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Prédiction dynamique de la Consommation des Ressources dans les Environnements
Virtualisés

Asma BELLILI

RÉSUMÉ

Les environnements infonuagiques d’aujourd’hui offrent d’énormes capacités d’hébergement de

services et d’applications. Dans de tels environnements, l’augmentation exponentielle de la

consommation de ressources (ex., de calcul, de stockage) rend leur gestion très difficile. Cette

dernière doit respecter différentes contraintes de Qualité de Service (QdS) qui sont négociées

dans le cadre de divers contrats de service (Service Level Agreements, SLA) pour différentes

applications (ex., application hautement sensible au délai). Ces applications représentées par

des chaînes de microservices sont déployées dans ces environnements qui sont dynamiques

(ex., variabilité de la disponibilité des ressources, volatilité des charges de trafic). Dans cette

thèse, nous nous intéressons à l’adaptation de ressources pour des chaînes de fonctions de

services (Service Function Chain -SFCs) composées de plusieurs fonctions de réseau virtualisées

(Virtual Network Function -VNF). Les variations élevées de la charge de trafic des applications

entraînent une incertitude quant à l’utilisation des ressources. Il devient donc crucial de disposer

de mécanismes efficaces basés sur les données pour la gestion automatique des ressources.

Ces mécanismes permettent aux systèmes complexes d’anticiper et de réagir efficacement

aux fluctuations de ces charges. Ils s’appuient sur des techniques efficaces de prévision de

l’utilisation des ressources afin de répondre aux exigences de QdS des applications. Ils doivent

anticiper la consommation de différentes ressources (ex., CPU, mémoire) tout en tenant compte

de la variabilité. Dans ce contexte, une solution basée sur un modèle de mono-prédiction basé

uniquement sur l’historique de la consommation de ressource peut échouer en cas de changement

brut de la consomation de resource. Pour permettre au mécanisme de prédiction de s’adapter à

la variation des demandes en ressources. Dans cette thèse,nous proposons une nouvelle solution

de prédiction qui s’adapte à la variation de la consomation en sélectionnant parmi plusieurs

méthodes de prédiction, celle qui est la mieux adaptée à la charge de trafic reçue. Notre solution

applique un sélecteur multitâche basé sur la stratégie de méta-learning MT-MLS. Le MT-MLS

introduit un nouveau concept en analysant les similitudes de consommation de différentes

ressources entre les VNFs d’une SFC (une application). Un mécanisme d’attention est utilisé

pour identifier un poid pour chaque VNF sur la base de l’analyse de similarité. Le MT-MLS

est conçu comme un classifieur multitâche,qui attribue simultanément et indépendamment à

chaque VNF un meilleur prédicteur pour prévoir les besoins en ressources dans une situation de

charge de trafic donnée. Le meilleur prédicteur est sélectionné parmi un ensemble de modèles

de prédicteurs proposés par notre solution, mais sans s’y limiter. En effet, notre solution peut

etre appliquée avec de nombreux predicteurs qui sont capables de fournir une prediction de la

consomation future des resources. Parmi les prédicteurs de base proposés par notre solution: un

modèle GNN efficace qui utilise les caractéristiques de la topologie d’une SFC et qui a démontré

ses performances dans le cas de charges de trafics élevé. Nous avons également développé

d’autres modèles, un modèle CNN, un modèle LSTM et un modèle hybride. Ces prédicteurs de

base ont été utilisés pour générer des métadonnées afin de développer le MT-MLS. L’analyse et
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la comparaison des résultats expérimentaux montrent clairement l’efficacité et la performance

de nos solutions.

Mots-clés: gestion des ressources, prédiction des ressources, apprentissage automatique,

dépendances entre VNFs, chaîne de fonctions de service, classification multitâche, affinité VNF,

GNN
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ABSTRACT

Today’s cloud environments host various services and applications. In such an environment, the

consumption of resources is growing exponentially which makes their management a challenging

task especially in a dynamic cloud environment (e.g., resource availability, traffic volatility)

and under different Quality of Service (QoS) requirements that are specified in Service-Level-

Agreements (SLAs) for various applications (e.g., highly latency-sensitive applications). These

applications designed as chains of microservices are deployed in a dynamic cloud environment.

In this thesis, we focus on adapting resources for service function chains (SFCs) which consist

of a set of Virtual Network functions (VNFs). High traffic load variations of applications lead to

uncertainty in resource utilization. Consequently, the need for efficient data-driven mechanisms

for automatic resource management becomes paramount. These mechanisms enable distributed

systems to anticipate and efficiently respond to resource consumption fluctuations. They rely

on accurate prediction techniques to satisfy the resource needs, to meet the QoS requirements

for cloud applications and service infrastructures. These mechanisms are requiered to handle

with the heterogeneity and the dynamic of resource demands. In this context, a mono-prediction

model based on only historical consumption is inefficient for a volatile traffic workload. In

this thesis, we propose a new prediction technique for dynamic workload variation. This

technique allows the choice from various prediction techniques, the efficient one to trigger. Our

solution applies a multi-task selector based on a meta-learning strategy MT-MLS. The MT-MLS

introduces a new concept by analyzing similarities of resource consumption between various

VNFs of an SFC. Additionally, an attention mechanism is employed to assign a weight to each

Virtual Network Function (VNF) through similarity analysis. The MT-MLS is designed as a

multi-task classifier, concurrently and independently assigning the most suitable predictor for

forecasting multidimensional resource consumption for each Virtual Network Function (VNF)

in a given workload. The best predictor is selected among a set of predictor models supported by

our solution. Among the predictor models supported by our solution, the solution comprises an

efficient Graph Neural Network (GNN) Model that uses SFC topological features demonstrating

its performance under high-load traffic. The solution also includes an Long Short Term Memory

(LSTM) model, a Convolutional Neural Network (CNN) model, and a hybrid model. These

base predictors are used to generate metadata to train the MT-MLS. The performances of each

model were compared with MT-MLS performances. The analysis of the various experimental

results shows clearly that the proposed solution outperforms the other models.

Keywords: Virtualized network function, deep learning, VNF dependencies, service function

chain, cloud computing, multitask classification, meta-learning, VNF similarity, GNN





TABLE OF CONTENTS

Page

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

0.1 Context and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

0.2 Problematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

0.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 1 STATE OF THE ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Resource prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Classical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 DL based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Input correlation and entities’ interdependencies, and multipredictor-based

forcasting techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 Prediction using input feature correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.2 Entities’ interdependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.3 Multipredictor-based forcasting techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Motivation and positioning of our research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

CHAPTER 2 A GRAPHICAL DEEP LEARNING TECHNIQUE-BASED VNF

DEPENDENCIES FOR MULTI-RESOURCE REQUIREMENTS

PREDICTION IN VIRTUALIZED ENVIRONMENTS . . . . . . . . . . . . . . . . . . . . 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Proposed graphical neural network for resource consumption pre-

diction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Deep learning techniques for resource consumption prediction . . . . . . . . . . . . 33

2.3 Test experiments and performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Data set description and evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4 Networks structure selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.5 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.5.1 Scenario 1: Global comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.5.2 Scenario 2: Specific comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.5.3 Scenario 3: Sharp workload fluctuation . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.5.4 Scenario 4: Stable consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



XII

CHAPTER 3 AN EFFICIENT ADAPTIVE META LEARNING MODEL

BASED VNFS AFFINITY FOR RESOURCE PREDICTION

OPTIMIZATION IN VIRTUALIZED NETWORKS . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Problem analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 multitask Meta learner selector MT-MLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2.1 Shared Self attention mechanism based VNFs similarity . . . . . . 56

3.2.2.2 Multi-branch classification and model training . . . . . . . . . . . . . . . . . . 57

3.2.3 Base learner techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Data set description and evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Base learners setting and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.3 Adaptive Selection evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

APPENDIX I EVALUATION METRICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



LIST OF TABLES

Page

Table 2.1 MAE for CNN with different configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 2.2 MAE for LSTM NN with different configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 2.3 Hybrid LSTM-MLP hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 2.4 Common parameters for the models training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 2.5 Training time, training CPU and memory consumption recorded by

the five models for the IMS dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 2.6 Reported errors by each model for different scenarios using IMS and

Web datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 3.1 IMS and WEB VNFs description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 3.2 Common Hyperparameters setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 3.3 CNN architecture and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 3.4 LSTM architecture and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 3.5 Hybrid LSTM-MLP hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 3.6 Reported errors by each model for different scenarios using IMS and

Web datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 3.7 Meta learner selection evaluation: average scores on the five classes

and total resource consumption on the whole test set by the LSTM-

selector with and without attention mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 3.8 Meta learner selection evaluation: reported classification metrics on

each class resulted by the LSTM-selector with attention mechanism . . . . . . . . 68

Table 3.9 Comparison between the five resource consumption forecasting

models: Average errors reported on resource consumption prediction

using the fourth models on the selector test set, and average errors

computed on prediction of each observation by the selected algorithm

(heterogeneous prediction algorithms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69





LIST OF FIGURES

Page

Figure 0.1 Short caption for the list of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 0.2 Short caption for the list of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.1 Overall model scheme of our GNN-based resource consumption

prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.2 VNF features and state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.3 Example of state computation process of VNF ’S3’ at time=t+1 . . . . . . . . . . . 31

Figure 2.4 Iterative scheme of SFC states prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.5 Output computation for VNF1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.6 CNN resource forecasting model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 2.7 LSTM NN model architecture for multidimensional resource

consumption prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.8 Hybrid LSTM MLP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 2.9 Comparison between the predicted CPU rate and the real CPU

consumed rate of two VNFs for the LSTM model on 100 observations

selected randomly from the test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 2.10 MAE errors on 50 consecutive test observations for VNF9 and

VNF10 using the CNN and the GNN models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 2.11 Performance evaluation scores on the test set for MLP, LSTM, hybrid

MLP-LSTM, CNN and the GNN models. (a) scenario 1 : IMS

dataset, (b) scenario 1: Web dataset, (c): scenario 3 case of big

fluctuation on the IMS dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 2.12 MAE error values of the five models depending on the different

scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.1 Fluctuation of one hour CPU consumption by a single online service

(a VNF) over intervals of three minutes in two different period of

time, H1 and H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



XVI

Figure 3.2 MAE errors of four different deep learning models predictors

computed on 33 minutes CPU consumption with a sampling rate of

20 seconds of the same VNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 3.3 Overall scheme of the proposed architecture: the historical

consumption is continuously monitored. After a pre-processing step,

the processed data is fed to each base learner to be trained. Then

the model measures the accuracy of each predictor and analyzes

the correlation between the VNFs consumption and use them in the

MT-MLS training. In the online process (red color) the request is

presented directly to the MT-MLS that selects the best base learner

to trigger in order to compute the future resource consumption . . . . . . . . . . . . . 54

Figure 3.4 Intern architecture of the MT-MLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.5 SFC deployment in cloud setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 3.6 Comparison of MAE recorded by the four models on consecutive

sliding windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 3.7 Confusion matrix on the four classes resulted from the selector based

self attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



INTRODUCTION

0.1 Context and challenges

Recently, there has been significant progress in the field of communication and information

technologies because of the adoption of various concepts such as cloud computing and Network

Function Virtualization (NFV). The cloud computing principle consists of delivering on-

demand virtualized resources (e.g. storage, computing, networking) using the principle of

pay-as-you-use. NFV aims to separate network functions from hardware platforms using

virtualization technologies, this will alleviate the disadvantages of legacy network architectures

since hardware equipment will be shared by multiple applications. This has allowed many

industries and enterprises to migrate their services to a cloud computing environment. This

migration allows cloud providers to instantiate virtual environments (e.g., Virtual Machines,

Containers) on shared hardware equipment. Indeed, cloud providers may increase or decrease

the resources allocated to a service by scaling down or up the resources to optimize resource

consumption, allow innovative service offerings, and provide a Pay-As-You-Go model while

avoiding overprovisioning or underprovisioning of resources. Indeed, the applications are

deployed in more scalable environments, which offer great flexibility in managing services and

resources. The multiple advantages of NFV such as resource consumption optimization, the

ease of VNF (Virtual Network Function) upgrades, more affordable software and hardware

maintenance and costs to name a few have made this concept attractive to many service providers

(SP). However, guaranteeing these advantages requires efficient mechanisms for optimal and

automatic resource management. The optimal management of shared resources is one of the

major challenges facing the adoption of NFV and is emphasized with the significant growth

of cloud-based applications that lead to increasing demand for computing power and storage.

Moreover, in such shared and dynamic environments, it is necessary efficiently and automatically
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manage resource consumption while meeting the performance requirements (specified in the

Service Level Agreement (SLA)) of the hosted applications.

Indeed, an underestimation of the capacity of the allocated resources could lead to a degradation

of service and a violation of the SLA, while an overestimation could lead to wastage of

resources and an increase of the operational cost of cloud infrastructures. Therefore, the

resource management mechanisms must effectively and efficiently estimate the needed resources

according to the resource consumption variations of the hosted applications while meeting their

performance requirements.

One of the proposed solutions is to predict the future applications’ workloads to estimate the

future consumptions of resources for VNF of an SFC Bansal & Kumar (2023). This will

allow a resource manager to optimize the resource usage, to reduce costs (e.g., operational

and energy costs). Deep learning models (DL) can help in forecasting future usage since they

have demonstrated their efficiency in many prediction problems Morid et al. (2023). Therefore,

training a DL-based prediction model on historical data of resource consumption can be a

promising solution to predict the future application workload, which will enable optimal planning

of shared resource usage.

0.2 Problematic

Cloud providers claim to provide on-demand service access while respecting the Service Level

Agreement. They provide the needed resources to VNF to guarantee the QoS. The common

practice is to use scaling methods in order to meet the performance requirements of applications,

without anticipating their resource needs. However, the resource consumption is very dynamic.

Thus, developing a proactive scaling solution based on future resource consumption prediction

enables minimizing the costs resulting from an underestimation or an overestimation of resource

consumption. Adopting such prediction techniques is a challenging task since the cloud platforms
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host different applications with various workloads and different resource needs (e.g., computing,

networking, storage). This complicates the use of a DL model that should remain efficient

when the resource consumption change and fluctuate to ensure the quality of services offered to

users. Indeed, most DL-based resource prediction methods Saxena et al. (2023) suffer from

considerable performance degradation in the presence of suden and unusual changes in traffic

load. Moreover, DL models are often highly sensitive to the data nature. Also, network entities

(such as VNFs) may consume multiple resources that need to be predicted at the same time.

Knowing that those entities may be very different in terms of resource consumption behavior,

training a DL model that should predict the consumption of multiple resources is a big challenge

that may threaten the model’s performance.

Therefore, in this thesis, we intend to study the following research question: How to model DL

techniques that enable efficient prediction of consumption of multiple resources under variable

workloads?

0.2.1 Objectives

The global objective of this thesis is to propose a new proactive and adaptive mechanism that

allows to efficiently predict the resources provided in virtualized environments depending on the

current resource consumption. We divided our global objective into four main objectives:

• Obj1: Developing a multi-attribute model for resource utilization prediction based on VNFs

dependencies using deep learning techniques.

• Obj2: Analyzing and comparing multiple Artificial Neural Networks (ANNs) in terms of

prediction efficiency.

• Obj3: Developing a technique that studies the similarity between different VNFs of the SFC,

to capture consumption similarities between the VNFs. The similarity analysis will be used

to guide the resource consumption prediction of the VNFs.
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• Obj4: Developing an automatic selection approach that enables to select the most suitable

DL model based on VNFs similarity analysis and conduct a comparative study with existing

prediction models. The selection approach allows to enhance the prediction mechanism

accuracy.

Upon completion of the objectives, this project will offers a resource consumption prediction

mechanism that could be part of the Network Functions Virtualization Management and Network

Orchestration (NFV MANO). This infrastructure was developed by a working group with the same

name within the specification group for NFV (ISG NFV) from the European Telecommunications

Standards Institute (ETSI). It is dedicated to the orchestration an the management of shared

resources in a virtualized data center. NVF MANO contains three functional blocks: the VNF

manager, the NFV Orchestrator (NFVO), and the virtualized infrastructure manager (VIM).

Our mechanism can be integrated in the VIM component. It will allow the VIM to predict

different types of resource consumption of a set of network functions. Our objective is to design

a mechanism that can be integrated into the VIM to predict future resource consumption (e.g.,

CPU, memory) for various number of network entities (e.g., VNFs).

0.3 Methodology

In this thesis, we assume that the service function chains are deployed and historical resource

consumptions of each VNF are recorded. To achieve our objective, we first establish the problem

statement and hypothesis. Our hypothesis is to use resource consumptions of SFCs deployed

in close to real-world deployment environments (non-synthetic data). In this project, we use

datasets of resource consumptions of SFCs that have been deployed in testbed using two types

of virtualized environments (Kubernetes in openstack and Bare-metal virtualized environment)

using ÉTS facilities. The test environment and scenarios are described in Chapter 3. Several
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test experiments were carried out while considering different traffic loads, to collect various

metrics (e.g., CPU, memory).

Figure 0.1 shows the proposed methodology. After a detailed study of the current state of the art

in resource prediction methods in virtualized environments, we have stated our research problem

and defined our objectives. Based on the state-of-the-art study, we found that LSTM-based

models are best suited to prediction problems using time-series data that represents a set of

data samples taken at successive equally spaced points in time, in our work, the samples are

the resource consumption rates (CPU consumption, Memory consumption, and bandwidth

consumption). Further, CNN networks are well known for their performance extraction of

relevant features. Therefore, our starting point was the development of a Convolutional Neural

Network (CNN) and Long Short Term Memory (LSTM) based models for resource consumption

prediction. We established, tuned, and modified the architectures of our models iteratively

to maximize their performance (e.g., minimize the Mean Square Error) and defined four DL

models. In order to enhance the prediction accuracy of the DL architectures, we consider

the dependencies between VNFs of an SFC. Thus, we developed a GNN model that involves

neighboring dependencies in the learning process. A thorough analysis of the model results

enabled us to reveal the pros and cons of each model and to develop a mechanism that takes

advantage of each of them. This work represents our first contribution described in our first

accepted paper. We devoted the rest of our work to the development and validation of a selection

mechanism, which aims to select the best model among a set of predictors based on the received

workload. This work has been published in our second paper. We started by formulating the

problem as a multi-task learning problem to select the most suitable learning model for a given

workload and each VNF of an SFC. To accomplish that, we used the models developed in the

first part of this thesis as a part of the meta-learning strategy. To develop our MT-MLS model

that selects the best suitable forecasting model to trigger based on the current received workload

we followed the following process; 1) we succinctly conducted a state-of-the-art study followed
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by a problem formulation; 2) a prediction mechanism was defined; 3) the mechanism has been

validated and compared with various baseline resource forecasting models.

To summarize, we present in figure 0.2 the five main steps through which we cover the third and

the fourth objectives.

• Step 1: Develop a VNFs neighboring dependencies based forecasting process

In the third objective, we intended to enhance the efficiency of the prediction mechanism by

including new features of the SFC in the learning process. Instead of using only historical

consumption, we proposed to use the VNFs neighboring dependencies. Therefore, we

developed a graphical neural network for resource consumption prediction that exploits

architectural features of an SFC, to identify resource consumption dependencies between

neighboring VNFs and consider them in the resource forecasting computation.

• Step 2: Develop DL prediction models

Since deep learning-based techniques are well known for their adaptation ability to data

fluctuations, we developed four DL-based models for resource consumption prediction. We

tested and analyzed each model, and we iteratively enhanced its performances by testing

different preprocessing techniques and testing different model architectures.

• Step 3: Deep models analysis

In this stage, we intend to analyze deeply the proposed models to understand their limitations.

Thus, we defined multiple workload scenarios, and assessed the efficiency, reliability, and

cost (memory and CPU consumption) of each model. Then, we performed an extensive

test experiment on each workload scenario. We compare the five DL models in terms of

accuracy and in terms of resource and time consumption. The comparison study reveals

the weaknesses of each model for some test scenarios. We noticed that the performances

of a predictor may degrade significantly for dynamic workloads. We determined that a

universal solution is not applicable, as the effectiveness of a DL model is contingent upon

the characteristics of the training data. To alleviate this limitation, we propose an adaptive



7

prediction mechanism that enables a reliable estimate of future resource demands. Therefore,

in the third part of this thesis, we intended to answer the following research problem, which

DL model should be used to guarantee accurate prediction of resource consumption under

specific variable workloads? To answer this question, we added to the research methodology

the two following steps.

• Step 4: VNFS similarity analysis

In this stage, we intended to capture consumption similarities between the different VNFs

of an SFC and let the network focus on various consumption profiles. To achieve that, we

defined a module that computes the similarity between historical consumption of multiple

resources of two different VNFs using statistical methods.

• Step 5: Prediction mechanism

In this final stage of our strategy, we leveraged the strategies proposed in previous stages of

our research work to develop an efficient resource prediction mechanism named MT-MLS,

which is an adaptive prediction mechanism based on a meta-learning technique. It uses VNF

similarity and DL model selection mechanism to provide efficient forecasting of resource

consumption.

0.4 Contribution

Our main contributions are summarized in the following:

• An efficient GNN Model that uses SFC topological features to meet the application perfor-

mance requirements in high load traffic comparing to the last past consumption.

• A deep analysis of five DL models for resource prediction.

• Resource consumption similarity analysis module for VNFs to enhance resource consumption

prediction.

• A mechanism that provides efficient and adaptive resource prediction for VNFs without

relying on any pre-existing knowledge. The proposed mechanism can be enhanced by
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integrating other types of resource prediction methods such as resource prediction based

ARIMA model Calheiros et al. (2014), Khandelwal et al. (2015).

These contributions have been published in two journals:

1- Bellili, Asma et Kara, Nadjia. 2023. «An efficient adaptive meta-learning model based VNFs

affinity for resource prediction optimization in virtualized networks». Journal of Network and

Systems Management, vol. 31, nº 2, March 2023.

2- Bellili, Asma et Kara, Nadjia. 2023. «A graphical deep learning technique-based VNF

dependencies for multi-resource requirements prediction in virtualized environments». Journal

of computing, October 2023.

This thesis is organized as follows: Chapter 1 presents a review of recent related works. Chapter

2 is a part of material published in our first paper Bellili & Kara (2024), the chapter describes

the proposed GNN-based VNFs neighboring structure. Chapter 3 presents our Prediction

mechanism which is based on our second published work in Bellili & Kara (2023), while Chapter

4 concludes the thesis and highlights future opportunities that this research work opened up.
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Figure 0.1 Research methodology: development of models

for resource consumption prediction using VNF dependencies

based on
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Figure 0.2 Research steps for the development of MT-MLS

prediction mechanism based meta learning



CHAPTER 1

STATE OF THE ART

In this chapter, we conduct a literature review of resource requirement prediction in cloud

computing. This chapter is structured into three sections. The first section presents a review of

resource prediction techniques related to our contributions presented in chapter 3 and classified

into classical methods and deep learning based methods. The second section includes a review

of three main aspects related to our contributions presented in chapeter 4, manely resource

prediction techniques, entities (e.g., VNF) interdepencies and multipredictors-based forcasting

techniques. Finally, the fifth section situates our work within the current state-of-the-art and

explain the motivation behind the contributions of this thesis.

1.1 Resource prediction

Network Function Virtualization (NFV) has garnered considerable attention from both researchers

and the industry in recent years, with a particular focus on resource optimization and cost

reduction. This heightened interest has spurred researchers to delve into resource management,

specifically emphasizing resource consumption prediction.

Resource consumption forecasting relies on time series analysis, where historical data is analyzed

and leveraged to estimate the expected utilization trends of resources. It consists of estimating

the amount of a given or a set of given resources for a VNF Sangani et al. (2024), Jmila et al.

(2017), Mijumbi et al. (2014a).

Moreover, it helps to identify patterns in resource consumption.Accurately predicting resource

consumption enables us to dynamically adjust resources in response to workload variations.

However, the prediction in a multidimensional context where multiple types of resource usage

are forecasted at the same time poses a significant challenge, particularly when predicting

multiple resources simultaneously using the same predictor. Indeed, the resources consumed

by VNs are different (e.g., various amounts of CPU, and memory consumption) and may vary

over time (dynamic resource consumption) A Vouk (2008). Many surveys Weingärtner et al.
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(2015), Masdari & Khoshnevis (2019), Anuradha & Sumathi (2014) compare and classify those

methods.

In this section we propose to review the most recent works on resource requirement prediction

in virtualized networks. we classified the methods into two main categories: classical methods

(e.g., ARIMA, Markov Decision Process) and deep learning techniques.

1.1.1 Classical methods

The majority of classical methods consist of statistical approaches such as ARIMA models

Sekwatlakwatla & Malele (2024), Calheiros et al. (2014) and Markov decision process (MDP)

Shi et al. (2015).

ARIMA models have been used in many prediction problems such as in predicting glucose

and cholesterol levels of a patient Krishnamoorthy et al. (2024), and in aviation failure events

prediction Zeng et al. (2024). Many works was also proposed for workload and resource

consumption prediction in virtualized networks. In Bi et al. (2024) authors used ARIMA model

to forecast workload, after a smoothing step of the time series data using a Savitzky–Golay SG

filter, the data is divided into multiple components using wavelet decomposition and passed

to an ARIMA model to forecast the workload future trends. Calheiros et al. Calheiros et al.

(2014) proposed an ARIMA model to predict workload in public clouds characterized by high

fluctuations.

Markov decision process was also widely used to forecast the future use of resource Shi et al.

(2015) Gong et al. (2010)Nguyen et al. (2013). In these models, resource consumption is

segmented into discrete bins of fixed size, and the prediction of future resource utilization is

made by estimating the most probable future state.

Other classical methods rely on meta-heuristic algorithms. For instance, Fan-Hsun et al.

proposed a genetic algorithm to predict the CPU and the memory utilization of a VM in a data

center for VM placement Tseng et al. (2017). Many others proposed methods used heuristic
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algorithms to tune parameters of a machine learning based prediction model such as in Simaiya

et al. (2024), authors proposed a hybrid method, in which they propose to use deep learning,

Particle Swarm Intelligence and Genetic Algorithm (“DPSO-GA”) for workload provisioning.

In the first stage, authors employed a hybrid PSO-GA method to fine-tune the hyper-parameters

of the DL prediction model, then the prediction model which is a hybrid CNN-LSTM NN is

trained to forecast the resource consumption. Also, authors in Jeddi & Sharifian (2019) used two

heuristic algorithms: the Water Cycle Algorithm and the Artificial Immune System to optimize

parameters of a wavelet neural network (bias and weight) designed to predict future workload

demand.

In Jmila et al. (2017), the authors employed the support vector regression (SVR) technique

to forecast the CPU utilization of a Virtual Network Function (VNF). The SVR was trained

using a set of input data consisting of a parameter vector describing the input traffic and CPU

consumption. Also, in Nehra & Nagaraju (2022) authors proposed a Support Vector Regression

(SVR) approach designed to forecast the future demand of a host by analyzing the historical

utilization of multiple resources. Authors proposed a hybrid kernel function combining the

radial basis function (RBF) and the polynomial kernel function (PKF). This hybrid kernel is

then employed to train the SVR model using the historical utilization data of multiple resources.

In Hsieh et al. (2020), the authors presented an approach to the consolidation of virtual machines

(VM) to reduce energy consumption while maintaining the QoS. To achieve these goals, they

considered the use of current and future resources. Future resource consumption is determined

through the Gray-Markov prediction model. The results of their experiment showed a decrease

in the number of virtual machine migrations and a reduction in energy consumption.

In Chen & Wang (2020), the authors proposed to deal with the problem of resource consumption

prediction in a cloud computing environment by applying an adaptive short-term prediction

algorithm based on the ARIMA model. This algorithm primarily uses the principal component

analysis (PCA) method and the detection of extreme values to pre-process the data. Subsequently,

the prediction method that gives the best precision is selected among those proposed to anticipate
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the demand for resources. The authors also considered adjustment techniques for error prediction.

The proposed approach outperforms other existing solutions such as ARIMA and the neural

network of backpropagation (Back Propagation Neural Network: BPNN) in terms of prediction

accuracy.

Several approaches for resource consumption prediction (e.g. CPU usage, memory consumption)

are proposed in the literature. They are based on models such as: Kalman filterHu et al. (2013),

the Kriging method Gambi (2012) and the autoregressive moving average models (ARMA)

Iqbal & John (2012) Hoong et al. (2012). The results of these approaches are promising,

but they remain relative to the contexts of their evaluation and cannot be generalized. These

approaches do not include a prediction adjustment and therefore don’t perform in the presence

of fluctuations and sharp variations in the workloads.

1.1.2 DL based methods

Resource demand prediction in dynamic and virtualized environments such as cloud computing

is very challenging. In such a complex and dynamic context, the approaches based on classical

methods such as ARIMA models Chen & Wang (2020) are insufficient face to the traffic variation.

Thus, in recent studies, researchers have proposed to predict resource demand through deep

learning methods.

In Dubba et al. (2024) authors studied the impact of the use of machine learning based prediction

model on resource allocation. Thus they designe several predition models based on : Adaptive

Boosting algorithm, bagging, extremely randomized trees, histogram based gradient boosting,

lightGBM, bayesian network, lasso and Poisson regression models to forecast the future workload,

then used the prediction results in the resource allocation test simulation.

In Taha et al. (2024) authors introduces a real-time proactive auto-scaler system designed to

optimize resource allocation for Virtual Network Functions (VNFs) within a Service Function
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Chain (SFC) in a cloud platform. The proposed system relies on a a hybrid MLP-LSTM model

to predict the CPU and the memory future utilization.

In Zhang et al. (2018a), the authors proposed a deep learning model for predicting the CPU

utilization of a virtual machine (VM). The model is constructed using a stacked autoencoder that

employs the canonical polyatomic decomposition to decrease the training process’s execution

time.

In Luet al. (2016) The authors introduce a workload prediction model, termed RVLBPNN

(Random Variable Learning Rate Backpropagation Neural Network), designed for energy-

efficient Cloud Computing. The proposed model is built upon the Backpropagation Neural

Network (BPNN) algorithm.,The authors conducted experiments to evaluate the prediction

accuracy and demonstrate that their RVLBPNN improves the prediction accuracy compared to

the Naïve Bayes Classifier model and the Hiden Markov Model (HMM). The main drawback of

the RVLBPNN is that the network traffic variation affects seriously the RVLBPNN performances.

Long Short Term Memory based methods

LSTM NN is also widely used in resource utilization prediction,

In Yuan et al. (2024) authors proposed a model named VSGB that combines LSTM NN, Grid

LSTM, Variational mode decomposition and Savitzky Golay to forecast resource consumption

in cloud environments. In Jeong et al. (2023) authors introduced a Proactive Hybrid Pod

Autoscaling model (ProHPA), the model is based on a bidirectional long short-term memory (Bi-

LSTM) model developed with an attention mechanism to predict CPU and memory consumption.

Imdoukh et al. (2020) proposed an auto-scaler architecture based on a prediction model,

the model is designed as an LSTM NN to forecast future CPU and memory demands. In

Yazdanian & Sharifian (2021) Authors proposed a generator adversial network (GAN) model

to forecast the future cloud workload, the proposed GAN is based on LSTM NN used as a

generator. The input data are first decomposed into small components using Empirical mode

decomposition EMD techniques, then fed to the LSTM NN to forecast each future component,
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then the components are combined in the GAN discriminator designed as a 1D Convolutional

neural network.

Zhang et al. (2020) have introduced an LSTM-based model for an end-to-end online prediction

of network traffic. In Ouhame et al. (2021), the authors utilized the Long Short-Term Memory

(LSTM) model combined with Convolutional Neural Network (CNN) to forecast the future

consumption of CPU, memory, and network usage. In Song et al. (2018) authors proposed

a deep learning model based on the LSTM to predict high-dimensional data of future virtual

network function service chain VNF-SC requests Li et al. (2018).

In Gupta & Dinesh (2017), the authors proposed to use BLSTM NN, a variant of the LSTM

NN that learns by analyzing both backward and forward dependencies in the time series. In Bi

et al. (2021) authors expanded the BLSTM NN into a model called BG-LSTM by incorporating

the GridLSTM proposed by Kalchbrenner et al. (2015) to forecast the workload and resource

consumption. In Ouhame et al. (2021) the authors proposed to use LSTM NN coupled to a

convolutional neural network, to predict the future consumption of the CPU, the memory, and

the network usage. In Zhu et al. (2019), the proposed an LSTM network with an attention

mechanism for workload prediction. Several similar research works exist that propose machine

learning-based resource consumption prediction methods, but to the best of our knowledge, none

of them achieve good accuracy in a dynamic and multidimensional environment (e.g. memory,

CPU, bandwidth). Indeed, machine learning-based methods are recognized for their sensitivity

to data, and their performance can be influenced by the size and variability of the training

data Qiu et al. (2016) Mijumbi et al. (2014a); Jmila et al. (2017). Furthermore, we observe

a noticeable difference in terms of performance and accuracy achieved by various ML-based

prediction techniques due to the interdependencies between VNFs of an SFC (workload and

consumed resources).
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Graphical neural network based methods

Graphical neural networks (GNN) Scarselli et al. (2008) are recognized for their suitability in

communication network problems. Their big learning ability to capture the spatial information

of the network topology, and for their generalization capacity they makes them very useful in

networking, where the topologies are dynamic, so the architecture is subject to change. GNNs

have been largely used in virtualized networks, specifically in SFC placement Xiao et al. (2019)

VNF placement Wang et al. (2021) and VNF management Kim et al. (2020) problems. Some

works have also been proposed for VNF resource prediction using GNNs. In Li et al. (2024)

authors proposed the Evolution Graph for Workload Prediction model (EvoGWP), this model is a

graph-based evolution learning algorithm designed to forecast long term workload changes. In a

first stage, authors proposed to extract shapelets to identify resource usage patterns of workloads,

then the shaplets are fed to a a spatio-temporal GNN-based encoder-decoder to forecast future

workload.

Jalodia et al. (2019) Mijumbi et al. (2016a) Mijumbi et al. (2017) Moradi et al. (2022), where

the authors used the theory of GNN to exploit relationships between the different components of

the SFC. In Mijumbi et al. (2017) and Mijumbi et al. (2016a), authors do not take into account

the execution time of the model. But in such environments, the flow may be very volatile

(sudden changes in traffic load). Thus, the VNF’s resource consumption can change drastically.

Therefore, a single-trained model might be inefficient in such a dynamic environment. To

address this issue, the training is triggered each time there is a need to enhance the prediction

accuracy using the latest available traffic data. Therefore, the training time of a prediction model

is important to react fast to changes in traffic load.

1.2 Input correlation and entities’ interdependencies, and multipredictor-based
forcasting techniques

This section describes the e most recent works related to our contributions presented in

chapter 4, including Prediction using input feature correlation, works analysiing the entities’

interdependencies and works based on algorithm selection.
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1.2.1 Prediction using input feature correlation

Some of the recent work has involved correlation coefficient (Pearson correlation, Spearman

and Kendall correlation) Gulhane et al. (2023), Xu et al. (2023). The coefficient of correlation

is applied to the input training features. Thus, the feature that does not improve the prediction

accuracy is not taken into consideration in the learning process, such as in Antwi et al. (2021)

authors applied this concept to determine the commodity of future price. Zhang et al. (2018b)

applied a similar concept to predict the operation status of industrial IoT equipment by analyzing

the equipment time series data, they used correlation coefficients to select the most correlated

input features that are similar to the observed features in the training process of the proposed

LSTM model.

In Singh et al. (2024) authors proposed a feature extraction and Clustering methods for CPU

future consumption prediction. In the first step authors extract relevant features from the input

dataset (CPU consumption of multiple machines), these features are then used in a clustering

analysis to group machines with similar behavior together in order to identify similarities among

machine’s consumption. In the second step, authors developed a generalized version of N-Beats

for CPU usage forecasting based on the consumption similarity clusters.

1.2.2 Entities’ interdependencies

Numerous studies have showcased the effectiveness of incorporating dependencies between

entities during the learning process. such as in Feng et al. (2018), the authors consider spatial

dependencies between entities to predict network traffic. In Wang et al. (2017), authors proposed

to apply an auto-encoder to capture both global and local spatial traffic dependencies among

neighboring cell towers. Nevertheless, the proposed auto-encoder is limited to the neighboring

spatial dependencies by predesigned neighboring areas.

In Dogani et al. (2023) authors proposed a hybrid model for workload prediction, the proposed

model comprises a statistical analysis of the relationship between the structure of the training

data, the different variables and the CPU consumption rate to identify a correlation between
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the variables. This analysis is done through a CNN network that extracts features vectors from

the input data, then a Gated recurrent units(GRU) with the attention mechanism is proposed to

extracts the temporal correlation features.

1.2.3 Multipredictor-based forcasting techniques

Some state-of-the-art research works have proposed to use multiple predictors to forecast future

consumption of resources such as in Sekwatlakwatla & Malele (2024), authors proposed to used

Autoregressive Integrated Moving Average (ARIMA), Monte Carlo, Extreme gradient boosting

regression (XGBoost) to forecast traffic flow.

Authors in Kim et al. (2018) use four models : Linear Regression, ARIMA, SVM, and ARMA

to forecast the future workload of data centers. The authors use a regression model to determine

the coefficient of each prediction model. Using the same principle, Rahmanian et al. (2018)

proposed to forecast the CPU utilization of Virtual Machines using automata theory allowing

to determine the weight of each predictor. However, those hybrid methods use all predictors

together to compute the model output of the query workload, which makes them hybrid methods

and does not select a predictor depending on the current workload profile.

In Wu et al. (2013), authors proposed a feedback control algorithm. The algorithm calculates

different resource advantages and cost combinations. The authors proposed to quantify the cost

considering two costs of the infrastructure the transition. The infrastructure cost denotes the

expense incurred by tenants for renting Virtual Machine resources to host their applications,

and the transition cost is evaluated based on the SLA violations during reconfiguration and the

duration of reconfiguration. The total cost is then obtained by the summation of the transition

and the infrastructure costs. The authors defined the resource advantage as the satisfaction

derived for the application remaining in the new configuration while the SLA is respected. Once

the advantages and the cost of each combination are evaluated, the algorithm selects the best

combination for the highest profit and lowest cost.
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In Herbst et al. (2017), authors proposed load prediction using artificial neural network,a decision

tree, ARIMA model, support vector machine, and Bayesian network for proactive workload

prediction. The proposed approach enhances the workload prediction accuracy, however, it is

time-consuming. In Markham & Rakes (1998), authors proposed two steps methodology of

the ARIMA residual hybrid system. The first step relies on an ARIMA model, to analyze the

linear part of the time data. The second step consists of developing an NN model, to model

the residuals from the ARIMA model (non-linear component of the time series). The authors

motivate their methodology by the fact that the ARIMA model does not capture the nonlinear

structure of the time series data, while the residuals of the linear model will contain information

about non-linearity. The NN is used to predict the error for the ARIMA model.

In Khandelwal et al. (2015), authors applied a two-step methodology using discrete wavelet

transform (DWT). The two-stage methodology consists on a decomposition stage and a

reconstruction stage. The decomposition stage consists of decomposing the series into filters

that identify the highest and the lowest frequency components of the series using DWT. The

reconstruction stage consists of reconstructing the low-frequency and the high-frequency

components through IDWT (Inverse DWT ) Al Wadia & Ismail (2011). After the decomposition-

construction stages, the authors applied an ARIMA on the reconstructed high-frequency

component, and an ANN on the applied to the corresponding residual along with the low-

frequency part. In the end, the combined predictions are derived by summing up the predictions

from the two components.

Chen & Wang (2020) proposed an adaptive selection technique that selects one model, either

the EEMD-RT-ARIMA, or the EEMD-RT-ARIMA prediction method. The selection process

chooses the method having the lowest MAPE value computed on the last observations used for

the prediction.

In Zharikov et al. (2020), the authors proposed an adaptive workload forecasting approach in

cloud data centers by combining several methods, including ARIMA, Linear Regression (LR),

Exponential Smoothing (SES), and a set of training data window sizes. This method enhances
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prediction accuracy, but it has a high computational cost. Additionally, it is closely tied to

linear time series models and cannot be extended to non-linear time series models, limiting its

applicability to nonlinear time series datasets.

In Alidoost Alanagh et al. (2023) authors proposed an architecture for workload prediction.

In the first stage, the workload is classified into different cluster using a classifier trained on

sequential statistical characteristics extracted from user’s workload. Then, an adaptive model

has been developed to select the most suitable algorithm for workload prediction. This model

evaluates the statistical characteristics of the workload to choose the best prediction algorithm

among from Linear Regression (LR), Support Vector Machine (SVM), and AutoRegressive

Integrated Moving Average (ARIMA) to predict the workload.

In contrast to our model, our approach is independent of the base predictor models and can be

applied to various sets of predictors that can output consumption predictions of a set of VNFs.

1.3 Motivation and positioning of our research

The proposed approach in this thesis distinguishes itself from the other state oft the art approaches

in many aspects, we can mention a few in the following items:

• VNF dependencies:

Most of the state-of-the-art methods for resource prediction rely only on historical observations

of a network entity, St-Onge et al. (2023) Taha et al. (2024) which limits the efficiency of the

models in terms of capturing behavioral consumption changes of the network entities. In this

research work, we propose to include graphical aspects of the SFC that enable capturing

the change of resource consumption by analyzing the topological relationship between the

network entities and involving locale neighborhood features in the learning process of each

VNF’s resource consumption.

• A selection mechanism: The choice of the right method is a challenging task for prediction

mechanisms. This is attributed to the fact that in the real world, a formulation of a dynamic

prediction problem is complex, since a single model may be efficient in predicting resource
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consumption for specific test scenarios (e.g., non-volatile VNFs’ resource consumption) and

not for others (e.g., volatile VNF’s resource consumption). Typically, a selection mechanism

is used to choose one learning model among different ones to achieve the highest prediction

accuracy. However, the selected model at the end may not be necessarily the most suitable

for future uses. This is due to diverse potential influencing factors, such as model uncertainty

and sampling variation. Many empirical studies proved that using several different models

and combining them can often improve the prediction accuracy over an individual model.

Most of the multi-model forecasting methods are hybrid methods that output a forecasting

result by combining multiple prediction models Kim et al. (2018), Rahmanian et al. (2018).

Several models are used at once, and the output forecasting result will correspond to a

combination of those model results. In other words, the predictions are always computed

by the same predictors. Contrary to our work, the most suitable predictor is selected

depending on the current workload feature. To the best of our knowledge, there is no existing

research work proposing a technique that combines multiple ML models to automatically

select the appropriate one while taking into consideration the workload variation and the

interdependencies between VNFs of an SFC.

• VNF consumption similarity: Due to the sparsity and the heterogeneity of VNFs, there

are no existing methods that are specifically designed to process directly the resource

consumption similarity between VNFs. Consequently, incorporating these discrete factors

into the prediction model poses a challenge. In our work, we propose a framework that

processes the resource consumption affinities between the different VNFs of the SFC, and

take into account those affinities in the prediction process.

• Multidimensional forecasting: Most of the existing machine learning-based prediction

methods are univariate methods Farahnakian et al. (2016), Chen & Wang (2020), Tseng et al.

(2018). In a multidimensional resource prediction, using such methods is a time-consuming

and inaccurate learning process, since the learning process must be performed for each

single resource. For instance, in Qiu et al. (2016), the proposed method forecasts only

the CPU consumption, and is only applicable for one VM. Besides, many methods in the

state-of-the-art are highly related to the VNF nature, which limits the generality of the method
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such as in Jmila et al. (2017), where the method reported a significant difference in the

performance of various VNFs. In this research work, we propose a multivariate prediction

model to forecast various resources at a time for different VNFs.

There are still gaps that need to be addressed to enhance the efficieny of resource prediction

mechanisms in NFV environments. Therefore in this thesis, we propose a new multi-predictor-

based resource forcasting mechanism to cope with the dynamicity of the running workloads. We

propose multivariate resource prediction models to forecast CPU, bandwidth and memory needs

of multiple VNFs at once. We studied the similarity between the VNFs resource consumption

and use them in the prediction process. We also proposed a selection mechanism capable of

selecting the most appropriate predictor depending on the current workload.





CHAPTER 2

A GRAPHICAL DEEP LEARNING TECHNIQUE-BASED VNF DEPENDENCIES FOR
MULTI-RESOURCE REQUIREMENTS PREDICTION IN VIRTUALIZED

ENVIRONMENTS

2.1 Introduction

Internet service providers deliver services utilizing various network functions (NFs) to cater to

diverse traffic flows. Previously, these NFs were primarily implemented through specialized

middlebox hardware, which leads to high capital expenses (CAPEX) or operating expenses

(OPEX) Andrikopoulos et al. (2013), especially in case of a new middlebox deployment or

network topology change. Recently, the European Telecommunications Standards Institute

(ETSI) proposed network function virtualization (NFV), which is a network architecture that

enables a software implementation for NFs running on virtual machines (VMs), so that they

evolve independently of the hardware. However, NFVs bring a new issue for the management

of those VNFs, including their placement and the resources allocated for each of them. The

VNF placement was largely studied in many state-of-the-art works Mostafavi et al. (2021),

while dynamic resource management in NFV is still a challenging task. The time taken for

the preparation of a virtual machine is in the order of tens of seconds, even by the best known

virtual infrastructure managers (VIMs). Also, in VNs the traffic augments and decreases which

leads to a critical fluctuation in the resource consumption of each VNF. Thus, the amount of

allocated resources to each VNF cannot rely on threshold-based scaling Salimian et al. (2016)

because of the provisioning delay. Therefore, there is a crucial need for efficient data-driven

mechanisms Amiri & Mohammad-Khanli (2017) Younge et al. (2010). These mechanisms

enable complex systems to anticipate and efficiently react to workload fluctuations. This requires

that the scaling decision must be known in advance. To achieve that, the amount of the future

consumed resources must be accurately predicted. This way, the needed resources will be

already available when the flow reaches the point of need, and released when they will not be

needed. So that, the OPEX and the CAPEX are optimized, and the resource needs are satisfied

while meeting the service level objective (SLO) Patel et al. (2009).
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Several research works have studied resource management da Costa et al. (2022) and prediction in

virtualized environments Masdari & Khoshnevis (2019) Anuradha & Sumathi (2014). However,

most of them focus mainly on the historical consumption of each network entity independently

of the other and do not take into consideration the relation between them. Different from these

studies, we propose in this chapter to integrate the graph dependencies between VNFs of an SFC

in the forecasting process. Also, most studies have analyzed each resource type individually

Farahnakian et al. (2016) Chen & Wang (2020) Tseng et al. (2018). In a multidimensional

resource prediction, those methods must be used for each resource type individually, which

leads to a critical time prediction, since the whole forecasting process must be repeated for

each single resource. Contrary to our GNN model, which forecasts three resource types in one

computational time thanks to its output function architecture (see section 2.2.1). In this work,

we evaluated the cost entailed by our GNN model and analyzed multiple scenarios where our

GNN can outperform others, to identify where our GNN model can be trained considering

the time constraint. Also, to demonstrate the generalization ability of our model, we tested

the architecture on two different real-world data sets, while different works were achieved on

simulated data Mijumbi et al. (2017). Also, to reinforce the prediction process, we proposed an

augmented GNN that uses an augmented VNF feature vector. The augmented features allow

guiding the output function computation by given a signed index of the previous consumption.

In this chapter, we present a graphical deep learning model (GNN) that processes a service

function chain as a graph and exploits the neighboring relationship between the nodes. The

proposed approach models relevant SFC neighboring information. This information allows the

model to identify multidimensional dependencies between the VNFs. Then, compute the future

consumption of a node based on the learned dependencies. The motivation behind using GNN

is that an SFC represents a directed graph with a pairwise relationship between VNFs and an

increase in resource demand for one VNFs may require an increase of resources for its VNF

peer. For instance, an increase in resource demand for a Proxy Call Session Control Function

(PCSCF) in IP Multimedia Subsystem (IMS) may require an increase of resources in a Serving

CSCF node. This, implicitly, generates a dependency between the CPU consumption of both
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VNFs. The dependencies might also be considered between different types of resources (e.g.,

CPU and memory in case of web server and its database). Therefore, the main contributions in

this chapter are:

• A GNN model that captures VNF neighboring dependencies and involves them in the resource

forecasting process.

• A detailed comparison study with LSTM, CNN, MLP and a Hybrid LSTM models in which

extensive experiments were done on two real-world data sets to evaluate the accuracy and the

efficiency of each model for several workload scenarios.

The chapter is organized as follows: Section 2.2 describes the proposed GNN model, as well as

four other classical models used as baseline. Section 2.3 discusses the main obtained results.

The section 2.5 concludes the study.

2.2 Methodology

In this work, we aim to efficiently forecast a set of different resources (such as CPU, memory,

and bandwidth) of a set of network entities (such as a VNF). To accomplish that, we use a deep

learning Neural network to predict the future multidimensional resource utilization of VNFs

constituting a service function chain. We model the topological features of each VNF of the

SFC by a feature vector. This feature vector will be used in the learning phase of a feed forward

neural network (FNN)in order to learn the dependencies between different VNFs in terms of

resource consumption (e.g. CPU, memory). Then, the learned dependencies are used by a

second FNN to compute the future resource utilization. This is done using a graphical neural

network architecture that gathers the two FNNs and preserves the architectural aspect of the

SFC.

In the rest of this section, we present a graphical neural network-based VNF dependencies that

exploits the architectural features of an SFC to compute the future resource utilization. Then

we will present four other models including a convolutional NN, a simple feed forward neural

network, an LSTM NN, and a hybrid model used as the baseline.
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2.2.1 Proposed graphical neural network for resource consumption prediction

Our proposed model exploits dependencies between VNFs of the same SFC in the resource

prediction process. Indeed, an SFC is a set of connected VNFs in which the traffic flow passes

from a VNF to another. This architecture generates a dependency between a VNF and its

neighbours in terms of resource consumption. Thus, we adopt a supervised learning GNN

model, that aims to forecast multidimensional resource consumption of a set of VNFs. The use

of the GNN is motivated by the fact that the node of the graph is processed depending on its

neighbour’s features. Instead of using a prepossessing step that maps the graphical information

to structured data, such as a vector that may result in loos of topological dependencies, such

as consumption relationship between neighbour VNFs of one or many resources. Biemann et

al. Biemann (2016) have studied the difference between a vector and a graph representation

and cited the limitations of vectors compared to graphs, such as semantic neighbourhood and

computational limitations.

We model an SFC as a directed graph 𝐺 = (𝑁, 𝐸), where 𝑁 is the set of nodes and 𝐸 represents

the set of links between nodes. Each node in the graph represents a VNF and a path represents

sequential links between VNFs of an SFC. The GNN consists of determining a state 𝑆𝑛 for each

node 𝑁 , then determines its output 𝑂𝑛 using the state 𝑆𝑛 of the same node. The state and the

output computation are based on the two following parametric functions named transition and

output function, respectively. The transition function expresses the dependence of an 𝑉𝑁𝐹𝑛

on its neighbours, and the output function describes how the predicted resource is computed

depending on the nodes’s states:

𝑆𝑛 =
∑
𝑚∈𝑛∗

𝐻𝑤 (𝐹𝑛, 𝐹𝑚, 𝑆𝑚) (2.1)

𝑂𝑛 = 𝑔𝑤 (𝑆𝑛, 𝐹𝑛) (2.2)
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Where 𝐹𝑚 and 𝑆𝑚 are the features and the state of neighbour 𝑚 respectively. Therefore, our

model includes three principal parts, as shown in figure 2.1. The historical resource consumption

is monitored and recorded, as well as the graph of the SFC. After the reprocessing process,

the data is fed to the modelling process, which constructs the node features vectors, the node

state, and the GNN structure by the graph connectivity. The computed features are given to the

transition function FNN to compute the states of the GNN nodes based on connectivity of an

SFC. These states are used in the output function, which computes future resource utilization.

For each node, the model computes its state and its output. Using the feature of the node and

its neighbour’s features and a state at time 𝑡, the transition function computes the new state at

time 𝑡 + 1. The predicted VNF state is then used in addition to its features to predict the output,

which represents the resource consumption of the given VNF.

Figure 2.1 Overall model scheme of our GNN-based resource consumption prediction

VNF features

Each VNF is described by an augmented vector containing observations of its multidimensional

resource consumption (see figure 2.2), and a consumption evolution index. In our case,

we consider three dimensions: CPU utilization, consumed bandwidth and memory. The

consumption index is computed using Euclidean distance based on vote majority strategy

between the two VNF consumption vectors of the actual iteration and the previous one. i.e. we
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compute the Euclidean distance between the normalized [CPU, Memory, Bandwidth] vector

at time t and the normalized [CPU, Memory, Bandwidth] vector of the same VNF at time t+1.

Then, the resulted distance is signed based on a majority vote, in which we count how many

resources has increased their consumption, and how many has decreased. Then, we return

the class (increasing/decreasing) with the most votes. If the most class returned is increasing,

we encode the resulted distance as a positive feature value, else we encoded it as a negative

feature value as a consumption evolution index. We can give an example of a VNF at two

consecutive observations, with vectors’ consumption equal to [0.225,0.521,-0.237] at a given

observation and [0.325,0.746,-0.297]for the next observation. Thus, by computing the Euclidean

distance between the two vectors, we obtain a value of 0.246. Then we attribute a positive

sign corresponding to the augmentation of the CPU and the memory consumption. Thus, the

augmented vector feature will be equal to [0.325,0.746,-0.297,+0.246]. The objective is to train

a GNN on historical data of VNF resource consumption while reinforcing the learning by an

augmented vector feature, which is used as input data for both transition and output functions.

Figure 2.2 VNF features and state

State forecasting

The state is computed using eq. 2.1. In Scarselli et al. (2009) the authors demonstrated that

the existence and the uniqueness of a solution to eq. 2.1 is guaranteed by Banach fixed-point
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theorem. This requires that the global function 𝐻𝑤 is a contraction map. If this constraint is

satisfied, the state computation is done using an iterative model that stores the current state at

time 𝑡, and computes the next state at time 𝑡 + 1 when needed. In this work, we propose to use

the GNN model cited in Scarselli et al. (2009) that models the transition function by a FNN

Ramchoun et al. (2016) (see figure 2.3) which allows the convergence to a fixed point.

Figure 2.3 Example of state computation process of VNF ’S3’ at time=t+1

The iterative state computation consists of passing the precedent states of the node 𝑛 and its

neighbor’s states already computed by the transition function, as well as the observed features in

the previous iteration. Then, the next state is predicted by the trained FNN. Figure 2.4 illustrates

the state forecasting for an SFC composed of 𝑛 VNF ordered from 1 to 𝑛.

Resource prediction

Predicting a VNF resource consumption is performed by computing the output function that

takes the node state forecasted by the transition function and the feature node and produces an

output corresponding to the future resource utilization of the VNF. This is achieved using the

second FNN trained on a given period of time. Figure 2.5 shows the output computation scheme

for a single VNF.
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Figure 2.4 Iterative scheme of SFC states prediction

Figure 2.5 Output computation for VNF1

GNN algorithm

The GNN learning algorithm is based on gradient descent strategy and consists of the minimization

of a quadratic cost functionScarselli et al. (2009), the following steps summarize the algorithm.
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1. For each 𝑉𝑁𝐹𝑖 state computation:

2. the features and the states vectors at time T of all direct neighbors are concatenated with the

feature vector of 𝑉𝑁𝐹𝑖 at time T producing the input structure of the transition function.

3. The sates are iteratively updated by the transition function (see figure 2.4) producing the

𝑉𝑁𝐹𝑖 state at time T+1.

4. The gradient is computed based on back-propagation through a time algorithm, producing a

layered network in which each layer corresponds to a time instant and contains a copy of all

units 𝐹𝑤 of the network. The units of two consecutive layers are connected following the

SFC graph connectivity. The last layer at the time 𝑇 computes the outputs of the network.

5. Then the weights are updated according to the gradient computed in the second step.

2.2.2 Deep learning techniques for resource consumption prediction

In order to investigate the impact of VNFs’ dependencies and the efficiency of the proposed

graphical model, we compare our results with four deep learning techniques used for resource

consumption prediction.

CNN

We use CNN model Albawi et al. (2017) O’Shea & Nash (2015) that learns the variations

of resource consumption of a set of VNFs to predict their future consumption. The model is

shown in figure 2.6. It consists of five convolutional layers followed by a dropout layer and a

max-pooling layer, then three other convolutional layers followed by three fully connected layers.

Each convolutional layer is composed of parallel stack channels, where each channel consists of

a layer of neurons sharing the same weights, filter size, and biases. The neurons constituting the

layers pass the sum of their weighted inputs through a ReLu activation function.



34

Figure 2.6 CNN resource forecasting model

MLP

In our study, we will compare the performances of GNN and classical MLP models Gard-

ner & Dorling (1998). The MLP model is composed of three layers. The input layer is made

of a number of perceptions equal to the number of our consumption feature attributes, and an

output layer that returns the predicted resource consumption values, and a hidden layer with

a number of neurons equal to the average of the neurons in the input and output layers. Such

architectures enable to achieve universal approximations Scarselli & Tsoi (1998).

LSTM

LSTM NN Huang et al. (2015) are special cases of RNN Greff et al. (2016) proposed to address

the problem of exploding gradients or vanishing. The LSTM NN are known to be relatively

efficient for time series prediction Lindemann et al. (2021). Thus, we established an LSTM NN

containing three LSTM layers. An LSTM layer is composed of a set of LSTM units, placed

end-to-end to extract relevant features from long sequences of historical resource consumption

of VNFs. The LSTM architecture is shown in figure 2.7. The first two layers are followed by

a dropout layer, and the third by a fully connected layer. The prediction is then done using a

Tanh activation function that predicts the future resource consumption of a set of VNFs. The
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establishment (number of LSTM units, number of LSTM layers, number of dance layers, etc.)

of the model and the parameter setting will be discussed in the experimental section.

Figure 2.7 LSTM NN model architecture for multidimensional resource consumption

prediction

Hybrid MLP-LSTM

This model is a hybrid predictor that combines LSTM and MLP networks. We propose a model

that combines the advantages of MLP and LSTM in terms of simplicity and the ability to deal

with long sequences. The model principle consists of passing the original data directly after a

preprocessing step to an MLP network. This plays the role of a preliminary pretraining that

produces discriminant features from the historical resource consumption of the VNFs. The

resulted features are then fed to an LSTM NN that learns and predicts the future resource

consumption of the VNFs. Figure 2.8 shows the proposed model.

2.3 Test experiments and performance analysis

In this chapter, we are specifically interested in identifying the performance of each model for

different scenarios. These scenarios are described in section 2.3.5 . Each scenario defines a

specific workload profile. Two datasets are used that represent the resource consumption of two

SFCs, IMS and Web. These datasets are described in section 4.2. The five models are trained

and tested using these two datasets, each dataset was randomly divided into 70% for the training,

and 30 % for the validation and test. The models are trained on the same data, and preprocessed
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Figure 2.8 Hybrid LSTM MLP model

into input samples of size equal to five consecutive samples recorded every 20 seconds. Each

sample contains the CPU, the memory and the bandwidth consumption of each VNFs of the

SFC. All models predict three resource values (CPU, bandwidth and memory) as output values

for each VNF of an SFC.

2.3.1 Computing

All computing was done on the same machine, the training time, the CPU and memory

consumption of each training were recorded and compared. The models have been tested using

Anaconda 4.2.0 (64-bit), Python 3.5.2, TensorFlow 0.12.1, Jupyter Notebook 4.3.1., Keras 1.2.1.

2.3.2 Data set description and evaluation metrics

In this work, we use datasets gathered from Clearwater IMS and web SFCs deployed in real-world

virtualization environments (openstack-based virtualisation infrastructure). The CPU, memory

and bandwidth consumption of each VNF were monitored and recorded every 20 seconds during

16 days. The Clearwater IMS SFC is composed of Bono, Sprout, Homer, Ellis, one instance that

includes Astaire, Cassandra, Chronos and one Homestead instance. The web SFC is composed

of a web application, three instances of Java APIs, and a database.
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Three main metrics are used to evaluate the models: Mean absolute error (MAE) to measure

the errors between the predicted and the real resource consumption, the root-mean-square error

(RMSE) Chai & Draxler (2014) and the mean squared error (MSE) to measure how close are the

estimated values to the real values. We have also computed the explained variance score which

measures the dispersion of a given paired observation O’Grady (1982) and the coefficient of

determination that measures the amount of variation between the real and the predicted values

Ozer (1985), to quantify the degree of relationship between the predicted and the real variables.

The mean absolute error (MAE), the mean squared error (MSE), the Root mean square error

(RMSE), the explained variance regression score function, and the coefficient of determination

are respectively given by equation 3.7-3.10.

𝑀𝑆𝐸 = (
1

𝑛
)

𝑛∑
𝑖=1

‖𝑦𝑖 − 𝑥𝑖‖
2
2 (2.3)

𝑀 𝐴𝐸 = (
1

𝑛
)

𝑛∑
𝑖=1

‖𝑦𝑖 − 𝑥𝑖‖1 (2.4)

𝑅𝑀𝑆𝐸 =

√√
(
1

𝑛
)

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑥𝑖)2 (2.5)

𝑅2 =
∑

𝑖 (𝑦𝑖 − 𝑦)2∑
𝑖 (𝑦𝑖 − 𝑦)2

(2.6)

2.3.3 Data preprocessing

To correctly forecast the future resource consumption, the data has been passed throw a

preprocessing process that includes the elimination of invalid recorded values and empty values,

followed by a normalization function using Min-Max normalization in the range [-1,1]. Then

the data was split into input sliding windows such that each window represents a sequence of 𝑛

historical consumption and the 𝑛 + 1 observation represents the output vector.
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2.3.4 Networks structure selection

In order to have a coherent comparison, the structure of each prediction model must be selected,

the hyperparameters of the models should be optimized and the configuration of the base models

should also be tuned.

To tune the hyperparameters, we have trained each model using the same dataset (IMS and Web

datasets). The hyperparameters were tuned, by varying each one of the parameters on 10% of

the IMS data set. The best reported scores were adopted in the training process. All tested

model configurations were trained with initial learning rates equal to 0.01, with a min-max

normalization function in the range [-1,1]. The proposed GNN configuration consists of tuning

the GNN specific hyperparameter as well as the transition and the output functions parameters

represented by two feed-forward NN. Thus, one of the most important hyperparameters for the

GNN is the architecture of the used FNNs. In Scarselli & Tsoi (1998), the authors mentioned

that the best architecture of an FNN that often produces universal approximations is a three

layered network, with one hidden layer containing a fixed number of neurons to the average

of the neurons in the output and the input layers. Thus, we adopted this rule to define the

architecture of the GNN functions as well as the architecture of the MLP network. The resulting

NNs architectures contain three layers in each network.

Also, to establish the CNN architecture we conducted experiments to analyze the following

hyperparameters: number of convolutional layers with and without dropout layers, and the

max-pooling vs average pooling layer. We performed several tests with different numbers of

convolutional layers. In each time, we tested t the architecture with and without dropout layer.

We repeated the same experiments using a max-pooling layer and then an average pooling layer.

Table 3.3 shows the result of the MAE obtained from the different test experiments.

Table 2.1 MAE for CNN with different configurations

Number of convolution layers Without dropout layer With dropout layer With average pooling layer With max-pooling layer
5 0.203 0.209 0.097 0.121

8 0.158 0.019 0,024 0,026

9 0.175 0.011 0,022 0.029
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The resulting architecture contains eight convolutional layers, a max-pooling layer and a dropout

layer, in addition to the fully connected layer.

For the LSTM NN, we focused on the main specific hyperparameters, which are the number of

LSTM layers and the number of LSTM units in each layer. The number of the units were fixed

equal in all LSTM layers and is equal to the features in the sliding windows. For the number of

LSTM layers, we tested different possible configurations using two, three and four LSTM layers

followed by a dropout layer, and selected the optimal architecture based on the reported MAE

(table 2.2). The selected architecture contains three LSTM layers followed by a dropout layer

and a dense layer in the third LSTM layer that reported the smallest MAE.

Table 2.2 MAE for LSTM NN with different configurations

Number of LSTM layers Without dropout layer With dropout layer
2 0.203 0.184

3 0.134 0,112

4 0.128 0.115

For the hybrid model, we followed the same process as for the MLP network, fixing the number

of layers to three and a number of input neurons depending on the input sliding window features.

Then, in the same manner as in the LSTM network, we varied the layers structure and selected

those reporting the best MAE scores. The resulted architecture is summarized in table 3.5.

Table 2.3 Hybrid LSTM-MLP hyperparameters

Hyperparameter value
Number of LSTM layer 3

Number of dropout layers 1

Number of LSTM units 15

Number of fully connected layers 1

MLP layer number 3
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2.3.5 Results and analysis

In this work, we analyze and compare the performance of five neural network models used to

predict the resource consumption of VNFs composing an SFC. Our aim is to identify the more

suitable model to use for resource prediction. We propose to dissect the problem into different

sub categories in order to have a more precise analysis that will lead to a more efficient solution.

Thus, we define four different scenarios to identify and analyze the performances of each model

for each scenario. For all test experiments, the common parameters of the models were fixed to

the same values in order to have a fairly and meaningful comparison. Table 3.2 summarizes the

parameters and their values used in this section.

Table 2.4 Common parameters for the models training

Parameter value
Activation function Tanh

Learning epochs 100

Normalization MinMax [0,1]

Learning rate 0.01

Sliding window 5

2.3.5.1 Scenario 1: Global comparison

In this scenario, we aim to evaluate the average performances of the five models using the two

datasets gathered from the two SFCs stressed with different workloads. Thus, we evaluated the

five models on each dataset separately. For each dataset, we used the entire dataset, which is

divided randomly to have 70% of data for training and 30% for the test and validation. The

results show that the errors computed using the two datasets are close to one another. For

instance, the MAE values for CNN model are equal to 0.054 and 0.066 using IMS and web

datasets respectively (table 3.6).

Figure 2.11(a) end (b), show the MAE, MSE, RMSE, variance, and the coefficient of determina-

tion reported by each model on the two datasets, note that for clarity purpose, all the metrics on
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the test set were grouped and presented as a radar plot. The ideal model will be presented by a

circle connecting all metric scores, having the size of the complete plot.

The reported scores show that the CNN and GNN models outperformed the other models for

both datasets with respectively MSE value of 0.012 and 0.010 for the IMS data set and 0.042

and 0.058 for the web dataset, while recording the highest cost in resource consumption with

6748 seconds of computational for CNN in the IMS data set which may affect the efficiency of

the prediction in terms of time consumption and cost optimization (table 2.5).

Table 2.5 Training time, training CPU and memory consumption recorded by the five

models for the IMS dataset

Resource MLP LSTM MLP-LSTM CNN GNN
Execution time in seconds 44 3480 5707 6748 153

CPU utilization % 36.7 91.7 92 57.4 41.2

Memory utilization % 50.6 76.1 83 78.4 64.7

2.3.5.2 Scenario 2: Specific comparison

In this scenario, we focussed on the IMS data set. Thus, in the first part of this scenario, we

analyze the behaviour of each predictor for each resource (cpu, memory and bandwidth). Indeed,

the fluctuation curve of the same VNF between the three resource dimensions can be different

between two time intervals. Table 3.6 summarizes the average MAE computed for each resource

type and for each model. We can observe from table 3.6 that the LSTM, the MLP and the hybrid

LSTM-MLP models show generally good performances in CPU and memory prediction, while

the MLP offers a low time complexity. Meanwhile, the GNN and the CNN show the best scores,

with the outperformance of the GNN on the others in the bandwidth prediction.

In the second part, we analyze the resource prediction of each single VNF. This is motivated by

the fact that at a given time 𝑡 a given VNF may require intense resource consumption (e.g., CPU)

compared to its neighbors, such as for the HSS and the S-CSCF. The experiments demonstrated

that the performances of the models are highly related to the processed VNF. For example,
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we present in figure 2.9 the predicted CPU versus the real CPU consumed by VNF9 (first

line) on 100 consecutive observations. At the same time, we recorded and presented in the

second line the predicted CPU versus the consumed CPU of another VNF (VNF10) for the

same 100 observations and using the same prediction model (LSTM). Our aim is to highlight

the performance fluctuation of a single prediction model between different VNFs, even for the

same workload. Therefore, we investigated the results obtained for each VNF comparing to its

neighbour. Figure 2.10 presents a performance comparison of two neighboring VNFs using

two different prediction models. The predictions are computed on 50 consecutive observations

resulted from CNN and the GNN models on two neighbouring VNFs noted VNF9 and VNF10.

The results show that the GNN model performances are stable between two neighboring VNFs

with a maximum MAE=0.005, while the CNN model graphic shows an important performance

deterioration for VNF10 with a maximum MAE value equals to 0.06 compared to VNF9 with a

maximum MAE value equals to 0.02.

Figure 2.9 Comparison between the predicted CPU rate and the real CPU consumed

rate of two VNFs for the LSTM model on 100 observations selected randomly from the

test set

2.3.5.3 Scenario 3: Sharp workload fluctuation

In this scenario, we analyze a special case of workload that often occurs in virtualized networks,

and is considered one of the main big challenges of resources forecasting and management in a

general manner. In this scenario, sharp workload increase and decrease may happen over time,
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Figure 2.10 MAE errors on 50 consecutive test observations for VNF9

and VNF10 using the CNN and the GNN models

which may cause sudden changes in the consumption of the three resources (CPU, Memory and

Bandwidth). To analyze such specific behavior, we divided the test set into two classes and

tested the models on only the first class in which we have identified the samples with stable

consumption followed by sudden changes in the last observation to be predicted for one or more

dimensions.

We reported the average values of the evaluated scores in table 3.6. It is clearly shown that for this

scenario the GNN model outperforms the other models with an MAE equal to 0.03 compared to

the minimal value of 0.13 recorded for CNN model. We also present in figure2.11.C, the radar

plot of the five errors computed for this scenario. The figure shows that the circle connecting the

five errors of the GNN is the closest to the size of the complete plot circle. This indicates that

the GNN model outperforms the other models for this scenario. Also, compared with the other

scenarios presented in figure 2.11.a and in figure 2.11.b, we can notice that the circle shape of

the radar plots is irregular, which indicates high error values and thus lower performance.
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2.3.5.4 Scenario 4: Stable consumption

In this scenario, we intend to analyze the case where the consumption rate of a VNF is stable in

time or with smooth variations. This includes the two cases of VNF with intensive resource

consumption. A VNF with intensive resource consumption is the one that requires high and

stable amount of at least one resource during a certain period of time. Similarly, a VFN with

less intensive resource consumption will require small and stable amount of resources during a

certain period of time. We present the obtained results of the five models in table 3.6.

We can notice from table 3.6 that all models show good performances for this scenario, especially

for the MLP and the LSTM models where the MAE errors dropped considerably from 0, 27

and 0, 17 to 0, 04 and 0, 016 for the MLP and the LSTM respectively comparing to the high

fluctuation scenario, meanwhile by comparing the cost entailed by the models training, we

can clearly observe that the simple MLP network outperforms the others in terms of time

optimization and consumed resources for the prediction process.

2.4 Discussion

The analysis of different experiments conducted from the different scenarios shows that the

performances of each model depend on the resource consumption profiles. Indeed, we can

see that in general cases, the CNN and the GNN outperform the other models having the most

similar circle to the complete plot circle (see figure 2.11), this occurs when all computed metrics

report good scores, and indicates the good quality of the predictor with a stability of the model.

The hybrid MLP-LSTM, the MLP and the LSTM models have reported good scores in the

MAE, RMSE, and MSE evaluations and poor scores in the coefficient of determination and the

explained variance.

Nerveless, we observed that in some cases the prediction process of the CNN and the GNN fails

such as in observation number 40 in vnf10 for the CNN model (see figure 2.10) with an MAE

equal to 0.061, in addition to the huge execution time of the CNN comparing to the MLP model.

Meanwhile, the GNN outperforms the others in the critical case of sharp workload fluctuation
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Table 2.6 Reported errors by each model for different scenarios using IMS and Web

datasets

Scenario dataset Metric MLP LSTM MLP-LSTM CNN GNN
scenario 1 IMS MSE 0,051 0,011 0,023 0,012 0,01

MAE 0,087 0,057 0,087 0.054 0.057

RMSE 0,093 0,087 0,065 0,075 0,071

Explained variance 0,73 0,70 0,72 0,90 0,893

Coefficient of determination 0,74 0,70 0,72 0,90 0,88

scenario 1 WEB MSE 0,082 0,073 0,07 0,042 0,058

MAE 0,085 0,095 0,1 0,066 0,051

RMSE 0,14 0,123 0,132 0,098 0,086

Explained variance 0,746 0,765 0,754 0,851 0,848

Coefficient of determination 0,746 0,759 0,764 0,859 0,851

scenario 2 IMS CPU MSE 0,048 0,013 0,020 0,011 0,008

MAE 0,085 0,054 0,084 0,051 0,055

RMSE 0,091 0,085 0,066 0,074 0,075

Explained variance 0,75 0,72 0,77 0,92 0,93

Coefficient of determination 0,74 0,72 0,78 0,91 0,93

scenario 2 IMS Memory MSE 0,057 0,011 0,028 0,013 0,014

MAE 0,084 0,0585 0,091 0,054 0,063

RMSE 0,092 0,0867 0,062 0,076 0,0742

Explained variance 0,75 0,747 0,728 0,9 0,87

Coefficient of determination 0,76 0,742 0,730 0,904 0,865

scenario 2 IMS Bandwith MSE 0,06 0,013 0,02 0,01 0,009

MAE 0,09 0,0655 0,08 0,056 0,054

RMSE 0,113 0,093 0,06 0,078 0,068

Explained variance 0,80 0,73 0,72 0,87 0,89

Coefficient of determination 0,79 0,73 0,72 0,86 0,89

scenario 3 IMS MSE 0,27 0,17 0,2 0,11 0,01

MAE 0,32 0,23 0,27 0,13 0,03

RMSE 0,36 0,026 0,033 0,19 0,04

Explained variance 0,50 0,66 0,61 0,79 0,94

Coefficient of determination 0,51 0,67 0,62 0,79 0,94

scenario 4 IMS MSE 0,04 0,016 0,034 0,01 0,021

MAE 0,078 0,063 0,070 0,042 0,068

RMSE 0,092 0,077 0,087 0,069 0,073

Explained variance 0,94 0,83 0,87 0,96 0,93

Coefficient of determination 0,94 0,82 0,86 0,96 0,93

with a MAE equal to 0.03, and the smallest execution time and resource consumption compared

to the CNN, the LSTM and the MPL-LSTM models, where the CNN recorded a MAE= 0.26

with 153 seconds for the training time. Indeed, the GNN model has the advantage of the
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Figure 2.11 Performance evaluation scores on the test set for MLP, LSTM, hybrid

MLP-LSTM, CNN and the GNN models. (a) scenario 1 : IMS dataset, (b) scenario 1: Web

dataset, (c): scenario 3 case of big fluctuation on the IMS dataset

simplicity and the reduced training time of the MLP, since the training process concerns mainly

to train the transition and the output functions implemented in our work by two MLP. Besides,

the GNN has the advantage of using the topological dependencies involving the neighbours’

features and forecasted states which enhance considerably the performances particularly in high

fluctuation cases. This can be explained by the ability of the proposed GNN model to capture

the dependencies between VNFs. This fact can also be demonstrated by observing the example

of the prediction results of two neighbouring VNFs (see figure 2.10) where the GNN curve on

VNF4 shows a better prediction compared to CNN. This can be confirmed by the closest MAE

computed values for the two neighboring VNFs in the GNN case which means that adding the
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neighboring enables to enhance the prediction of resource consumption of a VNF, contrary to

the CNN model in which the MAE error jumped from 0.005 to 0.6 as highest values.

Figure 2.12 shows a performance comparison between the four worklod profiles for the five

models. We can notice that in stable workload fluctuation, all models reported good performances

for the five metrics, such as the LSTM model that records MAE of 0.063 thanks to its long period

of time dependencies tracking ability, with 3480 sec training time, whereas the simple MLP

records a MAE equal to 0.078 which is slightly higher than the LSTM error, but it outperforms

the others in the coefficient of determination, in the explained variance with a score equal to

0.94 and in terms of time complexity where it records 44 seconds for the training process and

36.7%, 50.6% for respectively the CPU and the memory consumption which is very reduced

compared to the other models where the fastest model between the four others (GNN) records

153 seconds for the training and 91.7%, 76.1% for respectively the CPU and the memory

consumption. Knowing that in the context of resource management, the training process may

be triggered repeatedly, and the training cost is an important quality indicator in a resource

prediction forecaster which makes the MLP model the most suitable in such cases. Thereby,

the resource forecasting problem requires a prediction mechanism that covers all possible cases

of the network flow. This can be done by studying the data and clustering them into similar

sets which will be processed by the most appropriate model. The selection of the appropriate

prediction model according to the resource consumption profiles will be presented in the next

chapter.

2.5 Conclusion

We presented in this chapter an efficient resource consumption forecasting model. The model

uses augmented VNF features and exploits the neighboring relationships between VNFs of an

SFC, learns consumption dependencies between neighbouring VNFs, and forecasts multi types

of resources consumed by several VNFs composing an SFC. The model was evaluated and

compared with different machine learning models using five metrics and datasets gathered from

real word deployment of SFCs. An extensive experiment on different resource consumption
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Figure 2.12 MAE error values of the five models depending on

the different scenarios

profiles revealed the reliability and the efficiency of the proposed GNN model on high fluctuating

workloads, which will allow a resource orchestrator to efficiently manage the future resource

utilization under a high workload variation. Also, a deep investigation on the detailed results of

five NN models revealed the advantages and the weaknesses of each model in terms of resource

consumption forecasting. In the next chapter, we will present a resource prediction mechanism

that enables to select the appropriate model based on the resource consumption profiles. The

selection mechanism will use the experimentation analysis in order to assign for a given workload

in the most appropriate prediction model that will maximize the prediction performances. This

way, the selection process will allow handling with the dynamic predictor performance in the

different workloads, and thus, accurately forecast the resource consumption in dynamic NFV

environments while minimizing the time and space complexity of the prediction model.



CHAPTER 3

AN EFFICIENT ADAPTIVE META LEARNING MODEL BASED VNFS AFFINITY
FOR RESOURCE PREDICTION OPTIMIZATION IN VIRTUALIZED NETWORKS

3.1 Introduction

Cloud environment Abohamama et al. (2022) is being highly considered for industry and

enterprises for the opportunities that it provides, particularly in terms of resource optimization

and cost reduction Liu et al. (2022). With recent developments in cloud computing Zhang

et al. (2010) massive unplanned traffic loads are submitted to cloud platforms that lead to

uncertainty in resource utilization. Therefore, efficient data-driven mechanisms for automatic

resource management becomes crucial Amiri & Mohammad-Khanli (2017) Younge et al. (2010).

Network Function Virtualization (NFV) concept enables a network soft-warization. However,

one of the challenges facing the adoption of this concept is to dynamically manage Virtual

Network Functions (VNFs) chained to compose a Service Function Chain (SFC) while meeting

the service performance needs. One of the management mechanisms is dynamic allocation of

resources for each VNF. While the resource management for SFCs was largely studied Li et al.

(2023) Mostafavi et al. (2021) Thantharate & Beard (2023) dynamic resource management is

still a challenging task in dynamic network environments. In such environments, the allocation

of resources to each VNF cannot rely on threshold based scaling policies Salimian et al. (2016)

since they require per-service thresholds setting. Therefore, we propose data driven prediction

mechanism to support automatic resource management. These mechanisms enable complex and

distributed systems to anticipate and to efficiently react to workload fluctuations. To achieve that,

the amount of the future needed resources must be accurately predicted. This way, the needed

resources will be already available when the flow reaches the point of need, and released when

they are not needed.

Several machine learning techniques have been proposed for resource prediction in virtualized

environments, such as LSTMNN Ouhame et al. (2021), autoencoder Zhang et al. (2018a), online

learning algorithms Mijumbi et al. (2014a) to name few.
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However, most of the existing methods focus mainly on the historical consumption that depends

on the current workload scenario, which makes capturing several workload scenarios features by

a single learner a challenging task.

In this chapter, we propose a model selector that learns the workload features based on meta

learning strategy, and automatically selects the most suitable method to be used among a set of

predictors depending on the present workload and based on VNF consumption dependencies

captured by a self-attention mechanism. The model allows at once to maximize the accuracy

prediction by selecting the most performing algorithm, and to maximize the efficiency using an

attention mechanism based VNF dependencies analysis and a multitask learning strategy. The

model was tested and compared to the base single predictors using five metrics, the results show

the performances of our model and the high accuracy prediction.

3.1.1 Problem analysis

In this section, we present a brief data analysis of resource consumption of VNFs in a cloud

infrastructure and discuss the prediction problem complexity. Further, we show the degree of

heterogeneity, the uncertainty, and the diversity in resource consumption and their effect on the

performances of some resource consumption prediction models. We use a dataset gathered from

testbed deployed using the Clearwater IMS solution and Openstack.

Figure 3.1 shows the fluctuation of one hour CPU consumption by a single online service (a

VNF) over intervals of 20 seconds in two different periods of the day noted H1 and H2. Each

period contains 180 observations recorded in two different hours.

We can see in the figure 3.1.(a) that the CPU consumed fluctuate significantly, representing the

uncertainty of the CPU demands that can augment by 0.37 in 20 seconds such as in observation

number 176. It can reach 0.98 consumption, while the minimum value is 0.47 with an average

consumption of 0.73 per hour. In some infrastructures, such fluctuations require many scaling

procedures and may require the creation of several VMs, where each VM creation takes tens of

seconds. The CPU consumption changes continuously as well as in Figure 3.1 (b). However, this
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Figure 3.1 Fluctuation of one hour CPU consumption by a single online service (a

VNF) over intervals of three minutes in two different period of time, H1 and H2

last shows 0.48 as a maximum value and 0.27 as an average value, which corresponds to only 36

% of the average consumption in H1 of the same VNF. This, demonstrates the non uniformity of

the VNF demands. Also, the diversity of the resource type emphasizes the problem complexity,

where each VNF uses multiple types of resources such as memory and bandwidth, and each

resource type consumption change dynamically. Thus, learning the consumption behavior by a

given model is a critical task since the consumption behavior exhibits randomness.

We present in Figure 3.2 the MAE errors of four different deep learning models for resource

consumption prediction (section 3.2.3) computed on 33 minutes CPU consumption with a

sampling rate of 20 seconds of the same VNF. We can see that the four average errors on the 30

minutes are quite similar and vary between [0, 0.6]. However, the performance of each model

on a single point is very different, such that in observation 22, we recorded an MAE value equal

to 0.061 for Model4, where Model3 achieved 0.0002 which is smaller compared to Model4.

However, in observation 47, Model4 recorded the best MAE value, and performed significantly

better than the next performing model (model 3) with 34 % improvement. This indicates that the

performance of a single model depends on the resource consumption distribution. Indeed, each

model can learn a specific behaviour depending on the workload features that it can capture.

Each model provides more accurate prediction compared to others for a specific workload,

but cannot be applicable to other workloads. Therefore, we propose in this chapter a model
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selector that automatically selects the most suitable model to be used depending on the analyzed

workload and based on VNF consumption dependencies analysis.

Figure 3.2 MAE errors of four different deep learning models predictors

computed on 33 minutes CPU consumption with a sampling rate of 20

seconds of the same VNF

3.2 Proposed approach

This section provides a detailed explanation of the proposed resource consumption prediction

system. The proposed system allows predicting accurately and efficiently the future resource

consumption of a set of VNFs. In this application, we predict three resource types (memory,

CPU, bandwidth) of five VNFs. We will present in the first part the overall working flow of the

mechanism. Then, we will present the proposed MT-MLS that analysis the VNFs consumption

correlation to enhance the prediction accuracy.
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3.2.1 System overview

The proposed prediction system relies on VNF consumption correlation analysis to select, among

a set of resource forecasting models, the best model to be used in the next predictions.

Our system contains four principal components (figure 3.3). In the first component, the monitored

SFC historical consumption passes through a preprocessing step. In this step, invalid recorded

data are first removed. That data corresponds to observations containing ’NAN’ or negative

value in one of the recorded resources, and the erroneous observation containing at least one

outlier value detected using the modified z-scoreChoudhury et al. (2017). Then the data is

normalized using min-max normalization in the range [-1,1]. Then the data is split into fixed

size sliding windows 𝑤. Each window contains three types of consumed resources of each VNF

of the whole SFC and each type contains ℎ historical consumption of all VNFs of the SFC. The

consumptions at ℎ + 𝑖 are retained to represent the future consumption of the SFC, and are used

as the base learner’s output of the input window 𝑤. The preprocessing step results in a structured

dataset, containing a set of historical windows of three resources, where the consumption of all

resources are normalized between -1 and 1. Then the historical consumption are divided into

70% training set and 30% test set used to train and test the base learners.

The second component comprises a set of 𝑁 resource forecasting models named base learners.

The preprocessed historical consumed resources are fed to the base learner to be trained and

evaluated. Each base learner is trained offline on a training set of historical consumption

to forecast the anticipated resource consumption of the VNFs. Then, a test set of historical

consumption is used to rate the base learner’s forecasting on each test window 𝑤, generating a

set of predictor evaluations on the test set.

In the third component of the system, the VNFs consumption and correlation are studied and

analyzed to construct a metadata used to train the MT-MLS. The metadata is constructed mainly

from the past base learners predictions. For each window 𝑤, the performances of base learners

on each VNF are compared using the 𝑀 𝐴𝐸 measure Sihn & Park (2008), and the learner

recording the lowest value is retained as the best predictor of the processed VNF for the window
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𝑤. Thus, we construct for each input sample 𝑤𝑖, a metadata output vector 𝑣𝑖 to train the meta

learner.

In the fourth component of the system, the online prediction process is executed by the MT-MLS.

When a prediction 𝑅 is required, the MT-MLS is the component responsible for choosing the

predictor that maximizes the prediction accuracy to be used in a given future period depending

on the analysis of the workflow preceding 𝑅 and which maximizes the prediction accuracy. The

VNF future consumption of the request 𝑅 are then computed by the chosen predictor.

Figure 3.3 Overall scheme of the proposed architecture: the historical consumption is

continuously monitored. After a pre-processing step, the processed data is fed to each base

learner to be trained. Then the model measures the accuracy of each predictor and analyzes

the correlation between the VNFs consumption and use them in the MT-MLS training. In

the online process (red color) the request is presented directly to the MT-MLS that selects

the best base learner to trigger in order to compute the future resource consumption

3.2.2 multitask Meta learner selector MT-MLS

The MT-MLS aims at selecting a set of best methods to be used in the future resource consumption

computations. Based on the base learners evaluation and the correlation analysis, the MT-MLS

is trained on the constructed metadata to learn the future ranking features of base predictors on
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different workload scenarios. Thus, the meta learner selector is capable of evaluating the next

prediction accuracy and selecting the most suitable learner for the future predictions of each

VNF.

To achieve that, we used meta learning strategy Chen et al. (2021). This strategy consists

of learning from information generated by learners. In other words, using the meta learning,

we transform the learned information by the base learners into knowledge. In our work, the

knowledge represents the relation between the different base learner’s predictions in terms of

accuracy in different workload scenarios. That knowledge is produced through the meta learner

selector based on metadata.

In order to efficiently compute the future needed resources, we propose to simultaneously

process multiple VNFs in the same computation. Thus, we formulated the selection problem

as a multitask classification problem Aceto et al. (2021), in which, each VNF behaviour will

be considered as an independent task to be learned, gathered together in the same end-to-end

architecture. Figure 3.4 shows the architecture of the proposed multitask meta learner selector.

The proposed architecture consists of an LSTM layer followed by a shared self attention layer

Baffour et al. (2021) based similarity module and then a multi-branch classification (figure 3.4).

Figure 3.4 Intern architecture of the MT-MLS
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3.2.2.1 Shared Self attention mechanism based VNFs similarity

In an SFC, the flow can pass from a VNF to another. In several cases, the flow passes from a

VNF to its neighbor, which means that the increase in flow in a VNF may lead to the increase

in its neighboring VNFs as well. This, generates a sort of dependency between the VNF in

terms of resource consumption. This dependency can be expressed as a similarity of one or

more types of resource consumption profiles between different VNFs. In this work, we intend to

capture those similarities and use them in the learning process to allow the network focusing on

the different consumption profiles. To achieve that, we propose an attention mechanism that

assigns various weights to different VNFs consumption types. Therefore, we define a module

that computes the similarity between two multi-type resource usage in the same sliding window

𝑤 of two different VNFs. This is done by computing the correlation between two consumption

curves using Kendall rank correlation coefficient given in equation 3.4.

In order to capture long-range dependencies in the multi-type historical consumption, the data

of the sliding windows 𝑤 are first fed to the LSTM layer, then to the attention mechanism that

learns weight coefficients representing the importance of each VNF resource type. Let’s 𝑅 be the

number of series resulting from the 𝑅 LSTM cells, the attention consists of Computing 𝑐𝑖 vector

of characteristics which represents a sequence by a weighted sum of the hidden representation

of length 𝑅 where 𝑅 = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑡𝑦𝑝𝑒𝑠 × 𝑁𝑢𝑚𝑏𝑒𝑟 − 𝑜 𝑓 −𝑉𝑁𝐹 as follows:

𝐶𝑖 =
𝑅∑

𝑗=1

𝛼𝑖 𝑗 𝑣𝑖 (3.1)

Where: 𝛼𝑖 𝑗 represents the weight coefficient of each 𝑣𝑖, semantically it represents the normalized

importance of each consumption in the forecasting process and is computed by equation 3.2.

𝛼𝑖 𝑗 =
𝑒𝑥𝑝

(
𝑣𝑖 𝑗

)
∑𝑅

𝑘=1 𝑒𝑥𝑝 (𝑣𝑖𝑘 )
(3.2)
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Where 𝑣𝑖 𝑗 represents the dissimilarity score between two resource consumption, and is computed

using 3.3.

𝑣𝑖 𝑗 = 1 − |𝜏
(
𝑣𝑖, 𝑣 𝑗

)
| (3.3)

Where 𝜏(𝑣𝑖, 𝑣 𝑗) is the Kendall rank correlation between the historical records of the two VNFs

resource type utilization for a given sliding window 𝑤.

Let 𝑅𝑠𝑐 𝑗 = {𝑅𝑠𝑐
𝑗
0
, 𝑅𝑠𝑐

𝑗
1
, ....𝑅𝑠𝑐

𝑗
𝑛} be the consumption evolution of the resource 𝑗 in time

𝑡 = 0, ..., 𝑛 in the window 𝑤 of size 𝑛. And 𝑅𝑠𝑐𝑖 = {𝑅𝑠𝑐𝑖
0
, 𝑅𝑠𝑐𝑖

1
, ....𝑅𝑠𝑐𝑖

𝑛} be the consumption

evolution of the resource 𝑖 in the same window 𝑤. Then, the Kendall rank correlation between

𝑅𝑠𝑐𝑖 and 𝑅𝑠𝑐 𝑗 is given by equation 3.4.

𝜏 =
2

𝑛 (𝑛 − 1)

∑
𝑠𝑔𝑛

(
𝑅𝑠𝑐

𝑗
𝑡 − 𝑅𝑠𝑐

𝑗
𝑡−1

)
𝑠𝑔𝑛

(
𝑅𝑠𝑐𝑖

𝑡 − 𝑅𝑠𝑐𝑖
𝑡−1

)
(3.4)

3.2.2.2 Multi-branch classification and model training

In this section, we explain how we trained the classifier for each VNF in one end-to-end learning

architecture and in one single network. Our aim is to classify each sliding window into the

best predictor class corresponding. We proposed a multitask model that is jointly trained by

sharing the attention and the LSTM layers for each branch of the multitask network. Each VNF

classifier has a separate branch but shares the same features extracted by the LSTM layers. Those

features are extracted based on the VNF consumption behaviour, and also on their consumption

dependencies on the other VNFs through the attention mechanism (section 3.2.2.1). This allows

each branch of the multitask to be trained on a specific classification based on the own VNF

consumption and dependencies features. In each classification task, the 𝑅-dimensional vector is

mapped using a fully connected layer to y ∈ 𝑛, where 𝑛 is the number of base learner predictors.

Finally, we end up with a multi classifier network, in which the feature vectors extracted by the
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LSTM network are fed to individual branches that predict the best algorithm for each VNF to be

used for the future requests. The model optimization is achieved by minimizing the total sum of

the VNFs classification loss.

𝐿 =
𝑉∑

𝑖=1

𝛼𝑖𝐿𝑣𝑛 𝑓 𝑖 (3.5)

Where: 𝑉 is the number of VNFs. 𝐿𝑣𝑛 𝑓 𝑖 is the classification loss of the VNF number 𝑖. 𝛼𝑖 is the

weighting coefficient of each VNF in the SFC.

Each VNFs best algorithm classification was performed by minimizing the cross-entropy loss

function given in equation 3.6.

𝐿𝑣𝑛 𝑓 = −
1

𝑤

𝑤∑
𝑖=1

𝑁∑
𝑛=1

1𝑦𝑖∈𝑁𝑛 𝑙𝑜𝑔 (𝑝𝑚𝑜𝑑𝑒𝑙 [𝑦𝑖 ∈ 𝑁𝑛]) (3.6)

Where 𝐿𝑣𝑛 𝑓 is the classification loss of each VNF, 𝑤 is the window size, 𝑁 is the number of

classes corresponding to the number of base learners. 𝑙𝑜𝑔𝑝𝑚𝑜𝑑𝑒𝑙 [𝑦𝑖] is the likelihood log of the

input 𝑦𝑖 belonging to class n if it is mapped using model p.

3.2.3 Base learner techniques

In this section, we present a brief description of the four used base learners predictors based

deep learning techniques. Note that the proposed MT-MLS architecture is not specific and is not

limited to these models.

The first model is a GNN (graphical neural network) Scarselli et al. (2009) based on topological

dependencies. Thanks to the graphical representation of the SFC, the model uses the neighboring

relationships between VNFs to predict the future consumptions. The GNN model consists of

three main components: a modelling module, in which the SFC is represented by a graph, where

the vertices represent the VNFs and the edges represent the neighboring relationships between
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different VNFs in the SFC. A transition function is used to compute the states of each node in

the graph, and the output function computes the output of each node corresponding to the future

utilization of the VNF. Both transition and output functions were modeled by two three-layered

Feedforward NN Sanger (1989) trained on the historical consumptions of the SFC.

The second model is a CNN model Albawi et al. (2017) O’Shea & Nash (2015). It consists

of five convolutional layers followed by a dropout layer and a max-pooling layer, then three

other convolutional layers followed by three fully connected layers. Each convolutional layer is

constituted of parallel stack channels, where each channel consists of a layer of neurons sharing

the same weights, filter size, and biases. The neurons constituting the layers pass the sum of

their weighted inputs through a ReLu activation function.

The third model is a recurrent NN comprised of multiple LSTM layers. More specifically, the

model is composed of three LSTM layers, the two first are followed by a dropout layer, and the

third by a fully connected layer. The prediction is then done using a Tanh activation function

that predicts the future resource consumption of a set of VNFs.

The fourth model is a hybrid predictor that combines LSTM and MLP networks. The model

principle consists of passing the original data directly after a preprocessing step to a three layered

MLP network Gardner & Dorling (1998). This plays the role of a preliminary pretraining that

produces discriminant features from the historical resource consumption of the VNFs. The

resulting features are then fed to an LSTMNN Huang et al. (2015) that will learn and predict the

future resource consumption of the VNFs.

3.3 Results

In this study, we intend to demonstrate the effect of a selection mechanism on the resource usage

prediction. Thus, in the first part of our experiments, we evaluated the performances of each base

learner alone as a prediction method. Then, in the second part, we evaluated the performance of

the resource prediction using the adaptive selection mechanism as well as the cost entailed by

the selection process.
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3.3.1 Data set description and evaluation metrics

The main goal of resource prediction is to forecast the future needed resources of a network

entity, this involves the use of past historical consumption of the network components. While

most of the literature studies use simulated data Sciancalepore et al. (2017) Mijumbi et al.

(2014b) Mijumbi et al. (2017), we propose in this work to experiment using two datasets gathered

from tested deployed in real-world settings sets, in which the deployment consists of multiple

nodes, with each deploying a specific service and consuming variable rates of resources. In this

work, the CPU, the memory, and the bandwidth rates consumed by each node were monitored

and recorded every 20 seconds during 16 days. Each node represents a virtualized network

function and is processed as a single SFC node. In the first data set, the testbed was deployed

using the Clearwater IMS solution and Openstack cloud infrastructure (figure 3.5). The SFC

is composed mainly of five principal VNFs. The Bono node provides the anchor point for the

client’s connection to the Clearwater system. The Sprout node handles client authentication

and the ISC interface to application servers. Cassandra and Astaire nodes are used to store the

mastered and the cached data respectively of subscribers. Ellis is a sample provisioning portal

that provides basic services such as password management. Homer is used to store the user’s

service settings documents. Homestead provides a web services interface. Homestead Prov also

exposes a web services interface, allowing provisioning of subscriber data in Cassandra. Ralf

provides an HTTP API for Bono and Sprout (table 3.1).

In the second dataset that we called the web data 1, the SFC comprises five nodes: the database

VNF that stores words, three instances of Java REST API that read and serves words from the

VNF database, and the Go web application which calls the API and builds words into sentences.

When a request arrives, the traffic passes to the web VNF and then passes to one of the three

Java API VNFs then the requested words are extracted from the database VNFs and printed on

the website to construct a sentence. For the rest of the experiments, we will note the VNFs by

their numbers from VNF1 to VNF15 (table 3.1).

1 https://github.com/dockersamples/k8s-wordsmith-demo/blob/master/README.md
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Table 3.1 IMS and WEB VNFs description

VNF Description
VNF1 Bono Provides the anchor point for the client’s connection to the Clearwater system,

including support for various NAT traversal mechanisms.

VNF2 Sprout Acts as a horizontally scalable, combined SIP registrar and authoritative

routing proxy, and handle client authentication and the ISC interface to

application servers. The Sprout nodes also contain the in-built MMTEL

application server. Sprout is where the bulk of the I-CSCF and S-CSCF

function resides.

VNF3 CassandraStores the mastered data of subscribers

VNF4 AstaireStores the cached data of subscribers

VNF5 Ellis A sample provisioning portal providing self sign-up, password management,

line management and control of MMTEL service settings.

VNF6 HommerA standard XDMS used to store MMTEL service settings documents for each

user of the system.

VNF7 HomesteadProvides a web services interface to Sprout for retrieving authentication

credentials and user profile information.

VNF8 Homestead

prov

Exposes a web services provisioning interface to allow provisioning of

subscriber data in Cassandra

VNF9 Ralf Provides an HTTP API that both Bono and Sprout can use to report billable

events that should be passed to the CDF (Charging Data Function) over the

Rf billing interface.

VNF10ChronosA distributed, redundant, reliable timer service developed by Clearwater. It

is used by Sprout and Ralf nodes to enable timers to be run (e.g. for SIP

Registration expiry) without pinning operations to a specific node (one node

can set the timer and another act on it when it pops).

VNF11DatabaseA Postgres database which stores words.

VNF12,

VNF13,

VNF14

Words Java REST API which serves words read from the database.

VNF15Web A Go web application which calls the API and builds words into sentences.
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Figure 3.5 SFC deployment in cloud setting

In this experiment, we used five measurements of model prediction performance evaluation,

including the Mean absolute error (MAE) known to be used in regression problems, it measures

the errors between the predicted and the real observations. The Root mean square error (RMSE)

Chai & Draxler (2014) and the mean squared error (MSE) that measure how close the estimated

values to the real values. We have also computed the explained variance score which measures

the dispersion of a given paired observation O’Grady (1982) and the coefficient of determination

that measures the amount of variation between the real and the predicted values Ozer (1985),

i.e. quantify the degree of relationship between the predicted and the real variables. The

errors computations of the mean absolute error (MAE), the mean squared error (MSE) and

the root-mean-square error (RMSE), the explained variance regression score function, and the

coefficient of determination are respectively given by equation 3.7 - 3.10.

𝑀 𝐴𝐸 = (
1

𝑛
)

𝑛∑
𝑖=1

| (𝑦𝑖 − 𝑥𝑖) | (3.7)
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𝑀𝑆𝐸 = (
1

𝑛
)

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑥𝑖)
2 (3.8)

𝑅𝑀𝑆𝐸 =

√√
(
1

𝑛
)

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑥𝑖)2 (3.9)

𝑅2 =
∑

𝑖 (𝑦𝑖 − 𝑦)2∑
𝑖 (𝑦𝑖 − 𝑦)2

(3.10)

To accurately verify the Meta learner efficiency, we used three measurements for classification

problems: the recall, the precision, and the F-measure given respectively by equation from 3.11

to 3.13.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3.11)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3.12)

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
(3.13)

Where : TP and FN are respectively the true positives and false negatives.

3.3.2 Base learners setting and evaluation

In order to have a coherent comparison, the structure of each prediction model must be selected,

the hyperparameters of the models should be optimized and the configuration of the base learners

should also be tuned. In order to evaluate the generalization of the models with the WEB data,

we trained the five networks on the same subset of only the IMS data set to tune the parameters
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of each model. Each time, the trained system was tested to determine its prediction accuracy, in

each case the system was run to determine an output, and then compared to the actual resource

consumption using the mean absolute error. The hyperparameters were tuned by varying each

one of the parameters on 10% of the original IMS data set. The best reported scores were

adopted in the training process. We present in Table 3.2 the common hyperparameters adopted

for each base learner.

Table 3.2 Common Hyperparameters setting

Parameter LSTM GNN MLP-LSTM
Learning rate 0.05 0.01 0.02

optimizer Adam Adam Adam

Loos MAE MAE MAE

epochs 200 100 140

We also tuned the specific hyperparameters of each model in order to maximize the performances

of the base learners’ predictor. The GNN configuration consists on tuning mainly the transition

and the output functions parameters represented by two feed forward NN. The resulting NNs

architectures contain three layers in each network, with one hidden layer containing a fixed

number of neurons to the average of the neurons in the output and the input layers.

Also, to establish the CNN architecture, we conducted experiments focusing on the following

hyperparameters: number of convolutional layer with and without dropout layers, and the

max-pooling vs average pooling layer. We performed several tests with different numbers of

convolutional layers. In each time, we tested the architecture using a dropout layer and without a

drop out layer. Then, we repeated the same experiments using a max-pooling layer and then an

average pooling layer. Table 3.3 shows the resulting CNN architecture.

For the LSTM NN, we focused on the main specific hyperparameters, which are the number

of LSTM layers and the number of LSTM unit in each layer. The number of unit were fixed

equal in all LSTM layers and is equal to the features in the sliding windows. For the number of

LSTM layers, we tested different possible configurations using two, three and four LSTM layers
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Table 3.3 CNN architecture and parameters

Layer Type Parameters Activation
layer 1,2,3,4 convolution Filters size : 32, 128,164, 188, kernel 3 Tanh

Layer 5 Dropout 0.5 Tanh

Layer 6 MaxPooling1D pool size = 2 Tanh

Layer 7,8 Convolution filters=128, kernel_size=3 Tanh

Layer 9 Dense – Tanh

followed by a dropout layer and selected the optimal architecture based on the reported MAE

and the training time. The selected architecture is presented in table 3.4.

Table 3.4 LSTM architecture and parameters

Layer Type Parameters Activtion
1 LSTM layer 675 LSTM units Tanh

2 Dropout 0.5 Tanh

3 LSTM layer 337 units Tanh

4 Dense – –

For the hybrid model, we followed the same process done for the LSTM network, then we

fixed the number of layers of the MLP NN to 3 and number of input neurons depending on

the input sliding window features. In the same manner as in the LSTM network, we varied the

layers structure and selected those reporting the best MAE scores. The resulted architecture is

summarized in table 3.5.

Table 3.5 Hybrid LSTM-MLP hyper-parameters

Hyper-parameter number of layers
Number of LSTM layer 3

Number of dropout layers 1

Number of LSTM units 15

Number of fully connected layers 1

MLP layer number 3
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After establishing networks structure, we trained all base models on the training set, and reported

the MAE average of the five metrics on the test set for each VNF in table 3.6.

We can clearly see that each model performs differently on each processed VNF. For instance,

the MLP-LSTM model recorded the worst MAE value for VNF3 while it achieves the best

error for VNF7. Similarly, the CNN model recorded the lowest MAE value for VNF3, VNF5

and VNF13. Meanwhile, it performs less in the other VNFs such as for VNF7. Extensive

experiments were done in an unpublished previous work, intending to identify the scenarios in

which each model performs the best. We dissected the problem into different workload cases

and tested the models on each case. We conclude that defining a model for a specific workflow

and a workload scenario may be a challenging task since the workload is continuously dynamic,

and the best algorithm can achieve good results for specific consumption data, but not for other

subsequent data. To clarify that, we present in figure 3.6 the recorded MAE value of the same

VNF (VNF9) on 100 consecutive consumption sequences separated by 200 seconds interval

time. The figure shows that even for the same VNF and in a close time, the performance of

a given model may decrease or increase considerably, which demonstrates the complexity of

identifying an appropriate algorithm for a given workload and workflow. Therefore, there is a

need to define an ML architecture able to learn complex functions and allow predicting the most

suitable prediction algorithm.

3.3.3 Adaptive Selection evaluation

In the first part of these experiments, we assess the meta learner classifier accuracy through the

recall, the precision, and the F-measure (section 3.3.1), our aim is to evaluate the ability of the

classifier to attribute the appropriate prediction model to a given workload. Then, in the second

part, we investigate the performances of the resource consumption prediction using the adaptive

selector and compare it to the performances of the base learners and based on the MAE, MSE,

RMSE, explained variance and the coefficient of determination. Also, to explain the impact

of the proposed attention mechanism, we compared the model performances with and without

attention. The model was trained in a first time ignoring the attention layer and tested on the test
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Table 3.6 Reported errors by each model for different scenarios using IMS and Web

datasets

VNF LSTM MAE MLP-LSTM MAE CNN MAE GNN MAE
VNF1 0.151 0.092 0.088 0.120

VNF2 0.212 0.128 0.161 0.146

VNF3 0.086 0.129 0.031 0.041

VNF4 0.142 0.125 0.093 0.083

VNF5 0.174 0.092 0.047 0.056

VNF6 0.167 0.074 0.125 0.027

VNF7 0.085 0.072 0.110 0.162

VNF8 0.113 0.185 0.065 0.077

VNF9 0.052 0.079 0.044 0.074

VNF10 0.168 0.087 0.025 0.053

VNF11 0.065 0.061 0.0637 0.087

VNF12 0.192 0.092 0.014 0.02

VNF13 0.165 0.141 0.043 0.0723

VNF14 0.067 0.153 0.071 0.0631

VNF15 0.054 0.134 0.097 0.083

Figure 3.6 Comparison of MAE recorded by the four models on

consecutive sliding windows
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set, and then we trained the model a second time with the attention layer based VNF similarity

and tested on the same test set as in the first experiment. The performance was assessed in

both experiments, as well as the total cost entailed by the test process on the whole test set, and

presented in Table 3.7. We can see throughout the table that the classification accuracy of the

meta learner is pretty good and has been enhanced by 4% using the attention mechanism with

an F-measure value of 0.81 instead of 0.77, this demonstrates the effectiveness of the attention

layer.

Table 3.7 Meta learner selection evaluation: average scores on the five classes and total

resource consumption on the whole test set by the LSTM-selector with and without

attention mechanism

Measure Meta learner Meta learner based attention
Recall 0.77 0.81

Precision 0.78 0.82

F-measure 0.77 0.81

Table 3.8 Meta learner selection evaluation: reported classification metrics on each class

resulted by the LSTM-selector with attention mechanism

Measure CNN class LSTM class GNN class Hybrid class
Sensitvity 0.85 0.79 0.84 0.80

Precision 0.81 0.85 0.79 0.82

Specificity 0.93 0.94 0.93 0.94

F-measure 0.83 0.81 0.81 0.81

To further investigate the classification accuracy, we present in figure 3.7 the confusion matrix

of the multitask classification based attention mechanism on each class. The confusion matrix

shows different classification errors.

Resource usage prediction evaluation

In this section, we intend to study the impact of the Meta learner algorithm selection on the

resource consumption forecasting. Thus, we will be comparing the performances of the base
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Figure 3.7 Confusion matrix on the four

classes resulted from the selector based self

attention

learners’ resource forecasting with the adaptive selector resource forecasting. To achieve that,

we computed for each base learner the average errors recorded on the test set of the selector.

Then, we computed the average errors recorded by the chosen algorithm using the adaptive

selector on the same test set. The obtained results are presented in table 3.9, which demonstrates

that the results obtained by the dynamic selection are better than using a given algorithm at once,

such as for MAE error, in which the CNN achieved 0.081 as the best base predictor for this test

set while the dynamic forecasting achieved a lower MAE value equal to 0.021.

Table 3.9 Comparison between the five resource consumption forecasting models:

Average errors reported on resource consumption prediction using the fourth models on the

selector test set, and average errors computed on prediction of each observation by the

selected algorithm (heterogeneous prediction algorithms)

Measure LSTM MLP-LSTM CNN GNN Algorithm selection
MAE 0.114 0.084 0.072 0.081 0.021

MSE 0.096 0.092 0.087 0.082 0.032

RMSE 0.309 0.303 0.294 0.286 0.178

Explained variance 0,718 0,722 0,769 0,751 0.932

Coefficient of determination 0,727 0,718 0,774 0,756 0.926
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3.3.3.1 Discussion

The proposed adaptive selector combines an LSTM NN to a time series analysis strategy that

allows including the similarity dependencies between VNFs in the learning process. In order

to get an accurate estimation of the attention layer efficiency, we presented in the first part of

the experiments, the evaluation results of the adaptive classifier using the attention layer based

VNF similarity and also without using it. The results show that the attention layer gives better

classification results with an 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 0.81 equivalent to 4% enhancement.

Thanks to the VNF similarity analysis used in the attention mechanism. The similarity

information guides the network to focus more on VNFs having dissimilar consumption profile

by given low importance (low weight) to VNF having an important correlation coefficient.

Applying equation 3.2 in the attention mechanism is equivalent to assigning high weight to

exceptional VNFs and smaller weight to similar VNFs. This fact explains the performance’s

enhancement.

In the second experiment, we tested and evaluated the prediction accuracy and efficiency

of different methods, we observed that the performances of the base learners depend highly

on the flow, which causes fluctuations in the MAE errors returned by each method (figure

3.6). Therefore, we assessed the prediction using the selected methods by the adaptive model.

At a given time t, the adaptive model selects one base learner to be launched depending

on the workload profile. Thus, the error is equal to the error of a base learner in a single

observation. However, evaluating the resource prediction of the adaptive selector on a set of

observations involves evaluating a mix of base learners. Therefore, the evaluation results of a

set of observations is equal to the average errors of the set of selected base learners for each

observation. This results in an average error less than the average error of the same base learner

since the selector selects each time the model with the smallest error value.

The result demonstrated the utility and the efficiency of a selection algorithm that enhances

considerably the prediction process in terms of accuracy where it achieves an average MAE=0.021

which corresponds to 30% improvement compared to the best base learner of this test set which
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may also vary from a set to another. This enhancement is explained by the efficient selection

throughout which the resource predictor is triggered each time needed, which minimizes the

total error.

3.4 Conclusion

We proposed in this chapter, a resource prediction optimizer model MT-MLS. Depending on

the current workload, the MT-MLS selects the most suitable prediction model among a set of

already trained models. The selected model is used to predict the next resource consumption.

The MTL-MLS is designed as a multitask classifier based on a meta learning strategy. The

model is based on a VNF correlation analysis that allows capturing resource consumption

dependencies between the multi-type resource of different VNFs. These dependencies are fed

into the multitask meta learner via an attention mechanism, which allows the MT-MLS to learn

the best predictor to be used in future times. Thus, the MT-MLS assigns simultaneously and

independently to each VNF of the SFC the label of the most accurate model to be used in the

future forecasting. This allows decreasing considerably the prediction error and hence increasing

the prediction efficiency. The model was tested using two data sets gathered from two real world

deployed SFCs. The performance analysis reveals that the MT-MLS enhances considerably the

efficiency of the resource usage prediction.





CONCLUSION

In NFV environment, shareable resources are made available to users in a flexible manner

(automatic scaling). However, the resources and the traffic load of each VNF vary continuously.

Such variation requires proactive resource management to guarantee the QoS for the hosted

VNFs despite the dynamic nature of the cloud environment. To guarantee this QoS, cloud

providers generally opt for an over-provisioning solution, which is a viable solution in terms

of operational costs. Proactive management of these resources would be therefore crucial to

ensure the requested QoS, optimize the resources utilization, and minimize the costs. In this

perspective, the main objective of this thesis was to define and validate an adaptive approach to

predict resource consumption while meeting the SLA requirements of VNFs and optimizing the

use of these resources. Based on a selection mechanism, our approach proved to be sufficiently

generic to be applied to various data sets. It mainly includes multiple DL prediction models and

a selection component to select the best method depending on the workload.

In the first contribution of this work, we developed four DL-based models, our goal was to

analyze the behavior of DL models with the multi-type resource forecasting problem so that we

would be able to define the most suitable DL technique for the problem. Thus, the resulting

DL models were the results of a long process of experiment of trial and model enhancement

based on the errors, the extensive experiments study performed on different workload scenarios

revealed the uncertainty of the efficiency of each model that changes depending on the workload.

In the second contribution, we proposed an efficient GNN Model that uses SFC topological

features to capture VNFs consumption dependencies. The GNN model demonstrates its

performance in high-load traffic. The proposed GNN model has been compared with MLP,

LSTM, hybrid LSTM, and CNN models to evaluate its accuracy and efficiency. Real-world

datasets have been used to evaluate the proposed model using five performance metrics. The
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performance analysis reveals that our graph-features-based GNN model outperforms the other

models for SFCs with high traffic load variation.

In the third contribution of this work, we developed a VNF similarity module analysis based on

VNFs consumption correlation to capture affinities between the multi-type resource consumption

of the VNFs. This module has been used in the MT-MLS.

In the fourth contribution of this work, we proposed an automatic selection approach that enables

us to find the most suitable DL model based on VNFs similarity analysis.is and errors of the

base prediction models. The MT-MLS introduces a novel concept by analyzing similarities

of multidimensional resource consumption between virtual network functions (VNFs) of a

service function chain (SFC). Various SFC resource consumption datasets have been used

to evaluate the proposed MT-MLS using three performance metrics for the evaluation of

classification and five others for the evaluation of prediction. The performance analysis reveals

that the MT-MLS enhance considerably the accuracy of prediction and thus the efficiency of the

prediction mechanism. However, due to a lack of data, the generalisation of our model were not

sufficiently assessed. In fact, we couldn’t asses the performances of our model under various

SFC structure and various workload. Indeed, we have chosen to work with data that is limited in

quantity and diversity but collected from SFCs deployed in known environments ( topologies

and configuarations of the SFCs, the configurations of the cloud testing environement).

Our main contributions are summarized in the following:

• An efficient GNN Model that uses SFC topological features and demonstrates its performance

in high load traffic.

• A deep investigation of five DL models for resource prediction reveals the weaknesses of

DL-based solutions.

• A VNFs consumption similarity analysis module that guides a resource usage predictor to

efficient forecasting.
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• An efficient resource prediction mechanism adaptive to resource demand in virtualized

systems. The proposed mechanism may be applied with many types and amount of resource

prediction methods.

In our future work, we will enhance the VNF similarity analysis module by considering other

VNF dependencies such as topological dependencies. We also intend to conduct real-world

deployment studies to validate the effectiveness and practical utility of MT-MLS in operational

NFV environments.

Our work has been published in two international journals In the first paper, we proposed a deep

learning model to predict the resource consumption (e.g., CPU, memory) in network function

virtualization infrastructures (NFVI).

• Bellili, Asma et Kara, Nadjia. 2023. «An efficient adaptive meta learning model based VNFs

similarity for resource prediction optimization in virtualized networks». Journal of Network

and Systems Management, vol. 31, nº 2, March 2023.

In the second paper, we proposed a multitask selector based on meta-learning strategy MT-MLS.

• Bellili, Asma et Kara, Nadjia. 2023. «A graphical deep learning technique-based VNF

dependencies for multi-resource requirements prediction in virtualized environments».

Journal of computing, October 2023.





APPENDIX I

EVALUATION METRICS

1. Confusion Matrix

We computed confusion matrix to asses the performances of our classifier and to help us

understand how well our model is performing, by showing the number of correct and incorrect

predictions across different classes. A confusion matrix is an N x N table used to evaluate

the performance of a classifier, where N represents the number of target classes. It juxtaposes

the actual target values with the predictions made by the model, providing a comprehensive

overview of the model’s performance and the types of errors it encounters. To compute the

confusion matrix, we must define the following terms:

• True Positives (TP): The count of instances that were correctly predicted as belonging to a

specific class.

• True Negatives (TN): The count of instances that were correctly predicted as not belonging

to a particular class.

• False Positives (FP): The count of instances that were incorrectly predicted as belonging to a

specific class when they do not.

• False Negatives (FN): The count of instances that were incorrectly predicted as not belonging

to a class when they actually do.

Thus, each element of the matrix correspond to the number of element predicted as the row

class where was expected to be predicted as the column class. Therefore, the diagonal entries

indicate the number of correct predictions for each class. The Off-Diagonal entries represent

classification errors and help in identifying which classes are frequently confused.
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