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De la Théorie à la Simulation : Plongée dans la Dynamique de la Turbulence de Burgers

Kiarash Jalali

RÉSUMÉ

Cette thèse présente une exploration complète des dynamiques des équations de Burgers linéaires

et non linéaires dans le contexte de la turbulence de Burgers unidimensionnelle. La phase

initiale de la recherche examine comment la viscosité influence les solutions de ces équations, en

mettant l’accent sur l’interaction entre les effets inertiel et visqueux et en explorant la variation

de la dissipation à travers différents nombres d’onde et échelles.

L’étude déplace ensuite son focus vers la turbulence de Burgers, en commençant par une

caractérisation statistique approfondie de la turbulence de Burgers en décroissance. Cela inclut

une analyse des spectres d’énergie, de la densité de probabilité et de divers moments centraux. La

recherche s’étend davantage à l’investigation de la turbulence de Burgers forcée sous différentes

conditions initiales et termes de forçage. Un aspect clé de cette investigation est l’examen du

développement de l’Énergie Cinétique Turbulente dans la turbulence de Burgers forcée et de

son invariance aux changements du nombre de Reynolds. Nos résultats confirment que, une

fois l’équilibre atteint, les profils de vitesse démontrent une remarquable constance à travers

différents nombres de Reynolds, s’alignant sur les observations de la littérature. De plus, comme

preuve de l’auto-similarité dans la turbulence de Burgers en décroissance, une auto-similarité

jusqu’à la corrélation d’ordre quatre du champ de vitesse a été observée.

De plus, cette thèse met en évidence le comportement unique de l’équation de Burgers par

rapport à la turbulence de Navier-Stokes, soulignant sa sensibilité réduite aux conditions initiales

et l’absence de dynamiques chaotiques, en plus de sa capacité d’adaptation aux influences

externes. L’étude se conclut par un examen approfondi des caractéristiques statistiques de la

turbulence de Burgers forcée, incluant le spectre d’énergie, les fonctions de densité de probabilité

(PDF), les fonctions de corrélation et divers moments statistiques, fournissant des aperçus

significatifs sur les complexités de la turbulence.

Les découvertes de cette étude contribuent au champ plus large de la dynamique des fluides,

améliorant notre compréhension des phénomènes de turbulence.

Mots-clés: Dynamique statistique de la turbulence de Burgers, Turbulence de Burgers forcée,

Turbulence de Burgers décroissante, Équation d’advection-diffusion, Simulations numériques de

la turbulence de Burgers, Simulation Numérique Directe (SND), Méthode spectrale de Fourier

Galerkin





From Theory to Simulation: Delving into the Dynamics of Burgers Turbulence

Kiarash Jalali

ABSTRACT

This thesis presents a comprehensive exploration of the dynamics of linear and non-linear

Burgers equations in the context of one-dimensional Burgers turbulence. The initial phase of the

research examines how viscosity influences the solutions of these equations, emphasizing the

interaction between inertial and viscous effects and exploring the variation of dissipation across

different wavenumbers and scales.

The study then shifts its focus to Burgers’ turbulence, beginning with an in-depth statistical

characterization of Decaying Burgers’ turbulence. This includes an analysis of energy spectra,

inverse cascade of energy, probability density, and various central moments. The research further

extends to the investigation of Forced Burgers’ turbulence under varying initial conditions and

forcing terms. A key aspect of this investigation is examining the development of Turbulent

Kinetic Energy in forced Burgers turbulence and its invariance to changes in Reynolds number.

Our findings confirm that, upon reaching equilibrium, velocity profiles demonstrate remarkable

consistency across different Reynolds numbers, aligning with the literature’s observations.

Furthermore, the thesis highlights self-similarity in decaying Burgers turbulence, evident up to

the fourth-order correlation of the velocity field.

Furthermore, this thesis establishes the unique behavior of the Burgers equation in contrast to

Navier-Stokes turbulence, highlighting its diminished sensitivity to initial conditions and the lack

of chaotic dynamics, alongside its adaptability to external influences. The study concludes in an

extensive examination of the statistical characteristics of forced Burgers turbulence, including

energy spectrum, probability density functions (PDFs), correlation functions, and various

statistical moments, providing significant insights into the complexities of turbulence.

The findings of this study contribute to the broader field of fluid dynamics, enhancing our

comprehension of turbulence phenomena.

Keywords: Statistical dynamics of Burgers turbulence, Forced Burgers turbulence, Decaying

Burgers turbulence, Advection-diffusion equation, Numerical simulations of Burgers turbulence,

Direct Numerical Simulation methods (DNS), Fourier-Galerkin spectral method
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INTRODUCTION

In the diverse and intricate realm of fluid dynamics, turbulence stands as one of the most complex

phenomena to understand and model. Its unpredictable nature and intricate structures challenge

physicists and engineers alike, manifesting in everything from the gentle flow of rivers and

the dynamic patterns of the atmosphere to the formation of large cosmological structures. At

the heart of this challenge lies the enigmatic concept of Burgers turbulence, a simplified yet

profoundly insightful model for understanding nonlinear dynamics and shock formation in fluids.

Originating from the fundamental Burgers equation, this model serves as a cornerstone in the

study of turbulence, offering a more manageable framework for exploring the chaotic behavior

of fluid flows. Despite its relative simplicity compared to the full Navier-Stokes equations,

Burgers turbulence provides a rich platform for examining fundamental aspects of turbulence,

including chaos theory and nonlinear dynamics, the existence and smoothness problem, energy

dissipation, statistical properties, and pattern formation (Bec & Khanin, 2007).

This thesis delves into the statistical dynamics of Burgers turbulence, a realm where classical

physics and sophisticated mathematical modeling converge, offering unique insights into the

behavior of turbulent systems. By employing the Fourier-Galerkin numerical method, this

research aims to unravel the complexities of both decaying and forced Burgers turbulence,

bridging gaps in our current understanding and contributing to the broader field of fluid dynamics.

The renowned Burgers equation as a quasi-linear parabolic equation first appeared in an article

by Bateman (1915).

The interest to the Burgers model equation of turbulence, which is the investigation of the

behaviours of multi-dimensional pressure less Burger’s equation with random initial conditions

or random forcing increased during the last decades. The motivation for this interest is the

simplicity of Burgers turbulence as a nonlinear system out of equilibrium in addition to the

applications of the class of Burgers equations including cosmology, statistical physics and the

fluid dynamics. The study of adhesion model in cosmology, the random Lagrangian system of
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PDEs, the theory of dynamical systems and the multiscale theory of hydrodynamic turbulence are

some of the areas which progressed by the developments in Burgers turbulence (Bec & Khanin,

2007).

A key characteristic of this class of equations is that despite having smooth initial data and

forces, the solution can still create abrupt changes or shocks (Bakhtin, 2013).

Our research primarily centers on exploring the dynamics of linear and non-linear Burgers

equations. To achieve this, we initiate our investigation by examining how viscosity influences

the solutions of these equations, paying special attention to the interaction between inertia and

viscous effects. We then further explore how viscosity specifically impacts this interaction. In

the subsequent subsection, we demonstrate how dissipation varies with different wavenumbers

across various scales.

We then redirected our focus to Burgers turbulence, starting with decaying Burgers turbulence.

Our attention was concentrated on a more thorough statistical characterization of the flow, which

included analyzing the energy spectra, probability density and various central moments. We then

discussed the phenomenon of inverse energy cascade following the research work conducted by

Girimaji & Zhou (1995). Additionally, revisiting the study carried out by Sefik & Christov, we

explored the stochastic self-similarity in multi-point higher-order correlation functions of the

velocity field (Sefik & Christov, 1992).

We subsequently extended our research to investigate the characteristics of the forced Burgers

turbulence accompanied by various initial conditions and forcing terms. We endeavor to validate

the research conducted by Jeng & Meecham (1972), focusing on crucial questions such as whether

the development of turbulent kinetic energy (TKE) in forced Burgers turbulence is invariant to

changes in Reynolds number. Building upon their findings, our study also demonstrates that,

upon reaching equilibrium, velocity profiles exhibit remarkable consistency across different

Reynolds numbers (Jeng & Meecham, 1972).

Furthermore, building upon Jeng (1969) research, we confirm that, unlike the Navier-Stokes
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turbulence which is highly sensitive to initial conditions, the Burgers equation displays a lack of

chaotic dynamics and reduced sensitivity to initial conditions. We also conducted an in-depth

exploration of the statistical characteristics of forced Burgers turbulence, which play a vital role

in understanding complex turbulence. This included a thorough analysis of the energy spectrum,

probability density functions (PDFs), correlation functions, and various statistical moments.

The complexities of Burgers turbulence necessitate a robust and precise methodological approach

to explore its intricate details. To achieve this aim, we employed the Fourier-Galerkin numerical

method, a powerful tool renowned for its effectiveness in studying nonlinear dynamical

systems. This method excels in decomposing complex nonlinear patterns into simpler sinusoidal

components, enabling a more detailed and accurate analysis of turbulent flows.

In the context of Burgers turbulence, the Fourier-Galerkin method offers a significant advantage.

It provides clear insights into the energy spectrum and the dynamic interactions within the

turbulence, essential for understanding both decaying and forced scenarios. This approach

is particularly suited to our study as it handles the periodic boundary conditions commonly

associated with Burgers turbulence simulations. Moreover, its spectral convergence and capacity

for high-resolution modeling make it an ideal choice for examining the intricate details of the

statistical dynamics of turbulence (Canuto, 2006).

This thesis aims to advance our understanding of the statistical dynamics of Burgers turbulence,

an area crucial to the broader field of fluid dynamics, by employing the Fourier-Galerkin

numerical method. Through this investigation, the study seeks to uncover nuanced aspects of

both decaying and forced Burgers turbulence, offering insights into their behavior and properties.

The research will not only address existing gaps in the theoretical understanding of Burgers

turbulence but also demonstrate the efficacy of the Fourier Galerkin method in providing a

comprehensive and detailed analysis of such complex fluid systems.





CHAPTER 1

THE STARTING POINT: UNDERSTANDING THE PROBLEM

Burgers equation is a fundamental partial differential equation. It’s often used to model shock

waves, cosmological events, simulate traffic flow, detonation propagation (reactive Burgers),

and examine fluid dynamics among other things. This equation comes in various forms, each

serving different physical phenomena.

1.1 A Comprehensive Review of Burgers Turbulence Research

This literature review delves into the study of the dynamics of Burgers turbulence, a key area

in fluid dynamics that simplifies the complexities of turbulent flows. It critically examines the

evolution of research on both forced and decaying Burgers class of equations, highlighting

seminal theories and significant advancements. The review particularly focuses on the dynamics

of one-dimensional Burgers turbulence.

1.1.1 Interplay of Inertia and Viscosity in Burgers Turbulence

In the study of Burgers turbulence, the dynamics of fluid motion are encapsulated by two

principal terms within the Burgers equation: the advection and diffusion terms. These terms

are pivotal in modeling the fundamental physical effects of inertia and viscosity, respectively,

offering insights into the behavior of fluids under turbulent conditions.

• Advection Term and Inertial Effects: The advection term, denoted as 𝑢 𝜕𝑢
𝜕𝑥 where 𝑢 represents

the fluid velocity, characterizes the inertial effects within the fluid dynamics. This term

illustrates how fluid parcels transport their momentum as they traverse the flow field. It

encapsulates the non-linear interactions within the fluid’s velocity field, mirroring the

convective dynamics seen in the Navier-Stokes equations. The essence of this term lies in its

ability to depict the tendency of fluid elements to retain their momentum, highlighting the

influence of inertia on the flow’s evolution (Taigbenu, 1999a).
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• Diffusion Term and Viscous Effects: On the other hand, the diffusion term, expressed as 𝜈 𝜕
2𝑢

𝜕𝑥2

with 𝜈 being the kinematic viscosity, reflects the viscous effects within the fluid. Viscosity,

the fluid’s internal friction, acts to dissipate energy, thereby smoothing velocity gradients and

attenuating turbulence at finer scales. This term fundamentally represents how momentum is

diffused across the fluid due to viscous forces, emphasizing the role of viscosity in shaping

the flow’s characteristics, especially in mitigating sharp discontinuities and shock formations

(Taigbenu, 1999a).

Together, the advection and diffusion terms in the Burgers equation provide a simplified yet

profound framework for examining fluid behavior, particularly under turbulent conditions. The

equation’s structure allows for a detailed exploration of how inertia and viscosity, two core

aspects of fluid dynamics—interact to dictate the flow’s behavior. Through the lens of Burgers

turbulence, we gain valuable insights into the complex phenomena of turbulence and shock

wave formation, underscoring the intrinsic relationship between inertial forces that promote

fluid motion and viscous forces that seek to dampen and stabilize it. This duality forms the

cornerstone of our understanding of fluid mechanics, offering a gateway to unraveling the

complexities inherent in turbulent flows.

1.1.2 Advection-Diffusion equation

The advection-diffusion equation, which is the linearized form of the Burgers Equation, is a

combination of two sources of flux which are diffusion and advection (the transport); and defines

of any physical quantities such as temperature, concentration, or momentum as they transport into

or out of a system. There has been appreciable interest in finding the solution to the advection-

diffusion equation analytically and numerically during the last decades (Logan & Zlotnik, 1995).

A time dependent advection-diffusion equation contains a linear advection term 𝑎.∇𝑢 and a

diffusion term 𝜈∇2𝑢 and is given by,

𝜕𝑢

𝜕𝑡
+ 𝑎.∇𝑢 = 𝜈∇2𝑢 (1.1)
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where 𝑢 is the velocity variable, 𝑎 > 0 is the constant advection velocity, 𝜈 is the kinematic

viscosity, and 𝑡 is the time. Despite the linear nature of the advection-diffusion equation, a

closed-form analytical solution remained elusive in the literature until the 2016 publication

by A. Mojtabi and M. Deville. Prior to this, the majority of research efforts were focused on

solving the linear advection-diffusion equation with an upstream boundary condition coupled

with a Robin or Neumann downstream condition, rather than a periodic boundary condition

(Mojtabi & Deville, 2015). The closed-form solution of this equation, subjected to periodic

boundary conditions, is detailed in section 2.9.

Numerous studies have been conducted to explore the impact of varying viscosity on the

advection-diffusion equation. This includes an analysis of the equation under conditions of

diminishing viscosity by Moura, Sherwin & Peiró (2016) and Singh & Das (2019). They

conducted research works to investigate how the diffusive solution of the advection-diffusion

equation behaves under the influence of non-linear reactions across different conditions using

finite difference numerical schemes. We also performed simulations to discuss viscous effects

with various kinematic viscosities.

1.1.3 Freely Decaying Burgers Turbulence

During the last century, researchers made great efforts to simplify the Navier-Stokes turbulence

model. One effort in the late 1930s by a Dutch scientist, J M Burgers, was the suggestion of a

one-dimensional pressure-less model (Burgers, 1939).

𝜕𝑢

𝜕𝑡
+ 𝑢.∇𝑢 = 𝜈∇2𝑢 (1.2)

This model, now known as the viscous Burgers equation, is the combination of non-linear

advection with linear diffusion and is the simplest mathematical formulation to analyze the

mixed effects of the advection and diffusion motions.

J. M. Burgers introduced this equation as a model to describe turbulence; however, it was

disclosed that this model could not explain turbulent flow adequately. The idea that the Burgers

equation can be used instead of the Navier-Stokes equation failed after Hopf (1950), and (Cole,
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1951) revealed that the decaying Burgers equation could be solved by explicit integration. So,

contrary to Navier-Stokes, the small disturbance in the initial conditions and, consequently, the

spontaneous growth of randomness by chaotic dynamics does not affect the solution of the

Burgers equation.

It is one of the simplest non-linear unsteady PDEs which possesses general closed-form

solutions as discussed by Benton & Platzman (1972) and has very exclusive characteristics.

The solutions to the Burgers equation look like that of the kinematic wave equations when

the inertia or convective terms are dominant. In this case, the Burgers equation behaves like

a hyperbolic PDE. On the other side, its behavior resembles a parabolic equation when the

viscous terms are dominant (Taigbenu, 1999b). This model has a lot in common with the

Navier-Stokes equation, including the same hydrodynamical (advective) non-linearity, which

is regularized by the diffusion term, in addition to the similar invariance and the conservation

laws (conservation of energy and momentum in non-viscous fluids) (Bec & Khanin, 2007).

The Burgers equation, while simpler than the Navier-Stokes equations, captures the essential

nonlinearity that produces shocks or discontinuities in fluid dynamics. Studying its behavior

provides insights into the complex behaviors of actual fluid flows, especially in the context of

shock formation and propagation. The spectral interactions in Burgers turbulence are more

straightforward to study due to the one-dimensional nature of the velocity field (Girimaji & Zhou,

1995), compared with the three-dimensional nature of vorticity fluctuations in Navier-Stokes

turbulence (Tennekes & Lumley, 1978).

Another prominent aspect of solutions to the Burgers equation is the emergence of shocks at

high Reynolds numbers, which are the primary regions of kinetic energy dissipation. On the

other hand, areas of intense velocity gradient in isotropic Navier-Stokes turbulence at similar

Reynolds numbers exhibit less singular behaviors, and do not seem to be noticeable locations for

energy dissipation (Gotoh & Kraichnan, 1993).

The numerical simulation of Burgers’ turbulence, first documented by Jeng et al. in 1966,

provided insights into the energy spectrum and the correlation function (Jeng, Foerster,

Haaland & Meecham, 1966). These results were subsequently reported by A. Giorgini

(Giorgini & Fluid Mechanics and Diffusion Laboratory, 1967) and confirmed by H. Tokunaga
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(Tokunaga, 1976).

A different perspective on the dynamics of Burgers turbulence, in contrast to 3D Navier-Stokes

turbulence, was provided by Saffman in 1968, including a unique functional form for the inertial

subrange spectrum that exhibits a 𝑘−2 behavior (Saffman, 1968), unlike Kolmogorov 5/3 law.

In a 1970 article titled "Gravitational Instability," Zel’dovich demonstrated that the Burgers

equation could be applied to the study of the formation of large-scale structures in the Universe

(Zel’dovich, 1970).

In the 1980 research works, Christov, C.I., and colleagues illustrated how nonlinearity in Burgers

turbulence converts an initial Gaussian random velocity field into a series of coherent structures

with predictable average shapes (Christov, 1980). Subsequent studies delved deeper into the

interactions among these coherent structures. Specifically, Christov in 1990 examined these

structures within decaying homogeneous turbulence, employing hierarchy techniques to relate

higher-order moments (cumulants) to the lower-order ones (Christov, 1990). These coherent

chain structures, which attracted significant interest in the 1970s, highlight a key aspect of

turbulence research which is the ability of nonlinear interaction to generate a cascade of random

time-invariant structures when subjected to periodic forces (Rabinovich & Sushchik, 1983) that

will be discussed in the next section.

In their 1991 study, B. Sefik and C.I. Christov proposed that in the case of Burgers turbulence

with decaying initial conditions, a form of statistical self-similarity emerges over time. This

leads to the preservation of the shape of correlation functions up to the fourth order. To this

aim, they derived correlation functions in various orders. In our research, we have verified their

findings with strong agreement.

In 1992, Zhen-Su She and colleagues explored the solution to decaying Burgers turbulence in

the limit of vanishing viscosity, focusing on fractal Brownian and Brownian initial velocity fields

(She, Aurell & Frisch, 1992). Their work complemented the research conducted by Ya. Sinai in

the same year, which delved into the number and locations of shocks and examined the scaling

properties of various statistical quantities (Sinai, 1992).

In 1993, Gotoh et al. embarked on a comprehensive study of the statistics of decaying Burgers

turbulence. This research included an examination of the power-law tail of the probability density
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function (PDF), observation of intermittency in the PDF of density due to infinite compressibility

and mass accumulation at shock regions, analysis of the wavenumber spectra, showing a great

agreement with the behavior of the energy spectrum in the inertia range compared to the earlier

studies, 𝑘−2 scale, and finally presenting new insights into the high-order moments at low and

moderate Reynolds numbers (Gotoh & Kraichnan, 1993).

In 1995, Girimaji & Zhou demonstrated the occurrence of inverse energy transfer in one-

dimensional Burgers turbulence, in contrast to three-dimensional Navier-Stokes turbulence

where inverse energy transfer is prohibited. However, the question of whether this energy transfer

takes the form of a cascade was left unresolved (Girimaji & Zhou, 1995).

Building upon previous studies, J. Bec and U. Frisch, in their 1999 research, demonstrated the

existence of a power-law tail in the PDF of the velocity variant in decaying Burgers turbulence

defined in the Lagrangian map, particularly in the context of vanishing viscosity (Bec & Frisch,

2000).

This model occurs in various mathematical areas, including fluid dynamics, non-linear acoustic,

gas dynamics, and vehicle traffic models (Jaiswal, Chopra & Das, 2019).

As previously noted, the investigation of the Burgers model has been shown to offer qualitative

insights into the actual turbulence, as was noted by Jeng (1969). Following this, from the

1980s onwards, researchers, predominantly physicists, have pivoted their attention to the multi-

dimensional aspects of the Burgers equation. This shift involves examining the random solutions

generated by various initial conditions or random forcing terms, a topic we will delve into in the

following subsection.

1.1.4 Forced Burgers turbulence

This model appears in a variety of applications, including statistical physics in condensed matter,

adhesion model in cosmology, and as a testing ground for certain types of theories of turbulence

in fluid dynamics, especially for the ones applied to compressible hydrodynamics, statistical

theory of turbulence and various Lagrangian problems (Bec & Khanin, 2007).

The forced Burgers equation, similar to its decaying counterpart, maintains the same fundamental
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structure, including a nonlinear convective term and a linear viscous term, both of which contribute

to its nonlinear behavior. This nonlinearity is essential for understanding the dynamics of

complex systems. However, in contrast to the unforced Burgers equation, the forced variant does

not have a general closed-form solution due to the added complexity of the external forcing term.

One prominent feature of this equation is its ability to model a steady-state system where, despite

smooth initial data and forcing, the solution can still develop discontinuities or shocks (Bakhtin,

2013).

To derive the forced form of the Burgers equation we first consider the Kardar–Parisi–Zhang

(KPZ) equation (1.3) as a model, frequently studied to investigate different interface depositions

and growth problems in the presence of a random forcing term. This continuous ballistic

decomposition model is responsible for the side growth of the interface (Bec & Khanin, 2007).

𝜕ℎ

𝜕𝑡
− 1

2
|∇ℎ|2 = 𝜈∇2ℎ + 𝑓 (1.3)

The shocks that appear in the solution of the inviscid Burgers equation are correlated with the

discontinuities in the gradient of the height ℎ. This model is mainly helpful in studying the

growth of roughness in various interface problems (Bec & Khanin, 2007). In what follows, we

defined the multi-dimensional forced Burgers equation as a gradient of the KPZ model.

𝜕𝑢

𝜕𝑡
+ 𝑢.∇𝑢 = 𝜈∇2𝑢 − ∇ 𝑓 , 𝑢 = −∇ℎ (1.4)

Where the problem is forced by the function 𝐹 (𝑥, 𝑡) that acts as a mechanism through which

energy can be injected into the field. The outcome is a mechanism that introduces kinetic energy

to the largest scales and transfers it, through the energy cascade, to the smallest scales where

dissipation takes place.

Jeng (1969) pioneered the numerical simulation of forced Burgers turbulence, by using a random

initial Gaussian velocity field driven by Gaussian random forces. He discovered that the velocity

field maintains its Gaussianity, The condition of being Gaussian, progressively transitioning from

initial conditions and becoming more influenced by the driving force. This finding demonstrated

a lack of sensitivity to initial conditions in Burgers turbulence (Jeng, 1969).
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Forced Burgers turbulence with a random forcing term is frequently employed in modeling

diverse, complex and dynamic scenarios across various fields. This includes simulating the

chaotic and unpredictable nature of atmospheric and oceanic currents in atmospheric sciences,

characterizing the instabilities in various reaction-diffusion systems (Yakhot & She, 1988),

modeling the formation of large-scale structures in cosmology, and representing chaotic systems

in biology (Bec & Khanin, 2007).

In 1972, D. T. Jeng and W. C. Meecham numerically modeled forced Burgers turbulence with

a sinusoidal forcing term, a model intended to represent scenarios like the wind’s impact on

water wave formation, where it acts as a surrogate for wind drag as detailed in their study. They

illustrated that the evolution of TKE is unaffected by viscosity. Additionally, their findings

reveal that the velocity profile remains nearly identical across various Reynolds numbers, with

the exception of regions experiencing shocks (Jeng & Meecham, 1972).

In the 1995 research, Sharath et al. delved into an in-depth analysis of the energy spectrum,

the dynamics of energy transfer, the energy form of the Burgers turbulence; and spectral

interactions within Burgers turbulence under the influence of a random force at equilibrium.

They distinctly outlined how the energy spectra in Burgers turbulence differ from those in

Navier-Stokes turbulence, particularly emphasizing the spectral behavior within the dissipation

range. They also presented a notable contrast to Navier-Stokes turbulence, demonstrating that,

in Burgers turbulence, the small-scale structures are determined by large-scale parameters,

including characteristic velocity and characteristic length-scale (Girimaji & Zhou, 1995).

A. Chekhlov and V. Yakhot, in 1995, focused on studying the dynamics of velocity fluctuations

in one-dimensional Burgers turbulence, which were driven by a random force characterized as

white in time. They detected significant intermittency in the high-order statistical moments of

velocity differences with exponents close to unity, along with marked intermittencies within the

energy dissipation correlation function with intermittency exponent in the universal range, which

were influenced by large-scale shocks (Chekhlov & Yakhot, 1995b). In their subsequent research

in the same year, they concentrated on examining how coherent structures impact the shape

of the Probability Density Function (PDF) of the velocity fluctuations (Chekhlov & Yakhot,
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1995a).

In 1993, A.Polyakov noted a remarkable similarity between the steady flux states in turbulence

and irregularities in quantum field theory. He noted that in turbulent flow, the ultra-violet

regularization (a concept in quantum field theory to prevent the integrals from going to infinity),

which arises due to viscosity, leads to an energy flux traversing through the inertial range and

prevents the accumulation of infinite energy at specific scales (Polyakov, 1993). Following that

work, in another remarkable paper by A.Polyakov in December 1995, He again studied Burgers

turbulent, as a pressureless model, and formulated a new method for analyzing the inertial range

correlation functions based on quantum field theory, demonstrate that the intermittencies in

the correlation function of the dissipation rate observed by A.Chekhlov and V.Yakhot were

due to the breakdown of Galilean invariance, providing a comprehensive explanation for these

pronounced intermittencies (Polyakov, 1995).

In their 2003 study, J. Bec and K. Khanin focused on the shock dynamics in the inviscid,

randomly forced Burgers equation with a non-periodic forcing term. They investigated the

concept of global minimizer curves in the Lagrangian particle trajectories of statistically

stationary flows. By identifying areas where minimizers accumulate, they determined shock

positions, suggesting that all one-sided minimizers originating at a given time t would converge

backward-in-time to the trajectory of the global minimizer, which is indicative of the primary

shock. Their research revealed a stationary regime, corresponding to the velocities of one-sided

minimizers. They proposed that at any specific time (e.g., t=0) and location x, there is at least

one one-sided minimizer. However, due to the fluctuating positions of these minimizers, their

findings contradicted previous expectations by showing the absence of global minimizers. This

implies that each fluid particle is eventually absorbed by a shock after a certain period. Since all

shocks have a finite duration, they concluded that true main shocks do not exist in non-periodic

situations (Bec & Khanin, 2003).

In their comprehensive 2007 publication, J. Bec and K. Khanin presented an extensive review

and research on diverse facets of decaying, forced, and Kicked Burgers turbulence. Their work

delved deeply into both the statistical and numerical aspects of these phenomena, alongside an

exploration of the fundamental principles and laws applicable in this field (Bec & Khanin, 2007).
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The existence and uniqueness of global minimizers in Burgers turbulence with periodic forcing

were established and examined by Y. Bakhtin in 2013. He demonstrated the diffusive behavior

of these global minimizers in scenarios involving periodic forcing (Bakhtin, 2013).

In a very recent study, Sadhitro De et al., in 2023, undertook an extensive analysis of dynamic

multiscaling in the non-equilibrium yet statistically steady state of forced Burgers turbulence.

They introduced the innovative concept of "Interval Collapse Time," defined as the duration

for a spatial interval, identified by two Lagrangian tracers, to collapse at a shock. Additionally,

they performed calculations of the dynamic scaling exponents across various orders of moments

of these interval times. The research uncovered an array of characteristic time scales and

established that the probability distribution function of the interval collapse times is distinctly

non-Gaussian, characterized by a power-law tail (De, Mitra & Pandit, 2023).

1.2 Research objectives and aims: Investigating Burgers Turbulence

This thesis compiles a series of investigations aimed at elucidating various dynamical aspects

of Burgers turbulence. By delving deep into these dynamics, the research aims to study

the fundamental principles that govern the evolution and statistical characteristics of Burgers

turbulence, thereby contributing to the broader field of fluid dynamics with novel insights and

methodologies.

• Our inquiry begins with an exploration of the dynamics governed by linear and non-linear

Burgers equations. We delve into understanding the impact of viscosity on the solution of

these equations, assessing the intricate interplay between inertial and viscous effects. A

significant portion of our study is dedicated to dissecting how viscosity and scale differences

influence this dynamical interaction.

• In the research objectives section of my thesis, we aim to conduct a comprehensive analysis

of dissipative Burgers turbulence. Our initial focus will be on investigating the presence

of an inverse energy cascade, attributed to local spectral interactions, to enhance our

understanding of its dynamics, drawing upon the foundational work by Girimaji & Zhou

(1995). Subsequently, we will re-examine the seminal studies by Sefik & Christov (1992), with
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the goal of confirming the existence of self-similarity within the velocity field’s correlation

functions. This discovery suggests that at significantly long durations, acquiring results for

varied times becomes unnecessary, thereby enhancing efficiency and saving computational

effort in subsequent simulations.

• Building upon this foundation, we replicate the pivotal research conducted by Jeng & Meecham

(1972), marking our initial foray into modeling forced Burgers turbulence within an Eulerian

framework with a sinusoidal forcing term. Our primary aim is to validate their findings,

particularly regarding the TKE development independence from variations in the Reynolds

number. Our research extends these findings by demonstrating consistent velocity profiles at

equilibrium across different Reynolds numbers, with notable distinctions primarily in the

dissipation region. Furthermore, we aim to elucidate the degree of dependence of the system

on the forcing terms by comparing the correlation functions of the velocity field and the

forcing term.

• Advancing to a more complex scenario, we aim to rigorously examine the dynamic

characteristics associated with turbulent behavior. To corroborate the findings of Jeng

(1969), we investigate whether a system initiated with a random Gaussian velocity field

and subjected to a random Gaussian forcing term retains its Gaussianity over time. This

section will highlight the Burgers equation’s distinct lack of chaotic dynamics and diminished

sensitivity to initial conditions compared to Navier-Stokes turbulence, shedding light on the

nuances of complex turbulence phenomena.

Our research casts a wide net by considering two distinct forcing terms, drawing inspiration

from Jeng & Meecham (1972) on sinusoidal forcing and from Jeng (1969) employed a random

Wiener process as a forcing mechanism.

Research Gaps Addressed

Despite the extensive body of research on Burgers turbulence, several gaps remain unbridged,

which this thesis aims to address:

• Complex Interplay of Inertia and Viscous Effects: Despite extensive studies on this topic,

we offer a clearer and more comprehensive perspective to thoroughly elucidate the intricate
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interplay between inertia and viscous effects within Burgers turbulence. Our discussion

specifically focuses on how varying viscosity conditions and differing scale characteristics

influence this dynamic relationship.

• An in-depth analysis of local interactions and energy transfer between various scales and

sub-ranges in Burgers turbulence aims to enhance our understanding of the inverse cascade

of energy.

• Impact of forcing terms: There is a lack of comprehensive understanding regarding the

system’s sensitivity to different types of forcing terms, especially in comparing sinusoidal

and random Gaussian forces in shaping the turbulence characteristics and analyzing its true

dynamics.

• Turbulence behavior under varied conditions: The behavior of Burgers turbulence, particularly

in terms of its Gaussian nature and sensitivity to initial conditions when subjected to complex

forcing scenarios, remains inadequately explored.

• Intermittency caused by disruption of Galilean invariance: The interplay between viscous

Ultra Violet regularization in small-scale structures and Infrared divergence in the large-scale

and quantitative connection between these theoretical frameworks and empirical evidence of

intermittency remained inadequately explored.



CHAPTER 2

MATHEMATICAL DEFINITION OF THE PROBLEM: THE EQUATIONS AND
PRELIMINARY TOOLS

Transport phenomena, including turbulent flow, can be approximated by differential equations.

The one-dimensional Burgers equation is the simplest nonlinear mathematical model frequently

used to simulate such fluid regimes. In this chapter, we outline the foundational elements of the

numerical simulation that yield solutions to our research problem. Initially, we explore the basic

principles of chaotic systems, focusing on the fundamentals of randomness. Subsequently, we

direct our attention towards the specifics of our research problem.

2.1 Deterministic versus stochastic models

The irregular and chaotic motions of the turbulent flows are characterized by the Stochastic

processes. Stochastic processes are defined by equations that incorporate elements of randomness

or uncertainty in their behavior. These equations reflect that, despite having knowledge of the

initial conditions and governing laws, the future state of the system cannot be predicted with

certainty. Instead, outcomes are understood probabilistically.

Conversely, deterministic or non-random systems are processes whose equations do not

incorporate any terms that represent randomness or uncertainty. Such systems, governed

by deterministic equations, allow for predictions about future states with complete certainty,

provided that the initial conditions are known (Lord, Powell & Shardlow, 2014). In this section,

our aim is to introduce the general form of stochastic differential equations, which encompass

both deterministic and stochastic terms. A scalar, autonomous stochastic differential equation

(SDE) in differential form is outlined below,

𝑑𝑋 (𝑡) = 𝑓 (𝑋 (𝑡)) 𝑑𝑡 + 𝑔 (𝑋 (𝑡)) 𝑑𝑊 (𝑡) , 0 ≤ 𝑡 ≤ 𝑇 (2.1)

The first term on the right-hand side of the equation is the deterministic term and the second

term is considered as the stochastic process where 𝑓 and 𝑔 are both scalar functions and 𝑋 is a
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random variable. 𝑊 (𝑡) is a scalar standard Brownian motion or standard Wiener process, and

𝑑𝑊 (𝑡) is the increment of the random process (Higham., 2001).

2.2 Randomness and correlation

Turbulence is a stochastic random phenomenon. After an initial transient phase, a turbulent

flow can become statistically stationary, meaning that its statistical characteristics become

time-independent. Typically, the auto-covariance function is the simplest tool that is employed

to define the behavior of the variables compared to each other in a statistically stationary random

process (Pope, 2000). In a more general manner in some literature, it is also referred to simply

as the covariance function.

The general formula to calculate various orders of covariance functions for two points is as

follows (Sefik & Christov, 1992):

𝑄𝑖 𝑗 (𝑠) = 〈𝑢(𝑘)𝑖𝑢(𝑘 + 𝑠) 𝑗 〉 = lim
𝐿→∞

1

2𝐿

∫ 𝐿

−𝐿
𝑢 (𝑘 + 𝑠)𝑖 + 𝑢 (𝑘) 𝑗 𝑑𝑠 (2.2)

Where 𝑖 and 𝑗 are covariance orders of each point, and 𝑄𝑖 𝑗 (𝑠) is a two-point, multi-order

covariance function in terms of the wavenumber spectrum, and is only dependent on the wave

number difference 𝑠. If we define the covariance function between two spatial points then 𝑠 is

called spatial separation, and if they are defined at different points in time then 𝑠 is called time

lag (Pope, 2000).

The normalized form of the above formula at one time over the spatial domain is

𝑅𝑖 𝑗 (𝑟, 𝑡) = 𝑄𝑖 𝑗 (𝑟, 𝑡) {𝑚𝑎𝑥𝑥 | 𝑄𝑖 𝑗 (𝑟, 𝑡)}2 (2.3)

Where 𝑅𝑖 𝑗 (𝑟, 𝑡) is called a two-point, one-time, multi-order correlation function.

As is evident in Figure 2.1, the normalized form of the correlation function of the initial random

data used in the decaying Burgers simulation is zero over all the bandwidth which indicates that

the values of the process are completely uncorrelated except for a value of unity at mode zero.

It expresses one important characteristic of the white noise, which is Dirac’s delta correlation
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Figure 2.1 two-point, one-time, second-order correlation

function of the initial data shows zero-correlation between the

values of the initial random data

function, due to the inherent characteristic of the auto-correlation function (Sefik & Christov,

1992).

2.3 The Wiener process

The Wiener process, also known as Brownian motion, stands as a fundamental Markov stochastic

diffusion process, serving as the basis for deriving all other random samples. This process is

used to model aspects of turbulence, particularly in the stochastic modeling of turbulent diffusion

(Pope, 2000).

It is defined as a random continuous process dependent on 𝑡 ⊂ [0, 𝑇] and satisfies the following

conditions (Higham., 2001),

- The process starts at zero value with a probability of one: 𝑊 (0) = 0.

- The process has Gaussian increments: for any 0 ≤ 𝑡1 ≤ 𝑡2, the random variable (𝑊 (𝑡2) −𝑊 (𝑡1))
is normally distributed with mean 0 and variance 𝑡2 − 𝑡1, correspondingly, 𝑑𝑊 (𝑡) ∼

√
𝑑𝑡N(0, 1)

where N(0, 1) defines normal distribution with zero mean and unit variance.

- The process has continuous paths: for every 𝑡, the function 𝑊 (𝑠) is continuous at 𝑠 = 𝑡.
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- The process has independent increments: for any 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑡3 ≤ 𝑡4, the random variables

(𝑊 (𝑡2) −𝑊 (𝑡1)) and (𝑊 (𝑡4) −𝑊 (𝑡3)) are independent.

Here we tried to mention the main features of this process briefly. We direct any readers seeking

further information to Lawler (2006), Pope (2000), and Capasso & Bakstein (2005).

2.4 Problem definition

This study numerically simulates various forms of the one-dimensional Burgers equation for

Newtonian fluids. The generalized form of the one-dimensional Burgers equation is as below,

𝜕𝑢

𝜕𝑡
+ 𝑎𝑢𝑛

𝜕𝑢

𝜕𝑥
= 𝜈

𝜕2𝑢

𝜕𝑥2
+ 𝑓 (2.4)

Where 𝑢 is the velocity vector, 𝜈 kinematic viscosity and 𝑓 forcing term. We considered that the

properties of the fluid including 𝜈 are constant.

For the linear advection-diffusion scenario, we set 𝑎 equal to constant and 𝑛 = 0 with no forcing

term ( 𝑓 = 0).
For decaying turbulence, 𝑎 = 1 and 𝑛 = 1 are assigned, and in the inviscid case, we take viscosity

𝜈 = 0.

In forced Burgers turbulence, a forcing term 𝑓 is incorporated into the equation.

2.5 Initial conditions

We posed various initial conditions based on our aims in different simulations.

Considering the one-dimensional unsteady linear advection-diffusion equation and non-linear

Burgers equations (2.4), we employed a sinusoidal initial velocity field 𝑢 (𝑥, 0) = −𝑈0 sin 𝑘𝑥 in

which 𝑈0 = 1, the initial wave number 𝑘 = 𝑛 2𝜋
𝐿𝑥

and 𝑛 is the mode of the wave number. This

approach was chosen to simplify the examination of the fundamental phenomena and to facilitate

the validation of the solver, prior to investigating the turbulent phenomena.

For the decaying Burgers turbulence, we chose uniform white noise as our initial velocity field

to guarantee an equal distribution of values, ensuring that no single value is predisposed towards
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any specific mode. Uniform white noise defines a generalized stationary, constant mean and

variance, stochastic process, which is uniformly distributed about the middle of the interval,

with a constant energy level in all modes, and a finite variance (Kuo, 1996).

Conversely, for forced Burgers turbulence subjected to sinusoidal forcing, we employed a zero

velocity field.

Meanwhile, for forced Burgers turbulence driven by a random forcing term, we adopted a random

Wiener initial data, that is spatially homogeneous, with Gaussian distributed increments in line

with the approach described by Jeng (1969), which is defined by the following formula;

𝑢(𝑥, 0) =
∫

𝑈 (𝑥 − 𝑥′)𝑎(𝑥′)𝑑𝑥′ (2.5)

Where the kernel function 𝑈 is an exponential weighting function, and is a crucial component

that shapes the interaction between different points in space,

𝑈 (𝑥) = 2(2/3)1/2(1/2𝜋)1/4(1 − 2𝑥2)𝑒𝑥𝑝(−𝑥2) (2.6)

where 𝑥 is the point at which we are evaluating the velocity field 𝑢. When we compute 𝑢(𝑥, 0),
we are determining the velocity at the point 𝑥 at the initial time (𝑡 = 0). 𝑥′ is the variable of

integration in our integral expression. It represents all possible points in the spatial domain

that could contribute to the velocity at point 𝑥. So, when we integrate over 𝑥′, we’re effectively

summing up (or integrating) the influences from all points 𝑥′ on the velocity at point 𝑥.

2.6 Probability density function of the initial data

One of the key tools in our analytics toolkit is the probability density function (PDF). This

statistical method plays a pivotal role in understanding the behavior and characteristics of

turbulent dynamics. The PDF is a statistical function that describes the likelihood of a variable

within a specific range in our dataset. It enables us to understand how velocity is distributed

across its range to trace the formation of inherent structures. In this research, we generated

initial data featuring various distributions.
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For decaying Burgers turbulence, we employed a velocity field where the velocity is uniformly

distributed within the interval 𝑎 ≤ 𝑈 < 𝑏. This results in the following PDF function

𝑓 (𝑈) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

𝑏 − 𝑎
, 𝑎 ≤ 𝑈 < 𝑏.

0 , 𝑈 < 𝑎 and 𝑈 ≥ 𝑏.

(2.7)

In the case of forced Burgers turbulence with a random Wiener process initial velocity field, in

section 2.3, we used Gaussian distributed data for the increments of the Wiener process with the

following PDF function:

𝑓 (𝑈) = N(𝑈; 𝜇, 𝜎2) ≡ 1

𝜎
√

2𝜋
𝑒𝑥𝑝 [−1

2
(𝑈 − 𝜇)2/𝜎2] (2.8)

where 𝜎 is the standard deviation and 𝜇 is the mean value of the data set (Pope, 2000).

2.7 Introducing forcing terms

In this thesis, we considered two distinct forcing terms, building upon the research works

previously mentioned. One is the sinusoidal force term, and the other is a random force generated

by the Wiener process, which is homogeneous in the 𝑥-direction and stationary over time.

Now consider Burgers turbulence subject to a driving force over a reasonably extended period of

time. Equation 1.4 can be presented as follows in one dimension

𝜕𝑢

𝜕𝑡
+ 𝑢 𝜕𝑢

𝜕𝑥
= 𝜈

𝜕2𝑢

𝜕𝑥2
+ 𝑓 (2.9)

In the first scenario, the driving force 𝐹 can be a smooth function that acts as a mechanism

through which energy can be injected into the field. The outcome is a mechanism that introduces

kinetic energy to the largest scales and transfers it, through the energy cascade due to nonlinear

interactions, to the smallest scales where dissipation takes place. We confine the forcing term to
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a sinusoidal function and we suppose

𝑓 = −𝐴𝑠𝑖𝑛 (𝜉) , 𝐴 > 0 (2.10)

with

𝜉 = 𝑘𝑥 − 𝜔𝑡 (2.11)

Our primary focus is on analyzing the steady state, which signifies a state of equilibrium

(Jeng & Meecham, 1972).

We now turn our attention to the second scenario: a force generated by a random Wiener process.

A Gaussian forcing term 𝑓 (𝑥, 𝑡) which is statistically homogenous in 𝑥 and stationary in 𝑡 (Jeng,

1969), as follows

𝑓 (𝑥, 𝑡) =
∫ ∫

𝐹 (𝑥 − 𝑥′, 𝑡 − 𝑡′)𝑎(𝑡′)𝑎(𝑥′)𝑑𝑥′𝑑𝑡′ (2.12)

where 𝑎(𝑥′), 𝑎(𝑡′) are Gaussian random data which were generated by a Wiener random process

with Gaussian increments for both space and time. 𝐹 (𝑥 − 𝑥′, 𝑡 − 𝑡′) is the specified non-random

kernel function which is defined to inject most of the energy to the larger turbulence structures

(small wavenumbers),

𝐹 (𝑥, 𝑡) = (8/𝜋)𝑒𝑥𝑝{−2(𝑥2 + 𝑡2)} (2.13)

with the following characteristics (Meecham & Siegel, 1964),

- The kernel has a Gaussian, or bell-shaped, profile both in space and time. This means the

influence of a point in space and time (denoted by 𝑥′ and 𝑡′) on another point (𝑥 and 𝑡) diminishes

exponentially as the distance between them increases.

- The function is symmetric in both space and time which implies that the interaction is the same

in all directions in space and uniformly changes over time.

- Due to its exponential nature, the Gaussian kernel has a localized effect. This means that points
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close to each other in space and time have a stronger influence on each other than points that

are far apart. The influence drops off rapidly with distance, which is characteristic of Gaussian

functions.

- The kernel function itself is homogeneous in space and stationary in time; as its form does not

depend on the absolute values of 𝑥 or 𝑡, but only on the differences 𝑥 − 𝑥′ and 𝑡 − 𝑡′ and can

support the homogeneity and stationary characteristics of the final forcing function.

2.8 Boundary conditions

In all cases, a periodic boundary condition was imposed, defined as 𝑢 (−𝑙, 𝑡) = 𝑢 (𝑙, 𝑡) where the

domain length is 𝐿𝑥 = 2𝑙.

Initially, we employed a domain length (𝐿𝑥 = 2), −1 ≤ 𝑥 ≤ 1, to model the equations as a

preliminary step. However, in order to model forced Burgers turbulence with a sinusoidal

forcing function, we adhered to the domain length proposed by Jeng & Meecham (1972).

They recommended a domain length of 𝐿𝑥 = 1, with (0 ≤ 𝑥 ≤ 1), and for modeling forced

Burgers turbulence with random forcing we switched to −𝜋 ≤ 𝑥 ≤ 𝜋, denoting 𝐿𝑥 = 2𝜋, to

accommodate integer wave numbers. Each simulation was accompanied by its own specific

boundary conditions.

2.9 Analytical solutions

In this section we briefly discuss the analytical solutions of the different forms of the Burgers

equation.

As we assume the Advection-Diffusion equation is dependent on spatial periodic conditions,

after making the change of variables, imposing the method of separation of variables, and using

the orthogonality property of Fourier expansions, then the analytical solution will be obtained as

follows (Mojtabi & Deville, 2015),

𝑢 (𝑥, 𝑡) = −𝑠𝑖𝑛(𝑛𝜋 (𝑥 − 𝑎𝑡))𝑒−𝜈𝜋2𝑡 (2.14)
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Figure 2.2 demonstrates the analytical solution of the advection-diffusion equation,

Figure 2.2 Analytical solution of the advection-diffusion equation with

kinematic viscosity 𝜈 = 0.1, at different times

Now we are considering the analytical solution of the unforced one-dimensional decaying

Burgers equation. A spatially periodic analytical solution of this equation in which Fourier

coefficients can be stated explicitly as a function of 𝑡 was obtained by Cole (1951) and compiled

by Benton & Platzman (1972). However, as their solution was not tractable in a small time

(0 ≤ 𝑡 ≤ 2𝜋) a better solution was proposed by Basdevant et al. (1986).

For this problem, the periodic domain is taken to be 𝐿𝑥 = 2𝜋 with the initial function

𝑢 (𝑥, 0) = −𝑈0 sin 𝑘𝑥𝑥 in which 𝑘𝑥 = 𝜋 and 𝑈0 = 1.

𝑢 (𝑥, 𝑡) =
⎡⎢⎢⎢⎢⎢⎢⎣
−
∫ ∞

−∞
𝑠𝑖𝑛 𝜋(𝑥 − 𝜂) 𝑓 (𝑥 − 𝜂) 𝑒𝑥𝑝(−𝜂2/4𝜈𝑡)𝑑𝜂∫ ∞

−∞
𝑓 (𝑥 − 𝜂)𝑒𝑥𝑝(−𝜂2/4𝜈𝑡)𝑑𝜂

⎤⎥⎥⎥⎥⎥⎥⎦ (2.15)
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In which 𝑓 (𝑦) = 𝑒𝑥𝑝(−𝑐𝑜𝑠 𝜋𝑦/2𝜋𝜈) and the integral is evaluated using Hermite integration

(Basdevant et al., 1986). Figure 2.3 depicts the analytical solution of the Burgers’ equation at

various times.

Figure 2.3 Analytical solution of the one-dimensional Decaying

Burgers equation where 𝜈 = 0.001, with the number of terms in each

series equal to 250

Let’s examine Burgers turbulence when it is influenced by a driving force over a significant time

duration. The equation, referred to as 1.4, can be expressed in one dimension as:

𝜕𝑢

𝜕𝑡
+ 𝑢 𝜕𝑢

𝜕𝑥
= 𝜈

𝜕2𝑢

𝜕𝑥2
+ 𝑓 (2.16)

For the purpose of simplicity of the analytical solution, we can consider the inviscid (𝜈 = 0)

forced Burgers equation

𝜕𝑢

𝜕𝑡
+ 1

2

𝜕𝑢2

𝜕𝑥
= 𝑓 (2.17)
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By substituting Equation 5.1 as the forcing term in Equation 2.17 and solving, we have the

following solution which is depicted in figure 2.4

𝑢 = 𝑐 ± 𝑐(2𝑎)1/2𝑐𝑜𝑠
𝜉

2
(2.18)

Which is confirmed for the values of the force with 𝑎 = 2𝐴
𝑘𝑐2 where 𝑘 = 2𝜋/𝐿𝑥 is the wavenumber

Figure 2.4 Analytical inviscid solution of the one-dimensional Burgers

equation with sinusoidal forcing term. The two sides of the inviscid

solution are bridged by a vertical line representing a discontinuity, which

is identified as the shock position

of the forcing term and 𝑐 = 𝜔
𝑘 is the speed of the moving force, and the sign change happens by

a discontinuity at the shock position 𝜉0 (Jeng & Meecham, 1972).

𝜉0 = 2𝑠𝑖𝑛−1(𝜋2/8𝑎)
1
2 (2.19)

The magnitude of the forcing term is manipulated by varying the amplitude 𝐴 of the sinusoidal

function. Increasing amplitude will increase energy input and likely the magnitude of the

velocity fluctuations. Thus, to ensure accuracy in our numerical results, we construct an inviscid
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solution due to its close resemblance to the solution for small, non-zero viscosities, Figure 2.4.

This approach aids in validating the integrity and reliability of our findings.

The final simulation we are going to discuss in this research, namely forced Burgers turbulence

with a random force, lacks an analytical solution, and therefore, we are unable to present any

exact solution for it in this section.

2.10 Introduction to the spectral approximation and the Fourier method

When it comes to the periodic domains, same as our problem, the expansion of the Fourier series

is the elected candidate due to the presence of sines and cosines terms, as the renowned trial

(basis) functions for all the periodic problems (Boyd, 2001). The existence of the trial and test

functions in the fundamental formulation of the spectral methods made them a valuable class of

spatial discretization to solve ordinary and partial differential equations. It is crucial to keep in

mind that the trial functions and the test functions are essentially the same in the Fourier-Galerkin

method and should satisfy the orthogonality condition (Sahnkar,Dale Anderson, 2020).

Consider 𝑢(𝑥) as a function that we want to present using the Fourier series. Suppose one spatial

dimension with a periodic continuous domain bounded on 0 ≤ 𝑥 ≤ 2𝜋. The Fourier expansion

of the function 𝑢(𝑥) is as follows,

𝑢 (𝑥) =
∞∑

𝑘=−∞
𝑢̂ (𝑘) × 𝑒𝑖𝑘𝑥 (2.20)

As the infinite number of terms in the formal expansion of 𝑢(𝑥) is not easy to achieve, we

consider the approximated function 𝑢𝑁 (𝑥) that corresponds to 𝑁 degree of freedom which is

presented here as the truncated Fourier series of 𝑢(𝑥) (Canuto, 2006),

𝑢𝑁 (𝑥) =
𝑁/2−1∑
𝑘=−𝑁/2

𝑢̂ (𝑘) × 𝑒𝑖𝑘𝑥 (2.21)

In which |𝑢(𝑥) − 𝑢𝑁 (𝑥) | uniformly converges to zero as N tends to infinity (Canuto, 2006). In

the above formula, the fundamental unknown is the Fourier coefficient 𝑢̂ (𝑘) which obtains as a
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function of wavenumber. It defines as the FFT function,

𝑢̂ (𝑘) = 1

2𝜋

∫ 𝜋

−𝜋
𝑢𝑁 (𝑥) 𝑒−𝑖𝑘𝑥𝑑𝑥 (2.22)

2.11 Spectral convergence and accuracy

The Fourier series has the property of exponential or spectral convergence, which means the

decay rate of Fourier coefficients is faster than the algebraic convergence in high wave numbers.

𝑢̂ (𝑘) � 1

𝑘𝑛
, 𝑘 � 1 (2.23)

In which 𝑛 is the algebraic index of convergence and the Lebesgue integral of |𝑢(𝑥) | is finite.

This behavior can easily be concluded using the Riemann-Lebesgue lemma as a result of the

Fourier analysis (Gottlieb & Orszag, 1977).

As the exponential convergence rate of Fourier coefficients causes the truncated Fourier series to

converge toward the exact solution faster than any finite power of 1
𝑘 , likewise, the maximum

error will decay faster than algebraic as the grid spaces get finer and the spectral resolution

increases. This is the reason for the spectral methods’ significant accuracy and their remarkable

advantage which we will benefit from in our simulations (Beardsell, 2016).





CHAPTER 3

METHODOLOGICAL FRAMEWORK: NUMERICAL TECHNIQUES AND
DISCRETIZATIONS

In this chapter, our goal is to introduce the various tools we utilized to implement the different

stages of simulations for modeling Burgers’ turbulence. This research work is carried out using

solvers developed within the MATLAB software environment.

3.1 Initial Implementations: Tools and Techniques

The initial implementation as a pre-processing stage is the foundational phase in numerical

simulations where we set the groundwork for our analysis. This stage focuses on introducing the

tools and techniques necessary for establishing the simulation environment and preparing the

initial data required to conduct our simulations.

3.1.1 Generating initial velocity field

As mentioned earlier in section 2.5, we selected different initial data tailored to specific objectives.

Now consider the scenario of decaying Burgers turbulence. To generate uniformly distributed

random white noise as the initial data, we used Mersenne Twister algorithm to generate pseudo-

random uniform data and Ziggurat random normal distributed data generator algorithm for

Gaussian distributed data in various sample sizes and rooted the data, setting a fixed seed for a

random number generator to ensure that the same sequence of "random" numbers is produced

every time the code is run or the random data will not change in different simulations. This

algorithm is the most popular choice for generating random numbers due to its long period

219937 − 1 which is relatively large in addition to being relatively fast (Matsumoto & Nishimura,

1998). Moreover, every two values of this random velocity field are uncorrelated, with zero

auto-correlation. As a random variable is fully characterized by its one-time Probability density

function (PDF), so we can define a uniformly distributed velocity field in the interval of
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− 0.5 ≤ 𝑈 ≤ 0.5 in the form of the probability density function 𝑓 (𝑈) as follows (Pope, 2000),

𝑓 (𝑈) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − 0.5 ≤ 𝑈 ≤ 0.5.

0 𝑈 < −0.5 and 𝑈 > 0.5.

(3.1)

We used Kernel Density estimation, Kernel smoothing, to evaluate the PDF of the uniformly

distributed random initial velocity field 𝑈 in Figure 3.1

Figure 3.1 Probability density function of the

uniformly distributed white noise in the interval of

− 0.5 ≤ 𝑈 ≤ 0.5 with sample size equal to 𝑁 = 211

Now, consider the forced Burgers turbulence driven by a random Wiener process forcing term

following Jeng (1969). To generate the initial Gaussian velocity field using Wiener process,

equation 2.5, we initially created random white noise base data following a Gaussian distribution,

which represented the increments, of the Wiener process 3.2.

Then, we used these increments to generate a new dataset through the application of the Wiener

process as depicted in fig 3.3

To support spatial homogeneity condition in the initial velocity field we inject a Gaussian kernel

function 2.6 to the random data set to make their statistical properties dependent on position
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Figure 3.2 random white noise data with Gaussian

distribution as the increments of the Wiener process

Figure 3.3 wiener process random data with

gaussian increments

differences, not the absolute positions; and finally we integrate it over the entire domain to obtain

the expected initial velocity field as clarified in section 2.5.
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In our research, we will employ another set of initial data for the simulations discussed in Section

5.5.2. This selection is designed to explore the interactions across various energy spectrum

ranges by selectively eliminating the energy at certain wavenumbers. To achieve this, we start

by initializing the system with uniform re-normalized random data, ensuring that no initial

values are biased towards specific wavenumbers. Our simulation started with initial data whose

wavenumber range was confined within the inertial range, ensuring that wavenumbers outside

this range were initially unenergetic. By identifying the inertial range through the 𝑘2 power law,

section 4.6, we then characterized the remaining wavenumbers outside this range as follows

(Girimaji & Zhou, 1995):

𝑢̂ (𝑘, 0) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢̂ (𝑘, 0) 𝑘𝑖 ≤ 𝑘 ≤ 𝑘 𝑓 ,

0 for other 𝑘,

(3.2)

In the following section, we delve into further details on the process of renormalizing data.

3.1.2 Re-normalizing Initial data

In turbulent flows, energy is typically distributed across a range of scales or frequencies, each

corresponding to a distinct Fourier mode in our simulation. For a state of fully developed

turbulence, where energy is generally perceived as being distributed more or less evenly across

these scales, it is necessary to maintain a uniform energy level across all modes, ensuring that no

particular value is biased towards any specific mode. The process of re-normalizing the initial

data helps us achieve this uniform energy distribution. This involves adjusting the amplitudes of

the Fourier modes so that the sum of the squares of these amplitudes - which represents the total

energy - remains constant across all modes. To accomplish this, we re-normalize each mode

by dividing them by the modulus of the mode, thereby achieving an equal modal energy level

across all modes as depicted in Figure 3.4,

After re-normalization, we observed an interesting behavior. The initial random data transformed

from a uniform distribution to the Gaussian Figure 3.5. When we re-normalizing data, we
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Figure 3.4 Energy spectrum of the initial data before re-normalization (on the

left) and after re-normalization (on the right). The re-normalization process

creates a constant modal energy level (Sample size equal to 𝑁 = 211)

are effectively creating a new set of random variables. The renormalization process we are

performing can be seen as a form of averaging, where we’re dividing each Fourier mode

by its modulus. This process is similar to summing a large number of independent random

variables and then dividing them by their number, which is the kind of operation that applies

to the theory called the Central Limit Theorem (CLT). The CLT states that the sum of a large

number of independent and identically distributed random variables, each with a finite mean and

variance, will approximate a Gaussian (or normal) distribution, regardless of the shape of the

original distribution (Montgomery & Runger, 2011). Considering the preceding discourse, the

data, having been re-normalized, is suitably prepared to initiate the subsequent computational

simulations.

For the Gaussian Wiener process random velocity field, no re-normalization was performed.

However, for the kinetic energy, we utilized a re-normalization technique by dividing the initial

kinetic energy by its magnitude and setting it to 1.

For the forced Burgers with random force term, we determine the Reynolds numbers as 𝑅𝑒 = 𝑉𝐿
𝜈 ,

then we select the velocity scale𝑉 as the square root of the initial kinetic energy 𝑢2(𝑥, 0) equal to

unity. The length scale 𝐿 is chosen as 2𝑘−1
𝑚𝑎𝑥 in which 𝑘𝑚𝑎𝑥 represents the wave number at where

the initial energy spectrum peaks. With these scales, the initial kinetic energy is renormalized

and set to 1, and the initial energy spectrum reaches its maximum when 𝑘 = 2, ensuring that the
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Figure 3.5 The probability density function of the initial random data before

re-normalization (on the left) and after re-normalization (on the right). The

re-normalization process transforms data toward Gaussian distribution, regardless

of the shape of the original distribution (Sample size equal to 𝑁 = 211)

integral of the initial energy spectrum across the entire wavenumber domain equals 0.5(Jeng,

1969). Thus we have 𝑅𝑒 = 1
𝜈 .

3.1.3 Generating the Forcing Term

We have already covered the generation of sinusoidal forcing in detail. In this section we just

mention extra details to produce the random forcing term following the research work conducted

by Jeng (1969). The forcing term follows the equation 2.12.

Here, we apply similar steps to the Gaussian random force as we did with the Wiener initial

velocity field, albeit with added complexities. To apply double integration over the domain of

the equation 2.12, we executed nested summations across discrete grid points, covering both

spatial and temporal dimensions. To add spatial homogeneity and temporal stationarity to the

forcing term 𝑓 (𝑥, 𝑡) we employed a kernel function, 2.12, possessing these characteristics and

multiplied it by the aforementioned random functions. The kernel function F is illustrated in

figure 3.6.

What we obtain is the random Gaussian forcing term, derived from the Wiener process, which

exhibits homogeneity in space and stationarity in time.
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Figure 3.6 The Gaussian kernel function 𝐹 which supports the homogeneous

and stationary characteristics of the final forcing function

We ultimately advance the unforced equation using the appropriate time integration method and

subsequently incorporate the forcing term, 𝑓 , into the velocity field after each time step 𝛿𝑡.

3.2 Processing stage: Spectral solver, discretizations and errors

In this section, we delve into the processing stage of the numerical simulations, a vital phase

where our initial setups and theories are actively implemented. We’ll explore key aspects of

this stage, focusing on solving equations using spectral solvers, spatial discretization, and time

integration, as well as addressing significant errors in our solvers. This subsection aims to

demonstrate how these components collaboratively transform our initial ideas and models into

practical and insightful findings.
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3.2.1 Fourier-Galerkin spectral solver

In each time step, we implemented the Fourier transform through the whole spatial domain to

transform the governing equations into the Fourier space.

𝑢̂𝑘 (𝑘, 𝑡) = 1

2𝜋

∫ 𝜋

−𝜋
𝑢𝑁 (𝑥, 𝑡) 𝑒−𝑖𝑘𝑥𝑑𝑥 (3.3)

Then, we transformed back the solution of the obtained coefficient system into the physical space

by the following Fourier expansion.

𝑢 (𝑥, 𝑡) ≈ 𝑃𝑁𝑢(𝑥, 𝑡) = 𝑢𝑁 (𝑥, 𝑡) =
𝑁/2−1∑
𝑘=−𝑁/2

𝑢̂ (𝑘, 𝑡) × 𝑒𝑖𝑘𝑥 (3.4)

where 𝑘 = 𝑚 2𝜋
𝐿𝑥

is the wavenumber, 𝐿𝑥 is the domain length equal to 2𝜋 and −𝑁
2

< 𝑚 < 𝑁
2
+ 1.

3.2.2 Spatial discretization in the Fourier space

The spatial Fourier transform of Eq.(1.4) specified as,(
𝑑

𝑑𝑡
+ 𝑘2𝜈

)
𝑢̂ = −̂𝑢.∇𝑢 + 𝑓 (𝑘) (3.5)

In which the spatial Fourier transform of the forcing term is given by 𝑓 (𝑘). Imagine eliminating

the forced term; what will remain is the discretized version of the nonlinear decaying Burgers in

the Fourier space, the Fourier transform of Eq.(1.2) yields(
𝑑

𝑑𝑡
+ 𝑘2𝜈

)
𝑢̂ = −̂𝑢.∇𝑢 (3.6)

By substituting constant advection velocity 𝑎 as a coefficient of diffusion, instead of instantaneous

velocity u, we get the linearized form of the above equation. Thus, the linear Convection-Diffusion
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equation in Fourier space is as follows,(
𝑑

𝑑𝑡
+ 𝑘2𝜈

)
𝑢̂ = −𝑖𝑘𝑎 (3.7)

Which is identified as the governing ODE in the Fourier space (Canuto, 2006).

3.2.3 Integrating factor technique

Consider the strong form of the decaying Burgers equation 2.4. After Integrating the functions of

the PDE in Sobolev space of the test function; we will obtain the weak form of the semi-discrete

Fourier Galerkin formulation of the Burgers equation, which is shown below in one dimension

𝑑𝑢̂𝑘
𝑑𝑡

+ Ĝ𝑘 (𝑢̂) + 𝑘2𝜈𝑢̂𝑘 = 0 (3.8)

In which the discrete nonlinear Ĝ𝑘 (𝑢̂) operator is defined as an advection term. After multiplying

both sides of the above equation by the integrating factor 𝑒𝜈𝑘
2𝑡 , we have

𝑑

𝑑𝑡

[
𝑒𝜈𝑘

2𝑡 𝑢̂𝑘

]
= −𝑒𝜈𝑘2𝑡 Ĝ𝑘 (𝑢̂𝑘 ) (3.9)

By using a change of variable and imposing 1st order Explicit Euler approximation as a testing

ground, one obtains

𝑢̂𝑛+1
𝑘 = 𝑒−𝜈𝑘

2Δ𝑡 [𝑢̂𝑛𝑘 − Δ𝑡Ĝ𝑘 (𝑢̂𝑛𝑘 )
]

(3.10)

Thus, only the nonlinear term is responsible for the accuracy and instability of the temporal

scheme as the linear viscous term is exactly integrated and is unconditionally stable. A more

detailed discussion is available in (Canuto, 2006).
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3.2.4 Time integration

We evaluated three distinct numerical methods as time discretization techniques to deal with the

diterministic terms. To approximate stochastic differential terms, such as the random force, we

employed Itô calculus. The forcing term is integrated into the velocity field and introduced to

the model at the end of each time step 𝛿𝑡 (De et al., 2023). Time steps were selected based on

the CFL condition and the trial-and-error approach, to keep the simulations stable in various

viscosities.

3.2.4.1 Diterministic terms

In this work, we used Finite difference time discretization methods in conjunction with the

spatial spectral techniques. To this aim, the transient term of equation 2.4 plugged into

three different Finite Difference methods, including first-order Explicit Euler, second-order

Adam-Bashforth, and third-order compact Runge-Kutta scheme to integrate temporal derivative

explicitly. Subsequently, we assessed these three schemes to identify the most suitable one among

them. Ultimately, considering both the order of accuracy and stability, the compact Runge-Kutta

3rd-order scheme was selected as the most appropriate method. Detailed information about

these numerical schemes can be found in Appendix I.

3.2.4.2 Stochastic terms

One approach to deal with the stochastic differential terms, such as the random forcing term in

our model, involves employing Itô calculus. One simple numerical scheme for approximating

solutions to stochastic differential equations (SDEs) based on the Itô calculus is the Euler-

Maruyama method. This scheme is an extension of the Euler method for ordinary differential

equations to stochastic calculus. the Euler-Maruyama numerical method for a stochastic

differential equation (?), Consider 𝜏𝑗 = 𝑗Δ𝑡

𝑋𝑗 = 𝑋𝑗−1 + 𝑓 (𝑋𝑗−1)Δ𝑡 + 𝑔(𝑋𝑗−1) (𝑊 (𝜏𝑗 ) −𝑊 (𝜏𝑗−1)) (3.11)
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If 𝑔 function is equal to one then we have a constant diffusion process coefficient. In this case,

the noise impacts the system in a state-independent way, which means the SDE is directly

proportional to the Wiener process increment. This would be the case for a simple Wiener or

Brownian motion process.

3.2.5 Aliasing error and de-aliasing techniques

Returning to solve the discretized governing equations in the Fourier space in section 3.2.3 and

specifically equation 3.6, the general quadratic non-linear advection term 𝑢.∇𝑢, which is the

product of two functions, defines under the Fourier Galerkin treatment in a one-dimensional

case as follows,

𝑢𝜕𝑥𝑢 = ���
∑

|𝑚 |≤ 𝑁
2

𝑢̂𝑚𝑒
𝑖𝑚𝑥��� ���

∑
|𝑛|≤ 𝑁

2

𝑖𝑛𝑢̂𝑛𝑒
𝑖𝑛𝑥��� =

∑
|𝑘 |≤𝑁

𝑠̃𝑘𝑒
𝑖𝑘𝑥 (3.12)

The above formulation that is obtained by the expansion of truncated Fourier series generates

higher wavenumber 𝑘 that is equal to 𝑚 + 𝑛, wavenumbers out of the physical domain 𝑆𝑁 ∈
[−𝑁

2
, 𝑁

2
], that are aliased into the original wavenumbers 𝑚 and 𝑛 inside the range of 𝑆𝑁 . The 𝑠𝑘

is the Fourier coefficient of the non-linear advection term which is subjected to a convolution

sum in the spectral domain. There are two approaches to calculating this 𝑠𝑘 . One is to calculate

it inside the Fourier space as a direct convolution of the two functions 𝑠𝑘 =
∑

𝑚+𝑛=𝑘 𝑢̂𝑚𝑢̂𝑛

which takes O(𝑁2) operations in one dimension and O(𝑁4) operations in three dimensions

as discussed in (Canuto, 2006). Thus, it is too expensive to calculate compared with many

other schemes like finite differences as it takes O(𝑁) operations in one dimension (O(𝑁3) in

three dimensions). However, (Orszag, 1971) developed a technique that requires O(𝑁 log2 𝑁)
operations (O(𝑁3 log2 𝑁) operations in three-dimension) called pseudo spectral method, which

evaluate the convolution sum inside the physical space instead, to make the spectral Galerkin

methods affordable (Canuto, 2006).

Here, we consider a new Fourier coefficient 𝑠̃𝑘 ; that amounted to the coefficients in the physical

domain and the coefficients with the wavenumbers aliased into the same range; the latter is
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marked as the aliasing error.

𝑠̃𝑘 = ̂𝑢.∇𝑢 =
∑

𝑚+𝑛=𝑘
|𝑘 |≤ 𝑁

2

𝑖𝑛𝑢̂𝑚𝑢̂𝑛 +
∑

𝑚+𝑛=𝑘
𝑁
2 < |𝑘 |≤𝑁

𝑖𝑛𝑢̂𝑚𝑢̂𝑛 = 𝑠𝑘 +
∑

𝑚+𝑛=𝑘
𝑁
2 < |𝑘 |≤𝑁

𝑖𝑛𝑢̂𝑚𝑢̂𝑛 (3.13)

As explained earlier, the second term on the right-hand side is the aliasing error (Canuto, 2006)

which can cause artificial energy accumulation at small scales, uncontrolled growth of energy,

and eventually numerical instability. This instability generates an amplified cascade of energy

spreading over the whole wavenumber spectra of the turbulent flow (Boyd, 2001).

The researchers suggested multiple techniques to deal with aliasing errors in the decades. As a

result, some researchers evade de-aliased pseudospectral methods (of even strongly damped

flows). They believe aliasing errors are presented chiefly on smaller scales with high wave

numbers and vanishing viscosities. So, larger energy-containing scales are less affected by

Aliasing (Bowman & Roberts, 2011).

One technique to remove aliasing is filtering out high wave number components, termed the Zero

padding technique or two-third rule (alternatively 3/2 Rule), which was suggested by Orszag

firstly in 1971 in an article less than a page, removes aliasing wavenumbers utilizing discrete

transform with |𝑘 | < ( 2
3
)𝐾 rather than 𝐾 wavenumber where 𝐾 = 1

2
𝐿𝑥𝜋. He showed that if we

filter out all waves with |𝑘 | > ( 2
3
)𝐾 then the non-linear quadratic interaction of each two wave

numbers equation3.13 will be aliased only to the purged wavenumbers (Boyd, 2001). We need to

keep (2/3) N grid points to have an alias-free approximation. But cutting off high wavenumbers

leads to the Gibbs phenomenon and loss of L2 energy. So, the trick is to calculate non-linear

terms on (3/2) N physical grid points but add N/2 zeros to the Fourier coefficients in the Fourier

space (Boyd, 2001). Thus, surviving wavenumbers are alias-free.

There are also some other alternative remedies to remove aliasing from non-linear quadratic

terms. The most promising one is the phase shift technique (Patterson & Orszag, 1971) which

acts by disrupting the alignment of the modes through random phase shifts without altering their

amplitudes, however, it is always more expensive than the two-third rule (Canuto, 2006).

After numerous attempts, we ultimately selected the pseudospectral method with the 2/3

de-aliasing technique in all of our solvers.
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3.3 Post-Processing Strategies: Tools and Techniques for Analyzing Simulation
Results

The ’Post-Processing’ stage is a critical phase in simulations, where the raw data generated

during processing is transformed into meaningful insights. In this subsection, we delve into the

methods and tools used to analyze and interpret the results of our simulations.

3.3.1 Energy Spectrum

We present the energy spectrum of the velocity field 𝐸 (𝑘) to show the validity of our numerical

simulations. The energy spectrum is a measure of the distribution of energy across the

wavenumber spectrum in a turbulent flow. It is a powerful tool for understanding the characteristics

of turbulent flow, such as the scale of the turbulent eddies and the amount of energy present at

each scale. It is considered as the Fourier transform of the auto-covariance function 𝑅(𝑠) (Pope,

2000), section 2.2.

𝐸 (𝑘) = 1

2𝜋

∫ ∞

−∞
𝑅 (𝑠) 𝑒−𝑖𝑘𝑠𝑑𝑠 (3.14)

In which, 𝑅𝑖 𝑗 (𝑠) has the Fourier series.

𝑅𝑖 𝑗 (𝑠) =
∑
𝑘

𝑅̂𝑖 𝑗 (𝑘) 𝑒𝑖𝑘𝑠 (3.15)

And the Fourier coefficients of the two-point velocity correlation are as follows,

𝑅̂𝑖 𝑗 (𝑘) = F𝑘
(
𝑅𝑖 𝑗 (𝑠)

)
= 〈𝑢̂∗𝑖 (𝑘)𝑢̂𝑖 (𝑘)〉 (3.16)

From complex conjugate symmetry 𝑢̂𝑖 (𝑘) = 𝑢̂∗𝑖 (𝑘), it is more convenient to consider half energy

spectrum for any non-negative wavenumber,

𝐸 (𝑘) = 2

𝜋

∫ ∞

0

𝑅 (𝑠) cos (𝑘 ∗ 𝑠)𝑑𝑠 𝑘 > 0 (3.17)
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The half energy spectrum is a common technique used in turbulence analysis, particularly

for flows that exhibit mirror symmetry. Since the energy spectrum is symmetric about the

origin in Fourier space, the energy for negative wavenumbers is equal to the energy for positive

wavenumbers, so we can obtain the full energy spectrum by doubling the energy values for

positive wavenumbers.

In addition, the energy at the 𝑘 = 0 mode is frequently called the "zeroth mode" and signifies the

energy associated with the greatest length scale (Pope, 2000). To calculate the overall energy

density, you must evaluate the energy associated with the zeroth mode and combine it with the

half-energy spectrum.

3.3.2 Turbulent Kinetic Energy, TKE

Turbulent kinetic energy (TKE) is a measure of the energy associated with turbulent fluid motion.

TKE plays a crucial role in turbulence as it governs the transfer of energy between different scales

in a turbulent flow. It is defined as the sum of the kinetic energy of the turbulent fluctuations

around the mean flow velocity. In mathematical terms, TKE in physical space can be expressed

as (Tennekes & Lumley, 1978).

𝑇𝐾𝐸 =
1

2

∫ ∞

−∞
𝐾 (𝑥) 𝑑𝑥 (3.18)

Where 𝐾 (𝑥) = 1
2
𝑢(𝑥)2 is the Kinetic energy at each collocation point at a single time stage and

𝑢(𝑥) is the fluctuating velocity deviating from the mean flow velocity. To calculate the kinetic

energy content of flow in the Fourier space we use the following formula.

𝑇𝐾𝐸 =
1

2

∫ 𝑘

0

𝐸 (𝑘) 𝑑𝑘 (3.19)

In which 𝐸 (𝑘) is the energy spectrum of Fourier coefficients discussed earlier.
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3.3.3 Energy dissipation rate

Up to this point, we have talked about the change in the kinetic energy content of the system

within both the physical and spectral domains. Now we are trying to discuss the dissipation of

this energy caused by the viscous interactions on small-scale structures. The rate at which energy

dissipates is characterized by the energy spectrum of the flow in the Fourier domain, so if we

assume that the flow is statistically homogenous and isotropic and the energy spectrum follows

the power law in the Inertial subrange (Pope, 2000), then we can define the energy dissipation as

𝜀 =
∑
𝑘

2𝜈𝑘2𝐸 (𝑘) (3.20)

In which 𝜀 is called the energy dissipation rate. To obtain the energy dissipation rate in Physical

space we first define the viscous dissipation rate of the isotropic turbulence in the physical space

as follows (Tennekes & Lumley, 1978),

𝜀 = 2𝜈𝑠𝑖 𝑗 𝑠𝑖 𝑗 (3.21)

The above equation is the rate at which viscous stresses carry out work on the fluctuating strain

rate through deformation which always leads to the drain of energy. 𝑠𝑖 𝑗 𝑠𝑖 𝑗 is the mean value

of the quadratic form of the strain rate and in 1D Burgers Turbulence is related to the velocity

gradient.

𝜀 = 2𝜈

∫ (
𝜕𝑢

𝜕𝑥

)2
𝑑𝑥 (3.22)

This expression represents the rate at which kinetic energy is converted into internal energy

due to the viscous forces in the physical space. As a result, the viscous stresses in the 1D

Burger’s equation play a critical role in damping the kinetic energy of the flow and promoting its

dissipation.
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3.3.4 Analyzing PDF at Various Time Stages

In this research, we evaluated the Probability Density Function (PDF) to understand the dynamics

of the flow and observe its evolution over time. For this purpose, we employed the Kernel Density

Estimation (KDE) method, as outlined by (Węglarczyk, 2018). The KDE is mathematically

represented as follows:

𝑓 (𝑈) = 1

𝑛ℎ

𝑛∑
𝑖=1

𝐾

(
𝑈 −𝑈𝑖

ℎ

)
(3.23)

Here, 𝑛 represents the number of data points, 𝑈𝑖 denotes the individual data points, ℎ is the

bandwidth, and 𝐾 is the kernel smoothing function. We utilized the Normal smoothing kernel

function for Gaussian datasets and the Epanechnikov smoothing kernel for Non-Gaussian

datasets.

3.3.5 Higher order central moments of distribution

In turbulence research, studying higher-order central moments, particularly skewness and

kurtosis (flatness factor), provides valuable insights into the behavior and structure of turbulent

flows. They serve as measures to quantify the asymmetry and intermittency of the turbulence,

which helps in understanding the underlying dynamics and structure formation of turbulent flows

(Davidson, 2015).

Skewness is a measure of the asymmetry of a probability distribution. For a real-valued random

variable, skewness is defined as the standardized third central moment. It is calculated as:

𝑆 =
∫ ∞

−∞
𝑥3 𝑓 (𝑥)𝑑𝑥/𝜎3 = 〈𝑋3〉/〈𝑋2〉3/2 (3.24)

In which 𝜎 is the standard deviation of the distribution with zero means 〈𝑋〉 = 0. The skewness

can provide information on the asymmetry of the velocity distribution, which may arise due to

the non-linear advection term leading to the formation of the shock-like structures.

Kurtosis is a measure of the "tailedness" of the probability distribution, which essentially
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quantifies the occurrence of extreme events in the flow. It is defined as the standardized fourth

central moment as follows,

𝐾 =
∫ ∞

−∞
𝑥4 𝑓 (𝑥)𝑑𝑥/𝜎4 = 〈𝑋4〉/〈𝑋2〉2 (3.25)

In turbulence, kurtosis can be used to study intermittency, i.e., the occurrence of intense, sporadic

events. These events are of interest because they transport a significant amount of energy

and momentum, and influence the overall characteristics of turbulence. So, the kurtosis can

indicate the presence of extreme velocity gradients, which correspond to the sharp transitions at

the shocks. Thus, the evolution of higher-order statistics like skewness and kurtosis can offer

important insights into the non-linear dynamics and structure formation in this system.

The outcomes of this discussion will be presented in the following chapter.





CHAPTER 4

ENSURING RELIABILITY: THE VALIDATION PROCESS

In this chapter, we aim to determine the accuracy of our model’s output in representing a

theoretical system. This will be achieved through various validation exercises derived from the

available literature.

4.1 Verification of the spectral solver

Verification of a spectral solver against an analytical solution is a crucial part of computational

simulation. This is an important step to confirm the correctness of the implemented solver. To

validate our advection-diffusion solver we used the analytical solution proposed by Basdevant

et al. as discussed in the first chapter. We used 250 terms of the series and kinematic viscosity

𝜈 = 0.001 to implement this solution. As is illustrated in Figure 4.1, the analytical and numerical

Figure 4.1 Significant agreement between analytical solution (dotted

lines) and Fourier-Galerkin numerical solutions using 3rd-order

Runge-Kutta temporal discretization (solid lines) of 1D Decaying

Burgers equation in different final times (𝜈 = 0.001)

solutions are compared in intermediate time stages until the final time 𝑡 𝑓 = 1. The above plot,
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Figure 4.1, demonstrates that there is significant agreement between numerical and analytical

methods. For the forced Burgers equation with a sinusoidal forcing term, replicating the work of

Jeng & Meecham, we referenced the studies by Jeng & Meecham and Okamura & Kawahara

to derive the analytical solution. Our simulations align with the analytical solutions, with the

exception of a slight shift in the position of discontinuity, Figure 4.2.

Figure 4.2 Significant agreement between analytical solution and

numerical simulations of one-dimensional forced Burgers equation with

sinusoidal driving force across various Reynolds numbers at equilibrium

For a more detailed discussion regarding the accuracy of the solver, we direct interested readers

to appendix I.

4.2 Error Analysis

To quantify the discrepancy between the numerical and analytical solutions, we employ the

following error metrics:
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4.2.1 L2 Norm error

The results of these simulations are compared against the analytical solution of the Burgers

equation, serving as the benchmark for accuracy. To quantify the discrepancy between the

numerical and analytical solutions, we employ the L2 norm error. It provides a measure of the

overall difference and is defined as

𝐿2 Norm =

√√√
1

𝑁

𝑁∑
𝑖=1

(𝑢′𝑖 − 𝑢𝑖)2 (4.1)

Here, 𝑁 represents the number of data points, 𝑢′𝑖 is the value from the analytical solution at

the 𝑖-th point, and 𝑢𝑖 is the corresponding value from the numerical simulation. This formula

calculates the square root of the average squared differences between the numerical and analytical

solutions, providing a measure of the overall error across the domain.

At time 𝑡 = 1, the calculated L2 norm error for the simulation of the numerical decaying

Burgers equation was found to be 0.0031. An L2 norm error of this magnitude highlights

the simulation’s high accuracy, suggesting that the numerical solution closely approximates

the analytical benchmark with minimal deviation. This level of precision underscores the

effectiveness of our numerical approach in accurately capturing the dynamics of the decaying

Burgers equation within the computational domain.

For the forced Burgers equation with sinusoidal forcing at time 𝑡 = 1 we observed a higher error

of 0.018 in the simulation suggests a moderate discrepancy between the numerical solution

and the analytical benchmark. However, this outcome was anticipated since we compared the

analytical inviscid solution with numerical approximations at small Reynolds numbers, far from

the regime of vanishing viscosity. This discrepancy arises due to the lack of an appropriate

analytical solution for the forced Burgers equation under these conditions.

4.2.2 Relative error

In addition to the aforementioned metrics, we also compute the relative error for each point to

evaluate the accuracy of the numerical solution in relation to the analytical solution. The relative
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error is defined as:

Relative Error =
|𝑢′𝑖 − 𝑢𝑖 |
|𝑢𝑖 |

(4.2)

Computing the relative error across the domain allows for a nuanced analysis of where and how

the numerical simulations diverge from expected outcomes, offering a more detailed perspective

on the solver’s performance.

The relative error obtained in our numerical simulations of the decaying Burgers equation at time

𝑡 = 1 was measured at 0.0072. This value represents the proportional discrepancy between the

numerical solutions and the analytical benchmark, normalized by the magnitude of the analytical

solutions themselves. A relative error of 0.0072 across the domain indicates that, on average, the

numerical solution deviates from the true value by less than 1%, underscoring the precision of

our simulation approach. This level of error further affirms the fidelity of the numerical decaying

Burgers model in capturing the essential dynamics of the Burgers equation, reinforcing the

solver’s capability to generate highly accurate predictions within the computational framework

employed.

4.3 Parseval’s theorem

Based on Rayleigh Energy Theorem (Parseval’s Identity of Fourier Transform), the energy

content of the square-integrable function in 𝐿2 space will be equal to the summation of the

squared amplitude of its Fourier coefficients in the wavenumber space divided by the domain

length or divided by the number of collocations in discrete form. This theorem in discrete form

is defined as follows (Canuto, 2006)

𝑁
2 −1∑

𝑛= − 𝑁
2

|𝑢𝑛 |2 =
1

𝑁

𝑁
2 −1∑
𝑘= 𝑁

2

|𝑢̂𝑘 |2 (4.3)

As is evident, the left side of the above formula is proportional to the kinetic energy in physical

space, while the right side corresponds to its Fourier transform. In other words, Parseval’s
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theorem demonstrates the conservation of energy between the velocity field and its Fourier

transform. However, it does not directly discuss TKE; rather, it refers to the energy density at

each point in physical space or wavenumber space.

Figure 4.3 Comparing the total energy containing of the system in the

physical versus Fourier spaces in logarithmic scale in the limit of

vanishing viscosity 𝜈 = 0.0001

To obtain the TKE in a discrete domain, we can multiply both sides of equation 4.3 by 1/2. As is

depicted above, figure 4.3 portrays the dual nature of the kinetic energy by comparing TKE in

both physical and spectral spaces, so we can determine the degree of agreement between our

simulation and Parseval’s theorem, which serves as a proof of whether our model captures all of

the energy or not.

4.4 Energy form of the Burgers equation

We can easily obtain the energy form of the Burgers equation by multiplying both sides of

equation 2.4 with the velocity 𝑢, then integrating over the spatial domain and finally applying
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the product rule and integration by parts. The energy form of the unforced Burgers equation

2.4 (𝐹 (𝑥, 𝑡) = 0) in unsteady state can be expressed in the following manner (Anguelov,

Djoko & Lubuma, 2007),

1

2

𝑑

𝑑𝑡

∫
𝑢(𝑥, 𝑡)2𝑑𝑥 = −2𝜈

∫
( 𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
)2𝑑𝑥 (4.4)

Which can be rewritten in the form of the evolution of the kinetic energy, decaying Burgers

turbulent kinetic energy budget, as follows

𝑑

𝑑𝑡
𝑇𝐾𝐸 (𝑡) = −𝜈 | | 𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
| |

2

(4.5)

Where 𝑑
𝑑𝑡𝑇𝐾𝐸 (𝑡) is the rate of change of turbulent kinetic energy over time, and | | 𝜕𝑢𝜕𝑥 | |

2
is the

square of the 𝐿2 norm of the spatial derivative of the velocity field which can easily be evaluated

using a fast Fourier transform and considered as the rate at which kinetic energy dissipated. To

measure this dissipation rate over time, we can calculate 𝜀 at each time step and plot it as a

function of time. The absence of an energy production term in this equation due to the lack

of pressure and rotational components, in contrary to more complex Navier-Stokes turbulence,

indicates that the mechanisms of energy interaction in 1D decaying Burgers turbulence are

fundamentally different from those in Navier-Stokes turbulence.

Both sides of the equation 4.5 have been graphically represented evolving over time in figure

4.4. To ensure a positive orientation of the vertical axis, the negative values of the rates have

been taken into account. Upon analyzing the slope of the logarithmic curve presented in Figure

4.4, we have found that the curve exhibits a diminishing trend with an asymptotic algebraic rate

approximating 1.5. This illustration serves to substantiate the principle of energy equality in

decaying Burgers’ turbulence, demonstrating our model’s alignment with theoretical concepts.

Now, by considering equation 2.4 with the forcing term and following the steps mentioned earlier

to obtain the energy form of the forced Burgers equation in steady (equilibrium) state, we have

𝑑

𝑑𝑡
𝑇𝐾𝐸 (𝑡) = −𝜈 | | 𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
| |

2

+ || 𝑓 (𝑥, 𝑡)𝑢(𝑥, 𝑡) | | (4.6)
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Figure 4.4 Energy equality in the energy form of the decaying Burgers

equation in the limit of vanishing viscosity 𝜈 = 0.0001. The black

dotted curve represents the energy dissipation rate (right side of equation

4.5) evolving over time, and each of the green circle symbols represents

the time derivative of turbulent kinetic energy evolving over time(left

side of equation 4.5) , which its slope is the second time derivative of

TKE, both in Logarithmic form. The curve decays over time by an

algebraic rate close to 1.5

The second term on the right-hand side of this equation 4.6, which stems from the driving force,

defines as the rate of work done by the forcing term and can indicates energy input per wave

number period. This factor amplifies the energy exchange between various wave numbers or

scales in contrast to the decaying version of the phenomenon.

4.5 Equilibrium state

Unlike decaying Burgers turbulence, forced Burgers turbulence has the ability to reach an

equilibrium state by adjusting the driving force. in this case, when the system reaches a state

where the energy injected by the forcing equals the energy dissipated by viscosity, it is said to be
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in equilibrium. Note that this doesn’t necessarily mean the flow fields themselves are steady;

they might still change, but the system’s total energy remains constant. In the case of the Burgers

equation, we primarily look at the total energy in the system that should eventually be stabilized

in an equilibrium state. To this aim, we can also monitor the rate of change of the kinetic energy

and the viscous dissipation rate (Girimaji & Zhou, 1995).

4.5.1 Injected energy by the forcing term

To calculate the energy injected into the system due to the forcing term, we will need to consider

the work done by this forcing on the fluid. For the 1D Burgers equation, as both the forcing

term and velocity field are scalar functions of time and position, work is typically represented by

the integration of the multiplication of the force (in this case, the forcing term) and the velocity

of the fluid 𝑢(𝑥, 𝑡) (Jeng & Meecham, 1972). With the forcing term 𝐹 (𝑥, 𝑡), the power (rate of

energy input) per unit volume due to the forcing at any given time 𝑡 and position 𝑥 is:

𝑃(𝑥, 𝑡) = 𝐹 (𝑥, 𝑡) × 𝑢(𝑥, 𝑡) (4.7)

where 𝑃(𝑥, 𝑡) is the injected energy to the wavenumber 𝑘 of the fluid by the forcing term.

4.5.2 Dissipated energy by the viscous term

As detailed in chapter 3, viscous dissipation represents the conversion of kinetic energy into

internal energy due to the viscous effects in the fluid. For a more comprehensive discussion,

consult section 3.3.3. Figure 4.5 depicts the energy equilibrium state. It clearly shows that in

our simulation of forced Burgers’ turbulence with a sinusoidal forcing term, the kinetic energy

stabilizes at a constant value once a steady state is reached 𝑡 ≥ 0.8. Similarly, the amounts of

injected and dissipated energies also stabilize.
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Figure 4.5 Formation of Equilibrium state between injected and

dissipated energy levels in the forced Burgers’ turbulence. Total kinetic

energy tends towards a constant value when the system reaches

equilibrium 𝑡 ≥ 0.8. Energy introduced into the first largest scale k=2𝜋

4.6 Theoretical energy spectrum

In this section, we compare the energy spectrum of the decaying and forced Burgers turbulence

with theoretical spectra. While previous studies have thoroughly established the behavior of the

Burgers spectrum in the inertial range, we include the spectra from our calculations in this paper

to verify that our simulated model conforms to the statistical characteristics predicted by the

literature. It is an indirect verification that all scales are resolved almost properly.

By directly applying the Kolmogorov hypothesis to the spectra, we can derive the Kolmogorov

spectrum, which is known as the Kolmogorov 5/3 law. The Kolmogorov energy spectrum

is a theoretical prediction to validate the shape of the energy spectrum of a fully developed

three-dimensional isotropic, and homogeneous turbulence governed by the Navier-Stokes

equations in the inertial subrange; however, due to the lack of some complexities in the Burgers
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one-dimensional turbulence including vortex stretching mechanism, Kolmogorov 5/3 law can

only be applied on a superficial level just in the presence of the hyper-viscosity scenarios

(Chekhlov & Yakhot, 1995b). By considering the second Kolmogorov similarity hypothesis, the

Kolmogorov energy spectrum function of turbulent flow in the inertial subrange is (Pope, 2000),

𝐸 (𝑘) = 𝐶𝜀
2
3 𝑘−

5
3 (4.8)

𝐸 (𝑘) is a power-law spectrum with a spectral index equal to −5
3

in which 𝐶 is the Universal

Kolmogorov constant, we set 𝐶 = 1.5 (Sreenivasan, 1995). The energy dissipation rate 𝜀

can be calculated in the physical space or Fourier space, which is discussed earlier and is a

constant value in the inertial range of a fully developed turbulence, as per the Kolmogorov

second hypothesis.

Extensive research have proposed an alternative behavior in Burgers turbulence dynamics,

characterized by a 𝑘−2 power law, first suggested by Saffman (1968), differing from Kolmogorov’s

predictions.

To verify that our simulated decaying Burgers turbulent flow adheres to the statistical characteristics

predicted by Kolmogorov or Saffman theories to a certain degree, we compared the energy

spectrum in Fourier space against the mentioned spectra, figure 4.6.

To visualize whether the actual energy spectrum follows the expected scaling behavior,

compensated energy spectrum which involves dividing the energy spectrum 𝐸 (𝑘) by a theoretical

power-law scaling 𝑘−5/3 is calculated in the same plot, figure 4.6. If the system indeed follows

the expected power-law scaling, the compensated energy spectrum plot will show a relatively

flat or constant line in the inertial subrange (Chekhlov & Yakhot, 1995a). As observable in

the aforementioned graph, the energy density spectrum demonstrates an alignment with the

Kolmogorov 5/3 law within the range of wavenumber 60 < 𝑘 < 94 with a tolerance of 0.1, in

the spatial domain [0, 2𝜋].
On our second attempt, we contrasted the energy spectrum with the 𝑘−2 scale, as proposed by

Saffman (1968) in figure 4.6. In the second case, the numerical solution covered a broader

wavenumber range of 52 < 𝑘 < 124 as the inertial subrange, and shows greater agreement
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Figure 4.6 The degree of agreement among the energy spectrum of the

decaying Burgers’ turbulent with the Kolmogorov −5/3 law, and the 𝑘−2

power law scaling. The initial data were distributed uniformly through

the use of a random white noise generator. The red dotted curve is the

energy spectrum of our numerical result at t=0.1. The dashed lines show

the theoretical energy spectra based on the Kolmogorov 5/3 law and the

𝑘−2 law for the inertial subranges. The black and blue dotted curves

represent the energy-compensated versions of the Kolmogorov 5/3 law

and the 𝑘−2 law, respectively, for the inertial subranges at a near-zero

viscosity limit (𝜈 = 0.0001). These curves demonstrate strong

adherence to the aforementioned laws, as indicated by their flatness

across the wavenumber range

with the theoretical power-law literatures (Saffman, 1968), (Girimaji & Zhou, 1995). The wave

numbers smaller than the mentioned ranges are more probable to behave like an energy-containing

subrange which is dominated by the largest structures, where the energy is injected into the

system, while the wavenumbers larger than the mentioned range can be considered as dissipative

subrange which dominated by the small scale behaviors, where the energy is dissipated as heat

due to the formation of the shockwaves and the action of the viscosity (Girimaji & Zhou, 1995).

Considering Burgers’ turbulence which is primarily driven by an external Wiener random force
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that mainly supplies energy to the large-scale structures, the energy spectrum that emerges aligns

with the 𝑘−2 scale as discussed by Sinai (1992). This agreement is illustrated in figure 4.7 by

depicting both the 𝑘−2 scale line and the compensated energy spectrum.

Figure 4.7 The degree of agreement among the energy spectrum of the

Forced Burgers’ turbulent with the 𝑘−2 power law scaling when driven

by the large scale random forcing term. The red dotted curve is the

energy spectrum at equilibrium state; the straight line has the exact slope

of 𝑘−2 and the black dotted curve is the compensated energy spectrum



CHAPTER 5

UNVEILING THE RESULTS: IN-DEPTH DISCUSSIONS AND ANALYSIS

In this chapter, we will discuss the results of our research work conducted using the Fourier

Galerkin solvers. Our work commenced with modeling equations from the Burgers class, which

we then expanded to encompass various scenarios, particularly decaying and forced Burgers’

turbulence, across diverse initial velocity fields and forcing terms.

This chapter begins with an examination of the advection-diffusion equation. We then transition

to the discussion of Burgers equation. Following that, we will investigate the decaying

Burgers turbulence, and finally, our focus will shift towards exploring the complexities of the

characteristics of forced Burgers turbulence.

As outlined in the previous chapter, we employ the Fourier-Galerkin spectral solver accompanied

by a 3rd-order Runge-Kutta scheme for time integration.

5.1 Evaluation of viscous term

In this chapter, we initially explore the effects of viscosity on the behavior of the Burgers class

of equations to assess their key characteristic: the interplay between inertial and viscous effects.

First, we start with the advection-diffusion equation, denoted as equation 1.1. The initial function

is similar to the one discussed in section 1.1.2, and the ratios of advection velocity 𝑎 = 1 over

kinematic viscosity 𝑎
𝜈 = [1, 10, 100, 1000] are considered as a scale representing the balance

between the intensity of advection versus the diffusion state. Figure 5.1 illustrates this interaction,

along with the analytical solutions of the equation.

In the case of the advection-diffusion equation, reducing the kinematic viscosity diminishes

the effect of the diffusion term, causing the equation to behave more like a linear advection

equation, predominantly following the advection velocity. As a result, the majority of the

energy is conveyed by the advection phenomenon, the inertial effects, leading to numerical

simulations that are susceptible to displaying dispersion error when compared to the exact

solutions. Conversely, higher viscosity results in more pronounced diffusion behavior, making

the diffusion term increasingly dominant. Over time, our approximation will more closely
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resemble the heat equation, which accounts for viscous effects, and consequently, it exhibits

higher dissipation errors relative to the exact solutions. Figure 5.1 is the proof of this behavior.

a) 𝑎
𝜈 = 1 b) 𝑎

𝜈 = 10

c) 𝑎
𝜈 = 100 d) 𝑎

𝜈 = 1000

Figure 5.1 The Advection-Diffusion equation in different ratios of

advection velocities over diffusion viscosities 𝑎
𝜈 = 1, 10, 100, 1000 reveals the

interaction between advection and diffusion terms through varying viscous

effects

(𝑁 = 64,Δ𝑡 = 10−5)

5.2 The existence and smoothness problem

While solutions to the Burgers equation always exist, they may not always be smooth, especially

in the inviscid limit as viscosity approaches zero. To enhance our understanding, we conducted

multiple simulations of the decaying Burgers equation across different kinematic viscosities
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𝜈, as illustrated in figure 5.2. In the vanishing viscosity limit, the Burgers equation can lead

a) 𝜈 = 1 b) 𝜈 = 0.1

c) 𝜈 = 0.01 d) 𝜈 = 0.001

Figure 5.2 Discontinuities or singularities are not exist in high viscosities.

Decaying Burgers equation for 𝜈 = 1, 0.1, 0.01, 0.001. For extremely high

viscosity, the waveform takes on a smooth shape; however, as the viscosity 𝜈
lowers, the waveform grows increasingly sharp and ultimately evolves into a

form featuring a pronounced shock structure

(𝑁 = 512,Δ𝑡 = 10−5)

to the formation of discontinuities or "shocks" over time, even from smooth initial conditions.

The formation of shocks in the Burgers equation can be understood as a result of the non-linear

convective term in the equation, which tends to steepen the velocity profile, leading to the

formation of discontinuities and shocks. The viscous term, on the other hand, tends to smooth

out the velocity profile and prevent the formation of shocks. This phenomenon of discontinuity

development is well-documented in fluid dynamics and contrasts with the incompressible Navier-
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Stokes equations, where the emergence of discontinuities or singularities remains a significant

unresolved issue. This is one of the key reasons the Burgers equation is frequently employed

as a simplified model for studying aspects of turbulence and shock formation, highlighting its

utility in probing various physical phenomena.

5.3 The behavior of higher wavenumbers

With the aim of our research, we implemented the simulations one more time, but this time, in a

fixed viscosity and different modes of the wavenumber 𝑛 = [1, 2, 5, 10] in various final times

𝑡 𝑓 = 0.2, 0.4, 0.6, 0.8 and 1.

As shown in figure 5.3, increasing the mode of wavenumbers leads the energy to decay faster in

Advection-Diffusion equation. This behavior is caused by the fact that the values of the higher

wave numbers are more sensitive on diffusion terms compared to the advection terms, due to

the fundamental mathematical characteristic of these phenomena as it is proportional to 𝑘2 in

Fourier space leading to greater dissipation of energy at smaller scales. Additionally, Figure 5.3

explicitly shows that higher wavenumbers exhibit elevated dissipation errors relative to analytical

solutions. This is due to the diffusion effects, which are primarily responsible for dissipation

error, becoming more pronounced.

In Figure 5.4 the behavior of higher wavenumbers is illustrated but this time using the viscous

Burgers equation. It can be concluded that in this case as well, by increasing the mode of initial

wave number 𝑛, the diffusion effects would become more potent; in other words, the diffusion

term has more interest in damping higher wavenumbers than the lower ones, so in turbulent

flow with multiple scales it damps out smaller scale structures faster which are located in the

dissipation range that is responsible for dissipation of energy due to viscous effects.

In the 1D decaying Burgers equation, the non-linear term (𝑢 𝑑𝑢
𝑑𝑥 ) represents the advection of

momentum, which tends to create sharp gradients (small scale structures), while the linear

term (𝜈 𝑑2𝑢
𝑑𝑥2 ) corresponds to the viscous diffusion of momentum, which tends to smooth out

these gradients. When we increase the kinematic viscosity, the influence of the diffusion term

becomes more dominant. This increased diffusion "smooths" out small-scale structures faster
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a) n = 1 b) n = 2

c) n = 5 d) n = 10

Figure 5.3 The behavior of Advection-Diffusion equation in different

modes 𝑛 = 1, 2, 5, 10 shows the higher wavenumbers, smaller scales, are

damper more effectively. The diffusion effects in higher wavenumber, smaller

scales. Diffusion term tends to smooth out (𝜈 = 0.01, 𝑁 = 128,Δ𝑡 = 10−4)

and thus, more energy is contained in larger scales (smaller wave numbers). This is because the

viscous term acts as a damper to high-frequency (small-scale) fluctuations, causing the energy

to concentrate at larger scales.

This phenomenon is related to the intrinsic nature of the Burgers’ equation and the effect of the

kinematic viscosity on the system. So, we can say that in Burgers’ turbulence, the kinematic

viscosity determines the scale at which the non-linear advection and the linear diffusion (viscous

damping) balance each other. This balance is crucial in shaping the energy spectrum of

turbulence.
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a) n = 1 b) n = 2

c) n = 5 d) n = 10

Figure 5.4 Numerical approximations of the Burgers equation for various

modes 𝑛 = 1, 2, 5, 10 illustrate that the diffusion term increasingly dominates

at higher wavenumbers (𝜈 = 0.001, 𝑁 = 1024,Δ𝑡 = 10−4)

5.4 Effects of varying viscosities on the energy spectrum

In this section, we explore how varying viscosities influence the energy spectrum. In figure 5.5

the Energy spectrum of the velocity field of the decaying Burgers equation in various viscosities

is depicted. By increasing the kinematic viscosity, we are enhancing the role of viscous diffusion,

which tends to abolish small-scale structures and shifts energy concentration towards larger

scales or smaller wavenumbers. Consequently, energy dissipates more rapidly and approaches

zero at smaller scales (higher wavenumbers), leading to the emergence of the dissipative range
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at larger scales while diminishing the inertial subrange. Thus, as previously discussed in section

5.3, it is evident that the diffusion term in the equation acts to attenuate higher wavenumbers.

Figure 5.5 Energy spectrum 𝐸 (𝑘) of the velocity field in Decaying

Burgers equation across various viscosities 𝜈 = 0.001, 0.01, 0.1, 1,

demonstrating accelerated energy damping at higher viscosities prior to

transfer to smaller scales which means the boundaries of dissipative and

inertial subranges will change in wavenumber domain 𝑁 = 512 and

Δ𝑡 = 10−6

5.5 Decaying Burgers’ Turbulence with a uniform random initial velocity field

In this stage of the present research work, our objective is to investigate the behavior of Decaying

Burgers’ Turbulence which is subjected to the uniform random initial velocity field.

The process to generate the uniform random initial velocity field was discussed in the Methodology

chapter. Here we just provide the results of simulations and further discussions to analyze the

behavior of the solutions. One significant observation in Figure 5.6 is what we experienced

in earlier subsections, that intensifying the viscous effects enhances the effectiveness of the

diffusion behavior in our simulations. The increased diffusion tends to dampen the high-frequency
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a) 𝜈 = 0.0001 b) 𝜈 = 0.001

c) 𝜈 = 0.01 d) 𝜈 = 0.1

Figure 5.6 Numerical approximations of the decaying Burgers’ equation in different

viscosities with uniform random initial velocity field using Fourier-Galerkin method in

space and 3rd-order Runge-Kutta scheme in time (𝑁 = 2048)

fluctuations and dissipate energy at smaller scales. but unlike Navier-Stokes turbulence which

this energy tends to the formation of small eddies, in Burgers’ turbulence, the energy tends to

concentrate at the shocks and dissipate rapidly due to the presence of the viscous term. This

behavior leads to the formation of shock waves rather than an energy transfer to smaller scales.

Thus, a higher diffusion behavior can lead to the formation of smaller structures including

ramp-like structures and shock waves (She et al., 1992).

5.5.1 Evolution of the energy spectrum affected by various viscosities

As mentioned in section 5.3, the diffusion term within the equation is known to dampen higher

wavenumbers. Illustrated in figure 5.7, elevating the kinematic viscosity intensifies the effect
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of viscous diffusion. This process effectively eliminates small-scale structures, redistributing

energy to favor larger scales or smaller wavenumbers.

a) 𝜈 = 0.0001 b) 𝜈 = 0.001

c) 𝜈 = 0.01 d) 𝜈 = 0.1

Figure 5.7 Evolution of the energy spectrum of the decaying Burgers’ turbulence in

different viscosities with uniform random initial velocity field shows increasing kinematic

viscosity intensifies viscous diffusion effects and damp out smaller scale structures

(𝑁 = 2048)

5.5.2 Inverse energy cascade

It is a well-established fact that three-dimensional Navier-Stokes (NS) turbulence does not

allow for the inverse cascade of energy from smaller to larger scales. However, analyses by

Kraichnan (1968) suggest that the Burgers equation might support such an inverse cascade.
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Girimaji & Zhou (1995) numerical investigations have demonstrated this energy transfer.

We now aim to confirm their results using a spectral method. We employed a decaying form of

Burgers turbulence using the initial data which presented earlier in section 3.1.1, where 𝑘𝑖 = 190

and 𝑘 𝑓 = 260 define the wavenumbers that describe the boundaries of the inertial sub-range.

To determine the boundaries of this sub-range, we conducted a simulation of forced Burgers

turbulence and allowed the system to evolve until it reached an equilibrium state. Subsequently,

we identified the boundaries of the inertial subrange by analyzing the 𝑘−2 scaling behavior.

Figure 5.8 illustrates the evolution of the energy spectrum associated with this decaying velocity

field.

Figure 5.8 Inverse energy transfer in illustrated. Energy spectrum of

the decaying Burgers with the initial velocity field bounded in

𝑘 = [190, 260] in the wavenumber space 𝜈 = 1𝑒 − 4

As the initial velocity field undergoes evolution under the Burgers equation, kinetic energy is

swiftly distributed among all wavenumber modes, including those smaller and larger than the

initially energized ones. This process reveals a clear inverse transfer of energy from the initially

active scales to the larger scales. Following this swift initial phase, the energy spectrum begins to

decay, showing no further signs of inverse energy transfer. Over time, the higher wavenumbers

tend to lose their energy more quickly compared to the lower ones. Indeed, in the later decay

phases, 𝑡 ≥ 16, only large scale wavenumbers that are smaller than 190 remain significantly



71

energized. The prompt energization of the larger scales (𝑘 < 190) serves as a clear indicator of

inverse energy transfer. Nonetheless, whether this transfer occurs through a cascading process

remains uncertain.

One strategy to understand the details of this energy transfer is to investigate the triadic

interactions among local wavenumbers (Girimaji & Zhou, 1995), an area reserved for subsequent

research studies.

While it is true that the inverse cascade of energy is not permitted in 3D Navier-Stokes turbulence,

it is important to note that the phenomenon observed in Burgers turbulence, namely the inverse

transfer of energy (as opposed to an energy cascade), is also a common feature in 3D Navier-

Stokes turbulence simulations. This is particularly evident in the interactions between local

wavenumbers within the spectral space.

5.5.3 Evolution of the probability density function in dissipative Burgers turbulence

We obtained the PDF of the velocity field evolving in time, using the kernel smoothing density

function, to analyze the evolution of small structures figure 5.9.

Figure 5.9 As the simulation evolves, emerge of the small-scale

structures can lead to the existence of non-zero skewness in

addition to more peaked PDF with fatter tails, which results in an

increase in kurtosis 𝜈 = 0.001
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As can be seen, it changes to the interplay between the nonlinear advection term and the

viscous diffusion term. The development of shocks and small-scale structures cause the PDF to

develop a more complex structure, often characterized by long tails and sharper peak, power

law behavior, which means an increase in kurtosis, in addition to losing its symmetry, and

non-zero skewness. In the inviscid limit 𝜈→0, the PDF becomes singular, with most of the

probability mass concentrated around the shock locations. It has a good agreement with the

behavior explained by the literature (Bec & Khanin, 2007), (Tennekes & Lumley, 1978).

5.5.4 Evolution of the statistical central moments of distribution in dissipative
Burgers’ turbulence

Two essential statistical central moments that were previously discussed in section 3.3.5 are

skewness and kurtosis. These central moments offer valuable insights into the characteristics

and patterns of turbulent flows, shedding light on their behavior and structure. In this subsection,

we discuss the evolution of these statistical concepts over time and explore the interplay of

nonlinearity and viscosity in Burgers turbulence on the behavior of these central moments in

Figures 5.10 and 5.11.

As depicted in the following Figures, in a decaying, one-dimensional viscous Burgers turbulence,

the skewness and kurtosis evolve in a particular way due to the nonlinear nature of the Burgers

equation and the presence of viscosity. In Figure 5.10 the skewness remains close to zero at

very early times because of the initial uniform random data, which typically have a symmetric

distribution. However, as time progresses and the nonlinearity of the Burgers equation comes

into play, the skewness increases in magnitude. This increase is due to the formation of extreme

events and sharp gradients or "shocks" in the solution, caused by the nonlinear advection term.

This leads to an asymmetry in the distribution of velocity, which gets reflected as non-zero

skewness. The negative sign of the skewness indicates a distribution with a long tail on the left

side of the PDF plot Figure 5.9, meaning there are a significant number of regions with low

velocity.

As viscosity increases in Figure 5.10, the dissipation effects due to the linear diffusion term will

become more dominant over the nonlinear advection term which leads to the diffusion of extreme
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Figure 5.10 Evolution of skewness in time with different viscosities.

The plot demonstrates the impacts of the interplay between linear

advection and nonlinear diffusion terms on the behavior of the skewness

curve. The increase in the magnitude of skewness indicates the

formation of sharp gradients or shocks in the solution

events and shocks, and consequently, the flow field becomes more symmetric. This leads to

a decrease in the magnitude of skewness, as skewness is a measure of the asymmetry of the

distribution. Thus, when the viscosity is large enough 𝜈 = 0.1, the flow can become essentially

Gaussian with skewness tending toward zero. In Figure 5.10 this interplay between linear

and nonlinear phenomena is interestingly presented when viscosity 𝜈 = 0.1. In the beginning,

the magnitude of a symmetric skewness increased from zero due to the impact of nonlinear

advection caused to the formation of intermittent, extreme events. but shortly after, the viscous

effects due to the linear diffusion term come into account as a regularizer and dissipates these

small-scale outliers, making the solution smoother and more symmetric with a skewness moving

toward zero.

The evolution of Kurtosis over time is also dependent on viscosity in Decaying Burgers’



74

Figure 5.11 Evolution of Kurtosis in time with different viscosities.

The plot demonstrates the impacts of the interplay between linear

advection and nonlinear diffusion terms on the behavior of the Kurtusis

curve. Positive Kurtosis indicates the development of sharp gradients or

shocks in the solution

turbulence. As illustrated in Figure 5.11, similar to Skewness, the Kurtosis starts from a low

value (close to zero for Uniform initial data) due to the lack of sharp gradients in the initial

velocity field. As the solution evolves in the early stages of the simulation, the Kurtosis begins to

increase initially going toward Normal distribution, Kurtosis close to 3. This increase is due to

the development of sharp gradients or shocks in the solution caused by the nonlinear advection

term. In Fig.5.11, it is observed that in 𝜈 = 0.001 after the initial stages, as time progresses,

the viscosity caused by linear viscous term starts to dominate, which smooths out the shocks

and the PDF starts to form a flatter crown compared to the normal distribution, Fig.5.9. This

indicates a decrease in the magnitude of Kurtosis, as shown in Fig.5.11, which as mentioned,

can be attributed to viscous effects. However, it appears that these viscous effects, 𝜈 = 0.001,

were insufficient to fully dissipate energy, and in the third stage, the formation of extreme events
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leads to an increase in Kurtosis once again after 𝑡 = 5 for 𝜈 = 0.001. These shocks appear as

extremes in the velocity distribution, leading to heavier PDF tails. 5.9. This implies the presence

of extreme events or outliers. In turbulence, this could indicate intense and intermittent events

(Davidson, 2015).

In the last stage of evolution, after the system has evolved for a long enough time, the balance

between the nonlinearity and the dissipation stabilizes, leading to a more or less constant

Kurtosis.

With a sufficient increase in viscosity, 𝜈 = 0.1, is observed that the viscous effects become more

pronounced, significantly damping out extreme events. This results in the elimination of the

third stage, previously associated with a second increase in kurtosis.

5.5.5 Self-similarity of the stochastic velocity field in the decaying Burgers turbulence

Building on the research by (Sefik & Christov, 1992), this section presents the normalized

spectrum of the time evolution for both second-order and fourth-order multi-point correlation

functions of the velocity field. The aim is to qualitatively examine the stochastic self-similarity

in the behavior of these correlation functions within dispersive Burgers turbulence, starting with

initial uniform random data. Building on the formulas outlined in Section 2.2, we calculated the

correlation functions and integrated the data using the trapezoidal rule. We then derived the

correlation curves at various times by employing a normalization technique, as explained in

the same section. From our observations, both the second-order, Fig. 5.12, and fourth-order,

Fig. 5.13, correlation functions associated with the velocity field exhibited substantial shape

consistency. This serves as evidence of the self-similarity observed up to the forth-order

correlation function in our findings, allowing us to extract a unique and specific insight from each

turbulence simulation. This implies that for considerably large times, there is no need to obtain

results for different times, potentially reducing computational resources in future simulations.

Our findings show a qualitative alignment with the results presented by Sefik & Christov in their

1991 study, thereby facilitating a clearer understanding of Burgers turbulence.

Another observation worth mentioning from the correlation figures 5.12 and 5.13, is the vanishing
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of correlation functions as the separation distance increases, indicating a strong manifestation of

the mixing property within the turbulent flow under examination.

This phenomenon suggests that, over large distances, the fluid elements become statistically

independent of each other, a hallmark of effective mixing. As the flow evolves, the initial

conditions or localized variations in the fluid properties (such as velocity, temperature, or

concentration of a substance) dissipate across the entire domain, leading to a state where these

properties are uniformly distributed. The diminishing correlation at large separations implies

that any two points in the fluid, when far enough apart, no longer influence each other’s state in

a statistically significant manner. This is a direct consequence of the turbulence’s capacity to

homogenize the fluid’s characteristics, breaking down initial inhomogeneities and distributing

energy, momentum, and scalar quantities evenly throughout the flow. Such observations are

critical for understanding the dynamics of turbulent mixing and validate the theoretical models

predicting the decay of correlations as a signature of effective turbulent mixing.

Figure 5.12 Evolution of normalized two-point second-order

correlation functions over time. The curves exhibit significant

shape consistency, suggesting evidence of self-similarity
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Figure 5.13 Evolution of normalized two-point fourth-order

correlation functions over time. The curves exhibit significant

shape consistency, suggesting evidence of self-similarity

5.6 Forced Burgers turbulence simulations

As mentioned previously in section 1.1.4, the forced Burgers equation is a versatile model for

various physical problems. This section starts with a discussion on the results of forced Burgers

turbulence using a sinusoidal forcing function 2.9, revisiting the work of Jeng & Meecham

(1972).

𝐹 = −𝐴𝑠𝑖𝑛 (𝑘𝑥 − 𝜔𝑡) , 𝐴 > 0 (5.1)

In line with the simulations by Jeng & Meecham (1972), the calculations were carried out in

equilibrium states introducing the forcing term to the smallest wavenumber, largest scale at

𝑘 = 2𝜋 with 𝐴 = 10 and 𝑐 equal to unity. This was done using various Reynolds numbers:

𝑅𝑒 = 100, 250, 500. These were determined with a reference length scale of 1 and a reference
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velocity scale of 1, making the Reynolds number the inverse of the numerical value of viscosity.

The domain length is designated as 𝐿𝑥 = 1 in the range 0 ≤ 𝑥 ≤ 1 and the number of spatial

collocation points 𝑁 = 210.

Figure 5.14 illustrates the evolution of TKE over time in different Reynolds numbers in

our simulations, showcasing a strong concordance in the shape of the curves obtained by

Jeng & Meecham, but not the magnitude. The similarity between the curves of TKE at different

Reynolds numbers underscores the observation that the development of TKE remains nearly

independent of Reynolds number, particularly at sufficiently large Reynolds numbers.

Figure 5.14 The Total Kinetic Energy (TKE) remains consistent

despite changes in viscosities. The discrepancy in the TKE levels

between our findings and those of Jeng et al. is attributed to energy

losses observed in their simulations. The TKE level in our simulations

when reaching equilibrium state are almost identical to TKE of inviscid

analytical solution

However, the difference in the magnitude of TKE between our results and those of Jeng & Meecham

warrants further attention and we confirm that the values of analytical TKE closely align with

the energy content of our model and are in stark contrast to their findings.

Another interesting observation is that when we decrease the viscosity, the kinetic energy content

of the system in the equilibrium state tends to approach the analytical kinetic energy content of

the inviscid solution, which endorsed the accuracy of our simulations.
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In Figure 5.15 we can observe the velocity fields acquired by us and by Jeng & Meecham,

compared to the analytical solution, which describes the similarity between velocity fields with

different viscosities except in the dissipation region. By comparing the results with the analytical

solution, we find that the shift in shock positions is observed in the Jeng & Meecham; but not in

our simulations.

Figure 5.15 The velocity profiles of forced Burgers turbulence in

various Reynolds numbers stay nearly identical, except within the

dissipation region. In contrast to our results, a shift in shock positions is

observed in the Jeng et al. simulations, which is attributed to energy

losses

It appears their model lost a portion of energy, potentially due to the inherent errors in the finite

difference scheme. This discrepancy is observed in three distinct ways: firstly, weaker maximum

velocity values are observed at the shock position; secondly, a notable shift in shock positions is

apparent in their results, details of which are more evident in Figure 5.16, yet are not detected

in our results. Lastly, and importantly, their model reached equilibrium earlier than expected

(𝑡 ≥ 0.25) compared to almost (𝑡 ≥ 0.8) in our simulations.
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Figure 5.16 The details of shock structure in different Reynolds

numbers. The difference in shock position of our simulations and Jeng

et al. results are obvious

5.6.1 Evolution of the energy spectrum in the forced Burgers turbulence

The energy spectrum of forced Burgers turbulence with a sinusoidal forcing function can

be found in Figure 5.17. As evident, changing the viscosity does not significantly affect the

energy distribution across different wavenumbers in forced Burgers turbulence. This stability is

attributed to the forcing term, which compensates for the energy dissipated due to viscosity by

injecting energy into the system, thereby maintaining the shape of the energy spectrum in smaller

wave numbers. Different energy spectra at various wavenumber, fig 5.18, while maintaining

nearly the same total kinetic energy (TKE) fig 5.14, reveal that notable variations in energy

distribution occur predominantly at larger wavenumbers, though these variations have little effect

on the total energy held within the system. This behavior is evident in fig 5.18, where deviations

in the energy spectrum occur at higher wavenumbers, rather than at lower wavenumbers that are

affected by the large-scale forcing term.
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Figure 5.17 The details of energy spectrum with a sinusoidal forcing

term in 𝑅𝑒 = 500

5.6.2 Evolution of the Probability Density Function in forced Burgers’ turbulence

We can have access to valuable insights by investigating the behaviour of PDF. In Fig.5.19 we

observe a bulk shift to the right with a significant concentration of data points on the right

side of the mean. The forcing term continuously pumps energy into the system. At the same

time, energy dissipates through dissipation mechanisms. Ideally, a balance between this energy

input and dissipation will result in a stationary, invariant in time, probability distribution for the

solution (Iturriaga & Khanin, 2003). The mentioned observation is explored in greater detail in

the following subsection. Note that altering the Reynolds number does not impact the behavior

of the PDF. Moreover, the PDF function retains its shape upon reaching the equilibrium state

(𝑡 ≥ 0.8).
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Figure 5.18 The energy spectrum across various wavenumbers, despite

similar total kinetic energy (TKE), illustrates that significant differences

in energy distribution are just confined to higher wavenumbers, yet these

discrepancies minimally impact the system’s overall energy content

5.6.3 Evolution of the statistical central moments of distribution in forced Burgers’
turbulence

The skewness of a probability density function (PDF) is a measure of its asymmetry, particularly

in terms of the direction and extent of the tail.

If a PDF has a long tail on the left side (negative side), figure.5.19, it is typically considered

negatively skewed. However, in our simulations, the bulk of the distribution is shifted towards

positive values. This shift effectively outweighs the effect of the negative left tail on skewness,

resulting in a net positive skewness, figure 5.20.

This can be interpreted that while a small number of sharp gradients or shocks occur with strong

negative magnitudes, the majority of events have smaller magnitudes with positive values, which

explains the presence of shock waves and rarefaction waves.

Concerning the behavior of kurtosis, figure 5.21, it initially starts at a value of zero, indicative

of a zero initial velocity field. This quickly changes after the first timestep, rising to 1.5, a

value that is still below the standard kurtosis of a normal distribution, Kurtosis equal to 3. This
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Figure 5.19 The evolution of PDF in time. A bulk shift to the right

with a tailed concentration in the left. PDF becomes stationary once the

system reaches a steady state

initial phase signifies a platykurtic distribution, where the tails are lighter than those of a normal

distribution, suggesting a lower likelihood of extreme values or outliers. As the simulation

progresses, there is a slight decrease in kurtosis, dropping to 1.45 around 𝑡 = 0.2. This mild

change indicates a stable phase in terms of tail heaviness and the probability of outliers. As

the simulation continues towards 𝑡 = 0.8, the kurtosis gradually increases to 1.9, indicating

a shift towards a more normal-tailed distribution. This phase shows a subtle increase in the

likelihood of outliers and shocks, reflecting a gradual intensification of extreme events within

the turbulence. Notably, as the forced Burgers turbulent system approaches an equilibrium state,

the kurtosis stabilizes at 1.9. This stabilization suggests that the final equilibrium state of the

system is characterized by a distribution with tails that are less heavy than a normal distribution,

indicating a moderately low probability of extreme values, but heavier than at the initial stages

of the simulation. The overall behavior of kurtosis throughout the simulation highlights the
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Figure 5.20 The evolution of skewness in the velocity field dataset

shows that the positive skewness stabilizes at a constant value once

the system reaches an equilibrium state

dynamic and complex nature of forced Burgers turbulence, especially in how extreme events

and tail probabilities evolve from the initial stages to the equilibrium state. This behavior, in

conjunction with the observed positive skewness and fat left tail of the PDF, illustrates the

asymmetrical and intricate characteristics of the distribution in our turbulence simulations.

In forced Burgers turbulence, changing the Reynolds number does not affect the statistical central

moments of the distribution.

5.6.4 Gaussianity and Quasinormal assumption

Building upon the findings of Jeng (1969), which highlighted the insensitivity to initial data

in Burgers turbulence, we replicated their study to confirm these observations. To this aim we

implemented Forced Burgers turbulence with the initial Gaussian velocity field subjected to

Gaussian random force, the details of simulations were discussed earlier in chapters 2 and 3.
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Figure 5.21 The evolution of Kurtosis in time. Kurtosis

demonstrates the evolving complexity of turbulence, particularly in

how extreme events change from start to equilibrium

To evaluate the system’s Gaussianity, and see whether it keeps this distribution form, we use

the Quasinormal approximation, which links the fourth-order correlation to the second-order

correlation. The formula is expressed as:

〈𝑢2(𝑥 + 𝑟)𝑢2(𝑥)〉 = 〈𝑢(𝑥)2〉2 + 2〈𝑢(𝑥 + 𝑟) + 𝑢(𝑥)〉2 (5.2)

Under this approximation, a purely Gaussian velocity field would conform to the Quasinormal

condition.

Assessing how much the velocity field deviates from the quasinormal assumption can be used

as a method to evaluate its Gaussian characteristics. In figure 5.22 Quasinormal assumption

compared with the fourth-order correlation for the velocity field at 𝑡 𝑓 ≥ 1 is depicted.

As evident from Figure 5.22, there is a notable congruence with the quasi-normal assumption.

This leads us to conclude that the velocity field closely approximates a Gaussian distribution,

suggesting that our system maintains its Gaussianity over time. This observation is consistent
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Figure 5.22 The comparison of the fourth-order correlation

function of the velocity field with the quasi-normal assumption

reveals an acceptable alignment, serving as evidence that the

system has preserved its Gaussianity

with various experiments on actual turbulence (UBEROI, 1956), as well as the numerical

simulations conducted by (Jeng, 1969).

5.6.5 Dynamic adaptation of the Burgers turbulence to the external inputs utilizing
multi-point statistical correlations of the velocity field

Building on the discussion from the previous section, we delve deeper into the analysis. Up to

this point, we have shown that the system retains its Gaussianity when initialized with Gaussian

data and subjected to the forcing from the same distribution. In this section, we aim to show

that the system’s behavior is not about preserving Gaussianity; rather, it just closely reflects the

dynamics of the forcing term over time.

To this aim we evaluate second-order and fourth-order two-point correlations based on the

formula discussed in section 2.2.

In figures 5.23 to 5.26, the correlation functions are presented, for both the velocity field and the

forcing term. The aim is to showcase the resemblance between the central correlation functions
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Figure 5.23 Evolution of normalized two-point second-order

correlation functions of the velocity field over time. The curves are

increasingly aligned with the phase of the random driving force

Figure 5.24 Evolution of the second-order correlation functions of the

forcing term over time. The curves exhibit alignment with their

counterpart correlation functions of the velocity field
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of the velocity field at various time stages and the correlation functions of the forcing term as

they evolve over time.

Figure 5.25 Evolution of normalized two-point fourth-order

correlation functions of the velocity field over time. The curves are

increasingly aligned with the phase of the random driving force

This resemblance underscores a significant distinction between the dynamics of decaying Burgers

turbulence and those of forced Burgers turbulence. In the case of decaying Burgers turbulence,

there is a noted similarity between the characteristics of the initial velocity field and those

observed at later stages of evolution. This similarity suggests a certain degree of preservation of

initial conditions over time.

However, the scenario markedly changes in the context of forced Burgers turbulence. Here,

the velocity field does not merely retain its initial characteristics; instead, it increasingly aligns

itself with the phase and dynamics of the external driving force as the system evolves. This

progressive correlation between the velocity field and the forcing term underscores a dynamic

adaptation of the system to the external inputs, rather than a simple preservation of its initial

state.

This phenomenon, where the velocity field in forced Burgers turbulence becomes more intricately

linked with the characteristics of the driving force over time, was also observed and noted by
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Figure 5.26 Evolution of the fourth-order correlation function of

the forcing term over time. The curves exhibit alignment with their

counterpart correlation functions of the velocity field

Dah-Tang Jeng in 1969. Jeng’s observations highlight the adaptability and responsiveness of the

velocity field within forced Burgers turbulence to external influences, marking a clear departure

from the behavior seen in decaying turbulence. This evolving correlation provides a deeper

insight into the mechanisms governing forced Burgers turbulence and emphasizes the significant

role of the forcing term in shaping the system’s dynamics.

5.6.6 Intermittency

In our exploration of forced Burgers turbulence, the observation of intermittency within the

dissipation range of the correlation function of the energy dissipation rate in the presence of

hyper-dissipation provides a significant insight into the complex dynamics of turbulence. We

can observe intermittent behavior in figure 5.27.

This intermittency, characterized by irregular, intense bursts of energy dissipation amidst less

active phases, underscores the non-linear and scale-dependent nature of turbulence.

Based on the study by Polyakov (1993), viscosity in turbulent flows acts analogously to

ultraviolet (UV) regularization in quantum field theory by setting a cutoff at high energies or
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Figure 5.27 The energy dissipation correlation function exhibits

intermittent behavior at small scales in forced Burgers turbulence with

random Wiener initial velocity field and the forcing term

small scales, thereby preventing non-physical infinities and facilitating energy dissipation at large

wavenumbers. Contrarily, infrared (IR) divergence, which primarily affects large scales, leads to

the formation of large-scale condensate states. These states, made of collections of strong shocks

moving at very low velocities, do not simply transfer small-scale fluctuations by large-scale

structures. Instead, they embody coherent condensate structures that significantly impact the

turbulence dynamics, highlighting a complex interplay between small-scale dissipative processes

and large-scale flow structures Chekhlov & Yakhot (1995b). This interaction results in a

disruption of Galilean invariance, ultimately leading to intermittent effects within the dissipative

range.

This mechanism affects the energy cascade across scales, contributing to the observed

intermittency caused by disruption of Galilean invariance (Polyakov, 1995).

It’s important to note that, on a superficial level, Burgers turbulence displays behavior in line

with Kolmogorov’s 5/3 law (Chekhlov & Yakhot, 1995b), a phenomenon that can also be tied to
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the underlying mechanisms involved. This highlights the intricate balance between small-scale

dynamics, managed through UV regularization, and large-scale behaviors, influenced by IR

divergence, in shaping turbulence’s intermittent nature. Identifying research gaps, future studies

could focus on quantitatively linking these theoretical concepts to empirical observations of

intermittency, providing a deeper understanding of turbulence’s fundamental mechanisms.





CONCLUSION AND RECOMMENDATIONS

This thesis has made substantial contributions to the understanding of Burgers Turbulence,

illuminating various dynamical aspects through a combination of theoretical analysis and

computational simulations. Our comprehensive investigation began with an exploration of the

effects of viscosity on linear and non-linear Burgers equations. By extending foundational

research and employing advanced simulation techniques, we have deepened the understanding

of forced Burgers turbulence and its sensitivity to initial conditions and forcing terms.

Key findings from our study include

• Analyzing the critical impact of viscosity on the solution of the Burgers class of equations,

assessing the intricate interplay between Advection and Diffusion phenomena in various

scales.

• Confirmation of self-similarity in the velocity field’s correlation functions of the decaying

Burgers turbulence, which suggests a methodological improvement for future turbulence

simulations, reducing computational efforts without compromising the accuracy of results.

• Observation of a sudden inverse transfer of energy from the inertial range to the large-scale

range in the non-forced Burgers turbulence. This phenomenon is attributed to local triadic

interactions within the spectral space.

• Demonstration that the development of Turbulent Kinetic Energy (TKE) in forced Burgers

turbulence is remarkably robust to changes in the Reynolds number, highlighting the system’s

inherent stability under varied fluid dynamic conditions.

• Identification of consistent velocity profiles across different Reynolds numbers after reaching

equilibrium, with dissipation being the primary area of variation, which underscores the

nuanced effects of viscosity in turbulent flow dynamics.
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• Evidence supporting the Gaussian nature of turbulence when initiated with a random Gaussian

velocity field and subjected to a random Gaussian forcing term, emphasizing the Burgers

equation’s reduced sensitivity to initial conditions compared to Navier-Stokes turbulence.

• Adaptability and responsiveness of the dynamics of the Burgers turbulence to the external

influences

• The study examines intermittent behavior within the dissipative range, focusing on the

interactions between large-scale infrared (IR) divergence and the viscous ultraviolet (UV)

regularization. This approach highlights the complex dynamics where large-scale coherent

structures influenced by IR divergence interact with small-scale dissipation processes, akin

to UV regularization in quantum fields, to shape turbulence characteristics.

Comments

The insights gained from this research not only bridge several gaps in the existing literature but

also pose new questions for future exploration. The observed self-similarity and the robustness

of TKE development across varying Reynolds numbers offer promising avenues for optimizing

turbulence simulations, potentially leading to more efficient computational models. Furthermore,

the distinct behavior of Burgers turbulence, especially its reduced sensitivity to initial conditions

and specific forcing terms, invites further investigation into its potential applications in modeling

and controlling turbulent flows in various engineering and environmental contexts.

Our research underscores the importance of a detailed examination of turbulence dynamics,

extending beyond traditional analyses. The findings encourage a reevaluation of existing

assumptions in turbulence modeling, particularly concerning the scalability and universality of

turbulent behavior. As we advance our understanding of Burgers Turbulence, it becomes evident

that the complexities of turbulent flow are both a challenge and an opportunity for researchers

and practitioners alike.
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Future Directions

Building upon the findings of this thesis, future research should explore the application of these

insights to more complex fluid dynamics problems, including three-dimensional turbulence and

the interaction between turbulence and complex boundaries. Additionally, the development

of new computational methods to further reduce the computational load of simulations while

maintaining accuracy could revolutionize the field. Moreover, experimental validation of the

theoretical predictions made in this study would be invaluable in solidifying the understanding

of Burgers Turbulence and its applications in real-world scenarios. Finally, future research could

aim at establishing a quantitative connection between the theoretical frameworks and empirical

evidence of intermittency, advancing towards a comprehensive understanding of Kolmogorov

turbulence through the lens of the one-dimensional Burgers equation.





APPENDIX I

NUMERICAL INTEGRATION SCHEMES

The following simple one-step method is called the first-order Euler Explicit scheme,

𝑢𝑛+1 = 𝑢𝑛 − Δ𝑡 𝑓 𝑛 (A I-1)

To describe the time discretization, we denote the time step by Δ𝑡 and the 𝑛-𝑡ℎ time level by

𝑡𝑛 = 𝑛Δ𝑡, the approximated solution at time n by 𝑢𝑛 and the operator 𝑓 contains the spatial

part of our PDE. This scheme has truncation error (T.E.) with the order of accuracy O(Δ𝑡,Δ𝑥)
(Canuto, 2006). We know this as a first-order accurate scheme based on the lowest-order term in

the T.E.; and Explicit since only one unknown is present in the equation. However, this scheme

is unconditionally unstable (?).

The next time integration method we used was the second-order Adams-Bashforth method for

time discretization,

𝑢𝑛+1 = 𝑢𝑛 + 1

2
Δ𝑡
[
3 𝑓 𝑡 − 𝑓 𝑛−1

]
(A I-2)

Adam-Bashforth is a class of explicit multistep method which is written based on the explicit

Euler model. This scheme is weakly unstable, to be more precise, for a periodic hyperbolic

problem the acceptable Δ𝑡 decreases when the time interval of interest 𝑇 increases (Canuto,

2006). Finally, the last scheme was the following simple scheme which is called third-order

Compact Runge-Kutta (RK3) method,

𝑢𝑛+1 = 𝑢𝑛 − 1

9
Δ𝑡 [2𝑘1 + 3𝑘2 + 4𝑘3] (A I-3)
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In which,

𝑘1 = 𝑓 (𝑢𝑛, 𝑡𝑛)

𝑘2 = 𝑓

(
𝑢𝑛 + 1

2
Δ𝑡𝑘1, 𝑡𝑛 + 1

2
Δ𝑡

)
(A I-4)

𝑘3 = 𝑓

(
𝑢𝑛 + 3

4
Δ𝑡𝑘2, 𝑡𝑛 + 3

4
Δ𝑡

)

The Runge-Kutta scheme is a single-step but multistage time discretization method which uses

several intermediate stages in each time step (?).



APPENDIX II

ASSESSMENT OF THE TEMPORAL DISCRETIZATION SCHEMES

In the initial step, we explore a range of simulations that employ three distinct time discretization

methods. These include the 1st-order Explicit Euler, the 2nd-order Adam-Bashforth, and the

3rd-order compact Runge-Kutta. These methods are applied to the Advection-Diffusion and

Decaying Burgers equations. Our objective is to identify the most suitable time discretization

scheme for our simulation. To this aim, We begin with the Advection-diffusion, equation 2.4.

1. Accuracy of time discretization schemes

One of the most common and informative plots for comparing numerical schemes is the Error

vs. Step size plot on a log-log scale, figure II-1.

Figure-A II-1 Comparison between L2 Error of various time

discretization schemes for the decaying Burgers’ equation in

𝜈 = 0.001

In the mentioned plot, the error (typically calculated as the L2 norm of the difference between

numerical and analytical solutions) will be on the y-axis. The rate at which the error decreases



100

as the step size is halved (the slope of the line in the log-log plot) corresponds to the order of the

accuracy of the method.

As demonstrated in Figure II-1, if halving the step size Δ𝑡 = 2𝑃−19 for 1 ≤ 𝑃 ≤ 9 (which

corresponds to moving one unit to the right on the log scale) results in the L2-error being reduced

by a factor of one in 1st-order Explicit Euler, by a factor of two in 2nd-order Adam-Bashforth and

by a factor of 3 in 3rd-order Runge-Kutta scheme. So, as we expected and demonstrated in the

following plots, the Runge-Kutta scheme shows a steeper decrease (higher order of convergence)

or a lower error for the same step size compared to the two other schemes so we will get a more

accurate solution with fewer grid points which means less computational effort.

One characteristic that can be observed in our simulations, figure 5.3, by evaluating the behavior

of the spectral approximation compared to the analytical solution, is the dissipation error, which

emerges and increases by moving in time, specifically in higher wavenumbers as more energy

dissipates; however, refining the mesh size, will make it smaller.

2. Stability considerations (Advection-Diffusion)

In this section, we try to investigate the stability considerations of the schemes discussed earlier.

On this wise, we are going to use the Von Neumann stability analysis, which is a procedure to

evaluate the stability of linear partial differential equations based on the Fourier decomposition

of numerical error. In order to clarify the concept of stability, we know that in each stage of our

numerical solution, we will obtain some errors. Our solution is called stable if this error will

decrease from stage 𝑛 to stage 𝑛 + 1. So, our solution is considered stable if the error decreases

when the simulation advances through each time level. So we define an amplification factor G

which is as follow (Li & Wang, 2021b),

𝐺 =
𝑢𝑛+1

𝑢𝑛
(A II-1)
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The amplification factor 𝐺 could also be defined as the Taylor expansion of 𝑒𝜆𝑘Δ𝑡 in which 𝑛 is

the order of the Runge-Kutta scheme (Moin, 2010) (de Moura & Kubrusly, 2012).

|𝐺 | =
!!!!!1 + 𝜆𝑘Δ𝑡 + (𝜆𝑘Δ𝑡)2

2!
+ (𝜆𝑘Δ𝑡)3

3!
+ . . . + (𝜆𝑘Δ𝑡)𝑛

𝑛!

!!!!! (A II-2)

To better understand the stability analysis, we plot the region in which the scheme is absolutely

stable inside its boundaries which is called the absolute stability region, figure II-2.

Figure-A II-2 Comparing absolute stability region of

Convection-Diffusion equation for three different numerical

schemes

As we know, The Runge-Kutta methods are the simplest family of Multi-stage schemes, and the

Adam-Bashforth methods are the simplest family of Explicit Multi-step schemes. The stability

contours illustrated below are the locus of the complex 𝜆𝑘Δ𝑡, in which |𝐺 | = 1, for multi-stage
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numerical schemes like the 3rd-order Runge-Kutta method and are the region of characteristic

polynomial for the multi-step methods like the 2nd-order Adam-Bashforth scheme (Lomax,

Pulliam & Zingg, 2001).

Keep in mind that the stability regions of multi-stage methods become larger by increasing the

order of accuracy; however, the stability region of multi-step methods will shrink by increasing

the order of accuracy (de Moura & Kubrusly, 2012). So, to maintain our schemes’ stability, we

kept their complex contours inside the locus of the stability region by choosing the approximation

parameters based on the stability diagram. stability and the viscosity Note that according to

figure II-2, the size of the stability region in the 3rd Order Runge-Kutta is larger than the 1st

Order Explicit Euler, and for the Explicit Euler, it is larger than the 2nd Order Adam-Bashforth

scheme. Moreover, it’s the RK3 scheme only that remains inside the stable domain even if it

crosses the imaginary axis. In other words, as the imaginary values are responsible for the

convection effects so this scheme will remain stable in purely convective problems in the case

that the amplitude of the imaginary part remains less than 1.73. Another thing that could be

observed in figure II-2 is that the absolutely stable regions end when the real part of the complex

𝜆𝑘Δ𝑡 reaches -1 for AB2, -2 for Explicit Euler, and -2.5 for RK3, which could be helpful in

studying the behavior of such schemes.

3. Stability considerations (Decaying Burgers equation)

As we know, the Von-Neumann stability analysis, which was discussed earlier, is designed for

linear problems, while the main feature of the Burgers equation is Non-linearity. One approach

to circumvent this barrier is linearizing our problem and performing the evaluations locally. To

make it more straightforward, as we decided to do the time marching discretization in physical

space thus, we evaluate the stability of the obtained linear ODE in physical space at every point

of the domain through each time level.

As we know, the CFL condition essentially states that the fluid should not travel more than

one computational cell per time step. In this case, the speed of information propagation is

not constant and can depend on the local flow conditions, including the velocity. So, the CFL
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condition is typically applied in a conservative way, using the maximum possible speed of

information propagation to calculate the time step size. Thus, for the non-linear equations, we

can reform the CFL condition to define the time step as,

Δ𝑡 = 𝐶𝑐 𝑓 𝑙
Δ𝑥
𝑆𝑛𝑚𝑎𝑥

(A II-3)

Where Δ𝑥 is grid space size, 𝑆𝑛𝑚𝑎𝑥 is the maximum wave speed at the time step n and 𝐶𝑐 𝑓 𝑙 is the

CFL coefficient with 𝐶𝑐 𝑓 𝑙 ∈ (0, 1] (Toro, 1997). To choose a proper value for 𝑆𝑛𝑚𝑎𝑥 we should

use the following formula carefully,

𝑆𝑛𝑚𝑎𝑥 = 𝑚𝑎𝑥
!!𝑢𝑛𝑖 !! (A II-4)

In which 𝑖 is the number of grid points through the domain, so, in non-linear cases, we evaluate

the Modified CFL condition locally in each time step through the whole spatial domain. It is

worth mentioning here that underestimating 𝑆𝑛𝑚𝑎𝑥 can cause to choose extra-large Δ𝑡, which can

lead to developing instability in our solution. A conservative approach to deal with such cases is

to choose a safety factor for the CFL coefficient, for instance, 0.9 𝐶𝑐 𝑓 𝑙 instead of 1.0 𝐶𝑐 𝑓 𝑙 (Toro,

1997).

From our simulations, it is evident that only the Runge-Kutta scheme remained stable at low

viscosities.

4. Viscosity and Stability

During our simulations we observed an intriguing behavior regarding how viscosity impacts

the stability of the numerical schemes. Although higher viscosity is theoretically associated

with enhanced stability through solution smoothing by the diffusion term, practical stability in

numerical simulations also hinges on the appropriate selection of time and spatial discretizations.

The relationship between viscosity and the eigenvalue 𝜆𝑘 of the amplification factor 𝐺 defined

as 𝜆𝑘 = −𝑖𝑎𝑘 − 𝜈𝑘2, Indicates that increased viscosity can lead to instability. This occurs when

higher viscosity shifts the stability complex contours outside the locus of the A-stability region,
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as depicted in Figure II-2. Therefore, to ensure stability at higher viscosities, it is necessary to

reduce the size of the time step. Additionally, adhering to the CFL condition requires an increase

in the number of spatial collocation points. Furthermore, for similar reasons to those previously

mentioned, higher frequencies can also alter the stability complex contours, moving them outside

the locus of the A-stability region. According to 𝜆𝑘 = −𝑖𝑎𝑘 − 𝜈𝑘2, this may heighten instability

in the nonlinear advection term. Conversely, the viscous term becomes more effective at higher

wavenumbers, contributing to the regularization of our equation.
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