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FOREWORD

This dissertation is written based on the author’s Ph.D. research outcomes under the supervision

of Professor Georges Kaddoum from January 2018 to September 2023. This work is financially

supported by the Natural Sciences and Engineering Research Council of Canada under the

B-CITI CRDPJ 501617-16 grant. The main theme of this dissertation focuses on intrusion

detection and prevention systems for cyber-security in future Internet of Things (IoT) based

smart city applications. This dissertation is written as a monograph based on three published

IEEE journal papers as the first author.

In this dissertation, the first two chapters present the introduction and the literature review of IoT

applications and intrusion detection and prevention systems. The following three chapters are

written based on my research journal papers. Finally, the conclusion and the recommendation

for future work are given in the last chapter.
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Solutions basées sur l’IA pour la protection des systèmes de l’IdO : Une étude sur la
détection et la prévention d’intrusion

Poulmanogo ILLY

RÉSUMÉ

Les progrès réalisés ces dernières années dans le domaine des technologies de l’information

et de la communication (TIC) ont donné naissances à des nouveaux concepts révolutionnaires

dont l’un des plus récents et les plus importants est l’internet des objets (IdO). L’IdO, à travers

des objets connectés bas prix, permet une collection abondante en temps réel de données et

des automatisations intelligentes des systèmes d’information et des systèmes d’opérations. Les

énormes opportunités d’innovation ouvertes par l’IdO ont entrainé son adoption fulgurante dans

les entreprises privées et les institutions publiques de multiples domaines d’activités. Cependant

l’impact des cyber-attaques est devenu plus inquiétant pour trois raisons principales : (1) la

faiblesse des mécanismes de sécurité implémentés dans l’IdO, (2) la valeur des données qu’une

cyber-attaque pourraient permettre d’accéder et (3) le niveau de control que l’attaquant pourrait

désormais se donner dans ces systèmes qui sont totalement automatisés. Dans ce contexte, les

systèmes de détection et de prévention d’intrusions (SDPI), en tant que couche indispensable

dans la cyber-sécurité, sont devenus une des parties les plus actives des travaux de recherche

pour la sécurisation de l’IdO. Les systèmes de détection d’intrusions sont capables d’analyser

les activités en temps réel afin de distinguer les évènements, puis détecter et signaler les

cyber-attaques pour permettre des réactions manuelles ou automatisées pour bloquer ou atténuer

les menaces. Cependant, vu la mutation et le développement des attaques, il est indispensable

de concevoir et implémenter de nouveaux systèmes de détection intelligents, précis, rapides et

évolutifs. Pour répondre à ce besoin, l’apprentissage machine, notamment l’apprentissage par

les réseaux de neurones profonds (RNPs), se révèle être une approche adéquate.

Dans cette thèse, trois objectifs principaux pour la conception des systèmes intelligents de

détection d’intrusion sont considérés. Ces objectifs sont la détection d’une large variété

d’attaques ciblant l’IdO, y compris les attaques de type "jour zéro", l’amélioration de la précision

de détection et la minimisation du temps de latence de la détection et de la réponse. Pour atteindre

ces objectifs, nous analysons les cyber-attaques qui ciblent les systèmes IdO et proposons diverses

primitives qui peuvent être utilisées dans les algorithmes d’apprentissage machine pour détecter

efficacement chacune de ces attaques. Ensuite, nous implémentons et comparons différents

algorithmes d’apprentissage, y compris des méthodes d’apprentissage superficiel, des RNPs

et des méthodes d’ensemble, afin de proposer des modèles qui améliorent la précision de la

détection. De plus, nous concevons un schéma d’apprentissage collaboratif qui permet une

détection à faible latence et une réponse pour contrer les attaques détectées.

Le chapitre 2 étudie principalement les comportements des différentes attaques ciblant l’IdO

en considérant un scénario de maison intelligente, puis analyse la qualité des primitives qui

peuvent être extraites et employées dans les algorithmes d’apprentissage machine pour détecter

efficacement chacune de ces attaques. Nous proposons différentes primitives qui peuvent
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améliorer les performances des systèmes de détection basés sur l’apprentissage machine. Plus

précisément, nous proposons des primitives issues des en-têtes de paquets TCP/IP (protocole de

contrôle de transmission/protocole Internet), des primitives basées sur la fréquence et le nombre

de connexions et des primitives basées sur la partie donnée des paquets TCP/IP. En outre, pour

détecter les attaques qui exploitent le canal de communication sans fil, d’autres primitives sont

examinées, notamment la distance par rapport à l’émetteur radio, l’empreinte de la fréquence

radio, l’intensité de signal reçu, le rapport signal/bruit et le profil énergétique du système.

Le chapitre 3 propose un SDPI multi-étages hybride basé sur les RNPs, offrant une précision

améliorée pour des systèmes de supervision industriel (SSI) à très haut risque qui ne peuvent

se permettre de faire des compromis sur la sécurité pour gagner en latence. Les modèles

d’apprentissage sont entraînés de manière séquentielle avec divers algorithmes de RNPs, et

chaque modèle dans la séquence se focalise sur les limites des modèles précédents. Le réseau de

neurones multi-étages qui en résulte utilise la décision de chaque étage dans une fonction de

combinaison pour produire une décision finale avec une précision améliorée.

Contrairement au chapitre 3 qui étudie un scénario SSI à haut risque où une sécurité renforcée

est préférable malgré le coût en latence, le chapitre 4 étudie un scénario SSI à mission critique

où la latence est une exigence cruciale. Avant tout, nous effectuons une analyse de la complexité

en temps des RNPs pour mettre en évidence l’impact que les structures de ces modèles ont sur la

latence à l’apprentissage et à la prédiction. Ensuite, nous concevons un SDPI collaboratif à faible

latence et robuste basé sur l’apprentissage profond qui utilise deux modèles de classifications.

Le premier modèle effectue une détection d’anomalie basée sur un RNP léger déployé dans des

serveurs locaux pour permettre une détection rapide et une réponse urgente aux attaques. Le

deuxième modèle effectue la classification du trafic anormal dans des serveurs infonuagiques

pour guider les tâches complémentaires de prévention d’intrusions. De plus, une architecture de

déploiement basée sur le concept SDN (réseau défini par logiciel) du SDPI collaboratif proposé

est fournie pour les réseaux SSI.

Mots-clés: internet des objets, système de détection d’intrusion, système de prévention

d’intrusion et apprentissage machine



AI-Driven Solutions for Safeguarding IoT Environments: An Intrusion Detection and
Prevention Study

Poulmanogo ILLY

ABSTRACT
The progress in information and communication technologies (ICT) made in recent years has led

to new revolutionary concepts where one of the most important ones is the Internet of Things

(IoT). IoT, through low-cost connected objects, enables abundant and real-time data collection

and smart automation of information and operation systems. The tremendous innovation

opportunity opened by IoT has triggered its massive adoption in multiple business domains.

Meanwhile, the impact of cyber-attacks has become more alarming for three main reasons: (1)

critical weaknesses in IoT security mechanisms, (2) valuable data that attract cyber-attacks,

and (3) the level of control that successful attacks could open in IoT-based automated systems.

In this context, intrusion detection and prevention, which is essential in cyber-security, has

become one of the most active research areas for securing IoT applications. Intrusion detection

systems (IDSs) can analyze real-time activities to detect and report cyber-attacks to security

administrators or automated intrusion prevention systems (IPSs) that initiate response measures

to block the threats or attenuate their impact. However, given the changing and expanding nature

of cyber-attacks, it is essential to design and implement new IDSs that are intelligent, accurate,

fast, and scalable. In this vein, machine learning (ML), and particularly deep learning (DL), has

emerged as a suitable approach to meet these requirements.

In this thesis, three main objectives essential for the design of an intelligent intrusion detection

system are considered. These objectives are the detection of a wide range of IoT attacks,

including zero-day attacks, the enhancement of the detection accuracy, and the minimization of

the detection and response latency. To achieve these objectives, we analyze the cyber-attacks

that target IoT systems and propose diverse features that can be used in ML algorithms to

detect each of these attacks efficiently. Then, we implement and compare different learning

algorithms, including shallow, deep, and ensemble learning methods, to propose models that

enhance the detection accuracy. Furthermore, we design a collaborative learning scheme that

enables low-latency detection and response to mitigate detected attacks.

Chapter 2 mainly studies the behaviors of different IoT attacks in a smart home scenario, and

analyzes the quality of the features that can be extracted and employed in ML algorithms to detect

each of these attacks efficiently. We propose various features that can improve the performance

of ML-based IDSs. Specifically, transmission control protocol/internet protocol (TCP/IP) packet

headers, time-based statistics, connection-based statistics, and TCP/IP packet content features

are proposed. Furthermore, to detect attacks that exploit the wireless communication channel,

more features are discussed, including the distance from the radio transmitter, radio-frequency

fingerprint, received signal strength, signal-to-noise ratio, and the system’s energy profile.

Chapter 3 proposes a hybrid multistage deep neural networks (DNNs)-based intrusion detection

and prevention system (IDPS) with improved accuracy for critical industrial control systems
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(ICSs) that cannot afford to compromise the security to improve latency. The learning models

are trained sequentially with diverse algorithms, and each model in the sequence focuses on the

limitations of the previous models. The resulting multistage DNN uses each stage’s decision in

a combination function to produce a final decision with improved accuracy.

In contrast to Chapter 3 which considers a high-risk ICS scenario where enforced security

is preferable even at the cost of latency, chapter 4 considers a mission-critical ICS scenario

where latency is also a crucial requirement. In this context, first and foremost, we conduct

a time complexity analysis of DNNs to illustrate how the structures of these models impact

the training and prediction latency. Then, we design a low latency and robust deep learning-

based collaborative IDPS that employs two levels of classifications. The first level performs

a lightweight DNN-based anomaly detection in local servers to allow faster attack detection

and emergency response measures. The second level performs attack classification of the

anomalous traffic in cloud servers to guide complementary intrusion prevention tasks. Moreover,

an SDN-based deployment architecture of the proposed collaborative IDPS in ICS networks is

provided.

Keywords: internet of things, intrusion detection system, intrusion prevention system, and

machine learning
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INTRODUCTION

Motivation, challenges, and research objective

With the massive deployment of internet of things (IoT) devices, ensuring cyber-security

has become one of the biggest challenges for future networks. IoT devices are generally

designed with operability in mind without much consideration on cyber-security. As a result,

these devices come with alarming vulnerabilities, including weak passwords, encryption, and

authentication methods that cyber-criminals can leverage to perform diverse attacks. According

to the 2020 Thales data threat report [Thales Group (2019)], in a survey of security executives

with respondents from over 16 countries, 99% of them have IoT security concerns related to

multiple challenges and 33% have concerns regarding attacks on IoT devices that may impact

critical operations (Figure 0.1).

Figure 0.1 Global IoT cyber-security concerns

Taken from Thales Group (2019)
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To address Information and communication technology (ICT) security concerns, over the years,

complex encryption, authentication, authorization, and physical layer security mechanisms have

been developed and have shown high efficiency. However, generally, these complex security

mechanisms require heavy computation and communication load and are designed for traditional

computer networks, where important computation resources are available. As a result, they

cannot be directly deployed in IoT systems because of resource limitations in most IoT devices.

These limitations include low computational power, small memory size, less radio bandwidth,

and short battery lifetime [Haroon, Shah, Asim, Naeem, Kamran & Javaid (2016); Sinche,

Raposo, Armando, Rodrigues, Boavida, Pereira & Silva (2020)]. Moreover, IoT introduces new

significant security challenges, especially, the heterogeneity in terms of hardware, software, and

protocols. For instance, in a network, a security measure that is appropriate for one IoT device

may not be applicable to another. Another crucial aspect is that, given the enormous number

of IoT devices, it is challenging to develop and deploy security mechanisms that can endure

with the scale and range of devices. For instance, authentication and authorization through

cryptographically pre-shared keys are not applicable. The rapidly growing number of objects will

make key management become a problematic task [Chaudhary, Aujla, Kumar & Zeadally (2019);

Zhang, Cho, Wang, Hsu, Chen & Shieh (2014)]. This implies that new security mechanisms

that are adapted to IoT constraints and specifications are required.

In this context, new lightweight encryption, authentication, and authorization mechanisms

designed explicitly for IoT are emerging [Deebak, Memon, Khowaja, Dev, Wang, Qureshi & Su

(2022); Gunathilake, Al-Dubai & Buchana (2020); Hammi, Livolant, Bellot, Serhrouchni & Minet

(2017); Zhang, Shen, Su, Arafin & Qu (2022)]. However, considering the national institute

of standards and technology (NIST) cyber-security framework, most of these IoT security

mechanisms act on the protection layer, i.e., the first cyber-security layer, which aims to

avoid the violation of systems security policy, such as confidentiality, integrity, availability,

etc. This protection layer alone is not enough to ensure complete cyber-security, because
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some attacks, especially zero-day attacks and attacks that employ advanced techniques, high

computational resources or leaked security information can still compromise the systems [Mylrea,

Gourisetti & Nicholls (2017); Norris, Mateczun & Forno (2022)]. Therefore, as a second

security layer, intrusion detection and prevention systems (IDPSs) are required so that malicious

attempts (successful or failed) to compromise the systems’ security policy can be detected

beforehand.

Intrusion detection systems (IDSs) can monitor real-time system events and employ a predefined

database of attack signatures to detect intrusions [Li, Tug, Meng & Wang (2019); Mughal,

Luo, Ullah, Ullah & Mahmood (2018); Sheikh, Rahman, Al-Qahtani, Kumar Hazra & Sheikh

(2019)]. This method, named signature-based detection, has the advantage of providing IDSs

that have low false alarm rates. However, signature-based detection is limited when it comes to

detecting zero-day attacks or attacks that are not yet included in the signature database. IDSs

can also employ predefined systems specifications, such as the system’s functional states and

transitions, operational and protocol constraints, and statistical rules to differentiate between

normal and malicious events [Choudhary, Astillo, You, Yim, Chen & Cho (2020); Sharma, You,

Yim, Chen & Cho (2019); Yun, Astillo, Lee, Kim, Kim & You (2021)]. This method, named

specification-based detection, can detect known attacks as well as zero-day attacks. However,

specification-based detection is limited to human expertise and manual systems modelization,

which causes problems in terms of precision and scalability.

In the context of rapidly evolving attacks and constantly growing networks, the need for

intelligent, scalable, and accurate IDPSs become a central research topic in IoT security. Taking

the aforementioned challenges into account, this thesis aims to design an intelligent, accurate,

and evolutive IDS that can learn to detect existing IoT attacks as well as zero-day attacks, with an

automatic response system to stop or attenuate detected attacks. Regarding the growing number

of attacks and their mutations, learning-based approaches are expected to play a critical role
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in the security of large and heterogeneous IoT networks. More specifically, future IDPSs will

require high levels of intelligence to ensure efficient and robust security. Therefore, we propose

anomaly-based IDSs that use machine learning detection models. In particular, we focus on

collaborative machine learning models that can provide high accuracy and low latency IDPSs to

ensure security for future IoT applications.

Contributions and Outline

The organization of this dissertation, which includes four chapters, is structured and detailed

as follows. In Chapter 1, a comprehensive literature review of IoT technology and security

challenges is provided. In this vein, IoT architecture, security threats, and vulnerabilities are

presented. Additionally, recent works on IoT security approaches, especially intrusion detection

and prevention are provided. In particular, we focus on learning-based approaches for building

robust IDSs.

Chapter 2 presents the first article, which proposes machine learning-based IDPSs enhancement

with complementary detection features. While appropriate machine learning algorithms can

improve IDSs accuracy, some of the limitations in the detection of various attacks are often

caused by a lack of appropriate detection features. Therefore, considering a smart home scenario,

we study the behaviors of different cyber-attacks and determine features that can be extracted

and employed in machine learning algorithms to detect each of these attacks efficiently. This

paper identified various features that can improve the detection accuracy. Specifically, in

addition to packet header features, we have proposed time-based and connection-based traffic

features against scanning, probing, and denial of service (DoS) attacks. Then, different content

features have been proposed to enhance the detection of unauthorized user access, such as

user to root (U2R) and remote to local (R2L) attacks. Furthermore, to detect attacks that

exploit the wireless communication channel, such as jamming, de-authentication, spoofing,

and contamination attacks, more features are discussed, including the distance from the radio
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transmitter, radio-frequency fingerprint, received signal strength, signal to noise ratio, and the

system’s energy profile.

Chapter 3 presents the second article, which proposes a hybrid multistage deep neural network

(DNN) based IDPS for high-risk IoT applications. Single deep learning-based models are largely

implemented for IDSs but have shown limitations when learning increasingly complex intrusion

patterns. Therefore, we propose a multistage combination of diverse DNNs to provide improved

detection accuracy. The DNNs are trained sequentially in a way that allows new stage DNNs to

focus on the limitations of the previous stages. Specifically, each new stage is trained using the

data that were misclassified or classified with low confidence by the previous stage DNN. The

resulting multistage DNN uses each stage’s decision in a combination function to produce a

final decision with improved accuracy.

Chapter 4 presents the third article, which proposes a collaborative DNN-based low-latency

IDPS for mission-critical smart factory networks. Considering a scenario where latency is a

crucial requirement, we conduct a time complexity analysis of neural networks to illustrate

how the structures of these models impact the training and prediction latency. Then, we design

a low latency and robust deep learning-based collaborative IDPS that employs two levels of

classifications. The first level performs a lightweight DNN-based anomaly detection in local

servers to allow faster attack detection and response. The second level performs the attack

classifications of the anomalous traffic in cloud servers to guide the intrusion prevention tasks. In

the proposed approach, emergency response measures can be launched as soon as an anomaly is

detected. Then, when the anomaly is classified in a specific attack type, suitable complementary

response measures can be applied to mitigate the threat efficiently. Furthermore, an SDN-based

deployment architecture of the proposed collaborative IDPS in industrial control system (ICS)

networks is provided.





CHAPTER 1

LITERATURE REVIEW

1.1 Internet of Things (IoT) Applications

The IoT paradigm is impacting almost every business domain and is expected to play a crucial

role in future information and operation technologies. The IoT provides simple and effective

means to collect and analyze all kinds of data to provide information and enable real-time

resource visibility, predictive and prescriptive insights, improve operational efficiency, reduce

costs, etc. Organizations incorporate IoT technology to enable entirely new business models or

radically enhance existing models [Maiti & Ghosh (2021); Ploennigs, Cohn & Stanford-Clark

(2018); Salih, Rashid, Radovanovic & Bacanin (2022)]. As a result, they are all facing IoT

cyber-security threats. This section describes four main IoT applications, i.e, smart home, smart

factory, smart transportation, and smart city.

1.1.1 Definition of IoT

The IoT as a concept has been created in 1999. The term IoT was initially proposed to refer

to uniquely identifiable interoperable connected objects with radio-frequency identification

(RFID) technology [Ashton et al. (2009); Gershenfeld (1999)]. However, the term became

popular in 2010/2011 and reached the mass market in early 2014. Today, different definitions

have been proposed by many worldwide technical standards coordination and development

organizations. For the international telecommunication union (ITU), IoT can be defined as "a

global infrastructure for the information society, enabling advanced services by interconnecting

(physical and virtual) things based on, existing and evolving, inter-operable information and

communication technologies". According to the IEEE IoT journal, "an IoT system is a network

of networks where, typically, a massive number of objects/things/sensors/devices are connected

through communications and information infrastructure to provide value-added services via

intelligent data processing and management for different applications". However, from a basic
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perspective, IoT can be defined as sensors and actuators embedded in physical objects and

linked through wired and wireless computer networks like the internet. The term object here

includes whatever comes to mind, ranging from wearables to home appliances to industrial

equipment. These interconnected objects enable a wide range of innovative applications,

including environmental monitoring, workplace and home support, inventory and production

management, healthcare services, security, and surveillance.

IoT applications have been dramatically evolving in recent years. According to the survey

released by Transforma Insights in May 2022, the number of connected IoT devices worldwide,

estimated at 13 billion in 2022, is forecasted to double to more than 29 billion in 2030 [Transforma

Insights (2022)]. Figure 1.1 presents the estimated number of connected IoT devices worldwide

from 2019 to 2021, with forecasts to 2030.

Figure 1.1 Number of connected IoT devices worldwide 2019-2021 with

forecasts to 2030

Taken from Transforma Insights (2022)
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1.1.2 IoT Application Domains

The growth of the IoT technology has created immense opportunities to build innovative solutions

in many domains. In most applications, the solutions are designed to monitor and capture data

in real-time from the sensing devices and send it through wired or wireless networks to the

processing devices, such as local servers or data centers, for analytics to drive smart automation

systems, i.e., systems that are more reactive, correlative, flexible, and communicative. These

approaches have created new concepts, such as smart home, smart healthcare, smart factory,

smart agriculture, smart transportation, and smart city. Some of these IoT applications are

briefly explained in the coming paragraphs.

1.1.2.1 Smart Home

A large number of heterogeneous IoT devices are manufactured for homes. These devices are

deployed to upgrade traditional homes and build smart homes which enable advanced monitoring,

automation, and remote control. Most smart home applications, for example, offer the residents

features to remotely monitor and control their lights, windows, doors, heaters, air conditioners,

etc., from their smartphones, tablets and computers [Aartech (2019)]. Figure 1.2 illustrates

diverse use cases in smart homes. Such applications present many benefits, including more

security and safety, optimized energy consumption, and maximized comfort.

An example of a smart home project is HOWZ, a smart system from a United Kingdom Start-Up

that allows users to remotely monitor senior citizens’ use of electrical devices (kitchen, kettle,

coffee machine, toaster, room light) via sensors in their home [Howz (2019)]. It is a way of

checking that everything is normal, that their home has the ideal temperature, and that their door

is closed. Howz provides monitoring to help elderly people retain their independence while also

reassuring their families. With a £200 initial price for a starter kit, it is an innovation designed

to make smart homes available to all. Howz was the winner of the Électricité de France (EDF)

Pulse Awards 2017 in the smart home category in France.
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Figure 1.2 Example of smart home use cases

Inside the École de technologie supérieure (ÉTS), a project called Star ÉTS (Sustainable Smart

ÉTS Residence) has been initiated as a living lab to support research on smart home applications

and more generally, smart city applications. The Smart ÉTS Residence project uses the ÉTS

residences to test prototypes of systems in the development or test phase that can be implemented

in a smart home. Sensors of all kinds are placed in the apartments and data are collected to

develop resource (electricity, water) optimization systems, to control appliances, such as smart

heating, and to control the lights (for example the apartment can detect that there is nobody left

and turn off the lights that have been left on). The Smart ÉTS Residence project was submitted to

Canada’s first open-air laboratory for smart living (LabVI), created by Videotron in collaboration

with Ericsson, ÉTS, and Montréal’s Quartier de l’Innovation [ÉTS (2019)].



11

1.1.2.2 Smart Factory

In the manufacturing sector, industrial IoT (IIoT) is one of the key emerging technologies that

drive the fourth industrial revolution (Industry 4.0). In this major technological breakthrough,

traditional manufacturing industries are being upgraded to smart manufacturing industries which

provide solutions for handling the increasing production complexity through the establishment

of intelligent products and production processes [Abate et al. (2022); Wan, sXia, Hong, Pang,

Jayaraman & Shen (2019)]. Figure 1.3 depicts a typical ecosystem of a smart factory. IIoT

devices are integrated into the manufacturing processes to enable smart factory applications

that gather and analyze the manufacturing data for real-time equipment monitoring, service

and quality control, flexible production, dynamic reconfiguration, manufacturing optimization,

production scheduling, and adaptation to the changes of business models and consumer shopping

behaviors.

Smart factories will play a crucial role in the economic growth of developed and developing

countries. It is one of the top trending innovation areas that industrialized countries are paying

close attention to. Important projects, programs, and strategies have been launched worldwide,

such as Europe 2020 strategy [European Commission (2010)], Industry 4.0 strategy [Lasi, Fettke,

Kemper, Feld & Hoffmann (2014)], China manufacturing 2025 [Zhou (2015)], and the United

States (U.S.) national strategic plan [EOP (2012)]. In Canada, an example of initiative is the

refined manufacturing acceleration process (REMAP), a program "designed for future-focused

leaders who want to leverage a competitive advantage and resiliency through digital technologies

and smart manufacturing tools" [REMAP (2022)]. REMAP is supported by the Government

of Canada’s Business-led Networks of Centres of Excellence program. REMAP is home to

Canada’s first advanced manufacturing network. They have built a supply chain of more than 70

of Canada’s most sophisticated labs and manufacturing lines, in 11 cities across Canada, and

aim to accelerate the growth and create new business opportunities in the adoption of smart

manufacturing.
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Figure 1.3 Ecosystem of a smart factory

Taken from Abate et al. (2022)

1.1.2.3 Smart Transportation

The transportation industry is one of the largest segments that are investing in IoT. Thanks to

smart gadgets, many applications are possible, including smart fleet, public transit, and inventory

management.

The smart fleet management systems are slowly and gradually being adopted, enabling improved

operational efficiency, maintenance cost, fuel consumption, regulatory compliance, and accident

response time. Global positioning system (GPS) tracking, geo-fencing, customized dashboards,

and real-time business decisions are some of the key features fleet management offers [Verma

(2018)]. The smart public transit systems offer many benefits to passengers. With real-time

tracking of vehicles, the IoT has eradicated many challenges that were facing public transit
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systems. It has enabled re-routing features to help people make alternate arrangements as

real-time tracking of the vehicle is easily done. The smart inventory management provides

real-time information across warehouse, distribution, and production centers, which reduces

the cost of inventory management and improves predictive maintenance. Smart inventory

management systems have also reduced inventory errors.

1.1.2.4 Smart City

The smart city vision aims to exploit the most advanced communication technologies to support

added-value services for the administration of cities and citizens. This objective is pursued by the

deployment of an urban IoT, i.e., a communication infrastructure that provides unified, simple,

and economical access to a plethora of public services, thus unleashing potential synergies

and increasing transparency to the citizens. Urban IoT brings a number of benefits in the

management and optimization of traditional public services, such as transport and parking,

lighting, surveillance and maintenance of public areas, preservation of cultural heritage, garbage

collection, and salubrity of public places (hospitals, schools, etc.). Furthermore, different types

of data, collected by a pervasive urban IoT, may also be exploited to increase transparency and

promote the actions of the local governments toward the citizens, enhance people’s awareness

about the status of their city, stimulate the active participation of the citizens in the management

of public administrations, and also stimulate the creation of new services upon those provided

by the IoT [Cuff, Hansen & Kang (2008); Zanella, Bui, Castellani, Vangelista & Zorzi (2014)].

An example of a smart city project is the European-wide smart cities project named bIoTope

(Building an IoT open innovation ecosystem for connected smart objects) [Foundation Biotope

(2017)], illustrated in Figure1.4. In Canada, Star ÉTS is also an example of a smart city

project [ÉTS (2019)]. By transforming ÉTS apartments into smart houses, this project uses

the residences to create a smaller-scale smart city. This is used to test prototypes that can be

implemented in a smart city. An example of application is the intelligent dishwasher system that

looks at greenhouse gas emissions to suggest the best time to perform the task.
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Figure 1.4 bIoTope: Building an IoT OPen innovation Ecosystem for connected smart

objects

Taken from Foundation Biotope (2017)

1.2 IoT Architectures

A thorough analysis of IoT architectures not only clarifies the functional and technical require-

ments and constraints but also can provide an effective understanding of the attack surface, i.e.,

the attack vectors and all possible points where an unauthorized user can access the systems’

operations and data. Therefore, this section describes generic IoT architecture and emerging IoT

architectures based on key future technologies, such as software-defined networking (SDN), and

cloud and edge computing. For each architecture, the layers involved, and technologies used are

presented. Then, potential benefits, and drawbacks are discussed.

1.2.1 Basic Three-layer IoT Architecture

IoT architectures are widely researched, and different implementation models have been

extensively discussed [Atzori, Iera, Morabito & Nitti (2012); Leo, Battisti, Carli & Neri (2014);

Mahmoud, Yousuf, Aloul & Zualkernan (2015b); Wan, Yang, Wang & Hua (2018); Xiaocong,

Jiao & Shaohong (2015)]. Still, there is no universal implementation standard. As a result, a
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number of architectures have been proposed, each designed to meet the technical and functional

requirements of specific application domains. However, most propositions are based on common

patterns. Figure 1.5 presents the basic architectural framework. This architecture consists of

three key layers, namely the smart device layer, the network layer, and the application layer.

Figure 1.5 Three-layer IoT architecture

The smart device layer, also known as the sensors or perception layer, consists of IoT devices (e.g.,

IIoT devices, home IoT devices, smart city devices, etc.). The function of this layer is to acquire

data from the physical environment using the sensing devices. Then, the collected data can be

processed locally or transmitted using the network layer. IoT devices can also collaborate in this

layer by sharing data directly with each other using short-range communication technologies.

Furthermore, control commands sent to the actuation devices are executed in this layer.

The network layer is the mediator between the smart device layer and the application layer. It

serves the function of data transmission as well as the interconnection of systems and platforms. It

also serves as the mediator between different IoT nodes by aggregating, filtering, and transmitting

data to and from different IoT devices. This stage mostly relies on wireless communication

technologies. It includes switching and routing devices, internet gateways, and cloud computing
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platforms. The ecosystem of this layer benefits from important innovations driven by emerging

technologies, such as network function virtualization (NFV), SDN, and network slicing.

The application layer is the top level and represents the final stage of the architecture. This layer

provides the functions of storing, organizing, processing, and sharing the environment data and

other information obtained from the IoT devices. This is the stage where the purpose of IoT is

achieved, i.e., the implementation of smart applications, such as smart homes, smart factories,

smart transportation, smart cities, etc. As the monitoring tasks are becoming more and more

complex and more data is coming from IoT devices, applications require increasing storage and

computation resources. Efficient technologies and models for processing the data are required.

Therefore, new technologies, such as cloud and fog computing are massively integrated at this

stage for extensible data storage and processing. Moreover, to efficiently exploit the massive

scales of data and improve smart systems, IoT applications make use of big data and artificial

intelligence (AI) technologies [Misra, Dixit, Al-Mallahi, Bhullar, Upadhyay & Martynenko

(2022); Mohammadi, Al-Fuqaha, Sorour & Guizani (2018); Zhu, Ota & Dong (2022)].

1.2.2 IoT Wireless Communication Protocols

Smart devices can have wired connectivity but they mostly use wireless communication for

flexibility, mobility, and cost-effectiveness. Since wireless networks do not require physical

media (wires or cables), the devices can communicate even when they are moving. Moreover,

wireless communication provides low-cost accessibility and scalability as the network can be

easily extended, even to places where wires are not accessible. Furthermore, improvements in

wireless communication technologies enable faster information transfer.

Different wireless communication technologies and protocols are used to connect smart devices

in personal area networks (PAN), local area networks (LAN), and wide area networks (WAN).

Each application employs the protocol that best suits its functional and technical requirements,

such as the communication range and data transmission rate. The protocol selection also
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considers limitations of the IoT devices, including energy constraints, processing capability, and

storage volume.

New wireless communication protocols, specially designed to meet IoT specifications and power

constraints, have emerged. These protocols include low-power personal area network protocols

and low-power wide-area network protocols [Al-Sarawi, Anbar, Alieyan & Alzubaidi (2017);

Ballerini, Polonelli, Brunelli, Magno & Benini (2020); Iqbal & Lee (2019); Kim, Lim, Jeong,

Choi & Koh (2022)]. Figure 1.6 presents the most common IoT communication protocols,

categorized according to the communication range, data rate, and power consumption [Jiang

et al. (2021); Wang (2021)]. Some of these main IoT communication protocols are briefly

explained next.

Figure 1.6 Most common IoT communication protocols

Taken from Jiang et al. (2021)
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1.2.2.1 Low-Power Personal Area Networks

The most used wireless communication protocols to connect IoT devices in short-range networks

include Bluetooth low energy (BLE), ZigBee, Z-Wave, and internet protocol version 6 (IPv6)

over low power wireless personal area networks (6LoWPAN) [Al-Sarawi et al. (2017)].

BLE, also known as Bluetooth smart, is an important protocol for IoT applications. It is

optimized for short-range, low-bandwidth, and low-latency IoT applications. The benefits of

BLE include lower power consumption, fast setup, and support for star network topology with

an unlimited number of nodes [Salman (2015); Samie, Bauer & Henkel (2016)].

The ZigBee protocol was developed by the ZigBee Alliance and is based on the IEEE802.15.4

low-power wireless network standard. ZigBee was created to be a standard to suit high-level

low-cost communication protocols creating personal area networks from small-size, low-power

digital radios that transmit data over long distances. It is used in applications requiring a low data

rate, long battery life, and security. Furthermore, ZigBee can support a variety of topologies,

such as the mesh, star, and tree network topologies [Salman (2015); Samie et al. (2016)].

Z-Wave is a Zensys-developed low-power medium access control (MAC) protocol used in

wireless home automation to connect 30-50 nodes and has been used for IoT communication,

particularly in the smart home and small commercial domains. It is designed for small data

packets at relatively low speeds of up to 100 kilobits per second (kbps) and point-to-point

communication over a distance of 30 metres (m). As a result, it is appropriate for small messages

in IoT applications, such as light, energy, and healthcare controls. Z-Wave is supported by two

types of devices (controller and worker). Worker nodes are low-cost devices that cannot initiate

messages. They can only respond to and execute commands sent by controlling devices that

initiate network messages. Z-Wave supports the mesh network topology [Barker & Parsons

(2022); Salman (2015)].

6LoWPAN can connect IoT devices directly to internet protocol (IP) networks without the use

of intermediate network components, such as translation gateways or proxies. The internet
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engineering task force (IETF) developed this technology as a standard IP communication over

low-power and low-cost wireless IEEE802.15.4 networks using IPv6. 6loWPAN supports a

variety of topologies, including the mesh and star topologies. To enable interoperability between

IEEE 802.15.4 and IPv6, 6loWPAN proposes an adaptation layer between the MAC and network

layers [Gomes, Salgado, Pinto, Cabral & Tavares (2018); Kim et al. (2022); Palma (2018);

Yang & Chang (2019)].

1.2.2.2 Low-Power Wide-Area Networks

Cellular and low-power wide-area network (LPWAN) technologies, such as SigFox, LoRa, and

narrow-band IoT (NB-IoT) are the most commonly used wireless communication protocols for

connecting IoT devices in wide-area networks [Al-Sarawi et al. (2017); Iqbal, Abdullah & Shab-

nam (2020)].

Cellular technologies are an effective solution for IoT applications that require high throughput

transmission and long-distance communication. The use of cellular technologies allows IoT

applications to benefit from the global system for mobile communications (GSM), third-

generation (3G), fourth-generation (4G), and fifth-generation (5G) cellular communication

capabilities, which provide reliable high-speed internet connectivity. In this context, 5G is

generating great enthusiasm for IoT applications. 5G differs from its predecessors through

several technical advances that provide high throughput (20 Gbps), low latency (< 1 ms), high

mobility (500 km/h), high connection density (1 million connections/km2), and low power

consumption (90% reduction) [Nokia (2014)]. The summary of the key requirements for 5G is

illustrated in Figure 1.7. 5G can meet these requirements thanks to a combination of different

complementary technologies, including new radio frequencies, small base stations comprising

femtocells, picocells, millimeter wave (mm-wave) technologies, and multiple-input-multiple-

output (MIMO) antennas with the beamformation technology, SDN, and NFV. All these key

technology drivers in 5G have a direct positive impact on the implementation of IoT-based

smart applications [Chettri & Bera (2020); Hong, Jiang, Yu, Zhou, Chen, Yu, Zhang, Yang,

Pang, Jiang et al. (2017); Shafique, Khawaja, Sabir, Qazi & Mustaqim (2020)]. However,



20

cellular communication protocols may be unsuitable for battery-constrained IoT devices [Ejaz,

Anpalagan, Imran, Jo, Naeem, Qaisar & Wang (2016); Samie et al. (2016)].

Figure 1.7 The summary of key requirements for 5G

Taken from Nokia (2014)

LoRa (acronym from "long-range") is the most widely used low-power wide-area technology.

It adjusts and modulates signals by utilizing an exclusive spread spectrum technique in the

sub-gigahertz (GHz) industrial, scientific, and medical (ISM) band [Vangelista (2017)]. LoRa

technology operates in the unlicensed ISM band (868 MHz in Europe, 915 MHz in North

America, and 433 MHz in Asia). It uses the chirp spread spectrum modulation where the output

signals have a lower noise level, enabling high interference salience and making it difficult to

identify or detect [Reynders, Meert & Pollin (2016)].

Similar to LoRa technology, Sigfox employs unlicensed ISM channels and effectively uses the

frequency bandwidth with very low noise, low power consumption, high receiver sensitivity, and

low-cost antenna design through the use of binary shift keying (BPSK) modulation. Therefore,

this technology is suitable for low-energy devices. It enables the transmission of small amounts

of data over distances of up to 50 km. SigFox uses ultra-narrow band (UNB) technology, only

intended for low data transfer rates of 10 to 1000 bits per second (bps) and can be powered
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by a small battery [Krupka, Vojtech & Neruda (2016); Mekki, Bajic, Chaxel & Meyer (2018);

Osman & Abbas (2018); Rubio-Aparicio, Cerdan-Cartagena, Suardiaz-Muro & Ybarra-Moreno

(2019)].

NB-IoT, one of the leading LPWAN technologies standardized by the third generation partnership

project (3GPP), operates seamlessly in authorized frequencies on the current GSM and long-term

evolution (LTE) networks. However, compared to LoRa and Sigfox, which provide efficient

power consumption and long-term battery life, NB-IoT provides a higher quality of service (QoS),

latency, reliability, and coverage [Beyene, Jantti, Tirkkonen, Ruttik, Iraji, Larmo, Tirronen,

Torsner & Johan (2017); Mekki, Bajic, Chaxel & Meyer (2019)].

1.2.3 Software-Defined Networking (SDN)

The exponential growth of IoT creates new management challenges that traditional networking

architectures are unable to address. In this context, SDN has emerged as a promising technology

that can efficiently handle large-scale and complex IoT infrastructures due to its flexible

management and programmability.

1.2.3.1 SDN Concept

SDN decouples the control plane from the data plane of the forwarding devices and logically

centralizes the network intelligence and state in new devices called controllers. In general,

the SDN’s communication infrastructure operates according to standards designed by the

open networking foundation (ONF). The controller connects to the switches through an

OpenFlow channel and manages the switches via the OpenFlow protocol [Flauzac, González,

Hachani & Nolot (2015); Liyanage, Abro, Ylianttila & Gurtov (2016); Mahmood, Chilwan,

Østerbø & Jarschel (2015); Valdivieso Caraguay, Benito Peral, Barona Lopez & Garcia Villalba

(2014)]. SDN has three key attributes that directly benefit IoT infrastructures :

1. Logically centralized intelligence: a controller with a global view that can manage the

entire network;
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2. Programmability: the ability to use advanced software programming techniques to modify

network behavior and functions;

3. Abstraction: the ability to hide complex network infrastructure and protocols behind the

network operating system (OS); business applications can abstract underlying network

information with the help of SDN.

1.2.3.2 SDN-based IoT Architectures

The SDN-based architecture is divided into three planes, namely the data plane, the control

plane, and application plane [Farris et al. (2019)], as illustrated in Figure 1.8.

Figure 1.8 The three layers in SDN architectures

Taken from Farris et al. (2019)

The data plane is composed of the forwarding devices, such as physical and virtual switches,

routers, and gateways [Jain & Paul (2013)]. These forwarding devices operate according to

the controller’s forwarding decisions in the SDN control plane. These decisions are organized
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into a flow table in the delivery device using a data control plane interface. The flow tables

operate according to the instructions added to the instruction set available on the controller

[Aujla, Chaudhary, Kumar, Rodrigues & Vinel (2017)].

The control plane is the core of the SDN architecture and serves as the decision-making plane.

This plane operates according to the centralized control logic provided to the controller. This

plane’s primary functions are to install control commands on forwarding devices, manage and

maintain global information for all SDN applications running at the application plane, and collect

feedback from the forwarding devices. Therefore, the SDN controller provides an abstract model

of the underlying network for the SDN application layer. Moreover, the controller can use the

network OS to create a virtual controller using a hypervisor. One of the key features of SDN is

that the control logic can be programmed and reconfigured according to the environment [Li,

Dong & Ota (2016)].

In the application plane, with the help of network virtualization, the controller can create multiple

virtual networks on the physical network. The virtual machines (VMs) can run multiple SDN

applications at the same time. This is an effective solution for managing large amounts of data.

Virtualization also enables isolation between users, resource sharing, and physical resource

aggregations into a unified virtual resource [Mahmood et al. (2015)]. SDN applications are

software programs that run to manage the resources and networks efficiently. Using the interface

between the application and the control planes, the control logic generated by the SDN controller

handles internal decisions directly and maintains an abstract view of the network.

There is no universal SDN implementation standard for IoT systems. Each IoT application

introduces specific requirements and optimization in its SDN adoption [Bera, Misra & Vasilakos

(2017)]. As a result, a number of implementations are proposed at different levels, such as

data center, core, and access network, as illustrated in Figure 1.9, thus covering the IoT traffic

management from the devices, which generate the data, up to the cloud services, where data

processing is performed [Farris et al. (2019)].
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Figure 1.9 Deployment scenario of SDN paradigm for IoT systems

Taken from Farris et al. (2019)

1.2.4 Cloud Computing and Edge Computing

The high volume, heterogeneity, and velocity of IoT-generated data lead to important demands

in data storage and processing resources. Regarding the cost of these resources (acquisition,

deployment, energy, space, management, and maintenance), it is too expensive or economically

inefficient for most businesses to locally store and process all their data. This has created a

strong need to integrate cloud computing into IoT architectures.

1.2.4.1 Cloud Computing-based IoT Architectures

Cloud computing provides on-demand self-service (automatic provisioning of computing

capabilities), broad network access (capabilities are available over a networked infrastructure),

resource pooling (resources are pooled together to serve multiple consumers using a multi-tenant

model), rapid elasticity (rapid and elastic provisioning of capabilities to quickly scale up or down

as required), and measured service (automatic control and optimization of resources utilizing a

pay-per-use model) [Mell, Grance et al. (2011)]. Different integration architectures of cloud and

IoT have been proposed to obtain benefits in specific application scenarios [Aitken, Chandra,
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Myers, Sandhu, Shifren & Yeric (2014); Alhakbani, Hassan, Hossain & Alnuem (2014); Botta,

De Donato, Persico & Pescapé (2016); Gomes, Righi & da Costa (2014); Sarkar et al. (2018)].

Figure 1.10 illustrates a generic cloud computing-based IoT architecture [Eclipse IoT Working

Group (2016)].

Figure 1.10 Cloud computing-based IoT architecture

Taken from Eclipse IoT Working Group (2016)

A wide variety of IoT applications are latency sensitive and require quasi-real-time data

processing [Wei (2014)]. However, IoT architectures that rely only on cloud computing suffer

from higher latency and bandwidth cost due to processing servers’ location being generally far

from the endpoints. This has created a need to build adaptive and decentralized computational

architectures that complement the centralized cloud computing model. As a result, edge

computing has been introduced to bridge these gaps and enable ultra-low latency applications.

1.2.4.2 Edge Computing-based IoT Architectures

Edge computing is a distributed computing paradigm that selectively moves some functionalities

of the cloud (e.g., computation, control, and decision-making) to the vicinity of end-users

[Baek (2022); Kaur, Dhand, Kumar & Zeadally (2017); Mouradian, Naboulsi, Yangui, Glitho,

Morrow & Polakos (2018)]. The most popular edge computing technologies include fog

computing, multi-access edge computing (MEC), and cloudlet. Figure 1.11 illustrates a fog

computing architecture in the context of IoT. This approach enables low latency and location

awareness, wide-spread geographical distribution, mobility, support for a large number of nodes,
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strong presence of streaming and real-time applications, and heterogeneity (wide variety of

environments) [Bonomi, Milito, Zhu & Addepalli (2012)]. These characteristics make edge

computing an appropriate architecture for a number of mission-critical IoT applications, such as

connected vehicles, smart healthcare, smart grid, and smart cities.

Figure 1.11 Cloud and edge computing-based IoT architecture

Taken from Sarkar et al. (2018)
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1.3 IoT Security

The main objectives of IoT security are to preserve systems’ privacy, confidentiality, integrity,

and authenticity, ensure users’ and devices’ security, and guarantee the availability of the services.

These objectives have many challenges and are the subject of many research works. Firstly, this

section discusses critical IoT security requirements and reviews major IoT cyber-threats and

vulnerabilities. Secondly, we review IoT protection layer security solutions presented in recent

works.

1.3.1 IoT Security Requirements

A security requirement is a statement of needed security functionality that ensures one of

many different security properties is being satisfied. Security requirements are generally

derived from standards, history of past vulnerabilities, and applicable laws to solve a specific

security problem and prevent the repetition of past security failures. IoT security requirements

include the three fundamental information security attributes, namely confidentiality, integrity,

and availability. However, IoT security can also include specific requirements that can often

be complex, interwoven, and formulated on different abstraction levels [Mahmoud, Yousuf,

Aloul & Zualkernan (2015a); Oh & Kim (2017); Strielkina, Kharchenko & Uzun (2018);

Varshney & Gupta (2017)]. The main IoT security requirements presented in the literature are

defined as follows:

- Confidentiality: This important attribute ensures that the data is secure and only available to

authorized users. These users can be humans, machines, services, internal objects (devices

that are part of the network), and external objects (devices that are not part of the network).

For example, it can be crucial to make sure that sensors don’t reveal the collected data to

neighboring nodes [Strielkina et al. (2018)]. The confidentiality policy defines as well how

data must be managed. For example, it is important for IoT users to be informed of the data

management mechanisms, the process or the person responsible for the management, and the

protection measures implemented to ensure data privacy.
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- Integrity: This attribute ensures that the data are correct and trustworthy. It involves

maintaining the accuracy, trustworthiness and consistency of information over the complete

life-cycle of the data. In the transit of information, data should not be altered, and measures

should be taken to make sure that the information is not breached by unauthorized participants.

- Availability: This requirement ensures that the data is accessible to authorized users whenever

they need it. Devices and services must also be reachable and available when needed in a

timely fashion in order to satisfy IoT applications’ technical and functional requirements.

- Identification and authentication: Each object in the IoT system must be able to clearly

identify and authenticate other objects. However, this process can be very challenging

because of the nature of IoT systems; many entities are involved (devices, people, services,

service providers and, processing units) and sometimes objects may need to interact with

other objects for the first time (objects they do not know). Therefore, mechanisms to mutually

authenticate entities in every interaction in the IoT are needed.

- Access control: This requirement ensures that each user, device, and platform can only

access specific resources according to predefined rules. These rules can be a fundamental

part of IoT security as they dictate who is allowed to access and use IoT resources. By

combining identification, authentication, and authorization, access control policies make

sure entities are who they say they are and that they have access to the appropriate resources.

- Accountability: This requirement ensures the traceability of actions performed by a user,

process, or device. It also ensures that any malicious act performed by an intruder can be

detected. Accountability is crucial for trust, as it relates to the responsibilities, incentives, and

means for recourse regarding those building, deploying, managing, and using IoT systems

and services [Singh, Millard, Reed, Cobbe & Crowcroft (2018)].

- Non-repudiation: This requirement ensures that an entity cannot declare to not be the owner

of its generated information or deny the actions made by it. With this feature, it is easy to

trace the actions performed by any communicating party [Alsamani & Lahza (2018)].
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- Policies: There must be policies and standards to ensure that data is managed, protected,

and transmitted in an efficient way. More importantly, a mechanism to enforce such policies

is needed to ensure that every entity is applying the standards. Service level agreements

(SLAs) must be clearly identified in every service involved. Current policies that are used

in computer network security may not be applicable to IoT due to its heterogeneous and

dynamic nature. The enforcement of such policies will reinforce trust by human users in the

IoT paradigm which will eventually result in its growth and scalability.

IoT security requirements can vary according to the application domain [Chaudhary (2018)].

For example, mission-critical IoT applications require high availability and very low latency

to support applications like remote healthcare and other 5G use cases. On the other hand, in

most massive IoT use cases, some applications are tolerant in terms of network latency and

availability (e.g., remote health monitoring).

1.3.2 Major IoT Threats and Vulnerabilities

IoT security is one of the major current information and communications technology (ICT)

security challenges. The abundance of valuable data produced by the IoT attracts not only

legitimate economic and governmental actors, but also alarming numbers of malicious users.

The targeted data might contain industrial, economic, financial information (as in smart

enterprises), or very sensitive personal information (as in smart homes or smart healthcare

systems). For example, according to a recent study by Cynerio, a healthcare cyber-security

provider, 56% of hospitals have had their IoT devices attacked in the past two years [Sadhu,

Yanambaka & Abdelgawad (2022)]. Secondly, IoT devices generally suffer from significant

security vulnerabilities and are seen by hackers as easy entry points into more important systems.

As a result, the integration of IoT into traditional systems, such as homes, factories, healthcare,

and transportation systems increases their exposure to attacks. For example, according to the

recent study by the healthcare cyber-security provider Cynerio, 53% of medical IoT devices

have at least one critical vulnerability, and 88% of data breaches involved IoT devices. In what

follows, some of the main IoT attacks and vulnerabilities are discussed.
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1.3.2.1 IoT Security Threats

Cyber-attacks against IoT systems can target diverse elements in the infrastructure, including

IoT devices, communication channels, and applications. The most popular attacks include

brute-force attacks, firmware hĳacking, eavesdropping, spoofing, malicious node injection,

man-in-the-middle (MitM), physical tampering, jamming, denial of service (DoS), malware

attacks, and privacy leakage [Andrea, Chrysostomou & Hadjichristofi (2015a); Chen, Zhang, Li,

Zhang, Deng, Ray & Jin (2018); Deogirikar & Vidhate (2017)]. These attacks are generally

interrelated in their operation modes or in their objectives. For example, some attacks are

launched specifically to open up access to more important attacks. In addition, there is a constant

evolution in the level of sophistication of attacks, which increasingly use advanced technologies

and benefit from more resources in terms of computing power.

In the state of the art, IoT attacks are generally classified according to various criteria. Figure

1.12 proposes a classification into physical, network, software and encryption attacks [Deo-

girikar & Vidhate (2017)]. Moreover, Table 1.1 provides a classification of diverse attacks based

on the transmission control protocol/internet protocol (TCP/IP) communication protocol stack

[Nawir et al. (2016)]. In what follows, some of these main IoT attacks are briefly explained.

Brute-force attacks: In these attacks, unauthorized users try to log into legitimate users’

accounts using guessed passwords, and continue trying different passwords until they get the

correct one. Usually, the attackers have automated software that generates different combinations

of passwords. Regardless of the computational burden on the attacker, brute-force attacks

were shown to be one of the major threats to network security in general, and IoT in particular

[Najafabadi, Khoshgoftaar, Kemp, Seliya & Zuech (2014); Salamatian, Huleihel, Beirami,

Cohen & Médard (2019)]. Generally, the solution to this threat is to set up a system that detects

and prevents too many queries from a user, as determined by IP addresses. As a result, an

attacker who uses a single IP address would be limited to a predefined number of guesses.

However, this defence is circumvented by using massive botnets, each bot querying potential

passwords. In this situation, it is more challenging to prevent brute-force attacks.
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Firmware hĳacking: These attacks take place when IoT devices download firmware updates.

The attackers hĳack the device to download malicious software from illegitimate sources. With

so many IoT devices, brands, and products, firmware hĳacking is a major concern. Moreover,

most hardware makers don’t cryptographically sign their firmware.

Eavesdropping attacks: These attacks are also known as sniffing or snooping attacks. Eaves-

dropping is typically done by listening to digital or analog voice communications or via the

interception of sniffed data. The malicious users intercept the traffic between two end devices or

between an IoT device and a server. If non-encrypted or weakly encrypted communications

are found, the malicious users access confidential information, which can be used for more

important attacks.

Spoofing attacks: A spoofing node impersonates a legal IoT device with its identities, such as

the MAC address and RFID tag, to gain illegal access to the IoT system. This attack is used to

access confidential information and can lead to MitM attacks [Xiao, Li, Han, Liu & Zhuang

(2016)].

Malicious nodes injection and MitM attacks: In these attacks, the hackers breach the

communications by injecting malicious nodes between the legitimate nodes or by targeting the

communication protocols in IoT networks. Through the MitM concept, the hackers can alter the

traffic flow, reconfigure the network topology, create fake identities, and generate malicious and

false information to compromise the IoT system. The variants of MitM attack are Sybil, Wormhole,

identity replication, and node replication attacks [Andrea, Chrysostomou & Hadjichristofi

(2015b)].

DoS attacks: DoS attackers flood a targeted server with superfluous requests to prevent IoT

users from obtaining services [Andrea et al. (2015b); Xiao, Wan, Lu, Zhang & Wu (2018)]. One

of the most challenging types of DoS attacks is distributed denial of service (DDoS) attacks,

where attackers use thousands of IP addresses to request IoT services, making it difficult for the

server to distinguish the legitimate IoT devices from attackers [Zhang & Jetter (2016)].
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Physical tampering: IoT devices usually suffer from hardware-level vulnerabilities [Hernandez,

Arias, Buentello & Jin (2014); Wurm, Hoang, Arias, Sadeghi & Jin (2016); Zhao (2017)].

Malicious users that can obtain physical access to these devices can disassemble the hardware

and perform different types of physical attacks. Physical attacks include different types of

probing (passive/active injectors or pico-probes), machining methods (manual material removal,

mechanical, water, laser, chemical, or shaped charge), and electrical (radiation, temperature, or

high voltage imprinting, power supply fluctuations, clock glitching, circuit disruption, or electron

beam and infrared laser read/write) [Grand (2004); Weingart (2000)]. With these methods,

the attackers can modify the memory/computation, unveil employed cryptographic schemes,

replicate firmware using malicious nodes, or simply corrupt the data.

Jamming attacks: These attacks consist in sending fake radio signals to interrupt the ongoing

radio transmissions of IoT devices and further deplete their bandwidth, energy, central processing

units (CPUs), and memory through failed communication attempts [Han, Xiao & Poor (2017)].

Malware attacks: The security problem for the IoT is sometimes aggravated by vulnerabilities

produced by careless program designs, which create opportunities for malware or backdoor

installation. Mobile malware, such as Trojans, worms, and viruses can result in IoT systems

privacy leakage, power depletion, and network performance degradation [Xiao, Li, Huang & Du

(2017)].

Privacy leakage: IoT systems have to protect user privacy during data caching and exchange.

Some caching owners are curious about the data content stored on their devices and analyze and

sell such private information. Wearable devices that collect users’ personal information, such as

location and health information, witness an increased risk of privacy leakage [Han et al. (2017)].
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Figure 1.12 IoT attacks

Adapted from Sarkar et al. (2018)

1.3.2.2 IoT Security Vulnerabilities

Most IoT devices and applications have been designed with operationality and flexibility in

mind instead of security. This has resulted in a significant number of vulnerabilities in every

layer of IoT architectures. In general, IoT vulnerabilities come from a lack of cyber-security

awareness, resource constraints, wireless communication channels, systems heterogeneity, and

vulnerabilities related to IoT enabling technologies, such as cloud computing and SDN [Heer,

Garcia-Morchon, Hummen, Keoh, Kumar & Wehrle (2011); Neshenko, Bou-Harb, Crichigno,

Kaddoum & Ghani (2019)].

Lack of cyber-security awareness: An increasing number of industries are providing or

adopting IoT technologies without putting enough effort on raising cyber-threat awareness.

This is resulting in a lot of security malpractice that escalates the risks. An example of such
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Table 1.1 Layer-based attacks with their attack strategies in IoT systems

Taken from Nawir et al. (2016)

Layer Attacks Methods/Strategies attacks

Physical
Jamming

Creates radio interference and exhaustion on

IoT devices.

Tampering Creates compromised nodes.

Data Link

Collision
Simultaneous transmissions from two nodes on

the same frequency.

Exhaustion By repetitive collisions.

Unfairness Using above link layer attacks.

Network

Spoofed, altered or

replayed routing

information

Creates routing loops, extend or shorten

sources routes, attracting or repelling network

from selected nodes.

Selective

forwarding

Choose what information to discard or gather

before transmission.

Sinkhole Monitoring, Redundancy, Authentication

Sybil
Single node duplicates its node to be in

multiple locations.

Wormholes
Selectively tunneling or retransmiting

information to the IoT devices.

HELLO flood
Uses HELLO packets as weapon to launch the

attack on IoT systems.

Acknowledgement

spoofing

Spoof the link layer acknowledgments for

overhead packets.

Transport
Flooding

Repeat the request of a new connection until

the IoT system reaches maximum level.

De-synchronization Disruption of an existing connection.

Application

Attacks on reliability

and Clone attack:

- Clock skewing,

- Selective message

forwarding,

- Data aggregation

distortion

The adversaries usually masquerade like normal

users in the IoT system, but they can launch

malicious activities.

malpractice is the use of default and weak passwords. An enormous number of deployed

IoT devices in conjunction with their cloud management solutions do not force a password of

sufficient complexity [Hewlett Packard (2015)]. Moreover, after installation, numerous devices
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do not request to change the default user credentials. Such malpractice on both the provider and

consumer sides increases the success rate of brute-force attacks. In addition, countless firmware

are released with known vulnerabilities, such as backdoors, no secure socket layer (SSL) usage,

and users with elevated permissions [Elmiligi, Gebali & El-Kharashi (2016); Tekeoglu & Tosun

(2016)]. For example, most of the users have root access, which can allow adversaries who gain

unauthorized access to the device to perform user to root (U2R) attacks and take control of

the entire system [Markowsky & Markowsky (2015); Neshenko et al. (2019); Siboni, Shabtai,

Tippenhauer, Lee & Elovici (2016)]. Furthermore, among the millions of organizations that are

deploying smart devices, very few organizations have deployed proper security measures.

IoT resource constraints: Unlike traditional computer networks that have considerable resources,

IoT is mainly composed of resource-constrained devices due to their small or limited size. These

devices have some limitations in terms of computational power, memory size, radio bandwidth,

and energy access. These constrained devices do not provide enough resources to deploy complex

security mechanisms that generate heavy computation and communication load. Therefore, the

majority of IoT devices don’t have the capabilities to incorporate traditional antiviruses, firewalls,

or encryption and authentication mechanisms. For example, many IoT applications cannot afford

traditional key generation and authentication techniques based on classical cryptography as it

requires expensive secret key storage and high-complexity cryptographic algorithms. Under

such circumstances, attackers can perform successful intrusions, access confidential information,

append spoofed malicious nodes, and violate data integrity [Furfaro, Argento, Parise & Piccolo

(2017); Vidgren, Haataja, Patiño-Andres, Ramírez-Sanchis & Toivanen (2013)]. Moreover,

these resource-constrained devices can be easily overloaded. For example, for devices with no

energy access, DoS attackers might drain the stored energy by generating a flood of legitimate

or corrupted messages [Trappe, Howard & Moore (2015); Vasserman & Hopper (2013)].

Physical exposure: A considerable number of IoT devices are usually deployed (or move

autonomously) in external, outdoor, non-restricted, and non-secure environments. With little

effort, attackers can obtain unauthorized physical access to such devices and execute physical

tampering attacks. For example, IoT devices installed on smart cars can be accessed from
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the outside because there is no control over who can touch them in an open environment. So,

attackers can target these systems.

Wireless communication vulnerabilities: Wireless communication is an essential component

for IoT infrastructures, used for data collection from the perception layer (smart device layer)

and control message delivery. However, due to the open nature of the wireless medium, data

exchange may suffer from various attacks, including eavesdropping, DoS by de-authentication

attacks or jamming the used frequency band, unauthorized user access through the wireless

gateways, identity spoofing of IoT nodes or wireless access points, MITM attacks, and message

falsification/injection. Wireless attacks are significantly dynamic in nature, usually hard to

predict, and relatively simple to carry out [Krejčí, Hujňák & Švepeš (2017); Mpitziopoulos,

Gavalas, Konstantopoulos & Pantziou (2009); Zou, Zhu, Wang & Hanzo (2016)]. For example,

jamming equipment for different frequencies can easily be acquired by malicious users.

IoT heterogeneity and scale: IoT is about billions of heterogeneous devices, in terms of

hardware and software, connected through heterogeneous wireless communications protocols

and network topologies. This makes the networks and applications management extremely

complex [Bedhief, Kassar & Aguili (2016); Restuccia, D’Oro & Melodia (2018)]. Firstly, in

an infrastructure built with components from diverse companies with different approaches,

standards, and use cases, it is not easy to define who will be responsible for the global security

orchestration. Secondly, with devices that have different resource constraints and applications

with different quality-of-service requirements, a security solution that is appropriate for some

IoT devices and applications may not be applicable to others. Moreover, due to the heterogeneity

and complexity of the objects and networks, traditional authentication and authorization methods

may not be applicable. For instance, authentication and authorization through cryptographically

pre-shared keys is not applicable. The rapidly growing number of objects will greatly complicate

the key management task [Zhang et al. (2014)]. Furthermore, it may be infeasible to issue a

certificate to IoT objects since the total number of objects is often huge. Given the number of

these objects, it is also challenging to develop and deploy security mechanisms that can endure

with the scale and range of devices.
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Vulnerabilities in IoT enabling technologies: Emerging technologies, such as 5G wireless

communication and its fundamental building blocks, such as SDN, NFV, and cloud computing

enable new security solutions. However, there are several new threats that arise as a result of

their implementation [Dutta & Hammad (2020)].

In SDN, critical security vulnerabilities exist in different modules, such as controllers, VMs,

and OpenFlow switches. For example, the SDN control plane is vulnerable to attacks like

host location hĳacking, link fabrication, port amnesia, and port probing [Rawat & Reddy

(2017)]. In the data plane, attackers can use fraudulent flow rules, flooding attacks, traffic

diversion, and address resolution protocol (ARP) spoofing attacks. The application layer is

vulnerable to application programming interface (API) exploitation attacks [Rahouti, Xiong,

Xin, Jagatheesaperumal, Ayyash & Shaheed (2022)]. Since SDN-based architectures are mostly

dependent on the programs (software), SDN security vulnerabilities are particularly alarming

as they can jeopardize entire networks. Successful attacks in software-defined networks can

cause more control loss and the intruders may take full control of the system and put the entire

infrastructure at stake.

In cloud computing, multiple security vulnerabilities are yet to be addressed. For example, a

lack of strict isolation at multiple levels in multi-tenant shared cloud infrastructures among

multiple virtual network operators exposes users to information confidentiality and integrity risks.

Moreover, according to the 5G infrastructure public private partnership (5G PPP) phase 1 security

landscape [Bisson & Waryet (2017); Mishra, Pilli, Varadharajan & Tupakula (2017)], network

slicing has several open security challenges, such as security isolation of network slices and

security of inter-slice communications [Ahmad, Kumar, Liyanage, Okwuibe, Ylianttila & Gurtov

(2018)].

1.3.3 Recent Approaches to IoT Security

To overcome the aforementioned IoT security threats and vulnerabilities, the research community

has investigated innovative security methods that accommodate IoT constraints and specifica-
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tions. For example, multiple research works have come up with new lightweight encryption,

authentication, and authorization methods designed explicitly for resource-constrained IoT

systems [Dutta, Ghosh & Bayoumi (2019); Surendran, Nassef & Beheshti (2018)].

In [Tiburski, Moratelli, Johann, Neves, Matos, Amaral & Hessel (2019)], the authors proposed a

lightweight security architecture based on embedded virtualization and trust mechanisms for

IoT edge devices. The proposed scheme is composed of four security mechanisms that ensure

the authenticity of the executed code, the integrity of the runtime states, and the confidentiality

of elements stored in the persistent memory. These security mechanisms include secure boot,

secure key storage, security by separation, and secure inter-domain communication mechanisms.

The secure boot authenticates the stored programs with asymmetric keys so that eventual

modifications can be detected during the boot process. The secure key storage protects the

integrity of keys using write-once memory. The security by separation uses spatial and temporal

separation to avoid software defects propagation from part of the devices to adjacent parts. With

the proposed mechanisms, on the one hand, a compromised VM code will not pass the boot-up

process. On the other hand, attackers that exploit vulnerabilities based on malfunctions can be

detected, enabling developers to investigate the causes.

The work in [Gope & Sikdar (2019)] demonstrated a lightweight and privacy-preserving two-

factor authentication scheme, where each IoT device uses a secret key and physically unclonable

functions (PUFs) as factors for proving its legitimacy to the servers. PUFs are the result of the

manufacturing process of integrated circuits (ICs), which introduces random physical variations

into the micro-structure of an IC, making it unique. It is impossible to control these variations

in the micro-structure of an IC during the manufacturing process. In addition, the outputs are

derived from intrinsic characteristics of the PUF’s physical elements and are therefore difficult

to predict and almost impossible to clone. In this regard, PUFs use their internal structure to

provide a one-way function that cannot be duplicated. Thus, PUFs have emerged as a promising

cryptographic primitive and already gained popularity in the security domain. The fact that

PUFs are hard to predict but easy to construct and evaluate makes them a good choice for use as

a security primitive for IoT devices. However, noise and sensitivity to environmental factors are
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still important factors in PUF design, which may result in one or several of the output bits of the

PUF being incorrect for any challenge. The authors addressed this issue using the concept of

reverse fuzzy extractor. The proposed scheme remains secure even if an adversary has physical

access to an IoT device. This approach provides protection against physical attacks, cloning,

impersonation, message tampering, and replay attacks.

The authors in [Arafin, Gao & Qu (2017); Zhang et al. (2022)] proposed a hardware-oriented

lightweight authentication protocol that uses the errors generated by the computing units of

digital circuits in voltage over-scaling (VOS). Like PUFs, these errors are also related to the

manufacturing process variation and hence serve as hardware fingerprints. The authors used

such errors as device signatures and designed a lightweight two-factor authentication scheme

that uses passwords as something known and hardware properties as something possessed

by legitimate users. VOS-based authentication was shown suitable for resource-constrained

IoT applications. Compared to PUFs, VOS-based authentication benefits from a lower power

consumption and no additional hardware is required for its implementation. The evaluation of

the protocol proved its effectiveness against many potential attacks, such as random guessing,

eavesdropping, MitM, compromised key, and side-channel attacks. However, in simulations

performed in the HSpice platform using the FreePDK 45 nm libraries [Stine, Castellanos,

Wood, Henson, Love, Davis, Franzon, Bucher, Basavarajaiah, Oh & Jenkal (2007)], the solution

proposed has shown vulnerabilities against machine learning attacks, such as artificial neural

network (ANN), recurrent neural network (RNN), and covariance matrix adaptation evolution

strategy (CMA-ES).

The study in [Lam, Mitra, Gondesen & Yi (2022)] proposed a secure-by-design activity-network-

things (ANT)-centric reference architecture based on the three IoT architectural perspectives.

Security-by-design is an emerging paradigm that aims to deal with security concerns from

the early phases of system development [Salnitri, Alizadeh, Giovanella, Zannone & Giorgini

(2018)]. Secure-by-design approaches are widely accepted as the safest, most economical, and

most resourceful way to secure complex systems. The proposed architecture was designed to

secure a space-air-ground-integrated network (SAGIN)-enabled internet of vehicles (IoV), and
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more globally, for any IoT application. SAGIN is an ideal alternative to traditional networking

technologies which enables anytime anywhere IoV connectivity. However, significant security

challenges are yet to be addressed as SAGIN-enabled IoV applications are vulnerable to diverse

cyber-attacks due to their open and heterogeneous nature. The proposed architecture includes

an organized process to understand the security requirements and select specific parameters

for tailored security controls. The authors discussed some features for different security

mechanisms, including public key, implicit hardware, and symmetric cryptography with delayed

key disclosure-based authentications. They also conducted a scalability impact analysis of the

security schemes. The proposed security reference architecture is built in a flexible way so that

the practitioners can add or replace security features suiting their own requirements and based

on the latest standards and best practices.

The paper [Cao, Ding, Wang, Lv, Tian, Wei & Gong (2022)] introduced a non-orthogonal

multiple access (NOMA) assisted semi-grant-free transmission to enhance next generation IoT

physical layer security. Unlike the conventional orthogonal multiple access (OMA) wireless

communications systems, NOMA encourages spectrum sharing among wireless devices and has

emerged as a spectrally efficient solution for supporting massive connectivity of IoT devices,

which is a key step towards next generation IoT [[Ding (2021); Ding, Liu, Choi, Sun, Elkashlan,

Chih-Lin & Poor (2017)]. However, physical layer security of NOMA is facing great challenges.

The authors investigated the security of semi-grant-free NOMA transmission in the presence

of passive and active eavesdropping attacks. In particular, for a first scenario (scenario-I) with

strong grant-based user and weak grant-free users, scenario-I based maximal user scheduling

(IbMUS) and scenario-I based optimal user scheduling (IbOUS) schemes are proposed to combat

passive and active eavesdropping, respectively. For a second scenario (scenario-II) with weak

grant-based user and strong grant-free users, two parallel schemes, namely the scenario-II based

maximal user scheduling (IIbMUS) and scenario-II based optimal user scheduling (IIbOUS)

schemes, are proposed to combat the passive and active eavesdropping, respectively. These

proposed schemes enhance the security by scheduling a grant-free user with maximal main

channel capacity/maximal secrecy capacity to access the NOMA channel on the premise of
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ensuring the grant-based user’s quality of service. Based on these proposed schemes, the exact

secrecy outage probability (SOP) was analyzed to evaluate the system’s performance.

1.4 Intrusion Detection and Prevention Systems (IDPSs) for IoT

Most of the security solutions presented above, including hardware and firmware integrity,

lightweight authentication, user data confidentiality, and wireless communication security

methods can all be classified as protection layer security, i.e., the first layer of the global

cyber-security framework. This section describes the second cyber-security layer, i.e., IDPSs,

explains its role, and provides a comprehensive review of intrusion detection methods and

techniques. Specifically, we focus on anomaly-based detection methods that use machine

learning algorithms, especially deep learning.

1.4.1 Role of IDPSs

In the global cyber-security framework, the protection layer represents the first security layer,

which defines and implements protective safeguards to avoid the violation of the systems’

security requirements (i.e., confidentiality, integrity, availability, etc.). However, a protection

layer alone is not enough to ensure complete cyber-security. Despite the deployment of strong

protection measures, a system can still be compromised by an enduring adversary using zero-day

attacks, advanced techniques, high computational resources, or leaked security information.

Therefore, as defined by the national institute of standards and technology (NIST), under every

protection layer, must be implemented a detection, response (also known as prevention), and

recovery layers [Mylrea et al. (2017); Norris et al. (2022)]. Figure 1.13 illustrates the NIST’s

cyber-security framework and highlights our research focus. This research work focuses on

intrusion detection systems (IDSs) and intrusion prevention systems (IPSs).

The function of an IDS is to monitor relevant activities from a security perspective, such as

system logs and network packets, to analyze and detect activities that are potentially worthy of

some type of action or response (e.g., multiple failed logins or a ping flood) [Betser, Walther,
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Figure 1.13 NIST’s cyber-security framework and our

research focus

Erlinger, Buchheim, Feinstein, Matthews, Pollock & Levitt (2001)]. The degree to which

an event is worthy of a response is dictated by the security policy in place and is typically

implemented in the configuration of the IDS. Once an event has been detected and deemed

worthy of further action, it is necessary to communicate the existence of the event, and possibly

its details, to a party that is capable of further action. The role of an IPS, also known as an

intrusion response system (IRS) is to automatize the function of the IDS receiving party with

programmed defensive measures. Compared to manual response, an IPS reduces the window of

vulnerability between when an intrusion is detected and when the defensive action is taken. This

solution has a significant impact as the success of many attacks mainly depends on the time gap

between the detection and the defensive response.

IDSs communicate with IPSs or other receiving parties through alerts that contain, as a minimum,

an information stating that an event occurred and ideally much more information about the event

in order to facilitate an informed action or response by the receiving party. Figure 1.14 illustrates

a generic IDS architecture as defined by the IETF intrusion detection working group (IDWG)

[Brandao et al. (2006)]. In this architecture, the sensor is the entity that collects data (relevant

activities) to be used in the detection process. The analyzer detects events based on activity

data, and according to the security policy in place possibly generates alerts. Alerts are formatted

and transferred to managers. The manager can inform the operator through different types of

notification that important alerts have occurred, as per the security policy.
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Figure 1.14 Basic elements of the IETF IDWG IDS model

Taken from Brandao et al. (2006)

IDSs can be categorized using different classification criteria, such as the detection phase, which

includes online and offline IDSs; the detection surface, which includes network-based (NIDS),

host-based (HIDS), and hybrid intrusion detection systems; and the detection method [Bhuyan,

Bhattacharyya & Kalita (2014); Sabahi & Movaghar (2008); Vaigandla, Azmi & Karne (2022)].

1.4.2 Intrusion Detection Methods

The fundamental idea behind intrusion detection methods is that an intrusive activity always

has some elements of differences compared to normal activities. Therefore, based on those

differences, intrusive activities can be detected. A variety of methods for intrusion detection have

been proposed in the literature. The most used methods include signature-based, specification-

based, and anomaly-based detections.

1.4.2.1 Signature-based Detection

Signature-based detection, also known as misuse detection, relies on a signature database to

discover attacks [Kemmerer & Vigna (2002)]. The signature database contains predefined

signatures, which are created from rules that match exploits and patterns of known intrusive

activities. Figure 1.15 presents the structure (1) and an example (2) of a detection rule used

on SNORT, one of the most popular commercial IDSs. In a deployed signature-based IDS, the
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detection mechanism consists of extracting the signatures from the new traffics and matching them

with all the defined signatures in the database. Once a signature is matched, the corresponding

traffic is reported as an intrusion.

Figure 1.15 Structure and example of a detection rule

The main advantage of IDSs that use this method is that they typically produce few false positives.

However, their major drawback is their inability to detect zero-day-attacks, i.e., previously unseen

attacks which exploit unaware security flaws. Another major drawback is their inability to detect

attacks for which signatures are not yet added to the database. Therefore, keeping the signature

database up to date is mandatory. Thus, for every newly discovered attack, the corresponding

signature must be created and added to the signature database. Moreover, signature-based IDSs

require a deep understanding of how the vulnerabilities actually work in order to develop the

detection rules.

1.4.2.2 Specification-based Detection

IDSs that use this method rely on sets of predetermined specifications, such as the system’s

functional states and transitions, operational and protocol constraints, network maximum capacity

of links, packet size, and statistical rules that define the system’s legitimate behavior model
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[Jokar & Leung (2018)]. During the monitoring process, the IDS analyzes the system’s events

and when an activity deviates from a predefined specification, an alert is issued.

With such a method, it is easy to detect known attacks. Another advantage is that, since

specification-based IDSs detect deviations from normal behaviors, they can detect previously

unseen attacks as well. However, most specifications are manually defined by human experts

and are strongly dependent on the expertise of the system administrators. This causes significant

shortcomings. Firstly, manually defining such rules can be task-intensive in large networks,

which poses a scalability issue in IoT applications. Secondly, manual tasks increase the likelihood

of human errors, which can lead to abundant false positives. Moreover, incomplete specifications

can cause IDSs to miss benign-looking attacks and cause false negatives, which represent a

considerable risk to IoT security. Furthermore, manually defined specifications may not adapt

to different environments and may be incompatible with some proprietary operating systems,

applications, or protocols.

1.4.2.3 Anomaly-based Detection

In general, anomaly detection aims to find patterns in events that do not conform to expected

behavior [Zhou & Guo (2018)]. Therefore, an anomaly-based IDS attempts to model the normal

behavior of a targeted system beforehand. Then, it compares the current behaviors of the targeted

system with the modelled behavior for notable deviations. Finally, it identifies as an anomaly any

observation with a behavior deviation that exceeds a predefined threshold. Another approach in

anomaly-based IDSs is to model the abnormal behavior of the targeted system and to raise an

alarm when the difference between an observed behavior and the modelled behavior falls below

a given limit [Garcia-Teodoro, Diaz-Verdejo, Maciá-Fernández & Vázquez (2009)]. Anomaly

detection methods can be classified based on their underlying computation techniques. The most

common techniques include statistical-based, knowledge-based (rule, expert system, and logic),

and machine learning-based techniques.
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Anomaly detection is capable of detecting well-known attacks as well as zero-day attacks.

However, the drawback of this method is its high false alarm rate due to the difficulties to model

complex systems’ behavior and setting up the right thresholds for identifying the anomalies.

Based on the work presented by [Wang & Jones (2017)], we have built a comparison table of the

presented intrusion detection methods (Table 1.2).

Table 1.2 Comparison between intrusion detection methods

Taken and adapted from Wang & Jones (2017)

IDS Methods Characteristics Advantages Disadvantages

Signature-base

detection

Uses the patterns

of known attacks

(signatures) to

identify intrusions.

- Low alarm rate;

- High speed;

- Low resource

consumption;

- High reliability.

- Known attacks have to

be hand-coded;

- Unable to detect new

attacks;

- Need signatures update;

- False negatives;

- Low flexibility;

- Low scalability;

- Low robustness.

Anomaly-based

detection

Uses the deviation

from normal usage

patterns to identify

intrusions.

- Can detect new

attacks;

- High flexibility;

- High scalability;

- High robustness.

- Has to study sequential

interrelation between;

transactions;

- False positives;

- High alarm rate;

- Low speed;

- High resource;

consumption;

- Moderate reliability.

Specification-based

detection

- Depends on

vendor-developed

generic profiles to

specific protocols;

- Protocols based

on standards from

international

standard

organizations.

- Know and trace

protocol states;

- Distinguish

unexpected

sequences of

commands.

- Resource consuming

to protocol state tracing

and examination;

- Unable to inspect

attacks looking like

benign protocol

behaviours;

- Might be incompatible

with dedicated OSs

or applications.
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1.4.3 Recent Works on IDPSs for IoT

Many research works have come up with different IDPSs to provide more security in IoT

applications. Out of all the implemented methods, anomaly-based IDSs that employ machine

learning, especially deep learning techniques, have emerged as the most promising approaches.

Supervised machine learning techniques can automatically learn from datasets of previous

malicious and benign system events to build detection models that can identify future malicious

events. However, generating a realistic learning dataset is often a challenging task. Therefore,

many research works use available datasets generated from traditional computer systems because

of the lack of challenging public datasets created specifically for IoT security. Some other research

works opt to build their own datasets from private IoT networks. Overall, the most used datasets

in the literature for NIDS include KDDCUP99 (KDD99), NSL-KDD, UNSW-NB15, CAIDA,

DEFCON, ADFA IDS, KYOTO, and ISCX 2012 [Chaabouni et al. (2019); Moustafa & Slay

(2015b)]. Table 1.3 presents a comparison between some of these popular datasets.

Diverse learning algorithms to build efficient intrusion detection models in IoT are proposed in

the literature and the performance of the presented solutions are evaluated using different metrics.

These metrics are mostly derived from the confusion matrix, as shown in Table 1.4. In this table,

the parameter true negatives (TN) represents the number of normal events correctly classified

as normal; True positives (TP) represents the number of abnormal events (attacks) correctly

classified as attacks; False positive (FP) represents the number of normal events incorrectly

classified as attacks; and False negative (FN) represents the number of abnormal events (attacks)

incorrectly classified as normal events.

The most used evaluation metrics in the literature include accuracy, precision, false alarm rate

(FAR), undetected rate (UR), and sensitivity. According to the confusion matrix, these metrics

are defined as follows:
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Table 1.3 Comparison between datasets

Taken from Chaabouni et al. (2019)

Datasets Advantages Drawbacks

KDD99

- KDD99 is popular and the most used.

- Labeled data.

- It is based on 41 features for each

connection along with the class label.

- Implements DoS, Remote

to Local, U2R, and Probing attacks.

- Provides network traffic (PCAP).

- KDD99 suffers

from unbalanced

classification methods.

- The dataset is

out of date.

- Not for IoT systems.

NSL-KDD

- It is a better version of KDD99.

- It overcomes KDD99 limitations.

- No duplicated records in the training

and test sets.

- Lack of modern low

foot print attack

scenarios.

- Not for IoT systems.

UNSW-

NB15

- It provides hybrid real modern normal

activities and synthetic contemporary

attack behaviors.

- Provides network traffic (PCAP) and

comma-separated values (CSV) files.

- It has nine types of attacks, namely

Fuzzers, Analysis, Backdoors, DoS,

Exploits, Generic, Reconnaissance,

Shellcode and Worms.

- It is more complex

than the KDD99

dataset due to the

similar behaviors of

the modern attack and

normal network traffic.

Sivanathan

et al.

Dataset

- Network traffic IoT dataset.

- It reflects real world IoT systems.

- Provides PCAP and CSV files.

- Unlabeled data.

- For IoT devices

proliferation and

traffic characterization.

- No attack data.

CICIDS

- Labeled network flows.

- For machine and deep learning purposes.

- Provides PCAP and CSV files.

- Implements attacks, such as brute-force

file transfer protocol (FTP), brute-force

secure shell (SSH), DoS, Heartbleed,

Web Attack, Infiltration, Botnet, and DDoS.

- Not public.

- Not for IoT systems.

CSE-CIC-

IDS2018

- Labeled network flows.

- For machine and deep learning purposes.

- Provides PCAP, CSV and log files.

- Implements Brute-force, Heartbleed, Botnet,

DoS, DDoS, Web attacks, and local network

infiltration attacks.

- Dynamically generated dataset.

- It is modifiable, extensible, and reproducible.

- Not public.

- Not for IoT systems.
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Table 1.4 Confusion matrix

Predicted Class
Classified as Normal Classified as Attack

Actual
Class

Normal Data True Negative (TN) False Positive (FP)

Attack Data False Negative (FN) True Positive (TP)

- Accuracy: Shows the percentage of the correctly predicted samples considering the total

number of predictions.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (1.1)

- Precision: From all the classes predicted as positive, shows the percentage of classes that are

actually positive.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 (1.2)

- False alarm rate (FAR): Also known as false positive rate (FPR). It represents the percentage

of regular samples misclassified as attacks.

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
× 100 (1.3)

- Undetected rate (UR): The percentage of anomaly samples (attacks) misclassified as normal.

𝑈𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
× 100 (1.4)

- Sensitivity: Also known as the true positive rate or recall. It shows from all the positive

classes, the percentage of those who are predicted correctly.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (1.5)
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- F-measure: Also known as F1 score. It calculates the harmonic mean of the precision and

recall and provides a single weighted metric to evaluate the overall classification performance.

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
(1.6)

Numerous learning-based IDSs presented in the literature implemented traditional machine

learning models, i.e., shallow learning models, which are typically built with less than three

computational layers. These models may be suitable for resource-constrained IoT and other edge

devices as they do not require high computational power and have a relatively short training time.

However, shallow learning models may encounter difficulties in discovering useful intrusion

patterns from an increasing number of training samples. Therefore, deep learning models, which

are built with a large number of neural layers, have emerged as much more promising models to

build robust IDSs and are subject of more and more research works.

1.4.3.1 Traditional Shallow Machine Learning-based Detection

The research in [Sedjelmaci, Senouci & Taleb (2017)] designed a lightweight IDS that combines

the advantages of anomaly and signature-based detection techniques. The anomaly-based

detection technique relies on a learning algorithm to model the system’s normal behavior and

detect attacks. When a new attack pattern is detected, its signature is extracted and used by the

signature-based detection technique. The combination of these two detection methods (anomaly

and signature) generally exhibits high detection and low false positive rates. However, with

low-resource IoT devices, this could lead to high-energy consumption, increased overhead,

and degraded network performance. To mitigate this issue, the authors proposed to activate

the anomaly detection only when a new attack pattern (i.e., signature) is expected to occur.

Hence, a balance between detection accuracy, false positive rates, and energy consumption can

be achieved. The activation of the anomaly detection technique is done thanks to a proposed

security game theoretic model, where they modelled the security strategy as a game formulation

between the intruder attack and the IDS agent embedded in IoT devices. With the help of Nash

Equilibrium, they determined the equilibrium state that allows the IDS agent to activate its
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anomaly detection technique in order to detect new attack patterns. To further decrease the

false positive rate, a reputation model based on game theory is proposed. This model aims to

rank the monitored IoT devices into Legitimate, Suspect, and Malicious nodes according to

their reputation scores. The performance analysis demonstrated the viability of the proposed

approach in wireless sensor networks (WSNs) using TOSSIM (TinyOS library simulator). The

simulation results showed that the proposed solution requires low energy consumption to detect

the attacks with high detection and low false positive rates, almost 93% and 2%, respectively.

The work in [Teixeira, Salman, Zolanvari, Jain, Meskin & Samaka (2018)] created an IIoT testbed

where they simulated attacks, built a dataset, and trained and evaluated machine learning-based

detection models. The testbed consists of a water storage tank’s control system, which is a

stage in the process of water treatment and distribution. The authors simulated reconnaissance

attacks against the testbed and captured the network traffic. They used TCP/IP packet headers

and computed statistical data as detection features. The features in the dataset include the total

packet count of each network transaction, the total transaction bytes, the source-to-destination

packet count, the destination-to-source packet count, the source-to-destination transaction bytes,

and the port number of the source. Five machine learning algorithms were trained to detect the

attacks, including random forest, decision tree, logistic regression, naïve Bayes, and k-nearest

neighbors (KNN). Considering the offline evaluations, all the machine learning algorithms

performed well in terms of accuracy. The decision tree, random forest, naïve Bayes, and logistic

regression models showed similar performance during online evaluations, compared to the

offline evaluations. The same did not apply to the KNN model. There was a significant difference

between the online and offline phases, which indicates that in practice, the KNN did not provide

good accuracy.

In [Anthi, Williams, Słowińska, Theodorakopoulos & Burnap (2019)], the authors proposed a

three-layer IDS that uses a machine learning approach to detect a range of popular network-based

cyber-attacks on IoT networks. The first layer classifies the type and profiles the normal

behaviour of each IoT device connected to the network so that unusual behaviour can be detected,

and subsequently, so can cyber-attacks. The second layer identifies malicious packets on the
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network when an attack is occurring. The third layer classifies the type of attack that has been

detected so that crucial information is provided to help determine the severity of the attack, and

subsequently accelerate the launch of countermeasures to defend against it without significant

human efforts. The system is evaluated within a realistic smart home testbed consisting of 8

popular commercially available IoT devices connected to an access point via WiFi and Ethernet

communications, and a laptop to record the network traffic and perform various network-based

attacks. Three weeks worth of benign data and two weeks of malicious data were collected

from the wireless access point using the tcpdump tool. The effectiveness of the proposed IDS

architecture was evaluated against 12 popular attacks from 6 categories found within the IoT

domain, but also against four scenarios of scripted multi-stage attacks with complex chains

of events. The attacks considered include various reconnaissance attacks, like quick scan and

intense scan, iot-scanner, various DoS, including TCP, user datagram protocol (UDP), and hello

floods, various MitM (ettercap, ARP), replay attack, ARP and domain name system (DNS)

spoofing, and 4 multi-stage scripts. Nine classifiers were tested and the J48 decision tree method

with pruning achieved the best performance, resulting in an F-measure of 99.7%, 97.0%, and

99.0% for device identification, attack detection, and attack classification, respectively.

The authors in [Eskandari, Janjua, Vecchio & Antonelli (2020)] presented an anomaly-based

IDS, named Passban, purposely designed to be directly hosted and executed by very cheap,

commercially available IoT gateways (e.g., single-board personal computer) or other typical

edge devices. First, they built an IoT testbed able to resemble a typical smart home automation

environment. Then, exploiting legitimate traffic flows of the IoT target network, they implemented

two one-class classification techniques, namely isolation forest (i forest) and local outlier factor

(LOF). The models were evaluated against four common attacks, namely port scanning, hypertext

transfer protocol (HTTP) brute-force, SSH brute-force, and synchronization (SYN) flood attacks.

In a first scenario, the IDS is directly deployed and executed on the IoT gateway, where Passban

was able to protect the latter and all the IoT devices directly connected to it. In a second scenario,

Passban is provided as a separate add-on device independently connected to the network it has

to protect. In terms of threat detection accuracy, the experimental evaluation revealed that using
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i Forest, Passban IDS can achieve F1 scores greater than 90% on some attacks (99% in the best

case and 79% in the worst case). In terms of resource utilization, they proved that Passban can be

executed even on cheap IoT gateway boards, like a Raspberry Pi 3 model B, especially when the

data rate on its network interface is not expected to exceed 40-50 megabits per second (Mbps).

1.4.3.2 Deep Learning-based Detection

The study in [Yao, Gao, Zhang, Wang, Jiang & Lu (2019)] proposed a hybrid intrusion detection

architecture for IIoT using a traditional machine learning algorithm, a light gradient-boosting

machine (LightGBM), and a deep learning algorithm, a convolutional neural network (CNN)

in the lower level and upper level of the network, respectively. LightGBM can be viewed as

a fast, distributed, high-performance decision-tree-based gradient lifting framework. In the

proposed architecture, devices with strong computing power and sufficient resources, such as

edge routers, are regarded as the master nodes, while the industrial equipment of the edge part is

regarded as edge nodes. They apply the lightweight LightGBM algorithm on the edge nodes and

perform the first intrusion detection task at these nodes to ensure security. At the same time,

they utilize the LightGBM algorithm to extract more advanced features to represent the traffic

without increasing the resource consumption, so as to perform further detection on the master

nodes. On the master nodes, they employ the deep learning algorithm with higher accuracy to

perform the second intrusion detection task, further improving the detection accuracy of the

overall network.

The work in [Ullah & Mahmoud (2021)] designed and developed an anomaly-based IDS for IoT

networks using a deep learning-based model for multiclass and binary class traffic classification.

The proposed system uses a CNN architecture in the multiclass classifier to categorize 15 types

of attacks and regular network traffic. The model consists of an input layer, four blocks of

convolutional layers, a flatten layer, a fully connected layer, and an output layer. The input

layer receives inputs from a reshaping system, which transforms the network data into a format

compatible with CNN one-dimension (CNN1D), CNN two-dimensions (CNN2D), and CNN

three-dimensions (CNN3D) models. The proposed models were validated using many subsets
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of the IoT-DS-2 dataset, including BoT-IoT, IoT Network Intrusion, MQTT-IoT-IDS2020, and

IoT-23. The authors used the transfer learning principle to deploy a pre-train multiclass CNN

model for the multiclass and binary models. According to the authors, transfer learning from a

multiclass CNN model to a binary class CNN model was effective because the binary CNN model

was trained using a subset of data used by the multiclass classification model. The experimental

results showed a minimum detection rate for the CNN1D model at 99.74%, CNN2D model

at 99.42%, and CNN3D at 99.03% for BoT-IoT, MQTT-IoT-IDS2020, IoT-23, and IoT-DS-2

datasets.

In [Sun, Lai, Wang, Liu, Mao & Gu (2022)], the authors proposed a logic understanding

IDS (LU-IDS) which uses a specially designed deep learning-based model to capture features

automatically and carry out attack classification. The proposed LU-IDS analyzes the knowledge

learned from the classification of attacks to understand an abnormal industrial control logic

and generate rules to implement a rule-based IDS with in-depth understanding of industrial

control logic, rather than manually designing rules based on the experience of domain experts.

They designed three modules for the proposed LU-IDS. The first module is a tensor construction

module, which builds two-dimensional measured element tensors by embedding all the sensor

and actuator values in each moment. The second is the logic learning module, which takes the

built tensors as input and uses convolution layers with a kernel size of 𝑛 × 1 to extract features

from them automatically. The third module, the rule generation module, analyzes the knowledge

learned by the deep learning-based model and generates interpretable rules with high confidence

to detect attacks. The performance of the proposed solution is evaluated using two datasets.

The first dataset, named SWaT, was collected in a six-stage safe water treatment testbed, which

represents a scaled-down version of a real-world industrial water treatment plant. The second

dataset, named WADI, was collected in a down-scaled water distribution testbed.

The authors in [Houda, Brik & Khoukhi (2022)] proposed an explainable artificial intelligence

(XAI)-based framework for real-time intrusion detection in IoT networks. XAI is an emerging

paradigm of AI, that provides a set of techniques to help interpret and understand predictions

made by deep learning models. Once the deep neural network (DNN) makes decisions, the
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proposed framework leverages three different approaches of XAI, including local interpretable

model-agnostic explanations (LIME), Shapley additive explanations (SHAP), and RuleFit to add

more explainability, transparency, and trust to the model’s decisions. The proposed framework

targets two different users, i.e., users of the deep learning model that aim to understand and trust

the model’s outputs, in order to be able to optimize their decisions, and cyber-security experts

that also aim to understand the model’s outputs, in order to make the suitable recommendations,

especially when an intrusion is detected. In the experiment, this work used both NSL-KDD and

UNSW-NB15 datasets to demonstrate the feasibility and performance of the proposed solution.
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2.1 Introduction

Home is one place where everyone needs absolute privacy and security to relax, take care of

their families, and keep valuable objects with complete peace of mind. To guarantee these vital

necessities, it is important to prevent intrusions. Several efforts, including locksmithing, home

surveillance, alarms, and law enforcement operations, are employed to ensure security. However,

multiple intrusions in residential properties are perpetrated on a daily basis. According to the

crime statistics released by the Federal Bureau of Investigation (FBI) in September 2019, up to

1.2 million burglaries were reported in the USA in 2018, i.e., 1 burglary every 25.7 seconds;

making it the second-most frequent crime. The victims of these burglaries suffered an estimated

property loss of $3.4 billion. Almost 66% of all the theft offenses were accounted as burglaries

of residential properties [U.S. Department of Justice—FBI (2019)]. Furthermore, an intrusion

inside a house may often result in more critical consequences, including kidnapping, terrorism,

and assassination for political, economic, and other reasons.

Meanwhile, homes are entering modernization enabled by the emerging Internet of Things (IoT).

The IoT paradigm offers immense opportunities in many domains and has created new concepts

such as smart homes, smart cities, and smart industries [Perera, Liu & Jayawardena (2015)].

These technologies are expected to be even more widespread with the emerging Fifth-Generation

(5G) of mobile communications [Palattella, Dohler, Grieco, Rizzo, Torsner, Engel & Ladid
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(2016)]. Various scenarios can motivate one to transform a traditional home into a smart home.

These reasons include increased home comfort, optimized energy consumption, automated

kitchen, senior citizens’ independence, and most importantly, enhanced home safety and security

(remote surveillance of security cameras and sensors, access control, central locking for all

perimeter doors and windows, person identification, personalized alerts, etc.). However, the

IoT network can become a major susceptibility in home security. This can be attributed to

the security vulnerabilities in smart devices that could be a leverage for hackers to carry out

nefarious activities. These inexpensive devices are generally not designed with any security

mechanisms. Usually, IoT device manufacturers compromise on security measures to keep pace

with market needs; for example, by reducing the time-to-market for their devices and minimizing

the design and development costs. These products, thus, end up being attractive targets for

adversaries [Alladi, Chamola, Sikdar & Choo (2020)]. For example, researchers have found

critical weaknesses in IoT-enabled baby monitoring systems [Forbes (2019)], which provide

access to malicious users to view and control our monitoring systems remotely. The authors in

[Wurm et al. (2016)] survey the security of popular consumer and industrial IoT devices and

highlight the associated security vulnerabilities. A successful cyber-attack in a smart home

network may result in more critical consequences, including leakage of highly sensitive data

that later can be used to blackmail the owner for ransom or reputation damage. Network attacks

can also be employed to remotely control access points and security devices, such as doors,

windows, surveillance cameras, occupancy detection sensors, etc., to enable physical intrusion.

Smart home IoT networks can be attacked through wireless or wired channels. Wireless

networks are vulnerable to diverse security threats, including unauthorized user access through

the wireless gateways, Denial of Service (DoS) by de-authentication attacks or jamming the

wireless communication, eavesdropping, identity spoofing of an IoT node or the wireless access

point (dummy gateway, rogue access point), man-in-the-middle (MITM) attack, and message

falsification/injection, to name a few [Zou et al. (2016)]. Traditional cyber-attacks through the

wired networks are also used against IoT networks.
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To deal with these threats, it is essential to implement effective security solutions. The research

work in this field is facing several issues. Unlike traditional computer network security challenges,

IoT infrastructures introduce new significant challenges. Firstly, IoT nodes are characterized by

limited resources due to the limited or small size of the devices. These limitations include low

computational power, memory size, radio bandwidth, and energy budget [Heer et al. (2011)].

These constrained devices do not provide enough resources to execute computationally and

latency-sensitive security tasks that generate heavy computation and communication load.

Therefore, it is not feasible to directly implement complex security mechanisms. This implies

that IoT security technologies must accommodate the constraints of IoT devices. The second

main challenge in IoT network security is the heterogeneity in terms of hardware, software, and

protocols. A security measure that is appropriate for one IoT device may not be applicable to

another. Moreover, each device generally has different security requirements and implementation.

In a network built with components from diverse companies (device manufacturers, software

developers, network operators, deployment companies) with various technologies, it is not easy

to define who will be responsible of the global security orchestration [Restuccia et al. (2018)].

Another crucial aspect is that, given the number of these devices, it is challenging to develop and

deploy security mechanisms that can endure with the scale and range of devices. For instance,

authentication and authorization through cryptographically pre-shared keys are not applicable.

The rapidly growing number of objects will make key management become a problematic task

[Zhang et al. (2014)]. It is also important to point out that due to the distributed nature of the

IoT, most of the generated traffic will be wireless in nature [Xu, He & Li (2014)]. In this context,

wireless attacks are significantly dynamic in nature, usually hard to predict and relatively simple

to carry out [Mpitziopoulos et al. (2009)].

2.1.1 Related Work

To overcome the aforementioned challenges, the research communities have been investigating

innovative security methods that accommodate with the IoT constraints. Indeed, some research

works have come up with new light weight cryptographic algorithms designed explicitly for
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encryption, hashing, and authentication on the constrained IoT resources [Dutta et al. (2019);

Surendran et al. (2018)]. However, cryptography is only meant to prevent attacks. On the other

hand, some important research work focuses on Intrusion Detection Systems (IDSs), so that

malicious attempts (successful or failed) can be detected beforehand.

The most used intrusion detection methods in the state-of-the-art include signature-based

[Kemmerer & Vigna (2002)], anomaly-based [Chandola, Banerjee & Kumar (2009); Zhang,

Yang & Geng (2009)], and Specification-based [Zarpelão, Miani, Kawakani & de Alvarenga

(2017)] detections. Table 2.1 presents a comparison of these methods in accordance with a

survey given in [Wang & Jones (2017)].

Table 2.1 Comparison between different intrusion detection methods

Method Advantages Disadvantages

Signature-based

Low false alarm rate;

High speed;

Low resource consump-

tion;

High reliability.

Known attacks must be hand-coded;

Fails to detect new attacks;

Requires signature update;

Generates false negatives;

Low flexibility;

Low scalability;

Low robustness.

Anomaly-based

Detects new attacks;

High flexibility;

High scalability;

High robustness.

Requires the study of sequential inter-

relation between transactions;

Produces false positives;

High alarm rate;

Low speed;

High resource consuming;

Moderate reliability.

Specification-

based

Knows and traces the

normal protocol states;

Distinguishes unex-

pected sequences of

commands.

Consumes significant resources for pro-

tocol state tracing and examination;

Fails to inspect benign looking like at-

tacks;

Might be incompatible to some pro-

prietary Operating Systems (OSs) or

applications;

Protocol dependant.
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Recent studies that investigated intrusion detection for IoT networks employed anomaly-based

detection and used different machine learning (ML) techniques with various detection features.

The typical approach consists of designing a realistic IoT testbed [Anthi et al. (2019); Nobakht,

Sivaraman & Boreli (2016)] or a simulated environment [Amouri, Alaparthy & Morgera (2018);

Facchini, Giorgi, Saracino & Dini (2020)], and launching multiple attacks in the experimental

network in order to collect and label the data (normal and attack traffic). Then, the generated

data is used in supervised learning algorithms to train the intrusion detection models. To

improve the detection accuracy, most researchers employ hyper-parameters tuning or implement

various learning algorithms [Khan, Abbas, Rehman, Saeed, Zeb, Uddin, Nasser & Ali (2020);

Siniosoglou, Radoglou-Grammatikis, Efstathopoulos, Fouliras & Sarigiannidis (2021)]. For

example, Anthi et al. [Anthi et al. (2019)] proposed a three-layered IDS that works with

a supervised ML approach to detect a range of popular network-based cyber-attacks on IoT

networks. The first layer classifies the type and profiles the normal behavior of each IoT device.

The second layer identifies malicious packets on the network during the attack. The third layer

classifies the type of the attack. The designed system was evaluated within a realistic smart

home testbed consisting of 8 popular commercially available IoT devices. The effectiveness of

the proposed IDS architecture was evaluated against 12 popular attacks.

The main shortcoming of supervised learning is the need for a large number of labelled samples,

which requires important efforts from domain experts. To address this issue, semi-supervised

and unsupervised learning approaches for IDS are prioritized by the research community

[Abdel-Basset, Hawash, Chakrabortty & Ryan (2021); Cheng, Xu, Zhong & Liu (2019);

Heartfield, Loukas, Bezemskĳ & Panaousis (2021); Ibrahim, Basheer & Mahmod (2013)]. For

example, Ibrahim et al. [Ibrahim et al. (2013)] employed an unsupervised learning method

(Self-Organization Map Artificial Neural Network) to classify the system’s input data into normal

and abnormal/intrusive instances. Ferdowsi and Saad [Ferdowsi & Saad (2019)] proposed a

distributed and privacy-preserving IDS for IoT using a Generative Adversarial Network (GAN).

In the considered system model, an intrusion is defined as any activity that causes an IoT device

to send data points (packet payload) that do not follow its normal data distribution. They showed
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analytically that the proposed distributed GAN provides a higher accuracy, higher precision, and

lower false-positive rate.

New techniques, including reinforcement learning, were also proposed in the literature

[Apruzzese, Andreolini, Marchetti, Venturi & Colajanni (2020); Heartfield et al. (2021);

Khan et al. (2020); Otoum, Kantarci & Mouftah (2019)]. For example, Heartfield et al.

[Heartfield et al. (2021)] proposed a self-configurable IDS that can autonomously adjust the

decision function of the anomaly classification models to a smart home’s changing conditions

(e.g., new devices, new automation rules, and user’s interactions with them). To realize

that, the authors employed reinforcement learning on the unsupervised learning methods and

model selection based on human presence inferences. Specifically, they applied a probabilistic

cluster-based reward mechanism on a non-stationary multi-armed bandit reinforcement learning.

The detection model takes cyber and physical sources of data into account. The cyber sources

include communication and computation features, such as the frame and packet type, size, IP

addresses, and ports; packet time to live (TTL), the mean and standard deviation, the min and

max of the sample frequency; content type, size, length, latency, and flow direction. Meanwhile,

the physical sources include the audio and radio-frequency signal strength. Khan et al. [Khan

et al. (2020)] proposed a lightweight intrusion identification and prediction scheme for smart

home networks using blockchain and a Deep Extreme Learning Machine (DELM) model. In

this approach, the data collected from the smart home are first organized in a blockchain to

minimize information-related problems such as data repetition, incomplete data values, defects,

and noise. Then, the DELM models analyze each chain fragment to spot intrusions and attack

patterns. Simulation results showed that the overhead created by the proposed method in

terms of distribution, processing time, and energy consumption is marginal compared to the

protection and privacy benefits. The proposed method was evaluated using the NSL-KDD

and KDD-CUP-99 datasets, where performance improvements were demonstrated compared to

Artificial neural network (ANN), Support vector machine (SVM), and Decision tree models.

Regarding the features used in the datasets for training the detection methods, no study has shown

that there is a category of features that always offers the best detection accuracy. Therefore,
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there is a wide variety of features used in the literature. For example, Jokar and Leung

[Jokar & Leung (2016)] presented an IDPS for ZigBee-based home area networks in smart grids,

which used six features from the network traffic, including the datagram, the traffic rate, the

Received Signal Strength (RSS), the sequence number, the Packet Error Rate (PER), and the

node availability. Nobakht et al. [Nobakht et al. (2016)] proposed an intrusion detection and

mitigation framework, called IoT-IDM, to provide network-level protection for smart devices

deployed in home environments. The detection module employed a logistic regression model, and

the experiment was performed on a realistic Software-Defined Networking (SDN) architecture.

In the feature extractor module, the authors mentioned the possibility of using packet-based

features, including the source or destination Internet Protocol (IP) addresses, the transport layer

protocol type, e.g., Transmission Control Protocol (TCP) or User Datagram Protocol (UDP), the

source or destination ports, and the network service. They also mentioned the possibility of

using flow-based features, including the duration, the source and destination bytes, the mean fit,

and the mean bit. However, in this framework, it is up to the users of IoT-IDM to study and

select the appropriate features according to the problem.

2.1.2 Motivation

Most of the innovative works on IDSs include implementing ML methods and demonstrating the

efficiency of such approaches. Yet, the proposed solutions require many essential improvements.

The fundamental point that we consider in this work is identifying and evaluating the quality of

the detection features. To increase the detection accuracy, most of the works in the literature

only focus on improving the ML algorithms and do not consider improving the quality of

the features used in the dataset. These works use different detection features; however, most

papers do not discuss how the proposed detection features are chosen, why each feature is

relevant, what type of attacks each feature helps to detect, or why other types of features are not

considered in the dataset. Most of the available works just explore a limited subset of features

[Anthi et al. (2019); Belenko, Chernenko, Kalinin & Krundyshev (2018); Ferdowsi & Saad

(2019); Heartfield et al. (2021); Illy, Kaddoum, Miranda Moreira, Kaur & Garg (2019); Khan
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et al. (2020); Nobakht et al. (2016); Shende & Thorat (2020)]. For example, in [Anthi et al.

(2019)], the authors extracted the totality of the packet header information and performed a

dimensionality reduction, concluding that the Internet Protocol (IP) and Transmission Control

Protocol (TCP) flags were the most important features. Such an approach provides the best

features among packet header features but misses other relevant intrusion detection features,

such as content features, time-based and connection-based traffic features, and wireless features.

In their experimentation, the high accuracy of the classifier can be explained by the fact that

the deployed attacks were not sophisticated. In [Ferdowsi & Saad (2019)], Ferdowsi and Saad

considered only the packet payload and detected only the intrusions that cause an IoT device

to send data points (packet payload) that do not follow its normal data distribution. Besides

that, these works assisted to detect all the malicious behaviors by investigating the packets

separately, i.e., without analyzing the traffic sequences where they are involved [Anthi et al.

(2019); Ferdowsi & Saad (2019)]. Such a limited feature set may not be efficient in detecting

some DoS, scanning, probing, and wireless attacks such as jamming. Instead of using only single

packet features, in [Jokar & Leung (2016)] network traffic features were added, i.e., features

computed by considering the sequences of packets. Overall, the authors used six features,

including the datagram, the traffic rate, the Received Signal Strength (RSS), the sequence number,

the Packet Error Rate (PER), and the node availability. These traffic features (traffic rate, PER)

and wireless communication features (RSS) can enforce detection ability. Unfortunately, this

paper did not emphasize on analysis to explore more potential features. Another example is the

work presented in [Nobakht et al. (2016)]. This paper studied only the specific attacks related to

the considered IoT device (hue bulb light) vulnerabilities, without any consideration for other

attacks on the smart home network. In the experimental phase, the authors proposed only three

detection features, selected heuristically based on the behavior of the Hue bulb light as well as

the attack model.

Although it was instructive, the previous works also lack intrusion prevention measures and IDPS

deployment architectures. Many of these works focus only on detecting the attacks and do not

investigate the reaction mechanisms after attack detection [Anthi et al. (2019); Ferdowsi & Saad
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(2019); Khan et al. (2020); Yamauchi, Ohsita, Murata, Ueda & Kato (2020)]. Moreover, the

majority of these works propose a detection model but do not shed light on the process of

deployment of the model within the home network architecture [Ferdowsi & Saad (2019); Khan

et al. (2020); Yamauchi et al. (2020)].

2.1.3 Contributions

To overcome the limitations of the current research works, we investigate the properties and

nature of smart home security attacks and the quality of features that will be analyzed and

employed in ML algorithms to detect each attack efficiently. Moreover, this research also

investigates efficient intrusion prevention mechanisms to automatically react and secure the

network against any illegal intrusion attempt. Last but not least, a comprehensive SDN-based

deployment architecture of the IDPSs within the home network is proposed. Experimental

evaluation of the proposed solution is provided using different feature sets, datasets, and ML

models. The contributions of this work are listed below.

- First, based on the characteristics of the attacks that may compromise IoT network’s security,

this work proposes different features that can be pulled out from the smart home network and

used in ML methods to improve the accuracy.

- Second, for every attack that may be detected by the smart home IDS, this work introduces

different methods and measures to efficiently react and reduce eventual damages.

- Third, this paper proposes a SDN-based deployment architecture of the IDPSs in home

networks for effective home security enforcement.

- Finally, the experimental evaluation demonstrates the impact of the proposed detection

features on the performance of the ML models.
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2.1.4 Organization

The rest of the paper is organized as follows. Section II introduced the studied smart home

attacks and the detection features. Section III presents the proposed prevention measures and

the deployment architecture. Section IV presents the experimental evaluation of the proposed

features on different ML methods and analyzes the obtained results. Finally, Section V contains

the conclusion of this work.

2.2 Smart Home Attacks and Detection Features

The first and foremost challenging part of every ML solution is selecting the correct feature set

with the highest accuracy. In some applications, it is easier to take all the available features

(the initial feature set) and directly apply dimensionality reduction methods to keep the best

features (the final feature set). For example, in image processing, it is possible to consider all the

image’s pixels and avoid the difficult task of studying and selecting relevant features. However,

in more complex applications, such as intrusion detection in IoT networks, the initial feature set

is not that direct and easy because of the multiplicity and diversity of aspects that constitute

the system (physical components, functional organization, configuration, operational principles,

procedures, communication protocols, network workload, power consumption, etc.). Therefore,

it is necessary to study and select an initial set of relevant features before using dimensionality

reduction methods. Such an approach is difficult but convenient since it can clearly explain the

necessity of each chosen feature.

In the intrusion detection application domain, the choice of the features to be considered in the

ML models substantially depends on the behavior of the attacks and the computer network’s

characteristics. Therefore, this section first presents the proposed detection features according

to the behavior of smart home attacks. Algorithm 4.2 illustrates the methodology adopted for

feature selection.
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Algorithm 2.1 Feature selection method

Result: Final detection feature set (Fd_Features)

1 Input 1 : Smart home attacks (Sh_Attacks);

2 Input 2 : Smart home network features (Sh_Features);

3 Variable : All selected features (AS_Features) ;

4 while 𝑎𝑡𝑡𝑎𝑐𝑘𝑥 in Sh_Attacks do
5 if 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑦 in Sh_Features is affected by 𝑎𝑡𝑡𝑎𝑐𝑘𝑥 then
6 AS_Features = Add (AS_Features, 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑦) ;

7 end
8 end
9 AS_Features = Eliminate_redundant(AS_Features) ;

10 Fd_Features = Eliminate_correlated(AS_Features) ;

2.2.1 Smart Home Attacks

IoT devices are vulnerable to a wide range of attacks, including DoS, eavesdropping, Remote to

Local (R2L), User to Root (U2R), and spoofing attacks. Most of these attacks usually start with

a reconnaissance attack.

2.2.1.1 Reconnaissance Attack

The objective is to identify the vulnerabilities in the network. For that, the attacker starts by

network scanning operations to discover the network equipment and their IP addresses. Network

scanning can be performed using some pings on a range of IP addresses to detect the hosts

currently responding on the network. This operation can be realized using a ping sweep utility

which identifies viable targets on the network. Once the IP addresses of the viable hosts are

known, the attacker begins probing on those hosts to discover the open ports. The network

probing can be performed using hacking tools freely available online. After discovering the

open ports, the attacker can then figure out the Operating System (OS), the applications, and the

services running on the hosts. This is possible since most common applications use well-defined

port numbers. Finally, with all the information gathered, the attacker can exploit some known

vulnerabilities of the OSs and applications to orchestrate future attacks such as DoS or R2L.
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2.2.1.2 Denial of Service Attack

The objective is to deny or delay the user’s access to resources (services, devices, networks).

For that, the attacker can send a lot of useless requests to the targeted system. He can employ

multiple attacking devices to perform a Distributed DoS (DDoS) [Mirkovic & Reiher (2004)],

which is more effective and harder to detect. This can overload the system communication

bandwidth, the processing resources, and the memory. In such a condition, the legitimate users’

requests are delayed or completely dropped. The attacker can also use a radio frequency jammer

to compromise the wireless communication channel. Jamming attacks are relatively easy to carry

out. Jamming equipment for different frequencies can easily be acquired, and such attack does

not require any authentication. The attacker can also launch de-authentication attacks against

the wireless devices. For that, he performs a scanning and gets the Basic Service Set Identifiers

(BSSIDs) of all the wireless access points in the neighborhood. Then, for every BSSID, the

attacker can detect all the devices connected to it. Finally, the attacker selects the devices to jam

and sends de-authentication packets to constantly disconnect them from the network.

2.2.1.3 Eavesdropping Attacks

Since wireless transmissions are, for the most part, broadcast in nature, they are extremely

vulnerable to eavesdropping attacks. The objective of this attack is to intercept the information

exchanged in the network. For that, the attacker employs a device equipped with a wireless

network adapter working on promiscuous mode and an eavesdropping software. The attack

starts with a scanning operation to detect the available wireless access points. Then, the attacker

targets a specific access point and intercepts the packets. Finally, the attacker extracts the

information that have no encryption or weak encryptions from all the packets. For example,

in WiFi networks secured using Wired Equivalent Privacy (WEP) instead of the new WiFi

Protected Access (WPA), the communication can be eavesdropped by an attacker who knows the

password of the wireless gateway. This attack can be performed using free software available

online, such as CommView for WiFi, Hitchhiker, Aircrack-ng, and Wireshark.
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2.2.1.4 Unauthorized User Access

This attack can be a Remote to Local attack (R2L) or a User to Root attack (U2R). The objective

of R2L attacks is to access the network from a malicious remote station and gain the same

privileges as a legitimate user. Regarding the shared nature of the wireless medium, a malicious

user from any location in the distance range of the wireless access point coverage may access the

communication channel. Most of the time, the only security mechanism in place is authentication

using a password. Social engineering or extra knowledge detained by the illegitimate user can

provide him the password. According to the latest top 10 highest security issues released by the

Open Web Application Security Project (OWASP), weak and guessable passwords are the first

security vulnerability [OWASP IoT Security Team, 2018 (2019)]. For strong passwords, the

malicious user can employ packet sniffing tools or brute force attacks to get the password. In

home IoT networks, when attackers gain remote access to victims’ networks, they can imitate

existing local users, i.e., connect to IoT applications where private device data are displayed, and

send user commands to the IoT devices (e.g., open doors, shutdown lights, turn off cameras, etc.).

The intruders can also escalate the attacks to a U2R via stolen credentials or Rootkits. In U2R

attacks, the intruders try to obtain privileges normally reserved to the network administrator.

With such privileges, the intruders can take full control of the network. In home IoT networks,

when attackers gain administrator access, they can disconnect IoT devices from the servers,

uninstall IoT applications, inject false data or delete information in the databases, and install

malware. Even though R2L and U2R are rare compared to scanning, probing and DoS, these

occasional attacks may compromise the entire smart home network.

2.2.1.5 Spoofing Attacks

The attackers often perform spoofing (also known as node forgery or impersonation) before

launching any other malicious action. The objective of spoofing is to hide the intruder’s identity,

especially its IP address, such that the source of the attacks cannot be detected. For that, the

attacker starts by identifying the trusted IP addresses of the targeted system. He then modifies his

IP packets header and replaces the real IP address with a forged (spoofed) source IP address to
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impersonate a trusted device. Finally, the attacker sends the malicious packets, and the targeted

system sees them as originating from a trusted device. Systems implementing IP address-based

authentication are easily compromised. Moreover, systems employing packets filtering to thwart

DoS can be easily deceived by IP spoofing as packets with spoofed IP addresses are more difficult

to filter. Identity spoofing allows the attacker to perform many other malicious operations,

including MITM attack. For this, more identity information, including cryptographic credentials,

are captured by the adversary and used in the impersonation.

2.2.2 Proposed Detection Features

2.2.2.1 Traffic Features

Certain types of attacks, such as reconnaissance (scanning, probing), and DoS, involve many

connections in the targeted system in a short period of time. These attacks can be detected

using traffic features, and especially time-based features. Traffic features are statistical data

computed from the traffic behavior. Time-based features are traffic features computed with

respect to a predefined interval of time. An example of a time-based feature includes the number

of connections in the past 5 seconds that have the same destination host as the current connection.

Five seconds is the predefined time interval. Since time-based features are efficient in detecting

scanning and probing, some attackers use a much larger time interval than the predefined time

set for the IDS, e.g., one connection in every 10 seconds. In this context, the attacks will be less

suspicious. This limitation can be addressed by employing additional traffic features, especially

connection-based features, which are computed based on a window with a predefined number of

connections. An example of connection-based features would be the number of connections

in the past 50 connections that have the same destination host as the current connection. In

this example, 50 connections are the connection window interval. Table 2.2 presents some

traffic features used in the NSL-KDD [KDDCUP (1999); Stolfo, Fan, Lee, Prodromidis & Chan

(2000); Tavallaee, Bagheri, Lu & Ghorbani (2009)] datasets.
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Table 2.2 Examples of traffic features used in NSL-KDD dataset

Feature Description

count
Number of connections to the same host as the current

connection in the past 2 seconds

The following features refer to these same-host connections

serror_rate % of connections that have “SYN” errors

rerror_rate % of connections that have “REJ” errors

same_srv_rate % of connections to the same service

diff_srv_rate % of connections to different services

srv_count
Number of connections to the same service as the current

connection in the past 2 seconds

The following features refer to these same-service connections

srv_serror_rate % of connections that have “SYN” errors

srv_rerror_rate % of connections that have “REJ” errors

srv_diff_host_rate % of connections to different hosts

2.2.2.2 Packet Header Features

The packet header features are the fields that compose each networking layer (Physical, Data Link,

Network, Transport, and Application). Examples of fields include the source and destination

IP addresses, TCP source and destination port numbers, network service, IP and TCP flags,

packet and frame length. Most intrusive activities, including port scanning, probing, SYN flood,

MITM, IP fragmentation attacks, indicate unusual values in the packet header. For example,

scanning and DoS mostly use modified TCP flag, invalid or improper settings. Moreover, specific

TCP flag responses such as TCP SYN check and TCP SEQ check can indicate a MITM attack.

Therefore, these attacks can be detected using packet header features [Anthi et al. (2019)]. For

example, Internet Control Message Protocol (ICMP) code options, namely fragment protection

and packet protection, can be used to identify a DoS attack, whereas the IP flags can detect UDP,

ICMP, and TCP fragmentation attacks. The TCP destination port can indicate a port scanning.

The packet length is also an indicator of malicious behavior, especially when it is significantly

larger or smaller than usual. Table 2.3 presents some packet header features used in the Anthi

2019 IoT dataset [Anthi et al. (2019)].
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Table 2.3 Examples of packet header features used in Anthi

2019 IoT dataset

IP header TCP header Other
ip.flags tcp.dstport caplen

ip.flags.df tcp.flags.ack frame.cap_len

ip.flags.mf tcp.flags.push frame.len

ip.frag_offset tcp.flags.syn len

ip.ttl tcp.stream icmp.code

2.2.2.3 Content Features

Unlike scanning, probing, and DoS attacks, unauthorized user access attacks, such as R2L

and U2R, sometimes involve only a few connections. Therefore, intrusion detection models

built on traffic features only struggle to detect such attacks. To detect these attacks, content

features are a reliable option. Content features are data embedded in the packet contents that

can indicate suspicious behaviors. An example of a content feature is the number of failed

login attempts. To extract these features, the data portions of the packets must be inspected.

This presents many challenges. The first major issue is the system’s scalability since billions

of candidate content features are present in the payloads. This requires big data techniques

to handle this overwhelming amount of data [Abusitta, Bellaiche, Dagenais & Halabi (2019);

Zhong, Yu & Ai (2020)]. This approach also suffers from encryption or payload obfuscation

(achieved by polymorphism and metamorphism). To utilize these features, the application data

needs to be reassembled, and domain knowledge can be essential. In end-to-end encrypted

communications, the packet payload can only be decrypted on the communicating hosts and not

in the network. This requires measurements at all hosts in the network [Iglesias & Zseby (2015)].

Moreover, network packet payload analysis is an active research area, and many solutions have

been proposed [Wang, Zhu, Wang, Zeng & Yang (2017); Xu, Chen, Su, Yiu & Hui (2016)].

Table 2.4 presents some content features used in the NSL-KDD datasets [KDDCUP (1999);

Stolfo et al. (2000); Tavallaee et al. (2009)].
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Table 2.4 Examples of content features used in NSL-KDD dataset

Feature Description
hot number of “hot indicators”

num_failed_logins number of failed login attempts

logged_in 1 - successfully logged in; 0 - otherwise

num_compromised number of “compromised” conditions

root_shell 1 - root shell is obtained; 0 - otherwise

su_attempted 1 - “su root” command attempted; 0 - otherwise

num_root number of “root” accesses

num_file_creations number file creation operations

num_shells number of shell prompts

num_access_file number of operations on access control file

num_outbound_cmds number of outbound commands in a ftp session

is_hot_login 1 - the login belongs to the “hot” list; 0 - otherwise

is_guest_login 1 - the login is a “guest”login; 0 - otherwise

2.2.2.4 Wireless Communication Features

Wireless attacks can be performed at any distance within the wireless communication coverage.

In these attacks, the attacker’s device is likely to be positioned at an unusual distance within the

network. For example, in home networks, an illegitimate user may need to attack from outside

the house perimeter. In wireless communication, the transmitter’s distance can be estimated

using the Received Signal Strength (RSS). Therefore, for active wireless attacks such as jamming,

de-authentication, spoofing, and contaminating, the radio transmitter’s distance can be computed

and used as a detection feature, especially in static networks like smart homes. However, only

employing the distance will not detect the attacks that are performed from a usual distance.

Moreover, the locations of legitimate devices can eventually be changed, causing a disturbance

of false positives.

This limitation can be mitigated by employing additional wireless communication features,

especially radio-frequency fingerprints. Radio-frequency fingerprinting is the process that

identifies a radio transmitter by its unique signal transmission characteristics, named as

fingerprint, determined by unique circuit characteristic. These circuit characteristics, which

are measurable, aggregate the differences introduced during transmitter manufacturing [Tian,
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Lin, Guo, Wen, Fang, Rodriguez & Mumtaz (2019)]. The radio-frequency fingerprint can be

extracted and used in wireless networks as a feature to detect wireless attacks, especially identity

spoofing and cloning attacks. A cloned device will have the same numeric equipment identity,

may be in a usual distance inside the network, but will have a different radio fingerprint.

Nevertheless, this feature also has some limitations as the recognition rate depends on the

Signal to Noise Ratio (SNR). For example, in the simulation results shown in [Tian et al.

(2019)], for a 5dB SNR, the recognition rate can be lower than 90%. Moreover, the use of

radio-frequency fingerprinting alone cannot detect a compromised device, i.e., a legitimate

node that is controlled by a malware. More features can be considered, including the energy

profile and the cyclostationary behavior of the network. Table 4.4 recapitulates all the proposed

detection features.

Table 2.5 Proposed detection features

Attacks Detection features

Scanning, Probing, DoS
Traffic features (Time-based and Connection-based

features), Packet header features

U2R, R2L Content features, Packet header features

Wireless network at-

tacks: Jamming, De-

authentication, Spoof-

ing, Contamination

Distance of the radio transmitter, Radio-frequency

fingerprint, Received Signal Strength (RSS), Signal

to Noise Ratio (SNR), energy profile, Packet header

features

Taken alone, none of the detection features is sufficient to efficiently detect all the threats. These

features are not self-sufficient but rather dependant and complementary. They must be combined

and used in the training of the ML models. Many ML algorithms have demonstrated excellent

capabilities in building accurate models. This includes basic ML, Deep Learning (DL), and

ensemble methods. There is no specific learning algorithm that always induces the most accurate

learner. Therefore, it is necessary to try different ML methods and deploy the one that produces

the best detection model. This approach results in a more advanced intrusion detection model

for IoT networks in general and especially for smart home networks. An IDS built from such

an approach will be able to detect zero-day attacks. For example, the connection-based and



75

time-based features used in the training process can help the detection model recognize zero-day

DoS attacks. Likewise, the employed radio-frequency fingerprinting features can enable the

detection of zero-day spoofing attacks.

2.3 Proposed Prevention Measures and Deployment Architecture

This section illustrates the prevention measures to take when an attack is detected and the

proposed deployment architecture of the IDPSs in home networks.

2.3.1 Proposed Prevention Measures

The Intrusion Prevention System (IPS) function is to take defensive measures when the IDS

detects an attack. These measures are the set of actions that are capable of stopping or mitigating

the intrusion. Some preventive measures are implemented in the IPS to automatically launch

the required defensive operations once an attack is detected. This significantly reduces the

latency in aborting attacks and the eventual damages as compared to send an alert and then

wait for human intervention. However, using an IPS does not exclude the implementation of

an alert system. The IPS can focus on urgent and temporary defensive measures, and the alert

can be sent to the security administrator in order to apply complementary and more precise

prevention mechanisms. The primary prevention measure is to drop the malicious packets and

block the attacker’s IP and MAC addresses. This can eliminate attacks, including R2L and U2R.

It can also reduce scanning, probing, and DoS attacks [Tian, Ji, Liu, Liu, Zhai, Dai & Huang

(2020)]. The intruder connection can also be redirected to a Honeypot to study the behavior of

the attacker. This prevention measure can easily be implemented in SDN based network.

For jamming attacks, the intended damages can be alleviated by migrating the communication

to a different frequency band [Navda, Bohra, Ganguly & Rubenstein (2007)]. For that, Dynamic

Channel Selection (DCS) can be employed. The DCS allows the wireless access point to monitor

the noise levels on the channel on which the access point is currently operating. When the noise

levels exceed the predefined DCS thresholds, the wireless access point ceases operating on the
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current channel. It employs Auto Channel Selection (ACS) to select an alternate channel to

operate on. Another measure to prevent jamming attacks consists of increasing the robustness

of the legitimate signal to restore a secured wireless communication [Pelechrinis, Broustis,

Krishnamurthy & Gkantsidis (2011)]. Furthermore, position location technologies can be

employed to track down the offending station and remove it. Such technologies can be used

against all active wireless attacks, including jamming, contamination, and spoofing attacks.

Some WiFi equipment manufacturers have already added similar technologies to their products

[Aldosari, Zohdy & Olawoyin (2019); Wang, Liang, Wei & Fan (2018)].

2.3.2 Proposed Deployment Architecture

This research work adopts SDN and Network Functions Virtualization (NFV) architectures to

provide an effective implementation of the IDPS in home IoT networks. Figure 2.1 illustrates the

proposed SDN-driven home IoT network architecture. In this architecture, the IoT devices are

vendor-neutral and use different wireless communication protocols, including WiFi, ZigBee, and

Z-waves. Some IoT devices may not support an agent deployment due to resource constraints

or proprietary firmware constraints. The wireless access points provide different wireless

communication protocols. The wireless gateways are connected to the home router via wired

communication (ethernet). The home router supports SDN data-plane functionalities. The SDN

controller, the network, and the security applications(IDS and IPS) are deployed in a local server.

The IoT applications are deployed on the user devices (smartphone, tablet, laptop), the local

server, or cloud servers.

2.4 Experimentation

This section presents the experimentation and analyzes the results obtained. The goal of the

experiment is to evaluate the impact of each feature set (packet header, content, traffic, and

wireless features) on the performance of the ML models. However, there is no existing dataset

that contains all the studied features and all the studied attacks. Every dataset contains only a
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Figure 2.1 The proposed home IoT network architecture

subset of the presented features and attacks. Thus, we chose two different datasets to perform

this experimentation.

The first dataset, presented in [Anthi et al. (2019)], is built from a realistic smart home testbed

consisting of 8 popular commercially available IoT devices, connected to an access point via

WiFi and Ethernet communications, and a laptop to record the network traffic. The dataset

contains 3 weeks worth of benign data and 2 weeks of malicious data collected from the access

point using the tcpdump tool. The malicious data was generated by performing 12 popular

attacks against this smart home testbed. The attacks were classified into 4 categories, namely

scanning, DoS, iot-toolkit, and MITM. After data cleaning and dimensionality reduction, the

dataset is composed of 220786 packets, each represented by 10 features, as shown in Table 2.3.

The second selected dataset is NSL-KDD, which is the most complete and realistic dataset

available. NSL-KDD includes a total of 39 specific attacks grouped into 4 different attack

categories, namely, probing (Probe), R2L, DoS, and U2R. Table 2.6 presents the attacks that

were involved in this dataset. The training dataset (KDDTrain+) and testing dataset (KDDTest+)

contain 125973 and 22544 number of single connection vectors, respectively. Each connection

vector is represented by 41 features and labelled as either normal or attack, with exactly one
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specific attack type. The features involve 9 intrinsic features (packet header features), 19

time-based and connection-based traffic features, and 13 content features. Table 2.2, Table 2.4,

and Table 2.7 present these features.

Table 2.6 Attacks involved in the NSL-KDD dataset

Attack Type Attacks
Probe Ipsweep, nmap, portsweep, satan, saint, mscan

DoS
Back, land, Neptune, pod, smurf, teardrop, mailbomb, udpstorm,

apache2, processtable

R2L

ftp_write, guess_passwd, imap, multihop, phf, spy, warezclient,

warezmaster, named, snmpguess, worm, snmpgetattack, xsnoop,

xlock, sendmail

U2R
buffer_overflow, loadmodule, perl, rootkit, xterm, ps, sqlattack,

httptunnel

Table 2.7 Intrinsic features used in NSL-KDD dataset

Feature Description
duration Length (number of seconds) of the connection

protocol_type Type of the protocol, e.g., tcp, udp, etc.

service Network service on the destination, e.g., http, telnet, etc.

src_bytes Number of data bytes from source to destination

dst_bytes Number of data bytes from destination to source

flag Normal or error status of the connection

land 1 - connection is from/to the same host/port; 0 - otherwise

wrong_fragment Number of “wrong” fragments

urgent Number of urgent packets

This experiment employs six different ML algorithms to build detection models. These algorithms

include basic methods as well as ensemble methods. The basic methods include Decision Tree

(DT) and K-Nearest Neighbour (KNN) classifiers. The ensemble methods include Random

Forest (RF), Bagging, AdaBoost, and Voting Classifiers. The goal here is not to compare the

performance of different ML methods but to analyze their performance on different feature sets.

The implementation is performed using the Python programming language and Scikit-learn(free

ML library).
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The experiment is divided into two phases. The first phase employs the two datasets to analyze

the impact of the employed features. Therefore, we build the detection models, first on the smart

home dataset, which contains only packet header features, then on the NSL-KDD dataset using

only the packet header features, and finally on the NSL-KDD dataset using all the features.

Figure 2.2 and Figure 2.3 present the accuracy scores of the detection models employed on the

smart home and NSL KDD datasets, respectively.

Figure 2.2 Prediction accuracy using the smart home dataset

The results of the experiment on the smart home dataset (Figure 2.2) show that the packet header

features single-handedly can achieve a detection accuracy of more than 98% . In contrast, with

the NSL-KDD dataset (Figure 2.3), the results show that the models built only from packet

header features show lower accuracy than those built with all the features. The high accuracy

with the smart home dataset can be explained by the fact that, in this dataset, the attacks involved

were not sophisticated and do not represent realistic detection challenges. However, in the second

dataset, the attacks involved were complex, and their detection required advanced detection

features. This demonstrates that using only the packet header features is not enough to build

accurate intrusion detection models. Therefore, to build more robust intrusion detection models,

more features, such as content features, time-based, and connection-based traffic features are

necessary.
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Figure 2.3 Prediction accuracy using the NSL-KDD dataset

In the second phase of the experiment, the impact of traffic and content features on the detection

of various attacks is demonstrated. This phase is divided into two parts. The first part focuses on

the detection of R2L and U2R attacks. Where, we build two different models for each algorithm,

one exploiting traffic features and the other exploiting content features. Table 2.8 presents the

accuracy of each model. In these results, according to content features, the best model achieves

an accuracy of 80.26%, while the accuracy of the best model from traffic features is only 76.47%.

Moreover, for each ML method, the model built from content features provides better accuracy.

This demonstrates that to detect R2L, U2R, and similar attacks, content features are more

effective than traffic features. Therefore, we have added content features to the packet header

features and reconstructed all the models. Figure 2.4 presents the accuracy of the resulting

models.

Now the best model achieves an accuracy of 85.21% instead of 80.26%. The performance has

been significantly improved by providing new essential features to the same ML algorithms.

These results confirm that to detect U2R and R2L attacks, the accuracy of the detection

models can be improved by adding appropriate content features to the smart home dataset as
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Table 2.8 Detection of R2L and U2R attacks using traffic

and content features

ML-Methods R2L & U2R
Traffic feature Content features

Decision Tree 75.74 % 76.84 %

KNN 76.47 % 76.74 %

Random Forest 74.68 % 76.88 %

Bagging 75.51 % 77.03 %

AdaBoost 75.44 % 80.26 %

Voting 75.52 % 76.84 %

Best 76.47 % 80.26 %

Figure 2.4 R2L and U2R prediction accuracy using packet header

features and content features

complementary features. The model’s performance can be further improved by employing

complete features set, as proposed in this research paper.

The second part of the experimentation focuses on the detection of DoS and probe attacks. Once

more, the same ML algorithms are employed to build detection models. For each algorithm, we
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developed two different models, one is exploiting traffic features and the other exploiting content

features. Table 2.9 presents the accuracy of each model.

Table 2.9 Detection of probe and DoS attacks using traffic

and content features

ML-Methods Probe & DoS
Traffic feature Content features

Decision Tree 79.51 % 71.38 %

KNN 80.35 % 72.78 %

Random Forest 81.29 % 71.38 %

Bagging 82.59 % 71.38 %

AdaBoost 82.58 % 72.89 %

Voting 80.63 % 73.33 %

Best 82.59 % 73.33 %

For Probe and DoS attacks, for traffic features, the best model achieves an accuracy of 82.59%,

while the accuracy of the best model from content features is only 73.33%. This significant

difference in performance can also be noticed for each ML method. The models built from

traffic features provide higher detection accuracy than the models built from content features.

This demonstrates that to detect probing, DoS, and similar type of attacks, traffic features are

more effective than content features. Therefore, we added the traffic features to the packet header

features and reconstructed all the models. Figure 2.5 presents the accuracy of the resulting

models, where the best model achieves an accuracy of 87.78%. A significant improvement in

performance is observed by providing new essential features to the same ML algorithms. These

results confirm that, by adding traffic features to smart home dataset as complementary features,

their performance against Probe and DoS attacks can be enhanced. The model’s performance

can be further improved by employing a more exhaustive feature set, as proposed in this work.

This experiment demonstrates that selecting a more adequate feature set provides more efficient

detection models. It showed that the completeness of the dataset determines the precision of the

detection model and its ability to identify attacks. Therefore, the performance of the detection

model can be improved, not only with new ML methods but, importantly, with better detection
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Figure 2.5 Probe and DoS Prediction accuracy using packet header

features and traffic features

features. However, trying to detect attacks that are not explicitly studied when extracting the

features will result in decrements in the performance of the detection model.

2.5 Conclusion

Cyber-attacks constitute major threats to smart homes’ security and privacy. To address this

concern, ML and SDN-based IDPSs are emerging as promising technologies. This paper

identified various features that can improve the performance of ML-based IDSs. Specifically,

in addition to the packet headers, time-based and connection-based traffic features have been

proposed against scanning, probing, and DoS attacks. Then, different content features have

been proposed to enhance the detection of unauthorized user access, such as U2R and R2L.

Furthermore, to detect attacks that exploit the wireless communication channel, such as jamming,

de-authentication, spoofing, and contamination attacks, more features are discussed, including

the distance from the radio transmitter, radio-frequency fingerprint, received signal strength,

signal to noise ratio, and the system’s energy profile. This contribution can be a fundamental

guideline for research projects interested in building datasets for ML-based IDS for IoT networks.
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It provided an in-depth analysis of several features that can be added to the dataset to detect

attacks, including well-known attacks and zero-day attacks. Moreover, various prevention

measures that can be implemented in the IPS to defend the smart home network against attacks

are proposed. Finally, we presented a SDN-based deployment architecture of the IDPS in the

home network. This deployment architecture presents the process to optimally deploy a real-time

IDPS in a smart home network. The experimentation conducted in this paper has demonstrated

the predominant role of the detection feature set on the ML models’ performance. The results

showed that the accuracy of the detection model depends more on the feature sets than the ML

methods. For future work, implementing SDN-driven collaborative IDPSs for mission-critical

IoT networks like smart factories is envisioned.
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3.1 Introduction

Industrial control systems (ICSs) have entered a new era of modernization enabled by the

internet of things (IoT). Traditional stand-alone ICSs, which used to be isolated from information

technology (IT) networks, are being transformed into smart ICSs that enable high-level process

supervisory management using information and communication technology (ICT). Connected

sensors, actuators, and IoT devices make it possible to easily monitor and control manufacturing

equipment (pumps, valves, compressors, tanks, etc.) and manufacturing conditions (air quality,

humidity, temperature, etc.) remotely using computers, tablets, or smartphones. However, a

factory’s industrial internet of things (IIoT) introduces significant security problems into the

factory network because of the security vulnerabilities of IoT devices and software that hackers

can exploit to carry out malicious activities.

In highly sensitive industrial facilities that require absolute security, safety, and privacy to

manipulate dangerous chemicals and machinery, a successful cyber-attack could have major

consequences, including worker injury or death, long-term environmental impacts, and substantial

economic losses. For example, in May 2021, in the United States of America (USA), a ransomware

attack was able to take control of Colonial Pipeline Inc.’s ICS, causing the facility to shut down

its 5,500-mile natural gas pipeline for five days and resulting in more than 10,000 gas stations

being out of fuel. The company had to pay a $4.4 million ransom to restore control of its system
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[Alvee, Ahn, Kim, Su, Youn & Ryu (2021)]. These attacks could become constant threats and

effective cyber-terrorism tactics. Therefore, in critical industrial domains, such as electric utility

companies, fuel facilities (oil refineries, gas pipelines), and other dangerous-chemical plants, it

is imperative to implement advanced security solutions that prioritize security over any other

productivity factor.

A variety of security and safety approaches are implemented to protect these environments

[Fan, Fan, Wang & Zhou (2015); Stoessel (2021)]. One such approach is intrusion detection

systems (IDSs), which focus on identifying malicious attempts (successful or unsuccessful) to

penetrate a network. Existing intrusion detection methods include specification, signature, and

anomaly based detections, with the most commonly implemented techniques being the shallow

machine learning and deep learning models. However, each of these methods has some inherent

limitations that need to be addressed [Wang & Jones (2017)].

Signature-based detection, also known as misuse detection, relies on a signature database to

discover attacks [Kemmerer & Vigna (2002)]. The signatures are created from rules that match

the patterns of known malicious activities. Then, detection is performed by comparing the current

network traffic with all the signatures in the database. When a match is found, the corresponding

traffic is reported as an intrusion. The main advantage of signature-based detection systems

is that they typically produce fewer false positives. On the other hand, their drawback is their

inability to detect new or previously unknown attacks. A new attack goes undetected if there are

no signatures matching the pattern of the attack on the ICS. Therefore, the signature database

must be kept up to date. For every new attack discovered, a new signature must be created and

added to the signature database, which is a labour-intensive process. Furthermore, it is very

challenging to develop appropriate signatures for sophisticated attacks that are evolved from

versions of previous attacks [Kim & Aminanto (2017); Zhong et al. (2020)].

Specification-based IDSs rely on a set of predetermined specifications, such as the maximum

capacity of links, packet size, functional states and transitions, operational and protocol

constraints, and statistical rules that define a system’s legitimate behavior model [Jokar & Leung
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(2018)]. If the characteristics of an action deviate from the specifications, an alert is issued.

Since this type of approach detects deviations from normal behaviors, it can detect zero-day

attacks. However, the specification rules are manually defined by human experts and strongly

depend on the expertise of the network administrator. Manually defining such rules can be

task-intensive in large networks, which poses a scalability issue for ICSs while increasing the

likelihood of human errors, leading IDSs to produce false positives. Moreover, incomplete

specifications can cause an IDS to miss benign-looking attacks and cause false negatives, which

represent a considerable risk to ICS security. Furthermore, manually defined specifications may

not adapt to different environments and may be incompatible with some proprietary operating

systems, applications, or protocols.

Unlike the previous two methods, in which specifications and signatures must be manually

predefined, anomaly-based IDSs that employ machine learning techniques can automatically

learn from samples of malicious and benign network traffic. Nevertheless, the fundamental

challenge of this approach is designing efficient learning models that are accurate enough

to minimize the number of false alarms. Shallow learning models, which are typically built

with less than three computational layers, encounter difficulties discovering useful intrusion

patterns from an increasing number of training samples [Gupta, Tanwar, Tyagi & Kumar (2020);

Hodo, Bellekens, Hamilton, Tachtatzis & Atkinson (2017); Zhong et al. (2020)]. Therefore,

deep learning models, which are built with a large number of neural layers and produce better

results than shallow learning models in fields like computer vision, speech recognition, and

finance [Barra, Carta, Corriga, Podda & Recupero (2020); Chhikara, Singh, Tekchandani,

Kumar & Guizani (2021); Miglani & Kumar (2019); Nassif, Shahin, Attili, Azzeh & Shaalan

(2019)], have inspired many studies in the field of intrusion detection.

Although most existing solutions rely on a single deep learning model, they usually work well

only when malicious activities do not have complex patterns from multiple types of attacks

and when the number of samples that each class in the dataset is represented by is not highly

imbalanced. However, intrusive attacks are increasingly varied and sophisticated due to new

attack strategies continually being created. Each type of attack has its own characteristics,
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strategy, and data distribution. As a result, the complexity of attack classification is increasing

significantly, and the learning task is becoming more and more challenging. Moreover, only a

small number of samples exist for some types of attacks, and it is difficult for the deep learning

model to learn the patterns of these attacks [Dua & Du (2016); Zhong et al. (2020)]. In these

conditions, the single deep learning model approach may experience problems understanding

and predicting all classes with high accuracy. Even after complex hyper-parameter tuning of the

deep neural networks (DNNs), misclassifications are common.

The goal of our work is to develop an approach that learns complex patterns amid increasingly

complicated data distribution scenarios and imbalanced classes to provide more accurate

detection models that satisfy the requirements of high-risk ICSs. Therefore, we took inspiration

from boosting methods (e.g., AdaBoost) used with shallow machine learning algorithms

[Zhang & Yang (2018)], and propose a hybrid multistage DNN in which stage DNNs are built

sequentially to work on the limitations of the previous stages. The learning phase of the proposed

approach starts with a conventional DNN detection model that is trained and validated using

the learning dataset. Then, each sample that is misclassified or classified with low decision

confidence is added to a new dataset that is used to train a next stage DNN. The process is

repeated until the number of misclassified samples falls below a predefined threshold. Figure

3.1 provides an overview of this learning process. In the evaluation phase, for each sample

in the test dataset, the individual decisions of every DNN that constitute the stages are used

in combination functions to compute the multistage DNN-based IDS’s decision. The hybrid

multistage DNN is built by using a different DNN algorithm or architecture during each stage.

An experimental evaluation of the proposed approach is conducted using different datasets,

and the results confirm that it improves the detection accuracy more effectively than previous

methods. Moreover, we also propose a collaborative intrusion prevention system (IPS) with an

emergency response schema to hinder the attacks automatically and as soon as they are detected.

The schema performs anomaly detection first, which reduces ICSs’ attack response delay, then

proceeds with attack classification for security enforcement. Furthermore, this study proposes a

software-defined networking (SDN)-based architecture to deploy the IDPS in ICSs’ networks.
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Figure 3.1 Overview of the multistage DNN learning

process

3.1.1 Contributions

The main contributions of this work are listed below.

- First, with regard to the security requirements of high-risk ICSs, this study proposes a

hybrid multistage DNN model that provides higher intrusion detection accuracy than existing

solutions.

- Second, a collaborative intrusion response mechanism is proposed with an emergency

reaction mechanism to minimize attacks’ impact on ICSs.

- Third, an SDN-based architecture is proposed to deploy the IDPS in an ICS.

- Finally, an experimental evaluation is conducted using different datasets and demonstrates

the effectiveness of the proposed approach.
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3.1.2 Organization

The rest of this research paper is organized as follows. Section II presents related works and

discusses limitations. Section III presents the methodology of the hybrid multistage DNN

detection model. The collaborative intrusion response schema and the deployment architecture

are presented in Section IV. Section V presents the experimental evaluation and discusses the

results obtained. Finally, Section VI concludes this work.

3.2 Related Works

There exist several research works looking into using machine learning-based IDSs to secure

ICSs. For example, Beaver et al. [Beaver, Borges-Hink & Buckner (2013)] applied machine

learning algorithms to detect malicious remote terminal unit (RTU) communications. They used

a labelled RTU telemetry dataset from a gas pipeline system in Mississippi State University’s

Critical Infrastructure Protection Center (USA). The attack traffic generated in that dataset

included variants of command injection and data injection attacks. The authors implemented six

different machine learning algorithms, namely, naive Bayes, random forests, one rule, J48 (a

type of decision tree), non-nested generalized exemplars, and support vector machines. They

demonstrated these learning methods’ ability to detect the attacks in question. Lin et al. [Lin,

Wu & Lee (2017)] developed an ICS test bed where they performed different penetration attacks,

such as reconnaissance, response injection, command injection, and denial of service (DoS)

attacks. The authors collected records of normal activity and the attack activity. Then, they used

features from the data link and application layers to implement a machine learning IDS model

that successfully detected all the test attacks performed. However, the authors did not discuss

the machine learning algorithm used and proposed to focus on the machine learning phase in

future research. Teixeira et al. [Teixeira et al. (2018)] studied the detection of reconnaissance

attacks in ICS environments. They built a real-world test bed to conduct attacks and generated a

dataset. The authors implemented different detection models using various machine learning

methods, such as decision tree, random forest, naive Bayes, logistic regression and k-nearest

neighbors (KNN). Ullah and Mahmoud [Ullah & Mahmoud (2017)] implemented an information
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gain-based feature selection filter to reduce the time and computational complexity of machine

learning-based IDSs in supervisory control and data acquisition (SCADA) networks. They used

the reduced feature set to build anomaly detection and attack classification models based on

J48 and Bayesian network learning algorithms. These models were evaluated using an ICS

dataset developed at Mississippi State University’s Distributed Analytics and Security Institute.

Illy et al. [Illy et al. (2019)] combined multiple shallow learners to build different ensemble

learners, including multiexpert and multistage models. They conducted experimentations

and demonstrated that, when using hard-to-classify datasets, ensemble learners produce more

accurate detection systems than single shallow learners.

To overcome the limitations of shallow machine learning methods, Yang et al. [Yang,

Cheng & Chuah (2019)] proposed a deep learning-based network detection model for SCADA

systems. Their proposed approach employed convolutional neural network (CNN) algorithms to

characterize salient temporal patterns in SCADA traffic and identify time windows in which

network attacks are present. They used realistic SCADA traffic datasets, and their experimental

results showed that the proposed deep learning-based approach achieves higher detection

accuracy and could be more suitable for network intrusion detection in ICSs. Xingjie et al.

[Xingjie, Guogenp, ShiBIN & ChenHAO (2020)] constructed some attack paths from a hacker’s

perspective with an attack tree model and used the long short-term memory (LSTM) algorithm

to identify and classify the attack behavior and then further classify the attack event by extracting

atomic actions. The results showed that the model had a good effect on attack recognition and

could effectively analyze the hacker’s attack path and predict the next attack targets in ICSs. To

secure IIoT data during the transmissions in wireless channels, Mukherjee et al. [Mukherjee,

Goswami, Yang, Sah Tyagi, Samal & Mohapatra (2020)] used deep learning to enhance the

physical layer security under different channel state conditions (environmental scenarios and

application-dependent physical parameters). They selected a deep feedforward neural network

as a learning model, and their simulation results showed that the proposed method had efficient

security and scalability.
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To overcome the limitations of single deep learning methods, Al-Abassi et al. [Al-Abassi,

Karimipour, Dehghantanha & Parizi (2020)] proposed an ensemble deep learning-based cyber-

attack detection technique to improve detection accuracy and reduce false-positive rate when

using imbalanced ICS datasets. Their experimental results, obtained from two different datasets,

showed that the proposed method outperforms conventional classifiers, including Random Forest

(RF), single DNN, and AdaBoost. Li et al. [Li, Wu, Song, Lu, Li & Zhao (2021)] proposed

a federated deep learning scheme that employed a CNN and a gated recurrent unit (GRU) to

detect cyber threats against industrial cyber-physical systems. Javed et al. [Javed, Rehman,

Khan, Alazab & G (2021)] proposed a combination of CNN and attention-based GRU model in

vehicle security to detect single intrusion attacks as well as mixed intrusion attacks on controller

area network (CAN) bus. Their experimental results showed that a combination of CNN and

GRU increases the detection performance (accuracy, recall, precision, and F1 score) of attacks

such as DoS, Fuzzy, and Impersonation assaults in CAN buses.

Although the works in the literature are instructive, most of them are based on shallow learning

models. Thus, they are not suitable for critical ICSs as they may fail to fit complex and non-linear

distributions from increasing numbers of training samples. Moreover, most of the studies

that employed DNNs relied on a single detection model to keep classification quick and meet

the requirements of latency-sensitive ICSs. They do not focus specifically on high-risk ICSs

that cannot compromise on security for improved latency. Furthermore, most of these works

proposed only anomaly detection models without mentioning attack classification, which is

however crucial for preventing the attacks during the prevention phase. Another significant

limitation is that most papers barely suggest response measures when attacks are detected. Last

but not least, the majority of these works did not shed light on the deployment process of the

models in ICSs network architecture.

3.3 The Hybrid Multistage DNN Detection Model

This section presents the components and building process of the proposed hybrid multistage

DNN model. The main components used to build the model include: (i) a learning dataset split
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into training and validation datasets; (ii) a test dataset used only to evaluate the final multistage

DNN; and (iii) a set of DNN algorithms, including multi-layer perceptron (MLP), recurrent

neural network (RNN), LSTM, and CNN. The building process has three main phases: first,

the learning phase ( i.e., training, validation, and hyper-parameter optimization); second, the

evaluation phase; and finally, the prediction phase.

3.3.1 The Training Phase

The stages of the multistage DNN are built sequentially. In the first stage, different DNN models

are trained using the set of DNN algorithms and the learning dataset, called stage_1 dataset.

Figure 3.2 presents how each DNN model is trained.

Figure 3.2 Activity diagram for building every stage model

When the first stage’s learning process ends, the trained models are employed to classify all

the samples in stage_1 dataset, and the model that has the best accuracy is stored as DNN_1.

The samples that were misclassified or classified with low decision confidence in DNN_1’s

classification results are gathered in a second stage dataset, called stage_2 dataset. In the second

stage, once more, different DNN models are trained using the set of DNN algorithms and the

stage_2 dataset. The training process is the same as illustrated in Figure 3.2. At the end of the

second stage’s learning process, the trained models are employed to classify all the samples in

stage_2 dataset, and the best model is stored as DNN_2. The data that were misclassified or
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classified with low decision confidence in DNN_2’s classification results are gathered in a dataset

for the next stage. The subsequent stages are sequentially built until the number of misclassified

samples falls below a predefined threshold. The algorithm used to train this multistage DNN is

presented in Algorithm 3.1.
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Algorithm 3.1 Proposed multistage DNN training

Result: Trained multistage DNN

{DNN_1, DNN_2, ..., DNN_n} ;

1 Inputs: Dataset Initial_dataset ; Predefined DNN algorithms DNN_Algorithms ;

Predefined confidence threshold Min_confidence ; Predefined threshold to stop new

stage creation Min_dataset ;

2 Variable: Misclassified samples of the current stage Misclassified_samples ;

3 Set X as current stage number and initialize X to 1 ;

4 Split Initial_dataset into Stage_X_dataset and Test_dataset ;

5 while (size of Stage_X_dataset larger than Min_dataset) do

6 Split Stage_X_dataset into Training_dataset and Validation_dataset ;

7 foreach (DNN in predefined DNN_Algorithms) do

8 Recursively train DNN, test DNN, adjust DNN hyper-parameters Until (DNN

performance improvement less than predefined threshold 𝜃

9 end

10 Among all trained DNNs, set the DNN with the best accuracy as DNN_X ;

11 Set Misclassified_samples as an empty table ;

12 foreach (sample in Stage_X_dataset) do

13 Predict the sample class using DNN_X ;

14 if the sample is misclassified by DNN_X or decision confidence less than

Min_confidence then

15 Add the sample to Misclassified_samples ;

16 end

17 end

18 Increment the stage number X ;

19 Set Misclassified_samples as stage_X_dataset ;

20 end
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3.3.2 The Evaluation and Prediction Phases

In the evaluation phase, for each sample in the test dataset, all stages DNNs’ decisions are

processed, assigned a weight, and used in combination functions to build the decision of the

hybrid multistage DNN (Figure 3.3 illustrates this process). Various combination functions are

used to classify the test dataset, including maximum, minimum, median, simple sum, weighted

sum, and product (Table 3.1 defines these functions). The combination function that produces

the best classification accuracy on the test dataset is assigned to the multistage DNN. Finally,

this model is deployed in ICSs to classify incoming network traffic. The new traffic goes through

the same process as illustrated in Figure 3.3.

Figure 3.3 Activity diagram for the multistage DNN

evaluation phase

The benefit of this approach is that the samples that are misclassified after each stage are

re-used to improve the learning ability of the subsequent stage’s DNN rather than being wasted.
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Table 3.1 Stage DNNs combination rules

Combination Definition of function 𝑓 (.)

Maximum 𝑦𝑖 =max 𝑗 𝑑𝑖 𝑗

Minimum 𝑦𝑖 =min 𝑗 𝑑𝑖 𝑗

Median 𝑦𝑖 =median 𝑗 𝑑𝑖 𝑗

Sum 𝑦𝑖 = 1
𝑁

∑
𝑗 𝑑𝑖 𝑗

Weighted sum 𝑦𝑖 =
∑
𝑗 𝑤 𝑗 𝑑𝑖 𝑗 , 𝑤 𝑗 ≥ 0,

∑
𝑗 𝑤 𝑗 = 1

Product 𝑦𝑖 =
∏
𝑗 𝑑𝑖 𝑗

In these definitions, 𝑑𝑖 𝑗 represents the output produced by DNN- 𝑗 for the instance 𝑖. The number of

DNNs used in the multistage DNN is represented by 𝑁 . For the Weighted sum, 𝑤𝑖 is the value to weight

𝑑𝑖 𝑗 . The output of the multistage DNN for the instance 𝑖 is represented by 𝑦𝑖 .

Therefore, each new stage model focuses on a new subset of the data and can learn a new

optimal decision frontier that corrects misclassifications from previous stage models. Even

with imbalanced datasets, majority classes, which are easier to learn, will have their number

of samples reduced with each additional stage, allowing the next stages DNNs to learn the

distribution of minority classes. The improvement offered by the proposed approach is illustrated

in Figure 3.4.

3.4 Proposed Collaborative IPS and Deployment Architecture

The function of intrusion prevention systems (IPSs), also known as intrusion response systems

(IRSs), is to take defensive measures automatically when the IDS detects an attack. Whereas

IDSs just generate reports or alarms, the automated response of IPSs reduces the time gap

between detection and defensive action.

To further reduce this time gap in high-risk ICSs, this study proposes two collaborative hybrid

multistage DNNs, the first of which, called IDS-ADM, is deployed on a local server and focuses

on anomaly detection (binary classification) so that an emergency response can be launched as

soon as an anomaly is detected. Then, the second multistage DNN, called IDS-ACM, classifies

detected anomalies by attack type to identify suitable complementary response measures. Since

binary classification is faster than multiclass classification, the proposed architecture makes
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Figure 3.4 Stages decision frontiers and multistage DNN benefit

it possible for high-risk ICSs to respond sooner and limit an attack’s impact on the targeted

system. The attack classification module (IDS-ACM) can be deployed on cloud servers if more

computation resources are needed. Only anomalous traffic, which represents a small portion of

overall network data, needs to go to this second multistage DNN. This approach increases the

IPS’s responsiveness without reducing the IDS’s classification accuracy. The proposed IDPS

deployment architecture is illustrated in Figure 3.5. This architecture adopts an SDN approach

[Li & Chen (2015)] to ensure efficient IDPS implementation in IIoT networks. Since our proposed

system is not limited to a single SDN controller, we presented our architecture using a generic

SDN architecture. For each ICS, we recommend that the SDN controller is chosen according

to the system’s network design and requirements in terms of programmability, scalability,
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extensibility, resilience, and fault tolerance, among others. In the proposed deployment model,

for every field, the IIoT devices are connected to the programmable logic controller (PLC)

through an SDN switch. Data from the switch is collected by a local server on which the

multistage DNN-based anomaly detection module (IDS-ADM) is deployed. Fields may be

connected to remote fields having the same setup.

Figure 3.5 The proposed IIoT network architecture

When the IDS-ADM detects an anomaly, an alert and the traffic information related to the

anomaly are sent to the IPS. Then, the IPS generates emergency response rules and transmits

them to the SDN controller, which applies them to the SDN switches’ flow tables. This enables

the network to be configured automatically to prevent that eventual intrusion from compromising

other parts of the ICS subnets. In the IPS, the first emergency response measure is to drop

the malicious packets and block the attacker’s IP and MAC addresses. This can stop many

unauthorized user access attacks to preserve the system’s integrity and confidentiality. It can

also reduce scanning, probing, and DoS attacks to maintain system services. The intruder’s

connection can also be redirected to an attack analysis system (e.g., a honeypot) to study the

attacker’s behavior [Tian et al. (2020)]. The IDS-ADM also sends the attack’s features to the

IDS-ACM, which classifies and sends its class and related traffic information to the IPS. Then,
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the IPS generates complementary response rules and transmits them to the SDN controller,

which applies these routing rules to the SDN switches’ flow tables. In addition, advanced

modules can be implemented to counter-attack the attacker’s system and slow them down.

3.5 Experiment

This section presents our experimental evaluation and discusses the results obtained. The goal is

to evaluate the performances of the proposed multistage DNN models in the anomaly detection

and attack classification modules. For the sake of conciseness, the details about the response

module’s implementation will be the subject of a separate paper. The available ICS datasets

usually present several limitations, such as the absence of realistic attacks. Thus, to validate our

proposal, we conducted experiments on two different datasets having a different mix of attacks,

data distribution, and classification complexity.

The first dataset, named WUSTL-IIOT-2018 [Alem & BB (2021); Teixeira et al. (2018)], is

used for SCADA cyber-security research. The dataset was built using a SCADA system test

bed. The data was generated by using scan tools to inspect the topology of the victim network

and identify the devices in the network and their vulnerabilities. An assortment of port scanner,

address scan, device identification and exploit attacks were carried out against the test bed.

The traffic captured comprised 7,049,989 observations, of which 93.93% were normal traffic

(without attacks) and 6.07% were abnormal traffic (with attacks). The raw data contained 25

detection features, from which five features were selected based on their variation during attacks,

as well as during normal traffic (Table 3.2 presents the selected features). Each vector in the

dataset is labelled normal or attack, depending on the case.

The second dataset, named NSL-KDD, was built from a regular (non-IIoT) network; however, it

is the dataset most commonly used to compare machine learning-based IDSs [Tavallaee et al.

(2009)]. NSL-KDD includes a total of 39 specific attacks grouped into four different attack

categories, namely, probing (Probe), DoS, remote to local (R2L), and user to root (U2R). The

training dataset (KDDTrain+) and testing dataset (KDDTest+) contain 125,973 and 22,544
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Table 3.2 Features selected in the WUSTL-IIOT-2018 dataset

Detection features Descriptions
Source port (Sport) Port number of the source

Total packets (TotPkts) Total transaction packet count

Total bytes (TotBytes) Total transaction bytes

Source packets (SrcPkts) Source to Destination packet count

Destination packets (DstPkts) Destination to source packet count

Source bytes (SrcBytes) Source to destination transaction bytes

single connection vectors, respectively. Each connection vector is represented by 41 features

and labelled either normal or attack, with exactly one specific attack type. Table 3.3 presents the

detection features used in the NSL-KDD dataset.

In our experiment, we implemented and compared three different approaches: (i) single DNNs,

(ii) simple multistage DNNs using the same DNN algorithms with different hyper-parameters at

each stage, and (iii) the hybrid multistage DNN. The list of DNN algorithms used for the single

DNNs, simple multistage DNNs, and hybrid multistage DNN include MLP, RNN, and CNN.

The experiment was done in two stages, i.e., anomaly detection and then attack classification.

All the tasks were performed using the Python programming language and scikit-learn (a free

machine learning library).

3.5.1 The Anomaly Detection Phase

We first implemented and evaluated the anomaly detection module. Table 3.4 presents the

organization of the WUSTL-IIOT-2018 and NSL-KDD datasets for this binary classification.

We split the WUSTL-IIOT-2018 into stage_1 learning (80%) and test (20%) sets. For each stage,

we split the learning dataset into training (60%) and validation (40%) sets. For the NSL-KDD

dataset, we used KDDTrain+ as the learning dataset and KDDTest+ as the test dataset. Figure

3.6 presents the models’ accuracy on the WUSTL-IIOT-2018 dataset, and Figure 3.7 shows the

models’ accuracy on the NSL-KDD dataset. For the hybrid multistage model, the accuracy

reported was obtained from the best combination functions.
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Table 3.3 Detection features used in the NSL-KDD dataset

Detection features Descriptions
Duration Length (number of seconds) of the connection

Protocol_type Type of the protocol, e.g., tcp, udp, etc.

Service
Network service on the destination, e.g., http, telnet,

etc.

Src_bytes Number of data bytes from source to destination

Dst_bytes Number of data bytes from destination to source

Flag Normal or error status of the connection

Land
1 - connection is from/to the same host/port; 0 -

otherwise

Wrong_fragment Number of “wrong” fragments

Urgent Number of urgent packets

Count
Number of connections to the same host as the

current connection in the past 2 seconds

The following features refer to these same-host connections

Serror_rate % of connections that have “SYN” errors

Rerror_rate % of connections that have “REJ” errors

Same_srv_rate % of connections to the same service

Diff_srv_rate % of connections to different services

Srv_count
Number of connections to the same service as the

current connection in the past 2 seconds

The following features refer to these same-service connections

Srv_serror_rate % of connections that have “SYN” errors

Srv_rerror_rate % of connections that have “REJ” errors

Srv_diff_host_rate % of connections to different hosts

Hot Number of “hot indicators”

Num_failed_logins Number of failed login attempts

Logged_in 1 - successfully logged in; 0 - otherwise

Num_compromised Number of “compromised” conditions

Root_shell 1 - root shell is obtained; 0 - otherwise

Su_attempted 1 - “su root” command attempted; 0 - otherwise

Num_root Number of “root” accesses

Num_file_creations Number file creation operations

Num_shells Number of shell prompts

Num_access_file Number of operations on access control file

Num_outbound_cmds Number of outbound commands in a ftp session

Is_hot_login 1 - the login belongs to the “hot” list; 0 - otherwise

Is_guest_login 1 - the login is a “guest”login; 0 - otherwise
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Table 3.4 Organization of WUSTL-IIOT-2018 and

NSL-KDD datasets for the binary classification

Number of records in the datasets
Class WUSTL-IIOT KDDTrain+ KDDTest+

Normal 6,610,778 67,343 9,711

Attack 427,205 58,630 12,833

Total 7,037,983 125,973 22,544

Figure 3.6 Accuracy of anomaly detection models using the

WUSTL-IIOT-2018 dataset

With the WUSTL-IIOT-2018 dataset, the hybrid multistage DNN achieved the best performance,

providing 99.99% detection accuracy, 0.18% undetected rate (false negative rate), and less than

0.01% false alarm rate (false positive rate). All the simple multistage DNNs achieved 99.99%

detection accuracy, and the single DNNs achieved over 97% detection accuracy.

The hybrid multistage DNN also achieved the best performance with the NSL-KDD dataset,

providing 97.02% detection accuracy, 2.07% undetected rate, and 4.16% false alarm rate.

However, in this dataset, the simple multistage DNNs showed significantly lower performances,
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Figure 3.7 Accuracy of anomaly detection models using the

NSL-KDD dataset

yielding less than 95% detection accuracy. Moreover, the performances of the single DNNs were

also significantly low, attaining an accuracy of less than 86%. This can be explained by the fact

that the models that employed single DNNs had difficulties understanding the complicated data

distribution of intrusion patterns in the NSL-KDD dataset, which involved 39 specific attacks.

The models that employed simple multistage DNNs were able to learn more intrusion patterns

but less effectively than the hybrid multistage DNN. In the WUSTL-IIOT-2018 dataset, the

single DNNs and simple multistage DNNs achieved high detection accuracy since the intrusion

patterns in this dataset involved less complicated data distribution, which is not a realistic

scenario in real ICSs.

This demonstrates that using only single DNNs is not enough to build accurate intrusion detection

models for highly endangered ICSs. It also confirms that multistage DNNs is a more efficient
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approach and hybrid multistage DNNs are the most effective when it comes to building more

robust intrusion detection models.

3.5.2 The Attack Classification Phase

The second part of the experiment pertained to attack classification. Since the WUSTL-IIOT-

2018 dataset does not include attack type, we performed attack classification on only the

NSL-KDD dataset. Table 3.5 presents the organization of the NSL-KDD dataset for attack

classification. We split the learning dataset, i.e., KDDTrain+, into training (60%) and validation

(40%) sets, and used KDDTest+ as the test dataset. The same DNNs, i.e., single DNNs, simple

multistage DNNs, and the hybrid multistage DNN, were used to build the attack classification

models. Figure 3.8 illustrates the accuracy of the models on the NSL-KDD dataset. For the

hybrid multistage DNN model, the reported accuracy was obtained from the best combination

functions.

Table 3.5 Organization of the NSL-KDD dataset

for attacks classification

Number of records used in the datasets
Class KDDTrain+ KDDTest+
DOS 45,927 7,458

Probe 11,656 2,421

R2L 995 2,754

U2R 52 200

Total 58,630 12,833

The attack classification results also confirm that the single DNNs have lower accuracy than the

multistage DNNs. Moreover, the proposed hybrid multistage DNN achieved higher detection

accuracy than the simple multistage DNNs. As compared to previous works that employed

the NSL-KDD dataset for anomaly detection and attack classification, the proposed hybrid

multistage DNN-based IDPS is able to make predictions with more accuracy. Table 3.6

compares the accuracy of the solutions used in previous works and our attack classification
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Figure 3.8 Accuracy of attack classification models using the

NSL-KDD dataset

model (four-category classification). The experimental evaluation, therefore, demonstrates that

our approach is more suitable for critical ICSs whose primary requirement is security.

Each module in the proposed system can be enhanced even further. First, employing more DNN

algorithms in the hybrid multistage DNN, such as generative adversarial networks (GANs) and

radial basis function networks (RBFNs), and exploring more combination functions can further

improve the accuracy in the IDS-ADM and IDS-ACM modules, and strengthen the security

in high-risk ICSs. For example, in the IDS-ADM, this may enable the detection of most of

the attacks that go undetected; while in the IDS-ACM, this can enable correct classifications

of most of the attacks that get confused with other attack categories. Second, the IDS-ADM

can be combined with signature-based detection systems for better performance. Finally, to

minimize misclassifications, it is possible to implement a rejection option in the decision model.

This option enables the model to abstain from making a decision when the decision confidence



107

is still below the predefined threshold. In our future works, these additional features will be

implemented.

Table 3.6 Comparison of solutions using NSL-KDD dataset for multiclass

classification

Methods used Accuracy
Proposed hybrid multistage DNN-based IDPS 98.87%

Methods in [Tavallaee et al. (2009)] :

NBTree

Random Tree

Decision Trees J48

Random Forest

Multi-Layer Perceptron

-

82.02%

81.59%

81.05%

80.67%

77.41%

Methods in [Bajaj & Arora (2013)]:

SimpleCart

Multi-layer Perception

-

82.32%

73.54%

Recurrent neural networks [Yin, Zhu, Fei & He (2017)]. 81.29%

ANN with tansig transfer function, Levenberg-Marquardt (LM) and

BFGS quasi-Newton Backpropagation [Ingre & Yadav (2015)].
81.20%

A Two-Layer Dimension Reduction and Two-Tier Classification Model

[Pajouh, Javidan, Khayami, Dehghantanha & Choo (2019)].
84.86%

Two-stage intrusion detection technique combining Naive Bayes and

k-means [Vishwakarma & Kesswani (2022)].
86.46%

3.6 Conclusion

Cyber-attacks on high-risk industrial control systems could result in dramatic consequences,

including death, long-term environmental damage, and huge economic losses. These infras-

tructures require specific security systems that do not compromise on security for the sake of

productivity. This work proposes a hybrid multistage deep learning model that offers robust

intrusion detection systems for these critical networks. In the proposed approach, learning

models are built sequentially to work on the limitations of the previous learners. The multistage

DNN uses each stage’s decision in a combination function to produce a final decision with

better accuracy. This approach offers better classification accuracy at the cost of latency and is

much more suitable for high-risk ICSs in which security is more important than any other aspect

of productivity, such as latency. This work also proposes a collaborative intrusion prevention



108

system that employs one multistage DNN to detect anomalies and take emergency defensive

action as soon as possible and a second multistage DNN to classify the detected anomalies

and apply complementary defensive measures. An SDN-based architecture is presented to

deploy the proposed collaborative IDPS in ICS networks. The experimental evaluation, which

was performed on two datasets with different challenges, demonstrated the effectiveness of the

proposed approach.
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4.1 Introduction

Industrial facilities are usually highly delicate and risky environments, requiring maximum safety

and security to work with potentially dangerous chemicals and tools, and privacy to manufacture

highly competitive products. Therefore, many security, safety, and privacy standards have

been implemented over the years to protect these environments [Robla-Gómez, Becerra, Llata,

González-Sarabia, Torre-Ferrero & Pérez-Oria (2017); Stoessel (2021); Zhao & Barati (2023)].

However, industrial accidents and disasters still occur frequently worldwide and cause significant

damages, including deaths, injuries, economic losses, and long-term environmental impacts.

According to the survey published in June 2021 by the research department of the database

company Statista, there were 984 explosive incidents across the United States (USA) in 2020,

which is a significant increase compared to previous years [Statista Research Department (2021)].

The sources of these explosions include manufacturing plants, electric utilities, petroleum

industries (upstream, midstream, downstream, pipelines), and other chemical factories. The

evolution of the industrial domain towards the new era of modernization driven by the Industrial

Internet of Things (IIoT) enables real-time safety applications to prevent the traditional risk of

incidents. However, it generates new security risks, notably from cyber-attacks that exploit the

vulnerabilities of the connected objects.
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Unlike traditional standalone Industrial Control Systems (ICSs), which used to be isolated from

Information and Communication Technology (ICT) networks, new ICSs integrate these networks

to enable high-level process supervisory management. Indeed, thanks to connected sensors,

actuators, and IIoT devices, manufacturing equipment (pumps, valves, compressors, tanks,

etc.) and manufacturing conditions (air quality, humidity, temperature, etc.) can now be easily

monitored and controlled remotely using computers, tablets, or smartphones. For more efficient

control systems operation (better resource allocation, easier and faster data collection), many

industries are adopting the Supervisory Control And Data Acquisition (SCADA) architecture.

This architecture is generally made up of three main levels. The first level consists of sensors

and actuators, where the sensors collect data about the system, and the actuators control the

system’s state. The second level is composed of Programmable Logic Controllers (PLCs), which

are connected to the first level in order to control the actuators and collect information from the

sensors. The third level contains the supervisory controls, which communicate with the PLCs to

send control commands from workstations, store the system data in servers (data historians),

and provide a visual representation of the system on a Human-Machine Interface (HMI). Figure

4.1 illustrates a generic SCADA system.

In terms of industrial safety and security, the adoption of ICT, especially IIoT, brings a lot of

opportunities and challenges. For instance, a factory safety system integrated with the factory

automation system can provide additional safety services, such as personalized alerts (e.g.,

material physical default, place humidity, abnormal temperature, etc.), access control, occupancy

detection, person identification, central locking of all perimeter doors and windows, remote

surveillance of security cameras and sensors over the Internet, and others. However, the factory’s

IIoT can bring significant security problems to the factory because of the security vulnerabilities

in IoT devices and software that hackers could leverage to carry out malicious activities. For

example, attackers have found vulnerabilities in Siemens Step7, a software used in PLCs, and

exploited it to launch an attack named Stuxnet. Stuxnet collected surveillance data, put ICSs into

a critical state, and even falsely responded to prevent alarms [Al-Rabiaah (2018)]. A successful
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Figure 4.1 Generic SCADA architecture

cyber-attack on a smart factory may have critical consequences, including private data leakage

and cyber-terrorism.

4.1.1 Related Work

To overcome smart ICSs’ cyber-security challenges, the research community is active in designing

solutions for different security layers, especially Intrusion Detection Systems (IDSs), to detect

malicious attempts (succeeded or failed) to penetrate IIoT networks. For example, Justin M. et al.

[Beaver et al. (2013)] applied machine learning algorithms to detect malicious Remote Terminal

Unit (RTU) communications. The authors used a dataset composed of labelled RTU telemetry

data from a gas pipeline system in the Mississippi State University’s Critical Infrastructure

Protection Center, USA. In this dataset, variants of command injection and data injection

attacks were considered. The authors implemented six different machine learning algorithms,

including Naive Bayes, Random Forests, One Rule (OneR), J48 (a type of Decision Tree
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technique), Non-Nested generalized exemplars (NNge), and Support Vector Machines (SVM).

Their experimental results demonstrated the ability of the learning algorithms to detect these

attacks. Chih-Ta et al. [Lin et al. (2017)] established an industrial control system test-bed where

they examined operational cases and developed a Modbus/Transmission Control Protocol (TCP)

network attack program. They executed dozens of penetration attacks successfully, including

address and function code scans, response and command injections, and Denial of Service (DoS).

All network activity, including records of normal behavioral patterns, was collected. Exploiting

content from the data link layer through the application layer, especially, Medium Access Control

(MAC) and Internet Protocol (IP) addresses, TCP ports, and Modbus functions and data, the

authors planned as future research to build on machine learning-based detection models, e.g., a

one-class SVM to find outliers, and thus effectively detect the occurrence of abnormal events.

Marcio Andrey et al. [Teixeira et al. (2018)] developed a SCADA system test-bed where they

conducted sophisticated cyber-attacks, including port and address scans, device identification

attacks, and exploits. The authors captured the network traffic during the attacks, extracted

features, and built a dataset for training and testing different machine learning algorithms. Five

shallow machine learning algorithms were trained to detect the attacks, namely, Random Forest,

Decision Tree, Logistic Regression, Naïve Bayes, and K-Nearest Neighbors (KNN). Their

evaluation results showed the efficiency of the machine learning models in detecting the attacks

in real-time.

To achieve low computational complexity and latency in anomaly-based intrusion detection

models for SCADA networks, Ullah and Mahmoud [Ullah & Mahmoud (2017)] implemented a

feature selection filter based on the information gain. Using an industrial control system dataset

developed at the Distributed Analytics and Security Institute at Mississippi State University, the

proposed model selected a subset of five features out of the 20 initial features.

The dataset was used to train a J48 classifier. Then, then a Bayesian network classifier was used

to develop the proposed model, which correctly classified all instances of the binary-labelled and

categorized-labelled datasets. An Le et al. [Le, Dinh, Le & Tran (2015)] proposed an Intrusion

Detection and Prevention System (IDPS) that leveraged the Software-Defined Networking (SDN)
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approach to reduce the cost and decrease detection and mitigation latency. In the proposed

system, the authors employed a C4.5 Decision Tree algorithm to build the detection model.

The data used to train the model included 25 basic features (packet headers) and derived

features (features that are computed). The system was evaluated using the probing and DoS

attacks present in the 1999 DARPA dataset and a small test-bed where they generated attacks

consisting of 3 types of DoS and 8 types of Probe. In the deployment, OpenFlow switches were

implemented to replace traditional switches, IDPS sensors, and the firewall, to reduce the total

cost of the IDPS.

Most of these solutions are based on shallow machine learning methods; therefore, they may suffer

from significant limitations associated with shallow learning. To overcome these limitations,

recent research works investigate deep learning-based IDSs. For example, Al-Abassi et al.

[Al-Abassi et al. (2020)] demonstrated an attack detection model that leveraged Deep Neural

Networks (DNNs) and Decision Tree classifiers to detect cyber-attacks in an ICS environment.

Li et al. [Li et al. (2021)] designed a deep learning-based intrusion detection model by making

use of a Convolutional Neural Network (CNN) and a Gated Recurrent Unit (GRU). Then, the

authors developed a federated learning framework, allowing multiple ICSs to collectively build

a comprehensive intrusion detection model in a privacy-preserving way. Jie Ling et al. [Ling,

Zhu, Luo & Wang (2021)] studied the limitations of intrusion detection methods based on deep

learning, such as Long Short-Term Memory (LSTM) and GRU, to highlight problems these

methods are still facing, such as vanishing gradients and low training efficiency. Then, the

authors proposed an intrusion detection method based on a Bidirectional Simple Recurrent Unit

(BiSRU). With skip connections employed, the optimized bidirectional structure in the SRU

neural network alleviated the vanishing gradient problem and improved the training effectiveness.

The author in [Mansour (2022)] proposed an Attention-based Bi-Directional Gated Recurrent

Neural Network (ABi-GRNN) model with a Poor and Rich Optimization algorithm-based

hyper-parameter optimizer to build an efficient IDS for cyber-physical systems. The proposed

system applied blockchain technology to boost security in the cyber-physical environment. The
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solution was evaluated using the NSL-KDD and CICIDS datasets, and the experimental results

showed better precision compared to other DNNs, such as GRU and optimal GRU.

Although instructive, most of these deep learning-based IDSs for ICSs do not analyze the time

complexity of DNNs and the latency of the proposed detection models. To enable a timely

identification of various attacks and near real-time neutralization of threats, Shafi et al. [Shafi,

Basit, Qaisar, Koay & Welch (2018)] proposed a fog-assisted SDN and blockchain-driven IDPS

for IoT networks. The authors employed three DNN-based classifiers, namely, Recurrent Neural

Network (RNN), Multi-Layer Perceptron (MLP), and Alternate Decision Tree (ADT) in parallel

with a voting system to identify attacks at the edge network just beside IoT devices. This

approach reduces the detection latency by bringing the detection system as near as possible

to the edge devices. However, unlike our approach, all classification models are deployed in

cloudlet or fog nodes, and no advantage is taken from cloud resources. Alkadi et al. [Alkadi,

Moustafa, Turnbull & Choo (2021)] proposed a distributed IDS that employed a Bidirectional

Long Short-Term Memory (BiLSTM) deep learning algorithm to deal with sequential network

data. The proposed system implemented a blockchain and smart contract method to provide

privacy to the distributed intrusion detection engines. This approach provides security and

concurrently ensures data privacy in cloud environments but does not address latency concerns

for mission-critical IoT applications.

In addition to the lack of time complexity analysis for most DNN-based IDSs for ICSs, most

previous studies do not consider attacks classification and intrusion response methods when

attacks are detected, or the deployment architecture of the deep learning-based IDSs within the

ICS networks.

4.1.2 Contributions

The novelty of this study is in its effort to design a DNN-based IDPS that preserves mission-

critical ICSs requirements. Mission-critical ICSs refer to IIoT applications that require high

availability and low latency to ensure real-time operations. In such applications, security
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measures must be designed to preserves the low latency requirement. Therefore, this study

proposes an intrusion detection and response system that combines robustness and low latency.

To achieve robustness, this work identifies various detection features and employs the most

promising DNNs to build the detection models. To meet the ICSs’ low latency requirement, the

structure of the neural networks and their time complexity are studied. Then, a collaborative

scheme that separates the classification task into two consecutive models organized based on a

priority principle in the IDPS is implemented. The first model, based on a lightweight DNN,

performs anomaly detection on local servers to allow timely attack detection and response. The

second model performs attack classification of the anomalous traffic to help choose the suitable

intrusion response measures to stop the attack. This multi-class classifier is deployed in cloud

servers to benefit from the high computation resources available for running complex DNNs.

The major contributions of the proposed work are four-fold:

- This paper proposes a time complexity analysis of the DNNs and highlights the variables

that impact the training and the prediction latency.

- A collaborative deep learning-based IDS that employs two classification models is proposed

along with its deployment architecture in the ICS.

- Various detection features, DNNs algorithms, and Intrusion Response System (IRS) measures

are proposed to implement the IDPS.

- An experimental evaluation is conducted using different datasets, which demonstrates the

efficiency of the proposed approach.

4.1.3 Organization

The rest of the research paper is organized as follows. Section II introduces the time complexity

analysis of the DNNs and highlights the variables that impact the training and the prediction

latency. Section III illustrates the collaborative deep learning-based IDPS and the deployment

architecture. Section IV presents the detection features, learning algorithms, and IRS measures.
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Section V presents the experimental evaluation and discusses the obtained results. Finally,

Section VI concludes this work.

4.2 Time Complexity analysis of deep neural networks

The time complexity in the training and prediction of the DNNs are proportional to the number

and size of elementary structures and functions involved in their networks, i.e., the neurons,

recursions, convolutions, pooling, etc. This section evaluates how some of these elementary

structures increase training and detection latency. In order to understand the latency reduction

scheme, this evaluation is essential. Figure 4.2 illustrates the DNN architectures considered in

this work. However, for conciseness, the time complexity evaluation process is only detailed for

the MLP architecture.

To evaluate the time complexity of the MLP, first, we evaluate the main operations involved

in a single-layer neural network, i.e., the perceptron, and formulate these operations’ time

complexities. Then, based on the training and prediction algorithms, we evaluate the whole

MLP time complexity.
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Figure 4.2 The architecture of MLP(a), RNN(b), LSTM(c), Auto

Encoder(d), and CNN(e)

The main operations in the perceptron are the feed-forward, error computation, and weights

updates. Considering the perceptron illustrated in Figure 4.3, these operations are defined in

Table 4.1.
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Figure 4.3 Single-layer neural

network: Perceptron

Table 4.1 Perceptron training operations

Operation Equation

1. Feed-forward 𝑜 =
∑𝑛
𝑖=0 𝑤𝑖𝑥𝑖

2. Error computation Δ𝑤𝑖 = 𝜂(𝑡 − 𝑜)𝑥𝑖
3. Weights updates 𝑤𝑖 = 𝑤𝑖 + Δ𝑤𝑖

In these definitions, 𝑥0 represents the bias unit. The input values (features) are represented by

𝑥1, 𝑥2, ..., 𝑥𝑛. The weights are represented by 𝑤𝑖, and 𝑜 represents the computed output unit.

The learning rate is represented by 𝜂, and the targeted output is represented by 𝑡.

In time complexity analysis, operations that have constant times can be neglected because the

goal is to highlight how the latency scales with respect to the variables. Therefore, to simplify

the time complexity approximation, we make the following assumptions:

- In the feed-forward, the time complexity to compute each perceptron (hidden or output unit)

is identical and represented by 𝑇𝐹𝑊 ;

- In the error computation, the time complexity to compute each output unit error is identical

and identical by 𝑇𝑂𝐸 ;

- In the weights update, the time complexity to update each weight is identical and represented

by 𝑇𝑊𝑈 ;

The neural network training consists of recursive feed-forward, error computation, and back-

propagation to adjust the network weights. The condition of the recursion is to get the values of
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weights that minimize the output error on a particular set of training data. Algorithm 4.1 defines

the MLP training process.

Algorithm 4.1 MLP training

Result: Weights that minimize the prediction error.

1 Input 1: 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠, where each instance is represented by 〈�𝑥, 𝑡〉, �𝑥 represents

the feature vector and 𝑡 is the class of the instance.

2 Input 2: Weights 𝑤𝑖, 𝑗 where 𝑖 and 𝑗 represent the input and output units, respectively.

3 Input 3: Learning rate 𝜂.
4 Initialize all weights 𝑤𝑖, 𝑗 to small random numbers;

5 while termination condition not satisfied do
6 foreach 〈�𝑥, 𝑡〉 in 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 do
7 Execute Feed-forward
8 foreach hidden and output unit 𝑗 do
9 𝑜 𝑗 =

∑
𝑖∈𝑖𝑛𝑝𝑢𝑡𝑠 𝑤𝑖, 𝑗 𝑜𝑖

10 end
11 Compute Outputs errors
12 foreach last layer unit 𝑘 do
13 𝛿𝑘 = 𝑜𝑘 (1 − 𝑜𝑘 ) (𝑡𝑘 − 𝑜𝑘 )
14 end
15 Execute Back-propagation
16 foreach hidden unit ℎ do
17 𝛿ℎ = 𝑜ℎ (1 − 𝑜ℎ)

∑
𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑤ℎ,𝑘 𝛿𝑘

18 end
19 Execute Weights update
20 foreach network weight 𝑤𝑖, 𝑗 do
21 Δ𝑤𝑖, 𝑗 = 𝜂𝛿 𝑗𝑥𝑖, 𝑗
22 𝑤𝑖, 𝑗 = 𝑤𝑖, 𝑗 +Δ𝑤𝑖, 𝑗
23 end
24 end
25 end

The time complexity of this training depends on the following variables:

- 𝑁𝑖𝑛 = the number of input units (feature vector size),

- 𝑁ℎ𝑖 = the number of units of the hidden layer ℎ𝑖,

- 𝑁𝑜𝑢𝑡 = the number of output units (number of classes),
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- 𝑁𝑛𝑢 = the total number of units (perceptrons),

- 𝑁𝑤𝑔 = the total number of weights,

- 𝑁𝑒𝑝𝑜𝑐ℎ = the number of iterations in the training dataset,

- 𝑁𝑡𝑒 = the number of training examples,

where: 𝑁𝑛𝑢 and 𝑁𝑤𝑔 are defined in (4.1) and (4.2), respectively.

𝑁𝑛𝑢 = 𝑁𝑖𝑛 +
∑

𝑁ℎ𝑖 + 𝑁𝑜𝑢𝑡 (4.1)

𝑁𝑤𝑔 = 𝑁𝑖𝑛𝑁ℎ1
+
∑

𝑁ℎ𝑖𝑁ℎ𝑖+1
+ 𝑁ℎ𝑛𝑁𝑜𝑢𝑡 (4.2)

To simplify the time complexity approximation, we also assume in the back-propagation that

the time complexity to compute each hidden unit is identical and represented by 𝑇𝐵𝑃. Table

4.2 presents the time complexity of each operation for one iteration in the training. The time

complexity for training the MLP is defined in (4.3). Using the trained MLP network, the

prediction phase is only as complex as the feed-forward operations. The time complexity of this

phase is defined in (4.4).

Table 4.2 Time complexity for MLP training operations

Operation Time complexity

Feed-forward 𝐶𝑂1 = 𝑁𝑛𝑢𝑇𝐹𝑊
Output Error 𝐶𝑂2 = 𝑁𝑜𝑢𝑡𝑇𝑂𝐸
Back-propagation 𝐶𝑂3 = (

∑
𝑁ℎ𝑖 )𝑇𝐵𝑃

Weights updates 𝐶𝑂4 = 𝑁𝑤𝑔𝑇𝑊𝑈
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𝐶 (𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) = 𝑁𝑒𝑝𝑜𝑐ℎ𝑁𝑡𝑒 [𝐶𝑂1 + 𝐶𝑂2 + 𝐶𝑂3 + 𝐶𝑂4]

= 𝑁𝑒𝑝𝑜𝑐ℎ𝑁𝑡𝑒 [𝑁𝑛𝑢𝑇𝐹𝑊 + 𝑁𝑜𝑢𝑡𝑇𝑂𝐸

+ (
∑

𝑁ℎ𝑖 )𝑇𝐵𝑃 + 𝑁𝑤𝑔𝑇𝑊𝑈]

= 𝑁𝑒𝑝𝑜𝑐ℎ𝑁𝑡𝑒 [(𝑁𝑖𝑛 +
∑

𝑁ℎ𝑖 + 𝑁𝑜𝑢𝑡)𝑇𝐹𝑊

+ 𝑁𝑜𝑢𝑡𝑇𝑂𝐸 + (
∑

𝑁ℎ𝑖 )𝑇𝐵𝑃

+ (𝑁𝑖𝑛𝑁ℎ1
+
∑

𝑁ℎ𝑖𝑁ℎ𝑖+1

+ 𝑁ℎ𝑛𝑁𝑜𝑢𝑡)𝑇𝑊𝑈]

(4.3)

𝐶 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) = 𝐶𝑂1

= 𝑁𝑛𝑢𝑇𝐹𝑊

= (𝑁𝑖𝑛 +
∑

𝑁ℎ𝑖 + 𝑁𝑜𝑢𝑡)𝑇𝐹𝑊

(4.4)

To better visualize how the DNN structure affects the latency, we have generated simulation data

containing 100 features, 50 attacks categorized into 10 attack categories, and 200,000 (200k)

training examples. This simulation dataset is used solely to illustrate the latency evolution in

the training and prediction of models that use DNNs with various structures. To evaluate and

compare the models’ accuracy, more data are used in the experimentation section. Using the

simulation dataset, we trained and evaluated five MLP models of various sizes (M1 to M5).

Table 4.3 describes these models and presents the training latency expressed in minutes (mn)

and the prediction latency expressed in milliseconds (ms). Figure 4.4 illustrates the latency

evolution according to the MLP and data sizes. The same process is applied to evaluate the time

complexity of all the other DNNs, i.e., RNN, LSTM, Auto Encoder, and CNN.

In this analysis, it is crucial to point out that the size of the DNNs and consequently their

latencies are also determined by the characteristics of the data to be classified, i.e., feature vector
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Table 4.3 Training and prediction latency on different MLP and dataset sizes

Model M1 M2 M3 M4 M5

𝑵𝒕𝒆 200k 200k 200k 200k 200k

𝑵𝒊𝒏 100 90 80 70 60

𝒉1 150 100 100 50 50

𝒉2 150 100 50 50 50

𝒉3 150 100 100 100 50

𝑵𝒐𝒖𝒕 50 50 10 10 1

𝑵𝒆 𝒑𝒐𝒄𝒉 30 25 20 15 10

𝑪(𝒕𝒓) 36.5 mn 15.8 mn 7.4 mn 3.7 mn 1.7 mn
𝑪( 𝒑𝒓) 201 ms 147 ms 114 ms 94 ms 71 ms

Figure 4.4 Training and prediction latency according to

MLP and dataset sizes
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size, number of classes, and data distribution. Firstly, the number of features and classes preset

the number of neurons in the input and output layers of the DNN, respectively. Secondly, the

more complex the data distribution is, the more hidden layers and neurons at each hidden layer

are needed in order to shape the decision boundaries. Furthermore, the more complex this data

distribution is, the more training examples and iterations on the training examples (number of

epochs) are needed.

4.3 Proposed collaborative IDS and deployment architecture

As demonstrated in the previous section, IDSs that employ complex neural networks yield high

training and prediction latency. Yet, complex data classification, such as IIoT datasets, generally

requires complex DNNs. Specifically, the more classes (𝑁𝑜𝑢𝑡) we have, the more features (𝑁𝑖𝑛),

training examples (𝑁𝑡𝑒), iterations in the training examples (𝑁𝑒𝑝𝑜𝑐ℎ), and layers in the DNNs

(𝑁ℎ) are needed to find the best decision boundaries. However, in mission-critical ICSs, intrusion

detection requires very low latency. Therefore, to reduce the latency in the proposed IDPS, we

employ a technique that we previously designed for heavy ensemble learners [Illy et al. (2019);

Illy, Kaddoum, de Araujo-Filho, Kaur & Garg (2022a)] and design a classification scheme that

splits the problem into two collaborative tasks: anomaly detection and attack classification.

Figure 4.5 illustrates the architecture of our collaborative IDPS framework for ICSs.

By performing anomaly detection as a first task, the proposed collaborative IDPS can meet

mission-critical IIoT latency requirements. This latency reduction is achieved by reducing most

of the variables that impact the time complexity of the DNNs. Firstly, as a binary classification,

anomaly detection has fewer neurons at the output layer (𝑁𝑜𝑢𝑡 = 2). Secondly, having a less

complex decision function than a multi-class classification, binary classification could reach an

optimal accuracy with fewer 𝑁ℎ, 𝑁ℎ𝑖 , and 𝑁𝑒𝑝𝑜𝑐ℎ. Moreover, binary classification could require

fewer features than multi-class classification. Therefore, anomaly detection can benefit from

more dimensionality reduction of the features, i.e., reduced 𝑁𝑖𝑛, (e.g., M5 presented in section

II). Finally, being less computationally intensive than a multi-class classification, the anomaly

detection model can be deployed in any local server in the ICS stations and benefit from less
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Figure 4.5 General architecture of our collaborative IDPS

framework for ICSs

communication latency. When an anomaly is detected, the information is immediately sent to

the IRS and the security administrators to apply urgent and emergency response measures. Then,

the anomalous traffic is sent to an attack classification model.

The attack classification task is less latency-sensitive than anomaly detection. Therefore,

this classification model can employ complex DNNs and be deployed on servers with more

computation resources, such as cloud servers. In contrast to binary classification, attack

classification could require more features. Thus, for this model, more classification features

can be included during the training and prediction to improve the accuracy. When an attack

class is predicted, the information is sent to the IRS and the security administrators to apply

complementary and more precise prevention mechanisms according to the attack type.

The deployment architecture of our proposed IDPS is illustrated in Figure 4.6. This architecture

adopts the innovative SDN and Network Functions Virtualization (NFV) to efficiently implement

the IDPS in IIoT networks. In every station of the IIoT network, the sensors and actuators are

connected to a PLC through an SDN switch. The data from the switch is collected by a local
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server, where anomaly detection is performed. A station may be connected to remote stations

through various wide-area network protocols. SDN and NFV enable on-demand provisioning

of the network functions, including the IDS and IRS [Li & Chen (2015)]. For the IDS, SDN

enables on-demand monitoring of the resources, where the set of resources to be monitored can

be dynamically changed [Chin, Mountrouidou, Li & Xiong (2015); Hermosilla, Zarca, Bernabe,

Ortiz & Skarmeta (2020)]. In addition, the IDS performance can be improved by advanced

monitoring features. For the response module, SDN architectures enable automatic and real-time

reactions to block or redirect malicious traffic [Maxli Campos & Martins (2017)]. Moreover, the

network’s programmability allows management automation and minimizes human intervention

and related operational costs. Figure 4.7 details how the IDPS modules operate using the Unified

Modeling Language (UML) sequence diagram. This diagram depicts the interaction between the

main entities of the IDPS in the order in which these interactions take place. The main entities

include the data collection gates (SDN switches), the system orchestrator, the Anomaly Detection

Model (ADM), the Attack Classification Model (ACM), the IRS, and the SDN controller.

Figure 4.6 The proposed IDPS architecture in the ICS

This collaborative IDPS provides a faster intrusion detection system with attack classification for

efficient response. In this architecture, only anomalous traffic needs to go through the complex
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Figure 4.7 The UML sequence diagram of the proposed IDPS

attack classification DNN, which represents an extremely small portion of the IIoT data. The

next section presents the detection features selection, the implemented deep learning models,

and the response measures.

4.4 Proposed detection features, learning model, and IRS measures

4.4.1 Proposed detection features

The choice of the feature set is challenging in every machine learning solution. It is more

convenient in some applications to gather all the features that are available (the initial feature

set), then use dimensionality reduction methods to select the best features (the final feature
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set). For instance, with image processing, it is feasible to take all pixels instead of studying

and identifying each relevant feature. However, an initial feature set is not directly apparent

in some applications. In intrusion detection for IIoT applications, feature selection is a more

complex task regarding the multiplicity and variety of elements involved in cyber-physical

systems (functional organization, software, operational principles, network workload, protocols,

hardware, power consumption, etc.). Thus, it is crucial to study and identify relevant features and

constitute an initial feature set [Illy, Kaddoum, Kaur & Garg (2022b)]. Then, the dimensionality

reduction methods can be applied to keep the best features. In this study, we select the detection

features according to the attacks’ behavior and the IIoT network’s characteristics. Algorithm 4.2

describes the methodology adopted for feature selection. This is a complex task but convenient

as it can clearly explain the role of each feature used in the IDS. Table 4.4 presents all the

proposed detection features and their roles.

Algorithm 4.2 IIoT Features selection logic

1 Output: Relevant feature set (Relevant_Features).

2 Input 1: Targeted IIoT cyber-threats (Targeted_cyber_threats).

3 Input 2: All IIoT system features (All_IIoT_Features).

4 foreach 𝑎𝑡𝑡𝑎𝑐𝑘𝑥 in Targeted_cyber_threats do
5 foreach 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑦 in All_IIoT_Features do
6 if 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑦 is changed by 𝑎𝑡𝑡𝑎𝑐𝑘𝑥 then
7 Add 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑦 in Relevant_Features

8 end
9 end

10 end
11 Delete redundancy in Relevant_Features

12 Delete correlation in Relevant_Features

13 Reduce dimensionality of Relevant_Features

4.4.2 Proposed detection models

Multiple DNN algorithms have demonstrated excellent capabilities in building accurate models

for different real-life problems. In spite of this, there is no specific DNN that will produce the

most accurate learner for every dataset. Each DNN focuses on particular aspects of the data
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Table 4.4 Relevant features for IIoT IDSs

Features Definition Role

Time-based

traffic features

Statistics from TCP/IP traffic flows using a

predefined time intervals

Detection of Scanning, Prob-

ing, and DoS attacks that op-

erate with many connections

in short time intervals

Connection-

based traffic

features

Statistics from TCP/IP traffic flows based

on a window of a predefined number of

connections [Illy et al. (2022b)]

Detection of Scanning, Prob-

ing, and DoS attacks that em-

ploy large time intervals

Packet header

features

Metadata portions of TCP/IP packets, such

as IP addresses, port numbers, services, and

flags [Anthi et al. (2019)]

Detection of SYN flood,

Man-In-The-Middle

(MITM), and ICMP/UD-

P/TCP fragmentation attacks

Content fea-

tures

Information contained in the TCP/IP packet

payload [Abusitta et al. (2019); Igle-

sias & Zseby (2015); Wang et al. (2017);

Xu et al. (2016); Zhong et al. (2020)], e.g.,
number of failed login attempts

Detection of Remote to Lo-

cal (R2L) and User to Root

(U2R) attacks

Wireless com-

munication

features

Radio signal characteristics, such as Re-

ceived Signal Strength (RSS), Signal-

to-noise ratio (SNR), distance of the

radio transmitter, Radio-frequency fin-

gerprint (RFF) [Ramsey, Mullins, Tem-

ple & Grimaila (2015); Soltanieh, Norouzi,

Yang & Karmakar (2020); Tian et al.
(2019,1)]

Detection of attacks that

involve wireless devices,

including jamming, de-

authentication, spoofing, and

contamination

distribution to build the models. For example, CNNs learn spatial relations between separate

features and perform at their best when dealing with data with a grid-like topology, such as

images. Meanwhile, RNNs and LSTMs are specialized in learning temporal or sequential

information and are more suitable for temporal data, such as text and speech analysis. In intrusion

detection, each DNN focuses on some part of the data patterns. Therefore, it is necessary to

implement and evaluate different DNNs and deploy only those that produce the best detection

models for the specified data. Thus, this work studies and implements the most promising DNNs,

including CNN, RNN, LSTM, and MLP. The anomaly detection model may employ a simple

DNN, such as MLP; however, the attack classification model uses a more complex DNN, such

as RNN, LSTM, and CNN.
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4.4.3 Proposed response measures

The success of some attacks depends mainly on the time gap between the detection and the

defensive response against the attack. Intrusion Response Systems (IRSs), also referred to

as Intrusion Prevention Systems (IPSs), launch counteractions automatically when attacks

are detected by the IDS, in order to defend the targeted system. Compared to IDSs that just

generate reports or alarms, IRSs reduce the vulnerability window between when an intrusion is

detected and when defensive actions are taken. Therefore, this work proposes an emergency

and quasi-real-time response when an anomaly is detected. Then, it classifies this anomaly to

identify suitable complementary measures according to the attack type.

The basic mitigation procedure is to block the packets involved in the reported intrusion and

reject all incoming and outgoing traffic of the malicious device (e.g., using blacklist or whitelist

MAC filtering). This can stop many attacks, including R2L and U2R, and safeguard the ICS’s

confidentiality and integrity. This emergency measure can also maintain the system’s services

by reducing scanning, probing, and DoS attacks. It is also possible to deflect and redirect the

malicious users into a Honeypot or other attack analysis systems to gain more information on

the way they are operating [Matin & Rahardjo (2020); Tian et al. (2020)]. These preventative

measures are implemented in the SDN-based deployment architecture. For instance, when the

IRS receives an anomaly message from the ADM, the IRS uses the information contained in

the received message to build the set of SDN rules and send it to the SDN controller (Figure

4.7). Then, the controller transmits those rules to the forwarding devices’ flow tables to drop

the concerned packets or forward them to an attack analysis system. Likewise, when the IRS

receives an attack message from the ACM, it uses this information to build the set of SDN

rules and send it to the controller. The SDN controller transmits this routing information to

the forwarding devices’ flow tables to mitigate the attack. For further response, it is possible

to develop an additional module that can counterattack the attacking entity to neutralize or

attenuate its impact.
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The complementary response measures are defined according to each specific attack type. For

example, to overcome a detected jamming attack, communication bandwidth can be switched

to other frequencies. To realize that, Dynamic Channel Selection (DCS) can be implemented

[Navda et al. (2007)]. The DCS enables the wireless transmitters to monitor the interference

level, and when it exceeds the predefined DCS threshold, the wireless transmitters stop operating

on that channel. Then, the wireless access point (WAP) uses automatic channel selection to

determine an alternative channel to switch the communication. Furthermore, the robustness

of the legitimate signal can be increased in order to maintain secure wireless communication

during jamming attacks. For advanced defence, tracking systems can be employed to locate the

jamming station and terminate it [Aldosari et al. (2019)]. These technologies are also effective

against other active wireless attacks, including contamination and spoofing.

4.5 Experimentation

This section presents the experiment and discusses the results. The experimentation aims to

evaluate the performance of the DNN-based collaborative IDS. Therefore, we exploit three

datasets that present different challenges.

The first dataset, WUSTL-IIOT-2018, presented in [Alem & BB (2021); Teixeira et al. (2018)], is

used for SCADA cyber-security research. The dataset was built using a SCADA system test-bed.

To generate this data, scan tools were used to inspect the topology of the victim network and

identify the devices in the network, as well as their vulnerabilities. The attacks carried out against

the test-bed include Port Scanner, Address Scan Attacks, Device Identification Attacks, and

Exploit. All network traffic (normal and abnormal traffic) was monitored by the Audit Record

Generation and Utilization System (ARGUS) tool. The traffic captured comprises 7,049,989

observations, with 93.93% being normal traffic (without attacks) and 6.07% being abnormal

traffic (attacked traffic). The raw data has 25 networking features, where some features are used

to classify the data, while others are used to train and test machine learning algorithms. After

the data cleaning process and dimensionality reduction, a Comma-Separated Values (CSV) file
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containing 7,037,983 observations (vectors in the dataset) and five features were provided. Each

vector in the dataset is labelled as normal or attack, depending on the case.

The second dataset, NSL-KDD, was built from a regular network (not an IIoT); however, it is

one of the most complete, realistic, and challenging datasets available, which is used to compare

machine learning-based IDSs [Tavallaee et al. (2009)]. NSL-KDD includes a total of 39 specific

attacks regrouped into four different attack categories, namely, probing (Probe), DoS, R2L,

and U2R. The training dataset (KDDTrain+) and testing dataset (KDDTest+) contain 125,973

and 22,544 single connection vectors, respectively. Each connection vector is represented by

41 features and labelled as either normal or attack, with exactly one specific attack type. This

dataset is also available in a CSV file.

The third dataset, UNSW-NB15, presented in [Moustafa & Slay (2015a,1)] was also built from

a regular network; however, unlike the NSL-KDD dataset, it contains a hybrid of the modern

normal and abnormal network traffic. To generate this data, the IXIA PerfectStorm tool was

utilized in the cyber range lab of the Australian Centre for Cyber Security. UNSW-NB15

includes a total of 205 specific attacks regrouped into nine attack categories, namely, Fuzzers,

Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms. The

dataset, provided in a CSV file, contains a total of 2,540,044 records, each represented by 47

features and labelled as either normal or attack, including the specific attack category.

The experimentation employs four different DNNs to build the detection models. These DNNs

include MLP, Simple RNN, LSTM, and CNN. The implementation is conducted in the anomaly

detection and the attacks classification stages. The machine learning platform used to train and

evaluate the models is scikit-learn (sklearn), a free software library for the Python programming

language, installed with Anaconda, an open-source distribution for Python and R.
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4.5.1 The anomaly detection model

We begin the implementation with the anomaly detection model. Table 4.5 presents the

distribution of the instances in the binary WUSTL-IIOT-2018, NSL-KDD, and UNSW-NB15

datasets.

Table 4.5 Instances distribution in the binary WUSTL-IIOT-2018,

NSL-KDD, and UNSW-NB15 datasets

Number of instances
Class WUSTL-IIOT KDDTrain+ KDDTest+ UNSW-NB15

Normal 6,610,778 67,343 9,711 2,218,761

Attack 427,205 58,630 12,833 321,283

Total 7,037,983 125,973 22,544 2,540,044

For each DNN model, we tuned the hyper-parameters, such as the number of hidden layers,

number of units for each hidden layer, learning rates, activation and solver functions, number

and size of the CNN filters, and number of epochs. For WUSTL-IIOT-2018 and UNSW-NB15,

we split the dataset into training (80%) and testing (20%) sets. For the NSL-KDD, we trained

the models using KDDTrain+ and evaluated them with KDDTest+. Figure 4.8, Figure 4.9, and

Figure 4.10 present the accuracy of the models on the WUSTL-IIOT-2018, NSL-KDD, and

UNSW-NB15 datasets, respectively. For each model, the accuracy presented is obtained from

tuned hyper-parameters.

The experimentation results with the WUSTL-IIOT-2018 and UNSW-NB15 datasets confirm that

anomaly detection does not require complex DNNs to produce a high-accuracy prediction model.

In both datasets, lightweight DNNs (e.g., MLP with one hidden layer of 100 neurons) were able

to reach over 99% detection accuracy. Such DNNs can be easily trained and deployed on a local

server for ultra-low latency intrusion detection and response. In our local server, the training time

takes less than 15 minutes and 6 minutes for WUSTL-IIOT-2018 and UNSW-NB15, respectively.

The prediction time for the test datasets takes approximately 0.7 seconds (WUSTL-IIOT-2018)

and 0.4 seconds (UNSW-NB15). However, for the NSL-KDD dataset, the models show a

lower accuracy (less than 87%). This can be explained by the fact that this dataset was built
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Figure 4.8 Accuracy of anomaly detection models using

binary-labelled WUSTL-IIOT-2018 dataset

Figure 4.9 Accuracy of anomaly detection models using

binary-labelled NSL-KDD dataset

deliberately from hard-to-classify samples. Therefore, the classification in this dataset presents

more challenges compared to other datasets.
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Figure 4.10 Accuracy of anomaly detection models using

binary-labelled UNSW-NB15 dataset

4.5.2 The attack classification model

The second part of the experimentation concerns the attacks classification model. Since the

published WUSTL-IIOT-2018 dataset does not indicate the attack types, we only use the NSL-

KDD and UNSW-NB15 datasets. Table 4.6 and Table 4.7 present these datasets’ organization

for the multi-class classification.

Table 4.6 Attacks instances distribution in the

NSL-KDD dataset

Number of instances
Class KDDTrain+ KDDTest+
DOS 45,927 7,458

Probe 11,656 2,421

R2L 995 2,754

U2R 52 200

Total 58,630 12,833

The same DNNs, i.e., MLP, Simple RNN, LSTM, and CNN, are used to build the attack

classification models. Figure 4.11 and Figure 4.12 illustrate the accuracy of the models on
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Table 4.7 Attacks instances distribution in the

UNSW-NB15 dataset

Class Number of instances
Fuzzers 24,246

Analysis 2,677

Backdoors 2,329

DoS 16,353

Exploits 44,525

Generic 215,481

Reconnaissance 13,987

Shellcode 1,511

Worms 174

Total 321,283

NSL-KDD and UNSW-NB15 datasets, respectively. For every model, the presented accuracy is

obtained from the tuned hyper-parameters.

Figure 4.11 Accuracy of attack classification models using

categorized-labelled NSL-KDD dataset

This experiment confirms that the attack classification may require complex DNNs and a long

training time. With NSL-KDD, the best accuracy of 87.66% was provided by the CNN model,

followed by the LSTM model with 86.99% accuracy. Compared to previous works that employed

the NSL-KDD dataset, the proposed collaborative DNN-based IDS shows better prediction
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Figure 4.12 Accuracy of attack classification models using

categorized-labelled UNSW-NB15 dataset

accuracy. Table 4.8 compares these previous solutions with our attack classification model

(Four-category classification). With UNSW-NB15, the best accuracy of 99.63% was also

provided by the CNN model, followed by the LSTM model with 92.43% accuracy. Compared to

previous works that employed the UNSW-NB15 dataset, the proposed collaborative DNN-based

IDS shows again better prediction accuracy. Table 4.9 compares these previous solutions with our

attack classification model (nine-category classification). In our experimentation environment,

the training of the attack classification models can take several hours, and the prediction takes

approximately 10 seconds and 3 minutes 36 seconds for NSL-KDD and UNSW-NB15 test

datasets, respectively. However, as this task can be done in the cloud, the complexity can be

handled thanks to the availability of more computation resources.

This experiment demonstrates that this approach is efficient for intrusion detection in mission-

critical smart factories. The anomaly detection is performed locally with a lightweight DNN,

which offers an ultra-low latency IDS for fast response in the IRS. Then, a larger DNN deployed

in the cloud provides a robust attack classification for more precise responses in the IRS, i.e.,

responses that launch adequate mitigation measures according to the category of the detected

attacks.
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Table 4.8 Comparison with solutions that exploits the NSL-KDD dataset

for multi-class classification

Methods used Accuracy
Proposed collaborative deep learning-based IDS 87.66 %

Methods in [Tavallaee et al. (2009)]:

- NBTree

- Random Tree

- Decision Trees J48

- Random Forest

- MLP

-

82.02 %

81.59 %

81.05 %

80.67 %

77.41 %

Methods in [Bajaj & Arora (2013)]:

- SimpleCart

- MLP

-

82.32 %

73.54 %

RNNs [Yin et al. (2017)]. 81.29 %

ANN with tansig transfer function,Levenberg-

Marquardt (LM) and BFGS quasi-Newton Back-

propagation [Ingre & Yadav (2015)]

81.20 %

A Two-Layer Dimension Reduction and Two-

Tier Classification Model [Pajouh et al. (2019)]
84.86 %

Two-stage intrusion detection technique combin-

ing Naive Bayes and k-means [Vishwakarma & Kesswani (2022)]
86.46 %

4.6 Conclusion

A deep learning-based IDS produces better predictions for future networks, but the more complex

the neural network structure, the greater its impact on latency. To leverage these innovative

learning models and deal with the latency requirement of ICSs, this work introduced a time

complexity analysis of the DNN algorithms to highlight the variables with the most impact on

the training and prediction latency. Based on this analysis, a collaborative DNN-based IDPS

that employs two classification models is proposed. The first model employs a lightweight

DNN that performs low latency anomaly detection, i.e., a simple binary classification. This

lightweight DNN is deployed on local servers to allow faster threat detection and emergency

response. The second model performs attack classifications of the anomalous traffic to guide the

intrusion response tasks. This second classifier can be deployed in the cloud to benefit from

more computation resources to run more complex DNNs.
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Table 4.9 Comparison with solutions that exploits the UNSW-NB15 dataset for

multi-class classification

Methods used Accuracy
Proposed collaborative deep learning-based IDS 99.63 %

Methods in [Moustafa & Slay (2016)]:

- Decision Tree

- Logistic Regression

- Naïve Bayes

- Artificial Neural Network

- Expectation-Maximisation Clustering

-

85.56 %

83.15 %

82.07 %

81.34 %

78.47 %

Random Forest using different subsets of

features [Janarthanan & Zargari (2017)]:

- Subset 2

- Subset 1

-

81.61%

75.66 %

Deep neural network models in [Čavojský, Bugár & Levický (2023)]:

- Dense-layer

- LSTM

-

79.34%

79.21 %

Extreme gradient boosting

(XGBoost) [Husain, Salem, Jim & Dimitoglou (2019)] 75.88 %

Support Vector Machine [Jing & Chen (2019)] 75.77 %

Moreover, an SDN-based deployment architecture of the proposed collaborative IDPS in ICS

networks was presented. This architecture provided an efficient implementation of the IDPS

with key innovative features, such as on-demand resources monitoring on the IDS and real-time

response on the IRS. Furthermore, this work proposed various detection features, response

measures, and implemented different learning methods, including CNN, LSTM, RNN, and

MLP. The experimentation, which was performed on three datasets with different challenges,

demonstrated the efficiency of the proposed approach. This can be further improved by

investigating more DNNs in our future research.



CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion and Lessons Learned

The global IoT market size, valued at 380 billion U.S. dollars (USD) in 2021, is projected to grow

from 478 billion USD in 2022 to 2.4 trillion USD by 2029, exhibiting a compound annual growth

rate (CAGR) of 26.4% during the forecast period [Al-Sarawi, Anbar, Abdullah & Al Hawari

(2020); Bhuiyan, Rahman, Billah & Saha (2021); Taşıran (2019)]. This growth will be

fueled by emerging technologies, like low-power wireless communication protocols, SDN,

cloud/edge computing, and 5G high-speed and massive connectivity. Meanwhile, security risks

for IoT applications are becoming increasingly critical, with a large attack surface, numerous

vulnerabilities, and a diverse and increasing number of sophisticated attacks. This is particularly

concerning since most traditional ICT security mechanisms are not suitable to IoT specifications

and resource constraints. In this context, numerous research works are aiming to provide suitable

security solutions to protect IoT applications, and IDPSs, as an essential security layer, have

become one of the most active IoT research domains.

From a full cyber-security framework perspective, intrusion detection is the second main security

layer which provides real-time events monitoring, attack detection and alerts to the intrusion

prevention layer, which can automatically apply response measures to block attacks. Indeed,

IDPSs are empowering the security of many applications by enabling the detection and mitigation

of intrusion attempts (successful or failed) to violate systems security principles. In particular,

this thesis targeted the design of an intelligent IDPS that detects a large variety of IoT attacks

with high accuracy in a deployment model that reduces the detection latency and facilitates the

systems’ scalability. In this vein, this thesis proposed promising collaborative IDPS approaches

for future IoT applications. Specifically, the contributions of the thesis are summarized as

follows:
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- In Chapter 2, we proposed various detection features that can enhance ML-based IDSs.

We evaluated the efficiency of the proposed features using different ML algorithms. The

experimentation demonstrated the predominant role of feature identification on the ML

models’ performance. Particularly, the results showed that traffic features are more effective

in detecting probing and DoS attacks, while content features are more effective in detecting

U2R and R2L attacks. Combining these features with other relevant features, such as

TCP/IP packet headers and features based on wireless communication significantly improves

ML-based IDSs’ ability to detect a wide range of attacks with high accuracy.

- In Chapter 3, we proposed a hybrid multistage DNN-based IDPS for high-risk IoT applications.

In the training phase, each new stage used a different DNN and was trained with the data

that were misclassified or classified with low confidence by the previous stage’s DNN.

This allowed new stage DNNs to focus on the limitations of the previous stages. At the

prediction phase, the resulting multistage DNN used each stage’s decision in a function

to produce final decisions. The experimental evaluation showed that this approach offers

better classification accuracy at the cost of increased latency and is much more suitable for

high-risk IoT applications that cannot afford to trade off security for latency.

- Chapter 4 provided a collaborative DNN-based low-latency IDPS for mission-critical IoT

applications. We conducted a time complexity analysis of neural networks and designed a

deep learning-based collaborative IDPS that employed two levels of classifications. The

first level performed a lightweight DNN-based anomaly detection in local servers to allow

fast attack detection and response. The second level performed the classifications of the

anomalous traffic in cloud servers to guide the intrusion response tasks. In addition, an

SDN-based deployment architecture of the proposed collaborative IDPS in ICSs was provided.

Experimentations demonstrated the efficiency of the proposed approach in terms of detection

accuracy and latency.



141

As a summary, according to the conducted research, valuable lessons we learned are listed as

follows:

- The detection features identification and extraction are fundamental for intrusion detection

in IoT. Fully exploring and exploiting relevant detection features can improve the ability to

detect a large variety of attacks with high accuracy.

- Ensemble and collaborative machine learning models are especially promising as each model

can focus on part of the data patterns to provide accurate classification while the rest of the

patterns are learned by other models.

- A distributed deployment architecture of the detection models where edge-based and cloud-

based modules are combined can significantly improve the detection latency.

- The performance of the IPS can be enhanced by leveraging SDN-based deployment architec-

ture as it enables the network to be intelligently and centrally controlled and automatically

reprogrammed and reconfigured to mitigate detected attacks.
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5.2 Recommendations: Intrusion Detection and Prevention for 6G IoT Networks

The sixth generation of wireless technology (6G) envisions the realization of the internet of

everything (IoE), a collection of billions of heterogeneous devices operating in a connected

intelligence [Alwis, Kalla, Pham, Kumar, Dev, Hwang & Liyanage (2021); Saad, Bennis & Chen

(2020); Siriwardhana, Porambage, Liyanage & Ylianttila (2021)]. Some fundamental security

models will not be practical for the IoE in 6G, especially with the small form factor devices,

such as in-body sensors. For instance, key distribution and management functions may be highly

inefficient in massive networks [Wang, Wang, Alipour-Fanid, Jiao & Zeng (2019)]. The resource-

constrained IoT devices, which cannot afford complicated cryptography to maintain strong

security, will remain a primary target for attackers. Moreover, new attack models are emerging

continuously with increased levels of sophistication and evasion, especially AI-powered cyber

attacks [Guembe, Azeta, Misra, Osamor, Fernandez-Sanz & Pospelova (2022); Kaloudi & Li
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(2020); Veprytska & Kharchenko (2022)]. These challenges will require security approaches

that can provide proactive IDPSs for threat discovery and the application of intelligent mitigation

techniques. Regarding these requirements and challenges, some potential directions for future

research are discussed below.

5.2.1 ML Techniques to Overcome the Lack of Learning Datasets

The lack of labelled datasets remains a major challenge in learning-based IDSs, since obtaining

sufficient labelled samples is cumbersome and requires the efforts of domain experts [Aouedi,

Piamrat, Muller & Singh (2022,2); Huang, Yang & Gong (2022)]. Another related challenge is

the lack of attack samples, which generally causes highly imbalanced datasets with significant

drawbacks in the learning performance [Nie, Wu, Wang, Guo, Wang, Gao & Li (2022); Park,

Lee, Kim, Park, Kim & Hong (2022)]. To overcome these limitations, semi-supervised learning

and generative adversarial networks (GANs) can play a key role in providing more learning data.

Semi-supervised learning addresses the challenge by considering large amounts of unlabeled

samples together with the labelled samples to build the detection models. Meanwhile, GANs can

solve the insufficient samples problem, especially the attack samples. The generator in GANs

can theoretically generate data, which can greatly expand the diversity of samples.

5.2.2 Network Softwarization for Effective Intrusion Prevention

Network softwarization technologies in 5G, such as SDN, NFV, and network slicing are still appli-

cable for 6G systems; thus, their security benefit will remain in 6G [Abdulqadder & Zhou (2022);

Hashima, Fadlullah, Fouda, Mohamed, Hatano, ElHalawany & Guizani (2022); Siriwardhana

et al. (2021)]. These paradigms can introduce new security enablers, such as real-time adaptive

reconfiguration of the network to tackle intrusion attempts. Specifically, thanks to the SDN

centralized controller with real-time feedback control capability and the greater programmability

of the network, it will be possible to implement proactive IPSs with intelligent intrusion response
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capabilities to increase the level of IoT systems’ protection. Moreover, NFV has the potential to

enable flexible and on-demand deployment of virtual network security functions to optimize IoT

systems’ protection.

5.2.3 Blockchain-based Collaborative IDPSs

In collaborative IDPSs, the modules need to exchange data with each other. However, data and

trust management remain two challenges for current IDPS architectures, which may degrade the

effectiveness of such security systems. Blockchain technology is a decentralized and distributed

ledger that enables recording transactions across a set of nodes [Monrat, Schelén & Andersson

(2019); Samaniego, Jamsrandorj & Deters (2016)]. It can be implemented in a peer-to-peer

network without the need for a trusted third party. Blockchain technology has shown its

adaptability in many fields, such as edge computing, spectrum sharing, federated learning, and

network virtualization [Hewa, Gür, Kalla, Ylianttila, Bracken & Liyanage (2020); Nguyen, Tran,

Loven, Partala, Kechadi & Pirttikangas (2020)]. As blockchain can protect the integrity of

data storage and ensure process transparency, it has the potential to be applied to collaborative

intrusion detection and prevention models [Li & Meng (2022); Liu, Zhang, Zhang, Zhou, Shao,

Pu & Zhang (2021); Meng, Tischhauser, Wang, Wang & Han (2018)].

5.2.4 Reinforcement Learning and Game Theory for Intelligent IDPS

Due to the dynamic nature of IoT topologies, IDPSs face numerous challenges, especially in

balancing accuracy and efficiency. In this context, reinforcement learning and game theory

can enhance IDPSs’ perception of the environmental change and their adaptability to different

scenarios [Hammar & Stadler (2022); Liang, Ma & Tan (2022)]. Moreover, reinforcement

learning can automatically find security strategies for intrusion prevention. This approach

can enable evolutive attack defence strategies without human intervention [Hammar & Stadler

(2020)]. Furthermore, game theory can help optimize the system by switching some modules’
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status to active or idle to reduce the IDPS’s energy consumption, overhead, and detection time

[Arisdakessian, Wahab, Mourad, Otrok & Guizani (2022); Han, Zhou, Jia, Dalil & Xu (2019)].
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