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Développer et Réaliser un Modèle Basé sur le Champ de Phase pour la Rupture Fragile

Hung Cuong NGUYEN

RÉSUMÉ

Les objectifs de cette thèse, composée de quattre chapitres, sont de développer et de mettre
en œuvre un modèle de champ de phase pour la rupture fragile en condition de contrainte
plane. Chapitre 1 présente brièvement la motivation et les objectifs du projet. Chapitre 2
discute de la revue de la littérature sur la mécanique de la rupture, depuis l’idée de Griffith
d’équilibre énergétique autour de la fissure, jusqu’à la méthode des éléments finis étendus
(XFEM), et enfin la plus récente tendance dans le domaine, le modèle de champ de phase pour
la rupture. Chapitre 3 illustre les fondements mathématiques du modèle de champ de phase
pour la rupture fragile et comment l’introduire dans le cadre des éléments finis en utilisant
une approche variationnelle. Chapitre 4 propose deux nouveaux développements au modèle
actuel: le changement du comportement des matériaux pour la condition de contrainte plane
et le schéma adaptatif échelonné pour améliorer la convergence du solveur d’éléments finis.
Ensuite, les résultats de deux expériences numériques sont analysés pour valider le cadre. Enfin,
la conclusion donne un bref résumé et des recommandations pour les travaux futurs.

Mots-clés: rupture fragile, modèle de champ de phase, condition de contrainte plane, algorithme
décalé, méthode des éléments finis





Develop and Implement a Phase-field-based Model for Brittle Fracture

Hung Cuong NGUYEN

ABSTRACT

This thesis aims to develop and implement a phase-field model for brittle fracture in plane
stress condition. It is composed of four themed chapters. Firstly, Chapter 1 introduces the
motivation and objectives of the project. The lack of an effective simulation tool in predicting
the cracks that usually occur in thin objects motivates the author to develop a mathematical
model that could capture their fracture mechanism. Chapter 2 begins by laying out the
theoretical dimensions of the research and provides a brief review of fracture models, initiating
from the classical Linear Elastic Fracture Model to phenomenally effective implementation of
crack growth, Extended finite element method (XFEM), and ending up with the state-of-the-art
approach, namely phase-field model for fracture. Next, Chapter 3 revisits the theory behind
the phase-field model for fracture, its finite element formulation, and some notable variations.
Chapter 4 presents two new developments, including the adaptive staggered scheme, to the
original framework in the theory part and then analyzes the results of numerical experiments
applying these adjustments. Finally, the conclusion gives a brief summary and recommendations
for future work.

Keywords: phase-field model, brittle fracture, staggered algorithm, plane stress condition,
finite element method
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INTRODUCTION

The fracture behavior of materials is one of the most essential topics in engineering practice

and design. Preventing structure from crack-inflicted failure is always the utmost priority in any

mechanical design concept. Thus, a computational model that can predict the fracture process

within the structures would be an invaluable tool in this regard. During the entire history of

fracture mechanics, developing a fracture model that is a well-self-contained feature, i.e., can

automatically open the crack and then follow its trajectory, is one of the most challenging jobs.

The recent trend in the phase-field-based fracture model allows us to build such a tool. The

objective of this master thesis is two-fold:

• To develop and implement the phase-field model for brittle fracture in the plane stress state.

• To introduce an adaptive staggered scheme that could automatically adjust the load ratio in

compliance with the energetic stability of the system.





CHAPTER 1

OBJECTIVES

1.1 Phase-field model for brittle fracture in the plane stress state

While implementing a phase-field model in two-dimensional (2D) attracts great interest in

computational mechanics due to its feasibility in terms of computational cost, they are dominantly

in plane strain state. The plane stress condition, which is better suited for thin, planar, and

crack-prone solids, has yet to be fully analyzed to couple with the crack fields. All of these facts

lead to the first objective of this work, which is to develop a phase field-based fracture model in

plane stress mode.

1.2 Adaptive staggered scheme

At the very core of the phase-field-based fracture model, crack propagation is the result of

minimizing the solids’ energy potential, consisting of elastic and surface energy. When the elastic

energy, which comes from the elastic deformation caused by the external load, reaches a critical

value, the minimization constraint lowers it by increasing the crack field, which raises the surface

energy. The staggered algorithm, which solves the displacement and crack field separately,

mathematically guarantees it by finding the solution of two linear equation systems. However,

one of the most challenging tasks of the staggered scheme is to keep it in the convergence zone

when the solid is about to open a crack. It is because the energy potential drastically increases

and becomes volatile, i.e., it exponentially fluctuates away from the stability balance between its

two components at that point. The second objective of this thesis is to propose a new approach

to implement the original algorithm to overcome this issue.





CHAPTER 2

LITERATURE REVIEW

2.1 Early research on fracture mechanics

Fracture mechanics is an important element within the engineering domain, but its origin only

started in the wake of The Liberty Ships’ failure during World War II. The breakdown of their

failure, reported by Williams, Ellinger et al. (1953), pointed to local stress concentration caused

by the flawed welded joints. In addition, the poor toughness of the steel partially contributed to

these failures. From the foundation work of Griffith & Taylor (1921) and others, Irwin (1956) of

the Naval Research group introduced one the most essential concept of fracture analysis, the

energy release rate 𝐺, which represents the rate of transforming potential energy into fracture

surface area. Mathematically, given a solid with total energy functional Π and unit crack growth

area Γ, 𝐺 ≡ − 𝜕Π
𝜕Γ

. At the moment the energy release rate 𝐺 reaches its threshold value 𝐺𝑐, the

critical energy release rate by the unit of 𝐽/𝑚2, the crack occurs. 𝐺𝑐 is a material property

representing its toughness against fracture. Later on, the Linear Elastic Fracture Mechanics

(LEFM) framework proposed by Irwin (1957) used the concept namely stress-intensity factors

to analyze the stress distribution near crack-tip.

Despite variable successful application on linear elastic material, LEFM failed when plastic

deformation arose prior to the failure of the material. Rice (1968) proposed a method to calculate

the 𝐽-integral, a global parameter that characterizes the crack tip criteria and could judge the

reliability of a pre-defining crack. The approach quickly became the standard measure of fracture

toughness, with the experiment conducted by Begley & Landes (1972). Besson (2010) indicated

some minuses of this method; for example, it cannot automatically initiate and propagate the

crack from an existing notch or a point that possesses a high-stress intensity; the threshold of the

𝐽-integral is not a specific material characteristic because it heavily depends on the geometric

shape of the specimen, and thus it could hardly apply for any arbitrarily complex geometry.

Another model is proposed by Gurson (1977) in which the plastic flow relies on a damage

parameter induced by void volume porosity. Its revised version, Gurson-Tvergaard-Needleman
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(GTN) model by Tvergaard & Needleman (1984), assimilates some parameters to designate the

void growth kinetics. Their fatal disadvantage is the strong dependency on the mesh size of the

results because the damage level dramatically affects the softening mechanism.

2.2 Extended Finite Element Method and Cohesive Zone Model

The finite element method (FEM), cf. Zienkiewicz, Taylor & Fox (2014), is one of the most

widely used numerical methods in both the research and engineering communities. However,

it faces a huge challenge in dealing with discontinuities due to the nature of the variational

method, which requires continuity values in the domain of interest. Extended Finite Element

Method (XFEM), cf. Moës, Dolbow & Belytschko (1999); Moës, Stolz, Bernard & Chevaugeon

(2011), enables the possibility to track the discontinuities within existing mesh by means of

a level set function. However, all crack-related processes, such as crack initiation and crack

propagation, need to be pre-defined in constitutive equations. More complicated issues, such as

crack branching, is either unlikely to be captured or significantly difficult to implement.

Another interesting method, namely Cohesive Zone Model (CZM), which is originally proposed

by Barenblatt (1962), develops a virtual element to describe the crack mechanism through an

interface between crack-free and cracked regions, cf. Xu & Needleman (1994). An isogeometric

implementation of this model, conducted by Dimitri, De Lorenzis, Wriggers & Zavarise

(2014), explicitly defined the fracture process zone and thus led the prescribed crack paths in a

straightforward manner. Attempts to propagate crack path require an additional phenomenological

cohesive element that strongly depends on mesh, thus overestimating the role of cracked areas.

Despite success in tracking the evolution of crack, the introduction of discontinuities into standard

finite element of continuous solid by using either cohesive surfaces in CZM, cf. Ortiz & Pandolfi

(1999), or enriched finite element in XFEM, cf. Simo, Oliver & Armero (1993) still requires

additional criteria for the crack to grow and propagate in the solid.
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2.3 Phase-field model for fracture

The phase-field model for fracture is an energy-based framework that could naturally incorpo-

rate the crack discontinuities into finite element formulation by using a variational approach.

Originated from the theory work of Griffith & Taylor (1921), the crack surface energy term in a

solid’s energy potential is then regularized from the crack surface into the whole approximation

domain, cf. Bourdin, Francfort & Marigo (2000, 2008), thanks to the mathematical development

on the variational approach to brittle fracture of Francfort & Marigo (1998) and Γ−convergence

theorem of Braides (1998). This regularized formulation has two crucial elements: a sharp

crack to be smeared out into an additional crack field 𝑐 and the stress degradation function,

which connects the crack field with the stress-strain relationship. Series of research from Amor,

Marigo & Maurini (2009); Miehe, Hofacker & Welschinger (2010b); Miehe, Welschinger & Ho-

facker (2010a); Kuhn & Müller (2010); Borden, Verhoosel, Scott, Hughes & Landis (2012)

confirms the advantages of this approach:

• Efficiently handle complex fracture behaviors, e.g. crack initiation, propagation, and

branching, without any additional criteria.

• The evolution of the crack is automatically tracked at each load step without the re-mesh

requirement.

• Implementation is straightforward, even with multi-dimensional and multi-physics cases.

In terms of solving strategy, although the monolithic solver, which solves displacement and crack

field simultaneously, is faster, it is numerically unstable. Several techniques are proposed to that

end, including Gerasimov & De Lorenzis (2016) for line search technique; Msekh, Sargado,

Jamshidian, Areias & Rabczuk (2015) of additional penalty term; or Heister, Wheeler & Wick

(2015) of the primal-dual scheme. The staggered algorithm, first proposed by Amor et al.

(2009), on the other hand, solves the two fields separately. It heavily dominates most of the

implementation of the phase-field model due to its robustness and stability.





CHAPTER 3

THEORY UNDERLYING THE PHASE-FIELD MODEL FOR FRACTURE

3.1 Phase-field approximation of the sharp crack

The key idea of the phase-field model is simple: replace the sharp crack, which represents

the discontinuity, by a crack field value, which varies from value 0 indicating intact state to 1

meaning fully broken. Figure 3.1 illustrates the result of stretching out of sharp crack Γ into

crack phase-field value 𝑐 within an area framed by the characteristic length 𝑙.

Γ

a) Sharp crack

𝑐

ℓ

b) Smeared crack

Figure 3.1 Sharp crack Γ (a) is stretched to a continuous
graded area (b) controlled by length scale 𝑙

In the one-dimensional (1D) case, assuming that a sharp crack existed at 𝑥 = 0, Miehe et al.

(2010a) proposed the form of its diffused representation as

𝑐(𝑥) = exp
(
− |𝑥 |
ℓ

)
(3.1)
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which fulfills the boundary conditions


𝑐(𝑥) = 1 when 𝑥 = 0

𝑐(𝑥) → 0 when 𝑥 → ±∞
(3.2)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

𝑥

𝑐
(𝑥
)

𝑙 = 0.25
𝑙 = 0.5
𝑙 = 0.75
𝑙 = 1.0
𝑙 = 1.5

Figure 3.2 Effect of length scale 𝑙 on the distribution of
smeared crack 𝑐(𝑥) when a sharp crack occurs at 𝑥 = 0 in 1D

From a mathematical view, the form of 𝑐(𝑥) in eq.(3.1) is the solution of this differential equation

𝑐(𝑥) − ℓ2𝑐′′(𝑥) = 0 (3.3)

The general solution of equation (3.3) is the result of minimizing the crack surface density

functional

Γℓ (𝑐) =
1
2ℓ

∫
Ω

(
𝑐2 + ℓ2(𝑐′)2

)
𝑑𝑥 (3.4)
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With the assistance of the Γ– convergence theorem, cf. Braides (1998), its extension to

multi-dimensional case reads

Γℓ (𝑐) =
1
2ℓ

∫
Ω

(
𝑐2 + ℓ2 |∇𝑐 |2

)
𝑑x (3.5)

3.2 Phase-field model for brittle fracture

This section aims to construct the finite element framework from the minimum energy principle

of solids. The following steps are carried out in order to reach that goal:

• To minimize the total energy functional.

• To derive the governing equations in the strong form from the minimization process.

• To transform the strong form into the weak form.

• To discretize the solid into finite elements, assemble the residual between the external and

internal forces, and then linearize the residual to obtain the linear system.

• To introduce the staggered algorithm as a solver for the framework.

3.2.1 Total energy functional of fractured solid and its minimization

Given a solid Ω, constrained by the Dirichlet’s boundary condition on 𝜕Ω𝐷 , with a crack Γ

occurred due to external loads. Its total energy functional Π consists of the free energy functional

𝐸 (u, Γ) and the external potential energy𝑊 , produced by the external loads:

Π = 𝐸 (u, Γ) −𝑊

The external potential energy𝑊 is defined as the total work of both the body forces b over the

whole domain Ω and the traction forces t∗ over the surface applied (on the boundary 𝜕Ω𝑁 in this

case) that caused the displacement u of the solid:

𝑊 =

∫
Ω

b · u 𝑑𝑉 +
∫
𝜕Ω𝑁

t∗ · u 𝑑𝐴



12

The free energy functional comprises the elastic strain energy 𝐸𝑢 induced by the displacement

u, and the surface energy 𝐸𝑐 released by the opening of the crack Γ. It is worth noting that the

calculation of 𝐸𝑢 must exclude the crack surface Γ due to the discontinuity of u in that region.

𝐸 (u, Γ) =
∫
Ω\Γ

Ψ(𝝐)𝑑𝑉︸           ︷︷           ︸
𝐸𝑢

+
∫
Γ

𝐺𝑐 𝑑𝐴︸     ︷︷     ︸
𝐸𝑐

(3.6)

In linear elasticity, Ψ(𝝐) is called as the elastic energy density – Ψ(𝝐) ≡ 1
2𝜆tr2(𝝐) + 𝜇(𝝐 : 𝝐)

where 𝜇, 𝜆 are the Lamé parameters. The critical energy release rate – 𝐺𝑐 is a measure of the

material’s fracture toughness.

To deal with the discontinuity in equation (3.6), Bourdin et al. (2008) used the variational form

of the smeared crack defined in equation (3.5) to regularize the sharp crack Γ into the whole

domain Ω. As a result, the surface energy in that area is also spread out to the whole domain and

becomes the surface energy functional. With this regularized form in place, the crack field 𝑐,

which varies from value 0 of the intact state to 1 of a fully broken one, is added as an additional

degree of freedom (dof) at each node, representing its level of damage. In addition, the stress

degradation function introduced in the strain energy reflects the crack field’s effect on the solid’s

mechanical response. In terms of energy, the crack initiation and propagation process is driven

by the energetic battle between the strain energy in the solid and the surface energy produced by

the crack field.

𝐸 (u, 𝑐) =
∫
Ω

𝑔(𝑐)Ψ(𝝐)𝑑𝑉 +
∫
Ω

𝐺𝑐 Γ𝑙 𝑑𝑉

=

∫
Ω

𝑔(𝑐)Ψ(𝝐)𝑑𝑉︸              ︷︷              ︸
𝐸𝑢

+
∫
Ω

𝐺𝑐

2

(
𝑐2

𝑙
+ 𝑙 |∇𝑐 |2

)
𝑑𝑉︸                          ︷︷                          ︸

𝐸𝑐

(3.7)

where 𝑔(𝑐) ≡ (1 − 𝑐)2 – the stress degradation function
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The admissible solution for the displacement field and crack field then comes down to the

energetic minimization of the total energy functional Π, i.e. its first variation 𝛿Π must vanish.

(u, 𝑐) = arg min
{
Π(u, 𝑐)

}
The details on calculation of 𝛿Π are as follows:

𝛿Π = 𝛿𝐸 − 𝛿𝑊, in which


𝛿𝑊 =

∫
Ω

b · 𝛿u 𝑑𝑉 +
∫
𝜕Ω𝑁

t∗ · 𝛿u 𝑑𝐴

𝛿𝐸 = 𝛿𝑢𝐸 + 𝛿𝑐𝐸

The side calculation of 𝛿𝐸 includes these steps:

· To calculate the variation of free energy with respect to displacement

𝛿𝑢𝐸 ≡
𝜕𝐸

𝜕𝝐
: 𝛿𝝐 =

∫
Ω

𝜕 [𝑔(𝑐)Ψ(𝝐)]
𝜕𝝐

: 𝛿𝝐 𝑑𝑉 =

∫
Ω

𝝈 : 𝛿𝝐 𝑑𝑉

=

∫
𝜕Ω

(𝝈 · n) · 𝛿u 𝑑𝑆 −
∫
Ω

div𝝈 · 𝛿u 𝑑𝑉 (using divergence theorem)

· To apply the divergence theorem on 𝛿𝑐𝐸

∇ · (𝛿𝑐∇𝑐) = ∇𝑐 · ∇𝛿𝑐 + 𝛿𝑐 △𝑐 ⇒ ∇𝑐 · ∇𝛿𝑐 = ∇ · (𝛿𝑐∇𝑐) − 𝛿𝑐 △𝑐
𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒
==========⇒
𝑡ℎ𝑒𝑜𝑟𝑒𝑚

∫
Ω

(∇𝑐 · ∇𝛿𝑐) 𝑑𝑉 =

∫
𝜕Ω

𝛿𝑐 ∇𝑐 · n 𝑑𝑆 −
∫
Ω

𝛿𝑐 △𝑐 𝑑𝑉

· To calculate the variation of free energy with respect to crack field

𝛿𝑐𝐸 ≡
d

d𝛼
𝐸 (𝑐 + 𝛼𝛿𝑐)

���
𝛼=0

(Gateaux derivative)

=

∫
Ω

𝜕 [𝑔(𝑐)Ψ(𝝐)]
𝜕𝑐

· 𝛿𝑐 𝑑𝑉 + 𝐺𝑐

2

∫
Ω

(
𝜕

𝜕𝑐

[
𝑐2

𝑙

]
· 𝛿𝑐 + 𝜕 [𝑙 ∇𝑐 · ∇𝑐]

𝜕∇𝑐 · ∇𝛿𝑐
)
𝑑𝑉

=

∫
Ω

𝑔,𝑐Ψ · 𝛿𝑐 𝑑𝑉 + 𝐺𝑐

∫
Ω

(𝑐
𝑙
𝛿𝑐 + 𝑙 ∇𝑐 · ∇𝛿𝑐

)
𝑑𝑉

=

∫
Ω

𝑔,𝑐Ψ · 𝛿𝑐 𝑑𝑉 + 𝐺𝑐

∫
Ω

(𝑐
𝑙
− 𝑙 △𝑐

)
· 𝛿𝑐 𝑑𝑉 +

∫
𝜕Ω

𝛿𝑐 (∇𝑐 · n) 𝑑𝑆
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Finally, 𝛿Π has the following form

𝛿Π =

∫
𝜕Ω𝑁

(𝝈 · n − t∗) · 𝛿u 𝑑𝑆 −
∫
Ω

(div𝝈 + b) · 𝛿u 𝑑𝑉+

+
∫
Ω

[
𝐺𝑐

(
−𝑙△𝑐 + 𝑐

𝑙

)
+ 𝑔,𝑐Ψ

]
· 𝛿𝑐 𝑑𝑉 +

∫
𝜕Ω

𝛿𝑐 (∇𝑐 · n) 𝑑𝑆 (3.8)

The fact that 𝛿Π must vanish for all admissible 𝛿u and 𝛿𝑐 leads to a pair of partial differential

equations (PDEs) for the displacement field u and crack field 𝑐.

3.2.2 Strong formulation

A finite element model’s strong form can be obtained from minimizing its total energy functional.

In this case, we start from the equation (3.8)

𝛿Π = 0 ∀ admissible (𝛿u, 𝛿𝑐) ⇒



𝝈 · n − t∗ = 0 on 𝜕Ω𝑁

div𝝈 + b = 0 in Ω

𝐺𝑐

(
−𝑙△𝑐 + 𝑐

𝑙

)
+ 𝑔,𝑐Ψ = 0 in Ω

∇𝑐 · n = 0 on 𝜕Ω

Without loss of generality, the body force b is deemed zero in the displacement equilibrium

equation. As a result, the traction t∗ of Neumann’s boundary condition is the only external

source applying on the boundary of the solid.

div𝝈 = 0 in Ω (3.9)

𝝈 · n = t∗ on 𝜕Ω𝑁 (3.10)

The regularized equation of the crack phase-field reads

𝑐

𝑙
− 𝑙△𝑐 = 2(1 − 𝑐)

𝐺𝑐

Ψ in Ω (3.11)

∇𝑐 · n = 0 on 𝜕Ω (3.12)
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3.2.3 Weak formulation and discretization

The weak form provides a direction in which the two PDEs could be numerically solved because

solving them directly in their strong forms is impractical. The transformation into the weak form

of displacement field uses the weighted residual method, which can be found in any standard

textbook about the finite element method, such as Zienkiewicz et al. (2014). Its weak form is to

find u ∈ U𝑢 ≡ {u | u(x) = 0 ∀x ∈ 𝜕Ω𝐷} such that∫
Ω

𝝈 : ∇𝑠𝛿u 𝑑𝑉 =

∫
𝜕Ω𝑁

t∗ · 𝛿u 𝑑𝑆 ∀𝛿u ∈ V𝑢 ≡ {𝛿u | 𝛿u(x) = 0 ∀x ∈ 𝜕Ω𝐷} (3.13)

Similarly, the weak form of the crack field is to find 𝑐 ∈ U𝑐 ≡ {𝑐 | 𝑐(x) ∈ [0, 1], ¤𝑐(x) ≥ 0∀x ∈ Ω}

such that ∫
Ω

(
2(𝑐 − 1)Ψ 𝛿𝑐 + 𝐺𝑐

[𝑐
𝑙
𝛿𝑐 + 𝑙∇𝑐 · ∇𝛿𝑐

] )
𝑑𝑉 = 0 ∀𝛿𝑐 ∈ V𝑐 (3.14)

whereV𝑐 ≡ {𝛿𝑐 | 𝛿𝑐(x) ≥ 0 ∀x ∈ Ω}

The weak form in equation (3.13) allows discretizing the domain Ω into a finite of elements Ω𝑒

in which the internal and external forces can be calculated as follows:

f𝑒𝑖𝑛𝑡 =
∫
Ω𝑒

B𝑇𝑢𝝈 𝑑𝑉

f𝑒𝑒𝑥𝑡 =
∫
𝜕Ω𝑒

𝑁

N𝑇
𝑢 t∗ 𝑑𝑆

After assembling global internal and external forces, the residual displacement field reads

r𝑢 ≡ f𝑖𝑛𝑡 (u) − f𝑒𝑥𝑡 = 0 (3.15)

In the same manner, the residual of the crack field is constructed from the equation (3.14)

r𝑐 ≡
∫
Ω

(
𝑙𝐺𝑐B𝑇𝑐∇𝑐 + (

𝐺𝑐

𝑙
+ 2Ψ)N𝑐 − 2ΨN𝑇

)
𝑑𝑉 = 0 (3.16)
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3.2.4 Linearization and Newton-Raphson scheme

As of this step, finding the solution (u, c) relies on solving the following system of equations:


r𝑢 = 0

r𝑐 = 0
(3.17)

In general, both r𝑢 = 0 and r𝑐 = 0 are nonlinear systems that require the linearization process

from the Newton-Raphson scheme to solve. Let us assume that the system enters a new load

step in the incremental loading scheme. The residual for the displacement and crack field at step

𝑘 + 1 are approximated by their values at step 𝑘 in a typical Newton-Raphson loop, that is

r𝑢 (u𝑘+1) ≈r𝑢 (u𝑘 ) + 𝜕r𝑢

𝜕u

���
𝑘
𝛿u𝑘 = 0 ⇒ K𝑢

|𝑘 𝛿u
𝑘 = −r𝑢 (u𝑘 ) (3.18)

r𝑐 (c𝑘+1) ≈r𝑐 (c𝑘 ) + 𝜕r𝑐

𝜕c

���
𝑘
𝛿c𝑘 = 0 ⇒ K𝑐

|𝑘 𝛿c
𝑘 = −r𝑐 (c𝑘 ) (3.19)

where K𝑢 ≡ 𝜕r𝑢

𝜕u
=

∫
Ω

B𝑇
(
𝜕𝝈

𝜕𝝐

)
B 𝑑𝑉 (3.20)

and K𝑐 ≡ 𝜕r𝑐

𝜕c
=

∫
Ω

(
𝐺𝑐𝑙 (B𝑐)𝑇B𝑐 + (𝐺𝑐

𝑙
+ 2Ψ)NN𝑇

)
𝑑𝑉 (3.21)

In this framework, the displacement-controlled loading scheme replaces the load-controlled

scheme to capture the drop in the load-displacement curve after the crack occurs. A non-zero

prescribed displacement ū, which is repeatedly applied at each load step, replaces the traditional

traction forces t∗. This prescribed Dirichlet boundary conditions applied on the surface of

the solid trigger unknown Neumann-like boundary condition values. It could be physically

considered as reaction forces in stress analysis and only exists where prescribed displacement ū

is placed. The following development offers the blueprint for the Newton-Raphson loop when

changing the loading scheme. The objective is to establish the linear system that solves the

displacements’ increments and the reaction forces at the area prescribed displacement is applied.
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Equation (3.15) can be split as follows:


r𝑢𝑝 ≡ f𝑖𝑛𝑡𝑝 + f̄𝑝 = 0, 𝑝 = 1...𝑝 – prescribed dofs

r𝑢
𝑓
≡ f𝑖𝑛𝑡𝑓 = 0, 𝑓 = 𝑝 + 1...𝑁 – free dofs

(3.22)

Subscript 𝑝, which denotes prescribed displacement, represents the rows containing degree

of freedom (dof) of ū while 𝑓 stand for free displacement of the remaining dofs and f̄ is the

corresponding reaction force with respect to ū. Linearization of equation (3.22) requires applying

Taylor expansion for both r𝑝 (ū, u 𝑓 ) and r 𝑓 (ū, u 𝑓 )

r𝑘+1𝑝 (ū, u 𝑓 ) ≈ r𝑘𝑝 +
(
𝜕f𝑖𝑛𝑡𝑝
𝜕ū

���
𝑘

)
𝛿ū +

(
𝜕f𝑖𝑛𝑡𝑝
𝜕u 𝑓

���
𝑘

)
𝛿u 𝑓 +

(
𝜕 f̄𝑝
𝜕ū

���
𝑘

)
𝛿ū +

(
𝜕 f̄𝑝
𝜕u 𝑓

���
𝑘

)
𝛿u 𝑓

r𝑘+1𝑓 (ū, u
𝑓 ) ≈ r𝑘𝑓 +

(
𝜕f𝑖𝑛𝑡𝑓
𝜕ū

���
𝑘

)
𝛿ū +

(
𝜕f𝑖𝑛𝑡𝑓
𝜕u 𝑓

���
𝑘

)
𝛿u 𝑓

Due to the fact that f̄𝑝 is an unknown entity, let’s denote

𝛿f̄ ≡
(
𝜕 f̄𝑝
𝜕ū

���
𝑘

)
𝛿ū +

(
𝜕 f̄𝑝
𝜕u 𝑓

���
𝑘

)
𝛿u 𝑓

The tangent stiffness matrix K𝑢 is defined as

K𝑢 ≡ 𝜕r𝑢 (u)
𝜕u

=


K𝑝𝑝 =

𝜕f𝑖𝑛𝑡𝑝

𝜕ū
... K𝑝 𝑓 =

𝜕f𝑖𝑛𝑡𝑝

𝜕u 𝑓

. . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . .

K 𝑓 𝑝 =
𝜕f𝑖𝑛𝑡

𝑓

𝜕ū
... K 𝑓 𝑓 =

𝜕f𝑖𝑛𝑡
𝑓

𝜕u 𝑓


(3.23)

Finally, equation (3.22) becomes


r𝑘+1𝑝 = r𝑘𝑝 +K𝑝𝑝𝛿ū +K𝑝 𝑓 𝛿u 𝑓 + 𝛿f̄ = 0

r𝑘+1
𝑓

= r𝑘
𝑓
+K 𝑓 𝑝𝛿ū +K 𝑓 𝑓 𝛿u 𝑓 = 0

⇔

K𝑝𝑝 K𝑝 𝑓

K 𝑓 𝑝 K 𝑓 𝑓



𝛿ū

𝛿u𝑘
𝑓

 = −

r𝑝 (u𝑘 ) + 𝛿f̄

r 𝑓 (u𝑘 )

 (3.24)



18

We can now obtain the value of free displacements’ increment 𝛿u𝑘
𝑓

and the reaction forces 𝛿f̄ by

solving

K 𝑓 𝑓 𝛿u𝑘𝑓 = −r 𝑓 (u𝑘 ) −K 𝑓 𝑝𝛿ū (3.25)

𝛿f̄ = −r𝑝 (u𝑘 ) −K𝑝𝑝𝛿ū −K𝑝 𝑓 𝛿u 𝑓 (3.26)

3.2.5 Splitting the elastic energy density and history variable

In this section, we discuss two elements proposed to improve the performance of the phase field

model for brittle fracture: splitting the elastic energy density Ψ(𝝐) and introducing the history

field variableH . A tension-compression split of Ψ(𝝐) effectively prevents crack propagation in

the regions where the compressive stress dominates. In linear elasticity, Ψ(𝝐) is defined as

Ψ(𝝐) = 1
2
𝝐 : C : 𝝐 =

1
2
𝜆tr2(𝝐) + 𝜇(𝝐 : 𝝐) where 𝜆, 𝜇 are Lamé parameters

Splitting scheme: Ψ(𝝐) = Ψ+(𝝐)︸︷︷︸
𝑇𝑒𝑛𝑠𝑖𝑜𝑛

+ Ψ−(𝝐)︸ ︷︷ ︸
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

The original phase field model of Bourdin et al. (2000) uses the no-split strategy of Ψ(𝝐), which

resulted in crack growth under compression.


Ψ+(𝝐) = Ψ(𝝐)

Ψ−(𝝐) = 0
⇒ 𝝈 = 𝑔(𝑐) 𝜕Ψ

𝜕𝝐
(3.27)

After splitting, the stress degradation function 𝑔(𝑐) is only applied to the tension part Ψ+; thus,

the stress tensor is defined as

𝝈 = 𝑔(𝑐) 𝜕Ψ
+

𝜕𝝐
+ 𝜕Ψ

−

𝜕𝝐
(3.28)
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Amor et al. (2009) proposed a decomposition strategy based on a deviatoric-volumetric split of

strain tensor as following


Ψ+(𝝐) ≡ 1

2𝐾 ⟨tr(𝝐)⟩
2 + 𝜇(𝝐𝑑 : 𝝐𝑑)

Ψ−(𝝐) ≡ 1
2𝐾 ⟨−tr(𝝐)⟩2

, where


⟨a⟩ ≡ max(a, 0)

𝝐𝑑 ≡ 𝝐 − 1
3 tr(𝝐)I

(3.29)

Regarding the irreversible characteristics of the crack field, Miehe et al. (2010a) introduced the

history field H ≡ max(Ψ+(𝝐)), recording the maximum reference energy of Ψ+ throughout the

loading process. The major benefit of updatingH at each calculation step is that it prevents the

cracks from healing when Ψ+ decreases, thus naturally guaranteeing the irreversibility of the

crack. Replacing the termH in place of Ψ in equation (3.11) of the strong form, equation (3.16,

3.21) of the weak form, we obtain

𝑐

𝑙
− 𝑙△𝑐 = 2(1 − 𝑐)

𝐺𝑐

H in Ω (3.30)

r𝑐 ≡
∫
Ω

(
𝑙𝐺𝑐B𝑇𝑐∇𝑐 + (

𝐺𝑐

𝑙
+ 2H)N𝑐 − 2HN𝑇

)
𝑑𝑉 = 0 (3.31)

K𝑐 ≡ 𝜕r𝑐

𝜕c
=

∫
Ω

(
𝐺𝑐𝑙 (B𝑐)𝑇B𝑐 + (𝐺𝑐

𝑙
+ 2H)NN𝑇

)
𝑑𝑉 (3.32)

3.2.6 Staggered algorithm and energetic stopping criterion

This section discusses the solving strategy for the finite element framework of the phase field

model after it has been formed. Theoretically, there are two ways to solve it: using monolithic

solver to find solutions for the displacement field and crack field simultaneously or staggered

algorithm to solve them separately. In the former method, only one Newton-Raphson loop is

derived from equation (3.17)


K𝑢𝑢 K𝑢𝑐

K𝑐𝑢 K𝑐𝑐



𝛿u

𝛿c

 =


r𝑢

r𝑐
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It seems straightforward and easy to implement, but its robustness is a big issue due to the poor

convergence rate. Each successful implementation in this front required additional techniques,

such as the line search method by Gerasimov & De Lorenzis (2016) or the penalty method by

Msekh et al. (2015), among others.

On the other hand, the staggered scheme starts a new load step by finding the displacement

from the Newton-Raphson loop in equation (3.25). It then updates the history field, which

drives the evolution of the crack field in the next calculation steps. The cracks’ value obtained

from equation (3.19) impacts the displacement field through the stress degradation function.

The staggered loop continues until the stopping criterion, which is based on the free energy, is

reached. The free energy functional of the system 𝐸 (u, c) consists of the elastic free energy 𝐸𝑢

and the crack release energy 𝐸𝑐

𝐸 (u, c) = 𝐸𝑢 + 𝐸𝑐, where


𝐸𝑢 =

∫
Ω

[
𝑔(𝑐)Ψ+𝑒 (𝝐) + Ψ−𝑒 (𝝐)

]
𝑑𝑉

𝐸𝑐 =
∫
Ω

𝐺𝑐

2

(
𝑐2

𝑙
+ 𝑙 |∇𝑐 |2

)
𝑑𝑉

(3.33)

The procedure of the staggered algorithm is described as follows:
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Algorithm 3.1 Staggered algorithm for brittle fracture

Input: u𝑛, 𝑐𝑛
Output: u𝑛+1, 𝑐𝑛+1

1 for 𝑠← 1...𝑆 do // Loop for staggered step

2 Compute displacements with fixed crack
3 Initialize u0

𝑛+1 = u𝑛 ; /* Newton-Raphson loop for u */
4 Solve r𝑢 (u𝑘

𝑛+1) = 0 ; /* see eq.(3.22 – 3.25) */

5 Update H𝑛+1 = 𝑚𝑎𝑥(Ψ+(u𝑘
𝑛+1),H𝑛) ; /* history variable */

6 Compute crack fields with fixed displacements
7 Initialize c0

𝑛+1 = c𝑛 ; /* Newton-Raphson loop for crack */

8 Solve r𝑐 (c𝑘
𝑛+1) = 0 ; /* see eq.(3.16 – 3.21) */

9 Update crack field c𝑛+1 ; /* for degradation function 𝑔 */

10 Compute energy functional and tolerance
11 Calculate 𝐸𝑠 and 𝐸𝑠+1 ; /* see eq.(3.33) */

12 Calculate 𝛽𝑠 =
𝐸𝑠+1−𝐸𝑠

𝐸𝑠+1
; /* tolerance */

13 if 𝛽𝑠 ≥ 𝑇𝑂𝐿 then // Evaluate tolerance
14 Start a new staggered step 𝑠 = 𝑠 + 1 ; /* with updated H, 𝑔 */
15 Return to line 2
16 else
17 Approve u𝑛+1 and c𝑛+1; /* Write results */
18 Exit ; /* then start a new load step */

19 end if
20 end for





CHAPTER 4

COMPUTATIONAL FRAMEWORK AND IMPLEMENTATION OF PHASE FIELD
MODEL FOR FRACTURE IN PLANE STRESS CONDITION

This chapter first introduces a full development in the strain-stress relation under the elastic

energy density splitting scheme proposed by Amor et al. (2009). It is worth noting that while this

explicit form of split strategy is required when integrating it into the finite element framework,

its availability is limited in the theoretical aspect. In addition, the simplified strain-stress relation

in the plane stress state where all the out-of-plane components of the stress tensor vanish is

presented. Next, the computational framework of the phase field model is discussed, opening

the door to a tweak that improves its overall flexibility and robustness. At last, two numerical

tests are presented to show how the proposed model governs the evolution of the crack.

4.1 Strain-stress’s relation in plane stress state

4.1.1 Tensor-based Hooke’s law

Amor et al. (2009) proposed the splitting strategy in which Ψ is split into volumetric and

deviatoric contributions. The stress tensor is then adapted following the elastic energy density

split. The noticeable point here is that the stress degradation function 𝑔(𝑐) only applies to the

volumetric part, which would cause the tension stress.

𝝈(𝝐 , 𝑐) = 𝑔(𝑐) 𝜕Ψ
+(𝝐)
𝜕𝝐

+ 𝜕Ψ
−(𝝐)
𝜕𝝐

, where


Ψ+(𝝐) ≡ 1

2𝐾 ⟨tr(𝝐)⟩
2
+ + 𝜇(𝝐𝑑 : 𝝐𝑑)

Ψ−(𝝐) ≡ 1
2𝐾 ⟨tr(𝝐)⟩

2
−

and ⟨a⟩± ≡
1
2
(𝑎 ± |𝑎 |), 𝝐𝑑 ≡ 𝝐 − 1

3
tr(𝝐)I, 𝐾 ≡ 𝜆 + 2𝜇

3

⇒ 𝝈 = 𝑔(𝑐)
{1
2
𝐾

[
1 + sign(𝑡𝑟𝝐)

] 〈
𝑡𝑟𝝐

〉
+

I + 2𝜇𝝐𝑑
}
+ 1

2
𝐾

[
1 − sign(𝑡𝑟𝝐)

] 〈
𝑡𝑟𝝐

〉
−
I
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As stress depends on the sign of 𝑡𝑟𝝐 , it is convenient to split it into two parts: 𝝈+ and 𝝈−

•When 𝑡𝑟𝝐 ≥ 0

𝝈+ = 𝑔(𝑐)
{
𝐾 𝑡𝑟𝝐 I + 2𝜇𝝐𝑑

}
(4.1)

C+ =
𝜕𝝈+

𝜕𝝐
= 𝑔

{
𝐾 I ⊗ I + 2𝜇

(
I𝑠 − 1

3
I ⊗ I

)}
= 𝑔

(
2𝜇I𝑠 + 𝜆I ⊗ I

)
(4.2)

•When 𝑡𝑟𝝐 < 0

𝝈− = 𝑔(𝑐)
{
2𝜇𝝐𝑑

}
+ 𝐾 𝑡𝑟𝝐 I (4.3)

C− =
𝜕𝝈−

𝜕𝝐 𝑒
= 𝑔

{
2𝜇

(
I𝑠 − 1

3
I ⊗ I

)}
+ 𝐾 I ⊗ I = 2𝜇𝑔I𝑠 + 𝜆′I ⊗ I (4.4)

where 𝜆′ = 𝜆 + (1 − 𝑔) 2𝜇3 and I𝑠 = 1
2 (𝛿𝑖𝑘𝛿 𝑗 𝑙 + 𝛿𝑖𝑙𝛿 𝑗 𝑘 ) – the symmetric fourth-order unit tensor.

4.1.2 Simplification for plane stress condition

Within the small strain assumption, i.e. 𝝐 = ∇𝑠u = 1
2

(
∇u + ∇𝑇u

)
, strain tensor 𝝐 is symmetric

and conventionally represented by a six-components vector


𝜖11 𝜖12 𝜖13

𝜖12 𝜖22 𝜖23

𝜖13 𝜖23 𝜖33


≡ [𝜖11, 𝜖22, , 𝜖33, 2𝜖12, , 2𝜖23, , 2𝜖13]𝑇

Stress-strain relation in an isotropic elastic solid then becomes



𝜎11

𝜎22

𝜎33

𝜎12

𝜎23

𝜎13

︸︷︷︸
𝝈

=



2𝜇 + 𝜆 𝜆 𝜆 0 0 0

2𝜇 + 𝜆 𝜆 0 0 0

2𝜇 + 𝜆 0 0 0

𝜇 0 0

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝜇 0

𝜇

︸                                                                      ︷︷                                                                      ︸
C



𝜖11

𝜖22

𝜖33

2𝜖12

2𝜖23

2𝜖13

︸ ︷︷ ︸
𝝐
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In plane stress state, all the stress components related to the third direction are assumed to vanish

𝜎13 = 𝜎23 = 𝜎33 = 0 (4.5)

According to the above relationship,

𝜖13 = 𝜖23 = 0, 𝜖33 =
𝜆

2𝜇 + 𝜆 (𝜖11 + 𝜖22) =
𝜈

1 − 𝜈 (𝜖11 + 𝜖22)

Then we get the compact form for plane stress state


𝜎11

𝜎22

𝜎12


=

2𝜇
2𝜇 + 𝜆


2(𝜇 + 𝜆) 𝜆 0

2(𝜇 + 𝜆) 0

𝑠𝑦𝑚
2𝜇+𝜆

2



𝜖11

𝜖22

2𝜖12


In a similar manner, C+ and C− could be transformed in the matrix format


𝜎11

𝜎22

𝜎12

︸︷︷︸
𝝈+

=
2𝜇𝑔

2𝜇 + 𝜆


2(𝜇 + 𝜆) 𝜆 0

2(𝜇 + 𝜆) 0

𝑠𝑦𝑚
2𝜇+𝜆

2

︸                                         ︷︷                                         ︸
C+


𝜖11

𝜖22

2𝜖12


(4.6)


𝜎11

𝜎22

𝜎12

︸︷︷︸
𝝈−

=
2𝜇𝑔

2𝜇 + 𝜆′


2(𝜇𝑔 + 𝜆′) 𝜆′ 0

2(𝜇𝑔 + 𝜆′) 0

𝑠𝑦𝑚
2𝜇+𝜆′

2

︸                                                 ︷︷                                                 ︸
C−


𝜖11

𝜖22

2𝜖12


(4.7)
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4.2 Computational framework

4.2.1 Stagggered algorithm: original versus adaptive

Figured (4.1) illustrates how the staggered algorithm works when it is deployed into the

computational framework. Although it runs perfectly in a wide range of applications in fracture

mechanics, there is a catch: it needs to know the peak of the load-displacement curve where the

load ratio is sifted down in order to adapt to the rapidly rising energy potential when the crack

occurs. At the breaking point, the energy surface functional increases rapidly, which is the main

reason the free energy functional cannot stabilize; thus, the failure occurs when the staggered

step reaches its limit, triggering the simulation stoppage.

Start Initialization

Load step 𝑛 = 1 → 𝑁

Staggered step 𝑠 = 1 → 𝑆

Solve displacement field Solve crack field

𝛽𝑠 ≤ 𝑇𝑜𝑙𝑠 = 𝑆

Report failure 𝑛 = 𝑁

Output dataStop

u
H

c 𝛽𝑠

No

Yes

No

Yes
No

Start
new load step

Yes

Figure 4.1 Computational framework with original staggered
algorithm

It is a common practice to preset the load ratio before running the simulation, forcing it to be a

much smaller value before the breaking point, cf. Ambati, Gerasimov & De Lorenzis (2015b);
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Molnár & Gravouil (2017). This practice gives leverage for this specific setup, allowing the

simulation to go past the breaking point and beyond. Obviously, it is not an optimum and flexible

way in reality because the breaking point of a system changes when its geometry or its parameter

changes. As the flowchart shows, the only way to obtain information on the system’s breaking

point is to run a trial simulation and wait until it fails. This step alone can take quite a handful of

computational time when the sample is large and consists of a huge set of elements. Even if we

are willing to accept to do the trial run, the whole process will become tedious and boring when

it includes repetitive simulations, for example, in the parameter analysis. The proposed adaptive

staggered algorithm offers a resolution for these issues: when the staggered step 𝑠 reaches its

maximum value 𝑆, and the energy potential tolerance 𝛽𝑠 is still larger than its threshold value,

the load ratio is automatically adjusted, and the algorithm will then repeat the current load step

with the new load ratio. Figure (4.2) describes the flowchart of this adaptive staggered scheme.

Start Initialization

Load step 𝑛 = 1 → 𝑁

Staggered step 𝑠 = 1 → 𝑆

Solve displacement field Solve crack field

𝛽𝑠 ≤ 𝑇𝑜𝑙𝑠 = 𝑆

Adjust load ratio 𝑛 = 𝑁

Output dataStop

u
H

c 𝛽𝑠

No

Yes

No

Yes
No

Start
new load step

Repeat
current load step

Yes

Figure 4.2 Adaptive staggered scheme for plane stress
phase-field model
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4.2.2 Implementation

This phase field model is implemented entirely in C++. The whole framework includes:

• All the input meshes are created by the freeware GMSH, cf. Geuzaine & Remacle (2009).

• The mesh-reading package is provided by Professor Tan Pham.

• The core computational framework, consisting of two Newton-Raphson algorithms for

displacement and crack field; the module for the free energy evaluation, is from the author.

• Library Eigen, cf. Guennebaud, Jacob et al. (2010), is utilized to find the solution for the

linear algebraic system in the Newton-Raphson loops.

• The post-processing package for the results is from the author.

4.3 Numerical experiments

4.3.1 Setups for single-edge notched test

The single-edge notched test is one of the most popular entry tests for a new phase-field-based

fracture model. A solid with a sharp crack in the middle is clamped down at the base. The upper

edge is constantly applied a prescribed displacement ū in the vertical direction ū = (0, 10−4mm)𝑇

in the tension test; or in the horizontal direction ū = (10−4mm, 0)𝑇 in the shear test. The

adaptive staggered scheme will automatically adjust the magnitude of ū when the crack initiates

to avoid convergence failure of the staggered algorithm. The simulation continues until the

sample is totally broken. Figure (4.4) illustrates the detailed setups for the two tests.

The objective of the tension test is twofold. The first one is to verify whether the crack will grow

horizontally until the sample is totally broken, a fact that is widely accepted and validated in

both plane strain and three-dimensional configuration, cf. Miehe et al. (2010a,b); Ambati et al.

(2015b); Molnár & Gravouil (2017). The second one is to conduct the parameter analysis for

two essential parameters of the phase field model for fracture: the length scale 𝑙 and the ratio of

the length scale over the mesh size 𝑙/ℎ.
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a) Tension test: vertical ū = (0, 𝑢)𝑇 b) Shear test: horizontal ū = (𝑢, 0)𝑇

Figure 4.3 The single-edge notched test in two different loading schemes

4.3.2 Results and discussions for tension test

In this test, the order for running the simulation is as follows:

• First, three runs on a uniform mesh with three different length scales are performed to see

how the framework processes the crack’s evolution.

• Second, eight simulations are employed on the same non-uniform coarse mesh for the

parameter analysis.

• Third, six simulations are carried out on the finer medium mesh to solidify what has been

found in the second round.

Table (4.1) summarizes all the simulations performed on three different meshes. The terms

coarse and medium are used for the non-uniform meshes as an alias to differentiate them. The

key difference in those meshes is the mesh size, defined as the longest edge of an element, within

the area of interest, where elements are concentrated the most, as we can see in Figure (4.4).
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Table 4.1 Summary of all the simulations in the tension test.

Order
Mesh characteristics

Length scale∗∗ Ratio
Alias Total elements Mesh size∗

1 Uniform 10000 ℎ = 0.01 𝑙 = 0.1 𝑟 = 10

2 Uniform 10000 ℎ = 0.01 𝑙 = 0.05 𝑟 = 5

3 Uniform 10000 ℎ = 0.01 𝑙 = 0.03 𝑟 = 3

4 Coarse 4560 ℎ ≈ 4 × 10−3 𝑙1 = 0.015

5 Coarse 4560 ℎ ≈ 4 × 10−3 𝑙2 = 0.03

6 Coarse 4560 ℎ ≈ 4 × 10−3 𝑙3 = 0.05

7 Coarse 4560 ℎ ≈ 4 × 10−3 𝑙4 = 0.075

8 Coarse 4560 ℎ ≈ 4 × 10−3 𝑟1 = 3

9 Coarse 4560 ℎ ≈ 4 × 10−3 𝑟2 = 5

10 Coarse 4560 ℎ ≈ 4 × 10−3 𝑟3 = 10

11 Coarse 4560 ℎ ≈ 4 × 10−3 𝑟4 = 20

12 Medium 8951 ℎ ≈ 2.5 × 10−3 𝑙1 = 0.015

13 Medium 8951 ℎ ≈ 2.5 × 10−3 𝑙2 = 0.03

14 Medium 8951 ℎ ≈ 2.5 × 10−3 𝑙3 = 0.05

15 Medium 8951 ℎ ≈ 2.5 × 10−3 𝑟2 = 5

16 Medium 8951 ℎ ≈ 2.5 × 10−3 𝑟3 = 10

17 Medium 8951 ℎ ≈ 2.5 × 10−3 𝑟4 = 20
∗ Mesh size in the interest area for the non-uniform mesh in millimeters [mm]

∗∗ Fixed characteristics length scale in millimeters [mm]

The numerical experiment begins with a uniform mesh containing 10000 quadrilateral elements

(Q4). Whereas it is quite a large number of elements, its unique mesh size, ℎ = 0.01 mm, is still

considered a "coarse" size in the phase-field community. A set of three fixed values of length

scale 𝑙 = (0.03, 0.05, 0.1)mm is applied to this mesh to study the crack’s evolution as well as
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the effect on the localization of the crack. Figure (4.5) shows two things: first, cracks grow

horizontally; second, the bandwidth of the damaged regime shrinks when the length scale is

reduced from 𝑙 = 0.1 to 0.03mm, implying that the shorter 𝑙 becomes, the narrower the range of

the crack field will be. Coincidentally, this fact is in agreement with the Γ−convergence theory

of Braides (1998): when 𝑙 → 0, the smeared crack reverses to its sharp state. In terms of brittle

behavior, when we look at the difference between prescribed 𝑢 at the time the solid is totally

broken and at the time when the crack starts:

Δ𝑢(𝑙 = 0.03) = 8.9 × 10−5 < Δ𝑢(𝑙 = 0.05) = 9 × 10−5 < Δ𝑢(𝑙 = 0.1) = 2.92 × 10−4

That means the sample applied with a shorter length scale behaves more brittle than one with a

longer length scale because it reaches the total failure faster.

a) Coarse mesh: containing 4560 Q4 b) Medium mesh: containing 8951 Q4

Figure 4.4 Two non-uniform meshes used in the tension test.
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a) 𝑙 = 0.1mm : crack starts
𝑢 = 0.003 mm

b) 𝑙 = 0.1mm : propagates
𝑢 = 0.00315mm

c) 𝑙 = 0.1mm : totally broken
𝑢 = 3.292 × 10−3 mm

d) 𝑙 = 0.05mm : crack starts
𝑢 = 0.0031 mm

e) 𝑙 = 0.05mm : propagates
𝑢 = 0.00315 mm

f) 𝑙 = 0.05mm : totally broken
𝑢 = 3.19 × 10−3mm

g) 𝑙 = 0.03mm : crack starts
𝑢 = 0.00312

h) 𝑙 = 0.03mm : propagates
𝑢 = 0.0315 mm

i) 𝑙 = 0.03mm : totally broken
𝑢 = 3.209 × 10−3

Figure 4.5 The crack’s evolution in the uniform mesh containing 10000 Q4.
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Turning now to the parameter analysis, two parameters will be studied in detail to determine

how they regulate the crack growth in this phase field model:

• The first parameter is the characteristics length scale 𝑙: a fixed value of length scale will

be applied to all elements of a mesh. In the simulation of order 4 – 7 in Table (4.1), four

different fixed length scales are applied on the coarse mesh separately. Similarly, in order 12

– 14 simulations, three various values of length scale are applied on the medium mesh.

• The second parameter is the ratio 𝑟 between the length scale and the mesh size, i.e., 𝑟 = 𝑙/ℎ:

a fixed value of ratio 𝑟 requires the calculation of the length scale at each element because

the mesh size ℎ varies in the non-uniform mesh. Each simulation from the order of 8 – 11

uses a different fixed ratio on the coarse mesh, and the simulation from the order of 15 – 17

uses either the ratio of 𝑟 = 5, 𝑟 = 10, or 𝑟 = 20 on the medium mesh.

What can be clearly seen in Figure (4.6) is the deflection of the crack’s trajectory from the

horizontal line at the fixed ratio 𝑟1 = 3, 𝑟2 = 5 and 𝑟3 = 10, which is not expected given various

references from the literature, cf. Molnár & Gravouil (2017); Ambati et al. (2015b); Miehe et al.

(2010b). As a result, the load-displacement curves corresponding to these fixed ratios become

outliners, among others in the Figure (4.7). To be more specific, the sooner the deflection

happens, the longer it takes to reach the dramatic drop in the load-displacement curve. The fact

that the same observation can be found in the simulations on the finer mesh (medium mesh), see

Figure (4.8 – 4.9), implies that even if the fixed ratio satisfies the least requirement from Miehe

et al. (2010a), i.e., 𝑟 = 𝑙/ℎ > 2, it does not necessarily guarantee the correct trajectory of the

crack.
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a) 𝑟1 = 3
Deflect at halfway

b) 𝑟2 = 5
Deflect at halfway

c) 𝑟3 = 10
Deflect at the end

d) 𝑟4 = 20
No deflection

e) 𝑙1 = 0.015mm f) 𝑙2 = 0.03mm g) 𝑙3 = 0.05mm h) 𝑙4 = 0.075mm

Figure 4.6 The crack path at the end of load cycle in the coarse mesh: ratio-controlled
length scale in the first row and fixed length scale in the second row
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Figure 4.7 Load-displacement curve of the coarse
mesh – fixed versus ratio-controlled length scale
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a) 𝑟2 = 5
Deflect at halfway

b) 𝑟3 = 10
Deflect at the end

c) 𝑟4 = 20
No deflection

d) 𝑙1 = 0.015 mm e) 𝑙2 = 0.03mm f) 𝑙3 = 0.05mm

Figure 4.8 The crack path at the end of load cycle in the medium mesh: ratio-controlled
length scale in the first row and fixed length scale in the second row

In conclusion, after performing a series of simulations on three different meshes, these are

noticeable observations:

• The crack propagates horizontally in most cases, as expected.

• The length scale stands out as a more reliable parameter in this phase field model for fracture.

• All the simulations in the tension test run smoothly without failure and, especially, do not

need the system’s breaking point beforehand to proceed.
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Figure 4.9 Load-displacement curve of the medium
mesh – fixed versus ratio-controlled length scale

4.3.3 Results and discussions for shear test

While the tension test has already verified the model’s ability to propagate the crack automatically,

the purpose of the shear test is to double-check whether the splitting strategy of the elastic

energy density works well in this model. With the loading scheme as described in Figure (4.4),

the crack is expected to grow downward from the center toward the right-bottom corner of the

sample, cf. Miehe et al. (2010b); Ambati et al. (2015b); Molnár & Gravouil (2017). With

regard to prescribed displacement, ū = (10−4mm, 0)𝑇 from the start to the breaking point of the

load-displacement curve, then it is set at (10−5mm, 0)𝑇 until the sample is totally broken.
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a) 𝑢 = 0.006
Peak

b) 𝑢 = 0.0061
𝑆1– Steep fall

c) 𝑢 = 0.00617
𝑆2– Steep fall

d) 𝑢 = 0.00633
𝑆3– Steep fall

e) 𝑢 = 0.0068mm
𝐺1– Gradual fall

f) 𝑢 = 0.0074mm
𝐺2– Gradual fall

g) 𝑢 = 0.008mm
𝐺3– Gradual fall

h) 𝑢 = 0.00849mm
𝐺4– Gradual fall

Figure 4.10 The evolution of crack in the shear test of the sample consisting of 10406 Q4
elements: crack trajectories correspond with eight marks on Figure (4.11)

What stands out in Figure (4.10) is the steady growth downward of the crack field, implying the

strain decomposition in the splitting strategy worked wonderfully in the framework. As a result,

it prevents the crack from propagating into the upper part of the sample, where the compression

strain dominates under this loading scheme. Moreover, Figure (4.11) shows that the drop of the

load-displacement curve can be split into two stages:

• The first stage begins from the peak, where the crack starts to grow, to the point marked as 𝑆3

in the curve. The crack propagates quickly, nearly half of its trajectory gained in this stage,

which is why it is called steep fall.

• The second stage starts from 𝑆3: the crack gradually grows towards the left bottom of the

sample until it reaches the totally broken point. That is why this stage is called gradual fall.
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Figure 4.11 Load-displacement curve of the
shear test on the sample containing 10406 Q4

elements, length scale 𝑙 = 0.03 mm

4.3.4 Convergence rate

The staggered algorithm consists of three calculation blocks: two Newton-Raphson loops to

solve displacement and crack; and one block to evaluate the free energy functional. As the two

Newton-Raphson iterations inside the staggered algorithm converge quickly, with only 1-2 steps

in each loop, the stability of free energy is the key to the convergence of the staggered loop.

As the number of staggered steps per load step varies throughout the load-displacement curve of

the simulation, let us break down the curve into stages where the number of staggered steps can

be differentiated from each other. For this purpose, the load-displacement curve recorded from

the tension test, summarized in Table (4.1), can be divided into three stages:

• The first stage starts from the beginning to the area near the breaking point, which is called

Pre-peak. In this framework, when applying adaptive staggered scheme, the Pre-peak is

determined as the first load steps after the algorithm decreases the load ratio due to the failure

in the current load step and restarts it.
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• The second stage is from the Pre-peak to the Peak, where the crack starts to grows. It usually

takes 5 to 10 load steps for the curve to peak.

• The third stage begins after the breaking point and is called Post-peak.

Table (4.2) shows that the number of staggered steps per load step increases when the curve

reaches its peak, underscores the instability of the free energy when the solid reaches its breaking

point. A point worth noting here is that when the curve enters the Pre-peak zone, its load ratio

has already been reduced by at least one-tenth of the value from the start, which reminds us how

volatile the free energy becomes at this zone. This is where the adaptive staggered scheme shows

its flexibility: it only needs one load step with a maximum staggered step, reduces the load ratio,

and then starts the load steps over with a higher possibility of stabilizing the solid’s free energy.

Moreover, this algorithm would save quite an amount of computing time in comparison to the

original version in both scenarios: either the pre-defined breaking point is before or after the

actual peak. In the first case, it would take much more computing time than usual: a smaller

load ratio couples with more staggered steps when it is near the peak. The second case is worse:

the free energy is unlikely to converge, the algorithm fails, and we must start from scratch.

Table 4.2 Breakdown of the number of staggered steps
per load step in different stages of the tension test

Sample
Number of staggered steps per load step

Start to Pre-peak Pre-peak Post-peak

Coarse 3 – 8 10 – 12 10 – 20

Medium 3 – 8 10 – 12 10 – 30

Uniform 3 – 10 10 – 20 10 – 20

As discussed on the result of the shear test, Figure (4.11) shows that the load-displacement

behaves differently after the breaking point, adding the two stages of Steep fall and Gradual fall

instead of Post-peak in the tension test. The report in Table (4.3) reveals that while the algorithm
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took more staggered steps, i.e., computational time, to converge in the steep fall stage, the crack

grew fastest at the same time, as illustrated in Figure (4.10).

Table 4.3 Breakdown of the number of staggered steps
per load step in different stages of the shear test

Sample
Number of staggered steps per load step

Start to Pre-peak Pre-peak Steep fall Gradual fall

Mesh containing 10406 quads 3 – 7 10 10 – 20 4 – 6

To conclude, the advantages of the proposed finite element model are:

• The fact that all the simulations in the tension test and shear test run smoothly despite the

dramatic drop in the load-displacement curve of brittle fracture confirms the robustness of

the computational framework.

• The adaptive staggered scheme offers the flexibility that the original algorithm lacks when

the system reaches its breaking point.

• Energy-based stopping criterion used in the staggered algorithm makes more physical sense

than the crack field-based criterion, cf. Bourdin et al. (2000).



CONCLUSION AND RECOMMENDATIONS

This study was undertaken to develop a phase-field-based fracture model in the plane stress state,

implement it in C++, and conduct two popular numerical experiments to compare the evolution

of the crack with the existing models’ results. The computational framework includes two new

developments:

• To construct the material’s behavior in plane stress state while incorporating a splitting

scheme of elastic energy to prevent cracking under compression. It leads to a nonlinear

system of displacement that needs a Newton-Raphson scheme to solve.

• To propose an adaptive scheme to make the framework more flexible when it reaches the

breaking point, thus improving its robustness and reducing computational time.

The developed model performs smoothly under two different loading schemes, delivering

the fracture mechanism, such as crack opening and crack propagation, in both testing cases.

Also, this research extends our knowledge of the phase-field-based fracture model, such as the

importance of length scale and the pitfall involving the ratio between length scale and mesh size.

This work will serve as a base for future studies because its energetic concept opens to couple with

other energy-based phenomena such as temperature or plasticity by adding their corresponding

energy (thermal or plastic) to the free energy functional, then modifying the development.

Finally, a number of important limitations need to be considered. First, this implementation

uses a serial solver, which proves inadequate when the mesh size is large. It leads to the

recommendation for future work: to use a powerful parallel solver to solve the linear system

equations. Secondly, mesh samples used in tension and shear tests are well-refined in the area

where cracks could occur to better represent its geometry. Choosing where to refine the mesh

might be challenging in reality, especially in complex geometries. Assessing a simple adaptive

meshing scheme where only elements’ crack fields reached a certain value to be refined would

be interesting.





APPENDIX I

STRESS-STRAIN RELATION AND ELASTIC ENERGY DENSITY IN PLANE
STRAIN CONDITION

1. Simplification for plane strain condition

In plane strain state, all the strain components related to the third direction cease to exist, i.e.

𝜖13 = 𝜖23 = 𝜖33 = 0



𝜎11

𝜎22

𝜎33

𝜎12

𝜎23

𝜎13


=



2𝜇 + 𝜆 𝜆 𝜆 0 0 0

2𝜇 + 𝜆 𝜆 0 0 0

2𝜇 + 𝜆 0 0 0

𝜇 0 0

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝜇 0

𝜇





𝜖11

𝜖22

0

2𝜖12

0

0


⇒


𝜎13 = 𝜎23 = 0

𝜎33 = 𝜆
2(𝜇+𝜆) (𝜎11 + 𝜎22) = 𝜈(𝜎11 + 𝜎22)

𝑆𝑖𝑚𝑝𝑙𝑖 𝑓 𝑖𝑒𝑑
==========⇒


𝜎11

𝜎22

𝜎12


=


2𝜇 + 𝜆 𝜆 0

2𝜇 + 𝜆 0

𝑠𝑦𝑚 𝜇



𝜖11

𝜖22

2𝜖12





44

Decomposing stress tensor


𝜎11

𝜎22

𝜎12

︸︷︷︸
𝝈+

= 𝑔


2𝜇 + 𝜆 𝜆 0

2𝜇 + 𝜆 0

𝑠𝑦𝑚 𝜇

︸                              ︷︷                              ︸
C+


𝜖11

𝜖22

2𝜖12


(A I-1)


𝜎11

𝜎22

𝜎12

︸︷︷︸
𝝈−

=


2𝜇𝑔 + 𝜆′ 𝜆′ 0

2𝜇𝑔 + 𝜆′ 0

𝑠𝑦𝑚 𝜇𝑔

︸                                   ︷︷                                   ︸
C−


𝜖11

𝜖22

2𝜖12


(A I-2)

2. Evaluation of elastic energy density Ψ

Ψ(𝝐) = 1
2
𝝐 : C : 𝝐 =

1
2
𝜆tr2(𝝐) + 𝜇(𝝐 : 𝝐)

where Lamé parameters 𝜆 =
𝐸𝜈

(1 + 𝜈) (1 − 2𝜈) , 𝜇 ≡ 𝐺 =
𝐸

2(1 + 𝜈)

Decomposing Ψ into volumetric and deviatoric contributions blocks the crack spread under

compression condition.

Ψ(𝝐) = Ψ+ + Ψ−, where


Ψ+(𝝐) ≡ 1

2𝐾 ⟨tr(𝝐)⟩
2
+ + 𝜇(𝝐𝑑 : 𝝐𝑑)

Ψ−(𝝐) ≡ 1
2𝐾 ⟨tr(𝝐)⟩

2
−

⟨a⟩± ≡
1
2
(𝑎 ± |𝑎 |), 𝝐𝑑 ≡ 𝝐 − 1

3
tr(𝝐)I, 𝐾 ≡ 𝜆 + 2𝜇

3
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• In plane stress condition, strain tensor 𝝐 and its deviatoric tensor 𝝐𝑑 read

𝝐 ≡


𝜖11

𝜖22

𝜖12


, 𝜖33 =

𝜈

𝜈 − 1
(𝜖11 + 𝜖22)

𝝐𝑑 ≡


𝜖11 − 1

3 tr(𝝐)

𝜖22 − 1
3 tr(𝝐)

𝜖12


, 𝜖𝑑33 =

𝜈 + 1
3(𝜈 − 1) (𝜖11 + 𝜖22)

=⇒


tr(𝝐) ≡ 𝜖11 + 𝜖22 + 𝜖33 = 2𝜈−1

𝜈−1 (𝜖11 + 𝜖22)

𝝐𝑑 : 𝝐𝑑 = [𝜖11 − 1
3 tr(𝝐)]2 + [𝜖22 − 1

3 tr(𝝐)]2 + 2𝜖2
12 + (𝜖

𝑑
33)

2

• In plane strain condition,

𝝐 ≡


𝜖11

𝜖22

𝜖12


, 𝝐𝑑 ≡


𝜖11 − 1

3 tr(𝝐)

𝜖22 − 1
3 tr(𝝐)

𝜖12


=⇒


tr(𝝐) ≡ 𝜖11 + 𝜖22 + 𝜖33 = 𝜖11 + 𝜖22

𝝐𝑑 : 𝝐𝑑 = [𝜖11 − 1
3 tr(𝝐)]2 + [𝜖22 − 1

3 tr(𝝐)]2 + 2𝜖2
12

• Decomposing the elastic energy density Ψ(𝝐) = Ψ+ + Ψ−

When tr(𝝐) ≥ 0 =⇒


Ψ+ = 1

2𝐾tr(𝝐)2 + 𝜇(𝝐𝑑 : 𝝐𝑑)

Ψ− = 0

When tr(𝝐) < 0 =⇒


Ψ+ = 𝜇(𝝐𝑑 : 𝝐𝑑)

Ψ− = 1
2𝐾tr(𝝐)2





APPENDIX II

THE FORM OF THE DEGRADATION FUNCTION

The degradation function 𝑔(𝑐) plays a crucial role in the phase field model, connecting mechanical

deformation in the equilibrium equation and the crack field in the regularized counterpart. The

chosen function has to satisfy the following criteria mathematically:

• Guarantee the full response of internal force in case of intact (𝑐 = 0) and vice versa, i.e.

𝑔(0) = 1, and 𝑔(1) = 0

• Must be a monotonically decreasing function

𝑔′(𝑐) ≡ 𝜕𝑔
𝜕𝑐

< 0

• Prevent the crack grow orthogonally

𝑔′(1) = 0

Some common degradation functions are presented in Table(II-1). The original quadratic form

introduced by Bourdin et al. (2000) is widely used in mechanical models, especially for brittle

fractures.

Table-A II-1 Phase-field models with different forms of
degradation function

Degradation form 𝑔(𝑐) Authors (Year) Remarks
(1 − 𝑐)2 Bourdin et al. (2000) Original quadratic form

3(1 − 𝑐)2 − 2(1 − 𝑐)3 Karma, Kessler & Levine (2001) For dynamic fracture
4(1 − 𝑐)3 − 3(1 − 𝑐)4 Kuhn, Schlüter & Müller (2015) Focus on crack nucleation
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ADDITIONAL FIGURES
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Figure-A III-3 Load-displacement curve in the shear test of
sample containing 10406 Q4 elements – Length scale is set at

𝑙 = 0.03mm

a) 𝑢 = 0.006
Peak

b) 𝑢 = 0.0061
𝑆1– steep

c) 𝑢 = 0.00617
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d) 𝑢 = 0.00633
𝑆3– steep

e) 𝑢 = 0.0065
𝐺1– gradual

f) 𝑢 = 0.0068
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g) 𝑢 = 0.0071
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h) 𝑢 = 0.0074
𝐺4– gradual

i) 𝑢 = 0.0077
𝐺5– gradual

j) 𝑢 = 0.008
𝐺6– gradual

k) 𝑢 = 0.0083
𝐺7– gradual

l) 𝑢 = 0.00849
𝐺8– gradual

Figure-A III-4 The evolution of crack in the shear test of the sample consisting of 10406
Q4 elements: crack trajectory at the specific point of the curve in Figure (III-5)
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