NIFTI. However, as shown by Kumar et al. (Kumar, Toews, Chauvin, Colliot & Desrosiers,

2018) and further illustrated in this paper, the raw content of an image can be easily used to

recover the identity of a person with up to 97% of accuracy.

A recent solution for decentralized training on multi-centric data is federated learning (McMahan

et al., 2016). The idea behind this strategy is to transfer the training gradients of the data instead

of the data itself. While such approach is appealing to train a neural network with data hosted

in different hospitals, it does not allow the use of a centralized cloud-based model for making

predictions at test time without transmitting patient data.

Another solution for privacy protection is homomorphic-encryption (HE) (Dowlin et al., 2016;

Hesamifard et al., 2017; Nandakumar et al., 2019). Although it ensures absolute data protection,

one can also train a neural network with both encrypted and non-encrypted data. Unfortunately,

since the HE operations are limited to multiplication and addition, the non-linear operations

of a CNN have to be approximated by polynomial functions which makes neural networks

prohibitively slow. For example, (Nandakumar et al., 2019) reports computation times above 30

minutes to process a single 28× 28 image using an optimized network with only 954 nodes. Thus,

homomorphic neural networks so far proposed have been relatively simplistic (Hardy et al., 2017)

and it is not clear how state-of-the-art medical image analysis CNNs like U-Net (Ronneberger

et al., 2015) could be implemented in such framework. Furthermore, HE imposes important

communication overhead (Rouhani, Riazi & Koushanfar, 2018) and its use within a distributed

learning framework is still cumbersome (Hardy et al., 2017).
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a) Training configuration

b) Test (deployed) configuration

Figure 3.1 (a) Training configuration of our proposed system: 1) a client-side encoder

network 𝐺 converts input images x𝑖 and x 𝑗 into two feature maps 𝐺(x𝑖) and 𝐺(x 𝑗 ), 2)

the discriminator network 𝐷 tries to determine if its input data comes from the same

patient (𝑠𝑖 𝑗 = 1) or not (𝑠𝑖 𝑗 = 0), and 3) a server-side segmentation network 𝑆 segments

the encoded images. (b) At test time, the discriminator is removed from the system and

images are processed one at a time by the encoder on the client side and the

segmentation network deployed on the server. The segmentation result is sent back to

the client. Our networks’ input size is 64× 64× 64, thus the input images are cropped in

to 64× 64× 64 patches and shuffled before sending to server

In this paper, we propose a client-server system which allows for the analysis of multi-centric

medical images while preserving patient identity. A high-level view of the proposed system

is given in Fig. 3.1. On the client side is an encoder that converts patient-specific data into

an identity-obfuscated signal containing enough semantic information to analyse its content.

The encoded data is then sent to the server where it is analyzed and the results of this analysis
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are sent back to the client. Since each hospital has the same encoder, the server can keep on

updating its system without having access to patient-specific information.

We achieve this with an adversarial learning approach inspired by generative adversarial networks

(GAN) (Luc, Couprie, Chintala & Verbeek, 2016; Goodfellow et al., 2014; Ganin et al., 2016)

but with two main differences. As illustrated in Fig. 3.1, instead of being a two-network

configuration, our system involves three networks: 1) an image encoder, 2) a discriminator and

3) a medical image analysis network (a segmentation CNN in our case). Whereas the encoder’s

objective is to obfuscate the content of a raw input image, the goal of the discriminator is to

determine whether two encoded images come from the same patient or not. The third network

is a CNN which analyzes the content of the encoded image. As such, while the encoder tries

to fool the discriminator, it must preserve enough information to allow the third network to

successfully analyze its content. At test time, the encoder network residing on the client side

converts a raw image x into an encoded (and yet secure) feature map 𝐺(x). Thereafter, 𝐺(x) is

transferred to the cloud-based server where the segmentation network is deployed. The resulting

segmentation map ŷ is then sent back to the client.

The major contributions of this work are as follows:

1. We present the first client-server system for semantic medical image segmentation which

allows for identity-preserving distributed learning. Obfuscating identity while preserving

task-specific information is particularly challenging for segmentation, which requires to

assign a label for each image pixel.

2. Our model proposes a novel architecture combining two CNNs, for the encoder and segmen-

tation network, with a Siamese CNN for the discriminator. This Siamese discriminator learns

identity-discriminative features from image pairs instead of a single image, allowing us to

have a variable number of classes (i.e., subject IDs). Unlike the work in (Oleszkiewicz et al.,

2018), our model is trained using both an adversarial Siamese loss and a task-specific loss,
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thereby providing encoded images that obfuscate identity while preserving the information

required for the target task.

3. We provide a theoretical analysis showing that the proposed model minimizes the mutual

information between pairs of encoded images and a variable indicating if these images are

from the same subject. This analysis motivates our approach from a information theoretic

perspective.

4. We demonstrate that the privacy-preserving encoder learned with a given dataset can be

used to encode images from another dataset, and that these encoded images are useful to

update the segmentation network.

3.2 Related Works

3.2.1 Privacy preserving in visual tasks:

Traditional methods to preserve privacy rely on cryptographic approaches (Ziad, Alanwar,

Alzantot & Srivastava, 2016; Wang, Vong, Yang & Wong, 2017) which create local homomorphic

encryptions of visual data. Although these methods perform well in some applications,

homomorphic cryptosystems typically incur high computational costs (Paillier, 1999) and are

mostly restricted to simple linear classifiers. This limits their usability in scenarios requiring

more complex models like deep neural networks. Another solution consists in extracting

feature descriptors from raw images, which are then transferred to the encrypted dataset server

(Hsu, Lu & Pei, 2011). Nevertheless, sensitive information from original images can be

still recovered from standard features, making these systems vulnerable to cyberattacks. An

alternative strategy is to employ low-resolution images (Dai, Saghafi, Wu, Konrad & Ishwar,

2015; Chen, Wu, Richter, Konrad & Ishwar, 2016a) or image filtering techniques (Butler,

Huang, Roesner & Cakmak, 2015; Jalal, Uddin & Kim, 2012) to degrade sensitive information.

However, since these approaches also reduce the quality of the visual content, they are limited to
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a reduced set of tasks such as action or face expression recognition. More recently, McClure et

al. (McClure et al., 2018) proposed using continual learning to circumvent the issue of privacy

preservation in the context of multi-center brain tumor segmentation. Nevertheless, unlike our

method, their approach is not directly optimized to obfuscate identity from visual data.

3.2.2 Federated learning:

Federate learning has recently emerged as a solution to build machine learning models based

on distributed data sets while preventing data leakage (Xie et al., 2014; Konecný et al., 2016;

McMahan et al., 2016; Vepakomma, Swedish, Raskar, Gupta & Dubey, 2018; Yang et al., 2019).

With this approach, the learning process involves collaboration from all the data owners without

exposing their data to others. This can typically be achieved by sharing the architecture and

parameters between the client and server during training, along with intermediate representations

of the model that may include the gradients, activations and weight updates. Thus, the client

downloads the model from the server and updates the weights based on its local data. Yet,

a drawback of these strategies is their huge requirements for network bandwidth, memory

and computational power, which strongly limits their scalability. More importantly, federated

learning does not prevent, at test time, from having to send private data from the client to the

server in a scenario such as ours where the server holds the model and processes the data. Also,

while HE can be combined to federated learning, its communication protocol is cumbersome

and imposes important communication overhead (Hardy et al., 2017; Rouhani et al., 2018).

3.2.3 Privacy preserving with adversarial learning:

The recent success of adversarial learning has led to the increased adoption of this technique for

the protection of sensitive information, particularly in visual data. Xu et al. (Xu et al., 2019)

proposed to add carefully-designed noise to gradients during the learning procedure to train a

differentially-private GAN in the context of image recognition. An unsupervised utility loss is
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employed for training in (Raval et al., 2017), based on the assumption that removing private

characteristics from an image while minimizing changes to the rest of the image yields encoded

representations that can be used to learn a target task. However, since the encoding is performed

independently of the task, it is potentially sub-optimal for this task. Other works (Pittaluga et al.,

2019; Wu et al., 2018; Yang et al., 2018; Roy & Boddeti, 2019) have leveraged adversarial

training to jointly optimize privacy and utility objectives. In these works, the mapping functions

for the adversarial and task-specific terms are standard classification models where the number

of classes is fixed. In (Chen et al., 2018a), a model which integrates a Variational Autoencoder

(VAE) and a GAN is proposed to create an identity-invariant representation of face images. To

explicitly control the features to be preserved, they include a discriminator which must predict

the identity of the subject in a generated image. As the number of possible labels corresponds to

the number of subjects to identify, this approach is not suitable for large-scale applications as

the one considered in our work.

To alleviate the problem of a non-fixed number of classes, (Oleszkiewicz et al., 2018) uses a

Siamese architecture for the discriminator which predicts whether two encoded images come

from the same subject or not. This paper focuses on biometrical data (e.g., fingerprint), which are

dissimilar in nature from the medical images used in our method, and seeks a very different goal:

finding the smallest possible transformation to an image which removes identity information and

such that images can later be used by non-specific applications. In contrast, we obfuscate images

with the strongest possible transformation so that subject identity cannot be recovered while at

the same time the encoded image can be used to train an image analysis (i.e., segmentation)

task. This translates into important methodological differences. First, while the model in

(Oleszkiewicz et al., 2018) has a generator and a discriminator, our architecture is composed of

three separate networks, i.e., an encoder, a Siamese discriminator and a segmentation network.

Second, the final objective is different since we aim at maximizing the same-subject classification
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error, as well as optimizing a task-specific loss related to segmentation. In summary, both the

structure and objectives between (Oleszkiewicz et al., 2018) and our work are different.

The work in (Wang, Ding & Fu, 2018) tackles a task opposite to privacy-preserving image

analysis, where faces in input images are rejuvenated while preserving, and not removing as in

our work, information related to kinship. This is done by minimizing a discriminative sparse

metric learning loss encouraging generated images for members of the same family to be nearby

in a low-dimensional subspace. In (Xia & Ding, 2020), Xia et al. also employed adversarial

training to develop a novel Generative cross-domain learning method via Structure-Preserving

(GSP). The method attempts to transform target data into the source domain in order to take

advantage of source supervision.

3.3 Methodology

3.3.1 Proposed system

As shown in Fig. 3.1, our system implements a zero-sum game involving three separate CNN

networks. At the input of our system is a raw image x ∈ R𝐻×𝑊×𝐷 (in our case a 3D T1 magnetic

resonance image (MRI)). During training, images come in pairs (x𝑖 , x 𝑗 ) ∈ X2, 𝑖 �= 𝑗 . Each image

pair is associated to the corresponding ground-truth segmentation maps (y𝑖 , y 𝑗 ) and binary target

𝑠𝑖 𝑗 which equals 1 when x𝑖 and x 𝑗 come from the same patient and 0 otherwise. As mentioned

in Section 3.4.1, pairs of images from the same patient are not identical as they were acquired

during different acquisition sessions, often months apart.

The first network of our system is an encoder network 𝐺 parameterized by θ𝐺 . The output of

the encoder is a feature map 𝐺(x) ∈ R𝐻×𝑊×𝐷 which can be seen as an encoded version of the

input image. While the encoder could return feature maps of any size, we chose maps with the

same size as the input image x for the following important reasons. First, it allows preserving
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the information and spatial resolution of the input image. In contrast, using a compressed

representation could lead to loss of details. This is why, for example, state-of-art segmentation

networks employ skip connections that concatenate detailed features from downsampling

layers with low-resolution features from upsampling layers (Dolz, Desrosiers & Ayed, 2018;

Ronneberger et al., 2015). Second, despite the high spatial resolution of encoding 𝐺(x), it is

still more compact than convolutional features of standard networks like VGG which have a

lower spatial resolution but a larger number of channels (e.g., 14× 14× 512 = 100,352 features

at the last convolutional layer of VGG compared to 224× 224× 1 = 50,176 features for our

encoding, in the case of 224× 224 images). Third, it enables a fair comparison of segmentation

performance with the model using non-encoded images. Last, preserving the same shape as

the input image allows processing the encoding image in sub-regions (i.e., 3D patches), which

provides additional protection when these sub-regions are sent in a random order to the server

for segmentation. While training the system, the encoder is fed with a pair of images (x𝑖 , x 𝑗 ) and

returns two encoded images 𝐺(x𝑖) and 𝐺(x 𝑗 ). Here, x𝑖 and x 𝑗 are processed individually and

not concatenated together.

The second network is the Siamese discriminator network 𝐷 with parameters θ𝐷 , which is

fed with a pair of encoded images. The goal of this network is to determine whether the two

images come from the same patient or not. By fooling 𝐷 (i.e., maximizing its loss), the encoder

transforms the images and makes it difficult to identify the patient. Last, the third CNN is the

segmentation network 𝑆 with parameters θ𝑆, whose goal is to recover the correct segmentation

map y given the encoded image 𝐺(x). During training, both 𝐺(x𝑖) and 𝐺(x 𝑗 ) are segmented.

For this network, we used the widely-adopted U-Net (Ronneberger et al., 2015), which is very

effective at segmenting medical images.
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3.3.2 Training losses

As in most adversarial models, our system is trained with two losses that steer the model in

opposite directions. In our case, the training procedure involves a segmentation loss and an

adversarial discriminator loss:

min
θ𝐺 , θ𝑆

max
θ𝐷

L(θ𝐺, θ𝑆, θ𝐷) = Ex,y∼𝑃(x,y) [ℓ𝑆 (𝑆(𝐺(x)), y)]

− 𝜆 Ex𝑖 ,x 𝑗∼𝑃(x)

[
ℓ𝐷 (𝐷(𝐺(x𝑖), 𝐺(x 𝑗 )), 𝑠𝑖 𝑗 )

]
(3.1)

where ℓ𝑆 is attached to the segmentation network, ℓ𝐷 is attached to the discriminator, and

𝑠𝑖 𝑗 = 1id(x𝑖)=id(x 𝑗 ) is a binary indicator function indicating whether two encoded images come

from the same patient or not.

Using ŷ = 𝑆(𝐺(x)) as shorthand notation for the predicted segmentation map, we employ

the generalized Dice loss (Sudre, Li, Vercauteren, Ourselin & Cardoso, 2017a) to train the

segmentation network, i.e.

ℓ𝑆 (̂y, y) = 1 −
2
∑
𝑝 𝑦𝑝 𝑦̂𝑝∑

𝑝 𝑦𝑝 +
∑
𝑝 𝑦̂𝑝

(3.2)

For the adversarial loss, we want the discriminator to differentiate subject identity in pairs of

encoded images𝐺(x𝑖), 𝐺(x 𝑗 ). Here, we define discriminator’s classification loss ℓ𝐷 using binary

cross entropy:

ℓ𝐷 (̂𝑠, 𝑠) = −𝑠 log 𝑠̂ − (1 − 𝑠) log(1 − 𝑠̂) (3.3)

Like most adversarial models, the parameters of our system cannot be updated all at once through

a gradient step. Instead, we first update the encoder and segmentation parameters θ𝐷, θ𝐺 by
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taking the following gradient descent step:

(θ𝑡+1
𝑆 , θ𝑡+1

𝐺 ) ← (θ𝑡𝑆, θ
𝑡
𝐺) − 𝜂∇L̃(θ𝑡𝐺, θ

𝑡
𝑆) (3.4)

The gradient is estimated using random batches of image pairs B ⊂ |X|×|X|, as follows:

∇L̃(θ𝐺, θ𝑆) =
1

|B|

∑
(𝑖, 𝑗)∈B

∇θ𝐺 ,θ𝑆

[
ℓ𝑆 (ŷ𝑖 , y𝑖) + ℓ𝑆 (ŷ 𝑗 , y 𝑗 ) − 𝜆ℓ𝐷 (𝐷(𝐺(x𝑖), 𝐺(x 𝑗 )), 𝑠𝑖 𝑗 )

]
(3.5)

We then update the discriminator parameters by taking a gradient ascent step

θ𝑡+1
𝐷 ← θ𝑡𝐷 + 𝜂∇L̃(θ𝑡𝐷) (3.6)

with the batch gradient computed as

∇L̃(θ𝐷) = −
𝜆

|B|

∑
(𝑖, 𝑗)∈B

∇θ𝐷ℓ𝐷 (𝐷(𝐺(x𝑖), 𝐺(x 𝑗 )), 𝑠𝑖 𝑗 ) (3.7)

Details of our training method are provided in Algo. 3.1.

3.3.3 Link to mutual information minimization

The idea of using adversarial learning to obfuscate identity is well-grounded on the principles of

information theory. Hence, it can be shown that training a subject-ID classifier as discriminator

in an adversarial learning model implicitly minimizes the mutual information between the

encoded image and the corresponding subject ID. However, as mentioned before, this strategy is

ill-suited to our problem since the number of classes (i.e. the number of subject ID) is not fixed

and instead increases as new subjects are added to the system. This poses two major problems:

1) the output size of 𝐷 varies over time, and 2) the classification task is hard to learn due to

the large number of classes compared to the very low number of samples per classes (i.e., 1–4
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Algorithm 3.1 Privacy-preserving network learning

Input: Images X and ground-truth masks Y
Output: Network parameters θ𝐺 , θ𝐷 , θ𝑆

/* Initialization */
1 Initialize network parameters θ𝐺 , θ𝐷 , θ𝑆;

/* Main loop */
2 for epoch = 1, . . . , 𝐸max do
3 for iter = 1, . . . , 𝑇max do
4 Randomly select batch B ⊂ |X|×|X|;

5 Update encoder and segmentation network parameters (θ𝑆 , θ𝐺) using Eq. (3.4)
and (3.5);

6 Update discriminator parameters (θ𝐷) using Eq. (3.6) and (3.7);
7 end for
8 end for
9 return θ𝐺 , θ𝐷 , θ𝑆;

images per subject). This motivates our approach, based on a Siamese discriminator, where

the identification task is to determine if two encoded images are from the same subject. This

approach can naturally incorporate new subjects/classes over time and is easier to learn since it

corresponds to a binary classification problem and training samples are more abundant (i.e.,

image pairs instead of images).

As a theoretical contribution of this work, we show that our proposed privacy-preserving learning

approach based on a Siamese discriminator also relates to mutual information minimization.

This is done in the following theorem.

Theorem 3.3.1. Let x, x′ be two images, and 𝐺(x), 𝐺(x′) be their encoded version obtained

by the generator 𝐺. Denoting as 𝑧=id(x) the subject ID of image x and 𝑠 = 1𝑧=𝑧′ the random

variable indicating whether images x and x′ are from the same subject, optimizing the problem

defined in Eq. (4.2) corresponds to minimizing mutual information 𝐼(𝐺(x), 𝐺(x′); 𝑠) between

encoded images 𝐺(x), 𝐺(x′) and random variable 𝑠.
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Proof. We proceed by defining mutual information and then bounding it using a variational

approach. The mutual information 𝐼(𝐺(x), 𝐺(x′); 𝑠) between encoded images 𝐺(x), 𝐺(x′) and

random variable 𝑠 can be defined as

𝐼 (𝐺(x), 𝐺(x′); 𝑠) = 𝐻 (𝑠) − 𝐻 (𝑠 |𝐺(x), 𝐺(x′)) (3.8)

= 𝐻 (𝑠) + Ex, x′∼𝑃(x,x′)
[
E𝑠′∼𝑃(𝑠 |𝐺(x),𝐺(x′)) [ log 𝑃(𝑠′ |𝐺(x), 𝐺(x′))]

]
(3.9)

= 𝐻 (𝑠) + E𝑠∼𝑃(𝑠), x, x′∼𝑃(x,x′ |𝑠)
[
E𝑠′∼𝑃(𝑠 |𝐺(x),𝐺(x′)) [ log 𝑃(𝑠′ |𝐺(x), 𝐺(x′))]

]
(3.10)

with 𝐻(𝑥) being the Shannon entropy of a random variable 𝑥 and using the fact that 𝐺 is a

deterministic function. To deal with the intractable computation of 𝑃(𝑠 |𝐺(x), 𝐺(x′)), we derive

a lower bound using variational distribution 𝑄(𝑠 |𝐺(x), 𝐺(x′)):

(3.10) = 𝐻 (𝑠) + E𝑠∼𝑃(𝑠), x, x′∼𝑃(x,x′ |𝑠)
[
E𝑠′∼𝑃(𝑠 |𝐺(x),𝐺(x′)) [

𝐷KL(𝑃(𝑠
′ |𝐺(x), 𝐺(x′)) ‖𝑄(𝑠′ |𝐺(x), 𝐺(x′)))︸�������������������������������������������������������︷︷�������������������������������������������������������︸

≥0

+ log𝑄(𝑠′ |𝐺(x), 𝐺(x′))]
]

(3.11)

≥ 𝐻 (𝑠) + E𝑠∼𝑃(𝑠), x, x′∼𝑃(x,x′ |𝑠)
[
E𝑠′∼𝑃(𝑠 |𝐺(x),𝐺(x′)) [ log𝑄(𝑠′ |𝐺(x), 𝐺(x′))]

]
(3.12)

Next, we use the fact that, for random variables 𝑋 , 𝑌 and function 𝑓 (𝑥, 𝑦), E𝑥∼𝑋, 𝑦∼𝑌 |𝑥 [ 𝑓 (𝑥, 𝑦)] =

E𝑥∼𝑋, 𝑦∼𝑌 |𝑥, 𝑥′∼𝑋 |𝑦 [ 𝑓 (𝑥
′, 𝑦)] (see Appendix A.1 of (Chen et al., 2016b) for proof) to get:

(3.12) = 𝐻 (𝑠) + E𝑠∼𝑃(𝑠), x, x′∼𝑃(x,x′ |𝑠) [ log𝑄(𝑠 |𝐺(x), 𝐺(x′))] (3.13)

= 𝐻 (𝑠) + E𝑠∼𝑃(𝑠), 𝑧,𝑧′∼𝑃(𝑧,𝑧′ |𝑠), x∼𝑃(x|𝑧), x′∼𝑃(x′ |𝑧′) [ log𝑄(𝑠 |𝐺(x), 𝐺(x′))] (3.14)

Last, we equate (3.14) with Eq. (4.2) using the following: 1) 𝐻(𝑠) can be treated as a constant,

and 2) the variational distribution 𝑄 is modeled using our Siamese discriminator 𝐷, and 3)

log𝑄(𝑠 |𝐺(x), 𝐺(x′)) is equal to minus the cross-entropy loss ℓ𝐷 of Eq. (3.3). Maximizing the
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lower bound in (3.14) thus increases its tightness to 𝐼 (𝐺(x), 𝐺(x′); 𝑠), the two becoming equal

when 𝑃(· |𝐺(x), 𝐺(x′)) = 𝑄(· |𝐺(x), 𝐺(x′)). Consequently, optimizing the loss function of (4.2)

minimizes a maximally-tight bound to mutual information.

By minimizing mutual information, which is a symmetric measure of co-dependence between

two variables, we ensure that subject identity cannot be established by matching an encoded

image with those previously seen in the system. Moreover, a powerful property of mutual

information is that it is invariant to any monotone and uniquely invertible transformation of

the variables (Kraskov, Stögbauer & Grassberger, 2004). Consequently, it provides a certain

robustness to small transformations applied to the (encoded) images, such as translation and

rotation. Similarly, it avoids the trivial and non-obfuscating solution where the discriminator is

forced to systematically flip its predictions to 𝑠flip = 1 − 𝑠, since this does not change the mutual

information, i.e. 𝐼(𝐺(x), 𝐺(x′); 𝑠) = 𝐼(𝐺(x), 𝐺(x′); 𝑠 𝑓 𝑙𝑖𝑝).

3.3.4 Implementation details

In this study, we used a U-Net architecture (Ronneberger et al., 2015) but with 3D convolution

kernels both for the encoder and the segmentation network. The discriminator is a Siamese

network as in (Koch, Zemel & Salakhutdinov, 2015). We used a DenseNet architecture (Huang,

Liu & Weinberger, 2017) with 3D convolution kernels for the CNN backbone. The CNN Siamese

backbone (i.e. the left-most CNN inside the discriminator box in Fig. 3.1) is used to extract the

features of input images. The last layer of the discriminator contains two fully-connected layers

to predict if two encoded images are from the same patient.

The system was implemented with Pytorch. We used the Adam optimizer with a learning

rate of 10−4 for the whole training process. The PC used for training is an Intel(R) Core(TM)

i7-6700K 4.0GHz CPU, equipped with a NVIDIA GeForce GTX 1080Ti GPU with 12 GB of
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memory. Training our framework takes roughly 30 minutes per epoch, and around 2 days for the

fully-trained system.

Since our networks employ 3D convolutions, and due to the large size of MRI volumes, dense

training cannot be applied to the whole volume. Instead, volumes are split into smaller patches

of size 64× 64× 64, which allows dense training in our hardware setting. During training, the

patches are randomly cropped from the MRI volume. In testing, the volume to segment is

instead divided in evenly-spaced 3D patches, which are then segmented separately. Individual

patch outputs are then combined to obtain full-size segmentation maps.

An important advantage of segmenting patches separately is that they can be sent in a random

order to the server once the image has been encoded on the client side. This makes obtaining the

identity of a subject even more challenging, since a potential attacker must either reorder patches

to recover the full-size encoded image and segmentation map, or match small-size patches with

previously seen ones. In Section 3.4.3.7, we illustrate this advantage in our experiments by

performing a subject-ID retrieval analysis on output patches instead of full-size segmentation

maps.

To help the learning process in early training stages, the encoder is pre-trained using an auto-

encoder loss. Hence, when the real training starts, the encoder generates encoded images which

are almost identical to input ones. Likewise, both the segmentation and discriminator networks

were pre-trained on the original images from the the PPMI dataset.
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3.4 Experimental results

3.4.1 Datasets

3.4.1.1 PPMI Dataset:

We experiment on brain tissue segmentation of 5 classes: white matter (WM), gray matter (GM),

nuclei, internal cerebrospinal fluid (CSF int.) and external cerebrospinal fluid (CSF ext.). We

used the T1 images of the publicly-available Parkinson’s Progression Marker Initiative (PPMI)

dataset (Marek et al., 2011). We took images from 350 subjects, most of which with a recently

diagnosed Parkinson disease. Each subject underwent one or two baseline acquisitions and

one or two acquisitions 12 months later for a total of 773 images. PPMI MR images were

acquired on Siemens Tim Trio and Siemens Verio 3 Tesla machines from 32 different sites. The

images have been registered onto a common MNI space and resized to 144× 192× 160 with a

1 mm3 resolution. More information on the MRI acquisition and processing can be found online:

www.ppmi-info.org.

The dataset was divided into a training and a testing set as shown in Table 3.1. We split the

data in a stratified manner so that images from the same subject are not included in both the

training and testing sets. In order to keep a good balance between the pairs of images, during

training and testing, we randomly sampled an equal number of negative and positive samples.

Due to the burden of manually annotating volumetric images, we resort to Freesurfer to obtain

the segmentation ground-truth, similar to recently-published approaches on large-scale datasets

(Dolz et al., 2018; Roy, Conjeti, Navab, Wachinger et al., 2019). We use cross-validation to

measure the performance of our approach and properly set the hyper-parameters. The training

set was randomly divided into 5 stratified subsets, each containing around 54 subjects. We then

trained our system for 5 rounds, each time using a different group of 4 subsets for training and
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Table 3.1 PPMI data used for training and testing

our method

Training Testing Total

Num. of subjects 269 81 350

Num. of images 592 181 773

Num. of positive pairs 509 148 657

𝜆 = 1 𝜆 = 3 𝜆 = 10 𝜆 = 100

Figure 3.2 Impact of discriminator loss (𝜆). [First column] (Top row): input MRI image

x, (Second row): ground truth segmentation map y, (Third row): distribution of

inter-subject and intra-subject MS-SSIM score on the PPMI dataset. [Remaining
columns], (Top row): encoded image 𝐺(x), (Second row): predicted segmentation ŷ and

(Third row): distribution of MS-SSIM values between encoded images 𝐺(x𝑖) and 𝐺(x 𝑗 )

the remaining one for validation. After validation, we retrained the system on the entire training

set and reported results from the independent test set.

3.4.1.2 MRBrainS Dataset:

To further validate the proposed method and investigate its generalization ability, we also

tested it on segmenting MRI scans from the MRBrainS 2013 challenge dataset (Mendrik
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et al., 2015). These images were acquired on a 3.0T Philips Achieva MR scanner and come

with expert-annotated segmentation masks including three classes: WM, GM and CSF. We

employed a single modality (i.e., MR-T1) in our experiments. Bias correction was performed

as a pre-processing step. Original images had a resolution of 0.96× 0.96× 3 mm3 and were

registered onto the MNI space using ANTs (Avants et al., 2011).

3.4.2 Evaluation metrics

To gauge the performance of our system, we use the classification accuracy for measuring

the discriminator’s ability to identify images from the same person, and employ the Dice

score for evaluating segmentation results. We also use the multiscale structural-similarity

(MS-SSIM) score to measure image-to-image distance as a proxy of perceived image quality

(Wang, Simoncelli & Bovik, 2003).

Since the number of inter-subject samples is much larger than the number of inter-subject

samples, we balanced the dataset by using every intra-subject examples but randomly selected

inter-subject examples. We tested the discriminator on the dataset for 5 times and reported the

mean ± std. dev. accuracy.

Last, to determine if an encoded image can be used to recover the subject in a top-𝑘 retrieval

setting (Kumar et al., 2018), we use mean average precision (mAP). Given an image 𝑖, we rank

other images in the dataset by their similarity to image 𝑖. The similarity between two images is

the cosine similarity between the feature vectors of each image extracted by the CNN backbone

of the Siamese discriminator. Let 𝑇𝑖 be the set of images of the same subject as image 𝑖, and

denote as 𝑆𝑘𝑖 the set containing the 𝑘 images most similar to 𝑖 (i.e., the 𝑘 nearest neighbors of

𝑖). For a given value of 𝑘 , we evaluate the retrieval performance using the measure of top-𝑘
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precision (also known as precision-at-𝑘):

(precision@𝑘)𝑖 =
𝑇𝑖 ∩ 𝑆

𝑘
𝑖

𝑘
(3.15)

Considering each encoded test image 𝐺(x𝑖) as a separate retrieval task where one must find

other encoded images from the same person, the average precision (AP) for 𝐺(x𝑖) is given by

AP𝑖 =
1∑
𝑗 �=𝑖 𝑠𝑖 𝑗

|X|∑
𝑘=1

(precision@𝑘)𝑖 · 𝑠𝑖𝑘 (3.16)

where precision@𝑘 is the precision at cut-off 𝑘 , i.e. the ratio of 𝑘 encoded images most similar

to 𝐺(x𝑖) which belong to the same person. mAP is then the mean of AP values computed over

all test examples.

3.4.3 Results

3.4.3.1 Results on non-encoded images

We first processed the dataset without the adversarial component, i.e, by independently training

the segmentation and the discriminator networks without the encoder. We call this setting

non-encoded in our results. In the first row of Table 3.2, we see that the discriminator obtains a

testing accuracy of 95.3%. This underlines how easy it is for a neural network to recognize a

patient based on the content of a brain MRI. More surprising is the 97% classification accuracy

that we obtain by simply thresholding the image-to-image MS-SSIM score. This can be explained

by the inter-subject and intra-subject MS-SSIM distribution plots shown in the third row of the

first column of Fig. 3.2. As can be seen, when considering non-encoded images, the intra-subject

MS-SSIM scores (red curve) are significantly larger than that of the inter-subjects (blue curve).
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Table 3.2 Intra-subject and inter-subject prediction accuracy on test examples

obtained by thresholding MS-SSIM scores, using the adversarial discriminator

(𝐷adv), or training a separate discriminator on the encoded image (𝐷new). The

mAP column is the mean average precision of a top-𝑘 retrieval analysis using the

Siamese discriminator’s embedding as representation. Results are reported for

non-encoded images or encoded images for different 𝜆 values

Accuracy

mAP
MS-SSIM 𝐷adv 𝐷new

Non-encoded 0.963 ± 0.010 — 0.949 ± 0.021 0.850

Encoded

𝜆 = 1 0.561 ± 0.013 0.545 ± 0.031 0.608 ± 0.028 0.189

𝜆 = 3 0.543 ± 0.016 0.536 ± 0.027 0.597 ± 0.026 0.152

𝜆 = 10 0.514 ± 0.015 0.525 ± 0.029 0.575 ± 0.021 0.141

𝜆 = 100 0.509 ± 0.012 0.518 ± 0.032 0.513 ± 0.024 0.087

This again illustrates the ease of recognizing the identity of a person based on the content of a

medical image.

The PPMI segmentation Dice scores on non-encoded images for the five brain regions are in the

first row of Table 3.3. We also report the overall Dice computed as the mean of Dice scores in

all regions, weighted by the regions’ size. These results correspond roughly to those obtained in

recent publications for the same architecture (Dolz et al., 2019). Note that the nuclei and the

internal CSF have a lower Dice due to the smaller size of these regions.

Table 3.3 Segmentation Dice score on the PPMI test set for different

values of 𝜆. Non-enc refers to the model trained with non-encoded

images

GM WM Nuclei CSF int. CSF ext. Overall

Non-enc 0.941 0.853 0.657 0.665 0.825 0.848

𝜆 = 1 0.925 0.824 0.580 0.598 0.752 0.812

𝜆 = 3 0.899 0.793 0.549 0.550 0.693 0.778

𝜆 = 10 0.881 0.796 0.555 0.531 0.685 0.771

𝜆 = 100 0.847 0.692 0.454 0.405 0.513 0.684
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Non-encoded / GT 𝜆 = 1 𝜆 =3 𝜆 = 10 𝜆 = 100

Figure 3.3 Test results on the MRBrainS dataset. [First column] (Top row): input MRI

image x, (Bottom row): ground truth segmentation map y. [Remaining columns], (Top

row): encoded image 𝐺(x), (Bottom row): predicted segmentation ŷ with re-trained

segmentation networks on MRBrainS

3.4.3.2 Adversarial results

We next report results of our adversarial approach obtained with different values of parameter

𝜆, which controls the trade-off between segmentation accuracy and identity obfuscation. The

first row of Fig. 3.2 shows encoded images 𝐺(x) with the corresponding raw input MRI x. As

can be seen, the larger the 𝜆 value is, the more distorted the encoded image gets. Nonetheless,

except for extreme cases (e.g., 𝜆 = 100) the encoded images contain enough information for the

segmentation network to recover a good segmentation map (c.f., the second row of Fig. 3.2).

The obfuscating power of our method is also illustrated by the MS-SSIM plots (c.f., third row of

Fig. 3.2). As 𝜆 increases, the distribution of inter-subject MS-SSIM between encoded images

𝐺(x𝑖) and 𝐺(x 𝑗 ) becomes more and more similar to that of intra-subjects.

The encoder’s ability to obfuscate identity is evaluated quantitatively in Table 3.2. Four different

techniques are used to measure this property. First, based on the observation that the distribution

of MS-SSIM values differs between images from the same patient and images from different

patients (c.f., last row of Fig. 3.2), we compute the accuracy obtained by the best possible
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tresholding of MS-SSIM values (i.e., values below or equal to the threshold are predicted

as same-patient images, and those above as different-patient images). Second, we report the

classification accuracy of the discriminator used for training the encoder, denoted as 𝐷adv in

Table 3.2. Third, since the encoder was trained to fool 𝐷adv, we also trained a new ResNet

discriminator (𝐷new) as in (He et al., 2016) on the fixed encoded images to measure how good

the encoder is with respect to an independent network that was not involved in training our

system. Last, to assess whether an encoded image can be used to find the corresponding subject

with a retrieval approach, we considered the embedding of Siamese discriminator 𝐷new as

representation of each encoded test image and used Euclidean distance to find most similar

encoded images. We employ mAP to measure retrieval performance.

Results in Table 3.2 show the same trend for all four obfuscation measures. When images

are not encoded, identifying the subject’s identity either by comparing two images or using a

retrieval-based approach is fairly easy. However, this becomes much harder for encoded images,

with accuracy and mAP rates dropping as 𝜆 increases. Moreover, as shown in column 𝐷new,

employing a discriminator trained independently from the encoder does not help re-identify the

subject’s ID. This demonstrates the robustness of our method to classification approaches.

The segmentation performance obtained with different privacy-segmentation trade-off, defined

by the 𝜆 parameter, is given in Table 3.3. As expected, the Dice score degrades when

increasing 𝜆 values, since a greater importance is then given to identity obfuscation compared to

segmentation. Nevertheless, the segmentation performance on encoded images is still sufficient

for many medical applications, especially when using 𝜆 = 1 or 𝜆 = 3. Although the definition of

suitable performance is application-dependent, some authors have reported DSC values of 70%

(Zĳdenbos, Dawant, Margolin & Palmer, 1994; Zou et al., 2004; Gambacorta et al., 2013; Anders

et al., 2011) or 80% (Mattiucci et al., 2013) as threshold for clinically-acceptable segmentations.

For 𝜆 = 1, the overall difference in DSC compared to segmentation of non-encoded images is
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only 3.6%, an impressive result considering that subject identity information is largely removed

in encoded images for this 𝜆 value.

Anatomical information capturing the shape of brain regions and cortical folds (i.e., sulci) can

be predictive of both subject identity and segmentation contours. This can be observed in

Fig. 3.2 (first row), where small anatomical details are visible in the encoded images, especially

for 𝜆 = 1. To obfuscate identity, the encoder must therefore produce strong noise and artifacts

that dominate this morphological information. The impact of this noise in encoded images

can be seen in the last row of Fig. 3.2, in which the histogram of MS-SSIM scores between

different-subject images (i.e., inter-subject) is pushed towards the one for same-subject images

(i.e., intra-subject).

3.4.3.3 Generalization to new dataset

In previous experiments, we considered the scenario where the encoder and segmentation

network are trained once with some available data, and then clients send encoded images to

the server for segmentation. However, this approach may fail when trying to process images

different from those seen in training, for instance, coming from another hospital or acquired

with different parameters. In this section, we show that the privacy-preserving encoder learned

with a given dataset can be used to encode images from another dataset, and that these encoded

images are useful to update the segmentation network.

To test this configuration, we consider the same encoder as before, which was trained using

the longitudinal data from the PPMI dataset, and use it as an identity obfuscation module for

clients with other data. To simulate this other data source, we used images from the MRBrainS

dataset which were acquired with a different acquisition protocol than PPMI and have three

labels instead of five, i.e., WM, GM, and CSF. We first tested on MRBrainS images our model

pre-trained with PPMI data. In order to match the three-class ground-truth, we merged the CSF
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int. and CSF ext. outputs into a single CSF class, and the GM and nuclei outputs into a single

GM class. Results for different 𝜆 values are shown at the top of Table 3.4. As expected, these

results are slightly lower than those on PPMI (see Table 3.3). Interestingly, we observe a small

improvement in the overall Dice when using encoded images, compared to the baseline network

trained with non-encoded PPMI images. This suggests that the system trained with adversarial

loss generalizes better to new data than the baseline segmentation network, despite the heavy

distortion of encoded images. This improved generalization of our method is due to optimizing

the encoder for both segmentation accuracy and identity obfuscation, which possibly removes

site-related variability (e.g., intensity distribution, tissue contrast, etc.) from encoded images.

As can be seen at the bottom of Table 3.4, segmentation accuracy improves when the segmentation

network is retrained on MRBrainS data following a distributed learning schedule. This shows

that the segmentation network of our system can be updated, even after being deployed onto a

cloud server. Segmentation maps as well as encoded MRBrainS images are given in Fig 3.3.

However, like other deep learning methods, when the discrepancy between domains becomes

too large (i.e., different image modalities), the system would need to be retrained end-to-end.

3.4.3.4 Robustness analysis

To make sure that our system does not work only on high-quality images such as those of PPMI,

we performed a robustness analysis where we trained our method on the original PPMI dataset

(with 𝜆 = 1) and tested it on noisy versions of the PPMI test images or on images with a lower

2× 2× 2 cm3 resolution. Results are provided in Fig. 3.4 and Table 3.5. As can be seen, the

encoding and segmentation is not much affected by noise. The segmentation accuracy is close

to the one obtained on the original PPMI test set, with overall Dice scores around 80% for

noisy images with an SNR of 15db or 10db. Reducing image resolution seems to induce more

significant changes in the encoding, however the segmentation network appears robust to these

changes.
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Table 3.4 Segmentation Dice score on the MRBrainS

dataset for different values of 𝜆. (Top) the CNNs have not

been retrained while (Bottom) the segmentation network has

been retrained following a distributed learning approach

GM WM CSF Overall

No retrain

Non-enc 0.742 0.805 0.778 0.783

𝜆 = 1 0.768 0.822 0.804 0.796

𝜆 = 3 0.767 0.852 0.798 0.804

𝜆 = 10 0.757 0.798 0.768 0.772

𝜆 = 100 0.499 0.464 0.648 0.537

Retrain

Non-enc 0.832 0.866 0.840 0.845

𝜆 = 1 0.819 0.827 0.823 0.821

𝜆 = 3 0.794 0.807 0.831 0.814

𝜆 = 10 0.780 0.747 0.797 0.790

𝜆 = 100 0.605 0.360 0.572 0.586

Table 3.5 Segmentation Dice score on PPMI dataset with different levels

of Rician noise (measured in dB) and low resolution setting

GM WM Nuclei CSF int. CSF ext. Overall

Noise (15 dB) 0.921 0.818 0.572 0.585 0.743 0.808

Noise (10 dB) 0.917 0.804 0.566 0.582 0.696 0.797

Noise (5 dB) 0.821 0.706 0.514 0.472 0.331 0.669

Low res. 0.881 0.781 0.552 0.516 0.683 0.759

The robustness of our model to noise and resolution can be explained as follows. Due to the

adversarial optimization between the encoder and discriminator, the segmentation network sees a

wide variety of distortion patterns in encoded images as the encoder tries to fool the discriminator.

By forcing the segmentation network to produce the same output for these different distorted

inputs, we regularize training and make this network more robust to noise and resolution. This

principle is at the core of powerful regularization techniques for semi-supervised learning, such

as Virtual Adversarial Training (VAT) (Miyato, Maeda, Koyama & Ishii, 2018).
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SNR = 15db SNR = 10db SNR = 5db Low resolution

Figure 3.4 Segmentation with different noise level and a lower resolution setting. (Top

row): Degraded images, (Middle row): Encoded images, (Bottom row): Segmentation

Results

3.4.3.5 Dimension of encoded images

By default, our encoder outputs a one-channel feature map (c.f., image 𝐺(𝑥𝑖) in Fig. 3.1).

Our motivation for using a single channel is that the encoder should preserve the amount of

information while transforming the input. To validate this hypothesis, we repeated the same

experiment but with a larger number of channels for the encoded images. The intra-subject and

inter-subject prediction results are reported in Table 3.6 and the segmentation Dice scores are in

Table 3.8. These results show that, even though the segmentation performance slightly increases

when encoding images with multiple channels, privacy preservation is compromised, as shown

by the significant increase in MS-SSIM scores, discriminator accuracy (𝐷adv) and mAP.
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Table 3.6 Intra-subject and inter-subject

prediction accuracy on test examples using

different numbers of channels in encoded images

Num. of channels MS-SSIM 𝐷adv mAP

1 0.564 0.520 0.189

2 0.658 0.557 0.230

3 0.642 0.541 0.216

3.4.3.6 Advantage of a Siamese discriminator

To assess the benefit of using a Siamese discriminator in our model, we replaced it by a

multi-class classifier with the same pre-trained DenseNet CNN backbone as the Siamese network.

In this new model, each subject is given a different class ID and the multi-class discriminator

has to predict the class ID of encoded images. Unlike for the Siamese network, training this

classifier requires to have images from the same subject in both the training set tand validation

set. Hence, we divided the original dataset into a new training set and validation set, and used

this new split to retrain the whole system. Multi-class cross-entropy was used as loss function

for the discriminator. Since the number of classes is not known in advance (i.e., new subjects

can be added to the system after training) and the number of samples per class is very limited

(1–4 images per subject), the classifier’s output cannot be used directly to evaluate its ability to

identify new subjects in testing. Instead, we considered the same out-of-sample strategy as with

the Siamese discriminator, and used the features obtained from the last convolutional layer as an

embedding for a nearest-neighbor retrieval analysis.

Results in Table 3.9 show that the multi-class classifier is worse than the Siamese network at

recovering identity in non-encoded images, i.e., 0.442 vs 0.850 in terms of mAP. However, when

used to train the entire network, the patient identity is more easily recovered when the images

are encoded with the multi-class classifier (0.360) than by the Siamese network (0.189). This

motivates the use of a Siamese network as discriminator in our model.
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Table 3.7 Top-k retrieval analysis results (mAP) using

segmentation maps

𝜆 = 1 𝜆 = 3 𝜆 = 10 𝜆 = 100

Full-size segmentation maps 0.826 0.811 0.804 0.592

64× 64× 64 patches 0.716 0.683 0.697 0.398

32× 32× 32 patches 0.632 0.624 0.583 0.240

3.4.3.7 Top-k retrieval analysis on segmentation maps

The goal of our privacy-preserving method is to segment medical images on a server without

having to provide sensitive information about the subject. For example, sending non-encoded

images could reveal the gender and age of a subject, or if this subject suffers from a neurological

disease/disorder like Alzheimer’s. Our method achieves this by distorting the input image with

noise patterns so that 1) visual interpretation is nearly impossible and 2) identity cannot be

recovered easily. However, because we encode the input, but not the output segmentation, an

attacker still has access to some information that can help determine the subject’s identity and

condition.

In the next experiment, we evaluate whether subject identity can be recovered from the

segmentation network’s output, using a top-k retrieval analysis similar to the one presented

in Section 3.4.3.2. For this analysis, we suppose that an attacker compares the segmentation

map of a test image against those of training images, and identifies the subject as the one

corresponding to the most similar image. Since a direct pixel-to-pixel comparison is highly

sensitive to transformations such as translation, scaling and rotation, as in the previous retrieval

analyses, we instead use the representation of a Siamese discriminator as feature vector for

matching.

Results of are reported in Table 3.7. The first row gives the mAP when using whole-image

segmentation maps, for different values of 𝜆. Parameter 𝜆 affects the retrieval indirectly since



75

a higher value leads to a less accurate segmentation and, thus, a noisy representation for

matching. For a small 𝜆 = 1, we get an mAP of 0.826 similar to the one of 0.850 obtained

for non-encoded images (c.f., Table 3.2). This shows that the geometry of segmented brain

structures is informative of subject identity. However, increasing 𝜆 to the high value of 100

leads to an important drop in mAP to 0.592 caused by the poor segmentation resulting from this

setting.

As mentioned in Section 3.3.4, an important advantage of our method is that encoded images

can be cut in small 3D patches which are sent to the server in a random order for processing.

This is possible because the segmentation network requires to segment an image one patch at a

time. Once the client receives the segmentation output for each patch from the server, it can

recover the full-size segmentation map by assembling patches following the same random order.

We assume that reassembling the segmentation maps from randomly-permuted patches is

challenging, and that potential attackers instead try to identify the subject’s identity by matching

patches against a database of previously seen patches. Based on this assumption, we repeat the

same top-k retrieval analysis as before, except we now match the Siamese network representation

of test patches with those of training patches. The second and third rows of Table 3.2 give

retrieval mAP when employing patches of size 64× 64× 64 and 32× 32× 32, respectively. We

observe that retrieval rates substantially degrade when sending encoded patches to the server,

with respective mAP drops of 0.110 and 0.194 for patches of size 64× 64× 64 and 32× 32× 32,

when using 𝜆 = 1. This indicates that the limited spatial context of patches, compared to whole

segmentation maps, renders more difficult the identification of subjects. While mAP values stay

relatively similar for 𝜆 = 1–10, they sharply decrease for 𝜆 = 100 due to the poor segmentation

obtained with this setting.

Although the non-encrypted segmentation map can be seen as a security weakness, the results

in able 3.7 show that the retrieval accuracy is greatly reduced when the client sends shuffled
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Table 3.8 Segmentation Dice score on encoded images with different

number of channels

Nb channels GM WM Nuclei CSF int. CSF ext. Overall

1 0.925 0.824 0.580 0.598 0.752 0.812

2 0.935 0.851 0.621 0.633 0.786 0.824

3 0.932 0.848 0.617 0.637 0.802 0.829

Table 3.9 Image-retrieval performance (mAP) of the

multi-class classifier and Siamese discriminator

Multi-class classifier Siamese discr.

Train. Valid. Test Train. Test

Non-encoded 0.712 0.478 0.442 0.894 0.850

Encoded 0.404 0.324 0.360 0.153 0.189

patches for segmentation. Moreover, our method not only removes patient identity from the

image, but also scrubs out most of its content. Hence, even if the identity of a patient was to be

recovered via the inspection of the segmentation map, all an attacker would have access to are

encoded image patches and not the original non-encoded MRI.

3.4.3.8 Runtime analysis

In terms of runtime, an average of 0.08 seconds is required to encode an image on a NVIDIA

GTX 1080Ti, whereas the entire segmentation process requires around 0.1 seconds per 3D MRI

image. This runtime is negligible compared to the 8 to 12 hours required by Freesurfer.

3.5 Discussion and conclusion

We presented a novel framework which integrates an encoder, a segmentation CNN and a

Siamese network to preserve the privacy of medical imaging data. Experimental results on two
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independent datasets showed that the proposed method can preserve the identity of a patient

while maintaining the performance on the target task. While this is an interesting application per

se, it opens the door to appealing potential uses. For example, this approach can be integrated

in a continual learning scenario trained on a decentralized dataset, where images have to be

shared across institutions but privacy needs to be preserved. From a clinical perspective,

obfuscating visual data in addition to current anonymization techniques may foster multi-centre

collaborations, resulting in larger datasets as well as more complete and heterogeneous clinical

studies.

Additionally, we have shown that the proposed privacy-preserving model generalizes well to

novel datasets, unlike similar works (Chen et al., 2018a) which cannot generalize to encoded

images of subjects not seen in training. This facilitates the scalability of our approach to new

datasets or tasks. As preliminary step towards preventing privacy leakage in medical imaging

data, this study has however some limitations. For example, the domain shift between employed

datasets is not significantly large, since both include MRI images of adult brains (even though

the acquisition protocols and parameters across scanners differ). Although similar domain shift

has resulted in a performance degradation in segmentation networks (Dolz et al., 2018), results

demonstrate the good generability of the proposed method in these cases. Future investigations

will explore the generalization capabilities of the trained encoder on datasets where the domain

shift is larger, for example, between infant and adult brains or even between different image

modalities such as MRI and CT.

Finally, one disadvantage of our method is that unlike classification outputs, segmentation

maps could still contain patient identifiable information. As discussed in the section VI.C.7,

because our method does not encode the output segmentation map, if the attacker gains access

to the full-size segmentation maps, the level of privacy leaking risk is on the similar level of

directly sending non-encoded images. In order to minimize this risk, it is crucial to perform the
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segmentation in patches sent in random order so that the attacker does not gain access to the

full-size segmentation maps. Because this random shuffling is not a complete solution, thus

encoding the output segmentation map will be our next target.
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This chapter presents the article “Privacy Preserving for Medical Image Analysis via Non-Linear

Deformation Proxy” by Kim, Dolz, Desrosiers and Jodoin accepted to the conference BMVC2021

for publication in 2021. The objective of this research is to develop a new method for client-server

system which allows for the analysis of multi-centric medical images while preserving patient

identity. In our approach, the client protects the patient identity by applying a pseudo-random

non-linear deformation to the input image. This results into a proxy image which is sent to the

server for processing. The server then returns the deformed processed image which the client

reverts to a canonical form. Our system has three components: 1) a flow-field generator which

produces a pseudo-random deformation function, 2) a Siamese discriminator that learns the

patient identity from the processed image, 3) a medical image processing network that analyzes

the content of the proxy images. The system is trained end-to-end in an adversarial manner. By

fooling the discriminator, the flow-field generator learns to produce a bi-directional non-linear

deformation which allows to remove and recover the identity of the subject from both the input

image and output result. After end-to-end training, the flow-field generator is deployed on the

client side and the segmentation network is deployed on the server side. The proposed method

is validated on the task of MRI brain segmentation using images from two different datasets.
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Results show that the segmentation accuracy of our method is similar to a system trained on

non-encoded images, while considerably reducing the ability to recover subject identity.

4.1 Introduction

Convolutional neural networks (CNNs) are the de facto solutions to a large number of medical

image analysis tasks, from disease recognition, to anomaly detection, segmentation, tumor

resurgence prediction, and many more (Wang et al., 2016; Dolz et al., 2018; Lee, Chun,

Hong & et al., 2020; Litjens et al., 2017). While solutions to these decade long problems are

flourishing, a consistent obstacle to their deployment has been privacy protection.

Despite being essential to preserve human rights, privacy protection rules are nonetheless a

break on the development of machine learning methods, and in particular to cloud-based medical

image analysis solutions. However, cloud-based solutions have great benefits, such as preventing

clinics from having to purchase and maintain specialized hardware. As such, if these systems

are to prosper in the medical world, they will have to integrate privacy protection policies to

their processes.

The simplest privacy protection protocol is anonymization. For medical images, this means

removing patient tags from DICOM images or converting it into identity-agnostic formats such

as TIFF. Unfortunately, patient identity can be recovered just by inspecting raw images (Kumar

et al., 2018; Kim, Dolz, Jodoin & Desrosiers, 2021b). Results reported in Section 4.4 show

that the identity-recognition F1-scores can go up to 98%. Needless to say, data exchanged

between the client and the server can be encrypted. While this ensures protection against

outside cybercriminals, it does not protect against malicious people from within the organization.

Alternatively, one can use homomorphic encryption which allows to perform forward and

backward passes of encrypted data without having to decrypt it (Ziad et al., 2016; Nandakumar

et al., 2019). Although these methods perform well in some applications, homomorphic
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Figure 4.1 Diagram of the proposed system. Once deployed (testing), the client performs

operations identified by blue lines, and the server operations corresponding to green lines

cryptosystems typically incur high computational costs (Hesamifard et al., 2017; Nandakumar

et al., 2019; Paillier, 1999) and are mostly restricted to simple neural networks.

In this paper, we propose a novel client-server system which can process medical images while

preserving patient identity. As shown in Fig. 4.1, instead of sending an image x to the server,

the client deforms the image with a non-linear spatial deformation field 𝑓k conditioned on a

client-specific private key k. The warped image x𝑑 is then sent to the server where it is processed

and sent back to the client. At the end, the deformed result y𝑑 is unwarped with the inverse

transformation function 𝑓 inv. Results obtained on the task of 3D MRI brain image segmentation

reveal that the patient identity is preserved both on the MRI image and the segmentation map

while keeping a high segmentation accuracy.

4.2 Related works

4.2.1 Homomorphic encryption

One way of preserving privacy is via homomorphic-encryption (HE) (Dowlin et al., 2016;

Hesamifard et al., 2017; Nandakumar et al., 2019), which allows neural networks to process
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encrypted data without having to decrypt it. However, HE is not void of limitations. First,

it has non-negligible communication overhead (Rouhani et al., 2018). Furthermore, being

limited to multiplications and additions, non-linear activation functions have to be approximated

by polynomial functions, which makes CNNs prohibitively slow (Nandakumar et al. (2019)

report processing rates of 30 min per image). Thus, homomorphic networks have been

relatively simplistic (Hardy et al., 2017) and it is not clear how state-of-the-art deep neural

nets (Ronneberger et al., 2015) can accommodate this approach.

4.2.2 Federated learning

Another solution for multi-centric deep learning data analysis is federated learning. (Xie et al.,

2014; Konecný et al., 2016; McMahan et al., 2016; Vepakomma et al., 2018; Yang et al., 2019).

The idea of this approach is to train a centralized model by keeping the data of different clients

decentralized and exchanging model parameters or back-propagated gradients during training.

While it improves privacy by not sharing data, it requires significant network bandwidth, memory

and computational power, and is susceptible to data leakage from specialized attacks like model

inversion (Wu et al., 2019; Zhu, Liu & Han, 2019).

4.2.3 Privacy preserving with adversarial learning

A popular solution consists in training a generator to create perturbed images, from either a noise

distribution (Xu et al., 2019) or real images (Raval et al., 2017). Then, the generated images

are employed to train a discriminator to differentiate between original and synthetic images.

Nevertheless, the encoding in these frameworks is not optimized under the supervision of specific

utility objectives, potentially achieving sub-optimal results and sacrificing the performance

on the utility task. To overcome this limitation, recent works have integrated specific utility

losses, which are jointly optimized with the privacy objectives (Pittaluga et al., 2019; Wu et al.,

2018; Yang et al., 2018; Roy & Boddeti, 2019; Ren, Jae Lee & Ryoo, 2018; Xiao, Tsai, Sohn,
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Chandraker & Yang, 2020). These approaches, which typically tackle simple problems (i.e.,

QR code classification or face recognition), resort to standard classification models for both the

adversarial and task-specific objectives, where the number of classes is fixed. An alternative to

alleviate the issue when the number of classes is non-fixed is to employ a Siamese architecture

as the discriminator, which predicts whether two encoded images come from the same subject

(Oleszkiewicz et al., 2018; Kim et al., 2021b).

4.2.4 Differences with existing methods

In contrast with prior works, the proposed framework can easily scale-up to non-fixed classes

scenarios. Furthermore, compared to (Oleszkiewicz et al., 2018), our approach presents

significant differences both in the objectives and methodology. First, privacy preserving is

investigated in the context of biometrical data in (Oleszkiewicz et al., 2018) (e.g., fingerprint),

whereas we focus on volumetric medical images, which are dissimilar in nature. Second, they

aim at finding the smallest possible transformation of an image to remove identity information

while can be still used by non-specific applications. In contrast, our goal is to obfuscate images

with the strongest possible transformation so that subject identity cannot be recovered while at

the same time the encoded image can be used to train a model in the segmentation task. This

results in important methodological differences, such as an additional network and different

objective functions. More related is the work in (Kim et al., 2021b) whose transformations in

deteriorated images come in the form of intensity changes. But contrary to our method, the

structural information in the segmentation results is preserved, which can be used to retrieve the

patient identity.
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4.3 Methods

4.3.1 Proposed architecture

As shown in Fig. 4.1, during training, our system consists of three components: a transformation

generator, a segmentation network and a discriminator. We describe the role of each of these

components below.

4.3.1.1 Transformation generator

The first component is a generator 𝐺 that takes as input a 3D image x ∈ R𝐻×𝑊×𝐷 and a random

vector k ∈ R𝑀 and outputs a transformation 𝑓k that distorts x so that the corresponding subject’s

identity cannot be recovered, yet segmentation can still be performed. Vector k is a private key,

known only by the client, that parameterizes the transformation function and ensures that this

function cannot be inferred from distorted images.

In Privacy-Net (Kim et al., 2021b) a generator is also used for this purpose, however, it directly

outputs the distorted image. In this work, we follow a different approach where the generator

outputs the transformation function 𝑓k, which is used afterwards to distort the image. Computing

this function explicitly enables to perform the segmentation in the transformed space, where

identity is obfuscated, and then reverse the transformation back to the original space. To ensure

that the transformation is reversible, we could limit 𝑓k to a specific family of functions (e.g.,

free-form deformation (Wolberg, 1999)). However, to add flexibility and learn a function most

suitable for the downstream segmentation, we instead enforce the generator to output both 𝑓k and

its inverse 𝑓 inv
k , and use a reconstruction loss (see Section 4.3.3.3) to impose that 𝑓 inv

k ◦ 𝑓k = 𝐼.

Given a training example (x, y), where y ∈ R𝐻×𝑊×𝐷×𝐶 is the ground-truth segmentation mask

over 𝐶 classes, 𝑓k is used to compute the distorted image x𝑑 = 𝑓k(x) and distorted segmentation

y𝑑 = 𝑓k(y). The former is sent to the segmentation network for processing, while y𝑑 is used



85

to evaluate the segmentation output. On the other hand, the inverse function 𝑓 inv
k is used to

obtain the reconstructed image x̂ = 𝑓 inv
k (x𝑑) and reconstructed segmentation ŷ = 𝑓 inv

k (̂y𝑑) in the

original space.

As for the generator (c.f. figure 1 in the supplementary materials) it comprises an encoder path

with 4 convolution blocks that takes an input image and computes feature maps of increasingly-

reduced dimensions via pooling operations, and a decoder path also with 4 convolution blocks

which produces an output map of same size as the input. In this work, we use the generator to

predict a flow-field 𝑓 which assigns a displacement vector 𝑓𝑢,𝑣,𝑤 ∈ R
3 to each voxel (𝑢, 𝑣, 𝑤) of

the 3D image x. More information on the transformation is given in Section 4.3.2. Transpose

convolutions are used in the decoder path to upscale feature maps. We also preserve high-

resolution information by adding skip connections between convolution blocks at the same

level of the encoder and decoder paths. Moreover, to ensure that the private key k is used at

different scales, we include another path in the model that gradually upscales k with transpose

convolutions and concatenates the resulting map with feature maps of corresponding resolution

in the decoder path.

4.3.1.2 Segmentation network

The segmentation network 𝑆 takes as input the distorted image x𝑑 and outputs a distorted

segmentation map ŷ𝑑 = 𝑆(x𝑑). Although any suitable network can be employed, we used a

3D U-Net (Çiçek, Abdulkadir, Lienkamp, Brox & Ronneberger, 2016) which implements a

convolutional encoder-decoder architecture with skip-connections between corresponding levels

of the encoder and decoder.
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4.3.1.3 Siamese discriminator

An adversarial approach is employed to obfuscate the identity of subjects in distorted images

and segmentation maps. In a standard approach, a classifier network is used as discriminator

𝐷 to predict the class (i.e., subject ID) of the encoded image produced by the generator. In

our context, where the number of subjects can be in the thousands and grows over time, this

approach is not suitable. Alternatively, we follow a strategy similar to Privacy-Net (Kim et al.,

2021b) where we instead use a Siamese discriminator that takes as input two segmentation maps,

y𝑖 and y 𝑗 , and predicts whether they belong to the same subject or not. Note that this differs

from Privacy-Net, which applies the Siamese discriminator on the encoded images, not on the

segmentation maps. For training, we generate pairwise labels 𝑠𝑖 𝑗 such that 𝑠𝑖 𝑗 = 1 if y𝑖 and y 𝑗

are from the same subject, otherwise 𝑠𝑖 𝑗 = 0. Since we now solve a binary prediction task, which

is independent of the number of subjects IDs, this strategy can scale to a large and increasing

number of subjects in the system.

4.3.1.4 Test-time system

At testing, the system can be used for privacy-preserving segmentation as illustrated in Fig. 4.1.

A client-side generator is first used with the client’s private key k to distort the 3D image to

segment, x, into an identity-obfuscated image x𝑑 = 𝑓k(x), which is then sent to the server for

segmentation. The server-side segmentation network takes x𝑑 as input and outputs the distorted

segmentation map ŷ𝑑 . Finally, ŷ𝑑 is sent back to the client where the inverse transform is used

to recover the segmentation map ŷ = 𝑓 inv
k (̂y𝑑).

4.3.2 Transformation function

As in (Balakrishnan, Zhao, Sabuncu, Guttag & Dalca, 2019; Chaitanya et al., 2019), the

transformation function in our model takes an image (or segmentation map) and a flow-field
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as input, and outputs the deformed version of the image. Similarly to the spatial transformer

network (Jaderberg, Simonyan, Zisserman & kavukcuoglu, 2015), this geometric deformation is

based on grid sampling. Let b be the base-grid of size (𝐻,𝑊, 𝐷, 3) containing the coordinates of

image voxels, and f be the deformation flow-field of same size. The coordinates of the deformed

grid are then given by d = b + f. We obtain the deformed image x𝑑 by sampling the 8 neighbor

voxels around each point of d using tri-linear interpolation:

𝑥𝑑𝑢,𝑣,𝑤 =
∑

(𝑢′,𝑣′,𝑤′)∈Ω
𝑥𝑢′,𝑣′,𝑤′ ·max (0, 1−|𝑑𝑢−𝑏𝑢′ |) ·max (0, 1−|𝑑𝑣−𝑏𝑣′ |) ·max (0, 1−|𝑑𝑤−𝑏𝑤′ |) (4.1)

Since Eq. (4.1) is differentiable, we can back-propagate gradients during optimization.

4.3.3 Training the proposed model

We train the transformation generator 𝐺, the segmentation network 𝑆 and the discriminator

jointly with the following five-term loss function :

Ltotal(𝑆, 𝐺, 𝐷) = Lseg(𝑆) + 𝜆1Ladv(𝐺, 𝐷) + 𝜆2Linv(𝐺) + 𝜆3Lsmt(𝐺) + 𝜆4Ldiv(𝐺) (4.2)

Where 𝜆1, 𝜆2, 𝜆3 and 𝜆4 are hyper-parameters balancing the contribution of each term. In the

following subsections, we define and explain the role of each term in this loss function.

4.3.3.1 Segmentation loss

The segmentation loss enforces that the segmentation network 𝑆 learns a correct mapping

from a distorted image x𝑑 = 𝑓k(x) to its distorted segmentation ŷ𝑑 . The predicted segmentation

after reconstruction is ŷ = 𝑓 inv
k (̂y𝑑). Here, we use a Dice loss (Sudre, Li, Vercauteren,

Ourselin & Cardoso, 2017b) to measure the difference between the reconstructed predicted
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segmentation and its corresponding ground-truth:

Lseg(𝑆) = min
𝑆
E(x,y),k [ℓdice(y, ŷ)] = min

𝑆
E(x,y),k [ℓdice(y, ( 𝑓 inv

k ◦𝑆◦ 𝑓k)(x))] (4.3)

Since this loss samples over both images x and random key vectors k, the network 𝑆 learns

a segmentation that accounts for the variability of structures in images and their possible

deformation resulting from 𝑓k.

4.3.3.2 Identity obfuscation loss

An adversarial loss is added to ensure that the transformation obfuscates subject identity. By

maximizing the discriminator’s error, the generator learns to produce transformed images from

which identity cannot be recovered. However, this strategy is sensitive to noise or variation

in contrast which “fools” the discriminator but still preserves structural information that can

identify subjects. To alleviate this problem, we instead apply the discriminator on pairs of

segmentation maps. Letting 𝐷(y𝑖 , y 𝑗 ) be the probability that y𝑖 and y 𝑗 are from the same subject,

we define this loss as

Ladv(𝐺, 𝐷) = min
𝐺

max
𝐷
Ey𝑖 ,y 𝑗 [𝑠𝑖 𝑗 log𝐷(y𝑖 , y 𝑗 ) + (1−𝑠𝑖 𝑗 ) log (1 − 𝐷(y𝑖 , y 𝑗 ))]

+ Ey,k [ log (1 − 𝐷 (̂y𝑑, ŷ))] (4.4)

with ŷ𝑑 = 𝑆( 𝑓k(x)) and ŷ = 𝑓 inv
k (̂y𝑑). The first term corresponds to the cross-entropy loss

on ground-truth segmentation pairs, that does not depend on the generator or segmentation

network. The second term measures the discriminator’s ability to recognize that a deformed

segmentation and its reconstructed version (by applying the reverse transform function) are

from the same subject. This second term is optimized adversarially for 𝐺 and 𝐷. It can be

shown using a variational bound method that optimizing the problem in Eq. (4.4) minimizes
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the mutual information between a pair (̂y𝑑, ŷ) and the same-identity variable 𝑠𝑖 𝑗 (Kim et al.,

2021b). Consequently, it impedes a potential attacker from retrieving subject identity for a given

distorted image by matching it with a database of existing images.

4.3.3.3 Transformation invertibility loss

When receiving the deformed segmentation from the server, the client needs to bring it back to the

original image space. For this to be possible, the transformation function needs to be invertible,

i.e. 𝑓 inv◦ 𝑓 = 𝐼. To enforce this property, we minimize the Ldice between a segmentation map

and its reconstructed version. However, since the segmentation map is binary, this leads to

non-smooth gradients. We avoid this problem by also minimizing the reconstruction error for

input images, based on the structural similarity (SSIM) measure:

Linv(𝐺) = min
𝐺
E(x,y),k

[
ℓssim(x, ( 𝑓 inv

k ◦ 𝑓k)(x)) + ℓdice(y, ( 𝑓 inv
k ◦ 𝑓k)(y))

]
(4.5)

where ℓssim(x, y) ∈ [0, 1] is the SSIM loss as in (Zhao, Gallo, Frosio & Kautz, 2017).

The global SSIM is generated at each voxel using a 11×11×11 window, and then taking the

average over all voxels. In practice, we use a multi-scale structural similarity (MS-SSIM) which

computes the SSIM at multiple image scales via subsampling (Wang, Simoncelli & Bovik,

2003).

4.3.3.4 Transformation smoothness loss

The transformation invertibility loss in Eq. (4.5) may sometimes lead to discontinuity in the

deformation field which prevents the segmentation from being reconstructed. To regularize

the deformation field produced by the generator, we include another loss that enforces spatial
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Table 4.1 Segmentation and re-identification results on the PPMI dataset

Segmentation DSC Re-id. F1-score Re-id. mAP

Method Overall GM WM Nuclei int.CSF ext.CSF Image Seg. Image Seg.

No-Proxy 0.887 0.941 0.862 0.727 0.745 0.825 0.988 0.986 0.998 0.998

Noise (SNR=1 dB, SPP=0.1) 0.871 0.939 0.857 0.712 0.729 0.813 0.984 0.986 0.997 0.998

Noise (SNR=0.1 dB, SPP=0.5) 0.445 0.463 0.431 0.388 0.372 0.452 0.388 0.575 0.283 0.447

Voxel permutation 0.185 0.190 0.182 0.177 0.245 0.187 0.023 0.011 0.007 0.015

Privacy-Net (Kim et al., 2021b) 0.812 0.925 0.824 0.580 0.598 0.752 – – 0.189 0.632

Ours (All losses)

𝜆4 = 1 0.816 0.901 0.829 0.634 0.651 0.735 0.051 0.045 0.096 0.091

𝜆4 = 0.5 0.825 0.909 0.837 0.644 0.662 0.742 0.128 0.113 0.236 0.232

𝜆4 = 0.25 0.847 0.929 0.849 0.671 0.685 0.774 0.287 0.294 0.301 0.297

Ours (w/o Invertibily) 0.511 0.523 0.507 0.467 0.423 0.534 0.038 0.025 0.059 0.034

Ours (w/o Smoothness) 0.701 0.801 0.706 0.455 0.431 0.605 0.059 0.043 0.110 0.088

Ours (w/o Diversity) 0.864 0.934 0.853 0.718 0.711 0.796 0.445 0.473 0.393 0.329

smoothness:

Lsmt(𝐺) = Ex,k

[
1

|Ω|

∑
(𝑢,𝑣,𝑤)∈Ω

‖∇ 𝑓𝑢,𝑣,𝑤 ‖2

]
(4.6)

where the spatial gradient ∇ 𝑓𝑢,𝑣,𝑤 at each voxel (𝑢, 𝑣, 𝑤) is estimated using finite difference.

4.3.3.5 Transformation diversity loss

A final loss in our model is added to prevent mode-collapse in the generator where the same

transformation would be generated regardless of the input private key k. As mentioned before,

having a transformation that depends on k is necessary to avoid an attacker learn to “reverse” the

transformation by observing several deformed images or segmentation maps. To achieve this,

we maximize the distortion between two deformed versions of the same image or segmentation,

generated from different random private keys k and k′:

Ldiv(𝐺) = max
𝐺
E(x,y),k,k′ [ℓssim( 𝑓k(x), 𝑓k′(x)) + ℓdice( 𝑓k(y), 𝑓k′(y))] (4.7)
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Table 4.2 Influence of the different terms of the loss function Ltotal in the

reconstruction

Segmentation DSC

Method MS-SSIM Overall GM WM Nuclei int.CSF ext.CSF

Ours (All losses)

𝜆4 = 1 0.993 0.983 0.987 0.982 0.970 0.972 0.985

𝜆4 = 0.5 0.993 0.984 0.988 0.983 0.969 0.975 0.984

𝜆4 = 0.25 0.994 0.987 0.992 0.986 0.975 0.976 0.988

Ours (w/o Invertibility) 0.692 0.574 0.581 0.579 0.569 0.565 0.584

Ours (w/o Smoothness) 0.905 0.829 0.856 0.861 0.822 0.791 0.842

Ours (w/o Diversity Loss) 0.995 0.990 0.994 0.989 0.981 0.980 0.990

(a) (b) (c) (d)

Figure 4.2 MS-SSIM score and DSC histograms between inter- and intra-subject (a)
undistorted MR images and (b) undistorted segmentation maps (c) deformed images and (d)

deformed segmentation maps

4.4 Results

We start by evaluating the segmentation and re-identification performance of three different

baselines. The first baseline, which we call no-proxy baseline, uses non-distorted images of

PPMI. In the second one, named noise baseline, we add strong noise to the PPMI images

to distort them. The third baseline, called voxel permutation, distorts an input by randomly

shuffling the order of voxels while keeping their intensity the same. This last baseline is used to

evaluate a scenario where all geometric information of the image is lost. We then evaluate our

privacy-preserving segmentation method on the same data, and conduct an ablation study to

measure the contribution of each loss term. Last, we assess our method’s ability to generalize

on MRBrainS data.
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4.4.1 Dataset:

We evaluate our method on the task of privacy-preserving brain MRI segmentation. Two

datasets are used in our experiments: the Parkinson’s Progression Marker Initiative (PPMI)

dataset (Marek et al., 2011) and MRBrainS13 Challenge (Mendrik et al., 2015) dataset. The first

dataset, which contains longitudinal data, was considered for training the Siamese discriminator

to recognize same-subject brain segmentations. The second one is used to evaluate the ability of

our generator trained on PPMI to generalize to another dataset. More details on these datasets

can be found in the supplementary materials.

4.4.2 Baseline

4.4.2.1 No-proxy Baseline

Re-identification Result: We measure the ability of the Siamese discriminator trained indepen-

dently to correctly recover the identity of a patient with the original, non-distorted images and

segmentation maps of PPMI. These no-proxy results are reported in the first row of Table 4.1,

where we observe that the F1-scores of the discriminator are above 98% and the mAP is close to

100%. To further compare the inter / intra-subject similarity, we computed a MS-SSIM score

between each pair of MRI images and each pair of segmentation maps and put the inter / intra

histograms in Fig. 4.2 (a) and (b). As can be seen, when considering non-encoded images, the

intra-subject MS-SSIM scores (grey curves) are significantly larger than that of the inter-subjects

(green curves). This demonstrates that identity can be recovered easily from non-distorted

images.

Segmentation Result: In the no-proxy row of Table 4.1, we also report the segmentation Dice

scores of our segmentation method trained on the undistorted images. The overall Dice score is

the average Dice across regions weighted by the region size. These results correspond roughly
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Forward flow-field Backward flow-field Deformed image Deformed segmentation

Input image Segmentation Reconstructed image Reconstructed segmentation

Figure 4.3 Visualization of forward 𝑓 and backward 𝑓 inv deformation fields, input images

with its associated ground truth map, deformed image and segmentation map and the

reconstructed images and segmentation maps

to those obtained in a recent publication for a similar architecture (Dolz et al., 2019). Note that

the nuclei and the internal CSF have a lower Dice due to their smaller sizes.

4.4.2.2 Added Noise Baseline

For this baseline, we added two types of noise to the MRI images: a Rician noise with its

associated SNR, and a salt and pepper (SPP) noise, where the noise level is measured as the

probability of setting a voxel to 0 or 1.

The results for this baseline are reported in the second and third rows of Table 4.1. In terms of

re-identification performance, with a Rice noise SNR 1𝑑𝐵 and salt pepper noise density of 0.1,

the Siamese discriminator can easily re-identity subjects, obtaining F1-scores and mAP values

above 98%. However, for a Rice noise SNR of 0.1𝑑𝐵 and salt pepper noise density of 0.5, the

image content is almost destroyed. In this case, the Siamese discriminator fails to re-identify the

subject and shown by the very low F1-score and mAP.
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Looking at the segmentation performance of the method on noisy images, we see that the

segmentation network is also robust to moderate noise. Thus, for a Rice noise SNR 1𝑑𝐵 and salt

pepper noise density of 0.1, the Dice score of the method is similar to the non-proxy baseline.

The segmentation however collapses when the image is corrupted by pepper noise with a density

of 0.5.

4.4.2.3 Voxel Permutation Baseline

As mentioned above, this baseline randomly shuffles the order of voxels in an image and its

corresponding segmentation ground-truth. We train a Siamese discriminator to re-identify the

shuffled images, and a U-Net to segment the shuffled images. The results of this baseline are

reported in the fourth row of Table 4.1. As expected, this strong distortion removes the Siamese

discriminator’s ability to re-identify subjects, which obtains F1-scores and mAP values lower

than 2%. Moreover, the segmentation network cannot segment the shuffled images correctly and

obtains catastrophically low Dice scores.

4.4.3 Results on PPMI

4.4.3.1 Re-identification Result

Here, we measure the ability of the generator to obfuscate the identity of a patient. Quantitative

results for our system are reported on the All losses (𝜆4 = 1) row of Table 4.1. We can see

that the F1-scores drop to 5% and the mAP to 9% for both the distorted image and distorted

segmentation maps. This indicates that most information on patient identity has been removed

from these data. Fig. 4.2 (c) and (d) gives the inter / intra-subject MS-SSIM score histograms

between of deformed images and deformed segmentation map. We observe that the grey and

green curves overlap almost entirely, showing that same-subject images are as different as

those from separate subjects. Figure 4.3 depicts an input image and segmentation ground-truth,
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together with their associated flow-fields, distorted and reconstructed images. Despite the large

and variable deformation applied to images, the segmentation network can precisely delineate

the complex-shaped brain regions.

4.4.3.2 Reconstruction Result

The first row of Table 4.2, i.e., All losses, reports the reconstruction accuracy obtained with both

input images and segmentation maps. MS-SSIM is used to evaluate the similarities on the raw

inputs, whereas we employ the Dice score to measure differences on the segmentation maps.

Particularly, we observe that our system is capable of reconstructing both distorted images and

segmentation masks, with a MS-SSIM value near to 100% and an overall Dice above 0.98.

4.4.3.3 Segmentation Result

The segmentation DSC achieved by our method is reported in the All losses row of Table 4.1.

The obfuscation procedure being lossy by its very nature, the segmentation scores are slightly

below that of the no-proxy approach. However, the reported Dice score is higher than 0.80 which

is suitable for several clinical applications. This is supported by observations in the clinical

literature, where authors report DSC values of 0.70 to be acceptable (Zĳdenbos et al., 1994;

Zou et al., 2004; Gambacorta et al., 2013; Anders et al., 2011) while others, more conservative,

suggest minimum DSC values of 0.80 (Mattiucci et al., 2013). That said, if an application

requires a larger Dice score, one can improve it by reducing the 𝜆4 Diversity coefficient (c.f.

Eq.(4.2)). The segmentation results for different values of 𝜆4 are reported in the All losses

rows of Table 4.1. By doing so, one would improve the overall Dice score all the way to

0.86, i.e. almost on par with No-Proxy. Of course, doing so would result into a slightly larger

re-identification F1-Score and mAP. At worst, the F1-score could reach 0.44 which is still much

smaller than the 0.988 reported on the first line of Table 4.1.
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4.4.3.4 Comparison to the state-of-art

We also compared our system to the recently-proposed Privacy-Net (Kim et al., 2021b). As can

be seen, while the segmentation Dice scores are globally similar to those of our approach (all loss

row), our re-identification mAP values are significantly lower both on images and segmentation

maps. Note that both the system in (Kim et al., 2021b) and the proposed framework resort to

UNet as backbone segmentation architecture. This demonstrates that i) our approach preserves

the segmentation capabilities shown in (Kim et al., 2021b), and also ii) it can drastically improve

the obfuscation of identity.

4.4.4 Ablation study

To examine the importance of each loss term, we proceeded to the following ablation study.

4.4.4.1 Invertibility loss

We trained the whole system without the invertibility loss of Eq. (4.5). Although the segmentation

loss in Eq. (4.3) implicitly handles the reconstruction of segmentation maps, it is not sufficient for

learning a reversible transformation. As can be seen from Tables 4.1 and 4.2, the reconstruction

accuracy and the segmentation Dice score for this setting are catastrophically low. This is further

illustrated in Fig. 2 of Supplementary Materials were the reconstructed image and segmentation

map of a deformed brain are plagued with artifacts.

4.4.4.2 Smoothness loss

We trained the system without the smoothness loss of Eq. (4.6) that regularizes the flow-field. As

shown in Fig. 3 of Supplementary Materials, the resulting flow-field has abrupt discontinuities

which degrade the reconstruction accuracy and lead to a drop in accuracy as reported in Tables 4.1

and 4.2.
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4.4.4.3 Diversity loss

As indicated in Tables 4.1 and 4.2, removing the transformation diversity loss of Eq. (4.7) leads

to a higher reconstruction accuracy and Dice score. While this might seem beneficial, it comes

at the expense of a higher re-identification F1-score and mAP as shown in the last row of the

Table 4.1. As mentioned before, adjusting the 𝜆4 coefficient allows one to compromise between

strict identity preserving and large Dice score (All losses rows of Table 4.1).

4.4.5 Results on MRBrainS

To demonstrate the generalizability of the learned transformation for privacy-preserving seg-

mentation, we fixed the generator pre-trained on PPMI and then only retrained the segmentation

network on the MRBrainS data. Table 4.3 reports the segmentation accuracy for non-distorted

and distorted images of MRBrainS. Similarly to PPMI, we also observe a small drop of the

Dice score between the segmentation results without and with deformation. Particularly, our

method achieves an overall Dice of 83.9%, which is nearly 4% lower than the performance on

non-deformed images. This suggests that the proposed approach can generalize well to other

datasets.

Table 4.3 Segmentation result on the MRBrainS13

test set.

Setting Overall GM WM CSF

Non-distorted images 0.881 0.879 0.887 0.883

Distorted images 0.839 0.832 0.840 0.835

4.5 Conclusion

We presented a strategy for learning image transformation functions that remove sensitive patient

information from medical imaging data, while also providing competitive results on specific
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utility tasks. Particularly, our system integrates a flow-field generator that produces pseudo-

random deformations on the input images, removing structural information that otherwise could

be used to recover the patient identity from segmentation masks. This contrasts with prior works,

where the image deformations come in the form of intensity changes, leading to the preservation

of identifiable structures. This was empirically demonstrated in our experiments, where the

proposed system drastically decreased the re-identification performance based on segmentation

masks, compared to competing methods. Additional numerical experiments suggest that the

proposed approach is a promising strategy to prevent leakage of sensitive information in medical

imaging data.
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5.1 Present:

This chapter presents the article “Mixup-Privacy: A simple yet effective approach for privacy-

preserving segmentation” by Kim, Dolz, Jodoin and Desrosiers accepted by the conference

IPMI2023 for publication in 2023. The objective of this article is to propose a client-server

image segmentation system which allows for the analysis of multi-centric medical images

while preserving patient privacy. In this approach, the client protects the to-be-segmented

patient image by mixing it to a reference image. As shown in our work, it is challenging to

separate the image mixture to exact original content, thus making the data unworkable and

unrecognizable for an unauthorized person. This proxy image is sent to a server for processing.

The server then returns the mixture of segmentation maps, which the client can revert to a

correct target segmentation. Our system has two components: 1) a segmentation network on

the server side which processes the image mixture, and 2) a segmentation unmixing network

which recovers the correct segmentation map from the segmentation mixture. Furthermore, the

whole system is trained end-to-end. The proposed method is validated on the task of MRI brain

segmentation using images from two different datasets. Results show that the segmentation
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accuracy of our method is comparable to a system trained on raw images, and outperforms other

privacy-preserving methods with little computational overhead.

5.2 Introduction

Neural networks are the de facto solution to numerous medical analysis tasks, from disease

recognition, to anomaly detection, segmentation, tumor resurgence prediction, and many

more (Dolz et al., 2018; Litjens et al., 2017). Despite their success, the widespread clinical

deployment of neural nets has been hindered by legitimate privacy restrictions, which limit the

amount of data the scientific community can pool together.

Researchers have explored a breadth of solutions to tap into massive amounts of data while

complying with privacy restrictions. One such solution is federated learning (FL) (Konecný

et al., 2016; Yang et al., 2019), for which training is done across a network of computers

each holding its local data. While FL has been shown to be effective, it nonetheless suffers

from some limitations when it comes to medical data. First, from a cybersecurity standpoint,

communicating with computers located in a highly-secured environment such as a hospital,

while complying with FDA/MarkCE cybersecurity regulation, is no easy feast. Second, having

computers communicate with their local PACS server is also tricky. And third, since FL is a

decentralized training solution, it requires a decentralized set of computers to process images at

test time, making it ill-suited for software as a service (SAAS) cloud services. Another solution

is to train a centralized network with homomorphic data encryption (Hardy et al., 2017). While

this ensures a rigorous data protection, as detailed in Section 5.3, the tremendous computational

complexity of homomorphic networks prohibits their use in practice.

Recent studies have investigated centralized cloud-based solutions where data is encoded by a

neural network prior being sent to the server (Kim et al., 2021b). While the encoded data is

unworkable for unauthorized parties, it nonetheless can be processed by a network that was
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trained to deal with such encoded data. In some methods, such as Privacy-Net (Kim et al.,

2021b), the data sent back to the client (e.g., predicted segmentation maps) is not encoded and

may contain some private information about the patient (e.g., the patient’s identity or condition).

To ensure that the returned data is also unworkable for non-authorized users, Kim et al.(Kim,

Dolz, Jodoin & Desrosiers, 2021a) proposed an encoding method based on reversible image

warping, where the warping function is only known by the client.

In this paper, we propose a novel client-server cloud system that can effectively segment medical

images while protecting subjects’ data privacy. Our segmentation method, which relies on the

hardness of blind source separation (BSS) as root problem (Jain & Rai, 2012; Cardoso, 1998;

Nouri et al., 2022; Davies & James, 2007), leverages a simple yet powerful technique based on

mixup (Guo et al., 2019). In the proposed approach, the client protects the to-be-segmented

patient image by mixing it to a reference image only known to this client. This reference image

can be thought as a private key needed to encode and decode the image and its segmentation map.

The image mixture renders the data unworkable and unrecognizable for a non-authorized person,

since recovering the original images requires to solve an intractable BSS problem. This proxy

image is sent to a server for a processing task, which corresponds to semantic segmentation in

this work. Instead of sending back the non-encoded segmentation map, as in (Kim et al., 2021b),

the server returns to the client a mixture of the target and reference segmentation maps. Finally,

because the client knows the segmentation map for the reference image, as well as the mixing

coefficients, it can easily recover the segmentation for the target.

Our work makes four contributions to privacy-preserving segmentation:

1. We introduce a simple yet effective method inspired by mixup, which encodes 3D patches

of a target image by mixing them to reference patches with known ground-truth. Unlike

FL approaches, which require a bulky training setup, or homomorphic networks which are
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computationally prohibitive, our method works in a normal training setup and has a low

computational overhead.

2. We also propose a learning approach for recovering the target segmentation maps from

mixed ones, which improves the noisy results of directly reversing the mixing function.

3. Results are further improved with a test-time augmentation strategy that mixes a target

image with different references and then ensembles the segmentation predictions to achieve

a higher accuracy.

4. We conduct extensive experiments on two challenging 3D brain MRI benchmarks, and

show our method to largely outperform state-of-art approaches for privacy-preserving

segmentation, while being simpler and faster than these approaches and yet offering a

similar level of privacy.

5.3 Related works

Most privacy-preserving approaches for image analysis fall in two categories: those based on

homomorphic encryption and the ones using adversarial learning.

5.3.1 Homomorphic encryption (HE)

This type of encryption (Dowlin et al., 2016; Hesamifard et al., 2017; Nandakumar et al., 2019)

enables to compute a given function on encrypted data without having to decrypt it first or

having access to the private key. Although HE offers strong guarantees on the security of the

encrypted data, this approach suffers from two important limitations: 1) it has a prohibitive

computational/communication overhead (Rouhani et al., 2018); 2) it is limited to multiplications

and additions, and non-linear activation functions have to be approximated by polynomial

functions. As a result, homomorphic networks have been relatively simplistic (Hardy et al.,

2017), and even computing the output of a simple CNN is prohibitively slow (e.g., 30 minutes

for a single image (Nandakumar et al., 2019)).
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5.3.2 Adversarial learning (AL)

This type of approach uses a neural net to encode images so that private information is discarded,

yet the encoded image still holds the necessary information to perform a given image analysis

task (Xu et al., 2019; Raval et al., 2017). The encoder is trained jointly with two downstream

networks taking the encoded image as input, the first one seeking to perform the target task and

the other one (the discriminator) trying to recover the private information. The parameters of

the encoder are updated to minimize the task-specific utility loss while maximizing the loss of

the discriminator. In medical imaging tasks, where patient identity should be protected, the

discriminator cannot be modeled as a standard classifier since the number of classes (e.g., patient

IDs) is not fixed. To alleviate this problem, the method in (Kim et al., 2021b) uses a Siamese

discriminator which receives two encoded images as input and predicts if the images are from

the same patient or not. While input images are encoded, the method produces non-encoded

segmentation maps which may still be used to identify the patient. The authors of (Kim et al.,

2021a) overcome this limitation by transforming input images with a reversible non-linear

warping which depends on a private key. When receiving a deformed segmentation map from

the server, the client can recover the true segmentation by reversing the transformation. However,

as the method in (Kim et al., 2021b), this approach requires multiple scans of the same patient

to train the Siamese discriminator, which may not be available in practice. Furthermore, the

learned encoder is highly sensitive to the distribution of input images and fails to obfuscate

identity when this distribution shifts. In contrast, our method does not require multiple scans

per patient. It is also simpler to train and, because it relies on the general principle of BSS, is

less sensitive to the input image distribution.
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5.4 Methodology

We first introduce the principles of blind source separation and mixup on which our work is

based, and then present the details of our Mixup-Privacy method.

5.4.1 Blind source separation

Blind source separation (BSS) is a well-known problem of signal processing which seeks to

recover a set of unknown source signals from a set of mixed ones, without information about

the mixing process. Formally, let 𝑥(𝑡) = [𝑥1(𝑡), . . . , 𝑥𝑛(𝑡)]
𝑇 be a set of 𝑛 source signals which

are mixed into a set of 𝑚 signals, 𝑦(𝑡) = [𝑦1(𝑡), . . . , 𝑦𝑚(𝑡)]𝑇 , using matrix 𝐴 ∈ R𝑚×𝑛 as follows:

𝑦(𝑡) = 𝐴 ·𝑥(𝑡). BSS can be defined as recovering 𝑥(𝑡) when given only 𝑦(𝑡). While efficient

methods exist for cases where 𝑚 = 𝑛, the problem is much harder to solve when 𝑚 < 𝑛 as the

system of equations then becomes under-determined (Jain & Rai, 2012). For the extreme case of

single channel separation (𝑛=1), (Davies & James, 2007) showed that traditional approaches such

as Independent Component Analysis (ICA) fail when the sources have substantially overlapping

spectra. Recently, the authors of (Jayaram & Thickstun, 2020) proposed a deep learning method

for single channel separation, using the noise-annealed Langevin dynamics to sample from the

posterior distribution of sources given a mixture. Although it achieves impressive results for the

separation of RGB natural images, as we show in our experiments, this method does not work

on low-contrast intensity images such as brain MRI. Leveraging the ill-posed nature of single

source separation, we encode 3D patches of images to segment by mixing them with those of

reference images.

5.4.2 Mixup training

Mixup is a data augmentation technique that generates new samples via linear interpolation

between random pairs of images as well as their associated one-hot encoded labels (Zhang, Cisse,
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Dauphin & Lopez-Paz, 2018a). Let (𝑥𝑖, 𝑦𝑖) and (𝑥 𝑗 , 𝑦 𝑗 ) be two examples drawn at random from

the training data, and 𝛼 ∼ Beta(𝑏, 𝑏) be a mixing coefficient sampled from the Beta distribution

with hyperparameter 𝑏. Mixup generates virtual training examples (𝑥, 𝑦̃) as follows:

𝑥 = 𝛼𝑥𝑖 + (1−𝛼)𝑥 𝑗 ; 𝑦̃ = 𝛼𝑦𝑖 + (1−𝛼)𝑦 𝑗 (5.1)

While Mixup training has been shown to bring performance gains in various problems, including

image classification (Guo et al., 2019) and semantic segmentation (Zhou, Qi & Shi, 2022), it

has not been explored as a way to preserve privacy in medical image segmentation.

xref

xmix

ymix

ŷmix

y

x

yref
α

LU

Figure 5.1 Training diagram of the proposed system with the client (left and right)

and the server (middle). The client mixes the input image 𝑥 and segmentation map 𝑦
with a reference pair (𝑥ref , 𝑦ref). The mixed data is then fed to a segmentation network

located on a server and whose output is a mixed segmentation map. The resulting

segmentation map is sent back to the client, which decodes it with a unmixing network

and the reference map 𝑦ref

5.4.3 Proposed system

As shown in Fig 5.1, our method involves a client which has an image 𝑥 to segment and a server

which has to perform segmentation without being able to recover private information from

𝑥. During training, the client mixes an image 𝑥 and its associated segmentation map 𝑦 with a
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reference data pair 𝑥ref and 𝑦ref . The mixed data (𝑥mix, 𝑦mix) is then sent to the server. Since

unmixing images requires to solve an under-determined BSS problem, 𝑥 cannot be recovered

from 𝑥mix without 𝑥ref . This renders 𝑥mix unusable if intercepted by an unauthorized user. During

inference, the server network returns the mixed segmentation maps 𝑦̂mix to the client, which

then recovers the true segmentation maps 𝑦 by reversing the mixing process. The individual

steps of our method, which is trained end-to-end, are detailed below.

5.4.3.1 Data mixing

Since 3D MR images are memory heavy, our segmentation method processes images in a

patch-wise manner. Each patch 𝑥 ∈ R𝐻×𝑊×𝐷 is mixed with a reference patch of the same size:

𝑥mix = 𝛼𝑥target + (1−𝛼)𝑥ref (5.2)

where 𝛼 ∈ [0, 1] is a mixing weight drawn randomly from the uniform distribution1. During

training, the one-hot encoded segmentation ground-truths 𝑦 ∈ [0, 1]𝐶×𝐻×𝑊×𝐻 are also mixed

using the same process:

𝑦mix = 𝛼𝑦target + (1−𝛼)𝑦ref (5.3)

and are sent to the server with the corresponding mixed image patches 𝑥mix.

5.4.3.2 Segmentation and unmixing process

The server-side segmentation network 𝑆(·) receives a mixed image patch 𝑥mix, predicts the mixed

segmentation maps 𝑦̂mix = 𝑆(𝑥mix) as in standard Mixup training, and then sends 𝑦̂mix back to

the client. Since the client knows the ground-truth segmentation of the reference patch, 𝑦ref , it

1 Unlike Mixup which uses the Beta distribution to have a mixing weight close to 0 or 1, we use the

uniform distribution to have a broader range of values.
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can easily recover the target segmentation map by reversing the mixing process as follows:

𝑦̂target =
1

𝛼
( 𝑦̂mix − (1−𝛼)𝑦ref) (5.4)

However, since segmenting a mixed image is more challenging than segmenting the ones used for

mixing, the naive unmixing approach of Eq. (5.4) is often noisy. To address this problem, we use

a shallow network 𝐷(·) on the client side to perform this operation. Specifically, this unmixing

network receives as input the mixed segmentation 𝑦̂mix, the reference segmentation 𝑦ref , and the

mixing coefficient 𝛼, and predicts the target segmentation as 𝑦̂target = 𝐷(𝑦̂mix, 𝑦ref , 𝛼).

5.4.4 Test-time augmentation

Test-time augmentation (TTA) is a simple but powerful technique to improve performance

during inference (Wang et al., 2019a). Typical TTA approaches generate multiple augmented

versions of an example 𝑥 using a given set of transformations, and then combine the predictions

for these augmented examples based on an ensembling strategy. In this work, we propose a

novel TTA approach which augments a target patch 𝑥target by mixing it with different reference

patches {𝑥𝑘
ref
}𝐾𝑘=1

:

𝑥𝑘mix = 𝛼𝑥target + (1−𝛼)𝑥𝑘ref (5.5)

The final prediction for the target segmentation is then obtained by averaging the predictions of

individual mixed patches:

𝑦̂target =
1

𝐾

𝐾∑
𝑘=1

𝐷 ( 𝑦̂𝑘mix, 𝑦
𝑘
ref , 𝛼) (5.6)

As we will show in experiments, segmentation accuracy can be significantly boosted using only

a few augmentations.
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5.5 Experimental setup

5.5.1 Datasets

We evaluate our method on the privacy-preserving segmentation of brain MRI from two public

benchmarks, the Parkinson’s Progression Marker Initiative (PPMI) dataset (Marek et al., 2011)

and the Brain Tumor Segmentation (BraTS) 2021 Challenge dataset. For the PPMI dataset, we

used T1 images from 350 subjects for segmenting brain images into three tissue classes: white

matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). Each subject underwent one or

two baseline acquisitions and one or two acquisitions 12 months later for a total of 773 images.

The images were registered onto a common MNI space and resized to 144 × 192 × 160 with a

1mm3 isotropic resolution. We divided the dataset into training and testing sets containing 592

and 181 images, respectively, so that images from the same subject are not included in both

the training and testing sets. Since PPMI has no ground-truth annotations, as in (Kim et al.,

2021b,a), we employed Freesurfer to obtain a pseudo ground-truth for training. We included the

PPMI dataset in our experiments because it has multiple scans per patient, which is required for

some of the compared baselines (Kim et al., 2021b,a).

BraTS 2021 is the largest publicly-available and fully-annotated dataset for brain tumor

segmentation. It contains 1,251 multi-modal MRIs of size 240×240×155. Each image was

manually annotated with four labels: necrose (NCR), edema (ED), enhance tumor (ET), and

background. We excluded the T1, T2 and FLAIR modalities and only use T1ce. From the 1,251

scans, 251 scans were used for testing, while the remaining constituted the training set.

5.5.2 Evaluation metrics

Our study uses the 3D Dice similarity coefficient (DSC) to evaluate the segmentation performance

of tested methods. For measuring the ability to recover source images, we measure the Multi-
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scale Structural Similarity (MS-SSIM) (Wang et al., 2003) between the original source image

and the one recovered from a BSS algorithm (Jayaram & Thickstun, 2020). Last, to evaluate the

privacy-preserving ability of our system, we model the task of recovering a patient’s identity as

a retrieval problem and measure performance using the standard F1-score and mean average

precision (mAP) metrics.

5.5.3 Implementation details

We used patches of size 32×32×32 for PPMI and 64×64×64 for BraTS. Larger patches

were considered for BraTS to capture the whole tumor. We adopted architectures based on

U-Net (Ronneberger et al., 2015) for both the segmentation and unmixing networks. For

the more complex segmentation task, we used the U-Net++ architecture described in (Zhou,

Rahman Siddiquee, Tajbakhsh & Liang, 2018), whereas a small U-Net with four convolutional

blocks was employed for the unmixing network. For the latter, batch normalization layers

were replaced by adaptive instance normalization layers (Huang & Belongie, 2017) which

are conditioned on the mixing coefficient 𝛼. Both the segmentation and unmixing networks

are trained using combination of multi-class cross entropy loss and 3D Dice loss (Milletari,

Navab & Ahmadi, 2016). End-to-end training was performed for 200,000 iterations on a NVIDIA

A6000 GPU, using the Adam optimizer with a learning rate of 1 × 10−4 and a batch size of 4.

5.5.4 Compared methods

We evaluate different variants of our Mixup-Privacy method for privacy-preserving segmentation.

For the segmentation unmixing process, two approaches were considered: a Naive approach

which reverses the mixing process using Eq. (5.4), and a Learned one using the unmixing

network 𝐷(·). Both approaches were tested with and without the TTA strategy described in

Section 5.4.4, giving rise to four different variants. We compared these variants against a

segmentation Baseline using non-encoded images and two recent approaches for cloud-based
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Table 5.1 Main results of the proposed approach across different tasks -

including segmentation, blind source separation and test-retest reliability - and

two datasets (PPMI and BraTS2021)

PPMI BraTS2021

GM WM CSF Avg NCR ED ET Avg

Segmentation (Dice Score)

Baseline 0.930 0.881 0.876 0.896 0.846 0.802 0.894 0.847

Privacy-Net (Kim et al., 2021b) 0.905 0.804 0.732 0.813 — — — —

Deformation-Proxy (Kim et al., 2021a) 0.889 0.825 0.757 0.823 — — — —

Ours (Naive) 0.758 0.687 0.634 0.693 0.656 0.635 0.692 0.661

Ours (Naive + TTA) 0.852 0.829 0.793 0.825 0.775 0.737 0.804 0.772

Ours (Learned) 0.893 0.833 0.795 0.840 0.805 0.763 0.842 0.803

Ours (Learned + TTA) 0.925 0.879 0.863 0.889 0.841 0.808 0.872 0.840

Blind Source Separation (MS-SSIM)

Separation Accuracy 0.602 ± 0.104 0.588 ± 0.127

Test-Retest Reliability (ICC value)

ICC 0.845 0.812 0.803 — 0.842 0.812 0.803 —

Upper bound 0.881 0.856 0.844 — 0.878 0.855 0.839 —

Lower bound 0.798 0.783 0.771 — 0.805 0.777 0.768 —

privacy-preserving segmentation: Privacy-Net (Kim et al., 2021b) and Deformation-Proxy (Kim

et al., 2021a). The hyperparameters of all compared methods were selected using 3-fold

cross-validation on the training set.

5.5.5 Results

5.5.5.1 Segmentation performance.

The top section of Table 5.1 reports the segmentation performance of the compared models. Since

Privacy-Net and Deformation-Proxy require longitudinal data to train the Siamese discriminator,

we only report their results for PPMI, which has such data. Comparing the naive and learned

approaches for segmentation unmixing, we see that using an unmixing network brings a large

boost in accuracy. Without TTA, the learned unmixing yields an overall Dice improvement of
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14.7% for PPMI and of 14.2% for BraTS2021. As shown in Fig. 5.2, the naive approach directly

reversing the mixing process leads to a noisy segmentation which severely affects accuracy.

Target Reference 1 Mixed GT Prediction Naive Learned

Naive + TTA Reference 2 Mixed GT Prediction Naive Learned

Learned + TTA Reference 3 Mixed GT Prediction Naive Learned

Figure 5.2 Examples of segmented patches obtained by the naive and learned

unmixing approaches from the same target and three different references.

Naive + TTA and Learned + TTA show the mean prediction of these approaches

for 30 augmentations (each one using a different reference)

PPMI BraTS2021

Figure 5.3 Segmentation accuracy (DSC) against the number of TTA predictions

Results in Table 5.1 also demonstrate the positive impact of our TTA strategy on segmentation

performance. Thus, adding this strategy to the naive unmixing approach increases the overall

Dice by 13.2% for PPMI and by 11.1% for BraTS2021. Likewise, combining it with the learned

unmixing approach boosts the overall Dice by 4.9% for PPMI and by 3.7% in the case of
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BraTS2021. Looking at the predictions for different reference patches in Fig. 5.2, we see a high

variability, in particular for the naive unmixing approach. As can be seen in the first column of

the figure (Naive + TTA and Learned + TTA), averaging multiple predictions in our TTA strategy

reduces this variability and yields a final prediction very close to the ground-truth. As in other

TTA-based approaches, our TTA strategy incurs additional computations since a segmentation

prediction must be made for each augmented example (note that these predictions can be made

in a single forward pass of the segmentation network). It is therefore important to analyze the

gain in segmentation performance for different numbers of TTA augmentations. As shown in

Fig. 5.3, increasing the number of predictions for augmented examples leads to a higher Dice,

both for the naive and learned unmixing approaches. Interestingly, when using the learned

unmixing (i.e., Learned + TTA), the highest accuracy is reached with only 10-15 augmentations.

In summary, our TTA strategy brings considerable improvements with limited computational

overhead.

5.5.5.2 Blind source separation

To assess whether our mixing-based image encoding effectively prevents an authorized person

to recover the source image, we try to solve this BSS problem using the Deep Generative Priors

algorithm introduced in (Jayaram & Thickstun, 2020). This algorithm uses a Noise Conditional

Score Network (NCSN) (Song & Ermon, 2019) to compute the gradient of the log density

function with respect to the image at a given noise level 𝜎, ∇𝑥 log 𝑝𝜎(𝑥). An iterative process

based on noise-annealed Langevin dynamics is then employed to sample from the posterior

distribution of sources given a mixture. We use the U-Net++ as model for the NCSN, and train

this model from scratch for each dataset with a Denoising Score Matching loss. Training is

performed for 100,000 iterations on NVIDIA A6000 GPU, using the Adam optimizer with a

learning rate of 5 × 10−4 and a batch size of 16.
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Target (T) Pred. T1 Pred. T2 Pred. T3 Pred. T4

Reference (R) Pred. R1 Pred. R2 Pred. R3 Pred. R4

Mixture (M) Pred. M1 Pred. M2 Pred. M3 Pred. M4

Figure 5.4 Examples of blind source separation (BSS) results for

the mixture of given target and reference patches. Columns 2-5

correspond to results for different random initializations of the BSS

algorithm

The second section of Table 5.1 gives the mean (± stdev) of MS-SSIM scores (ranging from 0 to

1) between original target images and those recovered from the BSS algorithm: 0.602 ± 0.104

for PPMI and 0.588 ± 0.127 for BraTS2021. These low values indicate that the target image

cannot effectively be recovered from the mixed one. This is confirmed in Fig. 5.4 which shows

the poor separation results of the BSS algorithm for different random initializations.

5.5.5.3 Test-retest reliability

One source of variability in our method (without TTA) is the choice of the reference image

used for mixing. To evaluate the stability of our method with respect to this factor, we

perform a test-retest reliability analysis measuring the intra-class correlation coefficient (ICC)

(Mcgraw & Wong, 1996) of the test DSC for two predictions using different references. A higher

ICC (ranging from 0 to 1) corresponds to a greater level of consistency. The third section of

Table 5.1 reports the ICC score obtained for each segmentation class, as well as the upper and
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lower bounds at 95% confidence. We see that all ICC values are above 0.75, indicating a good

reliability.

Table 5.2 Subject re-identification analysis on

the PPMI dataset

Method F1-score mAP

No Proxy 0.988 0.998

Privacy-Net (Kim et al., 2021b) 0.092 0.202

Deformation-Proxy (Kim et al., 2021a) 0.122 0.147

Ours 0.284 0.352

5.5.5.4 Subject re-identification

To measure how well our method protects the identity of patients, we carry out a patient

re-identification analysis using the PPMI dataset which has multiple scans for the same patient.

In this analysis, we encode each image in the dataset by mixing it with a randomly chosen

reference. For an encoded image 𝑥mix, we predict the patient identity as the identity of the other

encoded image 𝑥′
mix

most similar to 𝑥mix based on the MS-SSIM score. Table 5.2 compares

the F1-score and mAP performance of our method to a baseline with no image encoding (No

Proxy), Privacy-Net and Deformation-Proxy. As can be seen, the re-identification of patients

is quite easy when no encoding is used (mAP of 0.998), and all encoding-based methods

significantly reduce the ability to recover patient identity using such retrieval approach. While

our mixing based method does not perform as well as the more complex Privacy-Net and

Deformation-Proxy approaches, it still offers a considerable protection while largely improving

segmentation accuracy (see Table 5.1).

5.6 Conclusion

We introduced an efficient method for privacy-preserving segmentation of medical images,

which encodes 3D patches of a target image by mixing them to reference patches with known
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ground-truth. Two approaches were investigated for recovering the target segmentation maps

from the mixed output of the segmentation network: a naive approach reversing the mixing

process directly, or using a learned unmixing model. We also proposed a novel test-time

augmentation (TTA) strategy to improve performance, where the image to segment is mixed by

different references and the predictions for these mixed augmentations are averaged to generate

the final prediction.

We validated our method on the segmentation of brain MRI from the PPMI and BraTS2021

datasets. Results showed that using a learned unmixing instead of the naive approach improves

DSC accuracy by more than 14% for both datasets. Our TTA strategy, which alleviates the

problem of prediction variability, can also boost DSC performance by 3.7%–13.2% when

added on top of its single-prediction counterpart. Compared to state-of-art approaches such

as Privacy-Net and Deformation-Proxy, our method combining learned unmixing and TTA

achieves a significantly better segmentation, while also offering a good level of privacy.

In the future, we plan to validate our method on other segmentation tasks involving different

imaging modalities. While we encoded a target image by mixing it to a reference one, other

strategies could be also explored, for example, mixing more than two images. This could make

the BSS more difficult, hence increasing the security of the method, at the cost of a reduced

segmentation accuracy. The prediction variance of our TTA strategy could also be used as a

measure of uncertainty in semi-supervised segmentation settings or to suggest annotations in an

active learning system.





CONCLUSION AND DISCUSSION

6.1 Conclusion

This thesis’ introduction chapter outlined the privacy concerns associated with the application of

deep learning to medical image processing research. Deep learning has demonstrated enormous

potential for revolutionizing medical image analysis and diagnosis, resulting in substantial

advances in healthcare. The use of sensitive medical data in deep learning models, however,

raises ethical and privacy concerns. Medical images contain patient-specific information, such

as anatomical details and identifiers, that can be used to retrieve the identity of a patient. To

maintain patients’ confidence and abide by legal and ethical obligations, protecting patient

privacy and assuring the secure handling of medical image data is of paramount importance.

This thesis seeks to propose effective privacy-preserving solutions that enable the responsible

use of medical image data.

In the background chapter, a thorough examination of the fundamental concepts of deep learning

and the techniques utilized within the scope of this thesis was conducted. CNNs were used as the

primary architecture for image segmentation modules, image transformation, and the acquisition

of sensitive patient data. Adversarial learning was adopted as a key technique for generating

image transformations that effectively obfuscate sensitive patient data, thereby preserving their

privacy. In addition, contrastive learning techniques were utilized to extract sensitive information

from patients data. In summary, the chapter described the main deep learning techniques used

in the thesis and their applicability in addressing the challenges associated with medical image

analysis and privacy protection.

In the literature review chapter, a comprehensive analysis of the strengths and limitations of

various privacy-preserving methods was conducted. Specifically, three prominent techniques,

federated learning, homomorphic encryption, and adversarial learning, were extensively re-
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viewed. Federated learning enables the training of models on decentralized data sources while

maintaining data confidentiality, thereby facilitating collaborative learning without data sharing.

Homomorphic encryption, on the other hand, enables computations on encrypted data, ensuring

the security of sensitive information throughout the training process. Finally, adversarial learning

approaches use adversarial examples or generative models to obscure sensitive information

within the data, thereby enhancing privacy. The literature review chapter provided a critical

analysis of these methods, underscoring their potential benefits and limitations in machine

learning applications that protect privacy. This comprehensive evaluation serves as the basis for

the ensuing research, guiding the selection and application of appropriate privacy-protecting

techniques within the context of the thesis.

In the methodological chapters (chapters 3, 4, and 5), we proposed various techniques to address

the privacy-preserving problem in medical imaging, resulting in three distinct contributions.

In chapter 3 we presented a client/server model that protects privacy in the context of multicentric

medical image analysis. Our method is based on adversarial learning, which encodes images

to conceal the patient’s identity while retaining sufficient data for the downstream task. Our

innovative architecture comprises three components: 1) an encoder network that extracts

identity-specific features from input medical images, 2) a discriminator network that attempts to

identify the subject from the input images, and 3) a medical image analysis network that analyzes

the content of the encoded images (in our case, segmentation). By simultaneously fooling

the discriminator and training the medical analysis network, the encoder learns to eliminate

privacy-specific features while retaining the performance of the target task. The problem of

segmenting brain MRI from the Parkinson Progression Marker Initiative (PPMI) dataset is used

to illustrate our method. Using longitudinal PPMI data, we demonstrated that the encoder learns

to severely distort input images while still allowing for producing highly accurate segmentation
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results. Additionally, our results demonstrate that an encoder trained on the PPMI dataset can be

used to segment other datasets, MRBrainS dataset in this case, without retraining.

In chapter 4, we introduced a client-server system that enables the analysis of multi-centric

medical images while maintaining patient privacy. In our method, the client protects the identity

of the patient by applying a pseudo-random non-linear deformation to the input image. This

generates a proxy image that is then sent to the server for processing. The server then returns

the deformed processed image, which the client reconstructs into its original state. Our system

consists of three elements: 1) a flow-field generator that produces a pseudo-random deformation

function, 2) a Siamese discriminator that learns the identity of the patient from the processed

image, and 3) a medical image processing network that analyzes the content of the proxy images.

The entire system is trained in an adversarial manner. By fooling the discriminator, the flow-field

generator learns to generate a bi-directional non-linear deformation that enables the subject’s

identity to be removed from the input image and recovered from the output image. The flow-field

generator is deployed on the client side and the segmentation network is deployed on the

server side following end-to-end training. The proposed technique for MRI brain segmentation

is validated using images from two distinct datasets. Results indicate that the segmentation

accuracy of our method is comparable to that of a system trained on non-encoded images, while

the ability to recover subject identity is drastically diminished.

In chapter 5, we proposed a simple and efficient client-server system for privacy-preserving

image segmentation. In this method, the client protects the image of the patient to be segmented

by combining it with a reference image. As demonstrated by our research, it is challenging to

separate the image mixture into its exact original components, rendering the data unusable and

unidentifiable to an unauthorized individual. This proxy image is transmitted for processing

to a server. The server then returns a mixture of segmentation maps, which the client can use

to determine the correct segmentation for the target. Our system contains two components: 1)
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a server-side segmentation network that processes the image mixture, and 2) a segmentation

unmixing network that recovers the correct segmentation map from the segmentation mixture.

The entire system is trained end to end. The proposed technique for MRI brain segmentation is

validated using images from two datasets, PPMI and BraTS 2021. Our method’s segmentation

accuracy is comparable to that of a system trained on raw images, and it outperforms other

privacy-preserving methods with minimal computational overhead.

6.2 Discussion

In this section, we critique the merits and drawbacks of each contribution. We then present some

directions for future research that could build on these contributions:

1. Privacy-Net: An Adversarial Approach for Identity-Obfuscated Segmentation of Medical

Images:

While the proposed method offered a more effective solution for the cloud-based segmentation

of medical images, this solution is incomplete and may not be suitable for real-world

applications. The non-encoding of the segmentation map output is one of the primary

causes for concern. This poses a substantial risk, as the subject’s identity could potentially

be recovered. Privacy is of the utmost importance in the realm of medical data, and

any system or methodology must prioritize the preservation of patient information. Until

the issue of non-encoded segmentation maps is resolved, implementing this solution in

real-world scenarios could compromise patient confidentiality, thereby limiting the purpose

it is intended to serve.

Another minor issue associated with this method is the subtle encoding of the segmentation

boundary within the encrypted images, akin to a digital watermark. Despite the impercepti-

bility of this information to the human eye, as depicted in Fig 3.2, and the incapacity of the

discriminator to recover the subject’s identity from the encrypted images, it still poses a risk

to the efficacy of the method.
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Therefore, the adoption of such approach for medical image analysis requires additional

research and development to assure the existence of robust privacy-preserving techniques,

thus leading to the second method of this thesis.

2. Privacy Preserving for Medical Image Analysis via Non-Linear Deformation Proxy:

This method is a considerable improvement over the one presented in Chapter 3. Significant

progress has been made with the encoding of the segmentation map output through a

structure transformation. The transformation generated by the proposed method can be

seen as an approximation of a diffeomorphism, wherein the transformation is invertible;

and both the transformation and its inverse are continuous differentiable. As discuss in the

Chapter 4, Eq 4.5 ensures the invertibility of the transformation, while Eq 4.6 guarantees

the continuously differentiable properties for both the transformation and its inverse.

It is noteworthy that our method is capable of generating diverse transformations contingent

upon distinct input vectors denoted as 𝑘 . The input image and the produced transformation

are kept at the client’s side. The input image and the resultant transformation remain

securely stored at the client’s side. Consequently, the risk of reverse engineering for image

reconstruction, segmentation recovery, or subject’s identity retrieval by an external entity

lacking prior knowledge of the transformation is notably limited. However, it is imperative

to acknowledge that this method does not alter the image intensity, thereby permitting the

potential inference of other privacy-related information, such as the device used for image

capture, race, age, etc., through statistical analyses. This aspect represents a vulnerability

inherent in the method.

Another disadvantage of this approach is that this method still requires a longitudinal dataset

for training purposes. Despite the fact that longitudinal datasets provide valuable insights

and facilitate the examination of changes over time, their availability and acquisition can be

limited, posing a challenge for the implementation on a larger scale. Consequently, this lead

to the third methodology employed within this thesis.
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3. Mixup-Privacy: A simple yet effective approach for privacy-preserving segmentation:

This novel approach allows for the encoding of both the input image and the output

segmentation maps, providing a comprehensive solution for protecting privacy in medical

image analysis. By encapsulating both components, information contained within the input

image and segmentation maps is protected, ensuring patient confidentiality. Another benefit

of this method is that it does not rely on longitudinal datasets for training, making it more

accessible and applicable to a broader spectrum of medical imaging scenarios.

Unlike the previous approaches, this method avoids using adversarial learning, a technique

that has demonstrated some instability in certain applications. Adversarial learning involves

simultaneously training a generator and a discriminator, resulting in a delicate balance that

can be difficult to maintain. By averting adversarial learning, this technique circumvents

the associated instability concerns. Instead, it employs alternative strategies to preserve

privacy, ensuring the approach’s robustness and dependability in real-world applications. By

incorporating the ability to encode both input images and segmentation maps, eliminating

the need for longitudinal datasets, and circumventing the instability concerns associated with

adversarial learning, this method represents a significant advance in medical image analysis

that protects patient privacy. It paves the way for broader adoption and application of this

method, thereby enhancing patient privacy and facilitating more accurate and dependable

analysis of medical images in a variety of healthcare settings.

4. Here we propose recommendation for future works:

First of all, as mentioned earlier, the first approach alters the intensity of images, whereas

the second approach solely distorts the structural attributes of the images. Consequently, a

potential direction for future research will be integrating both approaches to concurrently

distort both the structure and intensity of images. The combination method will enhance

privacy protection.
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Secondly, in the future, as this method continues to evolve, it will be necessary to validate

its efficacy across a wider variety of data types. Different medical imaging modalities

pose unique challenges and characteristics that must be considered, despite the fact that

the current validation has demonstrated its efficacy. Using diverse data modalities, such

as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound, its

versatility and adaptability can be comprehensively evaluated. This validation process will

enable researchers and clinicians to evaluate the method’s robustness and reliability across

various imaging technologies, ensuring its applicability in clinical settings.

Thirdly, future studies could also concentrate on investigating different mixing schemes.

Mixing schemes play a crucial role in the protection of privacy and the method’s overall

performance. By experimenting with various combining techniques, these studies will aid

in refining the method and extending its applicability to additional scenarios.

Last but not least, many publicly available labeled medical images datasets frequently exhibit

a relatively limited size when comparing with datasets in the broader field of computer

vision. This discrepancy in size leads to an inadequacy of training data. Consequently,

it becomes imperative to implement learning mechanisms capable of aggregating and

leveraging data from diverse origins. In pursuit of this objective, the mix-up method proves

instrumental in formulating a distributed learning algorithm, wherein data is distributed

across different organizations.
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