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Réhabilitation robotique des membres supérieurs basée sur l’apprentissage

David BEDOLLA MARTINEZ

RÉSUMÉ

Dans cette thèse de doctorat, plusieurs avancées sont présentées pour améliorer les capacités

d’un robot exosquelette à sept degrés de liberté (7 DDL) conçu pour la rééducation des membres

supérieurs. Tout d’abord, une solution cinématique inverse de type humain, basée sur une

technique d’apprentissage automatique, est introduite. Cette solution ouvre la voie à la génération

de postures naturelles et confortables des membres supérieurs. Contrairement aux méthodes

conventionnelles, cette approche offre un moyen pratique et efficace pour trouver des solutions

cinématiques inverses appropriées pour la rééducation des membres supérieurs via de robot

exosquelettes redondants. L’avantage central réside dans ses capacités en temps réel.

De plus, un contrôleur robuste basé sur l’apprentissage est développé pour traiter les incertitudes

et les perturbations inhérentes à l’interaction patient-robot. Cela inclut la gestion des forces

inconnues et l’assurance du respect des contraintes d’entrée et d’état prédéfinies. Ainsi, le

contrôleur offre la sécurité fonctionnelle et des performances optimales lors des exercices de

rééducation.

La dernière avancée dans cette thèse est la conception d’un système de rééducation miroir. Ce

système vise à améliorer les compétences motrices des individus atteints d’hémiplégie par la

stimulation de la neuroplasticité cérébrale. L’approche implique la fourniture de rétroaction

visuelle et de stimulation proprioceptive tandis que les deux bras se déplacent de manière

symétrique et simultanée. Cette méthodologie représente un grand pas en avant dans le domaine

de la rééducation, exploitant le pouvoir de la neuroplasticité pour favoriser la récupération.

De plus, ces avancées s’adressent à la fois aux modes de rééducation passifs et actifs, permettant

une approche flexible et personnalisée de la récupération. En mode passif, le patient peut

se détendre tandis que l’exosquelette guide le bras le long d’une trajectoire prédéfinie. En

mode actif, le porteur gagne de l’indépendance pour initier des mouvements et accomplir des

tâches souhaitées sans assistance externe, lui permettant de prendre en main son processus de

rééducation. Afin de valider l’efficacité et l’applicabilité en temps réel de ces avancées, une série

d’expérimentations a été réalisée. Les résultats de ces expériences ont été documentés, soumis

et/ou publiés dans plusieurs revues, contribuant à la communauté scientifique et au domaine

de la robotique de rééducation. Les avancées présentées ici ouvrent de nouvelles perspectives

pour améliorer la qualité de vie et les perspectives de récupération des personnes ayant besoin

de rééducation, posant les bases pour un avenir prometteur dans le domaine de la rééducation

assistée par des exosquelettes robotiques.

Mots-clés: exosquelette robotique, rééducation du membre supérieur





Learning-based Upper Limb Robotic Rehabilitation

David BEDOLLA MARTINEZ

ABSTRACT

In this doctoral thesis, several advancements are presented to enhance the capabilities of a

seven DoF robotic exoskeleton designed for upper-limb rehabilitation. First and foremost,

a human-like inverse kinematic solution, underpinned by a machine-learning technique, is

introduced. This solution paves the way for generating natural and comfortable upper-limb

postures. Unlike conventional methods, this approach provides a practical and efficient means

of finding appropriate inverse kinematic solutions for upper-limb rehabilitation via redundant

robotic exoskeletons. The core advantage lies in its real-time capabilities.

Additionally, a robust learning-based controller is developed to tackle uncertainties and distur-

bances that are inherent in the patient-robot interaction. This includes addressing unknown

forces and ensuring compliance with predefined input and state constraints. By doing so, the

controller offers functional safety and optimal performance during rehabilitation exercises.

The last development in this thesis is the design of a mirror rehabilitation system. This system is

devised with the aim of enhancing the motor skills of individuals with hemiplegia through brain

neuroplasticity stimulation. The approach involves providing visual feedback and proprioceptive

stimulation while both arms move symmetrically and simultaneously. This methodology

represents a significant leap forward in rehabilitation, harnessing the power of neuroplasticity to

drive recovery.

Furthermore, these advancements cater to both passive and active rehabilitation modes, allowing

for a flexible and tailored approach to recovery. In the passive mode, the patient can relax

while the exoskeleton guides the arm through a predefined trajectory. In the active mode, the

wearer gains the independence to initiate movements and complete desired tasks without external

assistance, empowering them to take charge of their rehabilitation journey. To validate the efficacy

and real-world applicability of these advancements, a series of real-time experiments have been

conducted. The results of these experiments were documented, submitted and/or published in

several journals, contributing to the scientific community and the field of rehabilitation robotics.

The advancements showcased herein open new horizons for enhancing the quality of life and

recovery prospects for individuals in need of rehabilitation, setting the stage for a promising

future in the field of robotic exoskeleton-assisted rehabilitation.

Keywords: robotic exoskeleton, upper-limb rehabilitation
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INTRODUCTION

The pace of technological advancement has been rapid, progressing from the first industrial

revolution in the 16th century to the era of Industry 4.0 (Oztemel & Gursev, 2020), bringing

forth numerous technological challenges. Among these challenges, the development of robotics

systems stands out as a crucial area (Gao et al., 2020). Robotics finds applications in various

fields, including flexible robots for medical purposes (Zhang & Lu, 2020), augmented reality

applications (Ong et al., 2020), autonomous systems in military applications (Torossian et al.,

2020), search and rescue operations during natural disasters (Ekambaram et al., 2020), and

manufacturing industries (Bhatt et al., 2020).

Regarding robotic exoskeletons, they find applications in power amplification (Lee et al., 2014)

as well as rehabilitation purposes providing physical training to the biomechanical structure

of human limbs (Brahmi et al., 2018). Its primary objective is to assist individuals in their

daily activities (Barrios-Muriel et al., 2020). Utilizing exoskeletons for medical rehabilitation

presents an alternative to traditional therapy methods and has proven to enhance the quality of

life for patients by enabling long-term therapy (Brahmi et al., 2016). This is particularly relevant

considering the insufficient number of health centers (Teasell et al., 2009) and professionals

available to meet the growing rehabilitation demand (Islam et al., 2020).

In robotic rehabilitation, passive and active modes are used to exercise the limb. Passive mode

often serves as the initial stage of rehabilitation. In this mode, the robot follows a predefined

trajectory and it is typically employed in the early weeks following an accident, such as a stroke,

sports-related injury, trauma, spinal cord injury, or due to aging. The subsequent stage is the

active mode which allows the patient to voluntarily initiate movements and accomplish tasks at

will.

This thesis builds upon prior research conducted by (Rahman, 2012), (Ochoa-Luna, 2016),

and (Brahmi, 2019) to develop a 7 Degrees-of-Freedom (DoF) exoskeleton robot, named



2

ETS-MARSE robot (Motion Assistive Robotic-Exoskeleton for Superior Extremity), for upper-

limb rehabilitation, in the Groupe de Recherche en Électronique de Puissance et Commande

Industrielle (GREPCI) at the École de Technologie Supérieure (ETS).

This thesis aims to introduce several developments for upper-limb rehabilitation, including an

intelligent inverse kinematic solution, a learning-based robust control, and a mirror rehabilitation

system for hemiplegic patients. These developments involve the measurement of the wearer’s

motion intention (WMI) using Electromyography (EMG) and Inertial Measurement Units (IMU)

sensors. Furthermore, the proposed developments are implemented in real-time. The primary

contribution of this work lies in enhancing the capabilities of the ETS-MARSE exoskeleton robot

to assist individuals with physical disabilities in their rehabilitation process, thereby improving

their quality of life.

This thesis is organized as follows: Chapter 1 describes and justifies the research problem,

presents the state-of-the-art, and set the objectives and the original methodology for this work.

Chapter 2 presents the theoretical background. Chapters 3, 4, 5, and 6 are the resultant papers

that report the contributions made to the existing literature.

Chapter 3 presents a novel approach to obtaining natural human-type inverse kinematics solutions

using a machine-learning technique. Additionally, a robust predictive feedback controller is

enhanced with an integral sliding mode controller to reject uncertainties and disturbances while

optimally performing rehabilitation exercises. Experimental results verify the effectiveness of

the proposed approach.

Chapter 4 presents an improved version of the predictive feedback controller developed in

Chapter 3, where an improved prediction model based on a machine-learning technique is

incorporated to exploit the ETS-MARSE’s physical capabilities optimally. This paper presents



3

the first hardware implementation of the Learning-Based Model Predictive Control on a highly

nonlinear system such as the ETS-MARSE.

Chapter 5 presents a mirror rehabilitation system designed for hemiplegic wearers where the

healthy arm generates a desired trajectory while the exoskeleton robot assists the impaired arm

by tracking the mirrored trajectory. Additionally, a fixed-time super-twisting-like algorithm

control with prescribed performance is proposed to account for uncertainties and disturbances

in the system. The proposed approaches were implemented in real-time and the experimental

results confirm their applicability.

Chapter 6 presents a standardized design framework for exoskeleton robots that facilitates the

comparison between kinematic designs. Additionally, a novel inverse kinematic method is

proposed by defining the natural elbow frame as additional information to obtain a human-type

solution.





CHAPTER 1

PROBLEM STATEMENT

Advances in fast response protocols for stroke have increased the number of survivors, leading

to an unprecedented burden on physiotherapists and hospitals (Johnson et al., 2019). In order

to address the needs of individuals with upper-limb impairments affecting shoulder, elbow,

forearm, and wrist motions, this research aims to enhance the capabilities of an exoskeleton

robot to provide both passive and active rehabilitation modes. To achieve this objective, three

main components are required to enable collaborative interaction between the wearer and the

robot. In this thesis, we redefine the components or schemes defined in prior research as follows:

The first component is a high-level scheme that generates a suitable desired joint-space trajectory,

ensuring that the wearer’s postures are natural for the upper limb. The challenge in this scheme

arises from the redundancy nature of robotic exoskeletons with more than six degrees of

freedom (DoF), as is the case here. Given a task-space target, there are infinitely many possible

configurations that satisfy the required end-effector position and orientation. The method used to

select the most natural solutions for a given upper-limb movement (e.g., diagonal reaching, pick

and place, or elbow flexion/extension) should operate in real-time and provide unique solutions.

The second component is a low-level scheme that ensures robustness and optimal performance

while tracking a desired trajectory and handling uncertainties and disturbances. This scheme

faces the primary challenge of achieving optimal performance while dealing with unknown

dynamics, including unmodeled dynamics (e.g., Coulomb friction), model uncertainties (e.g.,

unknown wearer physical characteristics), and external disturbances (e.g., unknown wearer

efforts). These unknown dynamics can degrade performance and even lead to instability. Optimal

performance involves factors such as fast convergence, accurate tracking, reduced control effort,

and closed-loop stability. Additionally, it is crucial to consider physical constraints during

rehabilitation tasks to ensure safety and operational functionality, including input constraints

to prevent excessive control activity that could damage the motors, as well as trajectory and
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limit constraints (position and velocity limits) to avoid harming the links and transmission

mechanisms.

The third component is a task-level scheme that focuses on measuring the desired task-space

trajectories based on measurements of the wearer’s motor intention (WMI), utilizing techniques

such as EMG and IMU signal processing. The challenge here is to measure the WMI in real-time

with minimal delay between the intended movement and the actual movement of the robot.

Additionally, the generated desired task-space trajectory should exhibit smoothness.

To address these challenges, in the first place this thesis proposes a novel intelligent approach to

obtaining unique and natural inverse kinematic solutions for impaired upper limbs. Furthermore,

a learning-based Model Predictive Controller is developed to track the trajectories generated by

the previous contribution, enabling optimal performance in passive rehabilitation and upper-limb

exercises. Moreover, a mirror rehabilitation system is designed for hemiplegic patients, where the

healthy arm generates the desired trajectory while the impaired arm is assisted by an exoskeleton

robot. This setup allows for symmetrical and simultaneous movement between both arms,

facilitating the improvement of motor skills in the impaired arm.

1.1 Literature review

This section reviews the state of the art on the previously mentioned schemes for robotic

exoskeletons.

1.1.1 High-level scheme

In the last decades, the human-like motion study has received attention in robotics (Billard et al.,

2006), for example, to give natural movement to Humanoid robots (Almasri & Ouezdou, 2008),

(Bin et al., 2011), and (Xu et al., 2010). Several vision-based methods to measure and replicate

human motion have been applied (Alibeigi et al., 2017), (Date et al., 2004), and (Poppe, 2007).
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Particularly, in upper-limb rehabilitation, the human inverse kinematic problem requires unique

anthropomorphic solutions that bring comfort and natural movement to the wearer. However,

due to the redundancy of the upper-limb that includes the shoulder, elbow, and wrist (Benati

et al., 1980) there are an infinite number of solutions available. Therefore, the inverse kinematics

of redundant robotic manipulators is a complex problem with mathematical solutions that are in

general very difficult to derive. The redundancy provides several advantages such as a larger

workspace, singularity space reduction, a high manipulability index, and dexterity capabilities

(Rahman et al., 2015) while working on task-space and joint-space, enhancing wearer comfort

and improving physical interaction (Gunasekara et al., 2012).

To solve the inverse kinematic problem, numerical iterative methods using the Jacobian and

its pseudo-inverse have been proposed (Craig, 2005), (Kelly et al., 2005) and (Klein & Huang,

1983), which are not suitable for real-time implementation for redundant robots. Human inverse

kinematic modeling based on recorded data methods (Ficuciello et al., 2014) with problems of

model generalization (unable to generate new solutions). Optimization-based human inverse

kinematics use different cost functions, for example, potential energy (Zhao et al., 2014), joint

displacement discomfort (Jung et al., 1994) and (Jung et al., 1995) with implementation in

real-time (Tang et al., 1998) but the importance of each cost function is still not well defined

(Campos & Calado, 2009). Some approaches derive closed-form solutions using analytical

and geometric procedures combined (Bin et al., 2011) and (Soltani-Zarrin et al., 2017), the

analytical method gives multiple solutions and it is used when the desired point is within the

workspace. Otherwise, the geometric solution is used. These combined geometric and analytical

solutions (Brahmi et al., 2017b), (Kim et al., 2011) and (Tolani et al., 2000) require to define the

swivel angle (Tolani & Badler, 1996) to minimize the required energy (Almasri & Ouezdou,

2008) solving redundancy, achieving comfortable human solutions.

1.1.2 Low-level scheme

Linear approaches such as PI, PD, and PID controllers have been the most popular controllers

in the industry due to their easiness of implementation. However, on nonlinear systems, these
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linear approaches only have good performance around a fixed operation point and redesign

should be done to adapt to new operation points and circumstances.

To work in a larger operation region, linearization techniques such as feedback linearization

(Slotine & Li, 1991) have been proposed. This technique needs an accurate dynamic model to

compensate for the non-linearities, but constantly changing operational circumstances make

unfeasible its use. Usually, CTC is combined with adaptive techniques (Han et al., 2020). To

estimate the unknown dynamics online Time Delay Estimation (TDE) (Youcef-Toumi & Ito,

1990) and Backstepping (Marquez, 2003) had been proposed for high accuracy in the presence

of uncertainties and disturbances. However, TDE suffers from the time delay error (TDR). To

deal with unknown dynamics, the Sliding Mode Control (SMC) approach has been proposed for

robustness.

However standard SMC suffers from a not defined finite-time convergence, lack of high-accuracy

tracking, and chattering that can damage the motors. A combination of different approaches

has been developed to obtain the benefits of these techniques. For finite-time convergence,

Exponential Reaching Law Sliding Mode control (ERL-SMC) has been proposed (Fallaha

et al., 2011). For finite-time convergence, an adaptive approach Terminal Sliding Mode Control

(TSMC) with TDE was proposed (Brahmi et al., 2020). The adaptive approach Jacobian

Transpose Terminal Sliding Mode Control with Time Delay Estimation (JSTDE) (Brahmi et al.,

2017a) was proposed for finite-time convergence while working in task space. To reduce the

chattering problem and for high accuracy tracking trajectory in the presence of uncertainties and

unknown disturbances, an adaptive Super Twisting Algorithm Control combined with TDE had

been proposed (Kali et al., 2018). To reduce chattering problems a Second-Order Sliding Mode

Control (SOSMC) was proposed (Levant, 2007), but the second derivative of the sliding surface

produces instability with small disturbances. To solve this problem, the SOSMC was combined

with the TDE approach (Brahmi et al., 2018).

Applications, where the control policy is learned, are Composite learning control (Xu et al.,

2020), reinforcement learning (Perrusquía et al., 2020) only used with repetitive tasks, Neural
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Control combined with SMC has been implemented (Jebri et al., 2020) with problems of extreme

control activity and chattering, Parametric iterative learning control (Xu & Jian-Xin, 2013)

with problems of how to satisfy constraints to prevent damaging the plant, how to overcome

uncertainties and how to choose the initial conditions for convergence.

The control techniques described above lack an internal safety verification process. For that

reason, to get optimal control signals while ensuring constraint satisfaction and reliable operation,

a Model Predictive Control (MPC) approach (Rawlings et al., 2017) can be used. MPC is a model-

based optimization approach for feedback systems. The theory of MPC is well established, some

robust MPC approaches are Min-Max (Scokaert & Mayne, 1998) with problems of expensive

computation, using tubes (Langson et al., 2004) and one-step (Park et al., 1999) with small

attraction region. To ensure robustness and to satisfy constraints through the prediction of

future behavior, an accurate model is needed for MPC. For robotic manipulators, the dynamical

model’s complexity can grow drastically with few DoFs and will be a problem while solving

numerical optimization in real-time. Another approach based on machine learning methods can

build accurate models from data.

Besides nominal machine learning models e.g. feedforward neural networks, probabilistic

methods can assign an uncertainty value to each predicted state, making it easier to deal with

insufficient data and/or to decide between high performance or conservative control (Ostafew

et al., 2016a) also known as cautious or dual control (Mesbah, 2018). Particularly, the Gaussian

process stochastic model behaves well with high-dimensional data, missing data, attenuation

of noise contribution, and small training data. The only disadvantage is that the model grows

exponentially with the training data length (Nguyen-Tuong & Peters, 2011).

To build an accurate model, a hybrid model has been used to do predictions. This hybrid model

is composed of a mathematical model and a learned disturbance model (Ostafew, 2010). This

approach is called Robust Learning-based Model predictive control. The disturbance model

can anticipate disturbances and allows the use of simple mathematical models without exact

knowledge of plant dynamics (Ostafew et al., 2016a). Learning-based Model predictive control
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is applied to repetitive tasks, gathering data, and learning from trial to trial (Ostafew et al.,

2016a). This technique was applied to a mobile robot (Hewing et al., 2020a), in autonomous

racing (Kabzan et al., 2019), and to quadrotors (Pereida & Schoellig, 2018) to enhance the

performance and safety of operation. The dynamics of these robotic systems are much simpler

than the 7 DoF exoskeleton dynamic model. In this thesis, a real-time implementation of the

robust learning-based model predictive control for a 7 DoF robotic exoskeleton is presented to

improve the control performance while achieving reliable rehabilitation tasks.

1.1.3 Task-level scheme

The exoskeleton’s movement can be guided using biological, non-biological signals, or a

combination of both (Gunasekara et al., 2012). These signals can be used in exoskeleton robots

with the idea of activating a predefined movement (passive rehabilitation), to help correct the

posture or to avoid resistive forces with WMI for assistive or active rehabilitation. The most used

biological signal is electromyography (EMG). A surface or intramuscular (invasive) electrode

is used when a patient can perform some movements. Pattern-based EMG recognition and

classification had been applied using fuzzy logic and artificial neural network (ANN) (Chan

et al., 2000) and (Lei, 2019), support vector machines (Bitzer & Van Der Smagt, 2006), k-nearest

neighborhood (Khairuddin et al., 2019), hidden Markov models (Meng et al., 2010) and Gaussian

regression model (Long et al., 2018). Also, WMI estimation based on muscle model had been

developed: Hill muscle model with genetic algorithm (Cavallaro & Rosen, 2006) and Bilinear

models (Matsubara & Morimoto, 2013). The main problem with the mentioned techniques is the

training process which depends on the user characteristics, task regime, and electrode placement

(Chan et al., 2000). Some of these are bulky, and unfeasible for real-time implementation

(Lei, 2019). And practical implementation is complex, for example, in (Treussart et al., 2020)

a two-minute EMG recording was used to train four classes (relaxed, flexion, extension, and

contraction) using eight electrodes for a single DoF.

For non-biological signals, the force sensor (Anam & Al-Jumaily, 2012) was used to deal with

the variability of EMG signals from different users, low signal activity due to muscle disorders,
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and changing measurements due to fatigue. And for IMU (Inertial Measurements Units) the

feasibility of only upper-arm and forearm joint estimation using IMU (Inertial Measurement

Units) and EMG sensors were studied for an 8 DoF exoskeleton (Blana et al., 2016). Both the

force sensor and IMU are tipically combined with admittance (Huang et al., 2018) or impedance

control (Zhang & Lu, 2020).

In this sense, few robotic systems are found in the literature for single and multi-joint mirror

rehabilitation applications. In the single joint rehabilitation case, a force sensor is used for wrist

flexion and extension movement (Kim & Kim, 2017). In (Yang et al., 2021b) a combination of

surface EMG and force sensor is used to control the force in the impaired elbow for flexion and

extension movements. Similar works controlling a single joint can be found in the literature

using superficial EMG for wrist (Zhang et al., 2016), and elbow (Hajian et al., 2021) (Zhang

et al., 2019a). For multi-joint mirror rehabilitation, a mirror rehabilitation system for upper-limb

(Wang & Fu, 2011) was presented using only IMU sensors, later the system underwent an

upgrade by integrating a motion prediction module based on surface EMG signals (Ren et al.,

2019) for an 11 DoF exoskeleton.

It is worth noting that the previous multi-joint systems lack a wrist orientation estimator from

EMG signals. To that end, different EMG classifiers techniques have been proposed with

good results such as Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA)

(Khushaba et al., 2016), optimized artificial neural networks (Lima et al., 2018) and Fuzzy

c-means clustering (Momen et al., 2007). For further information on EMG pattern recognition

for wrist orientation, a recent review can be found in (Parajuli et al., 2019).

1.1.4 Motivation

Social inclusion of upper-limb impaired individuals is possible by enhancing their motor skills

ability through exoskeleton-based physical therapy. To that end, a human inverse kinematics

solution with unique solutions and natural postures for the wearer is mandatory. Also, the

specifications and requirements of the exercise task must be performed as directed by the health
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professional. A robust control strategy is necessary for the desired performance even in the

presence of uncertainties and disturbances while satisfying operation constraints. The real-world

implementation process is not straightforward. The exoskeleton is a system with multiple

inputs and multiple outputs (MIMO) subject to human-robot interaction forces and different

wearer physiological characteristics. Most of the control strategies used on exoskeletons lack a

constraint satisfaction system within the controller. Usually, the state and input constraints are

handled after the control law is computed. Considering these issues, a robust model predictive

control approach will be implemented to satisfy constraints while achieving optimal performance.

Additionally, a sensing system able to measure the WMI to provide active rehabilitation is

necessary.

1.1.5 Objectives

The main objective of this research is to help impaired people to enhance their motor capabilities

in daily life activities after a stroke or injury. The specific objectives are as follows:

1. Find a Human inverse kinematics solution, avoiding singularities, and ensuring natural

configurations based on analytical and machine learning methods.

2. Develop a learning-based MPC to ensure robustness, optimal performance, and reliable

passive rehabilitation.

3. Develop a mirror rehabilitation system through the measurements of the wearer’s motion

intention using EMG and IMU sensors.

4. Implementation and experimentation of the proposed developments on the ETS-MARSE

exoskeleton robot in real-time.

1.2 Methodology

To achieve the objectives mentioned above, this research is structured into four distinct stages,

each depicted in different colors in Fig. 1.1. The first stage, indicated in orange, involves the

development of a learning-based solution for human inverse kinematics. This solution addresses

kinematic redundancy and produces natural postures for the wearer.
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The second stage, depicted in green, encompasses the development and integration of robust

learning-based model predictive control into the real-time system. The data collected from the

trials will be utilized to train the Gaussian process disturbance model offline, leading to iterative

performance enhancements.

The third stage, shown in blue, focuses on the sensing system responsible for signal processing

from EMG and IMU sensors. These sensors are instrumental in measuring the wearer’s motion

intention while maintaining a low computational cost.

Finally, the fourth stage entails the real-time design, implementation, and experimentation to

demonstrate the effectiveness of the proposed approaches.

Methodology

Low-level 
scheme

High-level 
scheme

Task-level 
scheme

Implementation 
and

experimentation

Learning-
based model 

predictive
control

Fixed-time 
super-

twisting 
controller

Learning 
Human 
Inverse

Kinematic 
Solutions

Mirror
rehabilitation 

system

Figure 1.1 Methodology

1.2.1 Develop a human-type inverse kinematic intelligent solution

For the first stage, to execute any rehabilitation program, it is necessary to work with specific

trajectories specified in Cartesian coordinates. These must be transformed into joint coordinates

to enable smooth, singularity-free movements. Given the complexity of deriving complete
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analytical solutions, implementing numerical methods for real-time control of seven Degrees

of Freedom (DoF) robots is often unfeasible. Additionally, there is a lack of generalization in

models trained with human-recorded data.

The identified challenges in this context include obtaining comfortable configurations and

resolving the redundancy issue, where there are infinite solutions to a single problem. The

initial phase of this research involves analyzing and deriving a geometric and analytical solution

for the human inverse kinematics, addressing kinematic redundancy and achieving natural

configurations. In this thesis, real-time implementation of human inverse kinematics using a

combination of machine learning techniques and analytical methods was explored, with a focus

on providing comfort and natural movement for the robot-wearer system. This approach is

designed to deliver precise and accurate solutions while avoiding singularities.

Considering that the last three joints determine the orientation while joints one to four define

the position, it is possible to develop analytical and geometrical closed-form solutions by

decoupling the problem into two stages. A comparative analysis will be conducted, comparing

the learning-based method, the minimum discomfort index, and the closest solution to previous

ones.

1.2.2 Develop a learning-based MPC

The second stage in this thesis is the development and implementation of the robust learning-

based model predictive control on the ETS-MARSE robotic exoskeleton. Taking advantage

of the repetitive nature of physical therapy, a learning-based model predictive control will

be implemented for optimal performance and reliable operation on rehabilitation tasks. To

ensure robustness in the model predictive implementation, the model accuracy is the most

important issue, which is solved using a hybrid model composed of a nominal mathematical

model (beforehand) and a learned model (model from data trials). The learned model is based

on the Gaussian processes model, a stochastic learning technique that enables the assignment

of an amount of uncertainty to the computed output. This property allows measuring the
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amount of safeness, in a specific robot configuration (Ostafew, 2010). The learned model is

trained using the differences between the measured state and the estimated state (using the

nominal mathematical model), this difference is called the disturbance model. Some interesting

techniques that can be combined with LB-MPC are:

1. Super-twisting algorithm

2. Integral sliding mode

3. Exponential reaching law SMC

1.2.3 Develop a mirror rehabilitation system

The third stage presents an innovative mirror rehabilitation system designed for individuals

recovering from hemiplegia after a stroke. In this system, the unaffected arm is responsible for

generating a desired trajectory, and this trajectory is tracked using a Motion Capture (MoCap)

system. Simultaneously, an upper-limb robotic exoskeleton assists the impaired arm in mimicking

this trajectory, resulting in the attainment of natural and comfortable arm configurations. An

outstanding feature of this system is the inclusion of a wrist orientation estimator, which is based

on surface EMG signals from the muscles of the forearm.

To evaluate its practicality and effectiveness, experimental tests are conducted using a 7 Degrees

of Freedom (DoF) exoskeleton robot, affirming its real-time efficiency and robust performance.

In summary, this stage makes a significant contribution to the field by introducing a mirror

rehabilitation system that not only focuses on achieving natural and comfortable postures,

especially for the elbow and forearm but also integrates a wrist orientation estimator based on

EMG signals from the forearm muscles.

1.2.4 Implementation and experimentation

Implementation of the proposed improvements experimentally concludes each previous stage.
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1.3 Originality of the research contribution

The contributions and results of this research are shown in the following list.

1. A novel learning-based approach for human inverse kinematics that obtains natural and

comfortable solutions while significantly reducing online computation burden.

2. A novel learning-based controller that incorporates a robust model predictive controller

with an integral sliding mode controller. The Gaussian process technique was proposed to

model measured uncertainty to enhance the prediction accuracy.

3. An innovative mirror rehabilitation system is designed to enhance the motor skills of

individuals with hemiplegia through brain neuroplasticity stimulation.

4. A novel fixed-time super-twisting-like algorithm with prescribed performance is proposed

to track a challenging trajectory while multiple joints are active simultaneously.

5. Experimental contribution developing passive and active rehabilitation capabilities using a

seven DoF robotic manipulator.



CHAPTER 2

THEORETICAL BACKGROUND

2.1 Forward kinematics

2.1.1 Homogeneous transformation

The homogeneous transformation concept is very important for experts and beginners to develop

and analyze robotic manipulators. Mathematically, a homogeneous transformation is defined as

a 4 × 4 matrix representing position and orientation in the Cartesian space as follows:

𝑇 =

⎡⎢⎢⎢⎢⎣
𝑅 𝑃

01×3 1

⎤⎥⎥⎥⎥⎦ (2.1)

Where 𝑅 ∈ R3×3 is an orientation matrix and 𝑃 ∈ R3 is a position vector. The term 01×3

represents an 1 × 3 zero matrix. Given a numerical homogeneous transformation matrix 𝑇 , a

visual representation of the frame (see Fig. 2.1) can be obtained by the following Matlab code:

1 figure

2 T=eye(4); %Homogeneous transformation

3 d=0.05;

4 plot3([T(1,4),T(1,4)+d*T(1,2)],[T(2,4),T(2,4)+d*T(2,2)],[T

(3,4),T(3,4)+d*T(3,2)],'g','LineWidth',2); %y axis

5 hold on,xlabel('x'),ylabel('y'),zlabel('z')

6 plot3([T(1,4),T(1,4)+d*T(1,1)],[T(2,4),T(2,4)+d*T(2,1)],[T

(3,4),T(3,4)+d*T(3,1)],'r','LineWidth',2); %x axis

7 plot3([T(1,4),T(1,4)+d*T(1,3)],[T(2,4),T(2,4)+d*T(2,3)],[T

(3,4),T(3,4)+d*T(3,3)],'b','LineWidth',2); %z axis

8 axis square
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Figure 2.1 Homogeneous transformation as a frame (red for

x-axis, green for y-axis and blue for z-axis)

The frame shown in Fig. 2.1 can be rotated or translated at will using the basic homogeneous

transformation matrices 𝑇𝑥 (·), 𝑇𝑦 (·), and 𝑇𝑧 (·) as rotation matrices and 𝑇𝐷 (·𝑥, ·𝑦, ·𝑧) as translation

matrix, around and along the 𝑥𝑦𝑧 axes respectively.

𝑇𝑥 (·) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 𝑐(·) −𝑠(·) 0

0 𝑠(·) 𝑐(·) 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑇𝑦 (·) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐(·) 0 𝑠(·) 0

0 1 0 0

−𝑠(·) 0 𝑐(·) 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑇𝑧 (·) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐(·) −𝑠(·) 0 0

𝑠(·) 𝑐(·) 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑇𝐷 (·𝑥, ·𝑦, ·𝑧) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ·𝑥
0 1 0 ·𝑦
0 0 1 ·𝑧
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.2)

The terms 𝑠(·) and 𝑐(·) denote the 𝑠𝑖𝑛(·) and 𝑐𝑜𝑠(·) functions respectively.
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2.1.2 Forward and inverse Euler angles

Euler angles are employed to represent orientation in Cartesian space. While various conventions

exist for Euler angles, this section will specifically describe two of them. The first variation is

determined by the order of operations, which follows the sequence 𝑍𝑌𝑋 , as follows:

𝑇𝑧 (𝛾𝑑)𝑇𝑦 (𝛽𝑑)𝑇𝑥 (𝛼𝑑) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐(𝛽𝑑)𝑐(𝛾𝑑) 𝑐(𝛾𝑑)𝑠(𝛼𝑑)𝑠(𝛽𝑑) − 𝑐(𝛼𝑑)𝑠(𝛾𝑑) 𝑠(𝛼𝑑)𝑠(𝛾𝑑) + 𝑐(𝛼𝑑)𝑐(𝛾𝑑)𝑠(𝛽𝑑) 0

𝑐(𝛽𝑑)𝑠(𝛾𝑑) 𝑐(𝛼𝑑)𝑐(𝛾𝑑) + 𝑠(𝛼𝑑)𝑠(𝛽𝑑)𝑠(𝛾𝑑) 𝑐(𝛼𝑑)𝑠(𝛽𝑑)𝑠(𝛾𝑑) − 𝑐(𝛾𝑑)𝑠(𝛼𝑑) 0

−𝑠(𝛽𝑑) 𝑐(𝛽𝑑)𝑠(𝛼𝑑) 𝑐(𝛼𝑑)𝑐(𝛽𝑑) 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.3)

In this context, the symbols 𝛾𝑑 , 𝛽𝑑 , and 𝛼𝑑 represent the desired Euler angles used to construct

a desired orientation matrix. Additionally, the Euler angles following the order 𝑍𝑌𝑋 can be

computed for any desired orientation matrix denoted as 𝑅𝑑 , defined by:

𝑅𝑑 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑟11𝑑 𝑟12𝑑 𝑟13𝑑

𝑟21𝑑 𝑟22𝑑 𝑟23𝑑

𝑟31𝑑 𝑟32𝑑 𝑟33𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.4)

Here, 𝑟𝑖 𝑗𝑑 represents the 𝑖 𝑗 element of the desired orientation matrix. The Euler angles can be

computed by solving Equation (2.5) using the atan2 function, as shown in Equation (2.6).

𝑇𝑧 (𝛾𝑑)𝑇𝑦 (𝛽𝑑)𝑇𝑥 (𝛼𝑑) =
⎡⎢⎢⎢⎢⎣
𝑅𝑑 03×1

01×3 1

⎤⎥⎥⎥⎥⎦ (2.5)

𝛾𝑑 = atan2(𝑟21𝑑, 𝑟11𝑑)
𝛽𝑑 = atan2(−𝑟31𝑑𝑠(𝛾𝑑), 𝑟21𝑑)

𝛼𝑑 = atan2(𝑟32𝑑, 𝑟33𝑑)

(2.6)

It’s important to note that the atan2 function effectively manages situations involving division by

zero. The second variation, applied in the context of the ETS-MARSE, follows the order 𝑋𝑌𝑍 ,
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as shown below:

𝑇𝑥 (𝛼𝑑)𝑇𝑦 (𝛽𝑑)𝑇𝑧 (𝛾𝑑) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐(𝛽𝑑)𝑐(𝛾𝑑) −𝑐(𝛽𝑑)𝑠(𝛾𝑑) 𝑠(𝛽𝑑) 0

𝑐(𝛼𝑑)𝑠(𝛾𝑑) + 𝑐(𝛾𝑑)𝑠(𝛼𝑑)𝑠(𝛽𝑑) 𝑐(𝛼𝑑)𝑐(𝛾𝑑) − 𝑠(𝛼𝑑)𝑠(𝛽𝑑)𝑠(𝛾𝑑) −𝑐(𝛽𝑑)𝑠(𝛼𝑑) 0

𝑠(𝛼𝑑)𝑠(𝛾𝑑) − 𝑐(𝛼𝑑)𝑐(𝛾𝑑)𝑠(𝛽𝑑) 𝑐(𝛾𝑑)𝑠(𝛼𝑑) + 𝑐(𝛼𝑑)𝑠(𝛽𝑑)𝑠(𝛾𝑑) 𝑐(𝛼𝑑)𝑐(𝛽𝑑) 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.7)

Similarly to the 𝑍𝑌𝑋 Euler angles order, when dealing with a given desired orientation matrix,

the Euler angles that adhere to the order 𝑋𝑌𝑍 can be determined by solving Equation (2.8) with

the assistance of the atan2 function, as illustrated in Equation (2.9).

𝑇𝑥 (𝛼𝑑)𝑇𝑦 (𝛽𝑑)𝑇𝑧 (𝛾𝑑) =
⎡⎢⎢⎢⎢⎣
𝑅𝑑 03×1

01×3 1

⎤⎥⎥⎥⎥⎦ (2.8)

𝛼𝑑 = atan2(−𝑟23𝑑, 𝑟33𝑑)
𝛽𝑑 = atan2(𝑟13𝑑𝑐(𝛼𝑑), 𝑟33𝑑)

𝛾𝑑 = atan2(−𝑟12𝑑, 𝑟11𝑑)

(2.9)

Furthermore, the desired orientation can also be expressed using a unit Quaternion denoted as

q̂ = [𝑞1, 𝑞2, 𝑞3, 𝑞4]𝑇 . This Quaternion can be converted into a homogeneous transformation

matrix, as outlined in (Kuipers, 1999), as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 2𝑞2
3
− 2𝑞2

4
2𝑞2𝑞3 − 2𝑞1𝑞4 2𝑞2𝑞4 + 2𝑞1𝑞3 0

2𝑞2𝑞3 + 2𝑞1𝑞4 1 − 2𝑞2
2
− 2𝑞2

4
2𝑞3𝑞4 − 2𝑞1𝑞2 0

2𝑞2𝑞4 − 2𝑞1𝑞3 2𝑞3𝑞4 + 2𝑞1𝑞2 1 − 2𝑞2
2
− 2𝑞2

3
0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝑅𝑑 03×1

01×3 1

⎤⎥⎥⎥⎥⎦ (2.10)

Although the Euler angles are intuitive, by using quaternions smoother rotations between

two orientations are obtained, additionally, the Euler angles can suffer when two axes align

leading to singularities. And Quaternions are computationally efficient. In many applications,

quaternions are preferred for representing and manipulating 3D rotations, especially in computer
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graphics, robotics, and simulations, due to their advantages in terms of interpolation, avoiding

singularities, and efficiency. However, Euler angles can still be useful in situations where

human interpretability or simplicity is more important, as long as their limitations are carefully

managed.

2.1.3 Denavit-Hartenberg conventions

There are multiple methods for characterizing a kinematic chain through sequential rotations and

translations with few parameters. Within the academic literature, two predominant conventions

have emerged: the modified Denavit-Hartenberg (mDH) convention and the standard Denavit-

Hartenberg (DH) convention (Craig, 2005). These conventions primarily differ in the sequence

of operations and the method used to select frames for parameter computation. For the standard

DH, the homogeneous transformation between two successive frames is given by:

𝑖−1
𝑖 𝑇 = 𝑇𝑧 (𝜃𝑖)𝑇𝐷 (0, 0, 𝑑𝑖)𝑇𝐷 (𝑎𝑖, 0, 0)𝑇𝑥 (𝛼𝑖) (2.11)

where

• 𝜃𝑖 is the angle between 𝑋𝑖−1 and 𝑋𝑖 around 𝑍𝑖−1

• 𝑑𝑖 is the distance from 𝑋𝑖−1 to 𝑋𝑖 along 𝑍𝑖−1

• 𝑎𝑖 is the distance from 𝑍𝑖−1 to 𝑍𝑖 along 𝑋𝑖

• 𝛼𝑖 is the angle between 𝑍𝑖−1 and 𝑍𝑖 around 𝑋𝑖

where 𝑋∗, 𝑌∗ and 𝑍∗ are the axes for frames 𝑖 and 𝑖 − 1 as shown in Fig. 2.2. And Equation

(2.11) results in:

𝑖−1
𝑖 𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐(𝜃𝑖) −𝑐(𝛼𝑖)𝑠(𝜃𝑖) 𝑠(𝛼𝑖)𝑠(𝜃𝑖) 𝑎𝑖𝑐(𝜃𝑖)
𝑠(𝜃𝑖) 𝑐(𝛼𝑖)𝑐(𝜃𝑖) −𝑠(𝛼𝑖)𝑐(𝜃𝑖) 𝑎𝑖𝑠(𝜃𝑖)

0 𝑠(𝛼𝑖) 𝑐(𝛼𝑖) 𝑑𝑖

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.12)
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Link {i}

Figure 2.2 Standard DH parameters with 𝑖
and 𝑖 − 1 frames

Since the design of ETS-MARSE is grounded in the mDH convention, we will consistently

apply this convention in the subsequent sections. Therefore, for the mDH convention, the

homogeneous transformation between two consecutive frames can be expressed as follows:

𝑖−1
𝑖 𝑇 = 𝑇𝑥 (𝛼𝑖−1)𝑇𝐷 (𝑎𝑖−1, 0, 0)𝑇𝑧 (𝜃𝑖)𝑇𝐷 (0, 0, 𝑑𝑖) (2.13)

where

• 𝛼𝑖−1 is the angle between 𝑍𝑖−1 and 𝑍𝑖 around 𝑋𝑖−1

• 𝑎𝑖−1 is the distance from 𝑍𝑖−1 to 𝑍𝑖 along 𝑋𝑖−1

• 𝜃𝑖 is the angle between 𝑋𝑖−1 and 𝑋𝑖 around 𝑍𝑖

• 𝑑𝑖 is the distance from 𝑋𝑖−1 to 𝑋𝑖 along 𝑍𝑖

where the 𝑖 and 𝑖 − 1 frames can be observed in Fig. 2.3. By expanding Equation (2.13) the
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Link{i-1}

Figure 2.3 Modified DH parameters with

𝑖 and 𝑖 − 1 frames

following result is obtained.

𝑖−1
𝑖 𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐(𝜃𝑖) −𝑠(𝜃𝑖) 0 𝑎𝑖−1

𝑐(𝛼𝑖−1)𝑠(𝜃𝑖) 𝑐(𝛼𝑖−1)𝑐(𝜃𝑖) −𝑠(𝛼𝑖−1) −𝑑𝑖𝑠(𝛼𝑖−1)
𝑠(𝛼𝑖−1)𝑠(𝜃𝑖) 𝑠(𝛼𝑖−1)𝑐(𝜃𝑖) 𝑐(𝛼𝑖−1) 𝑑𝑖𝑐(𝛼𝑖−1)

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.14)

Readers can confirm that the following equations are equivalent to Equation (2.13) and lead

to the same result as Equation (2.14). This equivalence arises from the specific nature of the

matrices involved in this multiplication.

𝑖−1
𝑖 𝑇 = 𝑇𝑥 (𝛼𝑖−1)𝑇𝐷 (𝑎𝑖−1, 0, 0)𝑇𝐷 (0, 0, 𝑑𝑖)𝑇𝑧 (𝜃𝑖)

= 𝑇𝐷 (𝑎𝑖−1, 0, 0)𝑇𝑥 (𝛼𝑖−1)𝑇𝐷 (0, 0, 𝑑𝑖)𝑇𝑧 (𝜃𝑖)
= 𝑇𝐷 (𝑎𝑖−1, 0, 0)𝑇𝑥 (𝛼𝑖−1)𝑇𝑧 (𝜃𝑖)𝑇𝐷 (0, 0, 𝑑𝑖)

(2.15)

In order to characterize the kinematic chain of ETS-MARSE, we employ a set of Modified

Denavit-Hartenberg (mDH) parameters, as illustrated in Table 2.1. The mDH parameters include
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the joints: SIER (Shoulder Internal/External Rotation), SFE (Shoulder Flexion/Extension), EFE

(Elbow Flexion/Extension), FPS (Forearm Pronation/Supination), WRUD (Wrist Radial/Ulnar

Deviation), and WFE (Wrist Flexion/Extension). The constants 𝑑𝑒 and 𝑑𝑤 represent the lengths

Table 2.1 Modified DH parameters Taken

from Rahman (2015)

Frame 𝛼𝑖−1 𝑎𝑖−1 𝑑𝑖 𝜃𝑖 Joint
0 0 0 0 0 Base frame

1 0 0 𝑑𝑠 𝑞1 SIER

2 − 𝜋
2

0 0 𝑞2 SFE

3 𝜋
2

0 𝑑𝑒 𝑞3 SIER

4 − 𝜋
2

0 0 𝑞4 EFE

5 𝜋
2

0 𝑑𝑤 𝑞5 FPS

6 − 𝜋
2

0 0 𝑞6 − 𝜋
2

WRUD

7 − 𝜋
2

0 0 𝑞7 WFE

of the upper arm and forearm, respectively. The constant 𝑑𝑠 denotes the distance between the

base frame and the shoulder frame. By utilizing the mDH parameters provided in Table 2.1, the
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individual homogeneous transformations for each joint results in:

0
1𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐(𝑞1) −𝑠(𝑞1) 0 0

𝑠(𝑞1) 𝑐(𝑞1) 0 0

0 0 1 𝑑𝑠

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1
2𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐(𝑞2) −𝑠(𝑞2) 0 0

0 0 1 0

−𝑠(𝑞2) −𝑐(𝑞2) 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2
3𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐(𝑞3) −𝑠(𝑞3) 0 0

0 0 −1 −𝑑𝑒
𝑠(𝑞3) 𝑐(𝑞3) 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
3
4𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐(𝑞4) −𝑠(𝑞4) 0 0

0 0 1 0

−𝑠(𝑞4) −𝑐(𝑞4) 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
4
5𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐(𝑞5) −𝑠(𝑞5) 0 0

0 0 −1 −𝑑𝑤
𝑠(𝑞5) 𝑐(𝑞5) 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
5
6𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠(𝑞6) 𝑐(𝑞6) 0 0

0 0 1 0

𝑐(𝑞6) −𝑠(𝑞6) 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
6
7𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐(𝑞7) −𝑠(𝑞7) 0 0

0 0 1 0

−𝑠(𝑞7) −𝑐(𝑞7) 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.16)

The homogeneous transformation from the 𝑖-th frame to the 𝑘-th frame is determined through a

sequence of matrix multiplications, as illustrated below:

𝑖
𝑘𝑇 = 𝑖

𝑖+1𝑇...
𝑘−1
𝑘 𝑇 (2.17)
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The forward kinematics results in Equation (2.18), where the terms 𝑠𝑞, 𝑒𝑞, and 𝑤𝑞 represent the

positions of the robot’s shoulder, elbow, and wrist, respectively, given a set of joint angle values.

⎡⎢⎢⎢⎢⎣
𝑠𝑞

1

⎤⎥⎥⎥⎥⎦ = 0
1𝑇

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣
𝑒𝑞

1

⎤⎥⎥⎥⎥⎦ = 0
4𝑇

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣
𝑤𝑞

1

⎤⎥⎥⎥⎥⎦ = 0
7𝑇

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.18)

where

𝑠𝑞 =
[
0 0 𝑑𝑠

]𝑇
(2.19)

𝑒𝑞 =
[
𝑑𝑒𝑐1𝑠2 𝑑𝑒𝑠1𝑠2 𝑑𝑠 + 𝑑𝑒𝑐2

]𝑇
(2.20)

𝑤𝑞 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−𝑑𝑤 (𝑠4(−𝑐1𝑐2𝑐3 + 𝑠1𝑠3) − 𝑐1𝑠2𝑐4) + 𝑑𝑒𝑐1𝑠2

𝑑𝑤 (𝑠4(𝑐1𝑠3 + 𝑠1𝑐2𝑐3) + 𝑠1𝑠2𝑐4) + 𝑑𝑒𝑠1𝑠2

𝑑𝑠 + 𝑑𝑤 (𝑐2𝑐4 − 𝑠2𝑐3𝑠4) + 𝑑𝑒𝑐2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.21)

The frames 0
1
𝑇, 0

2
𝑇, . . . , 0

7
𝑇 , obtained using Equation (2.17) for ETS-MARSE, can be visualized

in Matlab as shown in Fig. 2.4. To achieve this, modify the code used to generate Fig. 2.1,

with the joint angles set to 𝑞4 = 𝜋/2 and the rest of the joints set to zero. It’s worth noting

that plotting these frames in Matlab can provide valuable learning opportunities for beginners.

While plotting keep in mind that the z-axis and y-axis appear reversed due to the orientation of

the base frame.

2.2 Inverse kinematics

The inverse kinematics problem involves determining the joint angles within a kinematic chain

that lead to a desired frame, encompassing the desired position and orientation, as depicted

below:

𝑇𝑑 =

⎡⎢⎢⎢⎢⎣
𝑅𝑑 𝑤𝑑

01×3 1

⎤⎥⎥⎥⎥⎦ (2.22)
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Figure 2.4 ETS-MARSE frames (red for

x-axis, green for y-axis and blue for z-axis)

where 𝑤𝑑 = [𝑤𝑥𝑑, 𝑤𝑦𝑑, 𝑤𝑧𝑑]𝑇 , and 𝑅𝑑 defined in Equation (2.4) represent the desired position

and orientation, respectively. The ETS-MARSE is a redundant robot with 7 degrees of

freedom, enabling it to reach the same end-effector position and orientation using different joint

configurations. By separating the inverse kinematics into inverse position and orientation, this

problem can be effectively solved in two stages. The first stage involves finding the first four

joint values to attain the desired end-effector position, typically accomplished using the swivel

angle approach. The second stage focuses on determining the last three joint values to achieve

the desired end-effector orientation.
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2.2.1 Swivel angle approach

The swivel angle approach was developed to handle the challenge of parameterizing the infinite

solutions when mapping four joints to a 3D position in Cartesian space, as described in

(Tolani & Badler, 1996). The core concept behind the swivel angle approach involves the use of a

rotating frame with axes labeled as 𝑥𝑠𝑤 , 𝑦𝑠𝑤 , and 𝑧𝑠𝑤 (as shown in Fig. 2.5) to establish a suitable

elbow position in an anthropomorphic manner, determined by a swivel angle 𝜙. The rotating

Figure 2.5 Swivel angle frame

frame is computed based on the robot’s shoulder position 𝑠𝑞 and the desired wrist position 𝑤𝑑 .

It’s important to emphasize that the shoulder position 𝑠𝑞 remains fixed, as illustrated in Equation

(2.19). Consequently, the configuration of the rotating frame is solely dependent on the desired

end-effector position 𝑤𝑑 . The vector 𝑧𝑠𝑤 , which serves as the rotation axis, can be computed as
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follows:

𝑧𝑠𝑤 =
𝑠𝑞 − 𝑤𝑑

| |𝑠𝑞 − 𝑤𝑑 | |
(2.23)

The vector 𝑥𝑠𝑤 is defined as:

𝑥𝑠𝑤 =
−𝑧𝑎 + (𝑧𝑎 · 𝑧𝑠𝑤)𝑧𝑠𝑤

| | − 𝑧𝑎 + (𝑧𝑎 · 𝑧𝑠𝑤)𝑧𝑠𝑤 | |
(2.24)

Here, the "·" symbol represents the dot product, and 𝑧𝑎 = [0, 0, −1]𝑇 is an arbitrary vector

employed to derive the 𝑥𝑠𝑤 vector and to define the zero position of the swivel angle. To finalize

the construction of the rotating frame, the 𝑦𝑠𝑤 vector is determined using the cross product, as

shown below:

𝑦𝑠𝑤 = 𝑧𝑠𝑤 × 𝑥𝑠𝑤 (2.25)

Please note when vectors 𝑧𝑠𝑤 and 𝑥𝑠𝑤 are aligned the cross product will result in an invalid

rotation frame. Then, after obtaining the rotating frame, it is necessary to determine its center

𝑐𝑠𝑤 and the angle 𝛼. The angle 𝛼 can be found using the following equation:

𝛼 = acos

(
𝑑2
𝑤 − 𝑑2

𝑒 − ||𝑤𝑑 − 𝑠𝑞 | |2
−2𝑑𝑒 | |𝑤𝑑 − 𝑠𝑞 | |

)
(2.26)

and the center of the rotating frame is computed as:

𝑐𝑠𝑤 = −𝑐(𝛼)𝑑𝑒𝑧𝑠𝑤 + 𝑠𝑞 (2.27)

Hence, the elbow position in terms of the swivel angle 𝜙 can be calculated as follows:

𝑒𝜙 = 𝑐𝑠𝑤 + 𝑑𝑒𝑠(𝛼) (𝑐(𝜙)𝑥𝑠𝑤 + 𝑠(𝜙)𝑦𝑠𝑤) (2.28)

Note that 𝑒𝜙 can mathematically reach any position in the circular representation displayed in

Fig. 2.5. In the same figure, a positive choice for the swivel angle 𝜙 has been made, leading to a

natural placement of the right elbow on the right side of the body. However, it’s worth noting

that depending on the method used to calculate 𝑧𝑠𝑤 , achieving the aforementioned natural elbow
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configuration may require a negative value for 𝜙. For example, a negative 𝜙 is required if the

vectors 𝑧𝑠𝑤 and 𝑐𝑠𝑤 are instead computed as:

𝑧𝑠𝑤 =
𝑤𝑑 − 𝑠𝑞

| |𝑤𝑑 − 𝑠𝑞 | |
𝑐𝑠𝑤 = 𝑐(𝛼)𝑑𝑒𝑧𝑠𝑤 + 𝑠𝑞

(2.29)

Readers can discern the distinctions between the equations used to compute 𝑧𝑠𝑤 and 𝑐𝑠𝑤 by

making a visual comparison between Fig. 2.5 and Fig. 2.6.

Figure 2.6 Swivel angle frame (negative angle)
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2.2.2 Swivel angle estimation

Selecting an appropriate swivel angle is a challenging task, and it can vary depending on the

specific situation. The human brain intuitively selects a swivel angle, and it’s often difficult

to determine if there’s a unique swivel angle for every desired wrist position and orientation.

Consequently, various techniques have been proposed to estimate a suitable swivel angle. For

example, the Newton-Raphson method (Craig, 2005), aims to find the shortest path between two

given targets while minimizing energy. Alternatively, some methods optimize mathematical

functions, such as discomfort indices (Zhao et al., 2014). More recently, machine learning

techniques have been applied for this purpose (Lauretti et al., 2018). A comparison with

measured data was conducted (Bedolla-Martinez et al., 2023) and presented in Chapter 3 of this

thesis, and some results are presented in Fig. 2.7.
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Figure 2.7 Swivel angle estimation
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2.2.3 Inverse position

To compute the first four joint values of ETS-MARSE in order to attain a specific position, you

need both the desired wrist position 𝑤𝑑 and elbow position 𝑒𝑑 = [𝑒𝑥𝑑, 𝑒𝑦𝑑, 𝑒𝑧𝑑]𝑇 . It’s worth

mentioning that 𝑒𝑑 can be derived from 𝑒𝜙 given in (2.28) or directly measured using a motion

capture system. Consequently, the values for joints 1 and 2 are determined as follows:

𝑞1 = a𝑡𝑎𝑛2(𝑒𝑦𝑑, 𝑒𝑥𝑑)
𝑞2 = a𝑡𝑎𝑛2(±

√
𝑒2
𝑥𝑑 + 𝑒2

𝑦𝑑, 𝑒𝑧𝑑 − 𝑑𝑠)
(2.30)

The value for joint 3 can also be determined analytically. By substituting 𝑤𝑑 = [𝑤𝑥𝑑, 𝑤𝑦𝑑, 𝑤𝑧𝑑]𝑇
into Equation (2.21) and then multiplying both sides by (0

1
𝑇1

2
𝑇)−1, the following equation is

obtained:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑𝑤𝑐(𝑞3)𝑠(𝑞4)
−𝑑𝑒 − 𝑑𝑤𝑐(𝑞4)
𝑑𝑤𝑠(𝑞3)𝑠(𝑞4)

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤𝑥𝑑𝑐(𝑞1)𝑐(𝑞2) + 𝑤𝑦𝑑𝑠(𝑞1)𝑐(𝑞2) − 𝑤𝑧𝑑𝑠(𝑞2) + 𝑑𝑠𝑠(𝑞2)
−𝑤𝑥𝑑𝑐(𝑞1)𝑠(𝑞2) − 𝑤𝑦𝑑𝑠(𝑞1)𝑠(𝑞2) − 𝑤𝑧𝑑𝑐(𝑞2) + 𝑑𝑠𝑐(𝑞2)

−𝑤𝑥𝑑𝑠(𝑞1) + 𝑤𝑦𝑑𝑐(𝑞1)
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.31)

Then

𝑞3 = a𝑡𝑎𝑛2(−𝑤𝑥𝑑𝑠(𝑞1) + 𝑤𝑦𝑑𝑐(𝑞1), 𝑤𝑥𝑑𝑐(𝑞1)𝑐(𝑞2) + 𝑤𝑦𝑑𝑠(𝑞1)𝑐(𝑞2) − 𝑤𝑧𝑑𝑠(𝑞2) + 𝑑𝑠𝑠(𝑞2)) (2.32)

The value of joint 4 does not depend on the swivel angle and it is computed by:

𝑞4 = 𝜋 ± acos

(
𝑑2
𝑤 + 𝑑2

𝑒 − ||𝑤𝑑 − 𝑠𝑞 | |2
2𝑑𝑒𝑑𝑤

)
(2.33)

2.2.4 Inverse orientation

Using the desired orientation matrix 𝑅𝑑 from Equation 2.4, the joint angles for the last three joints

can be computed. It’s important to highlight that the matrix 4
7
𝑇 encompasses the orientation of
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the end-effector resulting in:

4
7𝑇 = 4

5𝑇
5
6𝑇

6
7𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠5𝑠7 + 𝑐5𝑠6𝑐7 𝑠5𝑐7 − 𝑐5𝑠6𝑠7 𝑐5𝑐6 0

−𝑐6𝑐7 𝑐6𝑠7 𝑠6 −𝑑𝑤
−𝑐5𝑠7 + 𝑠5𝑠6𝑐7 −𝑐5𝑐7 − 𝑠5𝑠6𝑠7 𝑠5𝑐6 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.34)

Using the matrices 𝑅𝑑 and 4
7
𝑇 the following relation is built

4
7𝑇 = 0

4𝑇
−1

⎡⎢⎢⎢⎢⎣
𝑅𝑑 03×1

01×3 1

⎤⎥⎥⎥⎥⎦ (2.35)

Developing the right-hand part of (2.35), one obtains:

4
7𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑜11 𝑜12 𝑜13 𝑜14

𝑜21 𝑜22 𝑜23 𝑜24

𝑜31 𝑜32 𝑜33 𝑜34

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.36)

Considering (2.34) and (2.36), the solution for 𝑞6 is:

𝑞6 = a𝑡𝑎𝑛2
(
𝑜23, 𝑐6

)
(2.37)

where 𝑐6 = ±
√
𝑜2

13
+ 𝑜2

33
. The solution for 𝑞5 is:

𝑞5 = a𝑡𝑎𝑛2
(
𝑜33, 𝑜13

)
(2.38)

The solution of 𝑞7 is:

𝑞7 = a𝑡𝑎𝑛2
(
𝑜22,−𝑜21

)
(2.39)
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2.3 Trajectory generation

Two primary categories of trajectories exist Joint-space and Task-space trajectories. This section

will elucidate both Joint-space and Task-space trajectories (Biagiotti & Melchiorri, 2008).

2.3.1 Joint-space polynomial trajectories

While polynomial trajectories are utilized for both joint-space and task-space, this section focuses

on joint-space polynomial trajectories, with the implementation for task-space being relatively

straightforward. Two types of polynomial trajectories are commonly used: third-order and

fifth-order. The third-order trajectory enables the specification of initial position and velocity

(𝑞𝑖𝑛𝑖, �𝑞𝑖𝑛𝑖), final position and velocity (𝑞 𝑓 𝑖𝑛, �𝑞 𝑓 𝑖𝑛), and initial and final time (𝑡𝑖𝑛𝑖, 𝑡 𝑓 𝑖𝑛).

On the other hand, the fifth-order trajectory offers the same parameters as the third-order type and,

in addition, allows for the definition of initial and final accelerations ( �𝑞𝑖𝑛𝑖 and �𝑞 𝑓 𝑖𝑛), resulting in

smoother trajectories (see the comparison on Fig. 2.8). The polynomial used for the third-order

trajectory is as follows:

𝑞(𝑡) = 𝜖1 + 𝜖2𝑡 + 𝜖3𝑡
2 + 𝜖4𝑡

3

�𝑞(𝑡) = 𝜖2 + 2𝜖3𝑡 + 3𝜖4𝑡
2

�𝑞(𝑡) = 2𝜖3 + 6𝜖4𝑡

(2.40)

where 𝜖𝑖 are coefficients that depend on the previously described initial and final conditions.

𝜖1 = 𝑞𝑖𝑛𝑖

𝜖2 = �𝑞𝑖𝑛𝑖

𝜖3 =
−3(𝑞𝑖𝑛𝑖 − 𝑞 𝑓 𝑖𝑛) − (2 �𝑞𝑖𝑛𝑖 + �𝑞 𝑓 𝑖𝑛) (𝑡 𝑓 𝑖𝑛 − 𝑡𝑖𝑛𝑖)

(𝑡 𝑓 𝑖𝑛 − 𝑡𝑖𝑛𝑖)2

𝜖4 =
2(𝑞𝑖𝑛𝑖 − 𝑞 𝑓 𝑖𝑛) + ( �𝑞𝑖𝑛𝑖 + �𝑞 𝑓 𝑖𝑛) (𝑡 𝑓 𝑖𝑛 − 𝑡𝑖𝑛𝑖)

(𝑡 𝑓 𝑖𝑛 − 𝑡𝑖𝑛𝑖)3

(2.41)
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On the other hand, the fifth-order polynomial is defined as:

𝑞(𝑡) = 𝜖1 + 𝜖2𝑡 + 𝜖3𝑡
2 + 𝜖4𝑡

3 + 𝜖5𝑡
4 + 𝜖6𝑡

5

�𝑞(𝑡) = 𝜖2 + 2𝜖3𝑡 + 3𝜖4𝑡
2 + 4𝜖5𝑡

3 + 5𝜖6𝑡
4

�𝑞(𝑡) = 2𝜖3 + 6𝜖4𝑡 + 12𝜖5𝑡
2 + 20𝜖6𝑡

3

(2.42)

where the coefficients are in function of the desired initial and final conditions.

𝜖1 = 𝑞𝑖𝑛𝑖

𝜖2 = �𝑞𝑖𝑛𝑖
𝜖3 =

1

2
�𝑞𝑖𝑛𝑖

𝜖4 =
1

2(𝑡 𝑓 𝑖𝑛 − 𝑡𝑖𝑛𝑖)3

[
20(𝑞 𝑓 𝑖𝑛 − 𝑞𝑖𝑛𝑖) − (8 �𝑞 𝑓 𝑖𝑛 + 12 �𝑞𝑖𝑛𝑖) (𝑡 𝑓 𝑖𝑛 − 𝑡𝑖𝑛𝑖) − (3 �𝑞 𝑓 𝑖𝑛 − �𝑞𝑖𝑛𝑖) (𝑡 𝑓 𝑖𝑛 − 𝑡𝑖𝑛𝑖)2

]
𝜖5 =

1

2(𝑡 𝑓 𝑖𝑛 − 𝑡𝑖𝑛𝑖)4

[
30(𝑞𝑖𝑛𝑖 − 𝑞 𝑓 𝑖𝑛) + (14 �𝑞 𝑓 𝑖𝑛 + 16 �𝑞𝑖𝑛𝑖) (𝑡 𝑓 𝑖𝑛 − 𝑡𝑖𝑛𝑖 𝑓 ) + (3 �𝑞 𝑓 𝑖𝑛 − 2 �𝑞𝑖𝑛𝑖) (𝑡 𝑓 𝑖𝑛 − 𝑡𝑖𝑛𝑖)2

]
𝜖6 =

1

2(𝑡 𝑓 𝑖𝑛 − 𝑡𝑖𝑛𝑖)5

[
12(𝑞 𝑓 𝑖𝑛 − 𝑞𝑖𝑛𝑖) − 6( �𝑞 𝑓 𝑖𝑛 + �𝑞𝑖𝑛𝑖) (𝑡 𝑓 𝑖𝑛 − 𝑡𝑖𝑛𝑖 𝑓 ) − ( �𝑞 𝑓 𝑖𝑛 − �𝑞𝑖𝑛𝑖) (𝑡 𝑓 𝑖𝑛 − 𝑡𝑖𝑛𝑖)2

]
(2.43)

A comparison of the third-order and fifth-order trajectories is presented in Fig. 2.8 where a

smoother acceleration is achieved by the fifth-order trajectory type. The trajectory is composed

of two segments, for Segment 1, the initial position is 𝑞𝑖𝑛𝑖 = 0, the final position is 𝑞 𝑓 𝑖𝑛 = 2𝜋,

and the initial and final times are 𝑡𝑖𝑛𝑖 = 0 𝑠𝑒𝑐 and 𝑡 𝑓 𝑖𝑛 = 2 𝑠𝑒𝑐, respectively. Initial and final

velocities and accelerations are constrained to be zero for this segment. In Segment 2, the

initial conditions are equal to the final conditions of the previous segment. The final position is

𝑞 𝑓 𝑖𝑛 = 0, and the final time is 𝑡 𝑓 𝑖𝑛 = 4 𝑠𝑒𝑐, with final velocities and accelerations similarly held

at zero.

2.3.2 Task-space trajectories

A task-space trajectory includes a series of end-effector positions and orientations. Consider a

parametric function that exhibits an infinity-shaped trajectory, as illustrated in Fig. 2.9. With
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Figure 2.8 Third-order and fifth-order trajectories

comparison

𝑇𝑠𝑖𝑚 as the trajectory time, 𝜙 as a fixed swivel angle for simplicity. The Euler angles 𝛼𝑑 , 𝛽𝑑 ,

and 𝛾𝑑 define the desired orientation matrix (fixed for simplicity). The desired end-effector

position defined by the parametric function 𝑤𝑑 = [𝑤𝑥𝑑, 𝑤𝑦𝑑, 𝑤𝑧𝑑] from time 0 to 𝑇𝑠𝑖𝑚. The

corresponding joint-space solution is presented in Fig. 2.10.

𝑇𝑠𝑖𝑚 = 8 𝑠𝑒𝑐, 𝑡 = 0 → 𝑇𝑠𝑖𝑚, 𝜙 = 45◦

𝛼𝑑 = 180◦, 𝛽𝑑 = 5◦, 𝛾𝑑 = 5◦

𝑤𝑥𝑑 = 0.267 + 1

8
𝑐(𝜋/5) (1 − 𝑐(2𝜋𝑡/𝑇𝑠𝑖𝑚)), 𝑤𝑦𝑑 =

1

8
𝑠(4𝜋𝑡/𝑇𝑠𝑖𝑚)

𝑤𝑧𝑑 = 0.25 + 1

8
𝑠(𝜋/5) (1 + 𝑐(2𝜋𝑡/𝑇𝑠𝑖𝑚))

(2.44)
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Figure 2.9 Infinity shape trajectory

Figure 2.10 Joint-space trajectory
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2.4 Feedback controller design

In the typical process of designing a feedback controller, the initial steps involve a feedback

linearization procedure aimed at compensating for known system dynamics. Subsequently,

when dealing with this uncertain linear system, the development of a virtual control strategy

becomes essential to address any remaining unknown dynamics. Many feedback controllers

necessitate the use of an equivalent control, which characterizes the system’s behavior during the

steady-state phase, and a reaching law, which governs the system’s behavior during the transient

phase.

2.4.1 Feedback linearization

The dynamics of the studied exoskeleton are given in the following standard form:

𝑀 (𝜃) �𝜃 + 𝐶 (𝜃, �𝜃) �𝜃 + 𝐺 (𝜃) = 𝜏 + 𝜏𝑢 (2.45)

where 𝜃 ∈ R𝑛, �𝜃 ∈ R𝑛 and �𝜃 ∈ R𝑛 are the joint angular position, velocity, and acceleration

respectively, 𝑀 (𝜃) ∈ R𝑛×𝑛 is the inertia matrix, 𝐶 (𝜃, �𝜃) ∈ R𝑛×𝑛 is the Coriolis and centrifugal

matrix, 𝐺 (𝜃) ∈ R𝑛 is the gravitational force vector, 𝜏 is the torque applied by the motors and

𝜏𝑢 is the unknown dynamics e.g. external disturbances, model uncertainties and human-robot

interaction forces. Notice that 𝑛 is the number of DoF and is equal to 7 in our case.

By using the known dynamics of (2.45), a nominal control law is obtained as follows:

𝜏 = 𝑀 (𝜃)𝜈 + 𝐶 (𝜃, �𝜃) �𝜃 + 𝐺 (𝜃) (2.46)

where 𝜈 is a virtual control input that will be designed in the subsequent part. Substituting (2.46)

into (2.45) yields:

�𝜃 = 𝜈 + 𝑤𝑢 (2.47)

where 𝑤𝑢 = 𝑀−1(𝜃)𝜏𝑢.
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2.4.2 Virtual control

The virtual control serves the purpose of guiding the system from the transient phase to the

steady-state phase, taking into account the tracking error. It’s essential for the uncertain dynamics

denoted as 𝑤𝑢 to be effectively influenced and dominated by the virtual control 𝜈 throughout the

control process to ensure convergence to a small region or ultimately to zero at a specific time.

Virtual control typically encompasses equivalent and reaching control laws.

𝜈 = 𝜈𝑒𝑞 + 𝜈𝑟𝑒𝑎 (2.48)

Let’s consider an SMC approach with the following sliding surface:

𝑠 = �𝑒 + 𝑓 (𝑒) (2.49)

where 𝑒 = 𝜃 − 𝜃𝑑 , with 𝜃𝑑 as the desired reference. And 𝑓 (𝑒) is in function of the error 𝑒. Taking

the derivative of the sliding surface results in:

�𝑠 = �𝑒 + �𝑓 (𝑒) �𝑒 (2.50)

Then substituting the nominal parts of (2.47) and (2.48) in the Equation (2.50) yields:

�𝑠 = �𝜃 − �𝜃𝑑 + �𝑓 (𝑒) �𝑒
�𝑠 = 𝜈 − �𝜃𝑑 + �𝑓 (𝑒) �𝑒
�𝑠 = 𝜈𝑒𝑞 + 𝜈𝑟𝑒𝑎 − �𝜃𝑑 + �𝑓 (𝑒) �𝑒

�𝑠 − 𝜈𝑟𝑒𝑎 = 𝜈𝑒𝑞 − �𝜃𝑑 + �𝑓 (𝑒) �𝑒

(2.51)

By setting �𝑠 = 𝜈𝑟𝑒𝑎 in the previous equation, the equivalent control can be computed as:

𝜈𝑒𝑞 = �𝜃𝑑 − �𝑓 (𝑒) �𝑒 (2.52)



40

It’s worth emphasizing that, in most instances, the equivalent control primarily influences the

system’s dynamics during the steady-state phase, while the reaching law is selected to govern

the behavior during the reaching phase. Consequently, when deciding on the reaching law 𝜈𝑟𝑒𝑎,

it’s crucial to take into account the maximum value of the unknown dynamic 𝑤𝑢.

2.4.3 Error dynamics

Once the equivalent control is properly defined by selecting an appropriate 𝑓 (𝑒) function and a

reaching law 𝜈𝑟𝑒𝑎, the system’s error dynamics can be determined by substituting the virtual

control 𝜈 from Equation (2.48) into the derivative of the sliding surface defined in Equation

(2.50).

�𝑠 = �𝑒 + �𝑓 (𝑒) �𝑒
�𝑠 = 𝜈𝑟𝑒𝑎 + �𝜃𝑑 − �𝑓 (𝑒) �𝑒 − �𝜃𝑑 + �𝑓 (𝑒) �𝑒 + 𝑤𝑢

�𝑠 = 𝜈𝑟𝑒𝑎 + 𝑤𝑢

(2.53)

The stability analysis hinges on the choice of the reaching law 𝜈𝑟𝑒𝑎, and in most cases, it

is sufficient to assume that | |𝑤𝑢 | | < | |𝜈𝑟𝑒𝑎 | | for all time. However, certain methods like the

super-twisting or backstepping approach, as described in (Kali et al., 2018), demand a distinct

mathematical procedure for stability analysis.

2.5 Prescribed performance control

Prescribed performance control is a methodology that allows explicitly specifying and achieving

the desired control performance in a systematic and structured manner, making it a valuable

tool in various control applications. The specifications can include requirements for tracking a

reference signal, achieving a specific settling time, and minimizing overshoot.
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Figure 2.11 Constraints defined by the prescribed

performance function

2.5.1 Prescribed performance development

One of the commonly used prescribed performance functions is the "exponential" function 𝜂(𝑡)
(Bu, 2023) with its derivatives defined as follows:

𝜂(𝑡) = 𝜂∞ + (𝜂0 − 𝜂∞)exp(−𝑙𝑡)
�𝜂(𝑡) = −𝑙 (𝜂0 − 𝜂∞)exp(−𝑙𝑡)
�𝜂(𝑡) = 𝑙2(𝜂0 − 𝜂∞)exp(−𝑙𝑡)

(2.54)

where 𝜂(𝑡) goes from 𝜂0 to 𝜂∞ in 𝑡 = 0 −→ ∞ as shown in Fig. 2.11. Let us define the 𝑖𝑡ℎ

constrained error as follows:

−𝜂𝜂(𝑡) < 𝑒𝑖 = 𝜃𝑖 − 𝜃𝑖𝑑 < 𝜂𝜂(𝑡) (2.55)
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where 𝜃𝑖𝑑 is the 𝑖𝑡ℎ desired reference. With 𝜂 as constraint modifier. The constrained error is

transformed into an unconstrained one 𝑧 = [𝑧1, .., 𝑧𝑛]𝑇 with first and second derivatives defined

as:

𝑧𝑖 =
1

2
ln

����
𝑒𝑖
𝜂(𝑡) + 𝜂

𝜂 − 𝑒𝑖
𝜂(𝑡)

����
�𝑧𝑖 = 𝑟𝑖𝐻1𝑖

�𝑧𝑖 = �𝑟𝑖𝐻1𝑖 + 𝑟𝑖 ( �𝑒𝑖 + 𝐻2𝑖)

(2.56)

where 𝐻1𝑖 and 𝐻2𝑖 are defined below:

𝐻1𝑖 = �𝑒𝑖 − 𝑒𝑖 �𝜂(𝑡)
𝜂(𝑡)

𝐻2𝑖 =
𝑒𝑖 �𝜂(𝑡)2

𝜂(𝑡)2
− 𝑒𝑖 �𝜂(𝑡)

𝜂(𝑡) − �𝑒𝑖 �𝜂(𝑡)
𝜂(𝑡)

(2.57)

And 𝑟 ∈ R𝑛×𝑛 and its derivative are given by:

𝑟𝑖 = − 𝜂𝜂(𝑡)
(𝑒𝑖 + 𝜂𝜂(𝑡)) (𝑒𝑖 − 𝜂𝜂(𝑡))

�𝑟𝑖 = −𝐻3𝑖𝜂

(𝑒𝑖 + 𝜂𝜂(𝑡))2(𝑒𝑖 − 𝜂𝜂(𝑡))2

(2.58)

with

𝐻3𝑖 =
(
2𝜂𝜂(𝑡)2 + 𝑒2

𝑖

)
�𝜂(𝑡) − 2𝜂(𝑡)𝑒𝑖 �𝑒𝑖 (2.59)

2.5.2 Virtual control

Now after defining 𝑧𝑖, �𝑧𝑖, and �𝑧𝑖, the prescribed performance approach can be integrated with

another controller. To that end let us consider a sliding mode control approach with a sliding

surface in function of the unconstrained error 𝑧 as follows:

𝑠 = �𝑧 + 𝐷 (𝑧) (2.60)
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where the derivative of 𝐷 (𝑧) will later serve as a part of the equivalent control. The derivative

of Equation (2.60) yields:

�𝑠 = �𝑧 + �𝐷 (𝑧) �𝑧 (2.61)

By substituting �𝑧, the nominal parts of Equations (2.47) and (2.48) in Equation (2.61) results in:

�𝑠 = �𝑟𝐻1 + 𝑟 ( �𝑒 + 𝐻2) + �𝐷 (𝑧) �𝑧
�𝑠 = �𝑟𝐻1 + 𝑟

( �𝜃 − �𝜃𝑑 + 𝐻2

) + �𝐷 (𝑧) �𝑧
�𝑠 = �𝑟𝐻1 + 𝑟

(
𝜈𝑒𝑞 + 𝜈𝑟𝑒𝑎 − �𝜃𝑑 + 𝐻2

) + �𝐷 (𝑧) �𝑧
�𝑠 − 𝑟𝜈𝑟𝑒𝑎 = �𝑟𝐻1 + 𝑟

(
𝜈𝑒𝑞 − �𝜃𝑑 + 𝐻2

) + �𝐷 (𝑧) �𝑧

(2.62)

Considering that �𝑠 = 𝑟𝜈𝑟𝑒𝑎, the equivalent control 𝜈𝑒𝑞 yields:

𝜈𝑒𝑞 = �𝜃𝑑 − 𝐻2 − 𝑟−1
( �𝑟𝐻1 + �𝐷 (𝑧) �𝑧) (2.63)

Finally, the virtual control can be written as follows:

𝜈 = 𝜈𝑒𝑞 + 𝑟𝜈𝑟𝑒𝑎 (2.64)

Note that the reader can choose the reaching law 𝜈𝑟𝑒𝑎 and the function 𝐷 (𝑧) to have a strong

control. The procedure to obtain the error dynamics is similar to that in Section 2.4.3. An

example of the prescribed performance approach with a fixed-timed SMC is developed in

Chapter 5.

2.6 Robust Model Predictive Control

Model Predictive Control (MPC) is an optimization-based approach for feedback control. Robust

MPC is specifically designed to enhance the stability and performance of control systems in the

presence of diverse sources of uncertainty. This optimization process aims to find a balance

between constraint satisfaction and control performance at each time 𝑡 (Mesbah, 2016). The
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optimization problem is subject to input and state constraints.

min
𝚷(𝑡)

𝐽 (z̄(𝑡),𝚷(𝑡))

s.t.: �̄𝑧(𝑡𝑝) = 𝐴𝑧(𝑡𝑝) + 𝐵𝜈𝑚𝑝𝑐 (𝑡𝑝)
Π(𝑡𝑝) ∈ U 	 𝐾Ω𝑡𝑢𝑏𝑒, 𝑧(𝑡) ∈ Z 	 Ω𝑡𝑢𝑏𝑒

𝜉 (𝑡 𝑓 ) ∈ Ω𝜖

(2.65)

where 	 is the Pontryagin difference. The nominal prediction model is:

�̄𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝐵𝜈𝑚𝑝𝑐 (𝑡) (2.66)

where 𝑧 ∈ R2𝑛 represents the state vector 𝑧 = [𝜃𝑇 , �𝜃𝑇 ]𝑇 . And the control input 𝜈𝑚𝑝𝑐 is obtained

from the optimal control problem in Equation (2.65), the matrices 𝐴 ∈ R2𝑛×2𝑛 and 𝐵 ∈ R2𝑛×𝑛

are defined as:

𝐴 =

⎡⎢⎢⎢⎢⎣
0𝑛×𝑛 𝐼𝑛×𝑛

0𝑛×𝑛 0𝑛×𝑛

⎤⎥⎥⎥⎥⎦ , 𝐵 =

⎡⎢⎢⎢⎢⎣
0𝑛×𝑛

𝐼𝑛×𝑛

⎤⎥⎥⎥⎥⎦ (2.67)

The prediction time 𝑡𝑝 goes from initial time 𝑡 to the end of the prediction horizon at time 𝑡 𝑓 .

And 𝚷(𝑡) = [Π(𝑡), ...,Π(𝑡 𝑓 )] is the optimized sequence of control inputs, which results in a

sequence of predicted states using the nominal model z̄(𝑡) = [𝑧(𝑡), ..., 𝑧(𝑡 𝑓 )]. The horizon cost

function is defined by:

𝐽 (z̄(𝑡),𝚷(𝑡)) = 𝐿(𝑧(𝑡 𝑓 )) +
∫ 𝑡 𝑓

𝑡
𝐼 (𝑧(𝑡𝑝),Π(𝑡𝑝))𝑑𝑡𝑝 (2.68)

where 𝐼 (𝑧(𝑡𝑝),Π(𝑡𝑝)) ∈ R+ is the stage cost function at prediction time 𝑡𝑝 defined as:

𝐼 (𝑧(𝑡𝑝),Π(𝑡𝑝)) = 1

2
𝜉 (𝑡𝑝)𝑇𝑄𝜉 (𝑡𝑝) + 1

2
Π(𝑡𝑝)𝑇 𝑅Π(𝑡𝑝) (2.69)

and the terminal cost function:

𝐿(𝑧(𝑡 𝑓 )) = 1

2
𝜉 (𝑡 𝑓 )𝑇𝑃𝜉 (𝑡 𝑓 ) (2.70)
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where the predicted error at time 𝑡𝑝 is:

𝜉 (𝑡𝑝) = 𝑧(𝑡𝑝) − 𝑧𝑑 (𝑡𝑝) (2.71)

And 𝑄 ∈ R2𝑛×2𝑛 and 𝑅 ∈ R𝑛×𝑛 are positive diagonal matrices. And 𝑃 ∈ R14×14 is a symmetric

and positive definite matrix. The dynamic programming method was developed (Bellman, 1966)

to solve the optimal control problem (2.65) but suffers from dimensional problems that reduce

the application area. Then, we choose the following feedback control law:

𝜈𝑚𝑝𝑐 (𝑡𝑝) = 𝐾𝑚𝑝𝑐𝜉 (𝑡𝑝) + Π(𝑡𝑝) (2.72)

where 𝐾𝑚𝑝𝑐 is a feedback gain obtained from the solution of the following Ricatti equation:

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 +𝑄 = 0 (2.73)

and Π(𝑡𝑝) is the solution for the optimal control problem (2.65) using gradient descend

optimization method. The theory of MPC assumes that at future time 𝑡 𝑓 , a proper 𝑃 matrix

obtained from Equation (2.73) allows optimization along an infinite horizon (Mayne et al., 2000).

2.6.1 Terminal constraint

Let us begin by defining the input and state constraints as U = {𝜈(𝑡) |𝑀 (𝜃)−1𝜏𝑚𝑖𝑛 ≤ 𝜈(𝑡) ≤
𝑀 (𝜃)−1𝜏𝑚𝑎𝑥} and Z = {𝑧(𝑡) |𝑧𝑚𝑖𝑛 ≤ 𝑧(𝑡) ≤ 𝑧𝑚𝑎𝑥} respectively. where 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 are the

torque limits, and the state constraints are 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 . Note that these constraints play a crucial

role in ensuring that the system’s behavior complies with specified limits and requirements, both

for the control inputs and the state variables, as it evolves over time. This contributes to the

overall safety and performance of the control system.

As an additional constraint, the terminal constraint Ω𝜖 or terminal region previously introduced

in Equation (2.65) serves the dual purpose of ensuring optimization feasibility and closed-loop
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Figure 2.12 Optimization feasibility with 200 steps in the

horizon length

stability. Let us use the terms initial state and terminal state referring to 𝜉 (𝑡) = [𝑒(𝑡), �̄𝑒(𝑡)]𝑇 and

𝜉 (𝑡 𝑓 ) = [𝑒(𝑡 𝑓 ), �̄𝑒(𝑡 𝑓 )]𝑇 respectively. At the time 𝑡, commencing from the initial state 𝜉 (𝑡), the

optimization is considered feasible if the terminal state 𝜉 (𝑡 𝑓 ) resides within the terminal region

Ω𝜖 .

Thus, the terminal constraint is defined by the largest possible constant 𝜖 such that 𝑢̄ ∈
𝐾𝑚𝑝𝑐Ω𝜖 ,∀ 𝜉 ∈ Ω𝜖 , where Ω𝜖 = {𝜉 ∈ R2𝑛 |𝜉𝑇𝑃𝜉 ≤ 𝜖}. With 𝑢̄ as a subset of the input constraint

U ∈ R𝑛.

The feasibility of several independent optimizations with different initial states is exemplified in

Figure 2.12, where all terminal states fall within the confines of the terminal region. It’s worth

noting that a long-horizon was employed, but this choice incurs a higher computational cost.

Conversely, Figure 2.13 illustrates another scenario with a short-horizon, wherein the terminal
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Figure 2.13 Optimization feasibility with 20 steps in the

horizon length

states are inside the terminal region but situated farther from the objective compared to the

long-horizon case.

The feasible region is the space within which initial states, located inside this region, have the

capability to reach the terminal region. It’s well established that employing longer horizons

expands the area of the feasible region, as illustrated in Figure 2.14. In this figure, the red dashed

line delineates the feasible region associated with a horizon length of 20, while the red solid line

represents the feasible region with a horizon length of 40.

Furthermore, it has been demonstrated that when combining an SMC approach with MPC, the

feasible region undergoes modifications (Incremona et al., 2017), as depicted in Figure 2.15. In

this figure, an expansion of the feasible region is illustrated by the red dashed line, in contrast to

the feasible region without the SMC approach represented by the red solid line, both for the

same horizon length.
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Feasible region
Horizon length = 20
Feasible region
Horizon length = 40
Objective
Terminal region

Figure 2.14 Feasible region for different horizon lengths

Thus, when a shorter horizon length is employed in combination with SMC and MPC, the

resulting feasible region can be equivalent to that obtained with a longer horizon length, all

while enjoying the advantage of reduced computational cost (Rubagotti et al., 2010). A visual

comparison is provided in Figure 2.16, where the red dashed line represents the resulting feasible

region with SMC and a horizon length of 10, while the red solid line corresponds to the results

obtained with a horizon length of 20 alone.

2.6.2 Tube set

Consider the uncertain linear system (2.47), that is written in matrix form as:

�𝑧 = 𝐴𝑧 + 𝐵𝜈𝑚𝑝𝑐 + 𝐵𝑤𝑢 (2.74)

The difference between the predicted and measured states is referred to as the measured

disturbance, and it signifies the model mismatch resulting from the term 𝐵𝑤𝑢 in the preceding
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Feasible region
with SMC
Objective
Terminal region
Feasible region
without SMC

Figure 2.15 Feasible region with and without SMC

equation. With the aid of the nominal prediction model in Equation (2.66) and the uncertain

linear system in Equation (2.74), the measured disturbance can be defined as follows:

𝜓̄ = 𝑧 − 𝑧

= [𝑒𝜓, �̄𝑒𝜓]𝑇
(2.75)

Through the measured disturbance 𝜓̄, a region Ω𝑡𝑢𝑏𝑒 in the state space within which the uncertain

system (Equation (2.74)) behavior is likely to lie can be modeled. The set Ω𝑡𝑢𝑏𝑒 in Equation

(2.65) is commonly referred to as the "tube set". This tube set can be constructed by utilizing

the measured disturbance 𝜓̄ computed using measured data from a previous trial (Aswani et al.,

2013). The most commonly employed techniques for building the tube set include polyhedral

approximations using a convex hull or set-membership approaches employing an ellipse.

Figure 2.17 illustrates an example of how the tube set is modeled using a convex hull based

on the measured disturbance, applied here to the 7-DoF ETS-MARSE. Additionally, in Figure
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Horizon length = 20
Without SMC
Objective
Terminal region
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with SMC

Figure 2.16 Feasible region

2.18, the tube set is depicted, and constructed from the measured disturbance using an elliptical

representation. The choice between the convex hull and ellipsoid approaches depends on the

specific control problem’s requirements. Convex hulls are often favored for their accuracy but

may come at a higher computational cost. Ellipsoids are computationally efficient and offer

conservative safety guarantees but may not capture the actual shape of the uncertainty region as

accurately.

The tube set is used to perform a worst-case analysis. This involves considering the most adverse

conditions or disturbances within the tube set and evaluating how the system behaves under these

conditions. The goal is to ensure that the system’s performance and stability are guaranteed

even in the presence of uncertainty (Mayne et al., 2005).

During system operation, the actual state trajectory is continually monitored as shown in Fig.

2.19. The tube set is used to evaluate the uncertainty associated with the current state of the

system. If the actual state remains within the tube set, it is considered consistent with the

modeled uncertainty. Also, the tube set is used to tighten the constraints for example a velocity
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Figure 2.17 Tube set modeled by a convex hull

constraint and the tightened terminal region both shown in Fig. 2.19. By using the tube set to

represent and account for uncertainty, robust control systems can provide safety and performance

guarantees, ensuring that the system remains stable and meets its objectives even in the presence

of uncertainty. The previous advantages are obtained while getting a computational cost similar
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Figure 2.18 Tube set modeled by a ellipse

to the conventional MPC. An implementation of the Robust MPC with an integral sliding mode

under learning-based optimization is developed in Chapter 4.
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Figure 2.19 Tube approach
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3.1 Introduction

Robotic manipulators are electromechanical systems widely used in several real-life and

industrial applications. Recently, these highly nonlinear systems have been introduced in

physical rehabilitation exercises, where rehabilitation exercises are defined in the task-space and

then converted to joint-space for robot control. However, the redundancy in robotic exoskeletons,

as is the case in this paper, brings many postures for the same task-space target (end-effector

position and orientation). Thus, developing an Inverse Kinematic (IK) model for a rehabilitation

robot to compute appropriate IK solutions representing natural bio-mechanical motions for

real-time control of such robots is essential.

In the literature, the kinematic properties of the upper-limb have been modeled as a 7 Degrees

of Freedom (DoF) redundant manipulator robot (Kim et al., 2011). Although the complexity

of the IK problem for redundant robots makes it impossible to obtain algebraic closed-form

solutions, the redundancy of the robot increases its dexterity (Gunasekara et al., 2013), which

can be exploited by selecting the most natural configurations for the human arm. For general

robotic manipulators, several approaches have been proposed to solve the IK problem, e.g.
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numerical approaches (Jesus et al., 2022) which are useful for a wide variety of kinematic

configurations but not suitable for real-time applications. Learning methods such as neural

networks (Duka, 2014) that model the relation between task-space targets to multiple joint angles,

without proper generalization (Su et al., 2018). For upper-limb exoskeletons, researchers have

previously attempted to mimic the natural upper-limb motion, modeling the relation between

a task-space target to joint angles and a trajectory planner parameters using neural networks

from collected data (Lauretti et al., 2018), where the modeling error leads to inaccuracy in

the end-effector positions and orientations. Also, to mimic the natural movement, researchers

attempted maximizing manipulability indices (Gams & Lenarcic, 2006), and through dynamic

and kinematic multi-objective optimization (Dalla Gasperina et al., 2020), which do not

necessarily provide compatible solutions for the upper-limb.

To overcome the problems mentioned above, the authors in (Tolani & Badler, 1996) introduced

a geometric method, the swivel angle approach, to parameterize redundancy. Contrary to

the previously mentioned works, the swivel angle approach yields accurate and valid human-

type solutions, but the choice of a proper swivel angle to reduce uncoordinated movements

between the wearer and the robot is still an open problem (Kim et al., 2012b). There is strong

experimental evidence that shows kinematic regularities of arm movement even in the presence

of kinematic redundancy (Wang et al., 2019), (Zanchettin et al., 2013). In this sense, to

estimate a proper swivel angle given a task-space target, different discomfort criteria have been

studied for online optimization: wrist discomfort or joint displacement criteria combined with

energetic approach (Almasri & Ouezdou, 2008), total potential energy (Zhao et al., 2014), and

manipulability index (Kim & Rosen, 2015). However, it is known that heuristic optimization

algorithms are inadequate for real-time implementation, especially when involving multiple

criteria, where is difficult to choose the weights, which vary from person to person and from task

to task (Campos & Calado, 2009) (e.g. Grasping or reaching tasks). Thus, in order to estimate

the swivel angle by optimizing discomfort indices for different users and tasks, a different

set of weights must be identified for each user-task combination. Moreover, the optimization

algorithms suffer from stability and convergence problems even without the presence of Jacobian

singularities (Brahmi et al., 2017b).
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To avoid the above-mentioned problems, in this work the Gaussian Process (GP) stochastic

learning technique is proposed to model offline the relationship between the task-space targets

(inputs) and the swivel angles (outputs), ensuring real-time natural IK solutions. Although

the main problem of the GP technique is the computational burden, there is usually a good

balance between model complexity and model accuracy which allows real-time robot control

implementation, as it is not the case for computationally demanding learning methods (Su et al.,

2020) and (Thies et al., 2020). The GP technique has been previously used to identify model

disturbances in low dimensional systems (Hewing et al., 2020b), but in this work, among the

existing learning models, the GP is used due to its ability to behave well with small datasets

(reducing model complexity for real-time application) and because the possibility to compute the

output uncertainty (Ostafew et al., 2016a) (relevant for future research on safe trajectory planning).

Moreover, contrary to the state-of-the-art, real-time robot control is ensured and the tuning of the

weights for the discomfort optimization methods is avoided saving time for the end-users (patients

and therapists). To the best of our knowledge, this is the first paper to propose a stochastic

learning approach for determining a proper swivel angle in real-time for robotic rehabilitation.

Additionally, for the rehabilitation approach to be complete, a feedback controller for trajectory

tracking is needed to maintain the stability of the system in the presence of external disturbances

produced by a variety of wearers with unknown upper-limb characteristics (lengths, weights, and

dexterity skills) and exercises performed in different velocities. Considering these uncertainties,

the PID linear controller is not suitable for rehabilitation exercises due to the high non-linearities

in the exoskeleton dynamics (Yu & Rosen, 2013). To compensate for non-linearities, computed

torque control (Brackbill et al., 2009), Sliding Mode (SM) control (Rahmani & Rahman, 2019),

backstepping (Brahmi et al., 2016) and time delay estimation (Fei et al., 2017) have been

proposed. However, these control techniques are not designed to operate under constrained

conditions and their performance can be compromised when input and state constraints are

considered (Yu et al., 2021). Therefore, to ensure safe operation and optimal performance

(optimality) during rehabilitation exercises, while also satisfying constraints, this paper considers

a Model Predictive Control (MPC) approach (Mayne et al., 2000).

For uncertain systems, the conventional MPC approach is unable to ensure stability (Grüne
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et al., 2017). Thus, two robust MPC approaches have been proposed in the literature: Min-

Max (Scokaert & Mayne, 1998) and Tube MPC (Langson et al., 2004). It is known that the

Min-Max approach is computationally expensive, while Tube MPC has a similar computation

burden to the conventional MPC, but its conservativeness prioritizes stability over optimality.

Despite these advances, there are still open issues in robust MPC, such as the computation

burden for longer prediction horizons needed to satisfy a terminal constraint, as is the case in

this paper.

The combination of MPC with SM has been previously proposed, and the SM controller brings

various benefits to the MPC (Zhou et al., 2001). The SM controller enables prediction horizon

length shortening in MPC (Jafari Fesharaki et al., 2020) reducing the computation burden. Also,

the SM controller reduces the difference between the nominal prediction model and the measured

states (model uncertainty) improving conservatism in MPC (Spasic et al., 2016). Moreover, the

ISM when combined with MPC, actively adapts to the model uncertainty (Rubagotti et al., 2009)

and (Incremona et al., 2017). Thus, the SM and MPC combination limits the model uncertainty

in rehabilitation exercises improving optimality (Bao et al., 2020) and the feedback linearization

combined with SM controller reduces the computation burden in the MPC, by obtaining an

uncertain linear system (Rubagotti et al., 2010). In this work, a hierarchical approach that makes

use of feedback linearization, an ISM based on the Exponential Reaching Law (ERL) (Fallaha

et al., 2011) for chattering reduction, and a robust MPC (with a terminal constraint for optimality)

is proposed. The feedback linearization is used here to convert the nonlinear system into an

equivalent uncertain linear one, while the ISM rejects the disturbances introduced by the wearer

and reduces the model uncertainty. Thus, the robust MPC addresses optimality of the resultant

uncertain linear system for safe rehabilitation exercises subject to input and state constraints for

the ETS-MARSE robotic exoskeleton. This combination allows the ISM to reduce the undesired

chattering without losing stability.

In summary, the main contributions of this paper are:

1. Propose a learning approach based on the GP technique to compute a proper swivel angle,

reducing uncoordinated movements between the robot and human arm. Providing unique

real-time human-type solutions for an upper-limb redundant exoskeleton robot.
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2. Provide a comparison between the Jacobian approach, the discomfort index approach, and

the Gaussian process learning technique. The comparison aims to show the improvement of

the proposed methodology.

3. Propose a hierarchical control approach, that enables the ISM to compensate the unknown

efforts of the wearer’s musculoskeletal system, while the robust MPC addresses the safe and

optimal evolution of the robotic exoskeleton during rehabilitation exercises subject to input

and state constraints.

This paper is structured as follows. In Section 3.2, some useful preliminaries, notations, and

definitions are introduced. In Section 3.3, the ETS-MARSE kinematics are detailed, as well as

the swivel angle approach, the human inverse kinematics, and the Gaussian Process technique.

In Section 3.4, the motion capture system and three swivel angle estimation methods are detailed.

In Section 3.5, a feedback linearization procedure is performed, then the ISM to reduce the

model uncertainty is applied to the uncertain linear system, and a robust model predictive control

approach is presented to address optimality, the recursive feasibility, and closed-loop stability

are also proven. In section 3.6, the hardware setup, experiments details and results are shown

and discussed. Finally, in section 3.7, the paper ends with the conclusions and future work.

3.2 Preliminaries

3.2.1 Notation and definitions

The terms 𝑐𝑖 and 𝑠𝑖 denote the 𝑐𝑜𝑠(𝜃𝑖) and 𝑠𝑖𝑛(𝜃𝑖) respectively. R and R𝑛 denote the 1-

dimensional and n-dimensional real numbers spaces. For the matrix 𝑀 ∈ R𝑛×𝑛, 𝑀 > 0 and

𝑀 ≥ 0 denote positive definite and semi-definite matrix 𝑀 , respectively. The matrix 𝐼𝑛×𝑛 ∈ R𝑛×𝑛

denotes the identity square matrix. The term 𝑧(𝑡) denotes the measured value of 𝑧 at time 𝑡.

The term 𝑧(𝜏) denotes the predicted values of 𝑧 at prediction time 𝜏 using a nominal prediction

model. For a matrix 𝐴 the terms 𝜆𝑚𝑎𝑥 (𝐴) and 𝜆𝑚𝑖𝑛 (𝐴) denote the maximum and minimum

eigenvalues of 𝐴. 𝑑𝑒𝑡 (𝐴) is the determinant of 𝐴. For the sets X and Y with 𝑥 and 𝑦 as its

elements, the Minkowski sum is defined as X ⊕ Y = {𝑥 + 𝑦 |𝑥 ∈ X, 𝑦 ∈ Y} and the Pontryagin
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set difference is defined as X 	 Y = {𝑥 |𝑥 ⊕ Y ⊆ X}. The function 𝑓 (·) is of class 𝑐2 if its first

and second derivatives exist and are continuous. The function 𝑓 (·) is a K function if 𝑓 (0) = 0

and it is strictly increasing. The function 𝑓 (·) is a K∞ function if it is K and unbounded. The

function 𝑓 (·, 𝑡) is a KL if it is K∞ and satisfies 𝑙𝑖𝑚𝑡→∞ 𝑓 (·, 𝑡) = 0.

3.3 ETS-MARSE’s kinematics

The ETS-MARSE (Motion Assistive Robotic-Exoskeleton for Superior Extremity) robot (Rah-

man, 2012) is a seven DoF exoskeleton redundant robot designed for upper-limb rehabilitation.

Due to its dexterity, the ETS-MARSE is able to perform a variety of passive, assisted, and

active exercises for the impaired upper-limb. The joints 1, 2 and 3 are assigned to the shoulder,

joint 4 to the elbow, and joints 5, 6 and 7 to the wrist movement. For rehabilitation purposes,

the joints are constrained for safety reasons (see Fig. 3.1). The modified Denavit-Hartenberg
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Figure 3.1 Range of motion

(mD-H) parameters (see Table 3.1) were obtained using the coordinate axes (frames) located as

shown in Fig. 3.2. From the obtained mD-H parameters, we built the individual homogeneous
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Figure 3.2 Link frame attachment

Table 3.1 Modified D-H

parameters

𝜃𝑖 𝑎𝑖−1 𝛼𝑖−1 𝑑𝑖

𝜃1 0 0 𝑑𝑠

𝜃2 0 − 𝜋
2

0

𝜃3 0 𝜋
2

𝑑𝑒

𝜃4 0 − 𝜋
2

0

𝜃5 0 𝜋
2

𝑑𝑤

𝜃6 − 𝜋
2

0 − 𝜋
2

0

𝜃7 0 − 𝜋
2

0

transformation matrix between frame 𝑖 − 1 and frame 𝑖 as follows:

𝑖−1
𝑖 𝑇 = 𝑅𝑥 (𝛼𝑖−1)𝐷𝑥𝑦𝑧 (𝑎𝑖−1, 0, 0)𝑅𝑧 (𝜃𝑖)𝐷𝑥𝑦𝑧 (0, 0, 𝑑𝑖) (3.1)
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where 𝑅𝑥 ∈ R4×4, 𝑅𝑧 ∈ R4×4 and 𝐷𝑥𝑦𝑧 ∈ R4×4 are standard rotation and translation matri-

ces (Goldstein, 1980), defined as:

𝑅𝑥 (𝛼𝑖−1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 𝑐𝛼𝑖−1
−𝑠𝛼𝑖−1

0

0 𝑠𝛼𝑖−1
𝑐𝛼𝑖−1

0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑅𝑧 (𝜃𝑖) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 0

𝑠𝜃𝑖 𝑐𝜃𝑖 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐷𝑥𝑦𝑧 (𝛿𝑥, 𝛿𝑦, 𝛿𝑧) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 𝛿𝑥

0 1 0 𝛿𝑦

0 0 1 𝛿𝑧

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)

where 𝛿𝑥 , 𝛿𝑦 and 𝛿𝑧 are the Cartesian displacements. Employing the individual homogeneous

transformation matrices, we built the homogeneous transformation between frame 0 and frame 7

as follows:

0
7𝑇 = 0

1𝑇
1
2𝑇

2
3𝑇

3
4𝑇

4
5𝑇

5
6𝑇

6
7𝑇 (3.3)

Obtaining the end-effector position 𝑤, as well as the elbow 𝑒 and shoulder 𝑠 positions, as follows:

0
1𝑇

[
0 0 0 1

]𝑇
=

[
𝑠𝑇 1

]𝑇
(3.4)

0
1𝑇

1
2𝑇

2
3𝑇

[
0 0 0 1

]𝑇
=

[
𝑒𝑇 1

]𝑇
(3.5)

0
1𝑇

1
2𝑇

2
3𝑇

3
4𝑇

[
0 0 0 1

]𝑇
=

[
𝑤𝑇 1

]𝑇
(3.6)

where

𝑠 =
[
0 0 𝑑𝑠

]𝑇
(3.7)
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𝑒 =
[
𝑑𝑒𝑐1𝑠2 𝑑𝑒𝑠1𝑠2 𝑑𝑠 + 𝑑𝑒𝑐2

]𝑇
(3.8)

𝑤 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−𝑑𝑤 (𝑠4(−𝑐1𝑐2𝑐3 + 𝑠1𝑠3) − 𝑐1𝑠2𝑐4) + 𝑑𝑒𝑐1𝑠2

𝑑𝑤 (𝑠4(𝑐1𝑠3 + 𝑠1𝑐2𝑐3) + 𝑠1𝑠2𝑐4) + 𝑑𝑒𝑠1𝑠2

𝑑𝑠 + 𝑑𝑤 (𝑐2𝑐4 − 𝑠2𝑐3𝑠4) + 𝑑𝑒𝑐2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.9)

3.3.1 Swivel angle approach

The swivel angle was proposed by (Tolani & Badler, 1996) to parameterize the infinite solutions

due to redundancy of kinematic models based on the human arm design. This geometric

approach adds a new parameter (swivel angle) that enables the development of unique closed-

form solutions. The main idea is a rotating frame (𝑢̂, 𝑣̂, 𝜂) with center at 𝑑, that is defined by the

positions of a fixed shoulder, a movable elbow and a fixed wrist (see Fig. 3.3). For a given wrist

Origin

Swivel angle

Figure 3.3 Definition of the swivel angle

desired position 𝑤𝑑 , a unit vector that defines the vector from the shoulder 𝑠 to the desired wrist

position 𝑤𝑑 can be defined by:

𝜂 =
1

‖𝑤𝑑 − 𝑠‖ (𝑤𝑑 − 𝑠) (3.10)

when the elbow moves around 𝜂, it draws a circle in a normal plane to 𝜂, the rotating frame is

completed using the following cross product.

𝑣̂ = 𝜂 × 𝑢̂ (3.11)
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where 𝑢̂ is a projection of 𝑧.

𝑢̂ =
1

‖𝑧 − (𝑧𝜂)𝜂‖ (𝑧 − (𝑧𝜂)𝜂) (3.12)

And 𝑧 is a unit vector that allows the elbow to reach the lowest height when the swivel angle is

zero.

𝑧 = [0 0 1]𝑇 (3.13)

The center of the rotating frame is defined as:

𝑑 = 𝑐𝑜𝑠(𝛼)𝑑𝑒𝜂 + 𝑠 (3.14)

where 𝛼 is an angle shown in Fig 3.3 and is calculated by:

𝑐𝑜𝑠(𝛼) = 𝑑2
𝑤 − 𝑑2

𝑒 − ‖𝑤𝑑 − 𝑠‖2

−2𝑑𝑒 ‖𝑤𝑑 − 𝑠‖ (3.15)

The radius of the circle normal to 𝜂 is defined by:

𝑟 = 𝑠𝑖𝑛(𝛼)𝑑𝑒 (3.16)

Thus the swivel angle defines the rotation about the unit vector 𝜂. Now we can compute the

position of the elbow by the swivel angle 𝜓:

𝑒(𝜓) = 𝑑 + 𝑟 [𝑐𝑜𝑠(𝜓)𝑢̂ + 𝑠𝑖𝑛(𝜓)𝑣̂] (3.17)

3.3.2 Human inverse kinematics

In this subsection, the human inverse kinematics (HIK) method for the ETS-MARSE, based on

the swivel angle is described. For a desired wrist position 𝑤𝑑 and by imposing a swivel angle

𝜓, the elbow position is known, thus redundancy is solved (Tolani & Badler, 1996). Using Eq.

(3.17) we obtain:

𝑒(𝜓) =
[
𝑒𝑥 𝑒𝑦 𝑒𝑧

]𝑇
(3.18)
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The value of 𝜃1 is computed by:

𝜃1 = a𝑡𝑎𝑛2(𝑒𝑦, 𝑒𝑥) (3.19)

where a𝑡𝑎𝑛2(·, ·) is the 4-quadrant inverse tangent function that manages the division by zero

cases. The value of 𝜃2 is computed by:

𝜃2 = a𝑡𝑎𝑛2

(
±
√
𝑒2
𝑥 + 𝑒2

𝑦, 𝑒𝑧 − 𝑑𝑠

)
(3.20)

The value of 𝜃3 is found analytically, substituting 𝑤𝑑 = [𝑤𝑑,𝑥 𝑤𝑑,𝑦 𝑤𝑑,𝑧]𝑇 by 𝑤 in (3.6) and

multiplying both sides by (0
1
𝑇1

2
𝑇)−1 yielding:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑𝑤𝑐3𝑠4

−𝑑𝑒 − 𝑑𝑤𝑐4

𝑑𝑤𝑠3𝑠4

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤𝑑,𝑥𝑐1𝑐2 + 𝑤𝑑,𝑦𝑠1𝑐2 − 𝑤𝑑,𝑧𝑠2 + 𝑑𝑠𝑠2

−𝑤𝑑,𝑥𝑐1𝑠2 − 𝑤𝑑,𝑦𝑠1𝑠2 − 𝑤𝑑,𝑧𝑐2 + 𝑑𝑠𝑐2

−𝑤𝑑,𝑥𝑠1 + 𝑤𝑑,𝑦𝑐1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.21)

Then

𝜃3 = a𝑡𝑎𝑛2(𝑠3, 𝑐3)

𝑠3 = −𝑤𝑑,𝑥𝑠1 + 𝑤𝑑,𝑦𝑐1

𝑐3 = 𝑤𝑑,𝑥𝑐1𝑐2 + 𝑤𝑑,𝑦𝑠1𝑐2 − 𝑤𝑑,𝑧𝑠2 + 𝑑𝑠𝑠2

(3.22)

The value of 𝜃4 is independent of the swivel angle value, and it is obtained by:

𝜃4 = 𝜋 ± a𝑐𝑜𝑠

(
𝑑2
𝑤 + 𝑑2

𝑒 − ‖𝑤𝑑 − 𝑠‖2

2𝑑𝑒𝑑𝑤

)
(3.23)

3.3.3 Inverse orientation

Considering equation (3.9), it is clear that the end-effector’s position is only defined by 𝜃1,

𝜃2, 𝜃3 and 𝜃4, while the orientation of the end-effector is defined by 𝜃5, 𝜃6 and 𝜃7. Let us

define a desired orientation matrix O𝑑 ∈ R4×4 which is built using the desired Euler angles
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𝑜𝑑 = [𝛾𝑑, 𝛽𝑑, 𝛼𝑑]𝑇 with the standard rotation matrices (Goldstein, 1980).

O𝑑 = 𝑅𝑧 (𝛾𝑑)𝑅𝑦 (𝛽𝑑)𝑅𝑥 (𝛼𝑑) (3.24)

where 𝑅𝑦 (𝛽𝑑) is defined as:

𝑅𝑦 (𝛽𝑑) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑐𝛽𝑑 0 𝑠𝛽𝑑

0 1 0

−𝑠𝛽𝑑 0 𝑐𝛽𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.25)

Observe that the matrix 4
7
𝑇 ∈ R4×4 contains the orientation of the end-effector given 𝜃5, 𝜃6 and

𝜃7.

4
7𝑇 = 4

5𝑇
5
6𝑇

6
7𝑇 (3.26)

The matrix 4
7
𝑇 yields:

4
7𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠5𝑠7 + 𝑐5𝑠6𝑐7 𝑠5𝑐7 − 𝑐5𝑠6𝑠7 𝑐5𝑐6 0

−𝑐6𝑐7 𝑐6𝑠7 𝑠6 −𝑑𝑤
−𝑐5𝑠7 + 𝑠5𝑠6𝑐7 −𝑐5𝑐7 − 𝑠5𝑠6𝑠7 𝑠5𝑐6 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.27)

Using the matrices O𝑑 and 4
7
𝑇 the following relation is built:

4
7𝑇 = 0

4𝑇
−1O𝑑 (3.28)

Developing the right-hand part of (3.28), one obtains:

4
7𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑜11 𝑜12 𝑜13 𝑜14

𝑜21 𝑜22 𝑜23 𝑜24

𝑜31 𝑜32 𝑜33 𝑜34

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.29)
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Considering (3.27) and (3.29), the inverse orientation solution for 𝜃5, 𝜃6 and 𝜃7 are:

𝜃5 = a𝑡𝑎𝑛2
(
𝑜33, 𝑜13

)
𝜃6 = a𝑡𝑎𝑛2

(
𝑜23, 𝑐6

)
𝜃7 = a𝑡𝑎𝑛2

(
𝑜22,−𝑜21

) (3.30)

where 𝑐6 =
√
𝑜2

13
+ 𝑜2

33
, note that the function a𝑡𝑎𝑛2(·, ·) is able to manage division by zero,

therefore, the solution remains valid.

3.4 Swivel angle estimation methods

In the current section, the MoCap system is introduced and the swivel angle estimation techniques

are detailed for comparison.

3.4.1 Motion capture system

The Kinect V2 was used in this work as a motion capture system, which is a 3D sensor developed

by Microsoft (Microsoft, 2015). By measuring the position of the shoulder 𝑠, the elbow 𝑒, the

wrist 𝑤, and the hand 𝑚 (refer to Fig. 3.4), then, the swivel angle 𝜓 and the wrist orientation 𝑜

(Euler angles) are calculated using the following equations. By considering the vectors from the

rotation frame (𝑢̂, 𝑣̂, 𝜂) and its center 𝑑, one can obtain:

⎡⎢⎢⎢⎢⎣
𝑢̂ 𝑣̂ 𝜂 𝑑

01×3 1

⎤⎥⎥⎥⎥⎦ 𝑅𝑧 (𝜓) =
⎡⎢⎢⎢⎢⎣
𝑢̂′ 𝑣̂′ 𝜂 𝑑

01×3 1

⎤⎥⎥⎥⎥⎦ (3.31)

where the vector 𝑢̂′ ∈ R3 is the vector pointing from the center of the rotation frame 𝑑 (defined

in equation (3.14)) to the measured elbow position 𝑒 defined as:

𝑢̂′ =
1

| |𝑒 − 𝑑 | | (𝑒 − 𝑑) (3.32)
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by solving (3.31) for 𝜓, we can compute the swivel angle. Please note that in the literature rarely

this relation (swivel angle from shoulder, elbow, and wrist positions) is presented although is

useful for the reader.

𝜓 = 𝑎𝑡𝑎𝑛2(𝑠𝜓/𝑑𝜓,−𝑐𝜓/𝑑𝜓) (3.33)

where

𝑠𝜓 = 𝜂𝑥𝑢̂
′
𝑧𝑢̂𝑦 − 𝜂𝑦𝑢̂

′
𝑧𝑢̂𝑥 − 𝜂𝑥𝑢̂

′
𝑦𝑢̂𝑧

+ 𝜂𝑧𝑢̂′𝑦𝑢̂𝑥 + 𝜂𝑦𝑢̂′𝑥𝑢̂𝑧 − 𝜂𝑧𝑢̂
′
𝑥𝑢̂𝑦

𝑐𝜓 = 𝜂𝑥𝑢̂
′
𝑧𝑣̂𝑦 − 𝜂𝑦𝑢̂

′
𝑧𝑣̂𝑥 − 𝜂𝑥𝑢̂

′
𝑦𝑣̂𝑧

+ 𝜂𝑧𝑢̂′𝑦𝑣̂𝑥 + 𝜂𝑦𝑢̂′𝑥 𝑣̂𝑧 − 𝜂𝑧𝑢̂
′
𝑥 𝑣̂𝑦

𝑑𝜓 = 𝜂𝑥𝑢̂𝑦𝑣̂𝑧 − 𝜂𝑥𝑢̂𝑧𝑣̂𝑦 − 𝜂𝑦𝑢̂𝑥 𝑣̂𝑧

+ 𝜂𝑦𝑢̂𝑧𝑣̂𝑥 + 𝜂𝑧𝑢̂𝑥 𝑣̂𝑦 − 𝜂𝑧𝑢̂𝑦𝑣̂𝑥

(3.34)

where ·𝑥 , ·𝑦 and ·𝑧 are the 𝑥𝑦𝑧 elements of a given vector, respectively. We assume that the

matrix built using the vectors of the rotation frame (𝑢̂, 𝑣̂, 𝜂) in (3.31) is always invertible, thus,

𝑑𝜓 is never zero. The measured orientation Euler angles are computed as follows:

𝑜 = [a𝑡𝑎𝑛2(𝜅𝑦, 𝜅𝑥), a𝑡𝑎𝑛2(𝜅𝑧, 𝜅𝑥), 𝑝𝑖] (3.35)

where 𝜅𝑥 , 𝜅𝑦 and 𝜅𝑧 are the first, second and third element of 𝜅 = 𝑚−𝑤
| |𝑚−𝑤 | | respectively.

The data is collected as follows: 1) Several subjects performed random upper-limb motions

including elbow flexion/extension combined with shoulder internal/external rotation with natural

limits (no specific limits), 2) Using the MoCap system, we measure and store the swivel angle

(output), the wrist position and orientation (input task-space target). The swivel angle was

unconstrained, which naturally varies even in simple elbow flexion/extension movements. These

movements are used to capture most of the workspace for the approaches to achieve better

generalization. We discarded a measurement when the inverse kinematic solution is outside the

established joint limits in Fig. 3.1. Thus, from the collected data, the following sets are built:

𝚿̂ = [𝜓1, ..., 𝜓4933], Ĥ = [ℎ1, ..., ℎ4933] (3.36)
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with 4933 collected data points, 𝜓𝑖 and ℎ𝑖 = [𝑤𝑇
𝑖 , 𝑜

𝑇
𝑖 ]𝑇 are the 𝑖th measurement of the swivel

angle 𝜓, the wrist position 𝑤, and the wrist orientation 𝑜, respectively. In the following

a)

Shoulder

Elbow

Wrist

Elbow
flexion/extension

b)

Shoulder

Elbow

Wrist

Shoulder internal/
external rotation

Figure 3.4 Data collection using Kinect

V2, combining a) Elbow flexion/extension

and b) Shoulder internal/external rotation

subsections, we describe the Jacobian approach, the discomfort index, and the GP methods to

estimate a proper swivel angle given a desired task-space target:

ℎ𝑑 = [𝑤𝑇
𝑑 , 𝑜

𝑇
𝑑 ]𝑇 . (3.37)

where 𝑤𝑑 is the desired wrist position and 𝑜𝑑 are the Euler angles for the wrist’s desired

orientation. Note that the discomfort index and the Gaussian process approaches require offline

weights tuning and training procedures, respectively. To that end, from the collected data

𝚿̂ and Ĥ in (3.36), we have chosen 333 random measurements to build the training set, 300

measurements for the validation set, and 4300 measurements for the test set as follows:

𝚿𝑡𝑟 = [𝜓1, ..., 𝜓333],H𝑡𝑟 = [ℎ1, ..., ℎ333]
𝚿𝑣 = [𝜓334, ..., 𝜓633],H𝑣 = [ℎ334, ..., ℎ633]
𝚿𝑡 = [𝜓634, ..., 𝜓4933],H𝑡 = [ℎ634, ..., ℎ4933]

(3.38)
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Usually, the training set is larger than the validation and test sets, but in this work due to the

GP’s ability to work with small training datasets, we have chosen the previous set lengths to

better compare the approaches.

3.4.2 Jacobian approach

The Jacobian approach is a numerical method to solve the inverse kinematics for a given

task-space target. We have considered this approach as it takes the shortest path between the

actual and target joint-space configurations using the Newton-Raphson method (Craig, 2005).

And it is defined as:

�𝜃𝑤 = 𝛼𝑤𝐽
†(𝜃𝑤) �𝑒𝑤 (3.39)

where 𝜃𝑤 ∈ R4 are the first four joint angles of the ETS-MARSE needed to locate the end-effector,

𝛼𝑤 ∈ R is a design parameter, �𝑒𝑤 ∈ R3 is the derivative of the Cartesian error 𝑒𝑤 = 𝑤𝑑 − 𝑤,

defined between the desired 𝑤𝑑 and actual 𝑤 end-effector positions. And 𝐽† ∈ R4×3 is the

pseudoinverse of the Jacobian defined as:

𝐽† = 𝐽𝑇 (𝐽𝐽𝑇 )−1 (3.40)

where 𝐽 ∈ R3×4 is the Jacobian matrix defined as:

𝐽 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝜕𝑤𝑥

𝜕𝜃1
... 𝜕𝑤𝑥

𝜕𝜃4

𝜕𝑤𝑦

𝜕𝜃1
...

𝜕𝑤𝑦

𝜕𝜃4

𝜕𝑤𝑧

𝜕𝜃1
... 𝜕𝑤𝑧

𝜕𝜃4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.41)

where 𝑤𝑥 , 𝑤𝑦 and 𝑤𝑧 are the 𝑥𝑦𝑧 elements of 𝑤 in (3.9). Note that by iterative solving (3.39),

the solutions of the first four joints of the ETS-MARSE are obtained online. Thus, the last three

joints are solved by using equation (3.30), as shown in Fig. 3.5.
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Jacobian 
approach

Joint 
angles 
1-4Task-space 

target
Eq. (37)

Inverse 
orientation

Online implementation

Joint-space
solution

Eq. (39) Eq. (30)

Figure 3.5 Block diagram for Jacobian approach

3.4.3 Discomfort index approach

Researchers have considered the use of mathematical equations to denote the discomfort amount

given a posture of the upper-limb. By optimizing a discomfort index, unique human solutions

are obtained. In this work, we have considered the following discomfort index to estimate a

proper swivel angle.

𝑓𝑑𝑖𝑠 = 𝑓 𝑗 + 𝑓𝑒 + 𝑓𝑠 (3.42)

where the joint displacement index 𝑓 𝑗 is the most used discomfort index in the literature, proposed

in (Yang et al., 2004) and defined as:

𝑓 𝑗 = 𝐸𝑇
1 (𝜃 − 𝜃𝑚)2 (3.43)

where 𝜃 ∈ R𝑛 is the actual joint position, 𝜃𝑚 ∈ R𝑛 is the center position of the joints for a given

comfortable initial posture, and 𝐸1 ∈ R𝑛 is a weighting constant vector that depends on the user

and it can be chosen as proposed in (Yang et al., 2004) or tuned from data. Note that the wrist

discomfort index is included in Eq. (3.43). Moreover, the elbow’s gravitational potential energy

is defined as:

𝑓𝑒 = 𝐸2𝑚𝑒𝑔ℎ𝑒 (3.44)

where ℎ𝑒 = −(𝑑𝑠 + 𝑑𝑒𝑐2) is the 𝑧-component of vector 𝑒 in (3.8). 𝐸2 ∈ R+ is a weighting scalar,

𝑚𝑒 is the nominal mass of the elbow and 𝑔 = 9.81𝑚/𝑠2 is the gravitational constant. Lastly, the
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rotational spring potential energy 𝑓𝑠 is defined as follows (Zhao et al., 2014):

𝑓𝑠 = 𝐸3(𝜓𝑛 − 𝜓)2 (3.45)

where 𝜓 is the actual swivel angle and 𝜓𝑛 is the natural swivel angle which depends on the task.

𝐸3 is the spring stiffness constant. Note that the potential energy of the spring is zero when the

swivel angle is equal to the natural swivel angle. The weights (𝐸1, 𝐸2, 𝐸3, and 𝜓𝑛) described in

this section are tuned offline to best estimate the measured data (swivel angle) as shown in Fig.

3.6 a), and the online implementation solves (3.46) (See Fig. 3.6 b)).

𝜓𝑖+1 = 𝜓𝑖 + 𝛼𝜓 𝜕 𝑓𝑑𝑖𝑠
𝜕𝜓𝑘

(3.46)

where 𝜓𝑖 is the swivel angle solution at optimization iteration 𝑖 and 𝛼𝜓 is a design parameter.

Swivel 
angle

Index 
discomfort

Swivel 
angleTask-space 

target
Eq. (37)

HIK

Index 
discomfort

a)
Online implementation

b)

Joint-space
solution

Offline weights identification

Gradient 
descent

Weights

Training sets
Eq. (38)

Inverse 
orientation

Joint 
angles 
1-4

Eq. (46)

Eq. (46)

Eq. (30)

Eqs. (19, 20, 22, 23)

Figure 3.6 Block diagram for discomfort index approach a)

offline weight tuning and b) online implementation
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3.4.4 Gaussian process for learning natural solutions

In this part, 𝑝 random points from the training sets 𝚿𝑡𝑟 and H𝑡𝑟 (Equation (3.38)), which are

defined as 𝚿 ∈ R1×𝑝 and H ∈ R6×𝑝 will be modeled using the Gaussian Process learning

technique. The resultant model will generate a proper swivel angle for any target that lies inside

the training set. Given an arbitrary desired position and orientation of the wrist ℎ𝑑 ∈ R6 (also

called regressor), we can model both the measured swivel angle set 𝚿 and the modeled swivel

angle 𝜓𝑑 jointly as a Gaussian distribution.

⎡⎢⎢⎢⎢⎣
𝚿𝑇

𝜓𝑑

⎤⎥⎥⎥⎥⎦ ∼ N ���0𝑝+1×1,

⎡⎢⎢⎢⎢⎣
Υ 𝑘𝑑 (ℎ𝑑)𝑇

𝑘𝑑 (ℎ𝑑) 𝑘𝑟 (ℎ𝑑, ℎ𝑑)

⎤⎥⎥⎥⎥⎦��� (3.47)

where Υ ∈ R𝑝×𝑝 is the covariance matrix. The (𝑖, 𝑗) element of Υ is equal to 𝑘𝑟 (ℎ𝑖, ℎ 𝑗 ),
𝑖 = 1 −→ 𝑝, 𝑗 = 1 −→ 𝑝 with ℎ𝑖 ∈ H and ℎ 𝑗 ∈ H. For the arbitrary regressor input ℎ𝑑 the term

𝑘𝑑 (ℎ𝑑) ∈ R1×𝑝 is defined as:

𝑘𝑑 (ℎ𝑑) = [𝑘𝑟 (ℎ𝑑, ℎ1), ..., 𝑘𝑟 (ℎ𝑑, ℎ𝑝)] (3.48)

The covariance function or kernel function used is the square exponential (Williams & Rasmussen,

2006) defined as:

𝑘𝑟 (ℎ𝑖, ℎ 𝑗 ) = 𝜎2
𝑓 exp

(
−1

2
(ℎ𝑖 − ℎ 𝑗 )𝑇 𝑙−2(ℎ𝑖 − ℎ 𝑗 )

)
+𝜎2

𝑛 𝛿𝑖 𝑗

(3.49)

It is assumed that the modeled 𝜓𝑑 is added with a zero mean noise and variance 𝜎𝑛 ∈ R+. The

Kronecker delta 𝛿𝑖 𝑗 ∈ {0, 1} is defined as:

𝛿𝑖 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑖 = 𝑗

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.50)
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The hyperparameters 𝜎𝑓 ∈ R+, 𝑙 = 𝑑𝑖𝑎𝑔( [𝑙1, ..., 𝑙6]) and 𝜎𝑛 are obtained by maximizing the

𝑙𝑜𝑔 marginal likelihood (Williams & Rasmussen, 2006) defined as:

log(𝑝𝑟 (𝚿|H)) = −1

2
𝚿Υ−1𝚿𝑇 − 1

2
𝑙𝑜𝑔(𝑑𝑒𝑡 (Υ)) − 𝑝

2
𝑙𝑜𝑔(2𝜋) (3.51)

where 𝑝𝑟 (𝚿|H) is the probability function of the observed output 𝚿 given the observed inputs

H considering the tuned hyperparameters. The mean and variance of the modeled 𝜓𝑑 given an

arbitrary input ℎ𝑑 is normally distributed (Williams & Rasmussen, 2006) and can be obtained

by:

𝜓𝑑 ∼ N(𝜓𝜇, 𝜓Σ) (3.52)

where 𝜓𝜇 and 𝜓Σ are the mean and variance of the modeled 𝜓𝑑 respectively and are defined by:

𝜓𝜇 = 𝑘𝑑 (ℎ𝑑)Υ−1𝚿𝑇 (3.53)

𝜓Σ = 𝑘𝑟 (ℎ𝑑, ℎ𝑑) − 𝑘𝑑 (ℎ𝑑)Υ−1𝑘𝑑 (ℎ𝑑)𝑇 (3.54)

Equations (3.53) and (3.54) were derived by the multivariate Gaussian linear transformation

with Equation (3.47). In this work, the variance value (3.54) was not used but for future work

about estimating the uncertainty in the predicted swivel angle for safe online trajectory planning.

The proposed swivel angle estimation approach is shown in Fig. 3.7 for a) offline training and b)

online implementation.

3.5 Robust model predictive control with integral sliding mode

To ensure safe robotic rehabilitation exercises by satisfying input and state constraints, an MPC

with ISM combination is proposed as shown in Fig. 3.8. Inspired by (Incremona et al., 2017),

first a feedback linearization to compensate for known dynamics is used, obtaining an equivalent

uncertain linear system and the ISM is used to overcome external disturbances produced by the

interaction between the exoskeleton and the wearer. Then, the robust MPC approach is used to
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Figure 3.7 Block diagram of the proposed HIK approach for

a) offline GP training and b) online real-time implementation

ensure the optimal evolution of the robot in the trajectory tracking by handling a linear system

with reduced uncertainty amount (Rubagotti et al., 2010).

(t)
Joint-space 

solution 

Robust
MPC

Eq. (82)

ISM
Eq. (68)

ETS-MARSE
Eq. (55)

+

+
-

+
Eq. (58)

Proposed controller

Figure 3.8 Block diagram for the proposed controller
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3.5.1 Feedback linearization

The ETS-MARSE’s dynamic model can be expressed by the well-known rigid body differential

equation form.

𝑀 (𝜃) �𝜃 + 𝐶 (𝜃, �𝜃) �𝜃 + 𝐺 (𝜃) + 𝐹 ( �𝜃) = Γ(𝑡) + Γ𝑑𝑖𝑠 (3.55)

where 𝜃 ∈ R𝑛 is the vector containing the angular position for each joint, with 𝑛 = 7 as the

number of joints, �𝜃 ∈ R𝑛 is the joint angular velocity vector, Γ(𝑡) ∈ R𝑛 is the generalized torques

vector, Γ𝑑𝑖𝑠 ∈ R𝑛 is the unknown disturbance forces vector, 𝑀 (𝜃) ∈ R𝑛×𝑛 is the positive definite

inertia matrix, 𝐶 (𝜃, �𝜃) ∈ R𝑛×𝑛 is the Coriolis and centrifugal forces matrix, 𝐺 (𝜃) ∈ R𝑛 is the

gravitational forces vector, and 𝐹 ( �𝜃) ∈ R𝑛 is the nonlinear friction. Let us define 𝑀0 and 𝑀𝑢

as the nominal and unknown parts of 𝑀 (𝜃). Analogously, 𝐶0, 𝐶𝑢, 𝐺0 and 𝐺𝑢 as the nominal

and unknown parts of 𝐶 (𝜃, �𝜃) and 𝐺 (𝜃) respectively. Considering the friction as an unknown

disturbance, the acceleration of the joints can be obtained as:

�𝜃 = 𝑀−1
0

(
Γ(𝑡) − 𝐶0

�𝜃 − 𝐺0

) + 𝜔0(𝑡) (3.56)

where 𝜔0(𝑡) ∈ R𝑛 represents the uncertainty model and it is defined as:

𝜔0(𝑡) = 𝑀−1
0

(
Γ𝑑𝑖𝑠 − 𝑀𝑢 �𝜃 − 𝐶𝑢 �𝜃 − 𝐺𝑢 − 𝐹 ( �𝜃)) (3.57)

A compensation torque obtained from the nominal parts of (3.55) gives.

Γ(𝑡) = 𝑀0𝜈(𝑡) + 𝐶0
�𝜃 + 𝐺0 (3.58)

where 𝜈(𝑡) ∈ R𝑛, to be designed later, is the virtual control that drives the system to the control

objective. Substituting (3.58) into (3.56), one obtains the following uncertain linear system in

state-space representation.

�𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝐵𝜈(𝑡) + 𝐵𝜔0(𝑡) (3.59)
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where 𝑧(𝑡) ∈ R2𝑛 represents the state vector 𝑧(𝑡) = [𝜃𝑇 , �𝜃𝑇 ]𝑇 . The matrices 𝐴 ∈ R2𝑛×2𝑛 and

𝐵 ∈ R2𝑛×𝑛 are defined as:

𝐴 =

⎡⎢⎢⎢⎢⎣
0𝑛×𝑛 𝐼𝑛×𝑛

0𝑛×𝑛 0𝑛×𝑛

⎤⎥⎥⎥⎥⎦ , 𝐵 =

⎡⎢⎢⎢⎢⎣
0𝑛×𝑛

𝐼𝑛×𝑛

⎤⎥⎥⎥⎥⎦ (3.60)

where 0𝑛×𝑛 is a zero matrix. The virtual control 𝜈(𝑡) has two parts as follows:

𝜈(𝑡) = 𝜈𝐼𝑆𝑀 (𝑡) + 𝜈𝑚𝑝𝑐 (𝑡) (3.61)

where 𝜈𝐼𝑆𝑀 (𝑡) is used to reduce the uncertainty amount 𝜔0(𝑡) in (3.59), and 𝜈𝑚𝑝𝑐 (𝑡) is the

solution to the optimal control problem. Consider the following assumptions:

Assumption 1 The input and state constraint polytopes sets U ∈ R𝑛 and Z ∈ R2𝑛 are convex,

compact and bounded, where the sets U = {𝜈(𝑡) |𝑀0
−1Γ𝑚𝑖𝑛 ≤ 𝜈(𝑡) ≤ 𝑀0

−1Γ𝑚𝑎𝑥} and

Z = {𝑧(𝑡) |𝑧𝑚𝑖𝑛 ≤ 𝑧(𝑡) ≤ 𝑧𝑚𝑎𝑥}.

Assumption 2 The unknown model disturbance 𝜔0(𝑡) ∈ W is locally Lipschitz, in other words,

𝜔0(𝑡) is locally continuous and bounded by the constant 𝜔𝑚𝑎𝑥 .

0 < ‖𝜔0(𝑡)‖ ≤ 𝜔𝑚𝑎𝑥 < ∞ (3.62)

3.5.2 Integral sliding mode

An ISM approach has been designed to reduce the uncertainty amount 𝜔0(𝑡) in (3.59), therefore,

improving optimality in the robust MPC. The integral sliding surface (Fridman et al., 2014) is

defined as:

𝜍 (𝑡) = Ξ[𝑒(𝑡) − 𝑒(0) −
∫ 𝑡

0

(𝐴𝑧(𝑡) + 𝐵𝜈𝑚𝑝𝑐 (𝑡) − �𝑧𝑑 (𝑡))]𝑑𝑡 (3.63)

where Ξ ∈ R𝑛×2𝑛 is chosen to obtain a nonsingular matrix Ξ𝐵. 𝜈𝑚𝑝𝑐 (𝑡) is the output of the

optimal control problem (3.76) which is a zero vector at time 𝑡 = 0. The state error 𝑒(𝑡) at time
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𝑡 is defined as:

𝑒(𝑡) = 𝑧(𝑡) − 𝑧𝑑 (𝑡) (3.64)

Considering the nominal dynamics, the time derivative of the sliding surface yields:

�𝜍 (𝑡) =Ξ( �𝑒(𝑡) − 𝐴𝑧(𝑡) − 𝐵𝜈𝑚𝑝𝑐 (𝑡) + �𝑧𝑑 (𝑡))
=Ξ(𝐴𝑧(𝑡) + 𝐵(𝜈𝐼𝑆𝑀 (𝑡) + 𝜈𝑚𝑝𝑐 (𝑡)) − �𝑧𝑑 (𝑡)
− 𝐴𝑧(𝑡) − 𝐵𝜈𝑚𝑝𝑐 (𝑡) + �𝑧𝑑 (𝑡))

=Ξ𝐵𝜈𝐼𝑆𝑀 (𝑡)

(3.65)

Now the Sliding Mode Control Exponential Reaching Law (Fallaha et al., 2011) is defined as:

�𝜍 (𝑡) = −𝐾 (𝜍 (𝑡))𝑠𝑖𝑔𝑛(𝜍 (𝑡)) (3.66)

where the 𝑖th element of 𝐾 (𝜍 (𝑡)) is defined for 𝑖 = 1, ..., 𝑛:

𝐾 (𝜍𝑖 (𝑡)) = 𝑑𝑖𝑎𝑔

(
𝑘𝑖

𝛿𝑖 + (1 − 𝛿𝑖)𝑒−𝛼𝑖 |𝜍𝑖 (𝑡) |𝜌𝑖
)

(3.67)

where 𝑘𝑖 ∈ R+, 𝛿𝑖 ∈ [0, 1], 𝛼𝑖 ∈ R+ and 𝜌𝑖 ∈ R+ are design parameters. Combining (3.66) and

(3.65) yields the virtual control:

𝜈𝐼𝑆𝑀 (𝑡) = (Ξ𝐵)−1 [−𝐾 (𝜍 (𝑡))𝑠𝑖𝑔𝑛(𝜍 (𝑡))] (3.68)

where the function 𝑠𝑖𝑔𝑛(𝜍𝑖) is defined as:

𝑠𝑖𝑔𝑛(𝜍𝑖) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, 𝜍𝑖 (𝑡) > 0

0, 𝜍𝑖 (𝑡) = 0

−1, 𝜍𝑖 (𝑡) < 0

(3.69)
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For the stability analysis under the ISM, consider the following Lyapunov positive definite

function of class 𝑐2 and K∞ function.

𝑉 (𝑡) = 1

2
𝜍 (𝑡)𝑇 𝜍 (𝑡) (3.70)

Considering the uncertainties, the derivative yields:

�𝑉 (𝑡) =1

2
�𝜍 (𝑡)𝑇 𝜍 (𝑡) + 1

2
𝜍 (𝑡)𝑇 �𝜍 (𝑡) = 𝜍 (𝑡)𝑇 �𝜍 (𝑡)

=𝜍 (𝑡)𝑇 (Ξ𝐵𝜈𝐼𝑆𝑀 (𝑡) + Ξ𝐵𝜔0(𝑡))
(3.71)

Substituting (3.68) into (3.71) yields:

�𝑉 (𝑡) = 𝜍 (𝑡)𝑇 (−𝐾 (𝜍 (𝑡))𝑠𝑖𝑔𝑛(𝜍 (𝑡)) + Ξ𝐵𝜔0(𝑡)) (3.72)

The asymptotic stability is ensured considering Assumption 2. Thus, the following inequality

holds:

‖𝐾 (𝜍 (𝑡))‖ > ‖Ξ𝐵‖ 𝜔𝑚𝑎𝑥, ∀ 𝑡 (3.73)

From Equation (3.73), we ensure that the uncertain linear system (3.59) is asymptotically stable

under the feedback controller (3.68). Thus, the Lyapunov function (3.70) is KL function.

Although, the ISM by itself is able to fully reject the uncertainties. However, a high chattering

will appear. So, to limit the chattering level, lower switching gains should be chosen. Thus, the

ISM deals with a part of the model uncertainties while the remaining part will be handled by the

robust MPC without stability lost. To that end, consider the resulting uncertain system from

(3.59) under the virtual control (3.61):

�𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝐵𝜈𝑚𝑝𝑐 (𝑡) + 𝐵𝜔(𝑡) (3.74)

where 𝜔(𝑡) = 𝜈𝐼𝑆𝑀 (𝑡) + 𝜔0(𝑡) is the remaining model disturbance.
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Assumption 3 The unknown model disturbance 𝜔(𝑡) ∈ W is locally Lipschitz, in other words,

𝜔(𝑡) is locally continuous and bounded by the constant 𝜔2.

0 < ‖𝜔(𝑡)‖ ≤ 𝜔2 < 𝜔𝑚𝑎𝑥 < ∞ (3.75)

Note that Assumption 3 highlights the fact that ‖𝜔0(𝑡)‖ > ‖𝜔(𝑡)‖.

3.5.3 Optimal control problem

The following optimal control problem is solved by an optimization procedure subject to input

and state constraints (Bellman, 1966). The optimization seeks tradeoffs between constraint

satisfaction (Mesbah, 2016) and the control performance at each time 𝑡.

min
𝚷(𝑡)

𝐽 (z̄(𝑡),𝚷(𝑡))

s.t.: �̄𝑧(𝜏) = 𝐴𝑧(𝜏) + 𝐵𝜈𝑚𝑝𝑐 (𝜏), 𝐼 .𝐶. 𝑧(𝑡) := 𝑧(𝑡)
Π(𝜏) ∈ U 	 𝐾Ω𝑡𝑢𝑏𝑒, 𝑧(𝑡) ∈ Z 	 Ω𝑡𝑢𝑏𝑒

𝑒(𝑡 𝑓 ) ∈ Ω𝛼

(3.76)

where the nominal prediction model is:

�̄𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝐵𝜈𝑚𝑝𝑐 (𝑡) (3.77)

and where the tube set Ω𝑡𝑢𝑏𝑒 is a convex hull set built as shown in (Aswani et al., 2013) by using

the model mismatch from a previous trial. The prediction time 𝜏 goes from initial time 𝑡 to

the end of the prediction horizon at time 𝑡 𝑓 . At each sampling time, the state of the nominal

prediction model 𝑧(𝑡) is initialized using the measured state 𝑧(𝑡), and the predicted error at

the end of the prediction horizon 𝑒(𝑡 𝑓 ) must reach the terminal region Ω𝛼 to be defined later.

And 𝚷(𝑡) = [Π(𝑡), ...,Π(𝑡 𝑓 )] is a sequence of control inputs and z̄(𝑡) = [𝑧(𝑡), ..., 𝑧(𝑡 𝑓 )] is the
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sequence of predicted states using the nominal model. The horizon cost function is defined by:

𝐽 (z̄(𝑡),𝚷(𝑡)) = 𝐿(𝑧(𝑡 𝑓 )) +
∫ 𝑡 𝑓

𝑡
𝐼 (𝑧(𝜏),Π(𝜏))𝑑𝜏 (3.78)

where 𝐼 (𝑧(𝜏),Π(𝜏)) ∈ R is the stage cost function at prediction time 𝜏 defined as:

𝐼 (𝑧(𝜏),Π(𝜏)) = 1

2
𝑒(𝜏)𝑇𝑄𝑒(𝜏) + 1

2
Π(𝜏)𝑇 𝑅Π(𝜏) (3.79)

with terminal cost function:

𝐿(𝑧(𝑡 𝑓 )) = 1

2
𝑒(𝑡 𝑓 )𝑇𝑃𝑒(𝑡 𝑓 ) (3.80)

where the predicted error at time 𝜏 is:

𝑒(𝜏) = 𝑧(𝜏) − 𝑧𝑑 (𝜏) (3.81)

And 𝑄 ∈ R2𝑛×2𝑛 and 𝑅 ∈ R𝑛×𝑛 are positive diagonal matrices. And 𝑃 ∈ R2𝑛×2𝑛 is a symmetric

and positive definite matrix to be defined later. The dynamic programming method was

developed (Bellman, 1966) to solve the optimal control problem (3.76) but suffers from

dimensional problems that reduce the area of application. Then, we choose the following

feedback control law:

𝜈𝑚𝑝𝑐 (𝜏) = 𝐾𝑚𝑝𝑐𝑒(𝜏) + Π(𝜏) (3.82)

Assumption 4 In (3.78) 𝐿 (𝑧(𝑡 𝑓 )) and 𝐼 (𝑧(𝜏),Π(𝜏)) are continuous and K functions, satisfying

𝐿(0) = 0 and 𝐼 (0, 0) = 0.

3.5.4 Terminal ingredients

The terminal ingredients are the terminal penalty and terminal region, the latter will serve as the

terminal constraint. Consider the terminal feedback controller that is not necessarily used in the

real implementation.

𝑢̄(𝑡) = 𝐾𝑚𝑝𝑐𝑒(𝑡) (3.83)
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where the gain 𝐾𝑚𝑝𝑐 ∈ R𝑛×2𝑛 is used to calculate the terminal penalty and terminal region

offline.

𝐾𝑚𝑝𝑐 = [𝑑𝑖𝑎𝑔(𝑘11, ..., 𝑘𝑛1), 𝑑𝑖𝑎𝑔(𝑘12, ..., 𝑘𝑛2)] (3.84)

where 𝑘𝑖1 < 0, 𝑘𝑖2 < 0 and 𝑘2
𝑖2 + 4𝑘𝑖1 > 0 for 𝑖 = 1, ..., 𝑛 (Dai et al., 2020). By following the

procedure proposed in (Chen & Allgöwer, 1998), we ensure recursive feasibility and closed

loop stability. It can be proved that the linear model (3.77) is controllable, then we choose a

feedback gain 𝐾𝑚𝑝𝑐 such that 𝐴 + 𝐵𝐾𝑚𝑝𝑐 is stable. We define a positive constant 𝜂 satisfying

𝜂 < −𝜆𝑚𝑎𝑥 (𝐴 + 𝐵𝐾𝑚𝑝𝑐). Now the terminal penalty matrix 𝑃 is determined by solving the

following equation.

𝐴𝑇𝜂 𝑃 + 𝑃𝐴𝜂 +𝑄 + 𝐾𝑇
𝑚𝑝𝑐𝑅𝐾𝑚𝑝𝑐 ≤ 0 (3.85)

where

𝐴𝜂 = 𝐴 + 𝐵𝐾𝑚𝑝𝑐 + 𝜂𝐼2𝑛×2𝑛 (3.86)

It is assumed that at the prediction time 𝑡 𝑓 , a proper symmetric positive definite 𝑃 matrix enables

optimization over an infinity horizon (Mayne et al., 2000). Thus, we find the largest possible

constant 𝛼 such that 𝑢̄ ∈ 𝐾𝑚𝑝𝑐Ω𝑎,∀𝑒 ∈ Ω𝛼. With Ω𝛼 = {𝑒 ∈ R2𝑛 |𝑒𝑇𝑃𝑒 ≤ 𝛼}. And 𝛼 can be

computed as proposed in (Chen & Allgöwer, 1998). Considering the value of 𝑃 obtained from

(3.85) as a proper solution, and using Lemma 1 from (Chen & Allgöwer, 1998) we ensure that

equation (3.78) satisfies:

�𝐿 + 𝐼 ≤ 0 (3.87)

Which means that the feedback controller 𝑢̄(𝑡) is invariant in the terminal region Ω𝛼 satisfying

only input constraints. In other words, once the error 𝑒 gets into Ω𝛼, it will always stay in this

region.

3.5.5 Recursive feasibility

For the recursive feasibility consider the following standard assumptions:
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Assumption 5 For the problem (3.76) at time instant 𝑡 there is a feasible and unique optimal

control sequence solution.

𝚷∗(𝑡) = [Π∗(𝑡), ..,Π∗(𝑡 𝑓 )] (3.88)

And optimal predicted state sequence.

z̄∗(𝑡) = [𝑧∗(𝑡), ..., 𝑧∗(𝑡 𝑓 )] (3.89)

Assumption 6 For the problem (3.76) at time instant 𝑡 + Δ𝑡 by construction, there exists, a

feasible but not necessarily optimal control sequence solution.

𝚷(𝑡 + Δ𝑡) = [Π∗(𝑡 + Δ𝑡), ..,Π∗(𝑡 𝑓 ), 𝑢̄(𝑡 𝑓 + Δ𝑡)] (3.90)

And feasible predicted state sequences

z̄(𝑡 + Δ𝑡) = [𝑧∗(𝑡 + Δ𝑡), ..., 𝑧∗(𝑡 𝑓 ), 𝑧(𝑡 𝑓 + Δ𝑡)] (3.91)

where Δ𝑡 is the sampling time. Due to the feasibility of the system (Assumption 5) 𝑧∗(𝑡 𝑓 ) ∈
𝑧𝑑 (𝑡 𝑓 ) ⊕ Ω𝛼. By (3.87) we know that the terminal region is invariant for the terminal controller

𝑢̄(𝑡 𝑓 +Δ𝑡) (Mayne et al., 2011), this indicates that 𝑧(𝑡 𝑓 +Δ𝑡) ∈ 𝑧𝑑 (𝑡 𝑓 ) ⊕Ω𝛼. Recursive feasibility

is obtained by induction. Also, it is obvious that the constraints are satisfied, z̄(𝑡) ∈ Z 	Ω𝛼 and

𝚷(𝑡) ∈ U 	 𝐾𝑚𝑝𝑐Ω𝛼. It can be said that if the problem (3.76) is feasible at the initial time, thus,

it is feasible for any 𝑡 > 0 satisfying input and state constraints.

Note that Assumptions 5 and 6 indicate that the system’s nominal state error 𝑒(𝑡), must be

heuristically initialized at least inside the feasible region as shown in Fig. 3.9. Also, note that

the feasible region size depends on the prediction horizon length for robust MPC optimization

with terminal constraints. The idea is that the system’s nominal state error 𝑒(𝑡) reaches the

terminal region at the end of the prediction horizon to ensure optimization feasibility. Since the

terminal controller is able to maintain the nominal state error 𝑒(𝑡) inside the terminal region for



84

the following optimization procedures, therefore recursive feasibility is obtained. If the reader

would like to initialize the states at any point outside the feasible region, the dual-mode MPC

approach can be used (Yang et al., 2021a).

Feasible
Region Terminal

region

Initial
nominal

error

Optimal
error

sequence

Figure 3.9 Physical implication of Assumptions 5 and 6

3.5.6 Closed-loop stability

The cost function (3.78) at time 𝑡 under 𝚷∗(𝑡) is

𝐽 (z̄∗(𝑡),𝚷∗(𝑡)) = 𝐿 (𝑧∗(𝑡 𝑓 )) +
∫ 𝑡 𝑓

𝑡
𝐼 (𝑧∗(𝜏),Π∗(𝜏))𝑑𝜏 (3.92)

And the cost at time 𝑡 + Δ𝑡 under 𝚷(𝑡 + Δ𝑡) is

𝐽 (z̄(𝑡 + Δ𝑡),𝚷(𝑡 + Δ𝑡)) = 𝐿 (𝑧(𝑡 𝑓 + Δ𝑡))

+
∫ 𝑡 𝑓

𝑡+Δ𝑡
𝐼 (𝑧∗(𝜏),Π∗(𝜏))𝑑𝜏 +

∫ 𝑡 𝑓 +Δ𝑡

𝑡 𝑓

𝐼 (𝑧(𝜏), 𝑢̄(𝜏))𝑑𝜏
(3.93)



85

The arithmetic difference between (3.93) and (3.92) is defined as:

Δ𝐽 (𝑡 + Δ𝑡) = 𝐽 (z̄(𝑡 + Δ𝑡),𝚷(𝑡 + Δ𝑡)) − 𝐽 (z̄∗(𝑡),𝚷∗(𝑡)) (3.94)

Expanding (3.94) yields

Δ𝐽 (𝑡 + Δ𝑡) = 𝐿 (𝑧(𝑡 𝑓 + Δ𝑡)) − 𝐿 (𝑧∗(𝑡 𝑓 ))

+
∫ 𝑡 𝑓 +Δ𝑡

𝑡 𝑓

𝐼 (𝑧(𝜏), 𝑢̄(𝜏))𝑑𝜏 −
∫ 𝑡+Δ𝑡

𝑡
𝐼 (𝑧∗(𝜏),Π∗(𝜏))𝑑𝜏

(3.95)

By integrating (3.87) from 𝜏 = [𝑡 𝑓 , 𝑡 𝑓 + Δ𝑡] considering z̄(𝑡 + Δ𝑡) yields.∫ 𝑡 𝑓 +Δ𝑡

𝑡 𝑓

𝐼 (𝑧(𝜏), 𝑢̄(𝜏))𝑑𝜏 + 𝐿 (𝑧(𝑡 𝑓 + Δ𝑡)) − 𝐿 (𝑧∗(𝑡 𝑓 )) ≤ 0 (3.96)

Thus

Δ𝐽 (𝑡 + Δ𝑡) ≤ −
∫ 𝑡+Δ𝑡

𝑡
𝐼 (𝑧∗(𝜏),Π∗(𝜏))𝑑𝜏 ≤ 0 (3.97)

The optimal cost satisfies the following condition (Jadbabaie et al., 2001):

𝐽 (𝑧∗(𝑡 + Δ𝑡),Π∗(𝑡 + Δ𝑡)) ≤ 𝐽 (𝑧∗(𝑡),Π∗(𝑡)) (3.98)

Then from (3.97), considering Assumption 4, we ensure that Δ𝐽 (𝑡 +Δ𝑡) ≤ 0 and the closed-loop

system is asymptotically stable. And there exist aK∞ function 𝛽(·, ·) andK function𝜓(·) (Limon

et al., 2009) that satisfy:

‖𝑒∗(𝑡)‖ ≤ 𝛽(‖𝑒∗(0)‖ , 𝑡) + 𝜓(𝜔2) (3.99)

For a sufficient small Δ𝑡 the measured value of 𝑧 satisfies 𝑧(𝑡 +Δ𝑡) ∈ 𝑧∗(𝑡 +Δ𝑡) ⊕Ω𝑡𝑢𝑏𝑒 implying

recursive feasibility and closed-loop stability in the real implementation (Dai et al., 2020). Now,

we describe Algorithm 3.1.
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Algorithm 3.1 Proposed controller

1: Offline:
2: Choose the weighting matrices 𝑄, 𝑅 and a proper 𝐾𝑚𝑝𝑐.

Choose 𝜂 satisfying the condition 𝜂 < −𝜆𝑚𝑎𝑥 (𝐴 + 𝐵𝐾𝑚𝑝𝑐).
Compute the terminal penalty 𝑃 by (3.85) and terminal region Ω𝛼.

Build the set Ω𝑡𝑢𝑏𝑒 from the model mismatch from a previous trial.

Set the total trajectory time 𝑇 .

3: Online:
4: while (𝑡 < 𝑇) do
5: Measure the system’s states 𝜃 (𝑡) and �𝜃 (𝑡).
6: Solve the optimal control problem (3.76) and obtain 𝜈𝑚𝑝𝑐 (3.82).

7: Compute 𝜈𝐼𝑆𝑀 (𝑡) (3.68) and the virtual control law 𝜈(𝑡) (3.61).

8: Calculate Γ(𝑡) by (3.58) and apply to the real system (3.56).

9: Let 𝑡 = 𝑡 + Δ𝑡
10: end while

3.6 Experimental set-up and results

3.6.1 Real-time system

The real-time system is composed of three processing units (see Fig. 3.10): a real-time PC (NI

PXI-8108), FPGA (NI PXI-7813R), and a Host PC. The real-time PC has an Intel dual-core

@2.53 GHz processor, and 8 GB of RAM, where the proposed HIK, the proposed controller, and

the dynamics of the 7-DOF Robotic Exoskeleton ETS-MARSE are executed. The PXI-7813R’s

FPGA is used for the analog and digital inputs and outputs to the actuators and sensors (hall

effect position sensor and current sensor). The Host PC has an Intel Core i7-4770 CPU @3.4

GHz, and 16 GB installed RAM where the GP training and discomfort index weight tuning were

performed, also for the real-time tests the Host PC is used as the user interface, for storing and

displaying the results from completed trials.
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robot
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NI PXI-
7813R

NI PXI-8108

Figure 3.10 Real-time system

3.6.2 Swivel angle estimation details

The GP training and the discomfort index weights tuning procedure were executed offline in

the Host PC, the details are shown in Table 3.2. Both procedures start with 100 random initial

model guesses to avoid local minima models, then by evaluating their performance the best 4

models are chosen (elite) and optimized using 500 gradient descent iterations. Finally, the model

with the smaller RMS validation error (the model with the best generalization) is chosen as the

final model for comparison and its RMS test error is computed (See Table 3.2). For both the GP

and discomfort index approaches, the length of the training sets are chosen differently due to the

nature of the approaches, because the number of training points defines the GP’s complexity, it

was trained choosing 𝑝 = 20 random points taken from the training data sets (3.38) (see Fig. 3.7

a)). On the other hand, the discomfort index weight tuning (see Fig. 3.6 a)) was performed with

𝑝 = 300 data points from the training data (3.38). Thus, the tuned weights are as follows:

𝐸1 = [26.5,−3.9,−46.9, 84.6, 90.7, 199.2, 40.6]𝑇

𝐸2 = 762.5, 𝐸3 = 0.2𝑁 · 𝑟𝑎𝑑, 𝜓𝑛 = 0.5𝑟𝑎𝑑
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Table 3.2 Offline training details

Discomfort index
approach

Gaussian process
approach

Initial number

of models
100 100

Number of models

to optimize (elite)
4 4

Optimizer Gradient descent Gradient ascent

Cost function RMS error
Log marginal

likelihood

Parameters

to optimize
10 8

Number of

iterations
500 500

Training set

length
300 20

Validation set

length
300 300

Test set

length
4300 4300

Offline training

time (sec)
1623.23 58.64

RMS validation

error (
√
𝑟𝑎𝑑)

0.431 0.1134

RMS test

error (
√
𝑟𝑎𝑑)

0.4129 0.11725

And the chosen parameters are:

𝜃𝑚 = [5, 5, 0, 90, 0, 0, 0]𝑇 , 𝑚𝑒 = 5𝑘𝑔

The online implementation details are shown in Table 3.3, the methods were executed in
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the real-time PC previously described. For online implementation of the Jacobian approach

and discomfort index, for each task-space target, we set 30 iterations maximum with stopping

conditions. Note that for the first task-space target the initial solution guess is provided by the

authors but for the next task-space targets the previous solution is used because it might be closer

to the new optimal solution. Then, in some cases the stopping condition can be reached before

the maximum number of iterations are completed, reducing computation time. Therefore, the

online computation time (Table 3.3) is an average approximation in both Jacobian and discomfort

index approaches. The stopping condition for the Jacobian approach of 1𝑒 − 15 meters is chosen

because the swivel angle approach (which is used in the discomfort index and GP approaches)

achieves a similar Cartesian precision for any given swivel angle. And the stopping condition of

the discomfort index approach is chosen as 1𝑒 − 6 radians because this precision is enough for

swivel angle comparison.

We have compared the swivel angle estimation approaches described in Section 3.4, to evaluate

their performance in three designed upper-limb motions a) Pick and place, b) Diagonal reaching,

and c) Natural elbow flexion/extension (which represent unseen data) as shown in Fig. 3.11.

3.6.3 Controller experiment details

For trajectory tracking comparison, two sets of tests were performed on the ETS-MARSE

robotic exoskeleton in real-time for the three upper-limb motions shown in Fig. 3.11. The first

set of tests was performed without a subject but in the presence of model uncertainties due to

unmodeled dynamics. The second set of tests was performed with three different subjects who

apply a changing force in the gravity direction using the forearm. The controllers used for the

tests without a subject are the conventional SM used in (Fallaha et al., 2011), the robust MPC

without the ISM, and the proposed controller (robust MPC with ISM). Due to high chattering,

the conventional SM was excluded from the tests with subjects. The feedback linearization

technique was performed using the nominal physical parameters of the ETS-MARSE that

can be found in (Fallaha et al., 2020). Note that the controllers do not consider the physical

characteristics of the subjects which are shown in Table 3.4. We consider the design parameters
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Table 3.3 Online implementation details

Jacobian
approach

Discomfort
index
approach

Gaussian
process
approach

Initial

condition

[5 5 0 90]𝑇
or previous

solution

0 or previous

solution
NA

Optimizer Newton-Raphson Gradient descent NA

Number of

iterations
30 30 NA

Stopping

condition
‖𝑒𝑤 ‖ < 1𝑒 − 15 𝛿𝜓 < 1𝑒 − 6 NA

Optimization

coefficient
𝛼𝑤 = 0.01 𝛼𝜓 = 0.1 NA

Average

computation

time (ms)

0.810 1.437 0.042

Table 3.4 Physical characteristics of three

subjects

Subject Sex Height Weight Age

subject-1 Male 160 cm 75 kg 31 y/o

subject-2 Female 163 cm 63 kg 25 y/o

subject-3 Male 165 cm 87 kg 41 y/o

of the conventional SM and ISM shown in Table 3.5. For the robust MPC, a prediction horizon

of 10 steps with Δ𝑡 = 1 𝑚𝑠 was used. The robust MPC’s terminal region size is specified by



91

C

B

A Initial position 16 cm

20 cm 30 cm
12 cm

A

B

C

a)

b) c)

A

B
C

40 cm

15 cm

15 cm

30 cm

45 cm

25 cm

Figure 3.11 Three upper-limb motions

used for swivel angle estimation: a) Pick

and place, b) Diagonal reaching, and c)

Natural elbow flexion/extension

𝛼 = 1.2. The weighting matrices Q and R are:

𝑄 = 𝑑𝑖𝑎𝑔(660, 3100, 100, 2500, 650, 50, 10, 1, 1, 1, 1, 1, 1, 1)
𝑅 = 0.01𝐼7×7

Choosing the following 𝐾𝑚𝑝𝑐.

𝐾𝑚𝑝𝑐 = [−𝐾𝑚𝑝𝑐1,−𝐾𝑚𝑝𝑐2]
𝐾𝑚𝑝𝑐1 = 𝑑𝑖𝑎𝑔(253, 547, 99, 492, 252, 70, 31)
𝐾𝑚𝑝𝑐2 = 𝑑𝑖𝑎𝑔(30, 33, 14, 32, 23, 12, 8)
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Table 3.5 SM design parameters

Conventional SM (Fallaha et al., 2011) Proposed controller

𝑘𝑖 𝑑𝑖𝑎𝑔( [600 600 600 200 800 200 100]) 𝑑𝑖𝑎𝑔( [20 25 25 15 50 45 35])
𝜆𝑖 𝑑𝑖𝑎𝑔( [32 26 13 38 13 5 4]) -

𝑝𝑖 - 1

𝛼𝑖 - 20

𝛿𝑖 - 0.1

Ξ - [07×7, 𝐼7×7]
Online

computation

time (ms)

0.273 0.387

By the constant 𝜂 = 18.61 satisfying 𝜂 < −𝜆𝑚𝑎𝑥 (𝐴 + 𝐵𝐾𝑚𝑝𝑐), we obtain the following elements

of the matrix 𝑃 by solving (3.85).

𝑃11 = 𝑑𝑖𝑎𝑔(662, 879, 600, 831, 661, 594, 589)
𝑃12 = 𝑃21 = 𝑑𝑖𝑎𝑔(15.9, 18.9, 14.9, 18.2, 15.9, 14.8, 14.8)
𝑃22 = 𝑑𝑖𝑎𝑔(0.78, 0.83, 0.77, 0.82, 0.78, 0.77, 0.77)

The torque constraints in 𝑁𝑚 units are:

Γ𝑚𝑎𝑥 = [25.38 50.76 30.60 17.62 15.93 6.37 6.37]𝑇

Γ𝑚𝑖𝑛 = −1 · [25.38 16.92 30.60 17.62 15.93 6.37 6.37]𝑇
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The state constraints in 𝑑𝑒𝑔 and 𝑑𝑒𝑔/𝑠𝑒𝑐 units are:

𝜃𝑚𝑎𝑥 = [70 120 80 115 85 20 60]
�𝜃𝑚𝑎𝑥 = [ 100 100 100 100 100 100 100]
𝑧𝑚𝑎𝑥 = [𝜃𝑚𝑎𝑥 �𝜃𝑚𝑎𝑥]𝑇

𝜃𝑚𝑖𝑛 = −1 · [20 5 85 5 85 25 55]
𝑧𝑚𝑖𝑛 = [𝜃𝑚𝑖𝑛 − �𝜃𝑚𝑎𝑥]𝑇

Proposed
HIK (Fig. 7b)

Joint-space
solution Proposed

Controller 
(Fig. 8)

Task-space
target

Torque

Joint angle and velocitiesOnline implementation (NI PXI-8108)

Offline training (Host PC)

Execution
time
0.042 ms

Execution time
0.387 ms

Kinect V2

Eqs. (53), (19), (20)
(22), (23) and (30) Eq. (58)

Gradient 
ascent

log marginal 
likelihood

Eq. (51)

GP
Hyperparameters

Training sets
Eq. (38)

ETS-MARSE

Figure 3.12 Block diagram of the proposed approaches

3.6.4 Results and discussion

The overall proposed scheme shown in Fig. 3.12 requires 58.64 seconds in the offline training

for 500 iterations each with 117.28 ms computation time. And the online computations require

a total time of 0.429 ms where 0.042 ms are from the proposed HIK and 0.387 ms are from

the proposed controller. For the proposed HIK part, the swivel angle, the wrist position,

and orientation were measured for each upper-limb motion in Fig. 3.11. Using the previous

data, the RMS estimation error with respect to the measured swivel angle was computed, and

compared for each estimation method (See Table 3.6). Considering the obtained results, the



94

Table 3.6 Comparison results: RMS estimation error

(𝑟𝑎𝑑)

Jacobian

approach

Discomfort

approach

Proposed

approach

Pick and

place
0.5082 0.3506 0.2154

Diagonal

reaching
0.7263 0.56 0.3970

Elbow

Flexion/extension
0.3731 0.2244 0.1151

proposed swivel angle estimation method shows a lower RMS error with respect to measured

data, implying more natural postures, therefore reducing the uncoordinated movements between

wearer and exoskeleton as demonstrated in (Kim et al., 2012a). The main disadvantage of the

parameter tuning process for the discomfort index approach is that it requires a lot of effort to find

appropriate weight values for different users and for different tasks as the offline computation

time shows in Table 3.2. Also, another disadvantage of the Jacobian and Discomfort index

approaches is the online computation time shown in Table 3.3, which are intractable for real-time

implementation.

A comparison with several related works using a learning approach for swivel angle estimation

is shown in Table 3.7 where the obtained online calculation time verifies the low computational

burden of the proposed HIK approach against models which are computationally complex or are

based on optimization methods.

For the proposed controller part, the mean of the seven joint’s RMS tracking errors are shown

in Table 3.8 (without a subject) and Table 3.9 (with three subjects). We include several figures

for subject-1 to show the performance of the robust MPC with and without ISM considering

the b) upper-limb motion in Fig. 3.11. The Cartesian tracking (See Fig. 3.13) shows a smaller

Cartesian error for the proposed controller. The trajectory tracking performance is shown in
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Table 3.7 Learning approaches comparison

Reference
Number

of DoF

Swivel

estimation

time

(ms)

Number of

validation

tests

Controller

used

(Su et al., 2018) 7 0.5 2
Not

specified

(Lauretti et al., 2018) 5 0.4 3 PID

(Su et al., 2020) 7 80 1
Not

specified

This

Paper
7 0.042 3

Robust

MPC

with

ISM

Fig. 3.14 where multiple joints are active during the test. The tracking error is shown in Fig.

3.15 where the proposed controller shows a higher precision which is not strictly necessary

for rehabilitation exercises but important for robotic systems to maintain stability and tracking

accuracy in the presence of unknown and unexpected external disturbances. The control activity

is shown in Fig. 3.16 where the force applied by subject-1 directly affects joint 4, where a

higher control activity is obtained to reject the external disturbances. Furthermore, our analysis

includes several figures illustrating the test results without a subject. Figure 3.17, 3.18, and 3.19

clearly demonstrate the inadequate tracking performance of the conventional SM. In addition,

Figure 3.20 reveals the presence of chattering during the test. It is worth noting that in order to

improve the tracking performance using the conventional SM, higher switching gains would

need to be selected. However, this would lead to an unacceptable level of chattering for the

robot’s motors. Note that the robust MPC allows the choice of a smaller switching gain 𝑘𝑖 for the

proposed controller, improving the tracking and reducing the chattering without losing stability.
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Table 3.8 RMS tracking error without Subject

(1 × 10−4𝑟𝑎𝑑)

Pick and

Place

Diagonal

reaching

Elbow

Flexion/

Extension

Conventional

SM
2109 2979 2202

Robust MPC 158 156 169

Proposed

controller
88 94 109

Table 3.9 RMS tracking error with three subjects

(1 × 10−4𝑟𝑎𝑑)

Pick and

Place

Diagonal

reaching

Elbow

Flexion/

Extension

Subject number 1 2 3 1 2 3 1 2 3

Robust MPC 264 210 274 262 205 276 332 271 339

Proposed

controller
103 95 107 110 98 116 149 120 148

3.7 Conclusions

In this paper, a comparison between the Jacobian approach, the discomfort index approach, and

the Gaussian Process for swivel angle estimation has been done. The proposed approach shows

better performance estimating the swivel angle from three upper-limb motions (not included

in the training data (3.38)), where the position and orientation of the wrist are considered.

The proposed swivel angle estimation approach has a lower complexity compared to existing

learning methods, achieving real-time accurate and unique human inverse kinematic solutions.

By taking advantage of the obtained GP’s low computational complexity, as future work, we will
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Figure 3.13 Cartesian tracking comparison

(Diagonal reaching with subject-1)

propose an approach to generate safer trajectories for upper-limb rehabilitation by considering

the computed uncertainty in the GP output. In addition, a robust MPC with ISM is proposed for

trajectory tracking ensuring constraint satisfaction with high accuracy while obtaining a trade-off

between tracking performance and control effort. A set of experimental results considering three

different upper-limb motions without a subject, and with three different subjects confirms the

proposed controller’s effectiveness. Also, as future work, we will investigate the performance

of the GP technique to enhance the nominal prediction model in the robust MPC to improve

optimality in the trajectory tracking using the 7 DoF exoskeleton ETS-MARSE, where the high

dimensionality will be an arduous challenge.
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Figure 3.14 Trajectory tracking

comparison (Diagonal reaching with

subject-1)
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Figure 3.15 Tracking error comparison (Diagonal reaching

with subject-1)
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Figure 3.16 Control signal comparison (Diagonal reaching

with subject-1)
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Figure 3.17 Cartesian tracking comparison (Diagonal

reaching without a subject)
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Figure 3.18 Trajectory tracking comparison (Diagonal

reaching without a subject)
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Figure 3.19 Tracking error comparison (Diagonal reaching

without a subject)
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Figure 3.20 Control signal comparison (Diagonal reaching

without a subject)
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4.1 Introduction

Wearable robots, such as exoskeletons, are becoming increasingly popular in the field of robotics.

These complex electromechanical devices are designed to be compliant and provide physical

training to the biomechanical structure of a human limb. Their primary objective is to aid

individuals in their everyday tasks, and they have been demonstrated to serve as a highly

efficient substitute for conventional physical therapy in medical rehabilitation (Barrios-Muriel

et al., 2020). This is especially beneficial due to the lack of health centers and professionals

available (Teasell et al., 2008).

However, passive robotic rehabilitation, where the exoskeleton fully guides the impaired arm, is a

difficult task. During a rehabilitation task to ensure stability or avoid a decrease in performance,

the feedback controller must be able to manage a series of challenges. These include 1)

unmodeled dynamics of highly nonlinear redundant exoskeletons, 2) unexpected and unknown

perturbations from the interaction between the patient and robot, 3) various limb spasticity levels,

4) different physiological characteristics (weights, heights, and limb lengths) of different wearers,

and 5) changing operational circumstances, such as exercises performed at different velocities.
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In the literature, it has been noted that the PID controller is ill-suited for upper-limb re-

habilitation tasks because of the pronounced unknown dynamics inherent in exoskeleton

dynamics (Yu & Rosen, 2013). In response to this challenge, several nonlinear control method-

ologies have emerged and been applied to robotic exoskeletons. These include time delay

estimation (TDE) (Fei et al., 2017), computed torque control (CTC) (Brackbill et al., 2009),

backstepping (Brahmi et al., 2016) and sliding mode control (SMC) (Rahmani & Rahman,

2019). However, these control techniques lack an inherent safety validation process, where the

performance can deteriorate when factoring in input and state constraints (Dai et al., 2020). To

achieve both safe operation and optimal performance in the context of upper-limb rehabilitation

while adhering to constraints. Thus, the current paper advocates for the adoption of a model

predictive control (MPC) (Mayne et al., 2000).

While the conventional MPC controller encounters challenges in ensuring the stability of

highly uncertain nonlinear systems (Grüne et al., 2017), the literature presents two robust MPC

methodologies: Min-Max (Scokaert & Mayne, 1998) and Tube MPC (Langson et al., 2004).

It is worth noting that Min-Max, although effective, suffers from computational inefficiency,

whereas Tube MPC bears a computational burden comparable to conventional MPC. However,

Tube MPC adopts a more conservative stance by prioritizing stability over optimality. Despite

these advancements, robust MPC still grapples with certain unresolved issues. These include 1.

the computational load associated with longer prediction horizons required to satisfy terminal

constraints and 2. the imperative need for an accurate prediction model to enhance optimality.

1. For computation burden reduction, the combination of MPC with SMC has been pro-

posed (Zhou et al., 2001). Beyond adding robustness, the SMC brings additional benefits to the

MPC. The SMC approach enables prediction horizon length shortening obtaining a tractable Non-

linear MPC (Jafari Fesharaki et al., 2020). The conventional sliding mode control (SMC) serves

to reject unknown disturbances and minimize the disparity between the measured states and the

nominal model prediction (addressing model uncertainty), thereby enhancing the conservatism

in MPC (Spasic et al., 2016). Furthermore, when Integral Sliding Mode (ISM) is combined with

MPC, it adapts itself to address model uncertainty (Rubagotti et al., 2009) and (Incremona et al.,



107

2017). The fusion of SMC and MPC effectively constrains model uncertainty in the context

of rehabilitation tasks (Bao et al., 2020), and improves the computation burden by obtaining a

linear plant with reduced model uncertainty through feedback linearization (Rubagotti et al.,

2010). Besides the conventional SMC approach, other versions to reduce the chattering while

improving the performance are: exponential reaching law (ERL) (Fallaha et al., 2011) for faster

convergence and super-twisting for accuracy in the trajectory tracking (Kali et al., 2018).

2. For optimality improvement, an accurate prediction model is needed for MPC. For exoskeleton

robots, the dynamic model’s complexity grows drastically with a few DOF and it is a problem

while solving numerical optimization in real-time. Thus, the accuracy of the prediction model had

been addressed by nonlinear models (Xie et al., 2021), using Taylor approximation (Hedjar et al.,

2005), and fixed-state approximation (Terry et al., 2017). Another approach based on machine

learning methods can build accurate models using data from previous trials. Besides nominal

machine learning models, e.g., recurrent neural networks (Wang et al., 2021), probabilistic

methods assign an uncertainty value to each predicted state, making it feasible to deal with

insufficient data (Hewing et al., 2020b). This is the case for the Gaussian process (GP), a

regression method recently used to build accurate prediction models for robots. However, the

computation burden for large training data sets, shrinks the application area. On its own, the

GP is not better than the usual prediction techniques (Maiworm et al., 2018). As a result,

using the GP as an additive model (disturbance model) to match for uncertainties has given

good results (Ostafew et al., 2016a). This approach is called Learning-based MPC and an

extensive review can be found in (Hewing et al., 2020a). Researchers have previously proven

an improvement in the tracking performance from trial to trial by learning from collected

data (Ostafew et al., 2016a), (Ostafew et al., 2016b).

In order to ensure optimal performance of the ETS-MARSE in rehabilitation tasks while

external disturbances are produced from wearers, in this paper, a hierarchical approach inspired

by (Incremona et al., 2017) as shown in Fig. 4.1 is proposed. In this architecture, and thanks

to feedback linearization, the highly uncertain nonlinear system is converted to an equivalent

uncertain linear one. Then, theoretically using a high gain, the ISM fully rejects the effects
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of the unknown disturbances. Nevertheless, the chattering problem will appear which is an

undesirable behavior that can damage the motors. To avoid this problem, lower switching

gains are used to attenuate the unknown disturbances, resulting in a linear system with reduced

model uncertainty. The remaining uncertainty is modeled using an additive stochastic model

(disturbance model) to enhance the accuracy of the nominal prediction model, thus improving

optimality. As a result, the ISM rejects unknown disturbances while reducing the control

activity and the Learning-based MPC ensures the optimal trajectory tracking of the uncertain

system subject to input and state constraints. The Learning-based MPC’s closed-loop stability is

proved by a proper positive invariant region to ensure feasibility. The proposed combination

of Learning-based MPC with the ISM, is designed to ensure robustness, optimal performance,

and safe operation in the trajectory tracking problem for highly nonlinear systems as the 7-DOF

exoskeleton redundant robot that has dynamic and kinematic uncertainties.

To the best of our knowledge, the original contributions are:

1. Develop a Learning-based nonlinear control to enhance optimality from trial to trial in the

ISM and MPC combination in the presence of input and state constraints, which existing

controllers don’t consider on our robotic exoskeleton, thus, exploiting its capabilities for

upper-limb rehabilitation.

2. Ensure optimal performance and safe operation with the proposed controller even when

there are unknown and unexpected interaction forces between the robot and wearer, this is

done by proposing a tractable and constrained optimal control problem.

3. Provide a framework for a tractable Learning-based MPC and thus usable in practice. This

is confirmed by performing several tests on an upper-limb robotic exoskeleton. To our

knowledge, this represents the inaugural hardware implementation of the Learning-based

MPC using the GP model combined with the ISM on a highly nonlinear system as the

ETS-MARSE robotic exoskeleton. Furthermore, the suggested approach is not limited to

frameworks with terminal inequalities. it is also applicable and can be implemented without

the inclusion of terminal constraints e.g. (Limón et al., 2006).
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Figure 4.1 Proposed Learning-based

MPC controller

This paper is organized as follows. Section 4.2 gives the preliminaries of the work as the notations

and definitions used. In addition, the dynamic and kinematic modeling of ETS-MARSE and the

feedback linearization are presented. In Section 4.3, the ISM is designed and the closed-loop

stability of the system under the proposed controller is provided, the learning-based approach and

the learning-based optimal control problem are defined. Also, the feasibility of the learning-based

optimization and the closed-loop stability are analyzed by the terminal constraint approach. In

section 4.4, the hardware setup, the controller setting, and the proposed approach’s experimental

results with a healthy subject are shown and compared with two robust controllers. In section

4.5, the discussion is developed. Finally, in Section 4.6, the conclusions are summarized.

4.2 Preliminaries

4.2.1 Notations and Definitions

Let 𝐼𝑛×𝑛 ∈ R𝑛×𝑛 be the 𝑛 × 𝑛 size identity matrix. 𝑧(𝑡) is the measured state 𝑧 at time 𝑡. The

predicted values of the state 𝑧 at a future time 𝜏 are defined by 𝑧(𝜏) and 𝑧(𝜏) using a learned

model and a nominal linear model respectively. A function of class 𝑐2 is continuous and its two

first derivatives exist. A K function 𝛽(·) is strictly increasing and satisfies 𝛽(0) = 0. A K∞
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function 𝛽(·) is a K function and it is unbounded. A KL function 𝜓(·, 𝑡) is K∞ and satisfies

𝑙𝑖𝑚𝑡→∞𝜓(·, 𝑡) = 0.
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Rotation

External
Rotation
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5)
Extension

6)

Flexion
Radial
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Shoulder
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Shoulder
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Shoulder

Elbow Forearm Wrist Wrist

Figure 4.2 Range of motion

4.2.2 Exoskeleton ETS-MARSE

The ETS-MARSE is a 7-DOF highly nonlinear robot able to perform passive, assistive, and

active exercises to an upper limb (Rahman, 2012) as shown in Fig. 4.2. To provide safety to the

wearer, each joint has a lower and upper bound (see Table 4.1). Based on the placement of the

frames shown in Fig. 4.3, the modified Denavit-Hartenberg (D-H) parameters were obtained

(see Table 4.2).

Table 4.1 ETS-MARSE Workspace

Joints Arm joint Range (𝑑𝑒𝑔)
1 Shoulder 0 to 140

2 Shoulder 140 to 0

3 Shoulder -85 to 75

4 Elbow 120 to 0

5 Forearm -85 to 85

6 Wrist -30 to 20

7 Wrist -50 to 60
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Figure 4.3 Link frame attachment

4.2.3 Feedback Linearization

The goal of this part is to obtain from the nonlinear exoskeleton model a decoupled equivalent

linear one. The ETS-MARSE’s dynamic model is written in the following differential equation

form:

𝑀 (𝑞) �𝑞 + 𝐶 (𝑞, �𝑞) �𝑞 + 𝐺 (𝑞) + 𝐹 ( �𝑞) = Γ(𝑡) + Γ𝑑𝑖𝑠 (4.1)

Table 4.2 Modified DH Parameters

𝛼𝑖−1 (𝑟𝑎𝑑) 𝑎𝑖−1 (𝑚) 𝑑𝑖 (𝑚) 𝑞𝑖 (𝑟𝑎𝑑)
0 0 𝑑𝑠 𝑞1

−𝜋/2 0 0 𝑞2

𝜋/2 0 𝑑𝑒 𝑞3

−𝜋/2 0 0 𝑞4

𝜋/2 0 𝑑𝑤 𝑞5

−𝜋/2 0 0 𝑞6 − 𝜋/2
−𝜋/2 0 0 𝑞7
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where 𝑞 ∈ R𝑛 is the angular position vector, with 𝑛 = 7 DOF, �𝑞 ∈ R𝑛 is the joint angular velocity,

Γ(𝑡) ∈ R𝑛 is the torque applied by the motors, Γ𝑑𝑖𝑠 ∈ R𝑛 are unknown forces, 𝑀 (𝑞) ∈ R𝑛×𝑛

is the positive definite inertia matrix, 𝐶 (𝑞, �𝑞) ∈ R𝑛×𝑛 is the Coriolis matrix, 𝐺 (𝑞) ∈ R𝑛 is the

gravitational vector, and 𝐹 ( �𝑞) ∈ R𝑛 is the friction. The matrix 𝑀 (𝑞) is the sum of the nominal

𝑀𝑘 and unknown 𝑀𝑢 matrices. Analogously, the terms 𝐶 (𝑞, �𝑞) is composed of 𝐶𝑘 , 𝐶𝑢, and

𝐺 (𝑞) is composed of 𝐺𝑘 and 𝐺𝑢 as shown below.

𝑀 (𝑞) = 𝑀𝑘 + 𝑀𝑢

𝐶 (𝑞, �𝑞) = 𝐶𝑘 + 𝐶𝑢

𝐺 (𝑞) = 𝐺𝑘 + 𝐺𝑢

(4.2)

By substituting (4.2) into (4.1), grouping by nominal and unknown terms and isolating 𝑀𝑘 �𝑞.

The acceleration of all the joints is written as:

�𝑞 = 𝑀−1
𝑘 (Γ(𝑡) − 𝐶𝑘 �𝑞 − 𝐺𝑘 ) + 𝜔0(𝑡) (4.3)

where 𝜔0(𝑡) ∈ R𝑛 represents the model uncertainty defined as:

𝜔0(𝑡) = 𝑀−1
𝑘 (Γ𝑑𝑖𝑠 − 𝑀𝑢 �𝑞 − 𝐶𝑢 �𝑞 − 𝐺𝑢 − 𝐹 ( �𝑞)) (4.4)

The nominal torque from (4.1) gives:

Γ(𝑡) = 𝑀0𝜈(𝑡) + 𝐶𝑘 �𝑞 + 𝐺𝑘 (4.5)

and 𝜈(𝑡) ∈ R𝑛 is the virtual control to achieve the desired reference. By substituting (4.5)

into (4.3), the following uncertain linear system is obtained.

�𝑞 = 𝜈(𝑡) + 𝜔0(𝑡) (4.6)
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Rewriting (4.6) in a matrix form yields:

�𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝐵𝜈(𝑡) + 𝐵𝜔0(𝑡) (4.7)

where 𝑧(𝑡) ∈ R2𝑛 is the measured state 𝑧(𝑡) = [
𝑞𝑇 , �𝑞𝑇 ]𝑇 . The linear system’s constant matrices

𝐴 ∈ R2𝑛×2𝑛 and 𝐵 ∈ R2𝑛×𝑛 are given as:

𝐴 =

⎡⎢⎢⎢⎢⎣
0𝑛×𝑛 𝐼𝑛×𝑛

0𝑛×𝑛 0𝑛×𝑛

⎤⎥⎥⎥⎥⎦ , 𝐵 =

⎡⎢⎢⎢⎢⎣
0𝑛×𝑛

𝐼𝑛×𝑛

⎤⎥⎥⎥⎥⎦ (4.8)

The control 𝜈(𝑡) for (4.7) is as follows:

𝜈(𝑡) = 𝜈𝑠𝑚 (𝑡) + 𝜈𝑚𝑝𝑐 (𝑡) (4.9)

where 𝜈𝑠𝑚 (𝑡) is computed from the ISM to reject part of 𝜔0(𝑡) while 𝜈𝑚𝑝𝑐 (𝑡) is computed by

optimizing a learning-based control problem. Both are defined at a later stage.

4.3 Learning-Based Model Predictive Control with Integral Sliding Mode

In this section, the proposed controller is developed and its schematic diagram is shown in

Fig. 4.4. The subsequent assumptions are taken into account within this paper.

Assumption 1: The polytopes sets U ∈ R𝑛 and Z ∈ R2𝑛 which define the input and state

constraint respectively, are compact and bounded. The set U = {𝜈(𝑡) |𝑀𝑘
−1Γ𝑚𝑖𝑛 ≤ 𝜈(𝑡) ≤

𝑀𝑘
−1Γ𝑚𝑎𝑥} and Z = {𝑧(𝑡) |𝑧𝑚𝑖𝑛 ≤ 𝑧(𝑡) ≤ 𝑧𝑚𝑎𝑥}. The values of �𝑞 and �𝑞 are bounded and

continuous.

Assumption 2: The disturbance 𝜔0(𝑡) ∈ W is locally continuous and upper-bounded by the

constant 𝜔𝑚𝑎𝑥 .

0 < ‖𝜔0(𝑡)‖ ≤ 𝜔𝑚𝑎𝑥 < ∞ (4.10)
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4.3.1 Integral Sliding Mode Exponential Reaching Law

The following integral sliding surface (Fridman et al., 2014) was used for the design of the ISM

controller.

𝜍 (𝑡) = 𝑇Ξ

[
𝑒(𝑡) − 𝑒(0) −

∫ 𝑡

0

(
𝐴𝑧(𝑡) + 𝐵𝜈𝑚𝑝𝑐 (𝑡) − �𝑧𝑟 (𝑡)

)
𝑑𝑡

]
(4.11)

where the constant matrix 𝑇Ξ ∈ R𝑛×2𝑛 is chosen to obtain an invertible matrix 𝑇Ξ𝐵. The state

error is defined as 𝑒(𝑡) = 𝑧(𝑡) − 𝑧𝑟 (𝑡) ∈ R2𝑛 with 𝑧𝑟 (𝑡) ∈ R2𝑛 as the desired state vector. The

derivative with respect to time of the sliding surface results in:

�𝜍 (𝑡) =𝑇Ξ( �𝑒(𝑡) − 𝐴𝑧(𝑡) − 𝐵𝜈𝑚𝑝𝑐 (𝑡) + �𝑧𝑟 (𝑡))
=𝑇Ξ( �𝑧(𝑡) − �𝑧𝑟 (𝑡) − 𝐴𝑧(𝑡) − 𝐵𝜈𝑚𝑝𝑐 (𝑡) + �𝑧𝑟 (𝑡))
=𝑇Ξ(𝐴𝑧(𝑡) + 𝐵(𝜈𝑠𝑚 (𝑡) + 𝜈𝑚𝑝𝑐 (𝑡)) − �𝑧𝑟 (𝑡)
− 𝐴𝑧(𝑡) − 𝐵𝜈𝑚𝑝𝑐 (𝑡) + �𝑧𝑟 (𝑡))

=𝑇Ξ𝐵𝜈𝑠𝑚 (𝑡)

(4.12)

The ERL proposed in (Fallaha et al., 2011) is as follows:

�𝜍 (𝑡) = −𝐾 (𝜍 (𝑡))𝑠𝑖𝑔(𝜍 (𝑡)) (4.13)

with each element of the vector 𝑠𝑖𝑔(𝜍 (𝑡)) defined as:

𝑠𝑖𝑔𝑛(𝜍𝑖) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, 𝜍𝑖 > 0

0, 𝜍𝑖 = 0

−1, 𝜍𝑖 < 0

(4.14)

and the 𝐾 (𝜍 (𝑡)) being for 𝑖 = 1, · · · , 𝑛:

𝐾 (𝜍𝑖) = 𝑑𝑖𝑎𝑔

(
𝑘𝑖

𝜒𝑖 + (1 − 𝜒𝑖)𝑒−𝛾𝑖 |𝜍𝑖 |𝜌𝑖
)

(4.15)
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where 𝑘𝑖 ∈ R+, 𝜒𝑖 ∈ [0, 1], 𝛾𝑖 ∈ R+ and 𝜌𝑖 ∈ R+ are constants. Substituting (4.12) into (4.13),

yields the following ISM law:

𝜈𝑠𝑚(𝑡) = (𝑇Ξ𝐵)−1 [−𝐾 (𝜍 (𝑡))𝑠𝑖𝑔(𝜍 (𝑡))] (4.16)

To ensure the closed-loop stability of the designed method, let us consider the following

Lyapunov positive definite function:

𝑉 =
1

2
𝜍 (𝑡)𝑇 𝜍 (𝑡) (4.17)

And the uncertain linear system (4.7) under the virtual controller (4.9), the derivative of the

Lyapunov function yields:

�𝑉 =𝜍 (𝑡)𝑇 �𝜍 (𝑡)
=𝜍 (𝑡)𝑇 (𝑇Ξ(𝐴𝑧(𝑡) + 𝐵(𝜈𝑠𝑚 (𝑡) + 𝜈𝑚𝑝𝑐 (𝑡) + 𝜔0(𝑡))
− �𝑧𝑟 (𝑡) − 𝐴𝑧(𝑡) − 𝐵𝜈𝑚𝑝𝑐 (𝑡) + �𝑧𝑟 (𝑡))

=𝜍 (𝑡)𝑇 (𝑇Ξ𝐵𝜈𝑠𝑚 + 𝑇Ξ𝐵𝜔0)

(4.18)

Substituting (4.16) into (4.18) yields:

𝜍 (𝑡)𝑇 (−𝐾 (𝜍 (𝑡))𝑠𝑖𝑔(𝜍 (𝑡)) + 𝑇Ξ𝐵𝜔0(𝑡)) < 0 (4.19)

By considering Assumption 2, the asymptotic stability is ensured and the following inequality

is satisfied:

‖𝐾 (𝜍 (𝑡))‖ > ‖𝑇Ξ𝐵‖ 𝜔𝑚𝑎𝑥 ∀ 𝑡 (4.20)

From (4.20), it can be verified that the stability of the uncertain linear system (4.7) is ensured.

However, the ISM when rejecting the unknown disturbances by itself, will produce a high

chattering on the motors. In order to reduce the required control activity, smaller gains are

selected. Thus, the ISM attenuates the unknown disturbances while the model uncertainty due

to the remaining disturbances is addressed by the Learning-based MPC. Note that a smaller
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model uncertainty allows the Learning-based MPC approach to improve conservatism (Mayne

et al., 2011). For that, let us consider the uncertain system that results from applying the virtual

control (4.9) to the system (4.7).

�𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝐵𝜈𝑚𝑝𝑐 (𝑡) + 𝐵𝜔𝑟 (𝑡) (4.21)

where 𝜔𝑟 (𝑡) = 𝜈𝑠𝑚 (𝑡) + 𝜔0(𝑡) is the remaining unknown disturbance, leading to the following

assumption:

Assumption 3: The disturbance 𝜔𝑟 (𝑡), an unknown variable belonging to the set W, exhibits

local continuity and is bounded from above by the constant 𝜔2.

0 < ‖𝜔𝑟 (𝑡)‖ ≤ 𝜔2 < 𝜔𝑚𝑎𝑥 < ∞ (4.22)

ETS-MARSE

LBMPC
Eq. (38) +

+

Eq. (4)

+ +

Integral sliding 
surface Eq. (10)

ISM virtual 
control Eq. (15)

Figure 4.4 Schematic of the

Learning-based MPC with ISM

4.3.2 Gaussian Process Disturbance Model

To improve the optimality of the uncertain system (4.21) under the ISM and MPC controllers, a

learned prediction model is built by using a disturbance model and a nominal prediction model

(4.23).

�̄𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝐵𝜈𝑚𝑝𝑐 (𝑡) (4.23)
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The learned prediction model (4.24) represents an accurate prediction model of the exoskeleton-

user system. It ensures an optimal performance for rehabilitation tasks by learning the uncertainty

introduced by new wearers and improving from trial to trial (Ostafew et al., 2016a). The terms

�̃𝑧(𝑡) ∈ R2𝑛 and �̄𝑧(𝑡) ∈ R2𝑛 are the derivatives of the predicted state using the learned model and

nominal model respectively.

�̃𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝐵𝜈𝑚𝑝𝑐 (𝑡) + 𝜔𝜇 (𝑡) (4.24)

The disturbance model 𝜔𝜇 (𝑡) ∈ R2𝑛 (to be defined later) is an approximation of the model

uncertainty caused by the remaining unknown disturbance𝜔𝑟 (𝑡) in the system (4.21). The model

𝜔𝜇 (𝑡) was built using the Gaussian Process learning technique, which is trained using collected

data from at least a previous trial. Let us define the measured model uncertainty 𝜉 (𝑡) ∈ R2𝑛 as:

𝜉 (𝑡) = �𝑧(𝑡) − �̄𝑧(𝑡) (4.25)

And the measured regressor 𝜁 (𝑡) ∈ R3𝑛 as:

𝜁 (𝑡) = [
𝑧(𝑡)𝑇 , 𝜈𝑚𝑝𝑐 (𝑡)𝑇

]𝑇
(4.26)

During a rehabilitation task, the model uncertainty is measured and stored, and from the collected

data, 𝑚 random measurements are chosen as inducing points to train the disturbance model.

Thus the 𝑚 inducing points set is defined as D = [w𝑇 , a𝑇 ]𝑇 ∈ R5𝑛×𝑚, where w = [𝜉1, ..., 𝜉𝑚]
is composed of the collected model uncertainty 𝜉𝑖, and a = [𝜁1, ..., 𝜁𝑚] is composed of the

collected regressor 𝜁𝑖, where 𝑖 = 1 −→ 𝑚. For simplicity, we consider each dimension in w

separately for regression, let us define the 𝑘th dimension (row) of the collected model uncertainty

w as w𝑘 ∈ R1×𝑚 and the 𝑘th dimension of the modeled disturbance 𝑤(𝑡) as 𝑤𝑘 (𝑡) ∈ R to be

defined later.

For a given regressor input 𝜁 (𝑡) ∈ R3 (𝑛 = 1, for simplicity), we define jointly the collected
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model uncertainty w𝑘 and the modeled disturbance 𝑤𝑘 (𝑡) as a normally Gaussian distribution.

⎡⎢⎢⎢⎢⎣
w𝑇
𝑘

𝑤𝑘 (𝑡)

⎤⎥⎥⎥⎥⎦ ∼ N ���0𝑚+1×1,

⎡⎢⎢⎢⎢⎣
Υ 𝑘𝑑 (𝜁 (𝑡))𝑇

𝑘𝑑 (𝜁 (𝑡)) 𝑘𝑟 (𝜁 (𝑡), 𝜁 (𝑡))

⎤⎥⎥⎥⎥⎦��� (4.27)

where the (𝑖, 𝑗) elements of the covariance matrix Υ ∈ R𝑚×𝑚 are equal to 𝑘𝑟 (𝜁𝑖, 𝜁 𝑗 ), 𝑖 = 1 −→ 𝑚,

𝑗 = 1 −→ 𝑚. Given a regressor input 𝜁 (𝑡), the term 𝑘𝑑 (𝜁 (𝑡)) ∈ R1×𝑚 is defined as:

𝑘𝑑 (𝜁 (𝑡)) = [𝑘𝑟 (𝜁 (𝑡), 𝜁1), ..., 𝑘𝑟 (𝜁 (𝑡), 𝜁𝑚)] (4.28)

In this paper, the square exponential (Williams & Rasmussen, 2006) was used as the covariance

function.

𝑘𝑟 (𝜁𝑖 , 𝜁 𝑗) = 𝜎2
𝑓 exp

(
−1

2
(𝜁𝑖 − 𝜁 𝑗)𝑇 𝑙−2(𝜁𝑖 − 𝜁 𝑗)

)
+ 𝜎2

𝑛𝛿𝑖 𝑗 (4.29)

We assume that the observed disturbance has variance 𝜎𝑛 ∈ R+ with zero mean. The Kronecker

delta 𝛿𝑖 𝑗 ∈ {0, 1} is defined as:

𝛿𝑖 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑖 == 𝑗

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.30)

The hyper parameters 𝜎𝑓 ∈ R+, 𝑙 = 𝑑𝑖𝑎𝑔(𝑙𝑚1, 𝑙𝑚2, 𝑙𝑚3) ∈ R3×3 and 𝜎𝑛 are computed by

solving the 𝑙𝑜𝑔 marginal likelihood (Williams & Rasmussen, 2006). The modeled distur-

bance 𝑤𝑘 (𝑡) has a mean and variance given an arbitrary input 𝜁 (𝑡) which are expressed as

follows (Williams & Rasmussen, 2006):

𝑤𝑘 (𝑡) ∼ N (𝜔𝜇,𝑘 (𝑡), 𝜔Σ,𝑘 (𝑡)) (4.31)

Where 𝜔𝜇,𝑘 (𝑡) and 𝜔Σ,𝑘 (𝑡) are the modeled disturbance’s mean and variance respectively and

are computed as:

𝜔𝜇,𝑘 (𝑡) = 𝑘𝑑 (𝜁 (𝑡))Υ−1w𝑇
𝑘 (4.32)

𝜔Σ,𝑘 (𝑡) = 𝑘𝑟 (𝜁 (𝑡), 𝜁 (𝑡)) − 𝑘𝑑 (𝜁 (𝑡))Υ−1𝑘𝑑 (𝜁 (𝑡))𝑇 (4.33)
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Using the mean of each 𝑘th dimension 𝜔𝜇,𝑘 (𝑡), we build the disturbance model 𝜔𝜇 (𝑡) =

[𝜔𝜇,1(𝑡), ..., 𝜔𝜇,2𝑛 (𝑡)]𝑇 . Equations (4.32) and (4.33) are developed using the Gaussian linear

transformation through (4.27). The variance value (4.33) is not used in this paper but for a future

paper about Cautious MPC. For the next subsection, let us treat the stochastic disturbance model

as a simple propagation of mean obtaining a deterministic model as reported in (Hewing et al.,

2020b).

4.3.3 Learning-Based Optimal Control Problem

A Learning-based approach is designed to guarantee safe rehabilitation tasks by considering

input and state constraints. The problem of optimal control seeks trade-offs between fulfilling

constraints and achieving the control objective (Mesbah, 2016).

min
𝚷(𝑡 )

𝐽 (z̃(𝑡),𝚷(𝑡))

s.t.: �̃𝑧(𝜏) = 𝐴𝑧(𝜏) + 𝐵𝜈𝑚𝑝𝑐 (𝜏) + 𝜔𝜇 (𝜏), 𝐼 .𝐶. 𝑧(𝑡) := 𝑧(𝑡)
�̄𝑧(𝜏) = 𝐴𝑧(𝜏) + 𝐵𝜈𝑚𝑝𝑐 (𝜏), 𝐼 .𝐶. 𝑧(𝑡) := 𝑧(𝑡)

𝑂Π (𝜏) ∈ U 	 𝐾Ω𝑡𝑢𝑏𝑒, 𝑧(𝑡) ∈ Z 	 Ω𝑡𝑢𝑏𝑒

𝑒(𝑡𝑒𝑛𝑑) ∈ Ω𝜖

(4.34)

where the future time 𝜏 that starts from time 𝑡 to the end of the prediction horizon 𝑡𝑒𝑛𝑑 . The

states of the nominal and learned prediction models are initialized with the measured state 𝑧(𝑡)
at each sampling time. The set Ω𝑡𝑢𝑏𝑒 is a convex hull (Aswani et al., 2013) built by using the

residual of the learning process. The terminal region Ω𝜖 is used as terminal constraint to ensure

the feasibility of the learning-based optimization. The term 𝚷(𝑡) = [𝑂Π (𝑡), ..., 𝑂Π (𝑡𝑒𝑛𝑑)] is a

control input sequence and z̃(𝑡) = [𝑧(𝑡), ..., 𝑧(𝑡𝑒𝑛𝑑)] is the resultant predicted states sequence

obtained from the learned model. The future cost is:

𝐽 (z̃(𝑡),𝚷(𝑡)) = 𝐿 (𝑧(𝑡𝑒𝑛𝑑)) +
∫ 𝑡𝑒𝑛𝑑

𝑡
Λ(𝑧(𝜏), 𝑂Π (𝜏))𝑑𝜏 (4.35)
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where Λ ∈ R is the stage cost at future time 𝜏 is:

Λ(𝑧(𝜏), 𝑂Π (𝜏)) = 1

2
𝑒(𝜏)𝑇𝑄𝑒(𝜏) + 1

2
𝑂Π (𝜏)𝑇 𝑅𝑂Π (𝜏) (4.36)

and the terminal cost is:

𝐿 (𝑧(𝑡𝑒𝑛𝑑)) = 1

2
𝑒(𝑡𝑒𝑛𝑑)𝑇𝑃𝑒(𝑡𝑒𝑛𝑑) (4.37)

and the nominal 𝑒 and learned 𝑒 predicted errors at time 𝜏 are:

𝑒(𝜏) = 𝑧(𝜏) − 𝑧𝑟 (𝜏) (4.38)

𝑒(𝜏) = 𝑧(𝜏) − 𝑧𝑟 (𝜏) (4.39)

The matrix 𝑃 ∈ R2𝑛×2𝑛 is both symmetric and positive definite, while 𝑄 ∈ R2𝑛×2𝑛 and 𝑅 ∈ R𝑛×𝑛

are positive diagonal matrices whose specific definitions will be provided later. When addressing

the optimal control problem (4.34), it’s worth noting that the dynamic programming method, as

described in (Bellman, 1966), grapples with the challenge of the curse of dimensionality.

Considering the Gaussian Process disturbance model (4.24), the optimization problem (4.34) is

computationally expensive for the feedback gains (Hewing et al., 2020a). Then, the following

feedback control law is chosen:

𝜈𝑚𝑝𝑐 (𝜏) = 𝐾𝑚𝑝𝑐𝑒(𝜏) +𝑂Π (𝜏) (4.40)

where 𝐾𝑚𝑝𝑐 is a constant optimal gain (to be designed offline) and 𝑂Π (𝜏) is the optimization

term. For the next subsection, we consider the following assumptions:

Assumption 4: In (4.35) Λ and 𝐿 are K type functions, continuous, and fulfill 𝐿(0) = 0 and

Λ(0, 0) = 0.

Assumption 5: Using the continuous differential function (4.29), the learned prediction

model (4.24) is of class 𝑐2.
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4.3.4 Terminal Ingredients

The terminal ingredients are designed by using the nominal prediction model (Chen & Allgöwer,

1998) to ensure recursive feasibility and closed-loop stability of the online optimization. With

this goal in mind, contemplate the subsequent terminal feedback controller, which aids in the

offline determination of the terminal region and terminal penalty.

𝑢̄(𝑡) = 𝐾𝑚𝑝𝑐𝑒(𝑡) (4.41)

where the gain 𝐾𝑚𝑝𝑐 ∈ R𝑛×2𝑛 is defined as:

𝐾𝑚𝑝𝑐 = [𝑑𝑖𝑎𝑔(𝑘11, ..., 𝑘𝑛1), 𝑑𝑖𝑎𝑔(𝑘12, ..., 𝑘𝑛2)] (4.42)

where 𝑘𝑖1 < 0, 𝑘𝑖2 < 0 and 𝑘2
𝑖2+4𝑘𝑖1 > 0 for 𝑖 = 1, ..., 𝑛 (Dai et al., 2020). It can be shown that the

nominal model (Eq. 4.23) is controllable. Consequently, a feedback gain 𝐾𝑚𝑝𝑐 is computed such

that 𝐴 + 𝐵𝐾𝑚𝑝𝑐 ensures stability. The positive constant 𝜂 that satisfies 𝜂 < −𝜆𝑚𝑎𝑥 (𝐴 + 𝐵𝐾𝑚𝑝𝑐)
leads to a unique terminal penalty 𝑃 which is computed by Eq. (4.43).

𝐴𝑇𝜂 𝑃 + 𝑃𝐴𝜂 +𝑄 + 𝐾𝑇
𝑚𝑝𝑐𝑅𝐾𝑚𝑝𝑐 ≤ 0 (4.43)

where:

𝐴𝜂 = 𝐴 + 𝐵𝐾𝑚𝑝𝑐 + 𝜂𝐼2𝑛×2𝑛 (4.44)

The theory of MPC assumes that at future time 𝑡𝑒𝑛𝑑 , a proper 𝑃 matrix allows optimization

along an infinite horizon (Mayne et al., 2000). For the terminal region, the largest possible

constant 𝜖 is found such that 𝑢̄ ∈ 𝐾𝑚𝑝𝑐Ω𝜖 ,∀𝑒 ∈ Ω𝜖 , where Ω𝜖 = {𝑒 ∈ R2𝑛 |𝑒𝑇𝑃𝑒 ≤ 𝜖}. And

𝜖 is computed by optimizing equation (19) in (Chen & Allgöwer, 1998) to ensure recursive

feasibility. Taking the matrix 𝑃 from Eq. (4.43) as a valid matrix solution, and applying Lemma

1 from (Chen & Allgöwer, 1998), we guarantee that equation (4.35) fulfills:

�𝐿 + Λ ≤ 0 (4.45)
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In other words, when the error 𝑒 enters the region Ω𝜖 , it remains within that region while

adhering to input constraints. Consequently, the nominal control 𝑢̄(𝑡) remains invariant within

the terminal region Ω𝜖 .

4.3.5 Recursive Feasibility

For this subsection, let us consider the following conventional assumptions:

Assumptions 6: At time instant 𝑡, there exists a singular optimal control sequence for the optimal

control problem (4.34).

𝚷∗(𝑡) = [𝑂∗
Π (𝑡), .., 𝑂∗

Π (𝑡𝑒𝑛𝑑)] (4.46)

And optimal resultant state sequence.

z̄∗(𝑡) = [𝑧∗(𝑡), ..., 𝑧∗(𝑡𝑒𝑛𝑑)]
z̃∗(𝑡) = [𝑧∗(𝑡), ..., 𝑧∗(𝑡𝑒𝑛𝑑)]

(4.47)

Assumptions 7: At time instant 𝑡 + 𝑡𝑠, as per the construction, there exists a solution for the

optimal control problem in Eq. (4.34), which may not be optimal but is, at the minimum, a

feasible optimal control sequence.

𝚷(𝑡 + 𝑡𝑠) = [𝑂∗
Π (𝑡 + 𝑡𝑠), .., 𝑂∗

Π (𝑡𝑒𝑛𝑑), 𝑢̄(𝑡𝑒𝑛𝑑 + 𝑡𝑠)] (4.48)

And feasible state sequences

z̄(𝑡 + 𝑡𝑠) = [𝑧∗(𝑡 + 𝑡𝑠), ..., 𝑧∗(𝑡𝑒𝑛𝑑), 𝑧(𝑡𝑒𝑛𝑑 + 𝑡𝑠)]
z̃(𝑡 + 𝑡𝑠) = [𝑧∗(𝑡 + 𝑡𝑠), ..., 𝑧∗(𝑡𝑒𝑛𝑑), 𝑧(𝑡𝑒𝑛𝑑 + 𝑡𝑠)]

(4.49)

where 𝑡𝑠 is the operation time between measurements. Since the optimization is feasible

(Assumption 6) 𝑧∗(𝑡𝑒𝑛𝑑) ∈ 𝑧𝑟 (𝑡𝑒𝑛𝑑) ⊕ Ω𝜖 . By utilizing Eq. (4.45), we have established the

invariance of the feedback terminal controller within the terminal region, as discussed in (Mayne

et al., 2011), denoted as 𝑢̄(𝑡𝑒𝑛𝑑 + 𝑡𝑠), this indicates that 𝑧(𝑡𝑒𝑛𝑑 + 𝑡𝑠) ∈ 𝑧𝑟 (𝑡𝑒𝑛𝑑) ⊕ Ω𝜖 . Therefore,
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recursive feasibility is ensured. While the input and state constraints are fulfilled, z̄(𝑡) ∈ Z 	Ω𝜖

and 𝚷(𝑡) ∈ U 	 𝐾𝑚𝑝𝑐Ω𝜖 .

4.3.6 Closed-Loop Stability

The cost function (4.35) is used as Lyapunov function and its value at time 𝑡 under the optimal

control sequence 𝚷∗(𝑡) is:

𝐽 (z̃∗(𝑡),𝚷∗(𝑡)) = 𝐿 (𝑧∗(𝑡𝑒𝑛𝑑)) +
∫ 𝑡𝑒𝑛𝑑

𝑡
Λ(𝑧∗(𝜏), 𝑂∗

Π (𝜏))𝑑𝜏 (4.50)

The cost at time 𝑡 + 𝑡𝑠 under 𝚷(𝑡 + 𝑡𝑠) is:

𝐽 (z̃(𝑡 + 𝑡𝑠),𝚷(𝑡 + 𝑡𝑠)) =
∫ 𝑡𝑒𝑛𝑑

𝑡+𝑡𝑠
Λ(𝑧∗(𝜏), 𝑂∗

Π (𝜏))𝑑𝜏

+
∫ 𝑡𝑒𝑛𝑑+𝑡𝑠

𝑡𝑒𝑛𝑑

Λ(𝑧(𝜏), 𝑢̄(𝜏))𝑑𝜏 + 𝐿 (𝑧(𝑡𝑒𝑛𝑑 + 𝑡𝑠))
(4.51)

Subtracting (4.51) and (4.50) yields:

Δ𝐽 (𝑡 + 𝑡𝑠) = 𝐽 (z̃(𝑡 + 𝑡𝑠),𝚷(𝑡 + 𝑡𝑠)) − 𝐽 (z̃∗(𝑡),𝚷∗(𝑡)) (4.52)

And expanding (4.52) one obtains:

Δ𝐽 (𝑡 + 𝑡𝑠) = 𝐿 (𝑧(𝑡𝑒𝑛𝑑 + 𝑡𝑠)) − 𝐿 (𝑧∗(𝑡𝑒𝑛𝑑))

+
∫ 𝑡𝑒𝑛𝑑+𝑡𝑠

𝑡𝑒𝑛𝑑

Λ(𝑧(𝜏), 𝑢̄(𝜏))𝑑𝜏 −
∫ 𝑡+𝑡𝑠

𝑡
Λ(𝑧∗(𝜏), 𝑂∗

Π (𝜏))𝑑𝜏
(4.53)

By integrating (4.45) from 𝜏 = [𝑡𝑒𝑛𝑑, 𝑡𝑒𝑛𝑑 + 𝑡𝑠] considering z̃(𝑡 + 𝑡𝑠) yields:∫ 𝑡𝑒𝑛𝑑+𝑡𝑠

𝑡𝑒𝑛𝑑

Λ(𝑧(𝜏), 𝑢̄(𝜏))𝑑𝜏 + 𝐿 (𝑧(𝑡𝑒𝑛𝑑 + 𝑡𝑠)) − 𝐿 (𝑧∗(𝑡𝑒𝑛𝑑)) ≤ 0 (4.54)

Thus:

Δ𝐽 (𝑡 + 𝑡𝑠) ≤ −
∫ 𝑡+𝑡𝑠

𝑡
Λ(𝑧∗(𝜏), 𝑂∗

Π (𝜏))𝑑𝜏 ≤ 0 (4.55)
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The optimal cost fulfills the inequality (Jadbabaie et al., 2001)

𝐽 (𝑧∗(𝑡 + 𝑡𝑠), 𝑂∗
Π (𝑡 + 𝑡𝑠)) ≤ 𝐽 (𝑧∗(𝑡), 𝑂∗

Π (𝑡)) (4.56)

Thus from (4.55), we ensure that Δ𝐽 (𝑡 + 𝑡𝑠) ≤ 0 and the asymptotic stability of the system.

Considering Assumption 3, there is a K∞ function 𝛽(·, 𝑡) and a K function 𝜓(·) (Limon et al.,

2009) that fulfills:

‖𝑒∗(𝑡)‖ ≤ 𝛽(‖𝑒∗(0)‖ , 𝑡) + 𝜓(𝜔2) (4.57)

For a given 𝑡𝑠 (typically 1 𝑚𝑠 for electromechanical systems) the measured stated 𝑧 fulfills

𝑧(𝑡 + 𝑡𝑠) ∈ 𝑧∗(𝑡 + 𝑡𝑠) ⊕ Ω𝑡𝑢𝑏𝑒 implying recursive feasibility and closed-loop stability. Now, we

are able to describe Algorithm 4.1.

Algorithm 4.1 Learning-based MPC with ISM controller.

Offline:

Choose the weighting matrices 𝑄, 𝑅 and a proper 𝐾𝑚𝑝𝑐. Choose 𝜂 satisfying

𝜂 < −𝜆𝑚𝑎𝑥 (𝐴 + 𝐵𝐾𝑚𝑝𝑐).
Compute the terminal penalty 𝑃 by (4.43) and terminal region Ω𝜖 .

Train the disturbance model (4.31) using the data D obtained from a previous trial.

Build the set Ω𝑡𝑢𝑏𝑒 from the residual of the learning process.

Set the total trajectory time 𝑇 .

Online:

while (𝑡 < 𝑇) do

Measure the system’s states 𝑞(𝑡) and �𝑞(𝑡).
Solve the optimal control problem (4.34) and obtain 𝜈𝑚𝑝𝑐 by (4.40).

Compute the ISM control signal 𝜈𝑠𝑚 by (4.16).

Compute the virtual control law (4.9).

Calculate the torque Γ by (4.5) and apply to the real system (4.3).

Let 𝑡 = 𝑡 + 𝑡𝑠
end while
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4.4 Experimental configuration and results

ETS-
MARSE 

robot

Host PC

NI PXI-1031 Chassis

NI PXI-7813R NI PXI-8108

Figure 4.5 Real-time system

4.4.1 Real-Time System

Our real-time system comprises three processing units, as depicted in Fig. 4.5. An industrial PC

featuring an Intel dual-core processor running at 2.53 GHz and equipped with 8 GB of RAM, is

responsible for performing exoskeleton linearization and executing the predictive controller. The

FPGA within the PXI-7813R is dedicated to managing actuators and sensors, including motor

current sensors and position hall effect sensors. Lastly, a Host PC serves as the user interface,

facilitating the storage and presentation of results from completed trials.

4.4.2 Controller Settings

The objective is to follow a sixteen-second infinite shape trajectory (https://www.youtube.com/

watch?v=IXlde9tTQSw) as shown in Fig. 4.7. This challenging trajectory was chosen because

multiple joints are active simultaneously during the exercise as shown in Fig. 4.6. The tests were

carried out with a healthy subject (32 years old, 160 cm height, and 76 kg weight), who using

his whole arm intentionally applied a force in the positive direction of the 𝑧0 axis (see Fig. 4.3).

The system was linearized with the physical parameters of the robot without the subject (Fallaha
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Figure 4.6 Joint trajectory tracking for the proposed

controller

et al., 2020). The torque input limits are in 𝑁𝑚.

Γ𝑚𝑎𝑥 = [25.38 50.76 30.60 17.62 15.93 6.37 6.37]𝑇

Γ𝑚𝑖𝑛 = −1 · [25.38 16.92 30.60 17.62 15.93 6.37 6.37]𝑇
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The position and velocity limits are in 𝑑𝑒𝑔 and 𝑑𝑒𝑔/𝑠𝑒𝑐.

𝑞𝑚𝑎𝑥 = [140 140 75 120 85 20 60]
�𝑞𝑚𝑎𝑥 = [ 100 100 100 100 100 100 100]
𝑧𝑚𝑎𝑥 = [𝑞𝑚𝑎𝑥 �𝑞𝑚𝑎𝑥]𝑇

𝑞𝑚𝑖𝑛 = −1 · [0 0 85 0 85 30 50]
𝑧𝑚𝑖𝑛 = [𝑞𝑚𝑖𝑛 − �𝑞𝑚𝑎𝑥]𝑇

Figure 4.7 Cartesian trajectory tracking for the proposed

controller

The evaluation of the proposed controller was carried out through a comparison with several

controllers using the same design parameters, except for the gain 𝑘𝑖 as shown in Table 4.3. From

a first trial using the SMC-ERL, we have collected the data D for two reasons. First, to train the

GP using 𝑚 = 30 data points from the collected data. And second to build the set Ω𝑡𝑢𝑏𝑒 from the

residual of the learning process as shown in (Aswani et al., 2013). The optimization feasibility

is ensured by the terminal region size set as 𝜖 = 1.2, a prediction horizon of 10 steps with a

sampling time of 𝑡𝑠 = 1𝑚𝑠, and we use as optimizer the gradient descent method. The matrices
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Figure 4.8 Joint tracking error comparison

𝑄 and 𝑅 for the cost function were chosen heuristically as:

𝑄 = 𝑑𝑖𝑎𝑔(660, 3100, 100, 2500, 650, 50, 10, 1, 1, 1, 1, 1, 1, 1)
𝑅 = 0.01𝐼𝑛×𝑛
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Figure 4.9 Control signal comparison

while the 𝐾𝑚𝑝𝑐 is chosen to fulfill the condition below Equation (4.42).

𝐾𝑚𝑝𝑐 = [−𝐾𝑚𝑝𝑐1,−𝐾𝑚𝑝𝑐2]
𝐾𝑚𝑝𝑐1 = 𝑑𝑖𝑎𝑔(253, 547, 99, 492, 252, 70, 31)
𝐾𝑚𝑝𝑐2 = 𝑑𝑖𝑎𝑔(30, 33, 14, 32, 23, 12, 8)



130

By choosing the constant 𝜂 = 18.61 that fulfils the condition 𝜂 < −𝜆𝑚𝑎𝑥 (𝐴 + 𝐵𝐾𝑚𝑝𝑐), we solve

equation (4.43) obtaining the following unique matrix 𝑃 such as its elements are:

𝑃11 = 𝑑𝑖𝑎𝑔(662, 879, 600, 831, 661, 594, 589)
𝑃12 = 𝑃21 = 𝑑𝑖𝑎𝑔(15.9, 18.9, 14.9, 18.2, 15.9, 14.8, 14.8)
𝑃22 = 𝑑𝑖𝑎𝑔(0.78, 0.83, 0.77, 0.82, 0.78, 0.77, 0.77)

4.4.3 Controller results

The proposed approach shows a smaller tracking error as shown in Fig. 4.8 and the improvement

with respect to existing controllers is shown in Table 4.4, where the computational time is below

1𝑚𝑠 for the proposed controller. The control activity was reduced due to the Learning-based

MPC approach that enables the choice of a smaller gain 𝑘𝑖 without losing stability (See Fig. 4.9).

Additionally in this paper, to show the Learning-based improvement from trial to trial, three

trials were performed; Trial 1 (T1): MPC with ISM (without the Learning-based approach), Trial

2 (T2): Using the collected data from trial 1, the GP disturbance model was trained and then the

Learning-based MPC with ISM was performed, and Trial 3 (T3): Using the collected data from

trials 1 and 2, the GP was trained then the Learning-based MPC with ISM was performed, the

improvement from trial to trial is shown in Fig. 4.10.

Table 4.3 SMC design parameters

SMC (Fallaha et al., 2011) SMC-ERL (Fallaha et al., 2011) Proposed controller

𝑘𝑖 𝑑𝑖𝑎𝑔( [6 6 6 2 8 2 1]) ∗ 100 𝑑𝑖𝑎𝑔( [145 155 160 45 180 55 30]) 𝑑𝑖𝑎𝑔( [30 30 30 10 40 10 5])
𝜆𝑖 𝑑𝑖𝑎𝑔( [32 26 13 38 13 5 4]) 𝑑𝑖𝑎𝑔( [32 26 13 38 13 5 4]) -

𝑝𝑖 - 1 1

𝛾𝑖 - 20 20

𝜒𝑖 - 0.1 0.1

𝑇Ξ - - [07×7, 𝑑𝑖𝑎𝑔(11×𝑛)]
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4.5 Discussion

The feedback linearization converts the coupled system into a decoupled uncertain linear system.

The ISM reduces the model uncertainty by attenuating the unknown disturbance 𝜔0(𝑡) into the

smaller 𝜔𝑟 (𝑡). Considering the uncertain linear system (4.21), the Learning-based MPC ensures

input and state constraints are fulfilled with high accuracy and low control effort. Although

high accuracy in trajectory tracking is not strongly necessary in rehabilitation tasks, the high

precision is a result of the unknown disturbance attenuation due to the ISM and the optimal

performance achieved by the Learning-based MPC. Therefore, it is an important result for highly

nonlinear systems subject to unexpected dynamics. Moreover, the choice of a smaller ISM gain

for only disturbance attenuation reduces the chattering in the control signal.

Table 4.4 Controllers comparison in

terms of error RMS values

‖𝑒‖𝑅𝑀𝑆 (rad)
Joint (𝑖) Proposed SMC SMC

controller ERL std
1 0.0143 0.0130 0.0488

2 0.0082 0.0500 0.1148

3 0.0155 0.0096 0.0658

4 0.0061 0.0261 0.0152

5 0.0033 0.0063 0.0214

6 0.0085 0.0467 0.0300

7 0.0445 0.0385 0.0588

Mean 0.0143 0.0271 0.0507

Normalized 1.0000 1.8940 3.5361

Computation

time (ms)
0.687 0.281 0.273
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Figure 4.10 Learning-based improvement from trial to trial

4.6 Conclusion

Through this paper, we propose a robust Learning-based MPC with ISM to provide safe

robotic rehabilitation in the presence of unknown patient efforts and unmodeled physiological

characteristics. The experimental results, with a healthy subject, prove the approach’s superior
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effectiveness compared to conventional SMC and SMC with ERL. Additionally, the Learning-

based improvement from trial to trial was proven. Considering the results obtained, the proposed

controller showed better performance (tracking error and control chattering) compared to existing

controllers. This article shows how to implement this technique in highly nonlinear robotic

exoskeletons. As future work a Cautious MPC approach will be considered to improve safety in

rehabilitation tasks.
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5.1 Introduction

Stroke is a leading cause of upper-limb disability worldwide (G. Broeks et al., 1999). While

advancements in quick-response protocols have reduced stroke-related mortality, the growing

number of survivors has increased the demand for post-stroke rehabilitation services (Johnson

et al., 2019). Conventional rehabilitation approaches focus on restoring motor skills through

repetitive exercises, targeting muscle weakness, and stimulating brain neuroplasticity (Johansson,

2000). Neuroplasticity refers to the brain’s remarkable capacity to reorganize itself by forming

new neural pathways or transferring cognitive functions from damaged to undamaged areas.

This transformation of brain sensory representation is known as mirror mechanism. Studies

have demonstrated that conventional mirror rehabilitation, which utilizes visual illusions alone,

can induce neuroplasticity in the brain through mirror neurons in the premotor cortex (Park

et al., 2015). Furthermore, the use of a 2 DoF exoskeleton robot has demonstrated improvements

in patient kinesthesia (Nam et al., 2017) by inducing neuroplasticity due to the direct visual

feedback and proprioceptive stimulation of both arms moving symmetrically. However, despite

the evident benefits, the integration of robotic exoskeletons and mirror rehabilitation remains

limited in the existing literature.
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In this sense, few robotic systems are found in the literature for single and multi-joint mirror

rehabilitation applications. In the single joint rehabilitation case, a force sensor is used for wrist

flexion and extension movement (Kim & Kim, 2017). In (Yang et al., 2021b), a combination of

surface EMG and force sensor is used to control the force in the impaired elbow for flexion and

extension movements. Similar works controlling a single joint can be found in the literature

using superficial EMG for wrist (Zhang et al., 2016), and elbow (Hajian et al., 2021) (Zhang

et al., 2019a). For multi-joint mirror rehabilitation, the feasibility of only upper-arm and forearm

joint estimation using IMU (Inertial Measurement Units) and EMG sensors were studied for an

8 DoF exoskeleton in (Blana et al., 2016). In (Wang & Fu, 2011), a mirror rehabilitation system

for upper-limb was presented using only IMU sensors, later the system underwent an upgrade by

integrating a motion prediction module based on surface EMG signals (Ren et al., 2019) for an

11 DoF exoskeleton.

It is worth noting that the previous multi-joint systems lack a wrist orientation estimator from

EMG signals. To that end, different EMG classifier techniques have been proposed with

good results such as Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA)

(Khushaba et al., 2016), optimized artificial neural networks (Lima et al., 2018), K-Nearest

Neighborhood (KNN) (Liu & Zhou, 2012) and Fuzzy c-means clustering (Momen et al., 2007).

For further information on EMG pattern recognition for wrist orientation, a recent review can be

found in (Parajuli et al., 2019). In contrast to previous mirror robotic systems that focused solely

on the joint estimation of the upper-arm and forearm, a wrist orientation estimator is incorporated

in this paper. To achieve this, a deep convolutional neural network model is employed. This

approach was chosen because there are few applications of EMG recognition in real-time using

this technique (Yang & Liu, 2021).

The previous works have not addressed the problems of uncertainties, external disturbances, and

unmodeled dynamics related to the wearer. To address the above-mentioned shortcomings, in

this paper, to validate the mirror rehabilitation system, a novel feedback controller is proposed to

overcome external disturbances and a special type of model uncertainties caused by the wearer,

as well as to obtain fixed-time convergence rates (Basin, 2019) and prescribed performance
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(Bu, 2023). In the literature, for finite-time convergence the terminal sliding mode control

(Venkataraman & Gulati, 1993) guarantees that the tracking error converges globally to the

origin. For fixed-time convergence, the twisting (Polyakov & Poznyak, 2009a) and super-twisting

(Polyakov & Poznyak, 2009b) have been proposed to ensure convergence within a pre-defined

time. An example of the fixed-time approach designed for a robotic manipulator can be found in

(Zhang et al., 2019b).

Regarding the prescribed performance control approach, it allows us to predefine the convergence

rate of the tracking error, as well as the maximum overshoot (Qin & Sun, 2020). An example can

be found in (Zhang & Yu, 2023) where an observer-based prescribed performance was designed

for an autonomous surface vessel.

In summary, a mirror rehabilitation system incorporating a wrist orientation estimator is proposed.

In addition, to track the mirrored trajectory, a novel fixed-time super-twisting-like algorithm

with prescribed performance is developed to overcome the external disturbances and model

uncertainties caused by the wearer on the robotic exoskeleton. Thus the main contributions of

this paper are as follows:

1. Propose a mirror upper-limb rehabilitation scheme to anthropomorphically locate the elbow

and forearm, achieving comfortable and natural postures.

2. Incorporate into the proposed system, a wrist orientation estimator using EMG signals from

the forearm muscles.

3. Propose a fixed-time super-twisting-like algorithm with prescribed performance to overcome

disturbances and uncertainties while tracking a mirrored trajectory.

This paper is organized as follows: Section 5.2 is dedicated to the preliminaries (forward

kinematics and motion capture system). Section 5.3 introduces the Mirror rehabilitation system

by developing the human forward kinematics, the wrist orientation estimator, a human-type

inverse kinematic solution, and the solution to the inverse orientation problem. In Section

5.4, the feedback linearization of the robotic exoskeleton is performed, and the design of a

fixed-time super-twisting-like algorithm and its stability are presented. In Section 5.5, the mirror
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rehabilitation is implemented, where the wrist orientation estimator is evaluated, as well as

results of simulation and real-time experiments of the proposed controller are reported. Finally,

in Section VI the conclusions are summarized.

5.2 Preliminaries

This section recalls the forward kinematics of the robotic exoskeleton, as well as the motion

capture system (MOCAP) that measures human upper-limb movement.

5.2.1 Robotic exoskeleton forward kinematics

The ETS-MARSE (Motion Assistive Robotic Exoskeleton for Superior Extremity) is a seven

degrees of freedom (DoF) redundant exoskeleton robot, designed for upper-limb rehabilitation.

For kinematic modeling, the ETS-MARSE’s frames were located as shown in Fig. 5.1, then the

modified Denavit-Hartenberg parameters were derived as shown in Table 5.1, where 𝑑𝑠 is the

distance from the origin frame to the shoulder, 𝑑𝑒 ∈ R is the upper arm length and 𝑑𝑤 ∈ R is

the forearm length. From Table 5.1, the homogeneous transformation matrix between the base

frame to the end-effector is obtained as follows:

0
7𝑇 = 0

1𝑇
1
2𝑇

2
3𝑇

3
4𝑇

4
5𝑇

5
6𝑇

6
7𝑇 (5.1)

This result is known as forward kinematics, where the homogeneous transformation 𝑖−1
𝑖 𝑇 ∈ R4×4

between the frame 𝑖 − 1 and 𝑖 is defined as:

𝑖−1
𝑖 𝑇 =

⎡⎢⎢⎢⎢⎣
𝑅𝑥 (𝛼𝑖−1) 03×1

01×3 1

⎤⎥⎥⎥⎥⎦ Δ𝑥𝑦𝑧 (𝑎𝑖−1, 0, 0)
⎡⎢⎢⎢⎢⎣
𝑅𝑧 (𝜃𝑖) 03×1

01×3 1

⎤⎥⎥⎥⎥⎦ Δ𝑥𝑦𝑧 (0, 0, 𝑑𝑖) (5.2)

where 𝑅𝑥 ∈ R3×3, 𝑅𝑧 ∈ R3×3 are rotation matrices (Goldstein, 1980) and Δ𝑥𝑦𝑧 (𝑥𝛿, 𝑦𝛿, 𝑧𝛿) ∈ R4×4

is a translation matrix given the displacements 𝑥𝛿, 𝑦𝛿 and 𝑧𝛿 along the 𝑥, 𝑦 and 𝑧 axis respectively,
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defined as follows:

Δ𝑥𝑦𝑧 (𝑥𝛿, 𝑦𝛿, 𝑧𝛿) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐼3×3

𝑥𝛿

𝑦𝛿

𝑧𝛿

01×3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.3)

Where 𝐼3×3 is the identity matrix. By using each 𝑖−1
𝑖 𝑇 , the end-effector position 𝑤 is obtained, as

well as the elbow position 𝑒 and shoulder 𝑠 position, as follows:

[
𝑠𝑇 1

]𝑇
= 0

1𝑇
[
0 0 0 1

]𝑇
(5.4)

[
𝑒𝑇 1

]𝑇
= 0

1𝑇
1
2𝑇

2
3𝑇

3
4𝑇

[
0 0 0 1

]𝑇
(5.5)[

𝑤𝑇 1

]𝑇
= 0

1𝑇
1
2𝑇

2
3𝑇

3
4𝑇

4
5𝑇

[
0 0 0 1

]𝑇
(5.6)

where

𝑠 =
[
0 0 𝑑𝑠

]𝑇
(5.7)

𝑒 =
[
𝑑𝑒𝑐1𝑠2 𝑑𝑒𝑠1𝑠2 𝑑𝑠 + 𝑑𝑒𝑐2

]𝑇
(5.8)

𝑤 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−𝑑𝑤 (𝑠4(−𝑐1𝑐2𝑐3 + 𝑠1𝑠3) − 𝑐1𝑠2𝑐4) + 𝑑𝑒𝑐1𝑠2

𝑑𝑤 (𝑠4(𝑐1𝑠3 + 𝑠1𝑐2𝑐3) + 𝑠1𝑠2𝑐4) + 𝑑𝑒𝑠1𝑠2

𝑑𝑠 + 𝑑𝑤 (𝑐2𝑐4 − 𝑠2𝑐3𝑠4) + 𝑑𝑒𝑐2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.9)

here 𝑠𝑖 and 𝑐𝑖 for 𝑖 ∈ [1, 7] are the sine and cosine functions of 𝜃𝑖.

5.2.2 Motion capture system

The motion capture system (MOCAP) is based on the Myo armband which is a wireless

device that includes 8 surface EMG (Electromyography) channels and a 9-axis IMU (Inertial

Measurement Unit). The measured information is sent to a host computer via Bluetooth at a 50

ms rate. In this work, the position of the elbow and wrist, and orientation of the forearm and

wrist are calculated by using two Myo armbands as shown in Fig. 5.2, obtaining the forward
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Figure 5.1 Frames location

Table 5.1 Modified D-H

parameters

𝜃𝑖 𝑎𝑖−1 𝛼𝑖−1 𝑑𝑖

𝜃1 0 0 𝑑𝑠

𝜃2 0 − 𝜋
2

0

𝜃3 0 𝜋
2

𝑑𝑒

𝜃4 0 − 𝜋
2

0

𝜃5 0 𝜋
2

𝑑𝑤

𝜃6 − 𝜋
2

0 − 𝜋
2

0

𝜃7 0 − 𝜋
2

0

human kinematics. The Myo number 1 (MYO 1) armband is located in the upper arm about 5

cm from the olecranon bone to the biceps brachii, and the MYO number 2 (MYO 2) is located
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in the forearm about 5 cm from the olecranon bone to the supinator muscle (Ren et al., 2019).

When extending the left arm to the front, the position and orientation of both Myo armbands

should be as shown in Fig. 5.3.

Human 
Forward 

Kinematic

,
and

Upper arm
(MYO 1)

Forearm
(MYO 2)

Wrist 
Orientation 
EstimatorEMG

,
and

Huma-Type 
Inverse 

Kinematic
Eqs. (13)
and (15)

Eqs. (21), (23),
and (24)

Eq. (19)
Eqs. (29), (30),
and (31)

Inverse
orientation

Figure 5.2 Mirror rehabilitation system

5.3 Mirror rehabilitation system

In this section, a mirror rehabilitation system for hemiplegic stroke survivors is presented. The

rehabilitation system is able to measure the healthy arm’s joint angles and replicate them on the

impaired arm.

5.3.1 Human forward kinematics

The MOCAP system provides the following two measured quaternions q1 and q2 obtained from

the upper arm and forearm respectively.

q1 = [𝑞11, 𝑞12, 𝑞13, 𝑞14]𝑇

q2 = [𝑞21, 𝑞22, 𝑞23, 𝑞24]𝑇
(5.10)
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Figure 5.3 Myo armband position and orientation

The homogeneous transformation for the elbow is defined as follows:

𝑇𝑒 = Δ𝑥𝑦𝑧 (0, 0, 𝑑𝑠) 𝑇𝑞 (q1) Δ𝑥𝑦𝑧 (𝑑𝑒, 0, 0) (5.11)

where 𝑇𝑞 (q) is the resulting matrix given a unit quaternion q = [𝑞1, 𝑞2, 𝑞3, 𝑞4]𝑇 and it is defined

as (Kuipers, 1999):

𝑇𝑞 (q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 2𝑞2
3
− 2𝑞2

4
2𝑞2𝑞3 − 2𝑞1𝑞4 2𝑞2𝑞4 + 2𝑞1𝑞3 0

2𝑞2𝑞3 + 2𝑞1𝑞4 1 − 2𝑞2
2
− 2𝑞2

4
2𝑞3𝑞4 − 2𝑞1𝑞2 0

2𝑞2𝑞4 − 2𝑞1𝑞3 2𝑞3𝑞4 + 2𝑞1𝑞2 1 − 2𝑞2
2
− 2𝑞2

3
0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.12)
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Then 𝑇𝑒 is written as:

𝑇𝑒 =

⎡⎢⎢⎢⎢⎣
𝑅𝑒 𝐸

01×3 1

⎤⎥⎥⎥⎥⎦ (5.13)

where 𝐸 ∈ R3×1 is the elbow measured position and 𝑅𝑒 ∈ R3×3 defines the elbow measured

orientation. Following the same procedure, the homogeneous transformation of the wrist is

obtained as follows:

𝑇𝑤 = Δ𝑥𝑦𝑧 (𝐸𝑥, 𝐸𝑦, 𝐸𝑧) 𝑇𝑞 (q2) Δ𝑥𝑦𝑧 (𝑑𝑤, 0, 0) (5.14)

and 𝑇𝑤 ∈ R4×4 is written as follows:

𝑇𝑤 =

⎡⎢⎢⎢⎢⎣
𝑅 𝑓 𝑊

01×3 1

⎤⎥⎥⎥⎥⎦ (5.15)

where 𝑊 ∈ R3×1 is the wrist measured position and 𝑅 𝑓 ∈ R3×3 is the forearm measured

orientation. Now, the 𝑥𝑦𝑧 components of the measured position of the shoulder, elbow, and

wrist are defined as follows:

𝑆 =[0, 0, 𝑑𝑠]𝑇

𝐸 =[𝐸𝑥, 𝐸𝑦, 𝐸𝑧]𝑇

𝑊 =[𝑊𝑥,𝑊𝑦,𝑊𝑧]𝑇
(5.16)

5.3.2 Wrist orientation estimator

Due to the lack of wrist orientation information in the previous subsection, in this work, a

deep convolutional neural network model is used to estimate the wrist orientation from forearm

surface EMG signals as shown in Fig. 5.4. To that end, two EMG features called the mean

absolute value (MAV) (Shi et al., 2018) and the waveform length (WL) (Phinyomark et al., 2012)

are considered, which are the most popular features for EMG pattern recognition in the literature,

both expressed as:

MAV 𝑖 =
1

𝑁

𝑁∑
𝑖=1

|𝑥𝑖 | (5.17)
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WL𝑖 =
1

𝑁

𝑁∑
𝑖=1

|𝑥𝑖 − 𝑥𝑖−1 | (5.18)

Where 𝑥𝑖 ∈ R8 is the measured raw EMG signal and 𝑁 is the number of samples. Seven

wrist movements for classification are defined as shown in Fig. 5.5. The input of the deep

Forearm
WL and MAV
Input Layer 
16x1

Convolution2D Layer
3 filters, stride 1
Size 3x1

Flatten
Layer
42x1

Fully
Connected
Layer

Output
Layer 7x1

Admittance 
filter

Softmax
Layer 7x1

Class to 
, 

and 

Estimated
torque

Estimated
Deviation
Angles

Figure 5.4 Wrist orientation estimator

Neutral Extension Flexion

Neutral Radial dev. Ulnar dev.

Neutral Supination Pronation

Figure 5.5 Wrist movements for classification



145

convolutional neural network model is composed of both EMG features WL and MAV (8 forearm

signals each), resulting in a 16-signal input layer, then a 2D convolutional layer extracts the most

significant features from all the EMG features using 3 filters with size 3x1. A flattening layer, as

shown in Fig. 5.4, converts the information from the filters into a single vector, which is fed into

a fully connected layer, then the softmax output layer classifies the movement which is converted

in the estimated ±𝜏𝛼 ∈ R (forearm pronation/supination), ±𝜏𝛽 ∈ R (wrist radial/ulnar deviation)

and ±𝜏𝛾 ∈ R (wrist flexion/extension). In total 313 hyperparameters (9 weights and 3 Bias from

the convolution layer and 7x42 weights and 7 bias from the fully connected layer) are tuned

during the training. By using an admittance filter (Ochoa Luna et al., 2015) in its differential

equation form as shown in (5.19), the following orientation angles are obtained 𝛿𝛼 ∈ R, 𝛿𝛽 ∈ R
and 𝛿𝛾 ∈ R which define the deviation from the forearm orientation.

⎡⎢⎢⎢⎢⎢⎢⎢⎣
�𝛿𝛼
�𝛿𝛽
�𝛿𝛾

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 𝐴−1

1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝜏𝛼

𝜏𝛽

𝜏𝛾

⎤⎥⎥⎥⎥⎥⎥⎥⎦
− 𝐴−2

1 𝐴2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝛿𝛼

𝛿𝛽

𝛿𝛾

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.19)

where 𝐴1 and 𝐴2 are diagonal matrices. Since 𝑅 𝑓 in (5.15) denotes the measured forearm

orientation only, the measured wrist orientation is computed using the angles from (5.19).

O = 𝑇𝑤

⎡⎢⎢⎢⎢⎣
𝑅𝑧 (𝛿𝛾) 03×1

01×3 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑅𝑦 (𝛿𝛽) 03×1

01×3 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑅𝑥 (𝛿𝛼) 03×1

01×3 1

⎤⎥⎥⎥⎥⎦ (5.20)

5.3.3 Human-type inverse kinematics

Once the measured positions and orientations are available (𝐸 , 𝑊 , and O), the joint angle of

each DoF of the ETS-MARSE are computed. Now, given the measured elbow position 𝐸 , and

using (5.8), the joint angles 𝜃1 and 𝜃2 are found as follows:

𝜃1 = a𝑡𝑎𝑛2(𝐸𝑦, 𝐸𝑥)
𝜃2 = a𝑡𝑎𝑛2(±

√
𝐸2
𝑥 + 𝐸2

𝑦 , 𝐸𝑧 − 𝑑𝑠)
(5.21)
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Note that the elbow position for the ETS-MARSE only depends on 𝜃1 and 𝜃2. The value of 𝜃3 is

also found analytically, substituting 𝑤 by 𝑊 in (5.6) and multiplying both sides by (0
1
𝑇1

2
𝑇)−1

yields: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑𝑤𝑐3𝑠4

−𝑑𝑒 − 𝑑𝑤𝑐4

𝑑𝑤𝑠3𝑠4

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑊𝑥𝑐1𝑐2 +𝑊𝑦𝑠1𝑐2 −𝑊𝑧𝑠2 + 𝑑𝑠𝑠2

−𝑊𝑥𝑐1𝑠2 −𝑊𝑦𝑠1𝑠2 −𝑊𝑧𝑐2 + 𝑑𝑠𝑐2

−𝑊𝑥𝑠1 +𝑊𝑦𝑐1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.22)

Then

𝜃3 = a𝑡𝑎𝑛2(−𝑊𝑥𝑠1 +𝑊𝑦𝑐1,𝑊𝑥𝑐1𝑐2 +𝑊𝑦𝑠1𝑐2 −𝑊𝑧𝑠2 + 𝑑𝑠𝑠2) (5.23)

The value of 𝜃4 is obtained by:

𝜃4 = 𝜋 ± a𝑐𝑜𝑠
(
𝑑2
𝑤 + 𝑑2

𝑒 − ||𝑊 − 𝑆 | |2
2𝑑𝑒𝑑𝑤

)
(5.24)

5.3.4 Inverse orientation

By using the measured desired orientation O 5.20, the joint angle for the last three joints 𝜃5,

𝜃6 and 𝜃7 are computed. It can be noted that the matrix 4
7
𝑇 contains the orientation of the

end-effector.

4
7𝑇 = 4

5𝑇
5
6𝑇

6
7𝑇 (5.25)

The matrix 4
7
𝑇 yields:

4
7𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠5𝑠7 + 𝑐5𝑠6𝑐7 𝑠5𝑐7 − 𝑐5𝑠6𝑠7 𝑐5𝑐6 0

−𝑐6𝑐7 𝑐6𝑠7 𝑠6 −𝑑𝑤
−𝑐5𝑠7 + 𝑠5𝑠6𝑐7 −𝑐5𝑐7 − 𝑠5𝑠6𝑠7 𝑠5𝑐6 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.26)
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Using the matrices O and 4
7
𝑇 the following relation is built

4
7𝑇 = 0

4𝑇
−1O (5.27)

Developing the right-hand part of (5.27), one obtains:

4
7𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑜11 𝑜12 𝑜13 𝑜14

𝑜21 𝑜22 𝑜23 𝑜24

𝑜31 𝑜32 𝑜33 𝑜34

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.28)

Considering (5.26) and (5.28), the solution for 𝜃6 is:

𝜃6 = a𝑡𝑎𝑛2
(
𝑜23, 𝑐6

)
(5.29)

where 𝑐6 = ±
√
𝑜2

13
+ 𝑜2

33
. The solution for 𝜃5 is:

𝜃5 = a𝑡𝑎𝑛2
(
𝑜33, 𝑜13

)
(5.30)

The solution of 𝜃7 is:

𝜃7 = a𝑡𝑎𝑛2
(
𝑜22,−𝑜21

)
(5.31)

Remark 1. Note that the previously calculated solutions remain valid when |𝜃6 | < 𝜋
2
, otherwise

the wrist ulnar or radial deviation will be highly uncomfortable.

5.4 Trajectory tracking controller design

In this section, a fixed-time super-twisting-like algorithm with prescribed performance (see Fig.

5.6) is developed for the ETS-MARSE exoskeleton to follow the measured trajectory from the

healthy arm mirrored to the impaired arm.
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Mirror rehabilitation 
Proposed 

virtual
control
Eq. (54)

ETS-MARSE
Eq. (32)

-

+ Eq. (33)

Figure 5.6 Overall system’s block diagram

5.4.1 ETS-MARSE dynamics

The dynamics of the studied exoskeleton is given in the following standard form:

𝑀 (𝜃) �𝜃 + 𝐶 (𝜃, �𝜃) �𝜃 + 𝐺 (𝜃) = 𝜏 + 𝜏𝑢 (5.32)

where 𝜃 ∈ R𝑛, �𝜃 ∈ R𝑛 and �𝜃 ∈ R𝑛 are the joint angular position, velocity, and acceleration

respectively, 𝑀 (𝜃) ∈ R𝑛×𝑛 is the inertia matrix, 𝐶 (𝜃, �𝜃) ∈ R𝑛×𝑛 is the Coriolis and centrifugal

matrix, 𝐺 (𝜃) ∈ R𝑛 is the gravitational force vector, 𝜏 is the torque applied by the motors and

𝜏𝑢 is the unknown dynamics e.g. external disturbances, model uncertainties and human-robot

interaction forces. Notice that 𝑛 is the number of DoF and is equal to 7 in our case. By using the

known dynamics of (5.32), a nominal control law is obtained as follows:

𝜏 = 𝑀 (𝜃)𝜈 + 𝐶 (𝜃, �𝜃) �𝜃 + 𝐺 (𝜃) (5.33)

where 𝜈 is a virtual control input that will be designed in the subsequent part. Substituting (5.33)

into (5.32) yields:

�𝜃 = 𝜈 + 𝑤𝑢 (5.34)

where 𝑤𝑢 = 𝑀−1(𝜃)𝜏𝑢 denotes the uncertain vector with bounded initial functions such as:

|𝑤𝑢𝑖 (𝑡0) | < 𝑊0𝑖 (5.35)
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where 𝑊0𝑖 is a positive constant for 𝑖 = 1 → 𝑛. In addition 𝑤𝑢 verifies the following Lipschitz

condition:

| �𝑤𝑢𝑖 (𝑡) | < 𝑊𝑖 (5.36)

where 𝑊𝑖 is a known positive constant for 𝑖 = 1 → 𝑛.

5.4.2 Fixed-time super-twisting-like control with prescribed performance

For the controller design procedure, some useful results are presented:

Lemma 1. (refer to (Chen et al., 2020)) If there exists a function 𝑉 : R𝑛 −→ R+ ∪ {0} such that

�𝑉 (𝑥) ≤ −(
𝑎1𝑉

𝜅1 (𝑥) + 𝑎2𝑉
𝜅2 (𝑥)) 𝜅3 ,∀𝑥 ≠ 0 (5.37)

where 𝑎1, 𝑎2, 𝑎3, 𝜅1, 𝜅2 and 𝜅3 are positive constants with 𝜅1𝜅3 > 1 and 0 < 𝜅2𝜅3 < 1. Then a

fixed-time stability is achieved, and its maximum settling time is estimated by:

𝑇𝑚𝑎𝑥 =
1

𝑎𝜅3

1
(𝜅1𝜅3 − 1) −

1

𝑎𝜅3

2
(𝜅2𝜅3 − 1) (5.38)

Lemma 2. (refer to (Basin et al., 2019)) If there is a scalar system that can be written in the

following differential inclusion form:

�𝑦 = − 𝑎1 |𝑦 |0.5sign(𝑦) − 𝑎2 |𝑦 |𝛼sign(𝑦) + 𝑧
�𝑧 = − 𝑎3sign(𝑦) + �𝑥

(5.39)

where 𝑥 is a Lipschitz function such as �𝑥 ≤ Δ𝑋 , 𝑎1, 𝑎2 > 0, 𝑎3 > Δ𝑋 , and 𝛼 > 1. Then, 𝑦

converges to the equilibrium point in fixed-time smaller than:

𝑇 ≤
(

1

𝑎2(𝛼 − 1)𝜉𝛼−1
+ 2𝜉0.5

𝑎1
+ Δ𝑋0

𝑀

) ����1 + 1(
𝑚
𝑀 − 𝑚ℎ(𝑎1)

𝑎1

) ���� +
Δ𝑋0

𝑚
(5.40)
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where Δ𝑋0 is the upper bound of the initial value of the Lipschitz function 𝑥 at the initial time

𝑡 = 𝑡0, 𝑀 = 𝑎3 + Δ𝑋 , 𝑚 = 𝑎3 − Δ𝑋 , ℎ(𝑎1) = 1
𝑎1

+
(

2𝜀
𝑚𝑎1

)1/3
, with 𝜀 as the base of natural

logarithms, 𝜉 =
(
𝑎1

𝑎2

) 2
1+2𝛼 .

A novel controller is proposed for the ETS-MARSE robot using a fixed-time sliding surface with

prescribed performance and a super-twisting-like algorithm. The chosen prescribed performance

function (Bu, 2023) is shown below:

𝜂(𝑡) = 𝜂∞ + (𝜂0 − 𝜂∞)exp(−𝑙𝑡) (5.41)

where 𝜂0 and 𝜂∞ are the values of 𝜂(𝑡) at time 𝑡 = 0 and 𝑡 −→ ∞, respectively. Let us define the

𝑖𝑡ℎ constrained error as follows:

−𝜂(𝑡) < 𝑒𝑖 = 𝜃𝑖 − 𝜃𝑖𝑑 < 𝜂(𝑡) (5.42)

where 𝜃𝑖𝑑 is the 𝑖𝑡ℎ desired reference. The constrained error is transformed into an unconstrained

one 𝑧 = [𝑧1, .., 𝑧𝑛]𝑇 with first and second derivatives defined as:

𝑧𝑖 =
1

2
ln

����
𝑒𝑖
𝜂(𝑡) + 1

1 − 𝑒𝑖
𝜂(𝑡)

����
�𝑧𝑖 = 𝑟𝑖𝐻1𝑖

�𝑧𝑖 = �𝑟𝑖𝐻1𝑖 + 𝑟𝑖 ( �𝑒𝑖 + 𝐻2𝑖)

(5.43)

where 𝐻1𝑖 and 𝐻2𝑖 are defined below:

𝐻1𝑖 = �𝑒𝑖 − 𝑒𝑖 �𝜂(𝑡)
𝜂(𝑡)

𝐻2𝑖 =
𝑒𝑖 �𝜂(𝑡)2

𝜂(𝑡)2
− 𝑒𝑖 �𝜂(𝑡)

𝜂(𝑡) − �𝑒𝑖 �𝜂(𝑡)
𝜂(𝑡)

(5.44)
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And 𝑟 ∈ R𝑛×𝑛 and its derivative are given by:

𝑟𝑖 =
1

2𝜂(𝑡)
(
1 + 𝑒𝑖

𝜂(𝑡)

) + 1

2𝜂(𝑡)
(
1 − 𝑒𝑖

𝜂(𝑡)

)
�𝑟𝑖 = −

(
𝜂(𝑡)2 + 𝑒2

𝑖

) �𝜂(𝑡) − 2𝜂(𝑡)𝑒𝑖 �𝑒𝑖
(𝑒 + 𝜂(𝑡))2(𝑒 − 𝜂(𝑡))2

(5.45)

The following fixed-time switching sliding surface is proposed.

𝑠 = �𝑧 + 𝐷 (𝑧) (5.46)

And its derivative yields:

�𝑠 = �𝑧 + �𝐷 (𝑧) (5.47)

where 𝐷 (𝑧) = [𝐷1(𝑧1), · · · , 𝐷𝑛 (𝑧𝑛)]𝑇 and �𝐷 (𝑧) = [ �𝐷1(𝑧1), · · · , �𝐷𝑛 (𝑧𝑛)]𝑇 with:

𝐷𝑖 (𝑧𝑖) =𝜆1𝑖 |𝑧𝑖 |𝛼1sign(𝑧𝑖) + 𝜆2𝑖 |𝑧𝑖 |𝛼2sign(𝑧𝑖)
�𝐷𝑖 (𝑧𝑖) =𝜆1𝑖𝛼1 |𝑧𝑖 |𝛼1−1 �𝑧𝑖 + 𝜆2𝑖𝛼2 |𝑧𝑖 |𝛼2−1 �𝑧𝑖

(5.48)

The design parameters 𝜆1𝑖, 𝜆2𝑖, 𝛼1 and 𝛼2 are positive constants with 𝛼1 > 1 and 0.5 < 𝛼2 < 1

and:

sign(𝑧𝑖) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
−1, if 𝑧𝑖 < 0,

1, if 𝑧𝑖 > 0,

0, otherwise

(5.49)

The proposed nonlinear sliding surface ensures fixed-time convergence during the reaching

phase when 𝑠 = 0 (i.e., �𝑧 = −𝐷 (𝑧)). The maximal convergence time is settled based on the
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following Lyapunov stability study where:

𝑉𝑠 =
1

2
𝑧𝑇 𝑧

�𝑉𝑠 =𝑧𝑇 �𝑧 = −𝑧𝑇𝐷 (𝑧)
�𝑉𝑠𝑖 = − 𝜆1𝑖 |𝑧𝑖 |𝛼1+1 − 𝜆2𝑖 |𝑧𝑖 |𝛼2+1

= − 𝜆1𝑖 (2𝑉𝑠𝑖)
𝛼1+1

2 − 𝜆2𝑖 (2𝑉𝑠𝑖)
𝛼2+1

2 ≤ 0

(5.50)

According to Lemma 1, each transformed error (𝑧𝑖 for 𝑖 = 1 → 𝑛) identically each tracking error

(𝑒𝑖 for 𝑖 = 1 → 𝑛) converge to zero within fixed-time of which the maximum is estimated as

follows:

𝑇𝑠𝑙
𝑚𝑎𝑥 = 𝑇𝑐𝑛

𝑚𝑎𝑥 +
1

𝜆1𝑖2
𝛼1−1

2 (𝛼1 − 1)
− 1

𝜆2𝑖2
𝛼2−1

2 (𝛼2 − 1)
(5.51)

where 𝑇𝑐𝑛
𝑚𝑎𝑥 is the time required to reach 𝑠 = 0. Otherwise, using the nominal model in (5.34)

and setting �𝑠 = 0, the equivalent control is computed as follows:

𝜈0 = �𝜃𝑑 − 𝐻2 − 𝑟−1
( �𝐷 (𝑧) + �𝑟𝐻1

)
(5.52)

where𝐻1 = [𝐻11, · · · , 𝐻1𝑛]𝑇 ,𝐻2 = [𝐻21, · · · , 𝐻2𝑛]𝑇 , 𝑟 = diag(𝑟1, · · · , 𝑟𝑛) and �𝑟 = diag( �𝑟1, · · · , �𝑟𝑛).

Moreover, to ensure a fixed-time convergence of the states to the fixed-time sliding surface, the

super-twisting-like control algorithm is used (Basin et al., 2019).

𝜈1 = −𝑟−1

(
𝐾1sig

1
2 (𝑠) + 𝐾2sig𝑝 (𝑠) +

∫ 𝑡

0

𝐾3sig0(𝑠)𝑑𝑡
)

(5.53)

where sig∗(𝑠) = [|𝑠1 |∗sign(𝑠1), ..., |𝑠𝑛 |∗sign(𝑠𝑛)]𝑇 , the design parameters are 𝑝 ∈ R+ and 𝐾1,

𝐾2, 𝐾3 as (𝑛 × 𝑛) diagonal positive matrices. Finally, the total virtual control law is given as:

𝜈 = 𝜈0 + 𝜈1 (5.54)
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By substituting (5.54) in (5.34) results in the following closed-loop control system:

�𝑠 = −𝐾1sig
1
2 (𝑠) − 𝐾2sig𝑝 (𝑠) + 𝑦

�𝑦 = −𝐾3sig0(𝑠) + �𝑤𝑢

(5.55)

By means of Lemma 2, considering 𝐾3𝑖 > 𝑊𝑖, each sliding surface achieves a fixed-time stability

with a time smaller than:

𝑇𝑐𝑛
𝑚𝑎𝑥 =

(
1

𝐾2𝑖 (𝑝 − 1)𝜉𝑝−1
+ 2𝜉0.5

𝐾1𝑖
+ 𝑊0𝑖

𝑀

) ����1 + 1(
𝑚
𝑀 − 𝑚 𝑓 (𝐾1𝑖)

𝐾1𝑖

) ���� +
𝑊0𝑖

𝑚
(5.56)

where 𝑀 = 𝐾3𝑖 +𝑊𝑖, 𝑚 = 𝐾3𝑖 −𝑊𝑖, 𝜉 =
(
𝐾1𝑖

𝐾2𝑖

) 2
1+2𝑝

and 𝑓 (𝐾1𝑖) = 1
𝐾1𝑖

+
(

2𝜀
𝑚𝐾1𝑖

)1/3
, with 𝜀 as the

base of natural logarithms.

Remark 2. A singularity might occur during the sliding phase when 𝑧𝑖 = 0 and 𝑧𝑖 ≠ 0. To avoid

this problem, the term 𝐴𝑖 = |𝑧𝑖 |𝛼2−1 �𝑧𝑖 is replaced by sat (𝐴𝑖, 𝛿𝑖) such as:

sat(𝐴𝑖, 𝛿𝑖) =
⎧⎪⎪⎨⎪⎪⎩

|𝑧𝑖 |𝛼2−1 �𝑧𝑖 if | |𝑧𝑖 |𝛼2−1 �𝑧𝑖 | < 𝛿𝑖

𝛿𝑖sign( |𝑧𝑖 |𝛼2−1 �𝑧𝑖) if | |𝑧𝑖 |𝛼2−1 �𝑧𝑖 | ≥ 𝛿𝑖
(5.57)

where 𝛿𝑖 < 1 is a very small positive constant.

5.5 Mirror rehabilitation implementation

5.5.1 Wrist orientation estimator setup and results

For the wrist orientation estimator, the matrices 𝐴1 = diag(5, 5, 5) and 𝐴2 = diag(0.1, 0.1, 0.1)
are considered. Five hundred raw EMG measurements were recorded for each wrist movement

(3500 EMG measurements in total), and several trials using the MAV and WL features were

performed using 70% for training, 15% for validation and 15% for test as shown in Table 5.2.

For the deep convolutional neural network, a total of 100,000 training iterations were chosen,
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Table 5.2 EMG pattern recognition trials

Feature
Flexion/

Extension

Ulnar/

Radial

Deviation

Forearm

Pronation/

Supination

Deep

neural

model

[WL𝑖 WL𝑖−1] 100% 99.71% 99.13%

[MAV 𝑖 MAV 𝑖−1] 99.71% 99.71% 99.42%

[WL𝑖 MAV 𝑖] 98.85% 99.42% 99.14%

Gaussian

processes

(Rasmussen & Nickisch, 2010)

[WL𝑖 WL𝑖−1] 97.14% 98.32% 93.10%

[MAV 𝑖 MAV 𝑖−1] 99.10% 98.81% 85.62%

[WL𝑖 MAV 𝑖] 97.45% 98.97% 89.22%

and for the Gaussian Processes a model size of 50 points (Rasmussen & Nickisch, 2010) and

120,000 training iterations were chosen.

5.5.2 Controller simulation setup

For simulation, the Simscape Multibody Environment (formerly SimMechanics) (MathWorks)

was used. A demanding scenario has been configured for the controller, to that end the physical

parameters of the Simscape model were chosen with 160% more than in Table 5.3 to serve

as unknown dynamics. Additionally, using the MOCAP system described in Section 5.2, a

challenging trajectory generated by a series of movements was recorded within 20 seconds.

The sequence starts with the initial position, followed by a forearm pronation/supination, and

concludes by taking a highlighter pen and depositing it into a container (Fig. 5.7). The controller

design parameters are: For the prescribed function 𝜂0 = 1.7279, 𝜂∞ = 0.09, 𝑙 = 1.5. For the

fixed-time sliding surface 𝜆1 = 20, 𝜆2 = 20, 𝜆3 = 20, 𝛼1 = 1.2, 𝛼2 = 1.3, 𝛼3 = 0.7, 𝛿 = 0.1,

𝑝 = 2, 𝐾1 = [0.2, 0.2, 1, 0.2, 1, 1, 5]𝑇 , 𝐾2 = 𝐾1, and 𝐾3 = 10𝐾1.

5.5.3 Controller simulation results

The trajectory tracking results are presented in Fig. 5.8 where several forearm pronation/supina-

tion movements were detected. It is observed that all the joints, even when starting from a
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Table 5.3 ETS-MARSE physical parameters

Joint Link Length (m) Mass (kg) Centre of mass (m)

1 0.145 3.4 0.0968

2 0 0 0.193

3 0.25 3.4 0

4 0 0 0.164

5 0.267 1.98 0

6 0 0.78 0.0417

7 0 0.5 0.0622

Table 5.4 Simulation results

i 1 2 3 4 5 6 7

rms(𝑒𝑖) (rad) 0.1306 0.1304 0.0799 0.1372 0.0792 0.0714 0.0563

𝑇𝑠𝑙 (sec) 5.24 5.38 0.72 11.05 0.32 0.196 0.102

𝑇𝑠𝑙
𝑚𝑎𝑥 (sec) 15.2 15.2 3.1 15.2 2.88 2.88 0.3958

OS% 0 0 2.03 0 2.09 5.24 3.93

90-degree offset, reach a small region around the desired reference position in fixed-time as

shown in Table 5.4, this remains true even when tracking a challenging trajectory, with a minimal

overshoot and a short 5% settling time. To provide a more detailed view of the results, a zoomed

tracking error is displayed in Fig. 5.10. It’s worth noting that all these errors remain within

the specified constraints outlined in (5.42), even in the presence of unknown dynamics. The

control signals exhibited in Fig. 5.9, present chattering free behavior. During the initial stage of

the simulation, there is a notable increase in torque due to the initial offset, which is necessary

to facilitate fixed-time convergence. In a real-time implementation with a human subject, the

constraints detailed in (5.42) should be designed to maintain errors within an acceptable small

range. A summary of the simulation results is presented in Table 5.4, where these values

represent the mean of the RMS error for each DoF.
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1. Initial position

3. Taking a marker 4. Letting the marker
in a container

2. Forearm 
pronation/supinationn/su

a co

Figure 5.7 Recorded movements for

simulation

5.5.4 Controller experimental setup

The real-time system is composed of several processing units as shown in Fig. 5.11. The host PC

executes a user interface and stores the data from completed trials. The host PC also receives the

measured human movement from the MYO armbands at a 50 𝑚𝑠 rate and sends this information

to the NI PXI-8108 where the mirror system and the proposed controller are executed at 1 𝑚𝑠

rate. Then the control signal is sent to the NI PXI-7813R which regulates the motor current at

50 𝜇𝑠 rate and reads the joint’s angle position from the hall sensors.
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F pronation

F supination

Figure 5.8 Simulation results: trajectory tracking

For the controller real-time test, a healthy subject (32 years old, 75 kg, 1.6 m height) performed

a sequence of movements as in Fig. 5.12. The movements begin with the arm fully extended

to the front. Then the elbow and shoulder simultaneously move to the second pose, where a

wrist flexion/extension movement is estimated from the EMG signals, and finally, a shoulder
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Figure 5.9 Simulation results: control signal

abduction is performed. The controller design parameters are: For the prescribed performance

function 𝜂0 = 0.1, 𝜂∞ = 0.03, and 𝑙 = 1.1. For the fixed-time sliding surface 𝜆1 = 20, 𝜆2 = 20,

𝜆3 = 20, 𝛼1 = 1.2, 𝛼2 = 1.3, 𝛼3 = 0.7, 𝛿 = 0.1, 𝑝 = 2, 𝐾1 = [10, 10, 10, 10, 10, 10, 30]𝑇 ,

𝐾2 = 𝐾1, and 𝐾3 = [1.5, 1, 1, 1, 1, 1, 2.5]𝑇 .
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Figure 5.10 Simulation results: zoomed tracking

error

NI PXI-1031 Chassis

NI PXI-7813R
•Motor current
•Hall sensor

NI PXI-8108
•Mirror system
• Proposed 

controller
• Robot OS

Host PC
•Data storage
•User interface

e

ETS-MARSE
robot

MYO armband
•Upper arm
•Forearm 50

50

50 1

Figure 5.11 Real-time hardware setup

5.5.5 Controller experimental results

The trajectory tracking is shown in Fig. 5.13 where a continuous and smooth desired trajectory

was generated thanks to the human-type inverse kinematics solution. The wrist flexion/extension

movement is measured by the wrist orientation estimator as shown in joint 7. Despite multiple

joints being active during the exercises while following a sharply changing trajectory, the
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Table 5.5 Real-time results

DoF 1 2 3 4 5 6 7

rms𝑒𝑖 (rad) 0.0099 0.0083 0.0063 0.0135 0.0125 0.0085 0.0079

rms𝜏𝑖 (Nm) 6.4374 21.5517 5.1764 9.3096 2.2960 1.5568 0.9007

tracking error is inside the constraints (5.42) as shown in Fig. 5.14. The control activity in

Fig. 5.15 presents a low chattering on the joints which is imperceptible to the user as shown in

https://youtu.be/sCrBGMI05y8. Finally, the real-time results are summarized in Table 5.5.

1. Shoulder flexion

3. Wrist flexion &
extension 4. Shoulder abduction

2. Shoulder extension
& elbow flexion

nsio

Figure 5.12 Movements for real-time test
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W flexion
W extension

Figure 5.13 Real-time results: trajectory tracking

5.6 Conclusion

The resultant mirror rehabilitation system assists the impaired arm for hemiplegic patients and

it can be easily modified for correction or resistance exercises. The rehabilitation system was

designed for the ETS-MARSE robot but it is implementable on any redundant robot that has the
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Figure 5.14 Real-time results: tracking error

dexterity and the capability to anthropomorphically situate the elbow and forearm, as well as, the

wrist orientation. The wrist orientation estimator, which relies solely on a deep neural model or

the Gaussian Process technique, demonstrates its efficacy in accurately classifying movements

based on EMG signals. The proposed controller showed good results in both simulation and
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Figure 5.15 Real-time results: control signal

real-time implementation while following two sharply changing trajectories. The fixed-time

reaching was demonstrated in the simulation. In future research, a teleoperation system utilizing

IMU sensors will be developed to facilitate remote passive upper-limb rehabilitation, thereby

establishing a connection between patients and rehabilitation experts.
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CONCLUSION AND RECOMMENDATIONS

This thesis focused on the design and implementation of several improvements based on learning

for upper-limb rehabilitation using the ETS-MARSE exoskeleton robot, which was designed and

built in the GREPCI robotics laboratory. The results of this project are summarized as follows:

• In Chapter 3, a novel approach to inverse kinematics, based on a machine learning technique,

has been introduced and compared with two conventional methods. The comparison between

the Jacobian approach, the discomfort index approach, and the Gaussian Process for swivel

angle estimation reveals the superior performance of the Gaussian Process method. It

excels in estimating swivel angles for upper-limb motions, even when confronted with

data not included in the training dataset. The proposed swivel angle estimation approach

using Gaussian Process not only exhibits high accuracy but also boasts low computational

complexity, making it a pragmatic choice for real-time applications, particularly in the context

of upper-limb rehabilitation employing redundant robotic exoskeletons.

Chapter 3 sets the stage for future work by proposing the utilization of the uncertainty computed

in the Gaussian Process output to create safer trajectories for upper-limb rehabilitation. This

approach holds promise for enhancing the safety and efficacy of rehabilitation exercises,

considering the variability in human movement.

The introduction of a robust Model Predictive Control (MPC) incorporating an Integral

Sliding Mode (ISM) fusion for trajectory tracking during rehabilitation exercises represents

a significant contribution. This approach ensures the satisfaction of constraints with high

accuracy while striking a balance between tracking performance and control effort. The

empirical validation in Chapter 3, including tests on three different upper-limb motions, both

with and without subjects, reaffirms the effectiveness of the proposed controller, highlighting

the practical applicability of the presented methods.

Recommendations include further refinement of the Gaussian Process approach, including

the expansion of the training dataset to encompass a broader spectrum of upper-limb motions
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and scenarios. This expansion can bolster generalization and robustness in swivel angle

estimation across diverse rehabilitation exercises.

In the pursuit of generating safer trajectories for upper-limb rehabilitation, a comprehensive

exploration of safety measures is imperative. It is essential to develop methods that account

for unforeseen movements or perturbations during rehabilitation exercises.

As part of future work, addressing the high dimensionality challenge in the 7-DoF exoskele-

ton ETS-MARSE is of paramount importance. Strategies for optimizing the performance

of the Gaussian Process technique in such complex systems should be thoroughly investigated.

• In Chapter 4, we introduce a novel approach that combines Learning-based Model Predictive

Control (MPC) with Integral Sliding Mode (ISM) to enable safe and effective robotic

rehabilitation for individuals with upper limb impairment. This innovative method is

designed to tackle the complex issues posed by unknown patient efforts and unmodeled

physiological characteristics, offering a promising solution for rehabilitation.

Our experimental results, featuring a healthy subject, convincingly demonstrate the superior

effectiveness of the proposed controller when compared to traditional Sliding Mode Control

(SMC) and SMC with Exponential Reaching Law (ERL). This approach stands out in terms

of its exceptional tracking precision and reduction of control chattering, underscoring its

potential to elevate the quality of rehabilitation.

Chapter 4 emphasizes the adaptive nature of the MPC, showcasing its ability to learn and

improve from trial to trial. This adaptability is a pivotal advantage, allowing the controller to

refine its performance over time, potentially customizing the rehabilitation process to cater

to individual needs and progress.

The chapter also sheds light on the implementation of this technique in highly nonlinear

robotic exoskeletons, affirming its versatility and relevance in addressing the intricate

challenges often encountered in rehabilitation scenarios.
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As a forward-looking recommendation, we encourage the exploration of a Cautious MPC

approach in future research endeavors. This approach holds the promise of further enhancing

the safety aspects of rehabilitation tasks, particularly in the context of dealing with unknown

patient efforts and unmodeled physiological characteristics. Future research should aim to

develop methods that proactively anticipate and mitigate potential risks.

In conclusion, Chapter 4 introduces a promising approach to robotic rehabilitation, effectively

addressing the complexities arising from unknown patient efforts and unmodeled physiological

characteristics. Its superior performance and adaptability position it as a valuable contribution

to the field of rehabilitation robotics. The recommendations presented here are geared towards

amplifying the safety, applicability, and real-world integration of this innovative approach

within clinical rehabilitation practices.

• Chapter 5 introduces an innovative mirror rehabilitation system tailored for individuals

experiencing hemiplegia following a stroke. This system intricately utilizes the movement of

the unaffected arm, captured by a Motion Capture (MoCap) system, to guide the impaired

arm with the assistance of an upper-limb robotic exoskeleton. The result is a comfortable

arm configuration customized to address the distinct needs of the targeted patient.

Distinguishing itself from prior approaches, this system incorporates a wrist orientation

estimator grounded in surface EMG signals derived from forearm muscles. This breakthrough

significantly enhances the system’s ability to faithfully track and mirror the intended arm

movements.

Empirical evaluations involving a 7 DoF exoskeleton robot provide solid evidence of the real-

time effectiveness and unwavering resilience of the proposed approach. This substantiates

the practical viability of the system within the rehabilitation domain.

While initially developed for the ETS-MARSE robot, the system’s adaptability allows it to

seamlessly integrate with any redundant robot capable of replicating elbow, forearm, and
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wrist, position and orientations. This adaptability broadens the system’s potential application,

making it more versatile.

The proposed controller has consistently demonstrated commendable performance in both

simulation and real-time implementation, even when faced with changing trajectories. This

consistent excellence underscores the system’s suitability and application in rehabilitation.

It is recommended to consider expanding the system’s functionality beyond guiding arm

movements to include correction and resistance exercises. This diversification will enhance

the system’s versatility and its value across a broader range of rehabilitation needs.

Continue to advance the wrist orientation estimator by exploring advanced learning techniques

to improve its precision and reliability. This will result in more accurate movement

classifications based on EMG signals.

As outlined in the future research plan, the creation of a teleoperation system using Inertial

Measurement Unit (IMU) sensors holds substantial promise. This initiative can act as a

crucial link between patients and rehabilitation experts, facilitating remote assistance and

monitoring. Pay special attention to ensuring that the system is user-friendly and accessible

to both patients and rehabilitation experts. Simple interfaces and clear instructions are

imperative to maximize adoption.

In conclusion, the presented mirror rehabilitation system offers a promising solution for

individuals with hemiplegia following a stroke. Its potential to adapt to various rehabilitation

exercises and its consistent ability to track movements establish it as a valuable asset in the

field of rehabilitation. The recommendations provided here are intended to further enhance

the system’s functionality, reach, and effectiveness in clinical practice.
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