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Calibrage de modèles en apprentissage profond

Balamurali MURUGESAN

RÉSUMÉ

Malgré les progrès indéniables réalisés dans les tâches de reconnaissance visuelle grâce aux

réseaux de neurones profonds, des données récentes montrent que ces modèles sont mal calibrés,

ce qui entraîne des prédictions trop fiables. Les pratiques standard de minimisation de la perte

d’entropie croisée pendant l’apprentissage favorisent la correspondance des probabilités softmax

prédites avec les attributions d’étiquettes uniques. Néanmoins, cela produit une activation

pré-softmax de la classe correcte nettement supérieure aux activations restantes, ce qui aggrave

le problème de mauvais calibrage. Des observations récentes issues de la littérature sur la

classification suggèrent que les fonctions de perte intégrant une maximisation implicite ou

explicite de l’entropie des prédictions offrent des performances de calibrage de pointe. Malgré ces

résultats, l’impact de ces pertes sur la tâche pertinente de calibrage des réseaux de segmentation

d’images médicales, les nouvelles pertes spécifiques à la tâche de segmentation et le langage

visuel reste inexploré.

Dans le premier objectif, nous nous référons à l’un des travaux antérieurs de notre groupe, qui

propose une perspective unifiée d’optimisation sous contraintes des pertes de calibrage de pointe

actuelles. Plus précisément, ces pertes sont considérées comme des approximations d’une pénalité

linéaire (ou d’un terme lagrangien) imposant des contraintes d’égalité sur les distances logit.

Cela met en évidence une limitation importante de ces contraintes d’égalité strictes sous-jacentes,

dont les gradients qui en résultent poussent constamment vers une solution non informative,

ce qui pourrait empêcher d’atteindre le meilleur compromis entre performance discriminante

et calibration du modèle lors de l’optimisation par gradient. Suite à nos observations, nous

étendons à la segmentation d’images médicales la pénalité de généralisation simple et flexible

proposée, qui impose une marge contrôlable sur les distances logit. Nous fournissons des

expériences et des études d’ablation complètes sur cinq benchmarks de segmentation publics

différents, axés sur diverses cibles et modalités, soulignant les capacités de généralisation de

l’approche proposée. Nos résultats empiriques démontrent la supériorité de notre méthode par

rapport aux pertes de calibration de pointe, tant en termes de calibration que de performance

discriminante.

Dans le deuxième objectif, nous proposons une perspective d’optimisation sous contrainte du

lissage spatial des étiquettes variables (SVLS), démontrant qu’il peut être considéré comme une

perte d’entropie croisée standard associée à une contrainte implicite imposant aux prédictions

softmax de correspondre à une proportion de classe souple des pixels environnants. Notre

formulation montre que le SVLS ne dispose pas d’un mécanisme permettant de contrôler

explicitement l’importance de la contrainte, ce qui peut entraver le processus d’optimisation,

car il devient difficile d’équilibrer efficacement la contrainte avec l’objectif principal. Suite

à ces observations, nous proposons une solution simple et flexible basée sur des contraintes

d’égalité sur les distributions logit. La contrainte proposée est appliquée par une pénalité
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linéaire simple, qui intègre un mécanisme explicite pour contrôler son poids. Notre approche

offre non seulement une stratégie plus efficace pour modéliser les distributions logit, mais

diminue également implicitement les valeurs logit, ce qui se traduit par des prédictions moins

surconfiantes. Nous menons des expériences approfondies et des études d’ablation sur plusieurs

benchmarks de segmentation d’images médicales, incluant diverses cibles et modalités, et

démontrons la supériorité de notre méthode par rapport aux pertes d’étalonnage les plus récentes.

De plus, plusieurs études d’ablation valident empiriquement les choix de conception de notre

approche et démontrent son caractère agnostique vis-à-vis du modèle.

Dans le troisième objectif, nous proposons une approche par contraintes par classe et par région

pour résoudre le problème d’étalonnage erroné dans les modèles de segmentation sémantique.

Plus précisément, nous formulons une solution qui prend en compte les spécificités de chaque

catégorie et des différentes régions en introduisant des pondérations de pénalité indépendantes

par classe et par région. Ceci contraste avec les travaux antérieurs, où une pondération de

pénalité scalaire uniforme est utilisée, quelles que soient les catégories ou les régions. De plus,

nous transposons le problème contraint à son homologue d’optimisation duale sans contrainte en

utilisant une méthode lagrangienne augmentée (ALM). Cela évite d’ajuster manuellement chaque

pondération de pénalité et permet, grâce à une série d’étapes itératives internes et externes,

de trouver la valeur optimale de chaque pondération de pénalité, laquelle peut être apprise

de manière adaptative. Des expériences approfondies sur deux benchmarks de segmentation

populaires et deux structures de segmentation bien connues démontrent la supériorité de notre

approche par rapport à un ensemble d’approches d’étalonnage récentes et pertinentes.

Dans le quatrième objectif, nous démontrons empiriquement que les stratégies d’adaptation CLIP

courantes, telles que les adaptateurs, l’apprentissage rapide et le réglage rapide au moment du test,

dégradent considérablement les capacités de calibrage de la ligne de base zéro-shot en présence

de dérive distributionnelle. Pour ces stratégies d’adaptation, nous démontrons que la cause

sous-jacente du mauvais calibrage est en fait l’augmentation des plages logit. Cela contraste

avec les travaux récents sur le calibrage des modèles entièrement supervisés, qui suggèrent que

la cause inhérente du mauvais calibrage est plutôt l’augmentation de sa norme, due à la perte

d’entropie croisée standard utilisée pour l’apprentissage. Sur la base de ces observations, nous

présentons une solution simple et indépendante du modèle, qui consiste à mettre à l’échelle la

plage logit de chaque échantillon en fonction des logits zéro-shot. Nous présentons également

plusieurs alternatives pour adapter notre solution, qui peuvent être mises en œuvre au moment

de l’apprentissage ou de l’inférence. Des expériences approfondies sur des référentiels de

classification OOD courants démontrent empiriquement l’efficacité de nos approches pour

réduire l’erreur de calibrage, tout en conservant les performances discriminantes.

Mots-clés: Calibrage de réseau, segmentation d’image, incertitude, modèles vision-langage,

adaptation à quelques prises de vue, généralisation de domaine, adaptation au temps de test
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Balamurali MURUGESAN

ABSTRACT

Despite the undeniable progress in visual recognition tasks fueled by deep neural networks, there

exists recent evidence showing that these models are poorly calibrated, resulting in over-confident

predictions. The standard practices of minimizing the cross-entropy loss during training promote

the predicted softmax probabilities to match the one-hot label assignments. Nevertheless, this

yields a pre-softmax activation of the correct class that is significantly larger than the remaining

activations, which exacerbates the miscalibration problem. Recent observations from the

classification literature suggest that loss functions that embed implicit or explicit maximization

of the entropy of predictions yield state-of-the-art calibration performances. Despite these

findings, the impact of these losses in the relevant task of calibrating medical image segmentation

networks, novel losses specific to task of segmentation, and vision-language remains unexplored.

In the first objective, we refer to one of the earlier works from our group which provides a unifying

constrained-optimization perspective of current state-of-the-art calibration losses. Specifically,

these losses are viewed as approximations of a linear penalty (or a Lagrangian term) imposing

equality constraints on logit distances. This points to an important limitation of such underlying

hard equality constraints, whose ensuing gradients constantly push towards a non-informative

solution, which might prevent from reaching the best compromise between the discriminative

performance and calibration of the model during gradient-based optimization. Following these

insights, we extend the proposed simple and flexible generalization penalty which imposes a

controllable margin on logit distances to medical image segmentation. We provide comprehensive

experiments and ablation studies on seven different public segmentation benchmarks that focus

on diverse targets and modalities, highlighting the generalization capabilities of the proposed

approach. Our empirical results demonstrate the superiority of the margin based label smoothing

compared to state-of-the-art calibration losses in both calibration and discriminative performance.

In the second objective, we provide a constrained-optimization perspective of Spatially Varying

Label Smoothing (SVLS), demonstrating that it could be viewed as a standard cross-entropy

loss coupled with an implicit constraint that enforces the softmax predictions to match a soft

class proportion of surrounding pixels. Our formulation shows that SVLS lacks a mechanism to

control explicitly the importance of the constraint, which may hinder the optimization process as

it becomes challenging to balance the constraint with the primary objective effectively. Following

these observations, we propose a simple and flexible solution based on equality constraints on

the logit distributions. The proposed constraint is enforced with a simple linear penalty, which

incorporates an explicit mechanism to control the weight of the penalty. Our approach not only

offers a more efficient strategy to model the logit distributions but implicitly decreases the logit

values, which results in less overconfident predictions. We conduct comprehensive experiments

and ablation studies over multiple medical image segmentation benchmarks, including diverse

targets and modalities, and show the superiority of our method compared to state-of-the-art
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calibration losses. Furthermore, several ablation studies empirically validate the design choices

of our approach, as well as demonstrate its model agnostic nature.

In the third objective, we propose a class and region-wise constraint approach to tackle the

miscalibration issue in semantic segmentation models. In particular, we formulate a solution

that considers the specificities of each category and different regions by introducing independent

class and region-wise penalty weights. This contrasts with the prior work, where a uniform scalar

penalty weight is employed, regardless of categories or regions. Furthermore, we transfer the

constrained problem to its dual unconstrained optimization counterpart by using an Augmented

Lagrangian method (ALM). This alleviates the need for manually adjusting each penalty weight

and allows, through a series of iterative inner and outer steps, to find the optimal value of each

penalty weight, which can be learned in an adaptive manner. Comprehensive experiments on

two popular segmentation benchmarks, and with two well-known segmentation backbones,

demonstrate the superiority of our approach over a set of relevant recent calibration approaches.

In the fourth objective, we empirically demonstrate that popular CLIP adaptation strategies,

such as Adapters, Prompt Learning, and Test-Time Prompt Tuning, substantially degrade the

calibration capabilities of the zero-shot baseline in the presence of distributional drift. For these

adaptation strategies, we expose that the underlying cause of miscalibration is, in fact, the increase

of the logit ranges. This contrasts with recent work in calibrating fully-supervised models, which

suggests that the inherent cause of miscalibration is the increase of its norm instead, due to the

standard cross-entropy loss used for training. Based on these observations, we present a simple,

and model-agnostic solution, which consists in scaling the logit range of each sample based on

the zero-shot logits. We further present several alternatives to accommodate our solution, which

can be implemented either at training or inference time. Comprehensive experiments on popular

OOD classification benchmarks empirically demonstrate the effectiveness of our approaches to

reduce the miscalibration error, while keeping the discriminative performance.

Keywords: Network calibration, Image Segmentation, Uncertainty, Vision-language models,

Few-shot adaptation, Domain generalization, Test-time adaptation
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INTRODUCTION

0.1 Motivation

Deep Neural Networks (DNNs) have not only achieved remarkable results but have consistently

surpassed previous state-of-the-art methodologies across numerous demanding benchmarks

(Krizhevsky, Sutskever & Hinton, 2012; Everingham et al., 2015; Wang et al., 2018; Rajpurkar,

Zhang, Lopyrev & Liang, 2016), fundamentally reshaping the landscape of artificial intelligence

and demonstrating an unparalleled capacity for learning intricate patterns from complex data.

This paradigm shift is strikingly evident in fields ranging from computer vision (He, Zhang,

Ren & Sun, 2016b; Ren, He, Girshick & Sun, 2015; Dosovitskiy et al., 2021b), where DNNs

have achieved human-level performance on tasks like image recognition and object detection, to

natural language processing (Sutskever, Vinyals & Le, 2014; Vaswani et al., 2017; Brown et al.,

2020), where they power sophisticated machine translation, and text generation, systems with

unprecedented fluency and accuracy. Furthermore, their influence is felt in speech recognition

(Panayotov, Chen, Povey & Khudanpur, 2015; Guoguo Chen,Shuzhou Chai, 2021), achieving

remarkable reductions in error rates, and even in complex strategic domains like game playing

(Silver et al., 2016), previously thought to be the exclusive domain of human expertise. Critically,

their impact extends profoundly into medical image analysis (Shin et al., 2016; Ronneberger,

Fischer & Brox, 2015b; Milletari, Navab & Ahmadi, 2016b; Gulshan et al., 2016), enabling

significant advancements in tasks such as automated detection of diseases (e.g., cancer, diabetic

retinopathy), and precise segmentation of anatomical structures for surgical planning – often

surpassing the accuracy and efficiency of traditional methods.

The deployment of these state-of-the-art deep learning networks is still in early stages in

practical applications like medical diagnosis (Huang, Ruan, Xing & Feng, 2024), autonomous

vehicle control (Loquercio, Segu & Scaramuzza, 2020), or financial risk assessment (Blasco,

Sánchez & García, 2024), where besides accuracy, the uncertainty score associated with the
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prediction plays a vital role in decision making. A high uncertainty score can flag potentially

unreliable predictions, prompting human review, triggering fallback mechanisms, or informing

a more cautious approach to the model’s output (Kendall & Gal, 2017; Amini, Schwarting,

Soleimany & Rus, 2020). For instance, the model might output a prediction of “malignant

tumor” with an associated uncertainty score of 30%, which could arise because the image quality

is poor, or the tumor has unusual characteristics not well-represented in the training dataset.

This high uncertainty would flag the prediction as potentially unreliable, prompting a human

radiologist to review the image and model’s findings more carefully before making a diagnosis.

Hence, it is necessary to understand the source of uncertainty, and define appropriate measures

to quantify the reliability based on the intended application.

The predictive uncertainty (Hüllermeier & Waegeman, 2021) is in general separated into data

uncertainty (also statistical or aleatoric uncertainty) and model uncertainty (also systemic or

epistemic uncertainty), a crucial framework for understanding the limitations and potential

pitfalls of any predictive model, particularly within the complex landscape of deep learning.

Data uncertainty, often viewed as irreducible, stems from the inherent noise, randomness, and

ambiguity present within the data itself. In contrast, model uncertainty, which is theoretically

reducible, originates from the limitations of the model’s structure, the training process, or

the amount and representativeness of the training data. Disentangling these two sources

of uncertainty, and understanding the type of uncertainty leads to targeted improvements

(Kendall & Gal, 2017). Besides the above-mentioned types of uncertainty, deep learning models

are very susceptible to distribution shifts (Liang, Li & Srikant, 2018), as it is impossible to

cover all possible scenarios, hence modeling distributional uncertainty is mandatory in building

trustworthy and interpretable systems.

In case of classification, the aleatoric uncertainty quantification is generally obtained from

the softmax outputs (Van Amersfoort, Smith, Teh & Gal, 2020). The maximum confidence
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associated with the final prediction can serve as the uncertainty metric, higher the softmax

score, more confident is the model. A more holistic quantification would involve usage of

entropy, where confident predictions have high entropy compared to uncertain – uniform softmax

values. The epistemic uncertainty is captured through Bayesian approaches (Blundell, Cornebise,

Kavukcuoglu & Wierstra, 2015), where the model intends to predict probability distributions.

Besides, techniques like Monte Carlo Dropout (Gal & Ghahramani, 2016), and Deep Ensembles

(Fort, Hu & Lakshminarayanan, 2019) are common approaches to obtain alternate distributions.

The variance of these distributions quantify the uncertainty, where lower values mean certainty

in the prediction. Though Bayesian approaches are better at modelling the uncertainty, it can be

computationally expensive and challenging to scale to large deep learning models. In contrast,

softmax analysis is simple and computationally efficient, as it comes directly from the standard

output layer.

Figure 0.1 Joint density plots of accuracy vs confidence (captured by the mean of the

winning softmax score) on the CIFAR-100 validation set at different training epochs for the

VGG-16 deep neural network. Top Row: Cross Entropy, Bottom Row: MixUp
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The predictive uncertainty obtained from maximum softmax score should be indicative of

the actual likelihood of correctness. However, recent studies (Thulasidasan, Chennupati,

Bilmes, Bhattacharya & Michalak, 2019b) have shown that many latest models are inherently

overconfident due to their complex architectures and the standard loss functions that are designed

to maximize accuracy. For instance, consider the case of VGG-16 network optimized for

CIFAR-100 dataset, comparing the average winning score and accuracy for the validation data

using joint density plots in the top row of the Figure 0.1 shows that confidence (captured by the

winning score) as well as accuracy start out low and gradually increase as the network learns.

However, it can be noted that confidence always surpasses accuracy in the later stages of training;

accuracy saturates while confidence continues to increase resulting in a very sharply peaked

distribution of winning scores and an overconfident model.

Most modern DNNs, when trained for classification in a supervised learning setting, are

trained using one-hot encoded labels that have all the probability mass in one class (Müller,

Kornblith & Hinton, 2019b); the training labels are thus zero-entropy signals that admit no

uncertainty about the input. The DNN is thus, in some sense, trained to become overconfident.

This inherent tendency toward overconfidence is handled through model calibration (Guo, Pleiss,

Sun & Weinberger, 2017b; Wenger, Kjellström & Triebel, 2020), a procedure which ensures

that the model’s confidence score matches with the discriminative performance. The density

plots comparing the average winning score and accuracy similar to the earlier discussed case are

shown in the bottom row of the Figure 0.1, it can be seen that the calibrated model has predicted

softmax scores which are better indicators of the actual likelihood of a correct prediction.

0.2 Reasons behind model miscalibration

It has been observed that some recent changes in modern neural networks are responsible for

model miscalibration (Guo et al., 2017b; Mukhoti et al., 2020b; Minderer et al., 2021). The

underlying general cause is that modern neural networks’ high capacity makes them vulnerable
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to miscalibration, which is tightly correlated to the concepts of over-parameter, overfitting and

over-confidence.

0.2.1 Model Complexity

The design and depth of deep models help in providing improved predictive performance, and it

also impacts the model calibration. Studies have shown that over-parameterized models tend to

push the prediction very close to the target label, an important tradeoff between generic and

overfitted model (Guo et al., 2017b). The recent pretrain-finetune paradigm which involves

updating only few parameters offers the possibility of reducing overfitting (Desai & Durrett,

2020; Hu et al., 2022b). The choice of parameters considered for optimizing can also help with

calibration, like to avoid attention mechanisms updates, and focus only on the feedforward and

normalization layers (Ye et al., 2023). Moreover, Vision Transformers (ViT) and ConvNeXt

have shown better calibration over Convolution Neural Networks (CNNs) (Liu et al., 2022c; Bai,

Mei, Yuille & Xie, 2021).

0.2.2 Data Issues

The data and annotations play a crucial role in developing deep learning models for the target

task. Likewise, to obtain desirable calibration, the quantity and quality of data is key. Training

over-parametrized network with less or incomplete data can result in overconfident model. The

usage of noisy and biased data for training can also severely miscalibrate the model. For example,

when dataset is imbalanced, meaning that few classes are significantly more prevalent than

the other, the model tends to become overconfident for those few classes and uncertain about

the remaining classes, leading to poor calibration. Ensemble methods (Lakshminarayanan,

Pritzel & Blundell, 2017b; Malinin, Mlodozeniec & Gales, 2019) and data augmentation

(Thulasidasan et al., 2019b; Müller et al., 2019b) have shown encouraging results in mitigating

the effects of noisy data on model performance.
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0.2.3 Learning Objective and Regularization

The loss functions are primarily chosen based on the target objective, and in most cases, it

is to increase the performance of the model, which can impact the calibration quality. For

instance, in case of classification tasks, the weights are optimized for the likelihood of correct

class predictions. However, optimizing only for accuracy can lead to over-confident predictions,

particularly in situations where learning the features of a particular class is relatively easier

than the other. Regularization techniques have always been incorporated along with the target

objective to avoid model overfitting aiding in model calibration. Lately, techniques likes

batch normalization (Ioffe & Szegedy, 2015) and dropout (Srivastava, Hinton, Krizhevsky,

Sutskever & Salakhutdinov, 2014) have been designed specifically for deep learning models

to alleviate the over-confident issue. Focal loss (Lin, Goyal, Girshick, He & Dollár, 2017) has

shown its effectiveness in handling the training progress for samples with different difficulty

levels.

0.3 Calibration in image segmentation

The earlier discussed problems also applies to tasks beyond classification, like semantic

segmentation - classifying every single pixel in an image with a corresponding class label.

The direct solutions from classification literature have shown promising results, and there

have been some preliminary attempts to utilize the spatial nature of segmentation tasks (Wang,

Gong & Wang, 2023). Importantly, most of the existing methods have primarily focused on

medical imaging domain which requires capturing the ambiguity between classes especially

in the boundary regions (Kohl et al., 2018). Stochastic segmentation networks (Monteiro

et al., 2020) captures correlations between pixels by modelling the logit map as a low-rank

multivariate normal distribution. Deep Deterministic Uncertainty (Mukhoti, van Amersfoort,

Torr & Gal, 2021) showed that feature space densities could also be used to estimate the



7

uncertainty. Local temperature scaling (Ding et al., 2021) predicts a temperature for individual

pixels based on the spatial variations. Model ensembles besides achieving better segmentation

also helps in improving calibration (Mehrtash, Wells, Tempany, Abolmaesumi & Kapur, 2020).

Inference from Variational U-Net (Fuchs, Gonzalez & Mukhopadhyay, 2021) showed that

reliable predictive estimates could be obtained.

0.4 Domain shift calibration

Domain generalization is a key requirement for model deployment as predictions for unseen data

could be unreliable (Torralba & Efros, 2011). Hence, it is necessary to have a model calibrated

not only for in-distribution data, but also be reliable for out-of-distribution (unseen) data. Earlier,

techniques based on unsupervised domain adaptation (Park, Bastani, Weimer & Lee, 2020)

were used to predict the covariate shifts and correct for the shift through importance weighting.

Further, to reduce the effective distribution disparity between the target and calibration domains,

(Gong et al., 2021) leverages developing models exposed to multiple domains. Post processing

methods (Tomani, Gruber, Erdem, Cremers & Buettner, 2021b) after performing perturbations

on the validation set have also been effective in calibration. Recently, pre-trained vision-language

models like CLIP have shown to be inherently better in domain generalization. To further

improve the performance for the target tasks, adaptation techniques are being considered, which

disturbs the calibration for out-of-distribution samples.

0.5 Research Objectives and Contributions

In this thesis, we mainly focus on the miscalibration caused through learning objectives. The

standard practices of minimizing the cross-entropy loss during training promote the predicted

softmax probabilities to match the one-hot label assignments. Nevertheless, this yields a pre-

softmax activation of the correct class that is significantly larger than the remaining activations,

which exacerbates the miscalibration problem. Recent observations from the classification



8

literature suggest that loss functions that embed implicit or explicit maximization of the entropy

of predictions yield state-of-the-art calibration performances. Despite these findings, the impact

of these losses in the relevant task of calibrating medical image segmentation networks, novel

losses specific to task of segmentation, and vision-language remains unexplored.

In the first objective, we refer to one of the earlier works from our group which provides a unifying

constrained-optimization perspective of current state-of-the-art calibration losses. Specifically,

these losses are viewed as approximations of a linear penalty (or a Lagrangian term) imposing

equality constraints on logit distances. This points to an important limitation of such underlying

hard equality constraints, whose ensuing gradients constantly push towards a non-informative

solution, which might prevent from reaching the best compromise between the discriminative

performance and calibration of the model during gradient-based optimization. Following our

observations, we extend the proposed simple and flexible generalization penalty which imposes a

controllable margin on logit distances to medical image segmentation. We provide comprehensive

experiments and ablation studies on five different public segmentation benchmarks that focus

on diverse targets and modalities, highlighting the generalization capabilities of the proposed

approach. Our empirical results demonstrate the superiority of our method compared to state-

of-the-art calibration losses in both calibration and discriminative performance. Importantly,

through this work, we established a medical image segmentation benchmark by comparing our

method with the standard classification specific loss functions.

In the second objective, we provide a constrained-optimization perspective of Spatially Varying

Label Smoothing (SVLS), demonstrating that it could be viewed as a standard cross-entropy

loss coupled with an implicit constraint that enforces the softmax predictions to match a soft

class proportion of surrounding pixels. Our formulation shows that SVLS lacks a mechanism to

control explicitly the importance of the constraint, which may hinder the optimization process as

it becomes challenging to balance the constraint with the primary objective effectively. Following
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these observations, we propose a simple and flexible solution based on equality constraints on

the logit distributions. The proposed constraint is enforced with a simple linear penalty, which

incorporates an explicit mechanism to control the weight of the penalty. Our approach not only

offers a more efficient strategy to model the logit distributions but implicitly decreases the logit

values, which results in less overconfident predictions. We conduct comprehensive experiments

and ablation studies over multiple medical image segmentation benchmarks, including diverse

targets and modalities, and show the superiority of our method compared to state-of-the-art

calibration losses. Furthermore, several ablation studies empirically validate the design choices

of our approach, as well as demonstrate its model agnostic nature.

In the third objective, we propose a class and region-wise constraint approach to tackle the

miscalibration issue in semantic segmentation models. In particular, we formulate a solution

that considers the specificities of each category and different regions by introducing independent

class and region-wise penalty weights. This contrasts with the prior work, where a uniform scalar

penalty weight is employed, regardless of categories or regions. Furthermore, we transfer the

constrained problem to its dual unconstrained optimization counterpart by using an Augmented

Lagrangian method (ALM). This alleviates the need for manually adjusting each penalty weight

and allows, through a series of iterative inner and outer steps, to find the optimal value of each

penalty weight, which can be learned in an adaptive manner. Comprehensive experiments on

two popular segmentation benchmarks, and with two well-known segmentation backbones,

demonstrate the superiority of our approach over a set of relevant recent calibration approaches.

In the fourth objective, we empirically demonstrate that popular CLIP adaptation strategies,

such as Adapters, Prompt Learning, and Test-Time Prompt Tuning, substantially degrade the

calibration capabilities of the zero-shot baseline in the presence of distributional drift. For these

adaptation strategies, we expose that the underlying cause of miscalibration is, in fact, the increase

of the logit ranges. This contrasts with recent work in calibrating fully-supervised models, which
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suggests that the inherent cause of miscalibration is the increase of its norm instead, due to the

standard cross-entropy loss used for training. Based on these observations, we present a simple,

and model-agnostic solution, which consists in scaling the logit range of each sample based on

the zero-shot logits. We further present several alternatives to accommodate our solution, which

can be implemented either at training or inference time. Comprehensive experiments on popular

OOD classification benchmarks empirically demonstrate the effectiveness of our approaches to

reduce the miscalibration error, while keeping the discriminative performance.

0.6 Thesis Outline

The organization of the work reported in the thesis is described in this section. This introductory

chapter first establishes the motivation for model calibration in classification, explaining the

common reasons for miscalibration. It then highlights the importance of calibration for image

segmentation, where it leads to more reliable boundaries, and for domain generalization, ensuring

trustworthy classification of out-of-distribution data. Lastly, it provides a summary of observed

problems and its respective solutions contributing to this thesis. Chapter 1 introduces the

mathematical concept of model calibration in image classification, defining a perfectly calibrated

model as one whose confidence scores are both equal to and maximal. The chapter then

highlights the three common calibration strategies and provides background on medical image

segmentation and vision-language pre-training and adapters. The rest of the chapter shows the

existing calibration methods in segmentation, and vision-language foundation models. Chapter 2

provides a unified view of state-of-the-art calibration losses, framing them as approximations of

a linear penalty that imposes equality constraints on logit distances. Building on this observation,

the chapter adapts a method that uses a controllable margin on logit distances for medical

image segmentation. It then presents a thorough validation of this approach, demonstrating

its superiority against current methods across diverse segmentation benchmarks. The content

of this chapter corresponds to the journal article "Calibrating Segmentation networks with
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Margin-Based Label Smoothing" published in Journal of Medical Image Analysis (MedIA),

one of the leading journals in the field of medical imaging. Chapter 3 argues that Spatially

Varying Label Smoothing (SVLS) can be viewed as a cross-entropy loss that implicitly constrains

predictions to match the label distribution of surrounding pixels. The chapter identifies a key

limitation of SVLS: its lack of a strategy to balance this implicit constraint with the primary

segmentation objective. To address this, the chapter proposes a solution that uses a simple linear

penalty to better model the logit distributions. This proposed solution is then thoroughly analyzed

and comprehensively compared against other state-of-the-art segmentation methods, showcasing

its effectiveness. This chapter corresponds to the journal article entitled "Neighbor-Aware

Calibration of Segmentation Networks with Penalty-Based Constraints" published in the Journal

of Medical Image Analysis (MedIA), recognized as one of the premier journals within the

community. A preliminary version of this work was initially published in Medical Image

Computing and Computer-Assisted Intervention (MICCAI), a leading conference in the field.

Chapter 4 explores the possibility of gaining finer control over the spatial-aware calibration

loss introduced in the previous chapter, specifically for different categories and regions. It

demonstrates how the Augmented Lagrangian Method (ALM) can be used to automatically

determine the weights for class and region-wise penalties. The chapter validates this method’s

superiority by testing it on two popular segmentation benchmarks and two different segmentation

backbones. The content presented in this chapter corresponds to the conference proceeding titled

"Class and Region-Adaptive Constraints for Network Calibration" published in Medical Image

Computing and Computer-Assisted Intervention (MICCAI), one of the premier medical imaging

conferences. Chapter 5 empirically demonstrates that popular CLIP adaptation strategies

substantially degrade the zero-shot’s calibration performance in the presence of distributional

drift, and expose that the underlying cause is increase of the logit ranges. Based on these

analysis, the chapter provides a simple, and model-agnostic solution, which consists in scaling

the logit range of each sample based on the zero-shot logits. The chapter further demonstrates
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that the proposed solution reduces the miscalibration error, while keeping the discriminative

performance on standard OOD classification benchmarks. The content presented in this chapter

corresponds to the conference proceeding titled "Robust calibration of large vision-language

adapters" published in European Conference on Computer Vision (ECCV), considered one

of the top conferences in computer vision. Finally, the Conclusion chapter summarizes the

calibration solutions developed for least explored domains of medical image segmentation,

and vision-language adapters. It then discusses the limitations of these methods and proposes

future work, such as using intensity information to better model spatial awareness and analyzing

the dataset-specific behavior of zero-shot predictions. Moreover, the chapter also introduces

the possibility of applying calibration to other stages of medical imaging pipeline, and to use

conformal prediction for more formal uncertainty guarantees.
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0.8 Code Availability

The code implementations of the proposed objective functions in this thesis have been made

publicly available through the following links. Besides, we also incorporated our state-of-the-art

medical image segmentation calibration loss function NACL in the Medical Open Network

for Artificial Intelligence (MONAI) framework, a key artificial intelligence framework for

processing medical imaging in healthcare.

1. Robust Calibration of Large Vision-Language Adapters

a. https://github.com/Bala93/CLIPCalib

2. Class and Region-Adaptive Constraints for Network Calibration

a. https://github.com/Bala93/CRac

3. Neighbor-Aware Calibration of Segmentation Networks with Penalty-Based Constraints



14

a. https://github.com/Bala93/NACL

b. https://docs.monai.io/en/stable/losses.html#naclloss
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a. https://github.com/Bala93/MarginLoss



CHAPTER 1

BACKGROUND

1.1 Preliminaries

Let D(X,Y) = {(x(𝑖) , y(𝑖))}𝑁𝑖=1
be the training dataset, with x(𝑖) ∈ X ⊂ R

Ω𝑖 representing the

𝑖𝑡ℎ image, Ω𝑖 the spatial image domain, and y ∈ Y ⊂ {0, 1} its corresponding ground-truth

label with 𝐾 classes, provided as one-hot encoding. Given an input image x(𝑖) , a neural

network parameterized by 𝜃 generates a logit vector, defined as 𝑓𝜃 (x(𝑖)) = l(𝑖) ∈ R
𝐾 . To

simplify the notations, we omit sample indices, as this does not lead to ambiguity, and just use

l = (𝑙𝑘 )1≤𝑘≤𝐾 ∈ R
𝐾 to denote logit vectors. Note that the logits are the inputs of the softmax

probability predictions of the network, which are computed as:

s = (𝑠𝑘 )1≤𝑘≤𝐾 ∈ R
𝐾 ; 𝑠𝑘 =

exp𝑙𝑘∑𝐾
𝑗 exp𝑙 𝑗

(1.1)

The predicted class is computed as 𝑦̂ = arg max𝑘 𝑠𝑘 , whereas the predicted confidence is given

by 𝑝 = max𝑘 𝑠𝑘 .

Perfectly calibrated models are those for which the predicted confidence for each sample is

equal to the model accuracy : P( 𝑦̂ = 𝑦 |𝑝 = 𝑝) = 𝑝, where 𝑦 denotes the true labels. Therefore,

an over-confident model tends to yield predicted confidences that are larger than its accuracy,

whereas an under-confident model displays lower confidence than the model’s accuracy.

1.2 Calibration Methods

In this section, we categorize the state-of-the-art calibration methods into post-hoc methods,

regularization methods and uncertainty estimation methods. Besides, we discuss ensemble

methods that combine different calibration methods.
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1.2.1 Post-hoc Methods

Post-hoc methods involve modifying the predictions of pre-trained model based on the separately

held datasets intended for calibration. The two common approaches include non-parametric

methods like histogram binning (Zadrozny & Elkan, 2001), isotonic regression (Zadrozny & Elkan,

2002c) and parametric methods like Platt scaling (Platt et al., 1999). Isotonic regression involving

fitting a monotonic function to the predictions, while Platt scaling involve learning a parameter

model with least calibration error. The parametric methods are more commonly used due to

their low complexity, interpretablity, and efficiency. Temperature Scaling (TS) and its extensions

such as attended TS (Mozafari, Gomes, Leão, Janny & Gagné, 2018), Dirichlet calibration (Kull

et al., 2019), Bin-wise TS (BTS) (Ji, Jung, Yoon, Kim et al., 2019) are some of the widely adapted

techniques for Platt scaling. As post-hoc methods decouple calibration from training, it is

convenient for the deployment. However, these methods effectiveness largely on the calibration

data, and simply finding a temperature value is not enough to capture the possible variations in

real data.

1.2.2 Regularization Method

Regularization is key component in preventing neural network models from making overconfident

predictions. In this section, we discuss works that either explicitly or implicitly regularizes deep

networks for better calibration.

1.2.2.1 Explicit Regularization

The addition of explicitly adding a regularization term (L2 or L1) to provide better generalization,

have been effective in model calibration (Guo et al., 2017b). The overconfident predictions

generally have peaked softmax distributions, hence enforcing entropy as regularization (Pereyra,

Tucker, Chorowski, Kaiser & Hinton, 2017) ensures that the models are penalized for those

predictions aiding in calibration. Recently, in an interesting study (Liu, Ben Ayed, Galdran & Dolz,

2022b) showed that popular calibration methods like label smoothing (Müller et al., 2019b),
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and (Lin et al., 2017) are also inherently regularizing the entropy. Besides, the work also

showed that, constraining the logits is better for calibration compared to operating in label

or the softmax space. In one of the works (Liang, Zhang, Wang & Jacobs, 2020), authors

have attempted to directly regularize with the non-differential term by obtaining the difference

between confidence and accuracy. There is a rising trend (Kumar, Sarawagi & Jain, 2018a;

Bohdal, Yang & Hospedales, 2021) to find the differential approximations of calibration error

and use it along with the standard losses.

1.2.2.2 Implicit Regularization

Focal loss (Lin et al., 2017) was initially proposed to handle class-imbalance issue in object

detection. Recently, it has been shown that, the design of focal loss (Mukhoti et al., 2020b) helps

in calibration by implicitly reducing cross entropy with an entropy maximizer as regularizer.

Moreover, in the experiment, it was observed that the hyper-parameter 𝛾 could be better

controlled to improve calibration, and later proposed (Ghosh, Schaaf & Gormley, 2022)

sample dependent 𝛾. Instead of adding penalty terms to objective functions, regularization

to mitigate model miscalibration could also be provided through data augmentation. Label

smoothing (Müller et al., 2019b) soften hard labels with a smoothing parameter in cross entropy,

while Mixup (Thulasidasan et al., 2019b) combines inputs and labels to obtain a synthetic

sample for objective optimization.

In comparison to post-hoc methods, regularization methods can provided calibrated model

without additional processing. Moreover, most of these methods doesn’t necessarily increase the

model complexity or the training procedures.

1.2.3 Ensemble Methods

Instead of applying each method independently, we can always combine two or more methods

to have better calibration. One straightforward way is to combine non-post-hoc methods with

post-hoc methods. For instance, performing Temperature Scaling (TS) after employing the
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regularization method and implicit calibration (Kumar et al., 2018a; Bohdal et al., 2021). The

combination of regularization techniques like mixup training and label smoothing have also shown

improved calibration (Thulasidasan et al., 2019b). Methods like MC-dropout (Gal & Ghahramani,

2016), Gumbel-softmax sampling (Jang, Gu & Poole, 2017b; Wang, Lawrence & Niepert,

2021a), and ensembles (Lakshminarayanan et al., 2017b) introduce randomness in the training

or inference mechanism to alleviate model miscalibration. The preliminary attempts include

starting with different pre-trained weights, or dropping connections randomly during training.

Remarks: The latter set of ensemble works requires multiple inference runs to perform

approximations. This increases computational overhead significantly as compared to previous

methods. On the other hand, these methods have shown promise in uncertainty quantification

and estimation.

Figure 1.1 Illustration of various medical segmentation benchmarks including different

imaging modalities and region of interests
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1.3 Medical Image Segmentation

Medical image segmentation refers to the process of delineating organs or abnormal regions

from the imaging modalities like CT, MRI, and is one of the key components in the medical

image analysis pipeline (Litjens et al., 2017). The results obtained from this stage guide the

doctors to make critical decisions including diagnosis, and treatment planning. For instance,

in case of tumor identification and removal, segmentation of tumor cells can provide an idea

about the malignancy of the cancer cells and can later be used to surgically remove them through

guidance systems (Ranjbarzadeh et al., 2021). A few examples of the imaging modalities,

and its respective target region annotations can be found in Figure 1.1. Before the advent

of deep learning, this process was either done manually or through conventional techniques

involving manual feature design (Bensch & Ronneberger, 2015). Despite their efficiency and

interpretability, the techniques were unable to deliver the anticipated accuracy on the benchmark

datasets. Similar to the AlexNet (Krizhevsky, Sutskever & Hinton, 2017) moment in ImageNet

classification benchmark, and SegNet (Badrinarayanan, Kendall & Cipolla, 2017) for CamVid

dataset, ISBI 2015 Cell Segmentation model (Maška et al., 2014) had U-Net (Ronneberger et al.,

2015b) which overhauled the medical imaging segmentation domain. The promising results

of U-Net in this challenge laid the groundwork for the subsequent works (Zhou, Siddiquee,

Tajbakhsh & Liang, 2020; Isensee et al., 2021; Chen et al., 2021; Guo et al., 2022; Cao et al.,

2022; Maška et al., 2023; Ma et al., 2024; Wang, Zheng, Zhang, Cui & Li, 2024c).

1.4 Vision-Language Models

Text-driven pre-training of image representation, so-called vision-language models (VLMs) is

revolutionizing the paradigm of transfer learning. These models can integrate massive web-

scrabbled data sources thus learning robust feature representations. In particular, models such as

CLIP (Radford et al., 2021) or ALIGN (Jia et al., 2021) train joint multi-modal embedding spaces

via contrastive learning of paired images and text, using dual encoder architectures. Such strong

vision-language alignment has demonstrated robust open-vocabulary zero-shot generalization

capabilities (Radford et al., 2021; Zhai et al., 2022). The overall outline of a typical Vision-
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Figure 1.2 Summary of CLIP – Image and Text encoder are trained to predict the correct

pairings of batch of (image, text) samples. In test time, zero-shot linear classifier is

constructed with the text encoder embeddings of the possible target classes along with the

input image

language model, in this case, CLIP is shown in Figure 1.2. Given such potential, transferring

pre-trained VLMs to a wide variety of tasks is gaining increasing popularity. Nevertheless,

this process faces particular challenges. First, large-scale pre-training usually involves also

scaling network sizes, which is a computational bottleneck for low-resource adaptation scenarios.

Second, recent attempts to fine-tune VLMs have demonstrated a deterioration of their robustness

against domain drifts (Kumar, Raghunathan, Jones, Ma & Liang, 2022; Wortsman et al., 2022),

especially when available data is limited. Thus, an emerging core of recent literature is focusing

on novel alternatives to overcome these limitations. More concretely, freezing the pre-trained

backbone, and reusing such features by training a small set of parameters, via Prompt Learning

(Zhou et al., 2022c; Zhou, Yang, Loy & Liu, 2022a; Hantao Yao,Rui Zhang, 2023; Zhu, Niu,

Han, Wu & Zhang, 2023; Khattak, Rasheed, Maaz, Khan & Khan, 2023), or black-box Adapters

(Gao et al., 2024; Zhang et al., 2022b; Yu, Lu, Jin, Chen & Wang, 2023b; Silva-Rodriguez,

Hajimiri, Ayed & Dolz, 2024; Ouali, Bulat, Martinez & Tzimiropoulos, 2023; Li et al., 2024;

Zhang et al., 2023), is getting increasing attention.
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Figure 1.3 An example of one of the earlier versions of prompt learning – CoOp. The

prompt’s context uses a set of learnable vectors which are optimized by minimizing the

classification loss

1.4.1 Prompt based learning

CLIP models have shown encouraging results by hand-crafting personalized text descriptions

of the target visual representation (Menon & Vondrick, 2023). The automatizing of this

cumbersome process raises the concept of Prompt Learning (PL) (Zhou et al., 2022c), a family

of methods to adapt CLIP that inserts a set of continuous learnable tokens in the original text

prompt at the input of the VLM language encoder. While the CLIP model remains frozen,

PL optimizes the most discriminative text input, given a few-shot support set (Zhou et al.,

2022c,a; Khattak et al., 2023; Zhu et al., 2023). CoOp (Zhou et al., 2022c) represents one

of the initial attempts to study the effect of prompt tuning on different tasks, and proposed to

learn the prompt’s context words. CoCoOp (Zhou et al., 2022a), on the other hand, designed

a simple network to predict the input text prompt through image features, as CoOp failed to

match the zero-shot performance on generic tasks. Figure 1.3 showcases the pipeline of CoOp,

where during inference, the concatenated version of target classes embedding along with the

learned contexts is used. TPT (Shu et al., 2022) extends PL to address time-test adaptation

scenarios by updating the prompt for a batch with original and augmented samples through

entropy minimization.
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Figure 1.4 CLIP-Adapter – one of the preliminary versions of adapters which does not

require to calculate and propagate the gradients through CLIP’s encoder

1.4.2 Black-box Adapters

Prompt Learning involves using the CLIP’s encoder throughout the entire training process as the

backpropagation of the gradient has to pass through it to update the prompts, which results in large

computational constraints (Gao et al., 2024). Adapter-based techniques provide an alternative to

Prompt Learning for aligning to downstream tasks, leveraging uniquely pre-computed features

with minimal additional parameters. A base version of such methods involves training a linear

classifier via logistic regression, typically referred to as Linear Probing (Radford et al., 2021).

Nevertheless, leveraging only the vision features does not fully exploit the potential of VLMs.

To this end, several methods have proposed enhanced Adapters, which further rely on zero-shot

text-driven class-wise prototypes. In particular, Clip-Adapter (Gao et al., 2024) introduced

additional fully connected layers and operated on the vision or language branch through residual

style feature combination. The layout of CLIP-Adpater can be found in 1.4 showing that

encoder weights are frozen while updating the post encoders weights. Training-free methods

such as Tip-Adapter (Zhang et al., 2022b) resorted to a key-value cache model based on the

available few-shot supports. Likewise, TaskRes (Yu et al., 2023b) introduced additional learning

parameters and applied a residual modification of the text representation, which led to a better



23

initialization when learning from few-shot supervision. More recently, (Silva-Rodriguez et al.,

2024) provided a wider look at the coupling of vision and text features in such Adapters, by

pointing out that these methods are sensitive to hyper-parameters and largely build up their

improved performance on initializing the logistic classifier weights with the zero-shot prototypes,

which in itself is strong baseline. Moreover, they proposed a simple solution, coined CLAP, for

a better distillation of such prototypes.

Figure 1.5 Illustration of calibrated model providing better segmentation and uncertainty

estimate compared to the uncalibrated model. In the top row, both the models overall

provide confident right predictions, whereas in the bottom row for a challenging domain

shifted version, calibrated model provide uncertain predictions (desirable), compared to

confident wrong predictions by uncalibrated model. The distribution of class probabilities

demonstrates the prediction uncertainty

1.5 Calibration in Medical Image Segmentation

Recent literature has focused on either estimating the predictive uncertainty or on leveraging

this uncertainty to improve the discriminative performance of segmentation models (Wang

et al., 2019b; Zou et al., 2023; Linmans, Elfwing, van der Laak & Litjens, 2023; Adiga,

Dolz & Lombaert, 2024). Nevertheless, research to improve both the calibration and segmentation
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performance of CNN-based segmentation models is scarce and has been largely disregarded.

In Figure 1.5, we showcase a contrastive example to demonstrate the importance of having a

segmentation model which is also better calibrated. (Jena & Awate, 2019) proposed a novel

deep segmentation framework rooted in generative modeling and Bayesian decision theory,

which allowed to define a principled measure of uncertainty associated with label probabilities.

Recent findings (Fort et al., 2019), however, suggest that current state-of-the-art Bayesian

neural networks have tendency to find solutions around a single minimum of the loss landscape

and, consequently, lack diversity. In contrast, ensembling deep neural networks typically

results in more diverse predictions, and therefore obtain better uncertainty estimates. This

observation aligns with the recent work in (Jungo, Balsiger & Reyes, 2020; Mehrtash et al.,

2020), which evaluates several uncertainty estimation approaches and concludes that ensembling

outperforms other methods. To promote model diversity within the ensemble, (Larrazabal,

Martínez, Dolz & Ferrante, 2021) integrate an orthogonality constraint in the learning objective,

showing significant gains over the non-constrained set. More recently, (Karimi & Gholipour,

2022) argue that training a single model in a multi-task manner on several different datasets yields

better calibration on the different tasks compared to its single-task counterpart. Nevertheless,

these methods incur in high computationally expensive steps as they involve training either

multiple models or a single model on multiple datasets. In an orthogonal direction, several

recent methods have overcome this limitation and proposed lighter alternatives. For example,

(Ding et al., 2021) extends the naive temperature scaling by integrating a simple CNN to

predict the pixel-wise temperature values in a post-processing step. Despite the improvement

observed over the naive TS, this method inherits the limitations of temperature scaling and

related post-processing approaches. In addition, (Islam & Glocker, 2021) apply a weight matrix

with a Gaussian kernel across the one-hot encoded expert labels to obtain soft class probabilities,

adding into the standard Label smoothing a spatial-awareness. A potential limitation of this

strategy is that the modification of the hard labels is done without considering the behaviour of

the model, systematically disregarding those samples which are more, or less, confident. This

contrasts with the proposed approach, which does not modify the hard assignments, but directly

controls the confidence of the model in the logit space. However, despite these initial efforts,
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and to the best of our knowledge, a comprehensive evaluation of calibration methods in multiple

medical image segmentation benchmarks has not been conducted yet.

Figure 1.6 VLMs are well-calibrated by temperature scaling on both ID and OOD test sets

compared to ImageNet-trained models

1.6 Calibration in Vision-Language Models

(Tu, Deng, Campbell, Gould & Gedeon, 2024) have investigated the factors that affect the

uncertainty estimation performance of Vision-Language Models (VLMs). They have shown

that, VLMs coupled with temperature scaling surpass other models in their ability to estimate

uncertainty accurately (LeVine, Pikus, Raja & Gil, 2023), Figure 1.6 is provided as reference.

Moreover, it has also been noted that VLMs can be calibrated with datasets that have different

label sets or label hierarchy levels. Through thorough analysis (Wang et al., 2024b), it has

been shown that fine-tuned VLMs often suffer from miscalibration, especially in the open-

vocabulary setting. The authors demonstrate the correlation between the calibration and the

textual distribution gap, and also show that after prompt learning, VLMs tend to be overconfident

on classes far away from base classes. To overcome this problem, Distance-Aware Calibration, a

simple and effective temperature scale is performed with distance between predicted text labels

and base classes as a guidance. Likewise, current prompt-tuning methods typically lead to a

trade-off between base and new classes, compromising one of them. The proposed Dynamic

Outlier Regularization (DOR) (Wang, Li & Wei, 2024a), a simple yet effective regularization

that ensures calibration performance on both base and new classes. Instead of adaptation, if we

fine-tune the models, (Oh et al., 2024) argues that the existing models do not adequately achieve

satisfactory OOD generalization and calibration simultaneously. To support, the work shows
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that both classification and calibration errors are bounded from above by the ID calibration error

and the smallest singular value of the covariance matrix over the ID input representation. The

proposed CaRot reduces the upper bound by conducting constrained multimodal contrastive

learning with EMA self-distillation. In test-time adaptation setting, (Yoon et al., 2024) showed

that the calibration of CLIP models is significantly influenced by the prompt choice, with

certain prompts offering superior calibration with the same prediction accuracy level. It has

been identified that the critical difference between these prompts can be characterized by the

distribution of the class-embedded text features, with a noticeable negative correlation between

the dispersion of the text features and the calibration error. This paper introduces Calibrated

Test-time Prompt Tuning (C-TPT), which is used to jointly optimize the prompt during test time

to achieve better calibration by maximizing Average Text Feature Dispersion (ATFD). Recently,

O-TPT (Sharifdeen, Munir, Baliah, Khan & Khan, 2025) showed that the calibration of test-time

prompt tuning of VLMs can be accomplished by introducing orthogonalization constraints on

the textual features by enforcing the angular distance between them.
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Abstract

Despite the undeniable progress in visual recognition tasks fueled by deep neural networks, there

exists recent evidence showing that these models are poorly calibrated, resulting in over-confident

predictions. The standard practices of minimizing the cross-entropy loss during training promote

the predicted softmax probabilities to match the one-hot label assignments. Nevertheless,

this yields a pre-softmax activation of the correct class that is significantly larger than the

remaining activations, which exacerbates the miscalibration problem. Recent observations

from the classification literature suggest that loss functions that embed implicit or explicit

maximization of the entropy of predictions yield state-of-the-art calibration performances.

Despite these findings, the impact of these losses in the relevant task of calibrating medical image

segmentation networks remains unexplored. In this work, we provide a unifying constrained-

optimization perspective of current state-of-the-art calibration losses. Specifically, these losses

could be viewed as approximations of a linear penalty (or a Lagrangian term) imposing equality



28

constraints on logit distances. This points to an important limitation of such underlying equality

constraints, whose ensuing gradients constantly push towards a non-informative solution, which

might prevent from reaching the best compromise between the discriminative performance and

calibration of the model during gradient-based optimization. Following our observations, we

propose a simple and flexible generalization based on inequality constraints, which imposes

a controllable margin on logit distances. Comprehensive experiments on a variety of public

medical image segmentation benchmarks demonstrate that our method sets novel state-of-the-art

results on these tasks in terms of network calibration, whereas the discriminative performance is

also improved. The code is available at https://github.com/Bala93/MarginLoss

2.1 Introduction

Deep neural networks (DNNs) are driving progress in a variety of computer vision tasks across

different domains and applications. In particular, these high-capacity models have become the

de-facto solution in critical tasks, such as medical image segmentation. Despite their superior

performance, there exists recent evidence (Guo et al., 2017b; Mukhoti et al., 2020b; Müller

et al., 2019b) which demonstrates that these models are poorly calibrated, often resulting in

over-confident predictions. As a result, the predicted probability values associated with each

class overestimate the actual likelihood of correctness.

Quantifying the predictive uncertainty of modern DNNs has gained popularity recently, with

several alternatives to train better calibrated models. A simple yet effective approach consists

in integrating a post-processing step that modifies the predicted probabilities of a trained

neural network (Guo et al., 2017b; Zhang, Kailkhura & Han, 2020c; Tomani, Gruber, Erdem,

Cremers & Buettner, 2021a; Ding et al., 2021). This strategy, however, presents several

limitations. First, the choice of the transformation parameters, such as temperature scaling,

is highly dependent on the dataset and network. And second, under domain drift, post-hoc

calibration performance largely degrades (Ovadia et al., 2019), resulting in unreliable predictions.

A more principled alternative is to explicitly maximize the Shannon entropy of the model

predictions during training, which can be achieved by augmenting the learning objective with a
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term that penalizes confident output distributions (Pereyra et al., 2017). Furthermore, recent

efforts to quantify the quality of predictive uncertainties have focused on investigating the effect

of the entropy on the training labels (Xie, Wang, Wei, Wang & Tian, 2016; Müller et al., 2019b;

Mukhoti et al., 2020b). Findings from these works evidence that, popular losses, which modify

the hard-label assignments, such as label smoothing (Szegedy, Vanhoucke, Ioffe, Shlens & Wojna,

2016) and focal loss (Lin et al., 2017), implicitly integrate an entropy maximization objective

and have a favourable effect on model calibration. As shown comprehensively in the recent study

in (Mukhoti et al., 2020b), these losses, with implicit or explicit maximization of the entropy,

represent the state-of-the-art in model calibration in visual and non-visual recognition tasks.

Despite this progress, the benefit of these calibration losses remains unclear in medical image

segmentation. Indeed, only a handful of works have addressed this important problem, mostly

focusing on the calibration assessment of standard segmentation losses (Mehrtash et al., 2020),

i.e., cross-entropy and Dice. From a clinical perspective, semantic segmentation is of pivotal

importance in several downstream tasks, such as diagnostic, surgical planning, treatment

assessment, or following-up disease progress. In these important steps, clinicians equipped with

segmentation uncertainty can make better decisions, and build trust on the system. For example,

a clinician faced with a large segmentation error localized in a particular area of an image and

a small error at any other region, without knowledge of the segmentation uncertainty, may

decide to dismiss the segmentation entirely. On the other hand, by providing precise estimates

of the segmentation uncertainties, the clinician could evaluate whether these regions lie in

low uncertainty or high uncertainty areas, which will facilitate the assessment of the quality

of the segmentation per region. We stress that if clinicians place unwarranted confidence on

regions with inaccurate uncertainty estimates, the resulting decision might have catastrophic

consequences. Thus, we believe that it is of great significance and interest to study methods for

confidence calibration of segmentation models in the context of medical imaging.

The contributions of this work are summarized as follows:

• We provide a unifying constrained-optimization perspective of current state-of-the-art

calibration losses. Specifically, these losses could be viewed as approximations of a linear



30

penalty (or a Lagrangian term) imposing equality constraints on logit distances. This points

to an important limitation of such underlying hard equality constraints, whose ensuing

gradients constantly push towards a non-informative solution, which might prevent from

reaching the best compromise between the discriminative performance and calibration of the

model during gradient-based optimization.

• Following our observations, we propose a simple and flexible generalization based on

inequality constraints, which imposes a controllable margin on logit distances.

• We provide comprehensive experiments and ablation studies on five different public

segmentation benchmarks that focus on diverse targets and modalities, highlighting the

generalization capabilities of the proposed approach. Our empirical results demonstrate the

superiority of our method compared to state-of-the-art calibration losses in both calibration

and discriminative performance.

This journal version provides a substantial extension of the conference work presented in (Liu,

Ben Ayed, Galdran & Dolz, 2022a). In particular, we provide a thorough literature review on

calibration of segmentation models, with a main focus on the medical field. Second, we perform

a comprehensive empirical validation, including i) multiple public benchmarks covering diverse

modalities and targets, ii) adding recent approaches which specifically target calibration of

segmentation models (i.e., (Islam & Glocker, 2021) and (Ding et al., 2021)), and iii) substantial

in-depth analysis of the behaviour of the analyzed models. We believe that, to date, this work

represents the most comprehensive evaluation of calibration models in the task of medical image

segmentation, not only in terms of the amount of benchmarks employed, but also in regards of

models compared.

2.2 Related work

Post-processing approaches: Including a post-processing step that transforms the probability

predictions of a deep network (Guo et al., 2017b; Zhang et al., 2020c; Tomani et al., 2021a;

Ding et al., 2021) is a straightforward yet efficient strategy to mitigate miscalibrated predictions.

Among these methods, temperature scaling (Guo et al., 2017b), a variant of Platt scaling (Platt
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et al., 1999), employs a single scalar parameter over all the pre-softmax activations, which results

in softened class predictions. Despite its good performance on in-domain samples, (Ovadia

et al., 2019) demonstrated that temperature scaling does not work well under data distributional

shift. (Tomani et al., 2021a) mitigated this limitation by transforming the validation set before

performing the post-hoc calibration step, whereas (Ma & Blaschko, 2021) introduced a ranking

model to improve the post-processing model calibration.

Probabilistic and non-probabilistic approaches: have been also investigated to measure the

uncertainty of the predictions in modern deep neural networks. For example, prior literature has

employed Bayesian neural networks to approximate inference by learning a posterior distribution

over the network parameters, as obtaining the exact Bayesian inference is computationally

intractable in deep networks. These Bayesian-based models include variational inference

(Blundell et al., 2015; Louizos & Welling, 2016), stochastic expectation propagation (Hernández-

Lobato & Adams, 2015) or dropout variational inference (Gal & Ghahramani, 2016). A popular

non-parametric alternative is ensemble learning, where the empirical variance of the network

predictions is used as an approximate measure of uncertainty. This yields improved discriminative

performance, as well as meaningful predictive uncertainty with reduced miscalibration. Common

strategies to generate ensembles include differences in model hyperparameters (Wenzel, Snoek,

Tran & Jenatton, 2020), random initialization of the network parameters and random shuffling

of the data points (Lakshminarayanan, Pritzel & Blundell, 2017a), Monte-Carlo Dropout

(Gal & Ghahramani, 2016; Zhang, Dalca & Sabuncu, 2019), dataset shift (Ovadia et al., 2019)

or model orthogonality constraints (Larrazabal et al., 2021). However, a main drawback of

this strategy stems from its high computational cost, particularly for complex models and large

datasets.

Explicit and implicit penalties: Modern classification networks trained under the fully

supervised learning paradigm resort to training labels provided as binary one-hot encoded

vectors. Therefore, all the probability mass is assigned to a single class, resulting in minimum-

entropy supervisory signals (i.e., entropy equal to zero). As the network is trained to follow

this distribution, we are implicitly forcing it to be overconfident (i.e., to achieve a minimum
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entropy), thereby penalizing uncertainty in the predictions. While temperature scaling artificially

increases the entropy of the predictions, (Pereyra et al., 2017) included into the learning objective

a term to penalize confident output distributions by explicitly maximizing the entropy. In

contrast to tackling overconfidence directly on the predicted probability distributions, recent

works have investigated the effect of the entropy on the training labels. The authors of (Xie

et al., 2016) explored adding label noise as a regularization, where the disturbed label vector

was generated by following a generalized Bernoulli distribution. Label smoothing (Szegedy

et al., 2016), which successfully improves the accuracy of deep learning models, has been

shown to implicitly calibrate the learned models, as it prevents the network from assigning the

full probability mass to a single class, while maintaining a reasonable distance between the

logits of the ground-truth class and the other classes (Müller et al., 2019b). More recently,

(Mukhoti et al., 2020b) demonstrated that focal loss (Lin et al., 2017) implicitly minimizes a

Kullback-Leibler (KL) divergence between the uniform distribution and the softmax predictions,

thereby increasing the entropy of the predictions. Indeed, as shown in (Müller et al., 2019b;

Mukhoti et al., 2020b), both label smoothing and focal loss implicitly regularize the network

output probabilities, encouraging their distribution to be close to the uniform distribution. To

our knowledge, and as demonstrated experimentally in the recent studies in (Müller et al., 2019b;

Mukhoti et al., 2020b), loss functions that embed implicit or explicit maximization of the entropy

of the predictions yield state-of-the-art calibration performances.

2.2.0.0.1 Calibration in medical image segmentation

Recent literature has focused on either estimating the predictive uncertainty or on leveraging

this uncertainty to improve the discriminative performance of segmentation models (Wang et al.,

2019b). Nevertheless, research to improve both the calibration and segmentation performance

of CNN-based segmentation models is scarce. (Jena & Awate, 2019) proposed a novel deep

segmentation framework rooted in generative modeling and Bayesian decision theory, which

allowed to define a principled measure of uncertainty associated with label probabilities. Recent

findings (Fort et al., 2019), however, suggest that current state-of-the-art Bayesian neural
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networks have tendency to find solutions around a single minimum of the loss landscape and,

consequently, lack diversity. In contrast, ensembling deep neural networks typically results in

more diverse predictions, and therefore obtain better uncertainty estimates. This observation

aligns with the recent work in (Jungo et al., 2020; Mehrtash et al., 2020), which evaluates several

uncertainty estimation approaches and concludes that ensembling outperforms other methods. To

promote model diversity within the ensemble, (Larrazabal et al., 2021) integrate an orthogonality

constraint in the learning objective, showing significant gains over the non-constrained set.

More recently, (Karimi & Gholipour, 2022) argue that training a single model in a multi-task

manner on several different datasets yields better calibration on the different tasks compared to

its single-task counterpart. Nevertheless, these methods incur in high computationally expensive

steps as they involve training either multiple models or a single model on multiple datasets. In

an orthogonal direction, several recent methods have overcome this limitation and proposed

lighter alternatives. For example, (Ding et al., 2021) extends the naive temperature scaling by

integrating a simple CNN to predict the pixel-wise temperature values in a post-processing step.

Despite the improvement observed over the naive TS, this method inherits the limitations of

temperature scaling and related post-processing approaches. In addition, (Islam & Glocker,

2021) apply a weight matrix with a Gaussian kernel across the one-hot encoded expert labels to

obtain soft class probabilities, adding into the standard Label smoothing a spatial-awareness. A

potential limitation of this strategy is that the modification of the hard labels is done without

considering the behaviour of the model, systematically disregarding those samples which are

more, or less, confident. This contrasts with the proposed approach, which does not modify the

hard assignments, but directly controls the confidence of the model in the logit space. However,

despite these initial efforts, and to the best of our knowledge, a comprehensive evaluation of

calibration methods in multiple medical image segmentation benchmarks has not been conducted

yet.
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2.3 Preliminaries

Let D(X,Y) = {(x(𝑖) , y(𝑖))}𝑁𝑖=1
be the training dataset, with x(𝑖) ∈ X ⊂ R

Ω𝑖 representing the 𝑖𝑡ℎ

image,Ω𝑖 the spatial image domain, and y ∈ Y ⊂ R
𝐾 its corresponding ground-truth label with𝐾

classes, provided as one-hot encoding. Given an input image x(𝑖) , a neural network parameterized

by 𝜃 generates a logit vector, defined as 𝑓𝜃 (x(𝑖)) = l(𝑖) ∈ R
𝐾 . To simplify the notations, we omit

sample indices, as this does not lead to ambiguity, and just use l = (𝑙𝑘 )1≤𝑘≤𝐾 ∈ R
𝐾 to denote

logit vectors. Note that the logits are the inputs of the softmax probability predictions of the

network, which are computed as:

s = (𝑠𝑘 )1≤𝑘≤𝐾 ∈ R
𝐾 ; 𝑠𝑘 =

exp𝑙𝑘∑𝐾
𝑗 exp𝑙 𝑗

(2.1)

The predicted class is computed as 𝑦̂ = arg max𝑘 𝑠𝑘 , whereas the predicted confidence is given

by 𝑝 = max𝑘 𝑠𝑘 .

Calibrated models. Perfectly calibrated models are those for which the predicted confidence

for each sample is equal to the model accuracy : 𝑝 = P( 𝑦̂ = 𝑦 |𝑝), where 𝑦 denotes the true

labels. Therefore, an over-confident model tends to yield predicted confidences that are larger

than its accuracy, whereas an under-confident model displays lower confidence than the model’s

accuracy.

Miscalibration of DNNs. To train fully supervised discriminative deep models, the standard

cross-entropy (CE) loss is commonly used as the training objective. We argue that, from a

calibration performance, the supervision of CE is suboptimal. Indeed, CE reaches its minimum

when the predictions for all the training samples match the hard (binary) ground-truth labels, i.e.,

𝑠𝑘 = 1 when 𝑘 is the ground-truth class of the sample and 𝑠𝑘 = 0 otherwise. Minimizing the CE

implicitly pushes softmax vectors s towards the vertices of the simplex, thereby magnifying the

distances between the largest logit max𝑘 (𝑙𝑘 ) and the rest of the logits, yielding over-confident

predictions and miscalibrated models.
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2.4 A constrained-optimization perspective of calibration

We present in this section a novel constrained-optimization perspective of current calibration

methods for deep networks, showing that the existing strategies, including Label Smoothing (LS)

(Müller et al., 2019b; Szegedy et al., 2016), Focal Loss (FL) (Mukhoti et al., 2020b; Lin et al.,

2017) and Explicit Confidence Penalty (ECP) (Pereyra et al., 2017), impose equality constraints

on logit distances. Specifically, they embed either explicit or implicit penalty functions, which

push all the logit distances to zero.

2.4.1 Definition of logit distances

Let us first define the vector of logit distances between the winner class (i.e., the class with the

highest logit: arg max 𝑗 (𝑙 𝑗 )) and the remaining classes as:

d(l) = (max
𝑗
(𝑙 𝑗 ) − 𝑙𝑘 )1≤𝑘≤𝐾 ∈ R

𝐾 (2.2)

Note that each element in d(l) is non-negative. In the following, we show that LS, FL and ECP

correspond to different soft penalty functions for imposing the same hard equality constraint

d(l) = 0 or, equivalently, imposing inequality constraint d(l) ≤ 0 (as d(l) is non-negative by

definition). Clearly, enforcing this equality constraint in a hard manner would result in all 𝐾

logits being equal for a given sample, which corresponds to non-informative softmax predictions

𝑠𝑘 = 1
𝐾 ∀𝑘 .

2.4.2 Penalty functions in constrained optimization

In the general context of constrained optimization (Bertsekas, 1995), soft penalty functions are

widely used to tackle hard equality or inequality constraints. For the discussion in the sequel,

consider specifically the following hard equality constraint:

d(l) = 0 (2.3)
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The general principle of a soft-penalty optimizer is to replace a hard constraint of the form in

Eq. 2.3 by adding an additional term P(d(l)) into the main objective function to be minimized.

Soft penalty P should be a continuous and differentiable function, which reaches its global

minimum when the constraint is satisfied, i.e., it verifies: P(d(l)) ≥ P(0) ∀ l ∈ R
𝐾 . Thus, when

the constraint is violated, i.e., when d(l) deviates from 0, the penalty term P increases.

Label smoothing. Recent evidence (Lukasik, Bhojanapalli, Menon & Kumar, 2020; Müller et al.,

2019b) suggests that, in addition to improving the discriminative performance of deep neural

networks, Label Smoothing (LS) (Szegedy et al., 2016) positively impacts model calibration. In

particular, LS modifies the hard target labels with a smoothing parameter 𝛼, so that the original

one-hot training labels y ∈ {0, 1}𝐾 become yLS = (𝑦LS
𝑘 )1≤𝑘≤𝐾 , with 𝑦LS

𝑘 = 𝑦𝑘 (1− 𝛼) +
𝛼
𝐾 . Then,

we simply minimize the cross-entropy between the modified labels and the network outputs:

LLS = −
∑
𝑘

𝑦LS
𝑘 log 𝑠𝑘 = −

∑
𝑘

((1 − 𝛼)𝑦𝑘 +
𝛼

𝐾
) log 𝑠𝑘 (2.4)

where 𝛼 ∈ [0, 1] is the smoothing hyper-parameter. It is straightforward to verify that cross-

entropy with label smoothing in Eq. 2.4 can be decomposed into a standard cross-entropy term

augmented with a Kullback-Leibler (KL) divergence between uniform distribution u = 1
𝐾 and

the softmax prediction:

LLS
c
= LCE +

𝛼

1 − 𝛼
DKL (u| |s) (2.5)

where
c
= stands for equality up to additive and/or non-negative multiplicative constants. Now,

consider the following bounding relationships between a linear penalty (or a Lagrangian) for

equality constraint d(l) = 0 and the KL divergence in Eq. 2.5.

Proposition 1. A linear penalty (or a Lagrangian term) for constraint d(l) = 0 is bounded from

above and below by DKL (u| |s), up to additive constants:

DKL (u| |s) − log(𝐾)
c
≤

1

𝐾

∑
𝑘

(max
𝑗
(𝑙 𝑗 ) − 𝑙𝑘 )

c
≤ DKL (u| |s) (2.6)
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where
c
≤ stands for inequality up to an additive constant.

These bounding relationships could be obtained directly from the softmax and DKL expressions,

along with the following well-known property of the LogSumExp function: max𝑘 (𝑙𝑘 ) ≤

log
∑𝐾
𝑘 𝑒

𝑙𝑘 ≤ max𝑘 (𝑙𝑘 ) + log(𝐾). For the details of the proof, please refer to Appendix A of the

conference version in (Liu et al., 2022a).

Prop. 1 means that LS is (approximately) optimizing a linear penalty (or a Lagrangian) for

logit-distance constraint d(l) = 0, which encourages equality of all logits; see the illustration in

Figure 2.1, top-left.

Focal loss. Another popular alternative for calibration is focal loss (FL) (Lin et al., 2017),

which attempts to alleviate the over-fitting issue in CE by directing the training attention towards

samples with low confidence in each mini-batch. More concretely, the authors proposed to use

a modulating factor to the CE, (1 − 𝑠𝑘 )
𝛾, which controls the trade-off between easy and hard

examples. Very recently, (Mukhoti et al., 2020b) demonstrated that focal loss is, in fact, an upper

bound on CE augmented with a term that implicitly serves as a maximum-entropy regularizer:

LFL = −
∑
𝑘

(1 − 𝑠𝑘 )
𝛾𝑦𝑘 log 𝑠𝑘 ≥ LCE − 𝛾H(s) (2.7)

where 𝛾 is a hyper-parameter and H denotes the Shannon entropy of the softmax prediction,

given by

H(s) = −
∑
𝑘

𝑠𝑘 log(𝑠𝑘 ) (2.8)

In this connection, FL is closely related to ECP (Pereyra et al., 2017), which explicitly added the

negative entropy term, −H(s), to the training objective. It is worth noting that minimizing the

negative entropy of the prediction is equivalent to minimizing the KL divergence between the

prediction and the uniform distribution, up to an additive constant, i.e.,
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−H(s) c
= DKL(s| |u) (2.9)

which is a reversed form of the KL term in Eq. 2.5.

Therefore, all in all, and following Prop. 1 and the discussions above, LS, FL and ECP could be

viewed as different penalty functions for imposing the same logit-distance equality constraint

d(l) = 0. This motivates our margin-based generalization of logit-distance constraints, which

we introduce in the following section, along with discussions of its desirable properties (e.g.,

gradient dynamics) for calibrating neural networks.

2.4.3 Margin-based Label Smoothing (MbLS)

Our previous analysis shows that LS, FL and ECP are closely related from a constrained-

optimization perspective, and they could be seen as approximations of a linear penalty for

imposing constraint d(l) = 0, pushing all logit distances to zero; see Figure 2.1, top-left. Clearly,

enforcing this constraint in a hard way yields a non-informative solution where all the classes

have exactly the same logit and, hence, the same class prediction: 𝑠𝑘 = 1
𝐾 ∀𝐾. While this

trivial solution is not reached in practice when using soft penalties (as in LS, FL and ECP)

jointly with CE, we argue that the underlying equality constraint d(l) = 0 has an important

limitation, which might prevent from reaching the best compromise between the discriminative

performance and calibration of the model during gradient-based optimization. Figure 2.1, left,

illustrates this: With the linear penalty for constraint d(l) = 0 in the top-left of the Figure, the

derivative with respect to logit distances is a strictly positive constant (left-bottom), yielding

during training a gradient term that constantly pushes towards the trivial, non-informative

solution d(l) = 0 (or equivalently 𝑠𝑘 = 1
𝐾 ∀𝐾). To alleviate this issue, we propose to replace

the equality constraint d(l) = 0 with the more general inequality constraint d(l) ≤ m, where m

denotes the 𝐾-dimensional vector with all elements equal to 𝑚 > 0. Therefore, we include a

margin 𝑚 into the penalty, so that the logit distances in d(l) are allowed to be below 𝑚 when
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Figure 2.1 Illustration of the linear (left) and margin-based (right) penalties for imposing

logit-distance constraints, along with the corresponding derivatives. Note that while the

derivative of the linear penalty for constraint d(l) = 0 constantly pushes towards the trivial

solution 𝑠𝑘 = 1
𝐾∀𝐾 (i.e., LS, FL and EPC), the derivative of the proposed model only

pushes towards zero those logits above the given margin

optimizing the main learning objective:

min LCE s.t. d(l) ≤ m, m > 0 (2.10)

The intuition behind adding a strictly positive margin 𝑚 is that, unlike the linear penalty for

constraint d(l) = 0 (Figure 2.1, left), the gradient is back-propagated only on those logits where

the distance is above the margin (Figure 2.1, right). This contrasts with the linear penalty, for
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which there exists always a gradient, and its value is the same across all the logits, regardless of

their distance.

Even though the constrained problem in Eq. 2.10 could be solved by a Lagrangian-multiplier

algorithm, we resort to a simpler unconstrained approximation by ReLU function:

min LCE + 𝜆
∑
𝑘

max(0,max
𝑗
(𝑙 𝑗 ) − 𝑙𝑘 − 𝑚) (2.11)

Here, the non-linear ReLU penalty for inequality constraint d(l) ≤ m discourages logit distances

from surpassing a given margin 𝑚, and 𝜆 is a trade-off weight balancing the two terms. It is

clear that, as discussed in Sec. 2.4, several competitive calibration methods could be viewed as

approximations for imposing constraint d(l) = 0 and, therefore, correspond to the special case

of our method when setting the margin to 𝑚 = 0. Our comprehensive experiments in the next

section demonstrate clearly the benefits of introducing a strictly positive margin 𝑚.

Note that our model in Eq. 2.11 has two hyper-parameters, 𝑚 and 𝜆. We fixed 𝜆 to 0.1 in

our experiments for all the benchmarks, and tuned only the margin 𝑚 over validation sets. In

this way, when comparing with the existing calibration solutions, we use the same budget of

hyper-parameter optimization (𝑚 in our method vs. 𝛼 in LS or 𝛾 in FL).

2.5 Experiments

2.5.1 Experimental Setting

2.5.1.1 Datasets

To empirically validate our model, we employ five public multi-class segmentations benchmarks,

whose detailes are specified below.
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2.5.1.1.1 Automated Cardiac Diagnosis Challenge (ACDC)(Bernard et al., 2018)

This dataset consists of 100 patient exams containing cardiac MR volumes and its respective

multi-class segmentation masks for both diastolic and systolic phases. The segmentation mask

contains four classes, including the left ventricle (LV), right ventricle (RV), myocardium (Myo)

and background. Following the standard practices on this dataset, 2D slices are extracted

from the available volumes and resized to 224×224. Last, the dataset is randomly split into

independent training (70), validation (10) and testing (20) sets.

2.5.1.1.2 Brain Tumor Segmentation (BRATS) 2019 Challenge

(Menze et al., 2015; Bakas et al., 2017, 2018) The dataset contains 335 multi-modal MR

scans (FLAIR, T1, T1-contrast, and T2) with their corresponding Glioma segmentation masks.

The classes representing the mask include tumor core (TC), enhancing tumor (ET) and whole

tumor (WT). Each volume of dimension 155×240×240 is resampled and slices containing only

background are removed from the training. The patient volumes are randomly split to 235, 35,

65 for training, validation, and testing, respectively.

2.5.1.1.3 MRBrainS18 (Mendrik et al., 2015b)

The dataset contains paired T1, T2, and T1-IR volumes of 7 subjects and their segmentation

masks, which correspond to brain tissue including Gray Matter (GM), White Matter (WM),

and Cerebralspinal fluid (CSF). The dimensions of the volumes are 240×240×48. We utilize 5

subjects for training and 2 subjects for testing.

2.5.1.1.4 Fast and Low GPU memory Abdominal oRgan sEgmentation (FLARE) Challenge
(Ma et al., 2021b)

The dataset contains 360 volumes of multi-organ abdomen CT including liver, kidneys, spleen

and pancreas and their corresponding pixel-wise masks. The different resolutions are resampled
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to a common space and cropped to 192×192×30. The volumes are then randomly split to 240

for training, 40 for validation, 80 for testing.

2.5.1.1.5 PROMISE

(Litjens et al., 2014) The dataset was made available at the MICCAI 2012 prostate MR

segmentation challenge. It contains the transversal T2-weighted MR images acquired at different

centers with multiple MRI vendors and different scanning protocols. It is comprised of various

diseases, i.e., benign and prostate cancers. The images resolution ranges from 15×256×256

to 54×512×512 voxels with a spacing ranging from 2×0.27×0.27 to 4×0.75×0.75mm3. We

employed 22 patients for training, 3 for validation and 7 for testing.

2.5.1.1.6 HIPPOCAMPUS (HPC)

(Antonelli et al., 2022) : The data set consists of 260 MRI images acquired at the Vanderbilt

University Medical Center, Nashville, US. This data set was selected due to the precision

needed to segment such a small object in the presence of a complex surrounding environment.

T1-weighted MPRAGE was used as the imaging sequence. The corresponding target ROIs were

the anterior and posterior of the hippocampus, defined as the hippocampus proper and parts of

the subiculum. The data is split to 185, 25, 50 for training, validation, and testing, respectively.

2.5.1.1.7 Breast UltraSound Images (BUSI)

(Al-Dhabyani, Gomaa, Khaled & Fahmy, 2020) The datasets consists of ultrasound images of

normal, benign and malignant cases of breast cancer along with the corresponding segmentation

maps. We use only benign and mailgnant images, which results in a total of 647 images resized

to a resolution of 256 × 256 to benchmark our results. We considered 445 images for training,

65 images for validation, and the remaining 137 images for testing.

Note that in all datasets, images are normalized to be within the range [0-1]. Furthermore, for

the datasets containing multiple image modalities (i.e., MRBrainS and BRATS), all available
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modalities are concatenated in a single tensor, which is fed to the input of the neural network. In

addition, there exists one dataset for which the low amount of available images impeded us to

generate a proper training, validation and testing split (MRBrainS). In this case, we performed

leave-one-out-cross-validation in our experiments, whereas the other datasets followed standard

training, validation and testing procedures, using a single split in the experiments.

To assess the discriminative performance of the evaluated models, we resort to standard

segmentation metrics in the medical segmentation literature, which includes the DICE coefficient

(DSC) and the Average Surface Distance (ASD). To evaluate the calibration performance, we

employ both the expected calibration error (ECE) (Naeini, Cooper & Hauskrecht, 2015a) and

classwise expected calibration error (CECE). The reason to include CECE is because ECE only

considers the softmax probability of the predicted class, ignoring the other scores in the softmax

distribution (Mukhoti et al., 2020b). To compute the ECE given a finite number of samples, we

group predictions into 𝑀 equispaced bins. Let 𝐵𝑖 denote the set of samples with confidences

belonging to the 𝑖𝑡ℎ bin. The accuracy 𝐴𝑖 of this bin is computed as 𝐴𝑖 = 1
|𝐵𝑖 |

∑
𝑗∈𝐵𝑖

1(𝑦 𝑗 = 𝑦 𝑗 ),

where 1 is the indicator function, and 𝑦 𝑗 and 𝑦 𝑗 are the predicted and ground-truth labels for the

𝑗 𝑡ℎ sample. Similarly, the confidence 𝐶𝑖 of the 𝑖𝑡ℎ bin is computed as 𝐶𝑖 = 1
|𝐵𝑖 |

∑
𝑗∈𝐵𝑖

𝑝 𝑗 , i.e. 𝐶𝑖

is the average confidence of all samples in the bin. The ECE can be approximated as a weighted

average of the absolute difference between the accuracy and confidence of each bin:

𝐸𝐶𝐸 =
𝑀∑
𝑖=1

|𝐵𝑖 |

𝑁
|𝐴𝑖 − 𝐶𝑖 | (2.12)

The ECE metric only considers the probability of the predicted class, without considering the

other scores in the softmax distribution. A stronger definition of calibration would require the

probabilities of all the classes in the softmax distrubution to be calibrated. This can be achieved

with a simple classwise extension of the ECE metric: Classwise ECE, given by
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𝐶𝐸𝐶𝐸 =
𝑀∑
𝑖=1

𝐾∑
𝑗=1

|𝐵𝑖, 𝑗 |

𝑁
|𝐴𝑖, 𝑗 − 𝐶𝑖, 𝑗 | (2.13)

where 𝐾 is the number of classes, 𝐵𝑖 𝑗 denotes the set of samples from the 𝑗 𝑡ℎ class in the 𝑖𝑡ℎ bin,

𝐴𝑖, 𝑗 = 1
|𝐵𝑖, 𝑗 |

∑
𝑘∈𝐵𝑖, 𝑗

1( 𝑗 = 𝑦𝑘 ) and 𝐶𝑖, 𝑗 = 1
|𝐵𝑖 𝑗 |

∑
𝑘∈𝐵𝑖, 𝑗

𝑝𝑘 𝑗 )

Following the recent literature on calibration of segmentation networks (Islam & Glocker, 2021)

both ECE and CECE are obtained by considering only the foreground regions. The reason behind

this is that most of the correct –and certain– predictions are from the background. If we exclude

these areas from the statistics, the obtained results will better highlight the differences among

the different approaches. In our implementation, the number of bins to compute ECE and CECE

is set to 𝑀 = 15. Furthermore, we also employ reliability plots (Niculescu-Mizil & Caruana,

2005c) in our evaluation, which plot the expected accuracy as a function of class probability

(confidence), and for a perfectly calibrated model it represents the identity function.

Table 2.1 The discriminative performance (DSC and ASD) obtained by the different

models across seven popular medical image segmentation benchmarks. Best method is

highlighted in bold, whereas second best approach is underlined

Dataset Region CE + DICE FL ECP LS SVLS Ours

DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓

ACDC

RV 79.8 0.75 71.4 1.27 75.4 0.87 81.5 0.68 64.2 1.86 86.6 0.42
MYO 79.5 0.46 73.4 0.61 75.1 0.53 80.5 0.42 66.4 1.79 84.5 0.37
LV 88.8 0.35 84.6 0.47 83.9 0.41 88.6 0.32 79.5 1.21 91.3 0.29

Mean 82.7 0.52 76.4 0.78 78.2 0.60 83.5 0.48 70.1 1.62 87.5 0.36

MRBrainS

GM 75.7 0.48 77.3 0.53 79.3 0.47 74.5 0.51 75.3 0.49 80.0 0.39
WM 76.1 0.66 80.4 0.60 81.0 0.55 72.7 0.97 67.0 1.06 83.1 0.46
CSF 78.0 0.46 79.3 0.40 80.3 0.39 77.2 0.46 81.0 0.39 80.7 0.38
Mean 76.6 0.54 79.0 0.51 80.2 0.47 74.8 0.64 74.4 0.65 81.3 0.41

FLARE

Liver 94.2 0.43 95.1 0.37 95.2 0.56 95.2 1.44 94.9 1.47 95.3 1.52
Kidney 94.1 0.37 94.6 0.32 95.0 0.31 94.7 0.38 94.6 0.40 94.5 0.35
Spleen 90.4 0.61 92.4 0.55 92.4 0.68 94.2 0.38 93.2 0.56 94.0 0.38

Pancreas 63.4 1.41 62.5 1.65 64.9 1.47 63.6 1.56 63.6 1.53 64.5 1.42
Mean 85.5 0.71 86.2 0.72 86.9 0.75 86.9 0.94 86.6 0.99 87.1 0.92

BRATS

TC 74.6 4.98 85.4 3.13 83.4 2.63 80.7 2.96 76.3 3.48 85.6 2.24
ET 72.9 3.23 79.9 2.58 78.3 1.81 77.3 1.59 74.9 2.31 81.1 1.62
WT 85.4 2.93 88.9 2.72 88.9 2.41 87.9 2.48 88.8 2.27 89.5 2.11

Mean 77.6 3.71 84.8 2.81 83.6 2.28 81.9 2.34 79.8 2.69 85.4 1.99

PROMISE
Prostate 0.751 1.17 72.9 1.42 73.6 1.27 71.3 1.72 76.6 1.27 77.0 0.95
Tumor 32.8 4.10 36.1 3.35 34.4 2.48 35.0 3.29 39.6 2.16 39.7 2.34
Mean 54.0 2.63 54.5 2.39 54.0 1.88 53.2 2.50 58.1 1.71 58.3 1.64

HPC
Anterior 87.4 0.47 87.9 0.46 87.4 0.49 87.9 0.49 88.3 0.46 87.6 0.49
Posterior 85.7 0.43 85.2 0.48 85.3 0.45 85.7 0.42 84.9 0.48 85.7 0.43

Mean 86.7 0.45 86.5 0.47 86.4 0.47 86.8 0.45 86.6 0.47 86.7 0.46

BUSI Tumor 70.9 13.1 68.8 13.9 67.7 15.1 67.9 15.6 67.9 14.6 68.5 13.7
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Table 2.2 The calibration performance (ECE and CECE) obtained by the different models

across five popular medical image segmentation benchmarks. Best method is highlighted in

bold, whereas second best approach is underlined. ∇ indicates the difference between the

best model and our approach

Dataset CE + DICE FL ECP LS SVLS Ours

ECE ↓ CECE ↓ ECE ↓ CECE ↓ ECE ↓ CECE ↓ ECE ↓ CECE ↓ ECE ↓ CECE ↓ ECE ↓ CECE ↓
ACDC 0.137 0.084 0.113 0.116 0.109 0.095 0.081 0.107 0.176 0.135 0.061 0.069

MRBrainS 0.172 0.102 0.020 0.064 0.048 0.068 0.036 0.085 0.060 0.080 0.050 0.058
FLARE 0.058 0.034 0.033 0.035 0.037 0.027 0.055 0.050 0.039 0.036 0.038 0.028
BRATS 0.178 0.122 0.097 0.119 0.132 0.091 0.112 0.108 0.151 0.122 0.101 0.093

PROMISE 0.430 0.304 0.247 0.298 0.306 0.252 0.280 0.299 0.344 0.271 0.232 0.237
HPC 0.069 0.079 0.042 0.108 0.066 0.093 0.061 0.109 0.044 0.104 0.033 0.088
BUSI 0.250 0.278 0.220 0.305 0.237 0.365 0.229 0.333 0.226 0.305 0.193 0.274

2.5.1.2 Implementation Details

To empirically evaluate the proposed model, we conduct experiments comparing a state-of-the-art

segmentation network on a multi-class scenario trained with different learning objectives. In

particular, we first include standard loss functions employed in medical image segmentation,

which include the common Cross-entropy (CE) and the duple composed by CE and DSC losses.

Furthermore, we also include training objectives which have been proposed to calibrate neural

networks, which represent nowadays the state-of-the-art for this task. This includes Focal loss

(FL) (Lin et al., 2017), Label Smoothing (LS) (Szegedy et al., 2016) and ECP (Pereyra et al.,

2017). Last, we also compare to the recent Spatially-Varying LS (SVLS) (Islam & Glocker,

2021), which demonstrated to outperform the simpler LS version in the task of medical image

segmentation. Following the literature, we have chosen the commonly used hyper-parameters

and considered the values which provided the best DSC on the validation dataset. For FL, 𝛾

values of 1, 2, and 3 are considered. In case of ECP and LS, 𝛼 and 𝜆 values of 0.1, 0.2, 0.3 are

used. For our method, we considered the margins to be 5, 8, and 10. In the case of SVLS, the

one-hot label smoothing is performed with a kernel size of 3. For the experiments, we fixed the

batch size to 4, epochs to 100, and optimizer to ADAM. The learning rate of 1e-3 and 1e-4 are

used for the first 50 epochs, and the next 50 epochs respectively. The models are trained on 2D

slices, while the evaluation is done over 3D volumes.

Backbones. The main experiments are conducted on the popular UNet (Ronneberger et al.,

2015b). Nevertheless, to show the versatility of the proposed margin based label smoothing,
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we have evaluated our model on other popular architectures in medical image segmentation

including AttUNet (Oktay et al., 2018), TransUNet (Chen et al., 2021), and UNet++ (Zhou et al.,

2020).

2.5.2 Results

2.5.2.1 Main results

The discriminative quantitative results obtained by the proposed model, as well as prior literature,

are reported in Table 3.1. We observe that across the different datasets, our model consistently

achieves competitive discriminative performance, typically ranking as the best or second-best

model in both region-based (i.e., DSC) and distance-based (i.e., ASD) metrics. This demonstrates

that our method yields not only a better identification of target regions, but also an improvement

in the boundary regions, highlighted by lower ASD values. An interesting observation is that,

while other learning objectives typically result in performance gains compared to the standard

CE loss, their superiority over the others depends on the selected dataset.

Figure 2.2 Compromise between calibration and discriminative performance. In

order to get the best performance, we expect a model to achieve large DSC (in green) and

small ECE (in blue) values

Table 3.2 summarizes the calibration performance, in terms of ECE and CECE of all the analyzed

models. We can observe that, similar to the discriminative performance reported earlier, the

proposed model typically ranks as best or second best method. An interesting observation is that,

according to the results, focal loss provides well-calibrated models (i.e., low ECE and CECE

values), whereas their discriminative performance is typically far from best performing models.

As exposed in our motivation, one of the reasons behind this behaviour might be the undesirable



47

Table 2.3 Calibration performance of post-hoc calibration methods: temperature scaling

(TS) and Local Temperature Scaling (LTS) (Ding et al., 2021). Best method is highlighted

in bold, whereas second best approach is underlined

Dataset Method CE CE + DICE FL ECP LS SVLS Ours

ECE CECE ECE CECE ECE CECE ECE CECE ECE CECE ECE CECE ECE CECE

ACDC

Pre 0.079 0.073 0.137 0.084 0.113 0.116 0.109 0.095 0.081 0.107 0.176 0.135 0.061 0.069
TS 0.077 0.073 0.135 0.084 0.112 0.117 0.105 0.095 0.084 0.109 0.174 0.135 0.055 0.065
LTS 0.067 0.065 0.070 0.076 0.127 0.125 0.080 0.094 0.065 0.072 0.118 0.116 0.041 0.046

FLARE

Pre 0.045 0.029 0.058 0.034 0.033 0.035 0.037 0.027 0.055 0.050 0.039 0.036 0.038 0.028
TS 0.040 0.030 0.051 0.036 0.030 0.038 0.032 0.028 0.042 0.039 0.039 0.038 0.033 0.029
LTS 0.033 0.030 0.044 0.038 0.065 0.048 0.026 0.028 0.031 0.026 0.040 0.036 0.031 0.026

BRATS

Pre 0.131 0.091 0.178 0.122 0.097 0.119 0.132 0.091 0.112 0.108 0.151 0.122 0.101 0.093
TS 0.13 0.09 0.177 0.122 0.097 0.119 0.131 0.091 0.111 0.108 0.149 0.121 0.098 0.093
LTS 0.114 0.089 0.156 0.121 0.097 0.119 0.117 0.09 0.105 0.119 0.131 0.121 0.089 0.096

PROMISE

Pre 0.411 0.334 0.430 0.304 0.247 0.298 0.306 0.252 0.280 0.299 0.344 0.271 0.232 0.237
TS 0.408 0.334 0.429 0.304 0.245 0.299 0.303 0.251 0.279 0.298 0.342 0.271 0.229 0.237
LTS 0.294 0.283 0.312 0.263 0.209 0.291 0.230 0.235 0.255 0.257 0.234 0.238 0.189 0.217

HPC

Pre 0.052 0.091 0.069 0.079 0.042 0.108 0.066 0.093 0.061 0.109 0.044 0.104 0.034 0.088
TS 0.051 0.091 0.068 0.079 0.042 0.108 0.065 0.093 0.059 0.108 0.044 0.104 0.033 0.089
LTS 0.048 0.092 0.065 0.08 0.041 0.108 0.061 0.094 0.059 0.108 0.043 0.103 0.032 0.09

BUSI

Pre 0.230 0.334 0.250 0.278 0.220 0.305 0.237 0.365 0.229 0.333 0.226 0.305 0.193 0.274
TS 0.229 0.333 0.250 0.278 0.236 0.365 0.219 0.305 0.229 0.333 0.225 0.305 0.193 0.274
LTS 0.207 0.328 0.210 0.257 0.243 0.377 0.202 0.298 0.268 0.358 0.198 0.295 0.182 0.275

effect of pushing all logit distances to zero. Enforcing this constraint may alleviate the problem

of overconfidence in deep networks, at the cost of providing non-informative solutions.

An interesting summary of these results is depicted in Figure 2.2, where we resort to radar

plots to highlight the better compromise between discriminative and calibration performance

shown by our model. In particular, a well-calibrated model should have a balanced compromise

between a high discriminative power (green line) and low calibration metrics (blue line). This

means that, following these plots, the larger the gap between green and blue lines, the better the

compromise between discriminative and calibration performance.

Furthermore, to have a better overview of the general performance across different models, we

follow the strategy followed in several MICCAI Challenges, e.g., MRBrainS (Mendrik et al.,

2015a), where the final ranking is given as the sum of individual ranking metrics: 𝑅𝑇 =
∑|𝑀 |

𝑚=0
𝑟𝑚,

where 𝑟𝑚 is the rank of the segmentation model for the metric 𝑚 (mean)1. Thus, if a model

ranks first in terms of DSC in the FLARE dataset, it will receive one point, whereas five points

will be added in case the model ranks fifth. The final ranking is obtained after the overall scores

𝑅𝑇 for each model are sorted in ascending order, and ranked from 1 to 𝑛. Furthermore, to

account for the different complexities of each sample, we follow the mean-case-rank strategy,

1 Note that the per-class scores are not used in the sum-rank computation.
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which has been employed in other MICCAI Challenges, e.g., (Maier et al., 2017). In particular,

we first compute the DSC, ASD, ECE, and CECE values for each sample, and establish each

method’s rank based on these metrics, separately for each case. Then, we compute the mean

rank over all four evaluation metrics, per case, to obtain the method’s rank for that given

sample. Finally, we compute the mean over all case-specific ranks to obtain the method’s

final rank. Figure 2.3 provides the rank comparison through heatmap visualization. It can

be inferred that, for both discriminative and calibration metrics, our methods achieves the

highest rank. Interestingly, the proposed loss term yields very competitive discriminative results,

outperforming the popular compounded CE+DSC loss. It is noteworthy to highlight that the

optimization goal of these two terms are different. Networks trained with CE tend to achieve a

lower average negative log-likelihood over all the pixels, whereas using Dice as loss function

should increase the discriminative performance, in terms of Dice. Thus, it is expected that the

compounded loss brings the better of both worlds. Nevertheless, we can observe that this is

not what happens in practice. On the one hand, the networks trained with CE+DSC loss rank

among the best discriminative models (third in DSC and second in ASD). On the other hand,

their calibration performance is substantially degraded, ranking last and second-last in ECE and

CECE, respectively. These results align with recent findings (Mehrtash et al., 2020), which

highlight the deficiencies of models trained with the DSC loss to deliver well-calibrated models.

While adjusting the balancing hyperparameter could improve the performance on one task,

the results on the other task would likely degrade due to the different nature of both learning

objectives. Thus, based on these observations, we argue that obtaining a good compromise

between calibration and segmentation quality is hardly attainable with the popular CE+DSC

loss, and promote our model as a better alternative. Fig. 2.3 provides a heatmap visualization to

compare the methods for different metrics using mean-case-specific strategy. As observed in

sum rank approach, our methods consistently achieves the best rank in both discriminative and

calibration metrics. Importantly, calibration methods like FL, and LS achieve promising results

with ECE, while severely compromising the DSC.
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Figure 2.3 Ranking (global and per-metric) of the different methods based on the

sum-rank and mean of case-specific approach

2.5.2.2 Comparison to post-hoc calibration

The proposed approach is orthogonal to post-hoc calibration strategies, which can still be

used after training, as long as there exists an independent validation set to find the optimal

hyperparameters (for example 𝑇 in temperature scaling). To demonstrate this, we now report the

performance of pre-scaling and post-scaling for ACDC, FLARE, and PROMISE datasets across

the different approaches. In particular, we have included two post-hoc calibration strategies.

First, we use the standard Temperature scaling approach, referred to as TS, where a single value

for the entire image is employed. Furthermore, we also include the Local Temperature Scaling

(LTS) method in (Ding et al., 2021), which was recently proposed in the context of medical

image segmentation and provides a temperature value at each image pixel. For both TS and LTS,

the optimal temperature values are found by optimizing the network parameters to decrease the

negative log likelihood on an independent validation set. From the quantitative comparison,

which can be found in Table 2.3, it can be inferred that our method further benefits from scaling

the raw softmax probability predictions. Interestingly, the calibration performance obtained by

our method prior to temperature scaling still outperforms the results obtained by several other

approaches even after applying LTS on their predictions. Another unexpected observation is that,

under some settings, the use of temperature scaling (either TS or LTS) deteriorates the calibration
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performance. We argue that this phenomenon could be due to noticeable differences between the

validation and testing datasets. As empirically demonstrated in (Ovadia et al., 2019), applying

temperature scaling when differences between datasets exist might result in a negative impact.

In addition, similar observations were reported in (Kock, Thielke, Chlebus & Meine, 2021),

where the calibration performance of segmentation models on several datasets was degraded

after applying temperature scaling.

2.5.2.3 Effects of logit margin constraints

In our motivation, we hypothesized that the suboptimal supervision delivered by CE in multi-class

scenarios might likely result in poorly calibrated models, as the posterior probability assigned

to each of the non-true classes cannot be directly controlled. Indeed, it is expected that by

minimizing the CE the softmax vectors are pushed towards the vertex of the probability simplex.

This implies that the distances between the largest logit and the rest are magnified, resulting

in overconfident models. To validate this hypothesis, and to empirically demonstrate that our

proposed term can alleviate this issue, we plot the average logit distributions across classes

on two datasets. In particular, we first separate all the voxels based on their ground truth

labels. Then, for each category group, we average the per-voxel vector of logit predictions

for both CE and the proposed model, whose results are depicted in Figure 2.4. First, we can

observe that a model trained with CE indeed tends to provide large logit differences, which

intensifies overconfidence predictions. Furthermore, while the mean logit value of the target

class is considerably large and greatly differs from the largest value across other categories, the

differences with the remaining logits –from non-target classes– remain uncontrolled. In contrast,

we can clearly observe the impact on the logit distribution when we include the proposed term

into the learning objective. In particular, our margin-based term i) promotes similar values of

the true class logit across classes and ii) encourages more equidistant logits between this and the

remaining classes, which implicitly constraints the logit values of untargeted classes to be very

close (mimicking a uniform distribution). These results empirically validate our hypothesis in

regards of the weaknesses of CE and the benefits brought by our approach.
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Figure 2.4 Adopting the proposed term during training substantially reduces the logit
distances, producing less overconfident predictions. These plots depict the average

predicted logit distributions for each target class –based on the ground truth– on ACDC

(top) and FLARE (bottom) datasets when the model is trained with CE (left) and the

proposed loss (right)

2.5.2.4 Calibration and discriminative performance under distribution shift

There have been recent empirical studies (Ovadia et al., 2019; Minderer et al., 2021) on the

robustness of calibration models under distribution shift. In particular, (Minderer et al., 2021)

explores out-of-distribution calibration by resorting to ImageNet-C (Hendrycks & Dietterich,

2018), a computer vision dataset that contains images that have been synthetically corrupted, for

example by including Gaussian noise. Inspired by these works, we now assess the robustness of

our model in the presence of domain drift. To do this, we added Gaussian noise to the images
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Figure 2.5 Robustness to distributional drift on PROMISE (left) and MRBrainS (right)
datasets. Note that larger circles represent lower sigma values for the Gaussian noise

corruptions

Figure 2.6 Sensibility to hyperparameters across datasets. For each method, we use the

standard hyperparameters used in the literature and compare its variation across different

datasets. The discriminative performance (DSC) is reported in the top row, whereas the

calibration analysis (ECE) is depicted in the bottom row

on the testing set, with sigma values ranging from 0 to 0.05 with an increment of 0.01. From

the plots in Figure 2.5 we can clearly observe that models trained with our objective function

are less sensitive to noise, compared to prior state-of-the-art methods. More concretely, on the
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PROMISE dataset, the discriminative and calibration performance of our approach remains

almost invariant to image perturbations with different levels of Gaussian noise. Furthermore,

while the results obtained by our method in the MRBrainS data are affected by noise, its

performance degradation is significantly lower than nearly all previous approaches, being on par

with the focal loss. Nonetheless, it is noteworthy to mention that despite the relative decrease

in performance is similar between the proposed method and FL, their global performance

differences are substantially large (e.g., 6-8% difference in DSC). Based on these results we can

argue that the proposed method delivers higher performing models that are, in addition, more

robust to distributional drifts produced by Gaussian noise.

2.5.2.5 On the impact of hyperparameters

We now assess the sensitivity of each model to the choice of the hyperparameters on each

dataset. We stress that, for each method, we have selected a range of common values used in the

literature. In particular, 𝛾 is set to 1.0, 2.0 and 3.0 in Focal loss, 𝜆 is fixed to 0.1, 0.2 and 0.3

in ECP and Label smoothing, whereas the margin values in our method are set to 5.0, 8.0 and

10. The discriminative (DSC) and calibration (ECE) performances obtained across the different

hyperparameter values are depicted in Fig. 2.6. From this figure, it can be easily observed

that, while prior approaches are very sensitive to the value of their balancing term, our method

is significantly more robust to these changes. For example, the discriminative performance is

drastically affected in both ECP and LS across several datasets when changing the value of the

balancing term from 0.1 and 0.2 to 0.2 and 0.3, respectively. On the other hand, this phenomenon

is more pronounced in the calibration metrics, where FL, ECP and LS show much higher

variations than the proposed approach. A potential drawback that can be extracted from these

findings is that, in order to get a well calibrated and high performance model, prior approaches

might require multiple training iterations to find a satisfactory compromise. Furthermore, we

believe that these large variations indicate that differences in the data –e.g., image contrast,

target size and heterogeneity, or class distribution– might have a different impact on these losses,

entangling the convergence of models trained with these terms.
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Figure 2.7 Robustness to segmentation backbone, which evaluates the standard

cross-entropy and the proposed model on the FLARE segmentation benchmark

2.5.2.6 Robustness to backbone

In this experiment, we evaluate the proposed loss on several standard medical image segmentation

networks, including: AttUNet (Oktay et al., 2018), TransUNet (Chen et al., 2021), and UNet++

(Zhou et al., 2020). For this study, we consider the FLARE dataset due to its larger number of

classes. The quantitative comparison of CE and our method for these backbones is presented in

Fig. 2.7, from which it can be inferred that, irrespective of the backbone used, our method is

capable of consistently achieving better model calibration compared to the popular cross-entropy

loss, while yielding at par performance in the discrimination task. We can therefore say that the

proposed term can be directly plugged into any segmentation network, and the improvement

observed is consistent across different models.

2.5.2.7 Qualitative results and reliability diagrams

Figure 2.8 depicts the predicted segmentation masks (top), confidence maps (middle) and their

corresponding reliability plots (bottom) on one subject across the different methods. While

the segmentation masks reveal several differences in terms of discriminative performance, the

confidence maps present more interesting observations. Note that, as highlighted in prior works

(Liu et al., 2022a), better calibrated models should show better edge sharpness, matching the
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Figure 2.8 Qualitative results on MRBrainS dataset for different methods. In particular,

we show the original image and the corresponding segmentation masks provided by each

method (top row), the ground-truth (GT) mask followed by maximum confidence score of

each method (middle row) and the respective reliability plots (bottom row). Methods from

left to right: CE, CE+DICE, FL, ECP, LS, SVLS, Ours

expected property that the model should be less confident at the boundaries, whereas yielding

more confident predictions in inner target regions. First, we can observe that adding the DSC

loss term substantially degrades the confidence map compared to its single CE loss counterpart.

In particular, the CE+DSC compounded loss tends to produce smoother edges, in terms of

confidence, which is derived from worst calibrated models. Furthermore, while it can increase

the confidence of predictions in several inner object regions, it decreases this score in others. In

addition, we can clearly observe that the remaining analyzed methods provide a diverse span

of confidence estimates, with several models providing highly unconfident inner regions (e.g.,

FL (Mukhoti et al., 2020b) and LS (Szegedy et al., 2016)). In contrast, our method yields

confidence estimates that are sharp in the edges and low in within-region pixels, as expected in a

well-calibrated model. These visual findings are supported by the reliability diagrams. Indeed,

our model yields the best reliability diagram, as the ECE curves are closer to the diagonal,

indicating that the predicted probabilities serve as a good estimate of the correctness of the

prediction.

2.5.2.8 Choice of the penalty
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In this work we have presented a unified constrained optimization perspective of existing

calibration methods, showing that they can be seen as approximations of a linear penalty for

imposing the constraint d(l) = 0. In order to show that the improvement of the proposed

formulation comes from the relaxation of this constraint, which has important limitations, we

selected a linear penalty, similarly to the implicit underlying mechanism of LS, FL and ECP.

Nevertheless, in this section we now address the question of whether we can further improve

these results by employing other penalties to enforce the proposed constraint. In particular, we

evaluate both the discriminative and calibration performance of our model when a quadratic

penalty, i.e., 𝐿2, is used to impose the constraint in Eq. 2.10. Results in Table 2.4 show that,

even though both penalties behave similarly in terms of segmentation, the model trained with a

quadratic penalty is typically worse calibrated. We argue that these differences might be due to

the more aggressive behaviour of quadratic penalties when the constraint is not satisfied, which

may eventually lead to near-to-uninformative solutions, similar to those obtained by FL, LS

and ECP. Furthermore, we would like to highlight that in this experiment the margin 𝑚 was

fine-tuned for the 𝐿2 penalty, whereas its controlling weight remained the same as in the 𝐿1

term. Thus, further optimizing the penalty weight might alleviate its aggressive performance on

large violations, potentially leading to superior performance of the proposed MbLS loss when

the constraint is enforced via a quadratic penalty.

Table 2.4 Quantitative comparison across datasets of different penalty terms to impose the

constraint d(l) ≤ m

.

L1 L2

DSC ECE ↓ DSC ECE ↓

ACDC 0.875 0.061 0.874 0.064

FLARE 0.871 0.038 0.868 0.031

BRATS 0.854 0.101 0.845 0.101

PROMISE 0.583 0.232 0.549 0.279

HPC 0.867 0.033 0.864 0.042

BUSI 0.685 0.193 0.673 0.197

2.5.2.9 Impact of MbLS on the CE + Dice loss
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The main goal of this work is to present existing calibration losses from a constrained optimization

perspective, highlight their weaknesses and propose a potential solution to overcome the identified

limitations. Furthermore, we stress that existing calibration losses do not include compounded

losses that integrate segmentation terms, such as the Dice loss. Nevertheless, given the popularity

of this joint learning objective in medical image segmentation, we assess in this section the

impact of integrating the proposed constrained term into the duple CE + DSC. In particular,

to better understand the impact of the proposed MbLS loss, as well as DSC loss, we depict

the results for the standard CE, CE + DSC, MbLS and MbLS + DSC in Fig 2.9. The stacked

normalized plots show that while these methods result in similar discriminative performance,

the differences in calibration are more noticeable. More concretely, and as we demonstrated

empirically in Table 2.2, models trained with the joint CE + DSC loss see their calibration

performance degrade compared to the standard CE objective. By coupling the proposed approach

with the DSC loss (𝑀𝑏𝐿𝑆 + 𝐷𝑆𝐶) this degradation can be reduced thanks to the proposed

penalty term. Nevertheless, the ECE results achieved by this joint term are significantly higher

than those obtained by the proposed approach, which does not include the DSC loss. These

findings demonstrate that i) the proposed MbLS can improve the calibration performance of

the popular CE + DSC segmentation loss, and ii) despite the improvement in discrimination

performance, losses integrating the DSC loss term present significant deficiencies to deliver

well-calibrated models.
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Figure 2.9 Impact of MbLS on the DSC loss. Normalized stacked bar plots to assess the

impact of the proposed MbLS on the popular CE+DSC segmentation loss. Discriminative

performance in terms of DSC is depicted in the top (the higher the ratio the better), whereas

calibration is assessed in terms of ECE in the bottom (the lower the ratio the better)

2.6 Conclusion

Despite the popularity of network calibration in a broad span of applications, the connection

between state-of-the-art calibration losses remains unexplored, and their impact on segmentation

networks, particularly in the medical field, has largely been overlooked. In this work, we have

demonstrated that these popular losses are closely related from a constrained optimization

perspective, whose implicit or explicit constraints lead to non-informative solutions, preventing

the model predictions to reach the best compromise between discriminative and calibration

performance. To overcome this issue, we proposed a simple solution that integrates an

inequality constraint into the main learning objective, which imposes a controlled margin on the

logit distances. Through an extensive empirical evaluation, which contains multiple popular

segmentation benchmarks, we have assessed the discriminative and calibration performance of

state-of-the-art calibration losses in the important task of medical image segmentation. The

results highlight several important benefits of the proposed loss. First, it achieves consistent

improvements over state-of-the-art calibration and segmentation losses, both in terms of

discriminative and calibration performance. Second, the proposed model is much less sensitive

to hyperparameters changes compared to prior losses, which reduces the training time to find a
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satisfactory compromise between discrimination and calibration tasks. In addition, the empirical

observations support our hypothesis that the suboptimal supervision delivered by the standard

cross-entropy loss likely results in poorly calibrated models, as model trained with this loss tend

to produce largest logit differences. Thus, we advocate that the proposed loss term should be

preferred to train models that provide higher discriminative performance, while yet delivering

accurate uncertainty estimates.
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Abstract

Ensuring reliable confidence scores from deep neural networks is of paramount significance

in critical decision-making systems, particularly in real-world domains such as healthcare.

Recent literature on calibrating deep segmentation networks has resulted in substantial progress.

Nevertheless, these approaches are strongly inspired by the advancements in classification tasks,

and thus their uncertainty is usually modeled by leveraging the information of individual pixels,

disregarding the local structure of the object of interest. Indeed, only the recent Spatially

Varying Label Smoothing (SVLS) approach considers pixel spatial relationships across classes,

by softening the pixel label assignments with a discrete spatial Gaussian kernel. In this

work, we first present a constrained optimization perspective of SVLS and demonstrate that it

enforces an implicit constraint on soft class proportions of surrounding pixels. Furthermore,
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our analysis shows that SVLS lacks a mechanism to balance the contribution of the constraint

with the primary objective, potentially hindering the optimization process. Based on these

observations, we propose NACL (Neighbor Aware CaLibration), a principled and simple solution

based on equality constraints on the logit values, which enables to control explicitly both the

enforced constraint and the weight of the penalty, offering more flexibility. Comprehensive

experiments on a wide variety of well-known segmentation benchmarks demonstrate the superior

calibration performance of the proposed approach, without affecting its discriminative power.

Furthermore, ablation studies empirically show the model agnostic nature of our approach,

which can be used to train a wide span of deep segmentation networks. The code is available at

https://github.com/Bala93/MarginLoss

3.1 Introduction

Despite the remarkable progress made by deep neural networks (DNNs) in a wide span

or recognition tasks, there exists growing evidence suggesting that these models are poorly

calibrated, leading to overconfident predictions that may assign high confidence to incorrect

predictions (Gal & Ghahramani, 2016; Guo et al., 2017b). This represents a major problem, as

inaccurate uncertainty estimates can carry serious implications in safety-critical applications

such as medical diagnosis, whose outcomes are used in subsequent tasks of critical importance.

The underlying cause of miscalibration in deep models is hypothesized to stem from their high

capacity, which makes them prone to overfitting on the negative log-likelihood loss, commonly

used during training (Guo et al., 2017b). Indeed, modern classification networks trained under

the fully supervised learning paradigm resort to binary one-hot encoded vectors as supervisory

signals of training data points. Therefore, all the probability mass is assigned to a single class,

resulting in minimum-entropy supervisory signals (i.e., entropy equal to zero). As the network is

trained to follow this distribution, we are implicitly forcing it to be overconfident (i.e., to achieve

a minimum entropy), thereby penalizing uncertainty in the predictions.

In light of the significance of this issue, there has been a surge in popularity for quantifying the

predictive uncertainty in modern DNNs. A simple approach involves a post-processing step that
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modifies the softmax probability predictions of an already trained network (Guo et al., 2017b;

Tomani et al., 2021a; Zhang et al., 2020c; Ding et al., 2021). These methods, however, see

their performance degrade under distributional drifts (Ovadia et al., 2019). More principled

alternatives incorporate a term that maximizes the Shannon entropy of the model predictions

during training, penalizing confident output distributions. This regularization term is either

implicitly derived from the original loss (Mukhoti et al., 2020b; Müller et al., 2019b) or explicitly

integrated as additional learning objectives (Pereyra et al., 2017; Liu et al., 2022b; Liu, Rony,

Galdran, Dolz & Ben Ayed, 2023a).

Due to the importance of correctly modeling the uncertainty estimates in deep segmentation

models, just a few works have recently studied the impact of existing approaches in this problem

(Jena & Awate, 2019; Larrazabal et al., 2021; Ding et al., 2021; Murugesan et al., 2023b).

Nevertheless, these approaches are directly borrowed from the classification literature, which

presents important limitations in the segmentation scenario. In particular, dense prediction

tasks, such as image segmentation, greatly benefit from capturing pixel relationships due to

the ambiguity in the boundaries between neighboring organs or regions. Indeed, the nature

of structured predictions in segmentation involves pixel-wise classification based on spatial

dependencies, which limits the effectiveness of these strategies to yield performances similar

to those observed in classification tasks (Mukhoti et al., 2020b; Müller et al., 2019b; Liu

et al., 2022b). This potentially suboptimal performance can be attributed to the uniform (or

near-to-uniform) distribution enforced on the softmax/logits distributions, which disregards the

spatial context information. While modeling these pixel-wise relationships, for example, by

modeling the class distribution around a given pixel, is extremely important, virtually none of

existing methods explicitly considers these relationships.

To address this important issue, Spatially Varying Label Smoothing (SVLS) (Islam & Glocker,

2021) introduces a soft labeling approach that captures the structural uncertainty required in

semantic segmentation. In practice, smoothing the hard-label assignment is achieved through

a Gaussian kernel applied across the one-hot encoded ground truth, which results in soft

class probabilities based on neighboring pixels. Nevertheless, while the reasoning behind this
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smoothing strategy relies on the intuition of giving an equal contribution to the central label and

all surrounding labels combined, its impact on the training, from an optimization standpoint,

has not been studied.

We can summarize our contributions as follows:

• In this work, we provide a constrained-optimization perspective of Spatially Varying Label

Smoothing (SVLS) (Islam & Glocker, 2021), demonstrating that it could be viewed as a

standard cross-entropy loss coupled with an implicit constraint that enforces the softmax

predictions to match a soft class proportion of surrounding pixels. Our formulation shows

that SVLS lacks a mechanism to control explicitly the importance of the constraint, which

may hinder the optimization process as it becomes challenging to balance the constraint with

the primary objective effectively.

• Following these observations, we propose a simple and flexible solution based on equality

constraints on the logit distributions. The proposed constraint is enforced with a simple

linear penalty, which incorporates an explicit mechanism to control the weight of the penalty.

Our approach not only offers a more efficient strategy to model the logit distributions but

implicitly decreases the logit values, which results in less overconfident predictions.

• We conduct comprehensive experiments and ablation studies over multiple medical image

segmentation benchmarks, including diverse targets and modalities, and show the superiority

of our method compared to state-of-the-art calibration losses. Furthermore, several ablation

studies empirically validate the design choices of our approach, as well as demonstrate its

model agnostic nature.

This journal version provides a substantial extension of the preliminary work presented in

(Murugesan et al., 2023a). More concretely, we first provide a thorough literature review on

calibration models, with an extensive overview of their use in medical image segmentation.

Second, we perform a comprehensive empirical validation, including i) multiple additional

public benchmarks covering diverse modalities and targets, ii) several ablation studies that

motivate our choices, iii) showing the agnostic nature of NACL regarding the segmentation
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backbone, and iv) additional results that help us to understand the underlying benefits of the

proposed approach.

3.2 Related work

Post-processing approaches. A straightforward and effective approach to mitigate the

miscalibration issue involves implementing a post-processing step that transforms the probability

predictions of a deep network (Guo et al., 2017b; Zhang et al., 2020c; Tomani et al., 2021a). In

this scenario, a validation set, drawn from the generative distribution of the training data 𝜋(𝑋,𝑌 )

is leveraged to rescale the network outputs, resulting in well-calibrated in-domain predictions.

Temperature scaling (TS) (Guo et al., 2017b), a simple generalization of Platt scaling (Platt

et al., 1999) to the multi-class setting, uses a single value overall logit (i.e., pre-softmax)

predictions to control the shape of the class predicted distributions. (Tomani et al., 2021a)

proposes to transform the validation set before transforming the softmax distributions, whereas

(Zhang et al., 2020c) combines isotonic regression (IR) after performing temperature scaling.

Despite its efficiency, most approaches within this family present important limitations, including

i) a dataset-dependency on the value of the transformation parameters and ii) a significant

degradation observed on out-of-domain samples (Ovadia et al., 2019).

Penalizing low-entropy predictions. To alleviate the issue of overconfident predictions inherent

in minimizing a negative log-likelihood loss, a natural strategy is to encourage high-entropy,

i.e., uncertain, predictions. A straightforward solution to achieve this is to include into the

learning objective a term to penalize confident output distributions by explicitly maximizing

the entropy (Pereyra et al., 2017). More recently, several works (Müller et al., 2019b; Mukhoti

et al., 2020b) have shed light into the implicit calibration properties of popular losses (label

smoothing and focal loss) that modify the one-hot encoding labels used for training. More

concretely, label smoothing (Szegedy et al., 2016) has been shown to implicitly calibrate the

trained models, as it prevents the network from assigning the full probability mass to a single

class, while encouraging the differences between the logits of the target class and the other
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categories to be a constant dependent on 𝛼1 (Müller et al., 2019b). In addition, (Mukhoti et al.,

2020b) demonstrated that focal loss (Lin et al., 2017) implicitly minimizes a Kullback-Leibler

(KL) divergence between the uniform distribution and the softmax network predictions, thereby

increasing the entropy of the predictions. Thus, we can see both label smoothing and focal loss

as classification losses that implicitly regularize the network output probabilities, encouraging

their distribution to be close to the uniform distribution. More recently, (Liu et al., 2022b)

presented a unified view of state-of-the-art calibration approaches (Pereyra et al., 2017; Szegedy

et al., 2016; Lin et al., 2017) showing that these strategies can be viewed as approximations of a

linear penalty enforcing equality constraints on logit distances, which are encouraged to be zero

across all the logits. This view exposes important limitations of the ensuing gradients, which

constantly push towards a non-informative solution, compromising an optimal trade-off between

discriminative and calibration performance. To circumvent this limitation, authors proposed a

simple and flexible generalization of label smoothing (MbLS) based on inequality constraints,

which imposes a controllable margin on logit distances.

Calibration in medical image segmentation. Despite recent efforts to model the predictive

uncertainty, or to leverage this uncertainty to improve the discriminative performance of

segmentation models (Wang et al., 2019b), little attention has been devoted to improving

both the calibration and segmentation performance of deep models in the medical domain.

(Jena & Awate, 2019) presented a Bayesian decision theoretic framework based on deep models

for image segmentation. This framework produced analytical estimates of uncertainty, allowing

to define a principled measure of uncertainty associated with label probabilities, which led to an

improvement on both segmentation and calibration performances. Nevertheless, there exists

recent evidence (Fort et al., 2019) that indicates that Bayesian neural networks tend to find

solutions around a single minimum of the loss landscape, resulting in a lack of diversity. In

contrast, ensembling multiple deep neural networks usually yields more diverse predictions,

consequently leading to improved uncertainty estimates which outperform other methods (Jungo

et al., 2020; Mehrtash et al., 2020). In the context of medical image segmentation, several

1 In label smoothing, 𝛼 controls the mass that is uniformly distributed across the different classes:

𝑦𝐿𝑆𝑘 = 𝑦𝑘 (1 − 𝛼) + 𝛼/𝐾 .
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strategies have been adopted to promote model diversity within the ensemble, such as imposing

orthogonality constraints during training (Larrazabal et al., 2021) or training a single model in a

multi-task manner on several different datasets (Karimi & Gholipour, 2022). A main drawback

of these approaches, however, lies in their increased complexity cost, as they entail the training

of either multiple models or a single model on multiple datasets.

(Ding et al., 2021) present a lighter alternative that extends the simple temperature scaling

approach by integrating a shallow neural network to predict the voxel-wise temperature values,

which are used in a post-processing step. While this method outperforms the naive TS, it

inherits the limitations of temperature scaling and related post-processing approaches. More

recently, (Murugesan et al., 2023b) performed a comprehensive evaluation of existing calibration

approaches in the task of medical image segmentation. The reported results suggested that

methods integrating explicit penalties, and in particular MbLS (Liu et al., 2022b), largely

outperformed other existing techniques in both discrimination and calibration metrics. All these

methods, however, are predominantly adopted from the classification literature, which ignores

the underlying properties of dense prediction problems, such as semantic image segmentation.

In these cases, the spatial relations between a given pixel and its neighbors play a crucial role in

the predictions, and the surrounding class distributions in the pixel-wise annotations should be

considered for modeling the uncertainty. Indeed, and as to the best of our knowledge, the work in

(Islam & Glocker, 2021) is the only method that considers the pixel vicinity of the labeled mask

to improve the calibration performance of deep segmentation models. More concretely, authors

apply a Gaussian kernel across the one-hot encoded labels to obtain soft class probabilities,

integrating spatial-awareness into the standard label smoothing process.

3.3 Methodology

3.3.1 Preliminaries

Notation. Let us denote the training dataset as D = {(𝒙 (𝑛) , 𝒚 (𝑛))}𝑁𝑛=1
, where the set of 𝑁 pairs

are i.i.d. realizations of the random variables 𝑋,𝑌 which follow a ground truth joint distribution
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𝜋(𝑋,𝑌 ) = 𝜋(𝑋 |𝑌 )𝜋(𝑋). In this setting, 𝒙 (𝑛) ∈ R
Ω𝑛 represents the 𝑛𝑡ℎ image, Ω𝑛 the spatial

image domain, and 𝒚 (𝑛) ∈ R
𝐾 its corresponding ground-truth label with 𝐾 classes, provided as a

one-hot encoding vector. For simplicity and clarity in the formulation, we will omit in what

follows the superscript to indicate the sample used, and 𝒙 will denote any image in the training

set. Now, given an input image 𝒙, a neural network parameterized by 𝜃 generates the set of logit

predictions 𝑓𝜃 (𝒙) = l ∈ R
Ω𝑛×𝐾 . Last, we use the softmax function, denoted as 𝜙(·) to obtain the

predicted model probabilities 𝒑̂ = 𝜙( 𝑓𝜃 (𝒙)) ∈ R
Ω𝑛×𝐾 .

What is calibration? Calibration measures the correspondence between the predicted

probabilities assigned by a model and the empirical likelihood of the associated events. A

well-calibrated model ensures that its predicted probabilities align with the actual observed

frequencies of outcomes. For instance, when the model assigns a probability of 0.7 to an event,

it is expected that this event materializes approximately 70% of the time in the empirical data.

In a classification scenario, we can formally define that a model presents perfect calibration of

confidence if the following conditional probability holds:

P( 𝑦̂ = 𝑦 |𝑝 = 𝑝) = 𝑝, ∀𝑝 ∈ [0, 1], (3.1)

where 𝑦̂ = arg max( 𝒑̂) is the predicted class of input image 𝒙, and 𝑝 = max( 𝒑̂) its associated

confidence. Equation 3.1 tells us that, to be perfectly calibrated, when the model predicts the

probability distribution 𝜙( 𝑓𝜃 (𝑋)) over the set of classes [𝐾] = {1, 2, ..., 𝐾}, the true probability

distribution for these categories should be 𝜙( 𝑓𝜃 (𝑋)). Thus, any difference between the left and

right terms is known as calibration error, or miscalibration.

3.3.2 A constrained optimization perspective of SVLS

Spatially Varying Label Smoothing (SVLS) (Islam & Glocker, 2021) considers the surrounding

class distribution of a given pixel 𝑝 in the ground truth y to estimate the amount of smoothness

over the one-hot label of that pixel. In particular, let us consider that we have a 2D patch x of size
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𝑑1 × 𝑑2 and its corresponding ground truth y2. Furthermore, the predicted softmax probability

in a given pixel is denoted as p̂ = [𝑝0, 𝑝1, ..., 𝑝𝑘−1]. Let us now transform the surrounding patch

of the segmentation mask around a given pixel into a unidimensional vector y ∈ R
d, where

𝑑 = 𝑑1 × 𝑑2. SVLS employs a discrete Gaussian kernel w to obtain soft class probabilities from

one-hot labels, which can also be reshaped into w ∈ R
d. Thus, for a given pixel 𝑗 , and a class 𝑘 ,

SVLS (Islam & Glocker, 2021) can be defined as:

𝑦̃𝑘𝑗 =
1

|
∑𝑑
𝑖 𝑤𝑖 |

𝑑∑
𝑖=1

𝑦𝑘𝑖 𝑤𝑖. (3.2)

We can replace the smoothed labels 𝑦̃𝑘𝑝 in the standard cross-entropy (CE) loss, resulting in the

following learning objective:

L = −
∑
𝑘

(
1

|
∑𝑑
𝑖 𝑤𝑖 |

𝑑∑
𝑖=1

𝑦𝑘𝑖 𝑤𝑖

)
log 𝑝𝑘𝑗 , (3.3)

where 𝑝𝑘𝑗 is the softmax probability for the class 𝑘 at pixel 𝑗 (the pixel in the center of the patch).

Now, we can decompose this loss into:

L = −
1

|
∑𝑑
𝑖 𝑤𝑖 |

∑
𝑘

𝑦𝑘𝑗 log 𝑝𝑘𝑗 (3.4)

−
1

|
∑𝑑
𝑖 𝑤𝑖 |

∑
𝑘

�����
𝑑∑
𝑖=1
𝑖≠ 𝑗

𝑦𝑘𝑖 𝑤𝑖

	


� log 𝑝𝑘𝑗 , (3.5)

2 For the sake of simplicity, we consider a patch as an image x (or mask y), whose spatial domain Ω is

equal to the patch size, i.e., 𝑑1 × 𝑑2.
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with 𝑗 denoting the index of the pixel in the center of the patch. Note that the term in the left

is the cross-entropy between the posterior softmax probability and the hard label assignment

for pixel 𝑗 . Furthermore, let us denote 𝜏𝑘 =
∑𝑑
𝑖=1
𝑖≠ 𝑗

𝑦𝑘𝑖 𝑤𝑖 as the soft proportion of the class 𝑘

inside the patch/mask y, weighted by the filter values w. By replacing 𝜏𝑘 into the Eq. 3.4, and

removing |
∑𝑑
𝑖 𝑤𝑖 | as it multiplies both terms, the loss becomes:

L = −
∑
𝑘

𝑦𝑘𝑗 log 𝑝𝑘𝑗︸������������︷︷������������︸
𝐶𝐸

−
∑
𝑘

𝜏𝑘 log 𝑝𝑘𝑗︸������������︷︷������������︸
Constraint on 𝝉

. (3.6)

As 𝝉 is static prior, the second term in Eq. 3.6 can be replaced by a Kullback-Leibler (KL)

divergence, leading to the following learning objective:

L
c
= L𝐶𝐸 + D𝐾𝐿 (𝝉 | | 𝒑̂), (3.7)

where
c
= stands for equality up to additive and/or non-negative multiplicative constant. Thus,

optimizing the loss in SVLS results in minimizing the cross-entropy between the hard label and

the softmax probability distribution on the pixel 𝑗 , while imposing the equality constraint 𝝉 = 𝒑̂,

where 𝝉 depends on the class distribution of surrounding pixels. Indeed, this term implicitly

enforces the softmax predictions to match the soft-class proportions computed around pixel 𝑗 .

3.3.3 Proposed constrained calibration approach

Our previous analysis exposes two important limitations of SVLS: 1) the importance of the

implicit constraint cannot be controlled explicitly, and 2) the prior 𝝉 is derived from the 𝜎 value

in the Gaussian filter, making it difficult to model properly. To alleviate this issue, we propose a

simple solution, which consists in minimizing the standard cross-entropy between the softmax
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predictions and the one-hot encoded masks coupled with an explicit and controllable constraint

on the logits l. In particular, we propose to minimize the following constrained objective:

min
𝜃

L𝐶𝐸 s.t. 𝝉 = l, (3.8)

where 𝝉 now represents a desirable prior, and 𝝉 = l is a hard constraint. Note that the reasoning

behind working directly on the logit space is two-fold. First, observations in (Liu et al., 2022b)

suggest that directly imposing the constraints on the logits results in better performance than in

the softmax predictions. And second, by imposing a bounded constraint on the logits values3,

their magnitudes are further decreased, which has a favorable effect on model calibration (Müller

et al., 2019b). We stress that despite both (Liu et al., 2022b) and our method enforce constraints

on the predicted logits, (Liu et al., 2022b) is fundamentally different. In particular, (Liu et al.,

2022b) imposes an inequality constraint on the logit distances so that it encourages uniform-alike

distributions up to a given margin, disregarding the importance of each class in a given patch.

This can be important in the context of image segmentation, where the uncertainty of a given

pixel may be strongly correlated with the labels assigned to its neighbors. In contrast, our

solution enforces equality constraints on an adaptive prior, encouraging distributions close to

class proportions in a given patch.

Even though the constrained optimization problem presented in Eq. 3.8 could be solved by a

standard Lagrangian-multiplier algorithm, this method may be challenging to implement in

practice. In particular, these approaches present important limitations in the context of deep

networks, such as training instability due to the constraint prevailing the main objective term,

i.e., CE, require convexity assumption to ensure convergence, and computational overhead

derived from the iterative updates of the multipliers and constraints, becoming problematic in

large-scale deep learning models (Bertsekas, 1995; Boyd & Vandenberghe, 2004). Therefore, we

replace the hard constraint by a soft penalty of the form P(|𝝉 − l|), transforming our constrained

3 Note that the proportion priors are generally normalized.
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problem into an unconstrained one, which is easier to solve. In particular, the soft penalty P

should be a continuous and differentiable function that reaches its minimum when it verifies

P(|𝝉 − l|) ≥ P(0), ∀ 𝒍 ∈ R
𝐾 , i.e., when the constraint is satisfied. Following this, when

the constraint |𝝉 − l| deviates from 0 the value of the penalty term increases. Thus, we can

approximate the problem in Eq. 3.8 as the following simpler unconstrained problem:

min
𝜃

L𝐶𝐸 + 𝜆
∑
𝑘

|𝜏𝑘 − 𝑙𝑘 |, (3.9)

where the hyperparameter 𝜆 controls the importance of the penalty.

3.4 Experiments

3.4.1 Experimental Setting

3.4.1.1 Datasets

To empirically validate our model, we resort to six public multi-class segmentation benchmarks,

whose details are provided below.

Automated Cardiac Diagnosis Challenge (ACDC) (Bernard et al., 2018). This dataset

comprises short-axis cardiac cine-MRI scans from 100 patients, in both diastolic and systolic

phases with their respective segmentation annotations. The task of this challenge is to understand

the cardiac function through segmenting key regions, including the left ventricle (LV), the right

ventricle (RV), and the myocardium (Myo). Following standard practices, we randomly split the

dataset into 70 patients for training, 10 for validation, and the remaining 20 for testing. From

each of these volumes, we extract 2D slices, which are resized to 224×224.

Brain Tumor Segmentation (BRATS) 2019 Challenge (Menze et al., 2015; Bakas et al., 2017,

2018). The goal of this challenge is to identify glioma tumors in multi-channel MRI scans
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(FLAIR, T1, T1-contrast, and T2). The dataset consists of 335 volumes with their corresponding

segmentation masks, which include tumor core (TC), enhancing tumor (ET), and whole tumor

(WT). Following prior works, we randomly split the volumes into subsets of 235, 35, and 65

scans for training, validation, and testing, respectively. We also resample the volumes, extract

the 2D slices and discard the empty slices.

Fast and Low GPU memory Abdominal oRgan sEgmentation (FLARE) Challenge (Ma

et al., 2021b). This dataset contains 360 abdominal CT scans obtained from diverse medical

centers with pixel-wise masks of several organs, including liver, kidneys, spleen, and pancreas.

Following standard protocols, we randomly split the scans into 240 for training, 40 for validation,

and 80 for testing. Furthermore, CT scans with different resolutions are resampled to the same

space and cropped to 192×192×30, from which 2D slices are obtained.

PROSTATE (Antonelli et al., 2022) The dataset was acquired at Radboud University Medical

Center and was released as a part of Medical Segmentation Decathlon (MSD) challenge. The

dataset consists of 32 MRI volumes with target regions of prostate peripheral zone (PZ) and the

transition zone (TZ). The dataset is challenging because of segmenting two adjoined regions

large inter-subject variability. We split the dataset to 22 patients for training, 3 for validation and

7 for testing.

KIdney Tumor Segmentation (KiTS) challenge (Heller et al., 2019). This dataset consists of

210 CT scans with their respective segmentation masks, including the kidney and tumor classes.

Following (Islam & Glocker, 2021), we resampled cases with varying resolutions and image

sizes to a common resolution of 3.22 × 1.62 × 1.62 mm and center crop to image size 80 × 160

× 160. The dataset is randomly split into 150 cases for training, 25 for validation, and 40 for

testing.

MRBrainS18 (Mendrik et al., 2015a). The purpose of this challenge is to segment the brain

MRI scans into Gray Matter (GM), White Matter (WM), and Cerebralspinal fluid (CSF). The

dataset contains paired T1, T2, and T1-IR sequences of 3D volumes (240×240×48) of 7 subjects
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and their associated pixel-wise masks. For the experiments, we consider 5 subjects for training

and 2 for testing.

Note that in all the datasets, images are normalized to be within the range [0-1]. Furthermore,

for the datasets containing multiple image modalities (i.e., MRBrainS and BraTS), all available

modalities are concatenated in a single tensor, which is fed to the input of the neural network. In

addition, there exists one dataset for which the low amount of available images impeded us to

generate a proper training, validation, and testing split (MRBrainS). In this case, we performed

leave-one-out-cross-validation in our experiments, whereas the other datasets followed standard

training, validation, and testing procedures, using a single split in the experiments.

3.4.1.2 Evaluation Metrics

We assess the discriminative performance of the model using standard segmentation metrics in

the medical imaging community, including the overlap-based metric DICE (DSC) coefficient, and

spatial distance metric Hausdorff distance (HD). For understanding the calibration performance,

we resort to Expected Calibration Error (ECE) and Classwise Expected Calibration Error (CECE)

(Naeini et al., 2015a). ECE concentrates only on maximum confidence score of the prediction,

while CECE considers the confidence distribution of all the classes, including the winner class

(Mukhoti et al., 2020b). Importantly, we obtain the calibration metrics only for the foreground

regions following the recent literature (Islam & Glocker, 2021; Murugesan et al., 2023b). The

notion behind this is because the class distribution is skewed towards background, particularly

in most cases of medical image segmentation. Hence, excluding background allows us to

better compare the performance of different methods. We further understand the calibration

performance through reliability plots (Niculescu-Mizil & Caruana, 2005c), wherein accuracy is

expected to be directly correlated to class probability. In both the cases, we set the number of

bins to 15.

To compute ECE and CECE for 𝑁 samples with 𝐾 classes, we group predictions into 𝑀

equispaced bins. Let 𝐵𝑖 denote the set of samples with maximum confidences belonging to the
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𝑖𝑡ℎ bin, and 𝐵𝑖 𝑗 denotes the set of samples from the 𝑗 𝑡ℎ class in the 𝑖𝑡ℎ bin. The accuracy 𝐴𝑖 of

𝑖-th bin is computed as 𝐴𝑖 = 1
|𝐵𝑖 |

∑
𝑗∈𝐵𝑖

1(𝑦 𝑗 = 𝑦 𝑗 ), where 1 is the indicator function. Similarly,

for class-wise, the accuracy is given by 𝐴𝑖, 𝑗 = 1
|𝐵𝑖, 𝑗 |

∑
𝑘∈𝐵𝑖, 𝑗

1( 𝑗 = 𝑦𝑘 ). The confidence 𝐶𝑖 of the

𝑖𝑡ℎ bin and 𝐶𝑖, 𝑗 of 𝑖𝑡ℎ bin, 𝑗 𝑡ℎ class is given by 𝐶𝑖 = 1
|𝐵𝑖 |

∑
𝑗∈𝐵𝑖

𝑝 𝑗 and 𝐶𝑖, 𝑗 = 1
|𝐵𝑖 𝑗 |

∑
𝑘∈𝐵𝑖, 𝑗

𝑝𝑘 𝑗

respectively. Hence, ECE and CECE is given by:

𝐸𝐶𝐸 =
𝑀∑
𝑖=1

|𝐵𝑖 |

𝑁
|𝐴𝑖 − 𝐶𝑖 | (3.10)

𝐶𝐸𝐶𝐸 =
𝑀∑
𝑖=1

𝐾∑
𝑗=1

|𝐵𝑖, 𝑗 |

𝑁
|𝐴𝑖, 𝑗 − 𝐶𝑖, 𝑗 | (3.11)

3.4.1.3 Implementation Details

To empirically evaluate the proposed model, we conduct experiments comparing a state-of-the-art

segmentation network on a multi-class scenario trained with different learning objectives. In

particular, we first employ standard loss functions employed in medical image segmentation,

which include the popular Cross-entropy (CE) combined with DSC loss. Furthermore, we also

include training objectives that have been proposed to calibrate deep neural networks for both

classification and segmentation problems, which represent nowadays the state-of-the-art for

this task. This includes Focal loss (FL) (Lin et al., 2017), Label Smoothing (LS) (Szegedy

et al., 2016), ECP (Pereyra et al., 2017), SVLS (Islam & Glocker, 2021), and MbLS (Liu et al.,

2022b). Following the literature, we have chosen the following hyper-parameters for the different

approaches: FL (𝛾=3.0), ECP (𝛼=0.1), LS (𝜆=0.1), SVLS (𝜎=2.0) and MbLS (𝑚=5). Note that

in the main experiments, these hyperparameters remain fixed across the different datasets for all

the models, to better highlight the generability of each approach. For the experiments, we fixed
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the batch size to 16, epochs to 100, and optimizer to ADAM. The learning rate of 1e-3 and 1e-4

are used for the first 50 epochs, and the next 50 epochs, respectively. The models are trained on

2D slices, while the evaluation is done over 3D volumes. The best model is selected based on

the mean DSC score on the validation dataset.

Backbones. The experiments are predominantly conducted on the standard UNet (Ronneberger

et al., 2015b) architecture. Nevertheless, to demonstrate the model-agnostic nature of our

approach we also evaluate the effect of our method on other common architectures in medical

image segmentation, including convolutional neural networks (AttUNet (Oktay et al., 2018),

UNet++ (Zhou et al., 2020) and nnUNet (Isensee et al., 2021)) and Vision Transformer based

architectures (TransUNet (Chen et al., 2021)).

Table 3.1 Discriminative performance obtained by the different evaluated models across

six popular medical image segmentation benchmarks. Best method is highlighted in bold,

whereas second best approach is underlined

Dataset Region CE+DSC FL ECP LS SVLS MbLS NACL

DSC ↑ HD ↓ DSC ↑ HD ↓ DSC ↑ HD ↓ DSC ↑ HD ↓ DSC ↑ HD ↓ DSC ↑ HD ↓ DSC ↑ HD ↓

ACDC

RV 0.799 3.10 0.580 9.37 0.751 4.93 0.796 3.34 0.791 2.89 0.812 2.59 0.837 3.02
MYO 0.795 2.57 0.557 5.55 0.757 3.54 0.772 3.07 0.798 2.66 0.795 2.86 0.820 2.04
LV 0.889 3.75 0.724 6.97 0.839 4.85 0.858 3.49 0.882 2.89 0.875 3.53 0.905 2.59

Mean 0.828 3.14 0.620 7.30 0.782 4.44 0.809 3.30 0.824 2.81 0.827 2.99 0.854 2.55

FLARE

Liver 0.950 6.09 0.952 7.54 0.953 7.41 0.952 8.50 0.951 7.72 0.941 7.18 0.954 6.04
Kidney 0.945 2.07 0.947 2.16 0.950 2.05 0.947 1.76 0.947 1.84 0.937 2.49 0.952 1.84
Spleen 0.892 9.49 0.887 9.09 0.887 3.98 0.905 4.62 0.879 6.40 0.868 4.73 0.900 4.26

Pancreas 0.636 7.95 0.626 7.80 0.649 7.77 0.637 6.45 0.650 6.91 0.596 8.61 0.664 7.37
Mean 0.855 6.40 0.853 6.65 0.860 5.30 0.860 5.33 0.857 5.72 0.836 5.75 0.867 4.88

BraTS

TC 0.731 5.73 0.799 7.80 0.749 7.53 0.773 5.16 0.744 7.56 0.803 4.88 0.804 3.98
ET 0.766 8.27 0.854 10.02 0.790 11.31 0.807 10.23 0.783 9.22 0.821 10.85 0.854 6.58
WT 0.872 6.88 0.889 9.19 0.884 7.28 0.879 7.94 0.877 8.55 0.889 8.09 0.893 6.78

Mean 0.789 6.96 0.848 9.00 0.808 8.71 0.820 7.78 0.801 8.44 0.838 7.94 0.850 5.78

PROSTATE
CG 0.329 16.00 0.223 23.45 0.344 19.97 0.292 13.51 0.341 15.24 0.427 10.93 0.418 12.73
PZ 0.752 7.13 0.677 12.57 0.736 6.19 0.756 5.12 0.737 9.28 0.774 5.65 0.796 4.02

Mean 0.540 11.56 0.450 18.01 0.540 13.08 0.524 9.31 0.539 12.26 0.601 8.29 0.607 8.37

KiTS
Kidney 0.786 9.11 0.784 8.74 0.735 10.27 0.759 9.06 0.770 9.86 0.749 10.56 0.780 9.08
Tumor 0.447 13.09 0.470 13.57 0.365 15.49 0.446 16.61 0.468 15.96 0.426 16.85 0.525 15.77
Mean 0.616 11.10 0.627 11.15 0.550 12.88 0.602 12.83 0.619 12.91 0.588 13.71 0.652 12.42

MRBrainS

GM 0.754 1.73 0.672 2.81 0.747 2.23 0.707 2.12 0.725 1.71 0.741 2.09 0.781 1.41
WM 0.759 2.91 0.598 5.60 0.783 2.73 0.702 4.98 0.603 6.24 0.729 3.08 0.791 2.64
CSF 0.776 2.00 0.722 4.18 0.746 3.10 0.730 2.34 0.800 1.41 0.769 1.71 0.820 1.21
Mean 0.763 2.22 0.664 4.20 0.759 2.68 0.713 3.15 0.709 3.12 0.747 2.29 0.797 1.75

Table 3.2 Calibration performance obtained by the different evaluated models across six

popular medical image segmentation benchmarks. Best method is highlighted in bold,

whereas second best approach is underlined. In this case, the calibration metrics are

averaged across the different target objects

Dataset CE+DSC FL ECP LS SVLS MbLS NACL

ECE ↓ CECE ↓ ECE ↓ CECE ↓ ECE ↓ CECE ↓ ECE ↓ CECE ↓ ECE ↓ CECE ↓ ECE ↓ CECE ↓ ECE ↓ CECE ↓
ACDC 0.137 0.084 0.153 0.179 0.130 0.094 0.083 0.093 0.091 0.083 0.103 0.081 0.048 0.061
FLARE 0.058 0.034 0.053 0.059 0.037 0.027 0.055 0.049 0.039 0.036 0.046 0.041 0.033 0.031
BraTS 0.178 0.122 0.097 0.119 0.139 0.100 0.112 0.108 0.146 0.111 0.127 0.095 0.112 0.097

PROSTATE 0.430 0.304 0.271 0.381 0.306 0.252 0.304 0.301 0.335 0.272 0.322 0.250 0.253 0.254
KiTS 0.188 0.144 0.098 0.133 0.155 0.151 0.122 0.141 0.163 0.144 0.155 0.147 0.090 0.124

MRBrainS 0.177 0.105 0.085 0.123 0.084 0.082 0.061 0.101 0.077 0.080 0.107 0.093 0.027 0.056
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Figure 3.1 Compromise between calibration and discriminative performance. For

each dataset, we show the discriminative (DSC) and calibration (ECE) results obtained by

each method. We expect a well-calibrated model to achieve simultaneously large DSC (in
blue) and small ECE (in brown) values

Figure 3.2 Ranking global and per-metric of the different methods based on the sum-rank

and mean of case-specific approach

3.4.2 Results

3.4.2.1 Main results

We present the quantitative results across a diverse set of segmentation datasets, which include

multiple organs, pathologies, as well as several imaging protocols, from a segmentation and a

calibration standpoint.
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Segmentation results. First, in Table 3.1, we compare the discriminative performance of

our Neighbor Aware CaLibration method, which we refer to as NACL, to relevant calibration

approaches. Notably, we can observe that our approach consistently outperforms existing

literature across nearly all the datasets and metrics, yielding improvements which range between

3.4% and 10% (DSC), compared to the second and last performing method, respectively. Indeed,

if we consider the mean DSC and HD values for each dataset, the proposed approach achieves

the best performance in 10 out of the 12 settings, being the second and third best performance

method in the remaining 2 scenarios. An important observation is that, whereas our method

typically ranks first and second for all targets and metrics, there is no other approach that presents

a consistent trend on performance across datasets. For example, Focal loss yields the second

best average DSC performance in BraTS, while it ranks last in ACDC or MRBrainS.

Calibration performance. Similarly to the segmentation scenario, the results in terms of

calibration (Table 3.2) reveal that our approach consistently yields the best, and second best,

uncertainty estimates across datasets and target objects. Furthermore, and as observed in Table

3.1, there is no a clear trend on the prior literature, as methods performing competitively in one

dataset considerably fail in another, whose discrepancies can also be observed across metrics.

For instance, Focal loss yields the best calibrated model, in terms of ECE, for the BraTS dataset,

but its ECE value in ACDC is three times higher than the ECE obtained by our approach. This

phenomenon is also observed in other approaches, such as ECP (best CECE in FLARE and worst

in KiTS) or MbLS (best CECE in BraTS and PROSTATE, but among the worst in MRBrainS).

It is important to note that these methods contain different hyperparameters that remained fixed

across datasets (e.g., 𝛼 in LS, 𝛾 in FL, or 𝜆 and margin 𝑚 in MbLS). Thus, even though a specific

per-dataset fine-tuning of these hyperparameters may lead to a performance increase (both in

terms of segmentation and calibration), results in Table 3.1 and 3.2 demonstrate empirically

that our approach presents a robust alternative to existing methods, as it yields the overall best

performance across diverse target objects and datasets.

For a more comprehensive understanding of the overall performance across various approaches

and datasets, we now introduce two studies that expand upon the quantitative values provided in
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Table 3.1 and 3.2. First, we resort to radar plots in Figure 3.1 to better highlight the trade-off

between discriminative and calibration performance achieved by different methods. For a

model to be well-calibrated, it should present high discriminative performance (blue line),

while yielding low calibration values (brown line). In the case of these radar plots, this implies

that a greater distance between the blue and brown lines indicates a more favorable balance

between discriminative and calibration performance. Looking at the plots, we can easily observe

that the proposed method consistently yields the best trade-offs across datasets, offering high

discriminative power without degrading its calibration performance. Other methods, however,

must sometimes compromise their discriminative performance to produce calibrated models, or

vice-versa. The second study considers the evaluation strategies adopted in several MICCAI

Challenges, i.e., sum-rank (Mendrik et al., 2015a) and mean-case-rank (Maier et al., 2017). As

we can observe in the heatmaps provided in Fig. 3.2, our approach yields the best rank across

all the metrics in both strategies, clearly outperforming any other method. Interestingly, some

methods such as FL or ECP typically provide well-calibrated predictions, but at the cost of

degrading their discriminative performance.

In addition to the popular ECE and CECE metrics used in calibration, we further evaluate

whether the observations above still hold when using adaptive binning schemes, such as

Adaptive Calibration Error (ACE), and Thresholded Adaptive Calibration Error (TACE) (Nixon,

Dusenberry, Zhang, Jerfel & Tran, 2019a). Following Eq. (3.11), the equispaced M bins are

replaced with adaptive range 𝑅, where 𝑅𝑖, 𝑗 denotes the number of samples from 𝑗 𝑡ℎ class in the

𝑖𝑡ℎ range and ACE is given by:

𝐴𝐶𝐸 =
𝑅∑
𝑖=1

𝐾∑
𝑗=1

|𝑅𝑖, 𝑗 |

𝑁
|𝐴𝑖, 𝑗 − 𝐶𝑖, 𝑗 | (3.12)

1 TACE uses a threshold to prevent correct and confident predictions from dominating the

calibration score. The results from these metrics, which are reported in Table 3.3, confirm the
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trend observed with equally-spaced ECE metrics, where our model consistently yields very

competitive performance.

Table 3.3 Calibration performance evaluated in terms of adaptative binning schemes, i.e.,

ACE (top) and TACE (bottom), across six popular medical image segmentation benchmarks

Dataset CE+DSC FL ECP LS SVLS MbLS Ours

ACDC 0.137 0.155 0.129 0.089 0.091 0.109 0.069
FLARE 0.058 0.033 0.037 0.072 0.039 0.038 0.043

BraTS 0.223 0.098 0.139 0.121 0.125 0.132 0.114

PROSTATE 0.429 0.269 0.305 0.306 0.334 0.323 0.253
KiTS 0.188 0.099 0.155 0.126 0.162 0.156 0.091

MRBrainS 0.172 0.102 0.049 0.033 0.095 0.072 0.031
ACDC 0.151 0.224 0.151 0.093 0.138 0.081 0.073
FLARE 0.123 0.145 0.134 0.049 0.144 0.127 0.031
BraTS 0.201 0.146 0.145 0.108 0.141 0.095 0.097

PROSTATE 0.377 0.383 0.282 0.301 0.294 0.249 0.254

KiTS 0.187 0.151 0.161 0.141 0.174 0.147 0.124
MRBrainS 0.151 0.131 0.110 0.084 0.110 0.079 0.057

3.4.2.2 On the impact of constraining the logit space

Constraint over logits vs softmax. Recent evidence (Liu et al., 2022b; Murugesan et al.,

2023b) have suggested that imposing constraints on the logits offers a better alternative than its

softmax counterpart. To demonstrate that this observation holds in our model, we further present

the results of our formulation when the constraint is enforced on the softmax distributions,

i.e., replacing l by p̂ in Equation 3.9. From these results, reported in Figure 3.3, it is evident

that working on the logit space substantially increases both the segmentation and calibration

performance across the datasets. This could be attributed to the range of logits being larger than

softmax, allowing for a better control.

Effect on the logit distributions. In order to demonstrate the benefits of our method over existing

approaches, in terms of controlling the logits, we have plotted the average logit distribution

across classes on ACDC and FLARE test sets in Figure 3.4. In particular, we first separate all

the voxels based on their ground truth labels. Then, for each category, we average the per-voxel

vector of logit predictions across each category (in absolute value). From the figure, it can be

inferred that the popular CE+DSC loss provides higher logit values for the winner class, and the

distance between the winner logits and rest are large, typical characteristics of an overconfident
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Figure 3.3 Impact of applying the penalty over softmax (cross) vs logits (circle)

predictions across the different datasets

Figure 3.4 Distribution of logit predictions provided by a model trained with CE+DSC,

LS, MbLS, SVLS and our approach (from left to right) on FLARE (top) and ACDC (bottom)

model (Murugesan et al., 2023b). Interestingly, SVLS seems to follow the logit distribution

of CE+DSC, up to a given extent, even though it was designed to emulate LS, but integrating

class spatial information. In contrast, whereas LS and MbLS have a desired logit distribution for
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Figure 3.5 Histogram of global logit distribution over epochs obtained by the different

approaches

calibration, particularly for the winner class, the distance with the remaining categories is shorter.

This may have an undesirable effect, as predictions where the distance between the winner

and remaining logits are very small may lack semantic information needed for maintaining the

discriminative performance. Finally, our approach brings the best of both worlds, i.e., it keeps

the magnitude of the winner logit low, which facilitates the training of a well-calibrated model,

effectively pushes the remaining logit values to a considerable distance, thereby preserving

robust discriminative power.

To further understand how the different methods control the logit predictions, we plot the

maximum logit distribution over epochs during training, which is depicted in Fig. 3.5. It is well

known that, calibrated methods show a better regularization, restricting the range of logits to

a particular range (Müller et al., 2019b). From the figure, it could be observed that, during

initial epochs, most of the methods show similar distribution. However, as the number of epochs

increases, several methods focusing on improving the calibration performance have a narrower

range. Indeed, only LS, MbLS and the proposed NACL approach present the narrowest logit

distribution when the network has been trained during a large number of epochs. Based on the

findings in (Müller et al., 2019b), we can therefore say that our method presents very strong

regularization capabilities compared to other approaches, as the range of logits provided by the

trained model is very restricted, with most of the logits encountered between a value of 4 and 5.

3.4.2.3 On the impact of hyperparameters

In this experiment, we assess the sensitivity of the hyper-parameters in the different methods,

and possibly find a setting which works best across datasets. For FL, 𝛾 values of 1, 2, and 3 are
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Figure 3.6 Radar plots displaying hyperparameter-dependence performance (DSC
on top and ECE in the bottom). HP1, HP2 and HP3 denote the respective hyper-parameter

set: FL (𝛾=[1,2,3]), ECP (𝜆 =[0.1,0.2,0.3]), LS (𝛼 =[0.1,0.2,0.3]), MbLS (𝑚=[3,5,10]) and

SVLS (𝜎=[0.5,1,2], and ours (𝜆=[0.1,0.2,0.3]). Our method consistency provides best

performance for 0.1 across datasets

considered. In the case of ECP and LS, 𝛼 and 𝜆 are set to of 0.1, 0.2 and 0.3. For MbLS, we

considered the margins to be 5, 8, and 10, while 𝜆 was fixed to 0.1. In the case of SVLS, we fixed

the kernel size to 3 and used 0.5, 1, and 2 as sigma values. Finally, we fixed 𝜆 in our method to

0.1, 0.2 and 0.3. We compared the discriminative (DSC) and calibration (ECE) performances

using these hyper-parameters across the different datasets and depicted the results in Figure

3.6. From this figure, it can be observed that, our method is fairly consistent with a particular

hyper-parameter (HP1). Moreover, while varying 𝜆 can lead to performance differences in our

approach, these are smaller compared to existing approaches. Indeed, other methods presented

larger performance variations, as discrimination and calibration metrics were highly sensitive to

the hyper-parameter choice. For example, in ACDC, FL and SVLS suffer large performance

degradation for different values of their respective hyper-parameters, whereas in MrBrainS, ECP

and MbLS results considerably decrease across different values of 𝜆 and 𝑚, respectively

What if we can fine-tune the hyperparameters? Providing a method that yields competitive

results across datasets with its hyperparameters fixed brings several benefits in practice, e.g., it

avoids extensive grid-search on a validation set. Nonetheless, one may argue that finding the
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optimal value, in a per-dataset basis, should be considered, as the performance of the delivered

model can be further improved. We perform in this section such analysis, and depict in Figure

3.74 the results when the hyperparameter value is selected based on the best DSC score on

the validation set for each dataset. In these plots, the best method across each dataset can be

identified based on the largest gap between DSC and ECE scores, as one would expect the

highest discriminative (DSC) scores accompanied with the lowest calibration (ECE) values.

Thus, while some methods perform satisfactorily in some datasets, such as SVLS in MRBrains,

or FL in BraTS, our approach NACL brings the most consistent results across datasets, aligning

with the observations in the previous section.

3.4.2.4 Effect of the prior

Ablation on different priors. A benefit of the proposed formulation, particularly compared to

SVLS (Islam & Glocker, 2021), is that diverse priors can be enforced on the logit distributions.

Thus, we now assess the impact of different priors, 𝝉 in our formulation, that can distribute the

label distribution. The results presented in Table 3.4 reveal that selecting a suitable prior can

further improve the performance of our model.

Table 3.4 Impact of using different priors. We compare the discrimative and calibration

performance of our approach across the six datasets when using different priors 𝝉 in

Equation 3.9

FLARE ACDC BraTS PROSTATE KiTS MRBrainS

Prior 𝝉 DSC ECE DSC ECE DSC ECE DSC ECE DSC ECE DSC ECE

Mean 0.868 0.033 0.854 0.048 0.850 0.112 0.607 0.253 0.652 0.090 0.797 0.027

Gaussian 0.860 0.033 0.876 0.042 0.813 0.140 0.559 0.293 0.615 0.134 0.779 0.045

Varying sigma with a Gaussian prior. One of the advantages of the proposed approach

compared to SVLS is its flexibility to include any prior in the constraint, as well as the integration

of a blending parameter that controls the influence of the constraint during training. We now

compare the impact of employing different sigma values in both SVLS and our approach. In

particular, we use the following values in the Gaussian filter (𝜎 = {1, 2, 3}) used in SVLS, as

4 Note that Figure 3.7 is in fact a clean version of Figure 3.6, where only the performance of the best

hyperparameter value is depicted.
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Figure 3.7 What if we can fine-tune the best hyperparameter? These plots depict the

discriminative and calibration results when the optimal hyperparameter value (in brackets)

is selected for each method

well to define a Gaussian prior in our formulation, whose results are depicted in Fig. 3.8. In

this figure, the x-axis represents the relative difference in performance between our method and

SVLS. More precisely, if we look at the top row for 𝜎 = 1, we can observe that in the ACDC

dataset, the proposed approach outperforms SVLS by nearly 10%, whereas in PROSTATE,

SVLS obtains nearly 2% improvement over our method. Taking this information into account,

one can clearly see that, using the same prior, the proposed approach typically outperforms

SVLS, and sometimes by a large margin, in both DSC and ECE metrics. Importantly, our

approach achieves these results even without changing the weighing factor (𝜆), as it fixed to 0.1

to have a fair comparison to SVLS, since SVLS cannot control the importance of the penalty,
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as exposed in Section 3.3.2. These results show empirically that our method is able to better

leverage the neighboring class information compared to SVLS.

Figure 3.8 Direct comparison of SVLS (Islam & Glocker, 2021) vs. NACL (Ours).
Relative error differences (%) between SVLS and our method when using the same

Gaussian prior (with 𝜎 = {1, 2, 3})

3.4.2.5 Robustness to backbone

We study the impact of our proposed loss when using other recent state-of-the-art segmentation

networks including: AttUNet (Oktay et al., 2018), TransUNet (Chen et al., 2021), UNet++

(Zhou et al., 2020), and nnUNet (Isensee et al., 2021). We considered the FLARE dataset for

this study, whose quantitative results, compared to MbLS and SVLS (our closest competitors

in terms of methodology) are presented in Fig. 3.9. From the figure, it can be inferred that,

regardless of the backbone choice, our method is able to consistently improve both segmentation

and calibration performance. This can be attributed to the ability of our method to control the

logit distribution, enabling it to be directly plugged into any standard segmentation architecture.



87

Figure 3.9 Robustness to the segmentation backbone. We evaluate the performance of

competing approaches (i.e., MbLS and SVLS) on the FLARE dataset when using different

architectures as segmentation backbones

3.4.2.6 Sensitivity to the number of training samples

In this experiment, we investigate whether varying the number of training samples impacts the

performance of the different calibration methods, as well as the CE+DSC compounded loss.

Indeed, one source of uncertainty in machine learning models is the lack of enough data, which

is referred to as epistemic uncertainty, or knowledge uncertainty. While this kind of uncertainty

can be addressed by adding more knowledge, for example in the form of additional labeled

training samples, we want to evaluate how different calibration models behave under different

labeled data scenarios. To do so, instead of considering all the samples for training, we only

employ 25%, 50% and 75% of the available images. Note that, we use the same validation and

test data as we did in our main experiments. Fig. 3.10 depicts the obtained results for ACDC and

FLARE datasets. From these experiments, it is expected that decreasing the number of samples

potentially impacts both the discriminative and calibration performance across all the methods.

Nevertheless, this trend is not followed by several methods, particularly in terms of correctly

modeling the uncertainty. For instance, ECP and SVLS present worst calibration performances

for the 50% and 75% settings in ACDC, which is also observed in the DSC metrics. Last, across

all the labeled scenarios, our approach yields typically the best performance, indicating that
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it can better handle the epistemic uncertainty derived from lack of enough knowledge during

training.

Figure 3.10 Performance variation with number of labeled images. These plots depict

the performance of different approaches under several data labeled scenarios, going from

100% (i.e., original provided data) to 25% of images from the original dataset

3.4.2.7 Choice of the penalty

In this work, we have shown that regularizing the logits based on their neighboring class

distribution coupled with the conventional cross entropy is helpful in improving both segmentation

and calibration performance. For all the experiments, we have considered a linear penalty to

enforce the spatial information. In this section, we now try to control the logits through a

quadratic penalty instead. Table 3.5 presents the comparison of our method with 𝐿1 and 𝐿2

penalties. From these results, we can observe 𝐿2 provides better segmentation results over 𝐿1
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in more cases, even though in some cases the improvement gains are marginal. Nevertheless,

when it underperforms its linear counterpart, the performance gap is significant (e.g., -6% in

PROSTATE). In terms of calibration, 𝐿1 yields the best performance in multiple cases. This

could be due the nature of 𝐿2, which is more aggressive in forcing the logits to follow the prior

class distribution compared to 𝐿1. It is important to note that, increasing the weighing factor

(𝜆) of the penalty could mitigate the aggressiveness of 𝐿2 to enforce the constraint, potentially

leading to the improvement of the segmentation and calibration quality over 𝐿1. However, the

goal of this work is to provide a unique solution that generalizes across multiple diverse datasets,

and that does not require fine-tuning multiple hyper-parameters in each scenario. Thus, we did

not explore individual configurations that lead to the best performance for each dataset.

Table 3.5 Impact of different penalties.Comparison of using a 𝐿1 vs a 𝐿2 penalty to

impose the constraint in Equation 3.9

DSC ECE

𝐿1 𝐿2 𝐿1 𝐿2

ACDC 0.854 0.871 0.048 0.059

FLARE 0.868 0.851 0.033 0.065

BraTS 0.850 0.851 0.112 0.078
PROSTATE 0.607 0.541 0.253 0.320

KiTS 0.652 0.673 0.090 0.106

MRBrainS 0.797 0.803 0.027 0.023
Mean 0.771 0.765 0.094 0.109

3.4.2.8 Calibration metrics over prediction and target foregrounds

Through all the experiments, the calibration metrics have been obtained by using only the

foreground regions of the ground truth. Nevertheless, there is a possibility that a model prediction

may be discarded, as it might not overlap with the target ground truth due to an over-segmentation.

In this experiment, we recompute the calibration metrics over the union of target and predicted

foregrounds, whose ECE and CECE values, against the DSC metric, are depicted in Figure 3.11.

We can observe that, even after including the prediction regions in obtaining the calibration

metrics, our method still yields the best performance trade-off between DSC and both ECE and

CECE across all the datasets. Hence, the strategy for assessing the calibration performance



90

Figure 3.11 Scatter plots comparing DSC vs ECE/CECE when considering the

foreground (prediction ∪ target) to compute the calibration metrics

does not change the message that the proposed approach offers a better alternative to existing

calibration methods.
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Figure 3.12 Qualitative results on BraTS dataset for different methods. In particular, we

show the original image and the corresponding segmentation masks provided by each

method (top row), the ground-truth (GT) mask followed by maximum confidence score of

each method (middle row) and the respective reliability plots (bottom row). Methods from

left to right: CE+DSC, FL, ECP, LS, SVLS, MbLS, and Ours

3.4.2.9 Qualitative results and reliability diagrams

We show now in Figure 3.12 the predicted segmentation masks (top), uncertainty maps (middle)

and their corresponding reliability plots (bottom) on one subject across the different methods.

From the predicted segmentation outputs, it is evident that our method generates segmentations

closer to the target, which is supported quantitatively by the reported DSC metric. Methods

such as MbLS, LS, FL tend to oversegment several categories, whereas ECP and SVLS have

difficulties in differentiating challenging regions. The uncertainty maps given by the maximum

confidence scores provide more interesting observations on the dynamics of the different methods.

Note that, as highlighted in prior works (Liu et al., 2022b), the model should be less confident at

the boundaries, while providing more confident predictions in the inner regions. First, we can

observe that the CE+DSC compound loss provides the worst calibrated models, as there are no

remarkable edges to demarcate between regions. Second, methods such as FL and LS achieve

better uncertainty by reducing the overall confidence scores across many regions, which might

impact the discriminative performance (as supported by quantitative results reported in previous

sections). Third, SVLS provides a distinct edge map, but not particularly sharp because of the
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smoothing effect of the Gaussian filter. Finally, we could observe that MbLS, as well as our

approach, provide confidence estimates that are sharp in the edges and low in within-region

pixels, as expected in a well-calibrated model. However, it should be noted that MbLS uses a

margin to control the magnitude of the logits, and lacks spatial awareness, as this value is chosen

empirically and is equal for all the pixels. This contrasts with our method, where the prior is

dynamically chosen depending on the neighboring class distribution for each pixel. Furthermore,

we show the our model yields the best reliability diagram, i.e., ECE curves are closer to the

diagonal, indicating that the predicted probabilities serve as a good estimate of the correctness

of the prediction.

3.4.2.10 Robustness across multiple seeds

We now assess the robustness of the different methods across multiple seeds, whose average

performance in depicted in Figure 3.13. More concretely, three different seeds are used to run

the experiments three times, the same set of seeds are employed for all the methods and the mean

over the three runs are reported. We can observe that, despite using different seeds, the findings

from Figure 3.13 align with the main results reported in Table 3.1, with the proposed approach

typically yielding the best segmentation and calibration performance. Indeed, looking closer to

these results we can state that the proposed approach offers the best discriminative-calibration

compromise, regardless of the dataset studied.

The detailed numerical values from the plots in Figure 3.13, altogether with their standard

deviation, are presented in Table 3.6. These results showcase not only the superiority of

the proposed approach, as it offers the best trade-off between discrimination and calibration

performance, but also its robustness, since the standard deviation across seeds is typically lower

compared to other methods. These observations underscore the potential of our approach from a

clinical practice standpoint, as it typically yields the best results, yet being a robust strategy.
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Figure 3.13 Average results across three different seeds. These scatter plots illustrate

the average DSC vs ECE correlation for the different methods, and across multiple datasets,

when three seeds are used

3.5 Conclusion

While network calibration has emerged as a mainstay problem in machine learning, most state-of-

the-art calibration losses are specifically designed for classification problems, ignoring the spatial

information, crucial in dense prediction tasks. Indeed, only the recent SVLS integrates spatial
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Table 3.6 Segmentation and Calibration Results. Average DSC and ECE scores across

three seeds for six medical image segmentation benchmarks. Best method is highlighted in

bold, and second best is underlined

Dataset FL ECP LS SVLS MbLS NACL
DSC ↑

ACDC 55.0514.88 74.8110.43 85.304.10 77.944.30 85.522.47 87.041.58

FLARE 86.220.66 86.051.00 86.510.71 85.800.27 86.192.29 86.200.58

BraTS 83.621.00 80.811.87 82.960.84 80.291.84 83.810.10 84.151.02

PROSTATE 50.344.75 52.891.24 55.572.77 53.963.20 59.790.51 55.375.45

KiTS 61.116.21 61.695.85 64.184.39 61.002.49 62.823.78 65.340.53

MRBrainS 75.397.85 76.352.56 75.283.68 75.564.28 76.445.80 79.641.22

ECE ↓

ACDC 16.666.87 15.095.56 6.621.61 11.852.78 6.433.37 4.810.60

FLARE 4.370.64 3.960.93 6.130.59 3.800.25 4.000.49 3.450.19

BraTS 9.580.17 14.710.73 9.821.34 13.451.10 12.120.90 10.831.17

PROSTATE 22.634.04 32.023.85 26.136.19 34.761.44 30.562.14 26.521.31

KiTS 11.844.03 13.712.60 10.671.30 14.751.79 14.691.08 11.332.26

MRBrainS 11.993.02 8.212.02 3.432.27 4.922.45 8.035.21 2.850.27

awareness to transform the hard one-hot encoding labels into a smoother version, capturing

the class distribution surrounding each pixel. Inspired by the need of leveraging neighboring

information to improve the calibration performance of deep segmentation models, in this work

we delve into the details of SVLS, and present a constrained optimization perspective of this

approach. Our analysis demonstrates that SVLS enforces an implicit constraint on soft class

proportions of surrounding pixels. Our formulation exposed two weaknesses of SVLS. First,

it lacks a mechanism to control explicitly the importance of the constraint, which may hinder

the optimization process as it becomes challenging to balance the constraint with the primary

objective effectively. And second, the a priori knowledge enforced in the constrained is directly

derived from the Gaussian distribution of a pixel neighborhood, which may be difficult to define

(as it depends on 𝜎), and did not always provide the best performance, as shown empirically in

our results.

To overcome the limitations of SVLS, we proposed a principled and simple approach based

on equality constraints on the logit values, which allows us to control explicitly both the prior

to be enforced in the constraint, as well as the weight of the penalty, offering more flexibility.

We conducted a comprehensive evaluation, incorporating diverse well-known segmentation

benchmarks, to evaluate the performance of the proposed approach, and compared it to state-

of-the-art calibration losses in the crucial task of medical image segmentation. The empirical
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findings demonstrate that our approach outperforms existing approaches in both discriminative

and calibration metrics. Furthermore, the proposed formulation yields stable results across

multiple segmentation backbones, hyper-parameter values, and several labeled data scenarios,

establishing itself as a robust alternative within the current literature.

Limitations of the proposed approach. While the proposed solution offers superior performance

to existing approaches, there exist multiple avenues which are worth to explore. For example, a

limitation of our approach is that it disregards image intensity information, which sometimes

emerges as the source of annotation uncertainty. Thus, incorporating surrounding image intensity

in the constraint could potentially lead to better results. Furthermore, simple penalties (i.e., linear

and quadratic) have been explored to enforce the proposed constraint. Integrating more powerful

strategies, for example based on log-barrier methods, have shown interesting performance gains

in medical imaging problems (Kervadec et al., 2022). Therefore, the exploration of these

strategies to enforce the imposed constraints could shed light into more powerful alternatives in

our formulation.
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Abstract

In this work, we present a novel approach to calibrate segmentation networks that considers the

inherent challenges posed by different categories and object regions. In particular, we present a

formulation that integrates class and region-wise constraints into the learning objective, with

multiple penalty weights to account for class and region differences. Finding the optimal penalty

weights manually, however, might be unfeasible, and potentially hinder the optimization process.

To overcome this limitation, we propose an approach based on Class and Region-Adaptive

constraints (CRaC), which allows to learn the class and region-wise penalty weights during

training. CRaC is based on a general Augmented Lagrangian method, a well-established

technique in constrained optimization. Experimental results on two popular segmentation

benchmarks, and two well-known segmentation networks, demonstrate the superiority of CRaC

compared to existing approaches. The code is available at: https://github.com/Bala93/CRac/
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4.1 Introduction

Despite the remarkable progress achieved by deep neural networks (DNNs), they are susceptible

to suffer from miscalibration, leading to overconfident predictions (Guo et al., 2017b; Minderer

et al., 2021), even when they are incorrect. This issue becomes especially significant in

safety-critical scenarios, such as medical diagnosis or treatment, where producing accurate

uncertainty estimates is of paramount importance. An inherent cause of network miscalibration

is known to be the implicit bias for low-entropy predictions caused by popular supervised losses,

such as the cross-entropy, which encourages large differences between the logit of the ground

truth category and the remaining classes (Mukhoti et al., 2020b).

A myriad of approaches have emerged to mitigate network miscalibration, which mainly focus

on either post-processing strategies or integrating additional learning objectives during training.

The first family of approaches, i.e., post-processing methods, offers a simple alternative for

modifying the softmax predictions in a post-hoc fashion by establishing a mapping from raw

network outputs to well-calibrated confidences (Ding et al., 2021; Guo et al., 2017b; Gupta et al.,

2020; Tomani et al., 2021a; Zhang et al., 2020c). The second category involves incorporating

additional regularization during training, typically penalizing low-entropy predictions. For

example, (Pereyra et al., 2017) introduced an explicit term that maximizes the Shannon entropy

of the network predictions during training, which was later extended in (Larrazabal, Martínez,

Dolz & Ferrante, 2023b) by penalizing low-entropy distributions only in incorrect predictions.

Furthermore, popular losses for classification, such as Label smoothing (Szegedy et al., 2016)

or focal loss (Lin et al., 2017), implicitly integrate an entropy maximization term, which has a

favourable effect on calibration (Mukhoti et al., 2020b; Müller et al., 2019b). More recently, (Liu

et al., 2022b, 2023a; Murugesan et al., 2023b) propose to enforce inequality constraints on the

logit space, allowing to control the margin on logit distances, ultimately reducing overconfidence

in the predictions. This provided more flexibility than systematically maximizing the entropy of

the predictions, as in (Mukhoti et al., 2020b; Müller et al., 2019b), which results in gradients that

continually push towards a non-informative solutions. Other works include the integration of

pair-wise constraints between classes (Cheng & Vasconcelos, 2022) or augmenting the training



99

dataset by convex combinations of random pairs of images and their associated labels, e.g.,

MixUp (Thulasidasan et al., 2019b). Nevertheless, even though these works have achieved

remarkable progress in addressing miscalibration in both classification (Cheng & Vasconcelos,

2022; Guo et al., 2017b; Gupta et al., 2020; Mukhoti et al., 2020b; Müller et al., 2019b; Pereyra

et al., 2017; Tomani et al., 2021a) and segmentation tasks (Ding et al., 2021; Larrazabal et al.,

2023b; Liu et al., 2022b; Murugesan et al., 2023b), they disregard neighbour pixel relationships,

in terms of classes, which is of significant relevance in semantic image segmentation.

Certainly, one of the factors contributing to the reduced performance of these losses in

segmentation tasks arises from the uniform, or near-to-uniform, distribution enforced in the

network predictions (whether logit or softmax predictions), which neglects the spatial context

(Murugesan et al., 2023a). To overcome this issue, and to integrate class-wise information of the

surrounding pixels during training, Spatially Varying Label Smoothing (SVLS) (Islam & Glocker,

2021) introduced a label smoothing strategy that captures the structural uncertainty required

in semantic segmentation. More specifically, SVLS uses a Gaussian kernel applied across

the one-hot encoded ground truth, leading to class probabilities based on a soft combination

of neighboring pixels. As exposed in (Murugesan et al., 2023a, 2025), SVLS integrates an

implicit penalty on softmax predictions, which enforces a prior based on soft class proportions

of surrounding pixels. This strategy, however, lacks a mechanism to control the influence of the

constraint over the main objective, potentially hindering the optimization process. To circumvent

this limitation, authors presented a simple solution that combines the standard cross-entropy

with an explicit penalty, where both the prior and its impact can be easily controlled.

Although the work proposed in (Murugesan et al., 2023a, 2025) achieves greater calibration

performance than existing alternatives, and integrates class-relationships across a pixel and

its neighbours, it presents two major limitations: 1) The scalar balancing weight that controls

the importance of the penalty is equal for all classes, and for all the regions. This scenario is

suboptimal, as it can hamper the network performance when some classes are more challenging

to segment, or under-represented. Furthermore, this strategy considers than the weight of the

penalty should be the same for a pixel inside the object (likely to have low uncertainty) than for a
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pixel within the organ boundaries (likely to have high uncertainty). 2) The value of the balancing

weight is defined before network optimization, lacking an adaptive strategy during training. For

example, as the training evolves, the cross-entropy loss pushes towards lower-entropy predictions,

whereas the penalty weight is the same at the beginning and the end of the training.

Based on these findings, we can summarize our contributions as:

1. We propose a class and region-wise constraint approach to tackle the miscalibration issue

in semantic segmentation models. In particular, we formulate a solution that considers

the specificities of each category and different regions by introducing independent class

and region-wise penalty weights. This contrasts with the prior work in (Murugesan et al.,

2023a), where a uniform scalar penalty weight is employed, regardless of categories or

regions.

2. Furthermore, we transfer the constrained problem to its dual unconstrained optimization

counterpart by using an Augmented Lagrangian method (ALM). This alleviates the need for

manually adjusting each penalty weight and allows, through a series of iterative inner and

outer steps, to find the optimal value of each penalty weight, which can be learned in an

adaptive manner.

3. Comprehensive experiments on two popular segmentation benchmarks, and with two

well-known segmentation backbones, demonstrate the superiority of our approach over a set

of relevant recent calibration approaches.

4.2 Methodology

Notation. We denote the training dataset as D(X,Y) = {(x(𝑛) , y(𝑛))}𝑁𝑛=1
, where x(𝑛) ∈ X ⊂ R

Ω𝑛

represents the 𝑛𝑡ℎ image, Ω𝑛 its spatial image domain, and y(𝑛) ∈ Y ⊂ R
𝐾 the corresponding

pixel-wise ground-truth annotation with 𝐾 classes, which is provided as a one-hot encoding

vector. Given an input image x(𝑛) , a neural network parameterized by 𝜽 generates a logit vector

𝑓𝜽 (x(𝑛)) = l(𝑛) ∈ R
Ω𝑛×𝐾 , which can be converted into probability values with the softmax

operator, softmax(l(𝑛)) = s(𝑛) ∈ [0, 1]Ω𝑛×𝐾 . To simplify the notations, we omit sample indices,

as this does not lead to any ambiguity.
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4.2.1 Background

Despite its importance in dense prediction tasks, such as segmentation, very few approaches

consider pixel spatial relationships across classes to address the miscalibration issue. Spatially

Varying Label Smoothing (SVLS) (Islam & Glocker, 2021) integrates neighbour class information

by softening the pixel label assignments with a discrete spatial Gaussian kernel. More recently,

NACL (Murugesan et al., 2023a, 2025) formally showed that SVLS actually enforces an implicit

constraint on soft class proportions of surrounding pixels, and propose the following constrained

optimization problem to alleviate the limitations of SVLS:

min
𝜽

L𝐶𝐸 s.t. 𝝉 = l, (4.1)

which can be approximated by incorporating an explicit penalty, whose overall learning objective

is defined as:

min
𝜽

∑
𝑖∈Ω

∑
𝑘∈𝐾

(−𝑦 (𝑖)𝑘 log(𝑠(𝑖)𝑘 ) + 𝜆 |𝜏(𝑖)𝑘 − 𝑙 (𝑖)𝑘 |). (4.2)

The first term in the above equation is the standard cross-entropy loss on a given pixel, the

second term is a linear penalty over the pixel logit distributions, 𝝉 is a prior, and 𝜆 the balancing

hyperparameter that controls the importance of each term. With this objective, when the

constraint |𝜏𝑘 − 𝑙𝑘 | deviates from 0 (i.e., 𝜏𝑘 and 𝑙𝑘 are different) the value of the penalty term

increases. Thus, as the prior 𝝉 = {𝜏0, ..., 𝜏𝐾−1} captures the class distribution of a 2D patch1

surrounding the pixel, the penalty enforces the predicted logit distribution l to follow 𝝉.

1 More details about the priors and the enforced constraint in (Murugesan et al., 2023a, 2025).
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4.2.2 Class and region-wise penalties

The unconstrained formulation presented in Equation 4.2 employs a single uniform penalty. We

argue that this scenario is suboptimal, as it disregards differences across individual categories,

or even different regions with different uncertainty in the target object, which‘ may pose distinct

inherent learning challenges. For example, annotations from a patch in the center of an organ

typically have less uncertainty that labels in within the organ boundaries. A better, and more

optimal strategy would integrate multiple penalty weights 𝜆, one for each category and type of

patch/region, leading to a set of penalty weights 𝚲 ∈ R
𝐾×𝑅
+ , with 𝑅 being the number of regions.

For simplicity, in this work we will consider only two types of regions (i.e., 𝑅 = 2, leading to

𝚲 = {𝝀0, 𝝀1}), that we denote as inner and outer regions, and whose sets are defined as I and

O, respectively. More concretely, if the surrounding ground truth patch of a given pixel only

contains one category, it will be considered as an inner patch, whereas otherwise it will be an

outer patch. Thus, we can formally define our formulation as:

min
𝜃

∑
𝑖∈Ω

H(y(𝑖) , s(𝑖)) +
∑
𝑖∈I

∑
𝑘∈𝐾

𝜆𝑘,0 |𝜏
(𝑖)
𝑘 − 𝑙 (𝑖)𝑘 | +

∑
𝑖∈O

∑
𝑘∈𝐾

𝜆𝑘,1 |𝜏
(𝑖)
𝑘 − 𝑙 (𝑖)𝑘 |, (4.3)

where H(y, s) is the standard cross-entropy loss. As stated in prior literature in constrained

convolutional neural networks (Marquez Neila, Salzmann & Fua, 2017; Rony, Granger,

Pedersoli & Ben Ayed, 2021; Liu et al., 2023a; Silva-Rodriguez et al., 2024), while 𝚲∗ ∈𝐾×𝑅+

are the Lagrange multipliers of the presented problem, and 𝚲 = 𝚲∗ could be considered the

best choice to solve (4.3), using 𝚲∗ as the penalty weights may not feasible in practice. On the

other hand, finding the optimal value for each penalty weight manually can pose optimization

challenges, particularly for datasets with a large number of classes.
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4.2.3 The proposed class and region adaptive solution

General Augmented Lagrangian. To alleviate the need of having to chose the penalty weights

𝚲 ∈𝐾×𝑅+ , we propose to use an Augmented Lagrangian Multiplier (ALM) method. ALM

approaches are optimization techniques that integrate penalties and primal-dual updates to

efficiently tackle constrained optimization problems. These methods iteratively refine solutions by

adjusting penalty terms based on Lagrange multipliers, effectively balancing between satisfying

constraints, i.e., the penalties, and minimizing the main objective function, in our case the cross-

entropy loss. ALM approaches are favoured due to their ability to handle complex constraints

and their robust performance across various optimization scenarios, and enjoy widespread

popularity in the general context of optimization (Bertsekas, 1996a; Nocedal & Wright, 2006).

A general constrained optimization problem can be formally defined as:

min
𝑥

𝑔(𝑥) s.t. ℎ𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑛 (4.4)

with 𝑔 :𝑑→ the objective function and ℎ𝑖 :𝑑→, 𝑖 = 1, . . . , 𝑛 being the set of constraint functions.

Generally, this problem is tackled by solving a succession of 𝑗 ∈ N unconstrained problems,

each solved approximately w.r.t 𝑥:

min
𝑥,𝜆

L( 𝑗) (𝑥) = 𝑔(𝑥) +
𝑛∑
𝑖=1

𝑃(ℎ𝑖 (𝑥), 𝜌
( 𝑗)
𝑖 , 𝜆

( 𝑗)
𝑖 ), (4.5)

where 𝑃 : ×++×++ → is a penalty-Lagrangian function, whose derivative w.r.t. its first variable

𝑃′(𝑧, 𝜌, 𝜆) ≡ 𝜕
𝜕𝑧 𝑃(𝑧, 𝜌, 𝜆) exists, is positive and continuous for all 𝑧 ∈ and (𝜌, 𝜆) ∈ (++)

2. In

addition, we denote 𝝆( 𝑗) = (𝜌
( 𝑗)
𝑖 )1≤𝑖≤𝑛 ∈

𝑛
++ and 𝝀( 𝑗) = (𝜆

( 𝑗)
𝑖 )1≤𝑖≤𝑛 ∈

𝑛
++ as the penalty parameters

and multipliers associated to the penalty 𝑃 at the iteration j.

The ALM can be split into two iterations. First, in the outer iterations, which indexed by 𝑗 ,

the penalty multipliers 𝝀 and the penalty parameters 𝝆 are updated. Then, during the inner

iterations, the objective L( 𝑗) (Eq 4.5) is minimized using the previous solution as initialization
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to this problem. Particularly, the penalty multipliers 𝝀( 𝑗) are updated to the derivative of 𝑃 w.r.t.

to the solution obtained during the last inner step:

𝜆
( 𝑗+1)
𝑖 = 𝑃′(ℎ𝑖 (𝑥), 𝜌

( 𝑗)
𝑖 , 𝜆

( 𝑗)
𝑖 ). (4.6)

This approach increases the value of the penalty multipliers when the constraint is violated,

and decreases their value otherwise. Thus, integrating an ALM during optimization enables an

adaptive and learnable strategy to determine an optimal value for the penalty weights.

Our global learning objective. Based on the benefits detailed above, we propose to solve the

problem in Eq. 4.3 by using an ALM approach. More concretely, we reformulate this problem

by integrating a penalty function 𝑃, which is parameterized by (𝝆, 𝝀) ∈𝐾++ ×𝐾++:

min
𝜃,𝝀0,𝝀1

∑
𝑖∈Ω

H(y(𝑖) , s(𝑖)) +
∑
𝑖∈I

∑
𝑘∈𝐾

𝑃(𝜏(𝑖)𝑘 − 𝑙 (𝑖)𝑘 , 𝜌𝑘,0, 𝜆𝑘,0)

+
∑
𝑖∈O

∑
𝑘∈𝐾

𝑃(𝜏(𝑖)𝑘 − 𝑙 (𝑖)𝑘 , 𝜌𝑘,1, 𝜆𝑘,1). (4.7)

To obtain an accurate estimate of the penalty multipliers at each epoch, we compute the

satisfaction of the constraint on the validation set, following standard practices in machine

learning. In this work, we consider that a single training epoch approximately minimizes the loss

function. Then, we compute the average penalty multiplier on the validation set. This means

that, after a training epoch 𝑗 , the penalty multipliers for all 𝑘 = 1, ..., 𝐾 and each region 𝑟 at

epoch 𝑗 + 1 can be computed as:

𝜆
( 𝑗+1)

𝑘,𝑟 =
1

|D𝑣𝑎𝑙 |

∑
(x,y)∈D𝑣𝑎𝑙

𝑃′
(
𝜏𝑘 − 𝑙𝑘 , 𝜌

( 𝑗)
𝑘,𝑟 , 𝜆

( 𝑗)
𝑘,𝑟

)
. (4.8)

Furthermore, 𝜌 is updated as:
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𝜌
( 𝑗+1)

𝑘,𝑟 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛾𝜌

( 𝑗)
𝑘,𝑟 |𝜏

( 𝑗)
𝑘 − 𝑙

( 𝑗)
𝑘 | > 𝜇 ∗ |𝜏

( 𝑗−1)

𝑘 − 𝑙
( 𝑗−1)

𝑘 |;

𝜌
( 𝑗)
𝑘,𝑟 otherwise,

(4.9)

where 𝜇 is a constant factor that determines the amount of the update. Last, following prior

works on ALM in the context of constrained CNNs (Liu et al., 2023a; Rony et al., 2021;

Silva-Rodriguez et al., 2024), we employ PHR as the penalty, which is defined as:

PHR(𝑧, 𝜌, 𝜆) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜆𝑧 + 1

2
𝜌𝑧2 if 𝜆 + 𝜌𝑧 ≥ 0;

− 𝜆2

2𝜌 otherwise.

(4.10)

4.3 Experiments

Datasets. Following NACL (Murugesan et al., 2023a), we use the ACDC and FLARE datasets

with its setting. ACDC (Bernard et al., 2018) contains 100 patient exams with cardiac MR

volumes and their respective pixel-wise annotations. We follow the standard practices on this

dataset, and extract 2D slices from the volumes, which are resized to 224×224. Furthermore,

FLARE (Ma et al., 2021b) includes 360 volumes of multiple organs in abdominal CTs, together

with their corresponding segmentation masks, which are resampled to a common space and

cropped to 192×192×30.

Baselines. We compare to relevant calibration losses, as well as to state-of-the-art methods

for calibration in medical imaging segmentation: Focal Loss (FL) (Mukhoti et al., 2020b),

penalizing low-entropies (ECP) (Pereyra et al., 2017), Label smoothing (LS) (Szegedy et al.,

2016), SVLS (Islam & Glocker, 2021), MbLS (Liu et al., 2022b), NACL (Murugesan et al.,

2023a) and BWCR (Karani, Dey & Golland, 2023). As segmentation backbones, we have

selected two well-known and popular networks, UNet (Ronneberger, Fischer & Brox, 2015a)

and nnUNet (Isensee et al., 2021).
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Implementation details. For most of the compared methods, we use the hyperparameters values

reported in (Murugesan et al., 2023a): FL (𝛾 = 3), LS (𝛼 = 0.1), ECP (𝜆 = 0.1), MbLS (𝜆 = 0.1

and 𝑚 = 10), SVLS (𝜎 = 2) and NACL (𝜆 = 0.1). Furthermore, for BWCR, the impact of the

logit consistency is controlled by 𝜆𝑚𝑖𝑛 = 0.01, and 𝜆𝑚𝑎𝑥 = 1. Regarding the prior used in NACL

and our method CRaC, we use the one proposed in (Murugesan et al., 2023a), which is defined

as 𝜏𝑘 =
∑𝑑
𝑖=1 𝑦

𝑘
𝑖 , which is computed over a 3×3 patch. We train all the models during 100 epochs,

with ADAM (Kingma & Ba, 2015) as optimizer and a batch size fixed to 16. The learning rate is

set to 10−3 for the first 50 epochs, and reduced to 10−4 afterwards. Following (Murugesan et al.,

2023a), the models are trained on 2D slices, and the evaluation is performed over 3D volumes.

Evaluation. Segmentation: we employ common segmentation metrics in the medical domain,

such as the DICE coefficient (DSC) and the 95% Hausdorff Distance (HD). Calibration:

following recent works (Murugesan et al., 2023a, 2025) we resort to the expected calibration

error (ECE) (Naeini et al., 2015a) on foreground classes, as in (Islam & Glocker, 2021), and

Thresholded Adaptive Calibration Error (TACE) (threshold of 10−3) (Nixon, Dusenberry, Zhang,

Jerfel & Tran, 2019b). We further compute the Friedman rank (Friedman, 1937), to fairly

compare the performance of different algorithms in various settings.

Table 4.1 Quantitative performance. Discriminative (DSC ↑, HD ↓) and calibration

(ECE ↓, TACE ↓) metrics, using UNet as segmentation backbone. The best method is

highlighted in bold, whereas the second best is underlined

ACDC FLARE Friedman Final

DSC HD ECE TACE DSC HD ECE TACE Rank𝐹 Rank

FL (𝛾 = 3) 0.620 7.30 0.153 0.224 0.834 6.65 0.053 0.145 7.88 8

ECP (𝜆 = 0.1) 0.782 4.44 0.130 0.151 0.860 5.30 0.037 0.134 5.38 7

LS (𝛼 = 0.1) 0.809 3.30 0.083 0.093 0.860 5.33 0.055 0.050 4.88 4

SVLS IPMI’21 0.824 2.81 0.091 0.138 0.857 5.72 0.039 0.144 5.25 5

MbLS CVPR’22 0.827 2.99 0.103 0.081 0.836 5.75 0.046 0.041 5.25 5

NACL MICCAI’23 0.854 2.93 0.068 0.073 0.868 5.12 0.033 0.031 2.25 2

BWCR MICCAI’23 0.841 2.69 0.051 0.075 0.848 5.39 0.029 0.059 3.13 3

CRaC (Ours) 0.877 1.72 0.057 0.058 0.876 5.52 0.029 0.033 1.75 1

Comparison to state-of-the-art calibration approaches. In Table 4.1 and 4.2, we present the

quantitative results of our approach compared to a list of relevant state-of-the-art calibration

approaches, when using UNet and nnUNet as segmentation backbones, respectively. In terms of

segmentation performance, our proposed CRaC brings very competitive performance, typically

ranking as best, or second best approach, regardless of the segmentation backbone employed.
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Regarding calibration, the trend observed is similar, with CRaC providing well-calibrated

models, either improving or at par with state-of-the-art for calibration. Furthermore, as it is

common in evaluating many methods in multiple settings, we assess the overall performance

with a multi-criteria analysis, the Friedman Rank. The results from this metric, which are

reported at the right-most columns of both Tables 4.1 and 4.2, show that CRaC ranks at

the first position, outperforming existing methods when a trade-off between calibration and

segmentation performance is considered. Furthermore, the first rank position is maintained

even when employing a more powerful backbone, i.e., nnUNet, consistently delivering the better

segmentation-calibration compromise.

Table 4.2 Quantitative performance. Discriminative (DSC ↑, HD ↓) and calibration

(ECE ↓, TACE ↓) using nnUNet (Isensee et al., 2021) as segmentation backbone. The best

method is highlighted in bold, whereas the second best is underlined

ACDC FLARE Friedman Final

DSC HD ECE TACE DSC HD ECE TACE Rank𝐹 Rank

FL (𝛾 = 3) 0.874 1.60 0.134 0.136 0.893 3.93 0.039 0.061 6.00 6

ECP (𝜆 = 0.1) 0.889 1.44 0.067 0.112 0.873 5.85 0.046 0.131 6.00 6

LS (𝛼 = 0.1) 0.891 1.35 0.067 0.066 0.891 3.61 0.062 0.047 4.00 4

SVLS IPMI’21 0.883 1.69 0.059 0.111 0.894 4.02 0.026 0.115 5.13 5

MbLS CVPR’22 0.886 1.46 0.057 0.052 0.891 3.65 0.031 0.031 3.50 3

NACL MICCAI’23 0.884 1.52 0.056 0.059 0.896 3.34 0.025 0.026 2.50 2

BWCRMICCAI’23 22 0.864 1.82 0.063 0.079 0.868 4.47 0.041 0.099 6.63 8

CRaC (Ours) 0.891 1.48 0.052 0.051 0.895 3.24 0.029 0.029 1.88 1

Figure 4.1 Instability of NACL fine-tuning. Discriminative (left) vs. calibration

performance (right) as a function of 𝜆 in NACL (Murugesan et al., 2023a)
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Benefits compared to NACL. In this section we compare the sensitivity of NACL (Murugesan

et al., 2023a) to the choice of its 𝜆 value in Eq. 4.1, as our approach improves NACL by

incorporating a mechanism to learn and adapt the class and region-wise penalty terms 𝜆𝑘𝑟 in

Eq. 4.3. We found that, despite performing at par in some settings, the performance of NACL

significantly varies with the value of its penalty weight which, in addition, is dataset-dependent

(Figure 4.1). For example, the left plot demonstrates that while setting 𝜆 = 0.3 in NACL yields

the best discriminative performance in ACDC, it is substantially deteriorated in the FLARE

dataset. Furthermore, the 𝜆 value that optimizes the discriminative performance may not be the

same that minimizes the miscalibration issue. Thus, while one may argue that by fine-tuning 𝜆

in NACL can lead to improvements over CRaC (and only in certain settings), we advocate that

performing a validation search in a dataset-basis is impractical for real-world problems, making

of our approach an appealing solution.

4.4 Conclusion

We presented a novel approach to calibrate segmentation networks, which accounts for the

inherent difficulties of different classes and regions. Results demonstrate that our approach

outperforms existing approaches, becoming an excellent alternative to deliver high-performing

and robust models.
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(Murugesan, Silva-Rodríguez, Ayed & Dolz, 2024b) published in European Conference on
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Abstract

This paper addresses the critical issue of miscalibration in CLIP-based model adaptation,

particularly in the challenging scenario of out-of-distribution (OOD) samples, which has been

overlooked in the existing literature on CLIP adaptation. We empirically demonstrate that popular

CLIP adaptation approaches, such as Adapters, Prompt Learning, and Test-Time Adaptation,

substantially degrade the calibration capabilities of the zero-shot baseline in the presence

of distributional drift. We identify the increase in logit ranges as the underlying cause of

miscalibration of CLIP adaptation methods, contrasting with previous work on calibrating fully-

supervised models. Motivated by these observations, we present a simple and model-agnostic

solution to mitigate miscalibration, by scaling the logit range of each sample to its zero-shot

prediction logits. We explore three different alternatives to achieve this, which can be either

integrated during adaptation or directly used at inference time. Comprehensive experiments

on popular OOD classification benchmarks demonstrate the effectiveness of the proposed

approaches in mitigating miscalibration while maintaining discriminative performance, whose
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improvements are consistent across the three families of these increasingly popular approaches.

The code is publicly available at: https://github.com/Bala93/CLIPCalib

Figure 5.1 CLIP-based adaptation methods are severely miscalibrated on
Out-of-distribution (OOD) samples. Three families of popular approaches to adapt CLIP

under different scenarios, i.e., Prompt Learning (CoOp (Zhou et al., 2022c)), Adapters

(Clip-Ad (Gao et al., 2024)) and Test-time prompt tuning (TPT (Shu et al., 2022)),

significantly degrade the miscalibration of the zero-shot baseline, despite improving its

discriminative performance

5.1 Introduction

Deep learning is undergoing a paradigm shift with the emergence of pre-training large-scale

language-vision models, such as CLIP (Radford et al., 2021). These models, and more particularly

the variants integrating vision transformers, have demonstrated impressive generalization

capabilities in visual recognition tasks, yielding exceptional zero-shot and few-shot performance.

Nevertheless, in a dynamic and evolving open world, machine learning applications inevitably

encounter the challenge of out-of-distribution (OOD) data, which typically hinders the scalability
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of these models to new domains. Existing literature based on CLIP faces this scenario with

different solutions to exacerbate robustness. In particular, freezing the entire vision backbone

to re-use these generalizable features has been a popular choice, especially in the low-data

regime (Gao et al., 2024; Zhou et al., 2022c). Thus, CLIP adaptation during training typically

resorts to Adapters (Gao et al., 2024; Zhang et al., 2022b) or Prompt Learning (Zhou et al.,

2022c,a) strategies, which leverage a few labeled samples to adapt the model with the hope that

it will generalize properly to unseen related-domains. Furthermore, a more challenging scenario

consists of adapting the model during inference without any access to labeled data, where a

prevalent method is Test-Time Prompt Tuning (TPT) (Shu et al., 2022).

While these strategies have further improved the discriminative performance of a zero-shot

baseline, we have observed that the accuracy of the uncertainty estimates of the predictions, i.e.,

calibration, is significantly degraded (see 5.1), regardless of the family of adaptation models

or setting. Thus, after adaptation, model predictions are often over-confident, even if they are

wrong. This represents a major concern, as inaccurate uncertainty estimates can carry serious

implications in safety-critical applications, such as healthcare, where CLIP is emerging as a

popular strategy (Liu et al., 2023b; Liang et al., 2022b). Nevertheless, despite its importance,

the miscalibration issue has been overlooked in the CLIP adaptation literature.

Motivated by these observations, this paper addresses this critical issue, which has been

disregarded in current literature. Indeed, few-shot adaptation strategies, notably Prompt

Learning and Adapters, are attracting wide attention recently, with an unprecedented surge in

the number of methods proposed (Liu et al., 2023b; Zhang et al., 2022b; Yu et al., 2023b;

Silva-Rodriguez et al., 2024; Hu et al., 2022a; Zhou et al., 2022c,a; Hantao Yao, 2023; Khattak

et al., 2023), albeit being a relatively recent research topic. Nevertheless, the main focus of this

growing literature has been on improving the discriminative power of adapted models. Thus,

given their increasing popularity, and quick adoption in real-world safety-critical problems,

we believe that assessing the calibration performance of CLIP adaptation strategies in OOD

scenarios is of paramount importance to deploy not only high-performing but also reliable

models. We can summarize our contributions as follows:
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1. We empirically demonstrate that popular CLIP adaptation strategies, such as Adapters,

Prompt Learning, and Test-Time Prompt Tuning, substantially degrade the calibration

capabilities of the zero-shot baseline in the presence of distributional drift.

2. For these adaptation strategies, we expose that the underlying cause of miscalibration is,

in fact, the increase of the logit ranges. This contrasts with recent work in calibrating

fully-supervised models (Wei et al., 2022), which suggests that the inherent cause of

miscalibration is the increase of its norm instead, due to the standard cross-entropy loss

used for training.

3. Based on these observations, we present a simple, and model-agnostic solution, which

consists in scaling the logit range of each sample based on the zero-shot logits. We further

present several alternatives to accommodate our solution, which can be implemented either

at training or inference time.

4. Comprehensive experiments on popular OOD classification benchmarks empirically

demonstrate the effectiveness of our approaches to reduce the miscalibration error, while

keeping the discriminative performance.

5.2 Related Work

5.2.1 Vision language models

Text-driven pre-training of image representation, so-called vision-language models (VLMs) is

revolutionizing the paradigm of transfer learning. These models can integrate massive web-

scrabbled data sources thus learning robust feature representations. In particular, models such as

CLIP (Radford et al., 2021) or ALIGN (Jia et al., 2021) train joint multi-modal embedding spaces

via contrastive learning of paired images and text, using dual encoder architectures. Such strong

vision-language alignment has demonstrated robust open-vocabulary zero-shot generalization

capabilities (Radford et al., 2021; Zhai et al., 2022). Given such potential, transferring pre-trained

VLMs to a wide variety of tasks is gaining increasing popularity. Nevertheless, this process

faces particular challenges. First, large-scale pre-training usually involves also scaling network
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sizes, which is a computational bottleneck for low-resource adaptation scenarios. Second, recent

attempts to fine-tune VLMs have demonstrated a deterioration of their robustness against domain

drifts (Kumar et al., 2022; Wortsman et al., 2022), especially when available data is limited.

Thus, an emerging core of recent literature is focusing on novel alternatives to overcome these

limitations. More concretely, freezing the pre-trained backbone, and reusing such features by

training a small set of parameters, via Prompt Learning (Zhou et al., 2022c,a; Hantao Yao, 2023;

Zhu et al., 2023; Khattak et al., 2023), or black-box Adapters (Gao et al., 2024; Zhang et al.,

2022b; Yu et al., 2023b; Silva-Rodriguez et al., 2024; Ouali et al., 2023; Li et al., 2024; Zhang

et al., 2023), is getting increasing attention.

5.2.2 Prompt based learning

CLIP models have shown encouraging results by hand-crafting personalized text descriptions

of the target visual representation (Menon & Vondrick, 2023). The automatizing of this

cumbersome process raises the concept of Prompt Learning (PL) (Zhou et al., 2022c), a family

of methods to adapt CLIP that inserts a set of continuous learnable tokens in the original text

prompt at the input of the VLM language encoder. While the CLIP model remains frozen, PL

optimizes the most discriminative text input, given a few-shot support set (Zhou et al., 2022c,a;

Khattak et al., 2023; Zhu et al., 2023). CoOP (Zhou et al., 2022c) represents one of the initial

attempts to study the effect of prompt tuning on different tasks, and proposed to learn the

prompt’s context words. CoCoOP (Zhou et al., 2022a), on the other hand, designed a simple

network to predict the input text prompt through image features, as CoOP failed to match the

zero-shot performance on generic tasks. TPT (Shu et al., 2022) extends PL to address time-test

adaptation scenarios by updating the prompt for a batch with original and augmented samples

through entropy minimization.

5.2.3 Black-box Adapters

Prompt Learning involves using the CLIP’s encoder throughout the entire training process as the

backpropagation of the gradient has to pass through it to update the prompts, which results in large
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computational constraints (Gao et al., 2024). Adapter-based techniques provide an alternative to

Prompt Learning for aligning to downstream tasks, leveraging uniquely pre-computed features

with minimal additional parameters. A base version of such methods involves training a linear

classifier via logistic regression, typically referred to as Linear Probing (Radford et al., 2021).

Nevertheless, leveraging only the vision features does not fully exploit the potential of VLMs.

To this end, several methods have proposed enhanced Adapters, which further rely on zero-shot

text-driven class-wise prototypes. In particular, Clip-Adapter (Gao et al., 2024) introduced

additional fully connected layers and operated on the vision or language branch through residual

style feature combination. Training-free methods such as Tip-Adapter (Zhang et al., 2022b)

resorted to a key-value cache model based on the available few-shot supports. Likewise, TaskRes

(Yu et al., 2023b) introduced additional learning parameters and applied a residual modification

of the text representation, which led to a better initialization when learning from few-shot

supervision. More recently, (Silva-Rodriguez et al., 2024) provided a wider look at the coupling

of vision and text features in such Adapters, by pointing out that these methods largely build

up their improved performance on initializing the logistic classifier weights with the zero-shot

prototypes, proposing a simple solution, coined CLAP, for a better distillation of such prototypes.

5.2.4 Model calibration

Calibrating the confidence of deep learning models is paramount in developing reliable solutions,

as the confidence is expected to correlate with correctness. Given the importance and the

potential impact of miscalibration, a growing literature to address this issue has emerged in the

last years. Post-processing techniques have been widely used to achieve calibration, wherein

a linear transformation (Guo et al., 2017b; Tomani, Cremers & Buettner, 2022; Joy, Pinto,

Lim, Torr & Dokania, 2023) is applied to the predicted logits before converting it to softmax.

Nevertheless, an important limitation is that these transformations are obtained using held-out

validation data, which is assumed to follow the same distribution as the test data, limiting

their applicability in the presence of domain drifts (Ovadia et al., 2019). A popular alternative

consists in calibrating the networks at training time. This can be achieved by incorporating
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explicit penalties that either penalize overconfident softmax predictions (Pereyra et al., 2017;

Larrazabal, Martinez, Dolz & Ferrante, 2023a; Cheng & Vasconcelos, 2022; Park, Noh, Oh,

Baek & Ham, 2023) or encourage small logit differences (Murugesan et al., 2023a; Liu et al.,

2022b, 2023a). Furthermore, (Müller et al., 2019b; Mukhoti et al., 2020b) demonstrated

that popular classification losses, such as Focal Loss (Lin et al., 2017) or Label Smoothing

(Szegedy et al., 2016), integrate an implicit term that maximizes the entropy of the network

predictions, thus favoring low-confidence models. Other works to improve the accuracy of the

uncertainty estimates during training include the use of MixUp (Thulasidasan et al., 2019b;

Zhang, Deng, Kawaguchi & Zou, 2022a), or enforcing a constant vector norm on the logits (Wei

et al., 2022), among others. Nevertheless, all these methods have been proposed in the context

of fully-supervised models, and the calibration of Prompt Learning and Adapter-based methods

for CLIP remains unexplored in the literature.

5.3 Background

5.3.1 CLIP Zero-Shot Classification

CLIP (Radford et al., 2021) is a large vision-language model, trained via contrastive learning

to produce visual representations from images 𝒙 paired with their associated text descriptions

𝑇 . To do so, CLIP consists of an image encoder 𝜽 and a text encoder 𝝓. This generates

the corresponding vision 𝒛 ∈ R
𝑑 and class text 𝒘𝑘 ∈ R

𝑑 embeddings, which are typically

projected into an ℓ2-normalized shared embedding space. Given a new task consisting in

visually discriminating between 𝐾 categories, the set containing all the text embeddings for

all the 𝐾 classes can be denoted as W = {𝒘𝑘 }
𝐾
𝑘 , with 𝒘𝑘 = 𝝓(“A photo of a [class𝑘 ]”). At

inference, this learning paradigm enables zero-shot prediction. More concretely, for a given set

of 𝐾 classes, and an ensemble of 𝑁 different prompts per category, we can generate the set of

available prompts as T = {{𝑇𝑛,𝑘 }
𝑁
𝑛=1

}𝐾𝑘=1
}. Then, a popular strategy (Radford et al., 2021; Gao

et al., 2024; Wortsman et al., 2022) consists in obtaining a class zero-shot prototype, which

is computed as 𝒕𝑘 = 1
𝑁

∑𝑁
𝑛=1 𝝓(𝑇𝑛,𝑘 ). Then, for a given test image, the zero-shot prediction,
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𝒑 = (𝑝𝑘 )1≤𝑘≤𝐾 , can be obtained as:

𝑝𝑘 =
exp (𝒛� 𝒕𝑘/𝜏)∑𝐾
𝑗=1 exp (𝒛� 𝒕 𝑗/𝜏)

(5.1)

where 𝜏 is a temperature hyperparameter, whose value is learned during training, and 𝒛� 𝒕

denotes the dot product operator1.

5.3.2 Adaptation to novel tasks

Let us now consider a support set that contains a few labeled samples S = {(𝒙𝑖 , 𝒚𝑖)}
𝑆
𝑖=1

, with

𝒚 ∈ {0, 1}𝐾 the ground truth vector associated with 𝒙. The vector of predicted logits of a given

image 𝑖 is defined as 𝒍𝑖 = (𝑙𝑖𝑘 )1≤𝑘≤𝐾 . In Prompt Learning methods, such as CoOp (Zhou et al.,

2022c) or KgCoOp (Zhou et al., 2022a), the adaptation is done by modeling the input text 𝑇𝑘 of a

given class 𝑘 as learnable continuous vectors. Thus, in contrast with zero-shot inference, where

the resulting text embeddings are obtained as the mean over the different pre-defined prompts,

in Prompt Learning these are optimized. To generate the logits, the learnable prompts are

combined with the fixed visual embedding from the test image 𝑖, such that 𝑙𝑖𝑘 = 𝒛�𝑖 𝒕𝑘/𝜏, which

can then be integrated into 5.1 to minimize the cross entropy loss over the few labeled shots.

The family of methods commonly referred to as Adapters (Gao et al., 2024; Zhang et al., 2022b;

Yu et al., 2023b; Silva-Rodriguez et al., 2024) proceeds differently, and learns transformations

over the visual and text embeddings, yielding the following logits 𝑙𝑖𝑘 = 𝜽𝑎 (𝒛𝑖 , 𝒕𝑘 , 𝜏), where

𝜽𝑎 is the set of learnable parameters of the Adapter. A more challenging scenario consists in

adapting the text prompts at inference, which is commonly referred to as test-time prompt tuning

(Shu et al., 2022). As this setting does not include few-shot supports to adapt the prompts, the

supervised cross-entropy objective is replaced by an unsupervised minimization of the Shannon

entropy. Thus, regardless of the method selected, the objective is to optimize either 𝒕𝑘 (Prompt

Learning and test-time prompt tuning) or 𝜽𝑎 (Adapters) to minimize either the CE over the

1 As vectors are ℓ2-normalized, the dot product between these two vectors is equivalent to their cosine

similarity.
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softmax predictions obtained from the few-shots, or the Shannon entropy on the test samples

predictions at inference.

5.4 Constraining logits during adaptation

5.4.1 Impact of adaptation in logits

To understand the impact on calibration of using the cross-entropy (CE) loss to adapt CLIP, let

us decompose the logit vector 𝒍 into its Euclidean norm ‖ 𝒍 ‖ =
√
𝑙2
1
+ ... + 𝑙2𝐾 , (magnitude) and

its unit vector 𝒍 (direction), such that 𝒍 = ‖ 𝒍 ‖ 𝒍. Considering now the magnitude and direction of

the logit vector, the general form of the cross-entropy loss over a given support sample, using

the softmax probabilities in 5.1, can be formulated as:

− log
exp (‖ 𝒍𝑖‖𝑙𝑖𝑘 )∑𝐾
𝑗=1 exp (‖ 𝒍𝑖‖𝑙𝑖 𝑗 )

(5.2)

This view of the cross-entropy implies that the direction of the logit vector 𝒍𝑖 determines the

predicted class of the image 𝑖. Thus, if the predicted category is incorrect, 𝒍𝑖 will change to

match the target class (𝑘) provided in the one-hot encoded label. Once the network prediction is

correct, i.e., 𝑦𝑖 = arg max 𝑗 (𝑙𝑖 𝑗 ), the direction of the vector will remain unchanged. Nevertheless,

the nature of the cross-entropy loss will favor higher softmax probabilities for the predicted class.

Recent literature (Wei et al., 2022) suggests that this is achieved by increasing ‖ 𝒍𝑖‖, indicating

that the miscalibration issue originates from the augmentation of the logit norm. Nevertheless,

in what follows we refute this argument and advocate for the increase of the logits range as the

potential cause of miscalibration.

Proposition 1. Let us consider the softmax cross entropy loss, where 𝜎(·) denotes the softmax

function. Assume that 𝒍 ≥ 0. Then, for any scalar 𝑎 > 0, 𝜎𝑘 ( 𝒍) = 𝜎𝑘 ( 𝒍 + 𝑎) ∀𝑘 , and

‖ 𝒍 + 𝑎1‖ > ‖ 𝒍 ‖, where 1 denotes the vector of ones.
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Prop. 1 demonstrates that adding a strictly positive constant value 𝑎 ∈ R++ to all the logits

increases the norm of the vector 𝒍, but this does not necessarily lead to more confident predictions,

whose probability scores remain unchanged.

Proposition 2. Let 𝑅( 𝒍) = max( 𝒍) − min( 𝒍) denotes the range of logit vector 𝒍, where max( 𝒍)

(respectively min( 𝒍)) denotes the largest (respectively smallest) value among the elements of

vector 𝒍. Then, for any given scalar 𝑎 > 1, and for 𝑘 = arg max 𝑗 (𝑙 𝑗 ), we have 𝜎𝑘 (𝑎𝒍) > 𝜎𝑘 ( 𝒍)

and 𝑅(𝑎𝒍) > 𝑅( 𝒍).

From the above proposition we find that increasing the range of a given logit vector results in

higher softmax probability values. Thus, contrary to the widely spread belief that increasing the

logit norm hinders model calibration, we argue that this effect of logit distance magnification,

which yields higher softmax distributions, is a potential source of miscalibration2. This explains

why, even though adaptation of CLIP yields performance gains in terms of accuracy, adapted

models are worse calibrated than a zero-shot baseline. Furthermore, this analysis is supported

empirically by the observations depicted in 5.2, where can observe that, while calibration has

been degraded in the adapted models, the logit norm of their predictions has substantially

decreased.

5.4.2 Our solution

From our previous analysis and empirical observations, we can derive that: i) despite

improving their classification performance, state-of-the-art strategies to adapt CLIP suffer

from miscalibration, particularly compared to the original zero-shot predictions, and ii) one of

the main causes arises from the logit magnification issue introduced by the cross-entropy loss

used during adaptation.

In light of these findings, we propose a simple but effective solution that can alleviate the

miscalibration issue in CLIP adaptation. More concretely, we propose to constraint the range of

2 Note that the same reasoning applies to TPT (Shu et al., 2022), whose learning objective to adapt the

CLIP baseline is to minimize the Shannon entropy of the softmax distribution.
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Figure 5.2 Logit norm or logit range as the source of miscalibration? These figures

clearly show that when the calibration of the zero-shot (ZS) model is degraded, the logit

norm of its predictions is reduced (top), which discards an increase of the logit norm as the

main cause for miscalibration. In contrast, there exists a correlation between the increase of

the logit ranges and miscalibration (bottom)

the logits during the training of a main objective H , which results in the following constrained

problem:

minimize H(𝒀 , 𝑷)

subject to 𝑙ZS-min
𝑖 1 ≤ 𝒍𝑖 ≤ 𝑙ZS-max

𝑖 1 ∀𝑖 ∈ D, (5.3)

where 𝒀 and 𝑷 are matrices containing the sample-wise ground-truth and softmax-prediction

vectors for all the samples involved in the training, 𝑙ZS-min
𝑖 and 𝑙ZS-max

𝑖 are the min and max

logit magnitudes of the zero-shot prediction for sample 𝒙𝑖. D denotes a given set of available

samples. Furthermore, in the test-time prompt tuning setting, we simply need to replace 𝒀

by 𝑷 in 5.3. Directly solving the constrained problem in 5.3 in the context of deep models is
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not trivial (Marquez Neila et al., 2017), and Lagrangian-dual optimization has been typically

avoided in modern deep networks involving millions of parameters. To address this issue, we

propose several alternatives to approximate the constrained problem presented in 5.3, which are

detailed below.

5.4.3 Zero-shot logit normalization during training (ZS-Norm)

The constraint in the presented problem, i.e., 𝑙ZS-min
𝑖 1 ≤ 𝒍𝑖 ≤ 𝑙ZS-max

𝑖 1,∀𝑖 ∈ D, can be integrated

into the main objective by transforming the logits before computing the CE loss over the support

set samples (here D = S). More concretely, the modified learning objective can be defined as:

H(𝒀 , 𝑷) = −
∑
𝑖∈S

𝐾∑
𝑘=1

𝑦𝑖𝑘 log
exp (𝑙′𝑖𝑘 )∑𝐾
𝑗=1 exp (𝑙′𝑖 𝑗 )

, (5.4)

where 𝒍′𝑖 denotes the zero-shot normalized logit vector of 𝒙𝑖, obtained as:

𝒍′𝑖 =
(𝑙ZS-max
𝑖 − 𝑙ZS-min

𝑖 )

(𝑙max
𝑖 − 𝑙min

𝑖 )
( 𝒍𝑖 − 𝑙

min
𝑖 1) + 𝑙ZS-min

𝑖 1, (5.5)

with 𝑙max
𝑖 = max 𝑗 (𝑙𝑖 𝑗 ) and 𝑙min

𝑖 = min 𝑗 (𝑙𝑖 𝑗 ), respectively. While the calibration strategy

formalized in Eq. 5.4 forces the direction of the logit vector to match the correct category

encoded in the one-hot label, its magnitude is normalized according to the ZS logit range of

image 𝒙𝑖. Note that this is different from the solution presented in (Wei et al., 2022), as the logit

values are normalized by the logit norm, which does not guarantee that the logit values will be

in a certain range.
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5.4.4 Integrating explicit constraints in the learning objective (Penalty)

The problem in 5.3 can also be approximated by an unconstrained problem, for example by

transforming the enforced inequality constraints into penalties, which are implemented with the

ReLU function. The resulting learning objective can be formally defined as:

min
𝜽

H(𝒀 , 𝑷) + 𝜆
∑
𝑖∈S

𝐾∑
𝑘=1

(ReLU(𝑙𝑖𝑘 − 𝑙
ZS-max
𝑖 ) + ReLU(𝑙ZS-min

𝑖 − 𝑙𝑖𝑘 )), (5.6)

where 𝜆 controls the trade-off between the main loss and the penalties. The intuition behind the

penalties is that when the constraint in Eq. (5.3) is not satisfied, i.e., there exist logit magnitudes

outside the zero-shot logit range, the value of the penalty term increases, backpropagating

gradients to modify the logit values according to the enforced constraint. We would like to stress

that a natural solution to tackle the constrained problem in 5.6 would be the use of Lagrangian

multipliers. Nevertheless, as stated earlier, in the context of deep learning, these methods suffer

from several well-known limitations, which include training instability and non-convergence due

to the difficulty of convexifying loss functions (Sangalli, Erdil, Hötker, Donati & Konukoglu,

2021; Birgin, Castillo & Martínez, 2005; Bertsekas, 1996b). Thus, despite its simplicity, the use

of penalties has proven to be effective in constraining deep models on a myriad of problems,

such as image segmentation (Kervadec et al., 2019c), adversarial attacks (Rony et al., 2021), or

modeling thermal dynamics (Drgoňa, Tuor, Chandan & Vrabie, 2021).

5.4.5 Sample-adaptive logit scaling (SaLS)

Last, we explore a simple but efficient solution that is closely related to temperature scaling (TS)

(Guo et al., 2017b). In particular, TS is a single-parameter variant of Platt scaling (Platt et al.,

1999), which consists in learning the scaling hyperparameter 𝜏 in 5.1. While this strategy has led

to very competitive results, it requires an external validation set to fine-tune the value of 𝜏, which

limits its use to learning scenarios with abundant labeled data and absence of distributional drifts

(Ovadia et al., 2019). Furthermore, 𝜏 is fixed for a whole dataset, which is suboptimal from a
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sample-wise standpoint. To alleviate these issues, we propose to use the logit normalization

defined in 5.5 at inference time to obtain the final softmax probability in 5.1. More concretely,

for each sample 𝑖 to be classified, we compute its zero-shot prediction, whose min and max logit

values are used in 5.5 to scale the logit distribution of that sample 𝑖 provided by the adaptation

method selected. This can be viewed as an unsupervised sample-wise temperature scaling

during testing, which does not require additional validation samples to fix its value, and adapts

to the specificity of each sample, regardless of distributional drifts.

5.5 Experiments

5.5.1 Setup

5.5.1.1 Datasets

We use popular datasets for benchmark few-shot (Zhou et al., 2022c; Yu et al., 2023b) and

test-time (Shu et al., 2022) CLIP adaptation. Domain Generalization: the adaptation robustness

to domain shifts is evaluated using ImageNet (Deng et al., 2009) distributions. Concretely, we

sample a 16-shot training subset from ImageNet’s training partition which is directly evaluated

on out-of-distribution test data from ImageNetV2 (Recht, Roelofs, Schmidt, & VaishaalShankar,

2019), ImageNet-Sketch (Wang, Ge, Lipton & Xing, 2019c), ImageNet-A (Hendrycks, Zhao,

Basart, Steinhardt & Song, 2019), and ImageNet-R (Hendrycks et al., 2021). Fine-grained tasks:

calibration during test-time adaptation is assessed on an assembly of 11 datasets that include

heterogeneous discriminative tasks. These include Imagenet (Deng et al., 2009), Caltech101

(Fei-Fei, Fergus & Perona, 2004), OxfordPets (Parkhi, Vedaldi, Zisserman & Jawahar, 2012),

StanfordCars (Krause, Stark, Deng & Fei-Fei, 2012), Flowers102 (Nilsback & Zisserman,

2008), Food101 (Bossard, Guillaumin & Van Gool, 2014), FGVCAircraft (Maji, Kannala,

Rahtu, Blaschko & Vedaldi, 2013), SUN397 (Xiao, Hays, Ehinger, Oliva & Torralba, 2010),

DTD (Cimpoi, Maji, Kokkinos, Mohamed & Vedaldi, 2014), EuroSAT (Helber, Bischke,
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Dengel & Borth, 2018), and UCF101 (Soomro, Zamir & Shah, 2012) datasets. Note that for test

time adaptation we uniquely employed their corresponding test partitions.

5.5.1.2 Selected methods

Our proposed calibration framework is agnostic to any adaptation strategy of zero-shot models.

We evaluate its performance across different popular settings and state-of-the-art methods for

CLIP adaptation. Prompt Learning (PL): CoOp (Zhou et al., 2022c), CoCoOp (Zhou et al.,

2022a), ProGrad (Zhu et al., 2023) and MaPLe (Khattak et al., 2023) are considered as the

baselines. Adapters: CLIP-Adapter (Gao et al., 2024), TIP-Adapter (Zhang et al., 2022b), and

TaskRes(Yu et al., 2023b) are used. Test-Time Adaptation: TPT (Shu et al., 2022) is selected

as the primary method for test time prompt tuning, together with C-TPT (Yoon et al., 2024), a

concurrent method recently proposed for calibrating TPT.

5.5.1.3 CLIP adaptation

We now describe the experimental details for training the selected adaptation methods.

Backbones: All experiments build upon CLIP (Radford et al., 2021), using its ResNet-

50 (He et al., 2016b) and ViT-B/16 (Dosovitskiy et al., 2021a) pre-trained weights. Text

prompts: The textual descriptions for zero-shot representation of the target concepts used are

the hand-crafted text prompts used in CoOp (Zhou et al., 2022c). Image augmentations: For

few-shot adaptation, we applied random zoom, crops, and flips, following (Zhou et al., 2022a;

Yu et al., 2023b). Regarding Prompt Learning methods, these transformations are applied

continuously during training, while for Adapters, since feature representations are pre-computed,

the number of augmentations per support sample is set to 20, following (Silva-Rodriguez et al.,

2024). Finally, regarding test-time prompt tuning (TPT), we employed AugMix (Hendrycks

et al., 2020) as in (Shu et al., 2022) to form a 64-image batch from each original image. Training

details: Adapters are trained following the recent benchmark in (Silva-Rodriguez et al., 2024).

We optimized the Adapters for 300 epochs, using SGD optimizer with a Momentum of 0.9 and

an initial learning rate of 0.1. In the case of PL, we set the context length of the prompt to 4
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and trained CoOp and CoCoOp for 50 and 10 epochs, respectively. We set the same training

schedule, optimizer, and learning as in (Zhou et al., 2022c). For ProGrad and MaPLe, we follow

the training settings considered for domain generalization reported in theirs respective works

(Zhu et al., 2023; Khattak et al., 2023). Likewise, for TPT, we optimized the learned prompt by

doing a single step with AdamW optimizer, with the learning rate set to 0.005, as in (Shu et al.,

2022).

5.5.1.4 Evaluation metrics

To measure the discriminative performance of the different methods, we use classification

accuracy (ACC). In terms of calibration, we follow the standard literature and resort to

the Expected Calibration Error (ECE). In particular, with 𝑁 samples grouped into 𝑀 bins

{𝑏1, 𝑏2, . . . , 𝑏𝐾}, the ECE is calculated as:
∑𝑀
𝑚=1

|𝑏𝑚 |
𝑁 |acc (𝑏𝑚) − conf (𝑏𝑚) |, where acc (·) and

conf (·) denote the average accuracy and confidence in bin 𝑏𝑚.

5.5.1.5 Calibration details

We introduced three different alternatives to alleviate the miscalibration of adapted models (5.4.2).

For ZS-Norm and Penalty, we incorporated such modifications during training (i.e adaptation),

and kept all implementation details previously presented. Furthermore, the penalty-based

calibration weight 𝜆 in Eq. 5.6 is set to 10 and remains fixed across all settings.

5.5.2 Results

5.5.2.1 Task 1: Few-shot domain generalization

Table 5.1 introduces the average few-shot generalization (OOD) results using black-box

Adapters, whereas Table 5.2 presents the same for PL approaches. First, results consistently

show a miscalibration phenomenon when CLIP models are adapted, regardless of the CLIP

backbone used, or the transferability approach. Few-shot Adapters calibration: We find that
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miscalibration is especially occurring in few-shot black-box Adapters. For example, Clip-Ad or

TaskRes in 5.1 (a) show ECE increments of +8.3 and +4.0 respectively. This is further magnified

when using the popular TIP-Adapter method. Few-shot PL calibration: PL approaches are

relatively more robust in this setting (e.g. +3.8 CoOp in 5.2 (a)). On the impact of logit

range regularization: Results show the potential of logit range scaling among its different

proposed variants, improving calibration for all Prompt Learning approaches, and most of the

used Adapters. Impact of different strategies to adjust logit range:. The only strategy that

does not allow for consistent performance gains is ZS-Norm, which deteriorates performance

in some Adapters (see Clip-Ad in Table 5.1). We believe that the re-parameterization in Eq

5.4 might not properly prevent logit range de-adjustment before normalization, and thus overfit

to the few support samples. In contrast, Penalty constraint directly regularizes such values,

showing consistent ECE decreases for both Adapters (e.g. −22.0 for TIP-Ad(f) using ViTs, or

−4.3 for CLIP-Ad using RN50) and PL (e.g. −2.9 for CoOp using RN50, or −0.94 for CoCoOp

using ViTs). Interestingly, as a side effect, we also observed accuracy improvements for domain

generalization for several methods. Nevertheless, the best calibration performance is provided by

a simple, yet effective post-processing standardization, SaLS. This is especially relevant, since

Table 5.1 Results for robust Adapters calibration. The average over the four ImageNet

OOD datasets is reported. In brackets, we highlight the difference with respect to each

baseline, to stress the impact of the proposed methods (ZS-Norm, Penalty, and SaLS)

(a) ResNet-50

Method Avg. OOD

ACC ECE

Zero-Shot 40.62 7.18

CLIP-Ad 34.07 15.45

w/ ZS-Norm 30.06(−4.01) ↓ 21.27(+5.82) ↑

w/ Penalty 35.20(+1.13) ↑ 11.22(−4.23) ↓

w/ SaLS 34.07 8.95(−6.50) ↓

TIP-Ad(f) 41.45 19.04

w/ ZS-Norm 41.73(+0.28) ↑ 19.80(+0.76) ↑

w/ Penalty 43.73(+2.28) ↑ 12.18(−6.86) ↓

w/ SaLS 41.45 8.13(−10.91) ↓

TaskRes 41.18 11.25

w/ ZS-Norm 41.30(+0.12) ↑ 9.07(−2.18) ↓

w/ Penalty 41.29(+0.11) ↑ 10.62(−0.63) ↓

w/ SaLS 41.18 9.03(−2.22) ↓

(b) ViT-B/16

Method Avg. OOD

ACC ECE

Zero-Shot 57.15 4.78

CLIP-Ad 50.61 7.82

w/ ZS-Norm 49.73(+0.88) ↓ 12.53(+4.71) ↑

w/ Penalty 51.59(+0.98) ↑ 6.38(−1.44) ↓

w/ SaLS 50.61 4.38(−3.44) ↓

TIP-Ad(f) 25.86 63.63

w/ ZS-Norm 41.64(+15.78) ↑ 58.27(−5.36) ↓

w/ Penalty 49.23(+23.37) ↑ 40.98(−22.65) ↓

w/ SaLS 25.86 44.37(−19.26) ↓

TaskRes 58.01 7.52

w/ ZS-Norm 58.41(+0.40) ↑ 5.72(−1.80) ↓

w/ Penalty 58.31(+0.30) ↑ 6.65(−0.87) ↓

w/ SaLS 58.01 6.21(−1.31) ↓
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Table 5.2 Results for robust Prompt Learning calibration. The average over the four

ImageNet OOD datasets is reported. In brackets, we highlight the difference with respect to

each baseline, to stress the impact of the proposed methods (ZS-Norm, Penalty and SaLS)

(a) ResNet-50

Method Avg. OOD

ACC ECE

Zero-Shot 40.62 7.18

CoOp 40.86 10.97

w/ ZS-Norm 41.59(+0.73) ↑ 10.19(−0.78) ↓

w/ Penalty 41.87(+1.01) ↑ 8.06(−2.91) ↓

w/ SaLS 40.86 7.82(−3.15) ↓

CoCoOp 43.36 7.69

w/ ZS-Norm 43.70(+0.34) ↑ 7.12(−0.57) ↓

w/ Penalty 43.86 (+0.50) ↑ 6.15 (−1.54) ↓

w/ SaLS 43.36 6.82(−1.87) ↓

ProGrad 42.32 7.66

w/ ZS-Norm 42.21 (+0.11) ↑ 7.98 (+0.32) ↑

w/ Penalty 42.57(+0.25) ↑ 6.84(−0.82) ↓

w/ SaLS 42.32 6.90(−0.76) ↓

(b) ViT-B/16

Method Avg. OOD

ACC ECE

Zero-Shot 57.15 4.78

CoOp 58.41 6.61

w/ ZS-Norm 58.75(+0.34) ↑ 4.35(−2.26) ↓

w/ Penalty 59.18(+0.77) ↑ 4.91(−1.70) ↓

w/ SaLS 58.41 4.90(−1.71) ↓

CoCoOp 59.74 4.83

w/ ZS-Norm 59.90(+0.16) ↑ 3.94(−0.89) ↓

w/ Penalty 60.20 (+0.46) ↑ 3.89 (−0.94) ↓

w/ SaLS 59.74 4.81(−0.00) ∼

MaPLe 60.07 4.13

w/ ZS-Norm 60.09(+0.02) ↑ 3.59(−0.14) ↓

w/ Penalty 60.62 (+0.55) ↑ 3.78 (−0.35) ↓

w/ SaLS 60.07 4.38(+0.25) ↑

this method does not require any modification of the adaptation strategy, and can be potentially

applied to the output of any few-shot model.

5.5.2.2 Task 2: Test Time Adaptation (TTA)

We report in Table 5.3 the performance for test-time prompt tuning across 11 fine-grained

adaptation datasets for ResNet-50 backbone. Our results show that compared to zero-shot

prediction, TPT largely deteriorates the calibration. Despite this degradation is somehow

alleviated by C-TPT, further integrating our approaches show promising potential for better

calibration of such methods, with consistent improvements for both strategies (e.g.,−2.0 and

−0.9 in ECE for TPT and C-TPT with SaLS).

5.5.2.3 Further constraining the logit range to smaller values

ZS predictions are well calibrated. Nevertheless, during adaptation, the model improves its

discriminative performance at the cost of degrading its calibration capabilities. While in this

work we advocate for increases of the logit range as a cause of miscalibration, decreasing this

range should be done with care. In particular, further decreasing the logit range approaches a
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Table 5.3 Test-time Prompt Learning calibration. Results for the popular TPT, as well

as the concurrent work in (Yoon et al., 2024), with ResNet-50 backbone, where our three

solutions are implemented

Avg. INet CAL PET CAR FLW FOO AIR SUN DTD SAT UCF

A
C

C

Zero-shot 56.03 58.17 85.68 83.62 55.75 61.67 73.96 15.69 58.82 40.43 23.69 58.90

TPT 58.03 60.74 87.22 84.49 58.36 62.81 74.97 17.58 61.17 42.08 28.40 60.61

w/ ZS-Norm 57.94 60.69 87.38 84.41 58.45 62.12 75.01 17.13 61.09 41.96 28.53 60.59

w/ Penalty 57.69 60.74 87.06 84.30 58.13 61.84 75.17 17.22 61.11 42.02 26.60 60.35

w/ SaLS 58.03 60.74 87.22 84.49 58.36 62.81 74.97 17.58 61.17 42.08 28.40 60.61

C-TPT 57.54 60.02 87.18 83.65 56.41 64.80 74.89 16.62 60.72 41.55 27.06 60.01

w/ ZS-Norm 57.63 60.00 87.06 83.65 56.57 65.04 74.82 16.86 60.58 41.61 27.51 60.27

w/ Penalty 57.52 60.06 86.94 83.51 56.78 64.76 74.88 16.29 60.67 41.90 26.63 60.32

w/ SaLS 57.54 60.02 87.18 83.65 56.41 64.80 74.89 16.62 60.72 41.55 27.06 60.01

E
C

E

Zero-shot 5.04 1.90 3.56 5.64 4.17 2.10 2.35 6.31 3.79 8.60 14.40 2.66

TPT 11.27 11.34 4.10 3.78 3.70 13.66 5.18 15.57 9.20 25.29 21.00 11.20

w/ ZS-Norm 10.57 10.81 4.29 3.71 3.62 13.29 4.73 15.28 8.50 23.95 17.61 10.49

w/ Penalty 9.58 11.31 3.99 1.57 2.26 13.94 4.27 14.51 8.88 23.10 11.82 9.78

w/ SaLS 9.26 9.81 4.45 2.90 2.50 12.01 3.91 15.23 8.64 21.09 12.31 9.05

C-TPT 6.33 3.05 2.60 2.46 0.87 3.91 1.62 11.30 2.73 21.38 13.58 2.88

w/ ZS-Norm 5.74 2.85 2.29 2.69 0.78 3.53 1.61 10.94 2.72 20.94 12.17 2.65

w/ Penalty 3.14 5.93 2.26 2.66 0.81 3.79 1.64 11.58 2.74 20.49 10.83 2.51

w/ SaLS 5.22 2.21 3.41 3.94 2.55 1.75 1.78 10.15 2.58 12.92 10.41 2.71

scenario of maximum entropy, where the predicted probabilities are semantically meaningless,

leading to worse discrimination performance. This reasoning is empirically supported in Table

5.4, where we can see that, regardless of the learning paradigm, significantly decreasing the

logit range yields higher ECE scores, i.e., miscalibration is magnified.

Table 5.4 What if the logit range is further decreased? ECE scores on ImageNet shifts

(V2, S, A and R) for representative methods when reducing the original ZS logit range

(denoted as 1) to half (1/2) and one quarter (1/4) in SaLS
CLIP-Ad CoOp TPT

ZS-Range 1 1/2 1/4 1 1/2 1/4 1 1/2 1/4
RN50 8.95 21.31 31.51 7.82 24.44 37.72 16.74 25.15 40.7

5.5.2.4 Effect on logits

Following one of our main observations (5.2), we argued that the source of miscalibration in

CLIP adaptation models is the increase of the logit range of their predictions, and not the logit

norm. To empirically validate this hypothesis, we depict in 5.3 both the logit norm and logit

ranges for a relevant method of each category, as well as the version improved with our SaLS

solution, across the four OOD datasets of ImageNet. We can observe that, indeed, applying our
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Figure 5.3 Effect of calibrating adapted CLIP models. Mean of the distribution of logit

norms (top) and logit ranges (bottom) across the four ImageNet OOD datasets for a relevant

Adapter-based (CLIP-Ad), Prompt Learning (CoOp) and TPT approach

approach (which improves calibration) leads to reduced logit ranges (bottom), whereas the logit

norm (top) typically increases.

5.6 Conclusions

We have investigated the miscalibration issue of popular CLIP adaptation approaches on the

challenging task of few-shot and zero-shot adaptation under distributional drifts. We have

analyzed the source of this issue and demonstrated that, in contrast to existing evidence pointing

to the logit norm, increases in the range of predicted logits might be a potential cause of

miscalibration on the adapted models. To overcome this issue, we have presented three simple

solutions, which consist in constraining the logit ranges to the values of the zero-shot predictions,

either at training or test time. Extensive experiments on multiple models from the three

categories, and popular OOD benchmarks, demonstrate that incorporating our simple solution

to existing CLIP adaptation approaches considerably enhances their calibration performance,

without sacrificing model accuracy. The proposed approach is model-agnostic, and demonstrate

superior performance regardless of the family of approaches or setting, making of our model an
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appealing yet simple solution for zero-shot and few-shot CLIP adaptation, particularly in the

challenging scenario of out-of-distribution data.





CONCLUSION AND RECOMMENDATIONS

In this thesis, we predominantly focus on improving the calibration of state-of-the-art deep neural

networks in least explored domains including medical image segmentation, and vision-language

adapters. We begin by introducing model calibration specific to classification tasks, and provide

background on the design choices causing miscalibration. From that, we mainly addressed

the miscalibration caused by cross entropy through application specific regularizers. In the

case of medical image segmentation, we started with a benchmark study to compare existing

calibration methods with a focus on margin based logit smoothing, followed it with spatial-aware

regularizer, and further improved it with class and region adaptive weights. For vision-language

models, the logits of the out-of-distribution predictions are refined based on its zero-shot results.

In the first contribution, we showed that popular calibration losses are closely related from

a constrained optimization perspective, whose implicit or explicit constraints lead to non-

informative solutions, preventing the model predictions to reach the best compromise between

discriminative and calibration performance. To overcome this issue, we used a simple solution

that integrates an inequality constraint into the main learning objective, which imposes a

controlled margin on the logit distances. Through an extensive empirical evaluation, which

contains multiple popular segmentation benchmarks, we have assessed the discriminative and

calibration performance of state-of-the-art calibration losses in the important task of medical

image segmentation. The results highlight several important benefits of the proposed loss. First,

it achieves consistent improvements over state-of-the-art calibration and segmentation losses,

both in terms of discriminative and calibration performance. Second, the proposed model is

much less sensitive to hyperparameters changes compared to prior losses, which reduces the

training time to find a satisfactory compromise between discrimination and calibration tasks.

In addition, the empirical observations support our hypothesis that the suboptimal supervision

delivered by the standard cross-entropy loss likely results in poorly calibrated models, as models

trained with this loss tend to produce largest logit differences. Thus, we advocate that the
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proposed loss term should be preferred to train models that provide higher discriminative

performance, while delivering accurate uncertainty estimates.

In the second contribution, we observe that most state-of-the-art calibration losses are specifically

designed for classification problems, ignoring the spatial information, crucial in dense prediction

tasks. Indeed, only the recent SVLS integrates spatial awareness to transform the hard one-hot

encoding labels into a smoother version, capturing the class distribution surrounding each

pixel. Inspired by the need of leveraging neighboring information to improve the calibration

performance of deep segmentation models, in this work we delve into the details of SVLS, and

present a constrained optimization perspective of this approach. Our analysis demonstrates

that SVLS enforces an implicit constraint on soft class proportions of surrounding pixels. Our

formulation exposed two weaknesses of SVLS. First, it lacks a mechanism to control explicitly

the importance of the constraint, which may hinder the optimization process as it becomes

challenging to balance the constraint with the primary objective effectively. And second, the a

priori knowledge enforced in the constrained is directly derived from the Gaussian distribution

of a pixel neighborhood, which may be difficult to define (as it depends on 𝜎), and did not always

provide the best performance, as shown empirically in our results. To overcome the limitations of

SVLS, we proposed a principled and simple approach based on equality constraints on the logit

values, which allows us to control explicitly both the prior to be enforced in the constraint, as well

as the weight of the penalty, offering more flexibility. We conducted a comprehensive evaluation,

incorporating diverse well-known segmentation benchmarks, to evaluate the performance of the

proposed approach, and compared it to state-of-the-art calibration losses in the crucial task of

medical image segmentation. The empirical findings demonstrate that our approach outperforms

existing approaches in both discriminative and calibration metrics. Furthermore, the proposed

formulation yields stable results across multiple segmentation backbones, hyper-parameter

values, and several labeled data scenarios, establishing itself as a robust alternative within the

current literature.
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In the third contribution, we proposed a class and region-wise constraint approach to tackle the

miscalibration issue in semantic segmentation models. In particular, we formulated a solution

that considers the specificities of each category and different regions by introducing independent

class and region-wise penalty weights. This contrasts with the second contribution, where a

uniform scalar penalty weight is employed, regardless of categories or regions. Furthermore, we

transferred the constrained problem to its dual unconstrained optimization counterpart by using

an Augmented Lagrangian method (ALM). This alleviates the need for manually adjusting each

penalty weight and allows, through a series of iterative inner and outer steps, to find the optimal

value of each penalty weight, which can be learned in an adaptive manner. Comprehensive

experiments on two popular segmentation benchmarks, and with two well-known segmentation

backbones, demonstrate the superiority of our approach over a set of relevant recent calibration

approaches.

In the fourth and final contribution, we have investigated the miscalibration issue of popular

CLIP adaptation approaches on the challenging task of few-shot and zero-shot adaptation under

distributional drifts. We have analyzed the source of this issue and demonstrated that, in contrast

to existing evidence pointing to the logit norm, increases in the range of predicted logits might

be a potential cause of miscalibration on the adapted models. To overcome this issue, we

have presented three simple solutions, which consist in constraining the logit ranges to the

values of the zero-shot predictions, either at training or test time. Extensive experiments on

multiple models from the three categories, and popular OOD benchmarks, demonstrate that

incorporating our simple solution to existing CLIP adaptation approaches considerably enhances

their calibration performance, without sacrificing model accuracy. The proposed approach is

model-agnostic, and demonstrates superior performance regardless of the family of approaches

or setting, making our model an appealing yet simple solution for zero-shot and few-shot CLIP

adaptation, particularly in the challenging scenario of out-of-distribution data.
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To summarize, as a major part of this thesis we have provided regularizers to overcome the

miscalibration problem prevalent with use of cross entropy in medical image segmentation.

While the proposed solutions offered superior performance to existing approaches, there exist

multiple avenues which are worth exploring. For example, one of the limitations of our

approaches is that they disregard image intensity information, which sometimes emerges as

the source of annotation uncertainty. Thus, incorporating surrounding image intensity in the

constraint could potentially lead to better results. Furthermore, simple penalties (i.e., linear and

quadratic) have been explored to enforce the proposed constraint. Integrating more powerful

strategies, for example based on log-barrier methods, have shown interesting performance gains

in medical imaging problems ((Kervadec et al., 2022)). Therefore, the exploration of these

strategies to enforce the imposed constraints could shed light into more powerful alternatives

in our formulations. Another important direction concerns the effect of class imbalance on

calibration (Zhong, Cui, Liu & Jia, 2021b; Liu et al., 2023a). In medical image segmentation,

where long-tailed distributions are common (Ma et al., 2021a), majority classes often yield

overconfident predictions, while minority classes tend to be underconfident. This aspect has

received little attention so far, and future calibration-based objective functions should be designed

to explicitly address such frequency disparities in order to improve reliability. Given the scarcity

of medical imaging datasets, training-time regularization may not be the most scalable approach;

therefore, post-hoc calibration is often preferred (Hwang, Kim & Whang, 2025). While this

thesis did not extensively study post-hoc methods for segmentation, the findings on spatial

awareness are highly relevant to test-time calibration (Ding et al., 2021; Wang et al., 2023).

The other part of the thesis introduced the miscalibration in vision language foundation models

like CLIP and proposed solutions to handle them both during training and inference time. Firstly,

the work only evaluated the proposed normalization strategy with preliminary domain shifts and

could be investigated with popular domain generalization benchmarks in classification (Koh

et al., 2021). Besides, recent works like KgCoOp (Hantao Yao, 2023) in prompt learning and
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CLAP (Silva-Rodriguez et al., 2024) in adapters have integrated zero-shot predictions during few

shot training to enhance the generalization ability. Hence, it would be interesting to observe the

logits from these lines of work to verify whether the range is lesser than the previous methods and

how it compares to zero-shot predictions. Interestingly, in our experiments with test-time prompt

tuning, we noticed that there were few challenging datasets Shu et al. (2022), for which the

zero-shot performance was not satisfactory. Thus, it is not recommended to assume the zero-shot

logits are always better calibrated, important to also consider the overall accuracy. Lastly, this

work hasn’t studied open vocabulary classification (Wu et al., 2024), as reliable predictions for

both the base and novel classes are expected for real-time deployment. Our initial experiments

on understanding the model calibration of the same revealed that, base class predictions are

underconfident, while novel classes are mostly overconfident. Similar observations along with

solutions have been presented in Distance-Aware Calibration (DAC) (Wang et al., 2024b), and

Dynamic Outlier Regularization (DOR) (Wang et al., 2024a). DAC showed that scaling the

temperature value based on distance between the predicted text label and base classes, fine-tuned

CLIP tends to give a more reliable confidence level for new classes. To further improve the base

class calibration, DOR showed that utilizing relevant but non-overlapped outliers regularizes the

textual distribution.

In our contributions, we have only focused on the calibration specific to medical image

segmentation. But, there are other key tasks in the medical image analysis pipeline, which also

require calibration (Litjens et al., 2017). For instance, detecting tumors require reliable object

detector. Lately, there have been few attempts to define and propose solutions for calibration

in object detection (Munir, Khan, Sarfraz & Ali, 2022; Munir, Khan, Khan & Khan, 2023a;

Munir, Khan, Khan, Ali & Shahbaz Khan, 2023b; Pathiraja, Gunawardhana & Khan, 2023).

Cal-DETR (Munir et al., 2023b) is the one which is close to the solutions proposed in this

thesis. Like how we have constrained the logits based on the spatial information, Cal-DETR

modulates the logits based on the uncertainty specifically obtained from the transformer based
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architecture. As another example, survival risk prediction (Xu et al., 2022b) is key in staging

cancer from pathological images, and uncertainty intervals associated with the survival score is

essential. This particular kind of problems which require ordinal regression (Wang et al., 2025)

could be approached by regression-by-classification approaches (Pintea, Lin, Dijkstra & van

Gemert, 2023). As our approaches in this thesis, calibrates both the maximum confidence score,

and the scores of remaining classes, it is highly desirable for categorizing the severity of the

condition. Another possible direction would be to obtain reliable uncertainty estimates for

tasks like image reconstruction (Zou et al., 2023), as hallucinated structures are problematic

for downstream tasks. Most of the works in this literature (Murugesan, Vijaya Raghavan,

Sarveswaran, Ram & Sivaprakasam, 2019; Fischer, Thomas & Baumgartner, 2023; Zhang,

Li & Chen, 2024) have attempted to improve the uncertainty estimate through architecture

designs, but our findings on constraining the output space based on the neighboring information

could be translated, restricting trivial irregularities. Furthermore, the metrics used for measuring

calibration in segmentation and detection are a direct extension of classification (Lane, 2025),

hence there is scope for developing metrics (Kuzucu, Oksuz, Sadeghi & Dokania, 2024) specific

to the respective tasks.

Though the proposed models in thesis provide desired calibration, they do not provide formal

uncertainty guarantee, which can lead to critical errors. Conformal Prediction (CP) framework

(Vovk, Gammerman & Saunders, 1999; Sadinle, Lei & Wasserman, 2019) has been designed to

provide uncertainty with desired guarantee under exchangeability assumption. The key idea

behind conformal inference is to assess the “nonconformity” scores of the test data compared to

the observed calibration data, and provide valid prediction sets. One of the popular conformal

baselines is to prepare the set by including classes from highest to lowest probability until

their sum just exceeds the threshold. However, this does not necessarily guarantee coverage,

and lately, Adaptive Prediction Sets (APS) (Romano, Sesia & Candes, 2020), and Regularized

Adaptive Prediction Sets (RAPS) (Angelopoulos, Bates, Jordan & Malik, 2021) have become
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the standard approaches. Recently, attempts have been made to bring split conformal inference

to the segmentation task. To begin with, direct extension of solutions proposed in classification

literature have been adapted (Angelopoulos & Bates, 2021; Mossina, Dalmau & Andéol,

2024), which is not desirable as the uncertainty of a particular pixel should be decided by

its neighbouring pixel. Second, based on classwise and clustered conformal inference (Ding,

Angelopoulos, Bates, Jordan & Tibshirani, 2023), Kandinsky Conformal (Brunekreef, Marcus,

Sheombarsing, Sonke & Teuwen, 2024) partially incorporated the spatial information through

pixel grouping, and have threshold specific to each cluster. However, finding Kandinsky clusters

depends deeply on the prior characteristics of the data and may not be able to handle all possible

geometric priors. Recent advancements have extended conformal inference to object detectors

(Andéol, Fel, De Grancey & Mossina, 2023), CLIP models (Silva-Rodríguez, Ben Ayed & Dolz,

2025; Morales-Álvarez, Christodoulidis, Vakalopoulou, Piantanida & Dolz, 2024; Fillioux et al.,

2024), language models (Quach et al., 2024), and time series (Xu & Xie, 2023).
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Abstract

Recently, CLIP-based approaches have exhibited remarkable performance on generalization

and few-shot learning tasks, fueled by the power of contrastive language-vision pre-training. In

particular, prompt tuning has emerged as an effective strategy to adapt the pre-trained language-

vision models to downstream tasks by employing task-related textual tokens. Motivated by

this progress, in this work we question whether other fundamental problems, such as weakly

supervised semantic segmentation (WSSS), can benefit from prompt tuning. Our findings

reveal two interesting observations that shed light on the impact of prompt tuning on WSSS.

First, modifying only the class token of the text prompt results in a greater impact on the

Class Activation Map (CAM), compared to arguably more complex strategies that optimize the

context. And second, the class token associated with the image ground truth does not necessarily

correspond to the category that yields the best CAM. Motivated by these observations, we
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introduce a novel approach based on a PrOmpt cLass lEarning (POLE) strategy. Through

extensive experiments we demonstrate that our simple, yet efficient approach achieves SOTA

performance in a well-known WSSS benchmark. These results highlight not only the benefits of

language-vision models in WSSS but also the potential of prompt learning for this problem. The

code is available at https://github.com/Ruxie189/WSS_POLE.

3. Introduction

Image semantic segmentation is a fundamental problem in computer vision, as it serves as a

precursor of many tasks, such as medical image analysis or autonomous driving. Fueled by

the advances in deep learning, semantic segmentation has experienced a tremendous progress.

Nevertheless, obtaining precise pixel-wise annotations is a labor-intensive and time-consuming

task.

To alleviate the annotation burden, weakly supervised semantic segmentation (WSSS) has

emerged as an appealing alternative, where labels typically come in the form of image tags Fan,

Zhang, Song & Tan (2020a); Kolesnikov & Lampert (2016); Hou, Jiang, Wei & Cheng (2018);

Lee, Kim, Lee, Lee & Yoon (2019), bounding boxes Song, Huang, Ouyang & Wang (2019);

Khoreva, Benenson, Hosang, Hein & Schiele (2017), scribbles Lin, Dai, Jia, He & Sun (2016);

Tang et al. (2018b) or global constraints Pathak, Krahenbuhl & Darrell (2015); Kervadec et al.

(2019c), among others. In particular, image-level WSSS has received significant attention, as it

offers a cost-effective alternative to pixel-level annotations (e.g., 20 seconds reported in Bearman,

Russakovsky, Ferrari & Fei-Fei (2016)). Under this setting, WSSS commonly leverages class

activation maps (CAMs) Zhou, Khosla, Lapedriza, Oliva & Torralba (2016) obtained from

image classification networks to localize objects. Specifically, these maps are later used as

pixel-wise pseudo-labels to train a segmentation model, mimicking full supervision. However,

CAMs tend to highlight discriminative regions, while ignoring other useful cues, which results

in suboptimal pseudo-labels that do not cover the whole extent of the target objects. Narrowing

down the existing gap between classification and segmentation tasks is therefore crucial for

the progress of WSSS models. To solve this issue, existing approaches intend to complete



141

generated CAMs by forcing the network to focus on more non-discriminative regions, which can

be achieved by region mining strategies Kweon, Yoon, Kim, Park & Yoon (2021); Hou et al.

(2018), or integrating iterative processes Ahn & Kwak (2018b). Despite employing complex

CAM refinement strategies, sometimes involving multiple training steps, existing approaches

still exhibit suboptimal performance in terms of both completeness of the target objects and

segmentation accuracy.

This motivates the exploration of complementary learning strategies that can further improve

the segmentation performance of these models. Vision-language pre-training (VLP) models,

such as the recently introduced Contrastive Language-Image Pre-training (CLIP) Radford et al.

(2021) strategy, have the potential to bring WSSS approaches to the next level, as it can associate

much wider visual concepts in an image with their corresponding text labels in an open-world

scenario. This contrasts with standard WSSS settings, where the fixed set of predetermined object

categories limits the quality of generated CAMs due to unnecessary background activations from

class-related background pixels. For example, CLIMS Xie, Hou, Ye & Shen (2022) exposed

these issues showing that background pixels related to the class ‘railroad’ contributed to the

prediction of the CAM associated to the category ‘train’, leading to over-segmented CAMs.

With the rise of these powerful vision-language pre-training models, recent evidence has

highlighted the importance of their text input, typically referred to as prompt, in adapting these

models to downstream tasks and datasets. For instance, Zhou et al. Zhou, Yang, Loy & Liu

(2022d) empirically demonstrated that the use of ’a [CLS]’ or ’a photo of a [CLS]’ as a prompt

led to substantial differences in the classification performance of the model. Following these

findings, recent literature has focused on tuning the context of these prompts, typically as

continuous learnable vectors Zhou et al. (2022d); Zhou, Yang, Loy & Liu (2022b); Ju, Han,

Zheng, Zhang & Xie (2022). Despite its potential importance, the impact of modifying the [CLS]

token has been largely overlooked in the context of prompt learning. Additionally, while prompt

learning has shown promising results in fine-tuning and classification tasks such as zero-shot

image recognition, its effectiveness on other visual recognition problems is not well-understood.
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Figure-A I-1 Impact of the input text prompt on the generation of class activation
maps (CAMs). Employing the ground truth categorical label as [CLS] token (second

column) does not necessarily result in the best initial CAMs. Furthermore, even though

complex techniques to optimize the [CTX] tokens, such as CoOp Zhou et al. (2022b) (third
column) may improve the CAMs, we have observed that simply modifying the ground truth

class in the [CLS] token by a higher correlated synonym leads to improvements in the

identified class-related regions (fourth column).

Based on these observations, we explore in this work how vision-language pre-training can be

further leveraged to improve the performance of WSSS models. In particular, we want to address

the following questions: 1© Is prompt learning useful in weakly supervised segmentation?,

2© Which parts of the prompt have a greater impact on the generated CAMs? 3© Can we

devise a simple yet effective alternative to improve the segmentation performance under the

weakly-supervised learning paradigm?

Our contributions can be summarized as follows:

• We provide empirical evidence that modifying the input prompt in VLP models has a direct

impact on the generated CAMs in a weakly supervised segmentation scenario, which in turn

affects the performance of the segmentation network.

• More interestingly, our findings reveal that replacing the [CLS] token in the input prompt has

a greater impact on the performance than modifying the prompt context, which contrasts

with recent observations in classification problems (See Fig. ??). Furthermore, the [CLS]
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token associated with the actual image ground truth does not necessarily correspond to the

category that yields the best CAM, and the performance varies considerably across closely

related categories. These insights shed light on the importance of careful prompt design in

optimizing the performance of segmentation models trained under the weakly-supervised

paradigm.

• Based on these observations, we propose a simple yet efficient strategy to leverage language

driven models in the challenging task of WSSS. The resulting model, based on a PrOmpt

cLass lEarning (POLE) approach, learns the category name that produces the highest

correlation between the image and a corresponding text prompt, and uses it to further leverage

the segmentation performance.

• Following the literature, we conduct extensive experiments on PASCAL VOC 2012 to well

demonstrate the superiority of our method over other state-of-the-art methods for WSSS.

4. Related Work

Weakly supervised semantic segmentation. Due to its low annotation cost, WSSS based on

image-level labels has gained increasing popularity. These methods rely on class activation maps

(CAMs) to identify target object regions by discovering informative pixels for the classification

task. As discovered regions are typically highly discriminative and fail to cover the whole

context of the target objects, recent literature focuses on generating high-quality CAMs by

refining initial estimations from simple models. A common strategy is to mine or erase regions

at either image Wei et al. (2017); Zhang, Gu, Zhang & Dai (2021b); Kweon et al. (2021) or

features level Hou et al. (2018); Lee et al. (2019), and can be seen as a way of preventing a

classifier from focusing exclusively in highly discriminative areas. Other works have instead

exploited sub-categories dependencies Chang et al. (2020), cross-image semantics Fan, Zhang,

Tan, Song & Xiao (2020b); Sun, Wang, Dai & Van Gool (2020), attention mechanisms Wu

et al. (2021), equivariant constraints Wang, Zhang, Kan, Shan & Chen (2020b); Patel & Dolz

(2022) and pairwise semantic affinities Ahn & Kwak (2018b); Wang, Liu, Ma & Yang (2020a).

Furthermore, additional supervision, such as saliency maps can be also integrated to provide

additional hints about the location of the target object Lee, Lee, Lee & Shim (2021c); Jiang,
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Yang, Hou & Wei (2022). More recently, visual transformers (ViT) Dosovitskiy et al. (2020)

have been also leveraged to improve original CAMs Xu, Ouyang, Bennamoun, Boussaid & Xu

(2022a); Li et al. (2022b), demonstrating superior performance than their CNNs counterparts.

Contrastive Language-Image Pre-training (CLIP) based semantic segmentation. Very

recently, large-scale VLP models, such as CLIP Radford et al. (2021), have demonstrated to

improve significantly the performance of vision models on classic recognition tasks, such as

zero-shot object detection Gu, Lin, Kuo & Cui (2021), few-shot learning Hu, Li, Stühmer,

Kim & Hospedales (2022c) and zero-shot semantic segmentation Li, Weinberger, Belongie,

Koltun & Ranftl (2021); Zhou, Lei, Zhang, Liu & Liu (2023b). Closely related to our work,

CLIMS Xie et al. (2022) integrates CLIP in the context of weakly-supervised segmentation,

which enhances the initial CAMs by highlighting more comprehensive object regions, while

suppressing closely-related background areas. Inspired by the improvement observed in the

robustness and generability of visual recognition models driven by language assistance, our

work delves deeper into understudied factors, particularly in the weakly-supervised scenario. We

stress that our work is different from Xie et al. (2022). In particular, CLIMS Xie et al. (2022)

proposes to leverage standard CLIP in WSSS, whereas we further explore the effect of the given

prompt on this task. As we will show in our empirical validation, properly designing the input

prompt results in significant improvements over the standard text prompts. More surprisingly,

using the class ground truth as categorical name in the input text prompt does not necessarily

yields the best segmentation results.

Prompt learning in visual recognition problems is a rapidly growing research direction, whose

popularity stems from the promising results observed in NLP tasks Lester, Al-Rfou & Constant

(2021); Li & Liang (2021); Liu et al. (2023c); Raffel et al. (2020). For example, recent works in

prompt learning Du et al. (2022b); Rao et al. (2022); Zhou et al. (2022b,d); Wang et al. (2022b);

Nayak, Yu & Bach (2023) have achieved promising results on several vision-language tasks,

notably in classification. In addition to tackle a different task, i.e., classification vs. weakly

supervised segmentation, the main differences with our work is that these approaches mostly

study prompt learning from a context perspective. In particular, existing literature considers the
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Figure-A I-2 Proposed Weakly Supervised Segmentation approach. 1) Class

activation maps are generated for an input image X. 2) CLIP pre-trained visual and text

encoders ( 𝑓𝜃 and 𝑓𝜃) are leveraged to find the category name [CLS] presenting the highest

correlation with the image M𝑘 , the result of multiplying the input image X and its

corresponding CAM P𝑘 . 3) With the [CLS] token selected, we generate the input text

prompt t𝑜𝑘𝑏 to the Cross-Language Image Matching (CLIMS) learning framework

class token [CLS] as a fixed word embedding, while optimizing the context Du et al. (2022b);

Rao et al. (2022); Zhou et al. (2022b,d); Wang et al. (2022b) or attributes Nayak et al. (2023).

In most cases, the context tokens are represented by learnable continuous vectors, which yield to

text embeddings lacking semantic knowledge Zhou et al. (2022d). In contrast, our approach

performs a selection on a finite set of potential synonyms, which facilitates both the search and

the interpretation of the selected token.

5. Methodology

5.1 Problem setting.

Let us denote D = {(𝑿𝑖 , y𝑖)}𝑁𝑖=1
as a weakly labeled dataset, where 𝑿𝑖 ∈ R

Ω𝑖 is an input image,

Ω𝑖 denotes its spatial dimensionality, y𝑖 ∈ {0, 1}𝐾 its associated one-hot encoded image label1,

and 𝐾 indicates the number of categories. Thus, the goal of weakly supervised semantic

1 In PascalVOC, multiple classes can be present in the same image, where y becomes a multi-class

one-hot encoded vector.



146

segmentation is to provide pixel-wise predictions from an input image X𝑖 given its corresponding

image-level label y𝑖.

5.2 Our framework.

Preliminaries: Class Activation Maps. We first revisit the generation of class activation maps

(CAM) from the image-level labels, a popular strategy in WSSS. Let us first define a feature

extractor 𝑓𝜃 (·), which can be represented by a deep neural network parameterized by 𝜃. Thus,

for a given image X, the feature extractor provides a representation Z ∈ R
𝐶×𝐻′×𝑊 ′

, where 𝐶

is the number of channels and 𝐻′ and𝑊′ represent the dimensionality of the feature map. To

provide CAMs, a global average pooling (GAP) layer, followed by a 1 × 1 convolutional layer

𝑾 ∈ R
𝐶×𝐾 is applied to the learned features Z from an image X. Then, the resulting logits

are mapped into probabilities ŷ ∈ [0, 1]𝐾 by applying a sigmoid function. To train the neural

network, we follow the literature Xu et al. (2021b); Xu et al. (2022a); Xie et al. (2022) and use

the multi-label soft-margin loss as the classification function:

L(ŷ, y) = −
1

𝐾

𝐾∑
𝑘=1

(𝑦𝑘 log 𝑦̂𝑘 + (1 − 𝑦𝑘 ) · log (1 − 𝑦̂𝑘 )). (A I-1)

Once the backbone network is trained, the initial CAMs can be obtained as follows:

𝑷𝑘 (ℎ, 𝑤) = 𝑾�
𝑘 𝒁(ℎ, 𝑤), (A I-2)

where 𝑷𝑘 is the activation map for a given category 𝑘 .

Learning objectives. The framework used for this work shares the same overall structure as

the recent CLIMS Xie et al. (2022), as it represents the first weakly-supervised segmentation

approach integrating CLIP text embeddings. Nevertheless, we stress that in our work we study

how we can leverage prompt learning to further improve the performance of weakly supervised

segmentation models. In particular, the standard GAP layer employed to generate CAMs is
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replaced by a sigmoid function 𝜎(·), resulting in 𝑷𝑘 (ℎ, 𝑤) = 𝜎(𝑾�
𝑘 𝒁(ℎ, 𝑤)). The pretrained

CLIP model Radford et al. (2021) uses a visual and a text encoder which we denote as: 𝑓𝑣 and

𝑓𝑡 , respectively. Instead of passing the raw input image X to the CLIP image encoder, it is

multiplied by 𝑷𝑘 , with the goal of focusing only on the class highlighted by its corresponding

CAM. Moreover, to avoid interferences from related background regions, the input image is also

multiplied by (1 − 𝑷𝑘 ). Hence, we can create two different visual embeddings: the embedding

of the target category (𝒗𝑖𝑜𝑘 ), and its background (𝒗𝑖𝑏𝑘 ), which are formally given by:

𝒗𝑖𝑜𝑘 = 𝑓𝑣 (𝑿 · 𝑷𝑘 ), 𝒗𝑖𝑏𝑘 = 𝑓𝑣 (𝑿 · (1 − 𝑷𝑘 )). (A I-3)

Now, for all the potential object classes 𝑘 and their corresponding text inputs 𝒕𝑜𝑘 , we obtain their

text embeddings, which are referred to as 𝒗𝑡𝑜𝑘 :

𝒗𝑡𝑜𝑘 = 𝑓𝑡 ( 𝒕
𝑜
𝑘 ). (A I-4)

Note that to generate these embeddings, we just need to provide the different text inputs to

the trained CLIP text encoder 𝑓𝑡 (·). Following the reasoning behind the training of CLIP, the

foreground image embedding 𝒗𝑖𝑜𝑘 should be highly correlated to the text embedding 𝒗𝑡𝑜𝑘 of that

particular class. In contrast, the background image embedding 𝒗𝑖𝑏𝑘 should have a much lower

correlation with the object classes. This can be modeled by using the following objective

function:

L𝐶𝑜𝑛𝑡 = −𝛼
𝐾∑
𝑘=1

𝑦𝑘 · log(𝑠𝑜𝑜𝑘 ) − 𝛽
𝐾∑
𝑘=1

𝑦𝑘 · log(1 − 𝑠𝑏𝑜𝑘 ), (A I-5)

where 𝑠𝑜𝑜𝑘 = sim(𝒗𝑖𝑜𝑘 , 𝒗
𝑡𝑜
𝑘 ) and 𝑠𝑏𝑜𝑘 = sim(𝒗𝑖𝑏𝑘 , 𝒗

𝑡𝑜
𝑘 ) represent the object-to-object and background-

to-object similarities between visual and text embeddings, computed as a cosine similarity.

Both terms in Eq. A I-5 act together to ensure that the activation map 𝑷𝑘 covers the maximum

possible region of the target, while excluding related background.
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5.3 Category and image-driven prompt generation

Finding potential category related embeddings. To generate the object text representation

𝒗𝑡𝑜𝑘 for a class 𝑘 , the standard input prompt given to the text encoder has the following format:

a context token [CTX] followed by the class name token [CLS] and ended by a punctuator

(’.’). While the literature in prompt learning for large-scale visual language pre-trained models

focuses on learning the context [CTX] Zhou et al. (2022b), CLIMS Xie et al. (2022) uses a fixed

prompt, where the [CLS] token corresponds to the categorical label of the image. Contrary to

these works, we hypothesize that modifying the input text prompts by optimizing only the [CLS]

token has a greater impact on the generated CAMs. Indeed, as we will show empirically in the

results section, using the ground truth class as a [CLS] token does not necessarily always results

in the best segmentation performance.

Let us suppose that we take an input image X with its corresponding image class label y, which

indicates the 𝑘 categories present on the image. For each category 𝑘 in y, we obtain a set of

similar words, in terms of closeness in the semantic space, using chatGPT cha. More concretely,

we provide the following query as input to chatGPT "Give me 𝑚 semantically similar words

for [CLS] and also print the cosine similarity scores based on CLIP model", where [CLS] is a

class name. This returns a list of 𝑚 words along with their similarity scores for that particular

[CLS]. This means that for each class [CLS], we can derive a set of 𝑚 closest words, denoted

as S =[CLS1,CLS2,...,CLS𝑚]. With this set of related categories, we can create a set of 𝑚 + 1

potential text prompts T = [𝒕𝑜𝑘0
, 𝒕𝑜𝑘1

, 𝒕𝑜𝑘2
, . . . 𝒕𝑜𝑘𝑚], where 𝒕𝑜𝑘0

is the text prompt containing the

categorical ground truth label for class 𝑘 , i.e., [CLS] followed by a fixed [CTX] token, and

𝒕𝑜𝑘1
, ..., 𝒕𝑜𝑘𝑚 are composed of the fixed [CTX] followed by a variable [CLS] token chosen from set

S. Now, we can extract an embedding for each of the prompts in T from the CLIP text encoder,

resulting in V = [𝒗𝑡𝑜𝑘0
, 𝒗𝑡𝑜𝑘1

, 𝒗𝑡𝑜𝑘2
, . . . 𝒗𝑜𝑘𝑚].

How to select the best [CLS]? Given the input image X and its generated class activation map

𝑷𝑘 for class 𝑘 , we can obtain an image focusing on discriminative regions for that category by

simply doing 𝑴𝑘 = 𝑿 · 𝑷𝑘 The resulting image, 𝑴𝑘 , is given to the CLIP image encoder to get a
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compressed representation of X, i.e., 𝒗𝑖𝑜𝑘 . similar to the steps described in Section 5.2. In contrast,

we now obtain a correlation between each of the closest words in set S for the class 𝑘 and the

CAM activated image 𝑴𝑘 . In particular, this correlation is found by computing a similarity score

between the visual and text embeddings: 𝒗𝑖𝑜𝑘 and every 𝒗𝑡𝑜𝑘 𝑗 for 𝑗 ∈ {0, 1, 2, 3, . . . , 𝑚}, given as:

sim(𝒗𝑖𝑜𝑘 , 𝒗
𝑡𝑜
𝑘 𝑗 ) =

𝒗𝑖𝑜𝑘 · 𝒗𝑡𝑜𝑘 𝑗

|𝒗𝑖𝑜𝑘 | |𝒗
𝑡𝑜
𝑘 𝑗 |
, (A I-6)

which generates a vector containing the similarities between the visual encoding and each of the

text encodings [𝑠𝑘0, 𝑠𝑘1, . . . , 𝑠𝑘𝑚]. From this similarity vector, we select the most correlated

[CLS] token, which corresponds to the text embedding 𝒗𝑡𝑜𝑘 𝑗 with the highest similarity with 𝒗𝑖𝑜𝑘 ,

computed with the argmax operator.

5.4 Weakly supervised adaptors

Following the success of adaptors in pre-trained language-vision models for classification tasks

Rao et al. (2022); Zhang et al. (2022c); Gao et al. (2024), we propose to further improve our

segmentation network by integrating image and text adaptors. In particular, and similar to Gao

et al. (2024) in classification, we introduce two MLP layers 𝐴𝑣 (·) and 𝐴𝑡 (·) to transform the

embeddings in the image side and text space, respectively, which is formulated as:

𝒗𝑖𝑜∗𝑘 = 𝒓𝑣 · 𝐴𝑣 (𝒗
𝑖𝑜
𝑘 ) + (1 − 𝒓𝑣) · 𝒗

𝑖𝑜
𝑘 (A I-7)

𝒗𝑡𝑜∗𝑘 = 𝒓𝑡 · 𝐴𝑡 (𝒗
𝑡𝑜
𝑘 ) + (1 − 𝒓𝑡) · 𝒗

𝑡𝑜
𝑘 , (A I-8)

with 𝐴𝑣 (𝒗
𝑖𝑜
𝑘 ) = 𝑅𝑒𝐿𝑈 (𝒗𝑖𝑜𝑘 W𝑣

1
)W𝑣

2
and 𝐴𝑡 (𝒗

𝑡𝑜
𝑘 ) = 𝑅𝑒𝐿𝑈 (𝒗𝑡𝑜𝑘 W𝑡

1
)W𝑡

2
, where W represents the

learnable parameters of the MLP layers. Furthermore, the parameters 𝒓𝑣 and 𝒓𝑡 are learnable

vectors of the same shape as the original embeddings, and are used to selectively suppress

or amplify the refinement of each feature through the MLP layers. Note that this contrasts
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with standard adapters, i.e., Rao et al. (2022); Zhang et al. (2022c); Gao et al. (2024), whose

balancing weight is a fixed hyperparameter. Our hypothesis is that using a fixed scalar to control

the importance of each embedding is suboptimal, as the features refinement process may differ

across images as well as depend on the class variation of the dataset.
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6. Experiments

6.1 Experimental Settings

Dataset and evaluation protocol. Following CLIMS Xie et al. (2022), as well as other recent

WSSS works Lee, Kim & Yoon (2021b), we conduct experiments on the popular PASCAL VOC

2012 Everingham, Van Gool, Williams, Winn & Zisserman (2009) benchmark. This dataset

contains images with 20 foreground classes, which are split into 1,464 for training, 1,449 for

validation and 1,456 for testing. The training set is augmented with 10,582 images and their

associated image-level annotations from SBD Hariharan, Arbeláez, Bourdev, Maji & Malik

(2011). To evaluate the performance of the proposed method, we resort to the mean intersection

over union (mIoU). Last, while the results reported in the ablation studies are obtained on the

training set, the results for the validation and testing sets of PASCAL VOC are obtained from

the official evaluation server.

Implementation Details. We followed the default settings of CLIMS Xie et al. (2022) for

training. In particular, input images are randomly rescaled and then augmented by random

cropping to 512 × 512, as well as by horizontal flipping. We use SGD as the default optimizer,

with a cosine annealing policy for scheduling the learning rate, and a batch size of 16 images.

The model is trained for 10 epochs, with an initial learning rate of 0.00025 and a weight

decay of 0.0001. We follow Ahn & Kwak (2018a) to adopt ResNet-50 He, Zhang, Ren & Sun

(2016a) as backbone network for the generation of initial CAMs. All models are implemented in

PyTorch and trained on NVIDIA A100 GPU with 40 GB memory. Furthermore, as the initial

CAMs coarsely covers the target object, we further perform a refinement step with IRNet Ahn,

Cho & Kwak (2019), to improve their quality before using them as pseudo ground-truth masks,

a common practice in WSSS.
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6.2 Results

How effective is prompt learning for weakly supervised segmentation? In this section

we assess whether modifying the input text prompt leads to performance differences, which

corresponds to our first question. To do this, we first manually selected two popular prompts:

“A photo of [CLS].", and “An image of [CLS].", which are employed over all the images of

the whole dataset. Note that the original CLIMS Xie et al. (2022) used the first prompt, and it

is therefore considered as the baseline model. Furthermore, inspired by the recent advances

on prompt learning, we also evaluate the impact different strategies, which model the different

tokens with learnable continuous vectors: CoOp Zhou et al. (2022d) ([CTX] tokens), target

optimization baseline in Wang et al. (2022b) ([CLS] tokens) and a modified version of DeFo

Wang et al. (2022b). These results, which are reported in Table I-1, reveal that the text input, i.e.,

prompt, of the pre-trained vision-language model plays an important role on the segmentation

performance. Indeed, we can observe that depending on the prompt employed, performance

differences may diverge up to 3%, particularly on the final generated CAM (last column).

Table-A I-1 Does prompt learning improve the performance of weakly supervised
segmentation? Comparison of the quality of initial CAMs and refined pseudo ground-truth

masks obtained by different prompt learning strategies (with R50 as backbone), where

either [CTX] or [CLS] tokens are modified. Evaluation is reported on the train set of

PASCAL VOC2012, and refinement of the pseudo-masks is performed using RW (IRN

Ahn et al. (2019)). [CTX] and [CLS] are used to indicate which part of the prompt is

optimized in each approach. Furthermore, in the approaches optimizing the [CLS] token,

’V’ indicates a continuous learnable vector, whereas CLS* represents the class selected

among a set of potential classes

Method [CTX] [CLS] Prompt CAMs +RW
Manual Xie et al. (2022) � � “A photo of [CLS]." 56.6 70.5

Manual � � “An image of [CLS]." 56.5 71.0

CoOp Zhou et al. (2022b) � � [V]1[V]2 . . . [V]𝑁 [CLS]. 57.6 73.1

DeFo Wang et al. (2022b) � � [V]1[V]2 . . . [V]𝑁 [𝑉𝐶𝐿𝑆] 56.6 73.2

Target optimization � � "A photo of [𝑉𝐶𝐿𝑆]." 56.8 73.1

Ours � � "A photo of [CLS*]." 58.7 73.6
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Table-A I-2 Comparison of the quality of initial CAMs and refined pseudo ground-truth

masks using RW (PSA Ahn & Kwak (2018a)) on PASCAL VOC2012. The mIoU values

here are reported on the train set. Backbone denotes the backbone network to generate

CAMs. Best approaches (CAM and refined CAM) highlighted in bold
Method Backbone CAMs +RW
PSA CVPR’2018 Ahn & Kwak (2018b) WR38 48.0 61.0

SC-CAM CVPR’2020 Chang et al. (2020) WR38 50.9 63.4

SEAM CVPR’2020 Wang et al. (2020b) WR38 55.4 63.6

AdvCAM CVPR’2021 Lee et al. (2021b) R50 55.6 68.0

MCTformer CVPR’2022 Xu et al. (2022a) ViT 61.7 69.1

SIPE CVPR’2022 Chen, Yang, Lai & Xie (2022a) R50 58.6 64.7

RECAM CVPR’2022 Chen et al. (2022b) R50 54.8 70.5

AdvCAM+W-OoD CVPR’2022 Lee et al. (2022a) R50 59.1 72.1

AFA CVPR’2022 Ru, Zhan, Yu & Du (2022b) MiT 68.7

CLIMS CVPR’2022 Xie et al. (2022) R50 56.6 70.5

VWL IJCV’2022 Ru, Du, Zhan & Wu (2022a) R101 57.3 71.4

AEFT ECCV’2022 Yoon, Kweon, Cho, Kim & Yoon (2022) WR38 56.0 71.0

ViT-PCM ECCV’2022 Rossetti, Zappia, Sanzari, Schaerf & Pirri (2022) ViT-B/16 – 71.4

ESOL NeurIPS’2022 Li, Jie, Wang, Wei & Ma (2022a) R50 53.6 68.7

POLE (Ours) R50 59.0 74.2

Context vs. category in prompt learning. Once we have observed empirically that modifying

input prompts results in performance differences, one question that naturally arises is which

component of the prompt must be changed. Table I-1 shows that replacing a standard [CTX]

token (i.e., ’A photo of’) by a similar sequence (i.e., ’An image of’) brings 0.5% difference.

Nevertheless, if the [CTX] token is optimized for the whole dataset, e.g., CoOp Zhou et al.

(2022b), these differences are further increased, with similar results if [CLS] token is optimized

as a continuous vector (e.g., DeFo Wang et al. (2022b) and Target Optimization). Last, we can

observe that only optimizing the [CLS] prompt, based on a set of pre-defined closely-related

categories, actually provides the best performance across all the methods. These findings

align with recent observations in Natural Language Inference Logan IV et al. (2022), which

suggest that hand-crafted prompts conveying meaningful instructions outperform automatically

optimized prompts.

Comparison to state-of-the-art. Previous experiments empirically demonstrated that modifying

the input prompt can significantly improve the performance of weakly supervised segmentation
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models. These observations motivated the proposed approach, which we benchmark against

state-of-the-art models to show its superiority. Note that in what follows, the proposed approach,

POLE, is composed of the [CLS] token selection process and the adaptor with learnable weights

(eq. A I-7). First, Table I-2 reports the results of state-of-the-art methods in the generation of

pseudo-masks. We can observe that, even compared to very recent models, the proposed approach

brings substantial improvements, ranging from 2 to 6%. We interpret that the performance

gain observed comes from the highest correlation between the selected category name and

the content of the CAM-activated region in the image., which may capture larger discriminant

areas of semantic objects. More interestingly, the proposed approach also outperforms recent

methods that use additional information, for example in the form of extra saliency maps, which

are typically trained on a supervised foreground-background detection dataset. Thus, based on

these results we can argue that our approach represents an effective alternative to generate initial

CAMs.

While the quality of the initial CAMs was evaluated in the previous section, we now assess their

impact on the semantic segmentation task. In particular, Table I-3 reports the segmentation

performance of the proposed approach compare to state-of-the-art methods in the validation

and testing sets of PASCAL VOC2012 dataset. Compared to approaches that resort to the same

supervision, our method provides very satisfactory results, ranking second if all the approaches

are considered. Nevertheless, it has been found recently that vision transformers provide much

better quality CAMs than conventional convolutional neural networks. Thus, if we just consider

the approaches that leverage CNNs for the CAM generation, our approach achieves the best

performance, with improvement gains ranging from 0.7% to 3% compared to very recent

methods (e.g., RECAM, SIPE or CLIMS Xie et al. (2022)). Furthermore, even benchmarking

POLE against recent approaches that use additional supervision, e.g., saliency maps, it yields

very competitive performance.

How many synonyms are sufficient? And from which Corpus? Previous results have

demonstrated empirically that the proposed approach brings substantial improvements by just

replacing the categorical name on the ground truth by a closely related synonym. Thus, we
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Table-A I-3 Evaluation results on PASCAL VOC2012 val and test sets. The best results

are in bold. Sup. denotes the weak supervision type. F denotes full supervision. S

denotes saliency map supervision. I denotes image-level supervision. Seg. denotes the

segmentation network. Bac. denotes the backbone network for CAMs generation. V1:

DeepLabV1. V2: DeepLabV2. V16: VGG-16 Simonyan & Zisserman (2014). R50:

ResNet-50 He et al. (2016a). WR38: WideResNet38 Wu et al. (2019b). Segmentation

network pretrained with ImageNet otherwise using MS COCO dataset (‡). Approaches

based on visual transformers (last section) and convolutional neural networks (before-last
section) are separated, and best method in each is highlighted in bold

Sup. Method Seg. Bac. val test

F
DeepLabV2 TPAMI’18 Chen, Papandreou, Kokkinos, Murphy & Yuille (2018) - - 77.6 79.7

WideResNet38 PR’19 Wu, Shen & van den Hengel (2019a) - - 80.8 82.5

I + S

NSROM CVPR’21 Yao et al. (2021b) V2‡-R101 V16 68.3 68.5

DRS AAAI’21 Kim, Han & Kim (2021) V2‡ V16 70.4 70.7

EPS CVPR’21 Lee et al. (2021c) V2‡-R101 WR38 70.9 70.8

EDAM CVPR’21 Wu et al. (2021) V2‡-R101 WR38 70.9 70.6

AuxSegNet ICCV’21 Xu et al. (2021a) WR38 - 69.0 68.6

SANCE CVPR’22 Xu et al. (2021a) V2-R101 R50 72.0 72.9

I

SEAM CVPR’20 Wang et al. (2020b) V3-R38 WR38 64.5 65.7

BES ECCV’20 Chen, Wu, Fu, Han & Zhang (2020a) V2-R101 R50 65.7 66.6

SC-CAM CVPR’20 Chang et al. (2020) V2-R101 WR38 66.1 65.9

A2GNN TPAMI’21 Zhang, Xiao, Jiao, Wei & Zhao (2021a) V2-R101 WR38 66.8 67.4

VWE IJCAI’21 Ru, Du & Wu (2021) V2-R101 R50 67.2 67.3

AdvCAMCVPR’21 Lee et al. (2021b) V2-R101 R50 68.1 68.0

VWLIJCV’22 Ru et al. (2022a) V2‡-R101 R101 70.6 70.7

SIPE CVPR’22 Chen et al. (2022a) V2-R38 R50 68.2 69.5

CLIMS CVPR’22 Xie et al. (2022) V2‡-R101 R50 70.4 70.0

AdvCAM+W-OoDCVPR’22 Lee et al. (2022a) V2-R101 R50 69.8 69.9

SIPECVPR’22 Chen et al. (2022a) V2-R101 R50 68.8 69.7

RECAMCVPR’22 Chen et al. (2022b) V2-R101 R50 68.5 68.4

AMNCVPR’22 Lee, Kim & Shim (2022b) V2‡R101 R50 70.7 70.6

Spatial-BCEECCV’22 Wu et al. (2022) V2-R101 R38 68.5 69.7

ESOLNeurIPS’22 Li et al. (2022a) V2-R101 R50 69.9 69.3

POLE (ours) V2‡-R101 R50 71.5 71.4

I

AFACVPR’22 Ru et al. (2022b) MiT-B1 66.0 66.3

MCTformerCVPR’22 Xu et al. (2022a) V1-R38 DeiT-S 71.9 71.6
ViT-PCMECCV’22 Rossetti et al. (2022) V2-R101 ViT-B/16 70.3 70.9

now want to evaluate the impact of the corpus selected, as well as the amount of synonyms

needed to achieve satisfactory results. In particular, we evaluate the performance of the proposed

approach (Fig I-3), without adapters, i.e., ‘A photo of [CLS*].’, when the optimal [CLS] token

is selected from a set of potential synonyms extracted from different corpus: British National

Corpus Consortium et al. (2007), Google News Kutuzov, Fares, Oepen & Velldal (2017) and

English Wikipedia. The first observation is that, while the use of different corpus increase the

performance over the baseline (‘A photo of [CLS].’ in Table I-1), synonyms from ChatGPT yield
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the best performance, regardless on the number of names requested. This may be explained

by the larger and richer body of text, from a variety of sources, used to train ChatGPT. Next,

we can observe that the quality of the generated CAMs typically augments with the number

of synonyms (e.g., with ChatGPT we obtain a mIoU of 72.2 vs 73.6, from 2 and 4 synonyms,

respectively). These results showcase how the most semantically related words, from a natural

language standpoint, do not always yield the best performance. Indeed, as the performance

increases with the number of synonyms included in our method, one can easily deduce that

the synonyms newly added (less correlated than the first ones) may provide better supervisory

signals for certain images. Additionally, we investigate the frequency that the actual ground truth

category is selected as the [CLS] token, whose results are depicted in Fig. I-4. The findings

from this radar plots reveal that, surprisingly, the ground truth associated with most instances

does not correspond to the most correlated category, which may explain the performance gains

observed in our approach. Further exploration on the choice of the synonyms across corpus can

be found in Supplemental Material.

Figure-A I-3 Impact of the Corpus choice and number of synonyms selected.
ChatGPT offers the richer variety of synonyms, yielding the best results across other corpus.

Furthermore, increasing the number of synonyms (from 2 up to 4) further improves the

results. Note that the number of synonyms includes the categorical name from the ground

truth and the requested close synonyms
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Figure-A I-4 What does CLIP think about the best [CLS]? Is the ground truth
category chosen everytime? How likely is it that CLIP will select something different?
The plot summarises the percentage of cases where the ground truth category was chosen

for an instance of that class. Thus, an inward point on the radial plot indicates that the

number of instances where the ground truth category was chosen as the best [CLS] token is

considerably low

On the impact of the different components. We observed in Table I-1 that the proposed

yet simple strategy to optimize the category name achieves better performance than arguably

more complex techniques that attempt to optimize the whole text prompt. In this section, we

empirically motivate the use of the proposed adapters, as well as the choice of adding learnable

parameters to control the importance of each term in Eq. A I-7, unlike the fixed hyperparameter

used in the existing literature. In particular, table I-4 reports these results, where the first

observation is that adding the proposed adaptors results in slight improvement compared to the
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Figure-A I-5 Qualitative results of the initial class activation maps. Green dotted lines

ellipses are used to indicate missed regions by previous approaches (original CAMs and

CLIMS Xie et al. (2022)) compared to the proposed method. No refinement on the obtained

CAMs is done (e.g., RW) to better illustrate the impact of our approach

model without them. In contrast, replacing the fixed vectors by learnable ones, the performance

is further improved by 0.4%. Thus, the negligible increase in model complexity due to the

adapters, and the performance gain observed, support the choices behind our approach.

Table-A I-4 Ablation on the main components. Empirical results that validate the

different components of the proposed methodology. A) Image label as [CLS], i.e., CLIMS

Xie et al. (2022); B) Optimal [CLS] selected; C) Fixed adaptor; D) Learnable adaptor.

Results are performed on the train set of PASCAL VOC2012

A B C D mIoU (%)

� 70.5

� 73.6(+3.1)

� � 73.8(+3.3)

� � 74.2(+3.7)
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Qualitative results of the obtained CAMs, compared to standard CAM generation and the

related CLIMS Xie et al. (2022) are depicted in Figure I-5. We can observe that despite CLIMS

somehow alleviates the under-segmentation problem in conventional CAMs, it still fails to cover

larger target regions (see for example first and second columns). In contrast, POLE typically

identifies better larger semantic regions related to the target class, resulting in more complete

CAMs compared to related approaches.

7. Conclusions

In this work, we have investigated the potential of prompt tuning, an emerging strategy to adapt

large pre-trained language-vision models, in the challenging task of weakly supervised semantic

segmentation. Our empirical observations have demonstrated that simply replacing the text-token

associated with the category name yields better segmentation performance than more complex

prompt learning strategies focusing on optimizing the context, which dominate the literature

in adapting models. More interestingly, we have observed that employing the corresponding

image-level ground truth does not always lead to the best segmentation performance, and

closely-related synonyms can indeed result in further performance gains. In light of these

findings, we have introduced a simple yet efficient approach, POLE, that selects the most

correlated class for a given image in order to generate a better text prompt. Comprehensive

experiments have shown that the proposed approach can generate high quality pseudo-labels for

WSSS, and achieve state-of-the-art performance in a popular WSSS benchmark.
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