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 IDENTIFICATION DES DIALOGUES PROLÉMATIQUES  
DANS UN SYSTÈME DE PERSONNE-MACHINE 

 
Hoang Cuong TRUONG 

 
RÉSUMÉ 

 
 
Dans ce mémoire, nous présentons le développement d'un système automatique qui permet 
d'identifier les dialogues problématiques dans le contexte d'un système de dialogue personne-
machine. Le système que nous développons est un type d'application dans le  domaine de 
Reconnaissance de formes et inspection (Pattern Classification). Dans ce travail, nous 
proposons une approche probabiliste qui permet de prédire la satisfaction de l’usager à 
chaque tour de parole dans un dialogue parlé. Pour ce faire, toutes les caractéristiques 
utilisées dans notre système sont  automatiquement extraites de l'énoncé. Un modèle de 
Markov caché (HMM) est utilisé pour construire notre système. Afin d'évaluer la 
performance du système, nous faisons l'expérimentation sur deux corpus publiquement 
distribués par le Linguistic Data Consortium (DARPA Communicator 2000 et DARPA 
Communicator 2001). La validation croisée est utilisée comme méthode d’évaluation. Nos 
résultats montrent que  le système pourrait être appliqué à des problématiques réelles. 
 
 
Mots-clés: dialogue problématique, identificateur de dialogues problématiques, système de 
dialogue personne-machine, forage de données, apprentissage machine, classification de 
dialogue. 
 



 

IDENTIFYING PROBLEMATIC DIALOGS IN 
A HUMAN-COMPUTER DIALOG SYSTEM 

 
Hoang Cuong TRUONG 

 
ABSTRACT 

 
 
In this thesis, we present the development of an automatic system that identifies problematic 
dialogues in the context of a Human-Computer Dialog System (HCDS). The system we 
developed is a type of application in Pattern Classification domain. In this work, we propose 
a probabilistic approach that predicts user satisfaction for each turn of dialogue. To do so, all 
the features used in our system are automatically extracted from the utterance. A robust and 
fast machine learning scheme, Hidden Markov Model (HMM) is used to build our desired 
system. In order to evaluate the system performance, we experimented on two publicly 
distributed corpora: DARPA Communicator 2000 and 2001. We evaluated the system using a 
10-fold stratified cross-validation. Our results show that the system could be used in real life 
applications. 
 
 
Keywords: problematic dialog, problematic dialog identification, human-computer dialog 
system, data mining, machine learning, dialog classification. 

 



 

TABLE OF CONTENTS 

 

Page 

CHAPTER 1 INTRODUCTION ........................................................................................... 1 
1.1 Problem ......................................................................................................................... 1 
1.2 Objective ....................................................................................................................... 2 

CHAPTER 2 LITERATURE REVIEW ................................................................................ 4 
2.1 Theoretical framework .................................................................................................. 4 
2.2 Related works on dialog classification .......................................................................... 5 

2.2.1 Related works experimented on DARPA 2000 & 2001 Corpora ................... 9 
2.3 Pattern Classification .................................................................................................. 12 

2.3.1 Pattern Classification Perception .................................................................. 12 
2.4 Hidden Markov Model ................................................................................................ 15 

2.4.1 Markov chain ................................................................................................ 15 
2.4.2 Hidden Markov Model .................................................................................. 18 
2.4.3 Three basic problems of HMM ..................................................................... 20 

2.5 HTK Overview ............................................................................................................ 21 
2.5.1 HTK Architecture ......................................................................................... 21 
2.5.2 HTK functionalities ...................................................................................... 23 

CHAPTER 3 METHODOLOGY ........................................................................................ 26 
3.1 Problematic dialogue definition .................................................................................. 26 
3.2 Dialog classification features ...................................................................................... 27 

3.2.1 Selection of features ...................................................................................... 28 
3.2.2 The dynamic programming algorithm .......................................................... 29 
3.2.3 The emotional salience ................................................................................. 31 

3.3 Selection of machine learning method ........................................................................ 31 
3.4 Corpus Collection ....................................................................................................... 33 

3.4.1 DARPA 2000 Communication corpus (Walker et al., 2002) ....................... 33 
3.4.2 DARPA 2001 Communication corpus (Walker et al., 2002) ....................... 34 

3.5 Labeling corpus ........................................................................................................... 35 

CHAPTER 4 DESIGN AND IMPLEMENTATION .......................................................... 37 
4.1 System design ............................................................................................................. 37 

4.1.1 The parser ...................................................................................................... 39 
4.1.1.1 DARPA 2000 Communicator ......................................................... 41 
4.1.1.2 DARPA 2001 Communicator ......................................................... 41 

4.1.2 Feature extractor ........................................................................................... 43 
4.1.2.1 Determination of negative and positive words ............................... 47 

4.1.3 The classifier ................................................................................................. 49 
4.2 System Development .................................................................................................. 50 



 

4.2.1 Data preparation tool ..................................................................................... 51 
4.2.2 Training tool.................................................................................................. 51 
4.2.3 Classifying tool ............................................................................................. 52 

CHAPTER 5 EXPERIMENTATION ................................................................................. 53 
5.1 Experiment protocol .................................................................................................... 53 

5.1.1 Holdout method ............................................................................................ 53 
5.1.2 K-fold cross-validation method .................................................................... 53 
5.1.3 Leave-one-out cross-validation ..................................................................... 54 

5.2 Evaluation measure ..................................................................................................... 54 
5.3 Data validation ............................................................................................................ 56 
5.4 Experimentation .......................................................................................................... 57 
5.5 Results and Interpretation ........................................................................................... 59 

5.5.1 Effect of using the different topologies in HMMs ........................................ 59 
5.5.2 Effect of using the Gaussian mixture in HMMs ........................................... 64 
5.5.3 Selection of feature ....................................................................................... 70 

CHAPTER 6 CONCLUSION ............................................................................................. 73 
6.1 Conclusion .................................................................................................................. 73 
6.2 Future work ................................................................................................................. 74 

ANNEX I    FORWARD ALGORITHM .......................................................................... 75 

ANNEX II    BACKWARD ALGORITHM ....................................................................... 80 

ANNEX III   VITERBI ALGORITHM .............................................................................. 83 

ANNEX IV   FORWARD-BACKWARD ALGORITHM ................................................. 88 

BIBLIOGRAPHY ................................................................................................................... 92 



 

LIST OF TABLES 

 

Table 2.1  Result from work done by (Langkidle et al., 1999) .......................................... 7 

Table 2.2  Accuracy % results of Walker in 2001 .............................................................. 8 

Table 2.3  Result from work of (Boufaden et al., 2007) .................................................... 8 

Table 2.4  State of the art results from (Helen Wright Hastie et al., 2002) ...................... 10 

Table 2.5  State of the art result on (Truong Le Hoang, 2008) ........................................ 11 

Table 3.1  Summary of DARPA 2000 and DARPA 2001 ............................................... 35 

Table 3.2  Likert-scale and Inversed Likert-scale ............................................................ 36 

Table 4.1  Example of input and output of the parser ...................................................... 38 

Table 4.2  Example of input and output of the feature extractor ...................................... 39 

Table 4.3  Method of determining positive and negative word ........................................ 48 

Table 5.1  Confusion matrix for 2-class classification problem ....................................... 55 

Table 5.2  Statistic on DARPA 2000 and 2001 corpora .................................................. 57 

Table 5.3  Summarization of three types of HMM used in our system ........................... 58 

Table 5.4  Experiment result on the 1-state HMM ........................................................... 60 

Table 5.5  Experiment result on the 2-state half ergodic HMM ....................................... 61 

Table 5.6  Experiment result on the 3-state half ergodic HMM ....................................... 62 

Table 5.7  Standard deviation in accuracy ....................................................................... 63 

Table 5.8  Result of using Gaussian mixture on 1-state HMM ........................................ 67 

Table 5.9  Result of using Gaussian mixture on ............................................................... 68 



 

Table 5.10  Result of using Gaussian mixture .................................................................... 69 

Table 5.11  Results in comparison with those of state of art .............................................. 70 

Table 5.12  Result of evaluating each feature .................................................................... 71 

 

 



LIST OF FIGURES 

 

Figure 1.1  Human-Computer Dialog System. .................................................................... 2 

Figure 2.1  PARADISE’s structure of objectives for spoken dialog performance. ............. 5 

Figure 2.2  Examples of patterns. ...................................................................................... 13 

Figure 2.3  Concept of pattern classification. .................................................................... 13 

Figure 2.4  Main components in pattern classification system. ......................................... 15 

Figure 2.5  Markov chain for the Dow Jones Industrial average. ...................................... 17 

Figure 2.6  Hidden Markov model for the Dow Jones Industrial average. ....................... 19 

Figure 2.7  HTK Software architecture. ............................................................................ 22 

Figure 2.8  HTK Processing stages. ................................................................................... 24 

Figure 3.1  Concept of new approach using HMM. .......................................................... 33 

Figure 4.1  Overall architecture of dialog classification system. ...................................... 37 

Figure 4.2  Illustration for the parser function. .................................................................. 40 

Figure 4.3  Illustration for the text file format in DARPA 2000. ...................................... 42 

Figure 4.4  Illustration for the text file format in DARPA 2001. ...................................... 42 

Figure 4.5  Illustration for the feature extractor function. ................................................. 43 

Figure 4.6  Using HMMs for dialog classification. ........................................................... 50 

Figure 4.7  HMM topology for dialog classification. ........................................................ 50 

Figure 5.1  Deviation Graph on DARPA 2000 and DARPA 2001. .................................. 64 

Figure 5.2  Example of 3-Gaussian mixture consisting of three single Gaussians ............ 65 



  

Figure 5.3  Feature role chart ............................................................................................. 72 

 



  

 

LIST OF ABBREVIATIONS AND ACRONYMS 
 

 
ASR  Automatic Speech Recognition 
 
CART Classification and Regression Tree 
 
CRIM Centre de recherche informatique de Montréal 
 
DARPA  Defense Advanced Research Projects Agency 
 
DCS  Dialog Classification System 
 
DM  Dialog Manager 
 
DT Decision Tree 
 
ÉTS École de technologie supérieure 
 
GMM Gaussian Mixture Model 
 
HMM Hidden Markov Model 
 
HMIHY  How May I Help You 
 
HTK Hidden Markov Model ToolKit 
 
kNN k-Nearest-Neighbour 
 
LOOCV Leave-one-out Cross Validation 
 
NLU  Natural Language Understanding  
 
PARADISE PARAdigm for DIalog System Evaluation 
 
PDI  Problematic Dialog Identifier   
 
PR Pattern Recognition 
 
RIPPER Repeated Incremental Pruning to Produce Error Reduction 
 
SLIPPER Simple Learner with Iterative Pruning to Produce Error Reduction 
 



  

SLU Spoken Language Understanding 
 
SVM Support Vector Machine 
 
WEKA  Waikato Environment for Knowledge Analysis 

 



CHAPTER 1  

 

 

INTRODUCTION  

1.1 Problem 

In commercial world, everyone knows that the customer satisfaction is a key element to 

ensure the survival and development of a company. So many solutions were proposed to 

assure the customer satisfaction. One of these proposals is the use of call centers to support 

the customer’s demands and especially those who need a remote assistance. Unfortunately, 

there are many companies whose call centers have to process thousands of phone calls per 

day and are required to operate 24/7. Therefore, dialog systems in which a machine agent 

instead of a human operator would answer the incoming calls were suggested as a solution 

for this kind of problem. However, these systems have their own limitations which usually 

cause frustration and annoyance for the customer. Such limitations are performance errors 

related to the natural language understanding (NLU) component and the automatic speech 

recognition (ASR) component. Thus, there is a question raised that is how we treat these 

limitations to improve the quality of such systems. 

In our research, we’re interested in automatically detecting problematic dialogs in real call 

centers. A dialog is considered problematic if the customer falls into one of two following 

situations (Langkilde et al., 2000; Hastie et al., 2002): 

• He fails in doing the tasks he desires. 

• His desired task is successful but he isn’t satisfied with his interaction with the machine 

agent.   

Premature detection of a problematic dialog allows us to have various strategies for the 

management of the failure dialog: 

• Process the call as a priority by redirecting to a human operator in case the problem 

persists. 
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• Recall the customers who prematurely ended the telephone dialog in order to reduce their 

unsatisfaction. 

• Apologize and appease the customer by a soft human voice. 

Our problem is a part of the project named “Managing emotions in Human-Computer 

Dialogs” which aims to enhance Human-Computer dialog system capabilities to maximize 

user satisfaction. This is a project of ÉTS and CRIM in collaboration with Bell Canada Corp. 

The project includes two main parts (Figure 1.1), namely Emotion Detection and Dialog 

Classification.  

 

Figure 1.1 Human-Computer Dialog System. 

1.2 Objective 

In the previous work of our colleague (Truong Le Hoang, 2008), he introduced an approach 

to automatically classify a spoken human-machine (computer) dialog into problematic dialog 

(BAD dialog) and non-problematic (GOOD dialog). The approach is based on observing 

whole-dialog-level information (such as TaskSuccess, TimeOnTask, TurnOnTask…) which 
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will be described later in the next chapter. His results proved to be useful and could be used 

in a real application of automatic human-machine dialog classification.  

In this thesis, we also have the same purpose that is to automatically classify a spoken 

human-machine dialog. However, our work will differ from his in two aspects. First, as input 

of our system, we will work with information extracted at the utterance level instead of  the 

dialog level. By doing so, our system will have the possibility to react more quickly to 

problematic dialog. Second, we will use a different classification paradigm i.e. Hidden 

Markov Model (HMM) instead of decision trees (Truong Le Hoang, 2008) to model the 

dependencies between successive turns. 

Our thesis is structured as follows. Chapter 1 is an introduction which depicts the problem 

and our objectives in this work. Chapter 2 will give some definitions concerning the state of 

art of the problem and theories used to solve the problem. Chapter 3 describes the 

methodology used in this project. Chapter 4 demonstrates the design and the implementation 

of our system. And then, Chapter 5 describes the results and their interpretation. Finally, the 

last section will be the conclusion and the future work.   



CHAPTER 2  

 

 

LITERATURE REVIEW 

In this chapter, we introduce a theoretical framework, named PARADISE (Walker et al., 

1997), which describes the parameters that could be used to evaluate a spoken dialog. Then, 

we summarize the latest work related to dialog classification and present the state of art of 

our problem. We then briefly review Hidden Markov Models and the main algorithms that 

will be used in our solution to the problem. 

2.1 Theoretical framework 

PARADISE which stands for PARAdigm for DIalog System Evaluation is a general 

framework whose objective is to evaluate spoken dialog  agents (in this section, spoken 

dialog agents indicate human-machine dialog systems). This is a result of the work which 

was published by Marilyn A. Walker, Diane J. Litman and their colleagues (Walker et al., 

1997). This framework has been used to support comparisons among the dialog strategies 

and allows the calculation of performance over dialogs as well.  

 The PARADISE model suggests that dialog performance correlates with external criterion 

which can be measured by user satisfaction. In other words, we can evaluate spoken dialog 

agents using user satisfaction measurement. The model further suggests that user satisfaction 

can be measured through two types of factors called “task success” and “dialog costs”. The 

latest one consists of dialog efficiency and dialog qualitative. Figure 2.1 illustrates 

PARADISE model. 

According to PARADISE, user satisfaction maximization includes both task success 

maximization and dialog costs minimization. To do so, all the factors have appropriate 

measures which are: 
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• Task success measure: Kappa coefficient (Carletta, 1996; Siegel and Castellan, 1988) is 

used to measure the agreement between two individuals. In PARADISE, the coefficient is 

calculated from the confusion matrix which summarizes how well a machine agent 

collects the required information of a particular task. 

• Efficiency measure: is calculated from the following feature: number of utterances, 

dialog time, number of time user and agents talk at the same time, average duration of 

system turns, and average duration of user turns. 

• Qualitative measure: is evaluated through  features which could be: agent response delay 

time, inappropriate utterance ratio, agent repair ratio. 

 

Figure 2.1 PARADISE’s structure of objectives  
for spoken dialog performance. 

From Walker (1997) 

2.2 Related works on dialog classification 

This section will summarize previous works related to classification of telephonic human-
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machine dialogs. To do so, we will review several papers chronologically. 

Firstly, Litman, Walker and Kearns published a paper (Litman et al., 1999) titled “Automatic 

Detection of Poor Speech Recognition at the Dialogue Level”, in which they showed that a 

“good” or “bad” dialog is a result of  “good” or “bad” speech recognition performance. Their 

work was carried on a corpus of 544 dialogs collected from three different systems, namely 

ANNIE (an agent for voice dialing and messaging), ELVIS (an agent for accessing email) 

and TOOT (an agent for accessing online train schedules). A set of 23 features based on five 

types of knowledge sources: Acoustic Features, Dialogue Efficiency Features, Dialogue 

Quality Features, Experimental Parameter Features and Lexical Features were extracted 

directly from system logs. Finally, they adopted the learning machine program RIPPER in 

order to build a classification model which was tested by the method of cross-validation with 

25 folds. RIPPER stands for Repeated Incremental Pruning to Produce Error Reduction. 

RIPPER (like other learning programs e.g., C5.0 and CART) is a fast and efficient rule 

learning system described in more detail in (Cohen, 1995) and (Cohen, 1996). The best result 

achieved was 77.40% on accuracy rate. They also did several experiments using a subset of 

features or primitive features to evaluate the features’ role through classification 

performance. 

In the same year, a group from AT&T Labs-Research published a paper (Langkidle et al., 

1999) which addressed the automatic prediction of problematic Human-Computer dialogues 

with their system ‘How May I Help You?’ HMIHY is a spoken dialogue system for customer 

care at AT&T Labs that provided them a corpus of 4774 dialogues used in their experiments. 

In this work, Langkidle defined problematic dialogue as a dialog where a customer is unable 

to complete his desired task. Their feature set was derived from four different sources: ASR 

component, NLU component, Dialog Manager Component and Hand-Labeled component. 

They also had two feature sets which are subset of the original set. The first one, called 

Automatic features, includes all features described above except the Hand-Labeled features 

and the reverse-order-utterance-id (among the Dialog Manager features).  The second subset, 

called Auto & Task-Independent, keeps only features that are available at runtime and 

independent of the HMIHY task. They took the machine learning program RIPPER to build a 



7 

 

classification model and used a 5-fold cross-validation in order to evaluate their system’s 

performance. Since they were interested in predicting problematic dialogues, they used only 

features extracted from exchange 1 or exchange 1 and exchange 2 in the dialogue in order to 

test their system. Their result is shown in the below table. 

Table 2.1 Result from the work done by Langkidle in 1999 

 Features Used Accuracy 

Exchange 1 Auto features 

Auto & Task-Independent features 

72.3% 

71.6% 

Exchange 1&2 Auto features 

Auto & Task-Independent features 

79.8% 

78.4% 

Full dialog Auto features 

Auto & Task-Independent features 

Full features 

87.0% 

86.7% 

88.5% 

  

One year later, (Walker et al., 2000) continued to enhance the previous work from Langkidle 

by adding a new hand-labeled feature, named ‘rsuccess’. This feature was used to verify 

whether the NLU module correctly identifies the task that user was asking HMIHY to 

perform. Their system’s performance was improved by 4% of accuracy (92.3% in 

comparison with 88.5%) but wasn’t useful for real-time application since the new feature is a 

hand-labeled one.  

Then, (Walker et al., 2001) proposed a method to automatically generate the hand-labeled 

feature ‘rsuccess’ (auto-SLU-success). Their results are shown in Table 2.2. 
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Table 2.2 Accuracy % results of Walker in 2001 

Features Exchange 1 Exchange 1&2 Whole dialog 

Baseline 67.10 67.10 67.10 

Auto (no auto-SLU-success) 70.10 78.10 87.00 

Auto + auto-SLU-success 69.60 79.20 84.90 

Auto, Task-Independent (no auto-
SLU-success) 

70.10 78.40 83.40 

Auto, Task-Independent + auto-SLU-
success 

69.20 80.30 85.40 

Auto + SLU-success 75.60 85.70 92.90 

ALL (Auto + Hand labeled) 77.10 86.90 91.70 

 

In 2007, Narjes Boufaden, Truong Le Hoang and Pierre Dumouchel published a paper 

(Boufaden et al., 2007) in which they studied the detection and prediction of user satisfaction 

in Human-Machine spoken dialogs. The features used in their work are a combination of 

Dialog Efficiency features with two new features, Named Entities and Acknowledgement 

Words respectively. Three learning machine algorithms including Support Vector Machine, 

k-Nearest-Neighbour and Decision Tree were applied in this work. Their experiments were 

tested on the corpus of DARPA 2001 Communicator using the method of 10-fold cross 

validation. Their results (Table 2.3) show that Named Entities and Acknowledgment Words 

are a good indicator for prediction of user satisfaction in the beginning of the dialog and they 

also improved baseline classification performance.  

Table 2.3 Result from the work of Boufaden in 2007 

Features used SVM kNN DT 

Baseline 50.00% 50.00% 50.00% 

Dialog Efficiency 61.26% 91.41% 85.75% 

Dialog Efficiency + Name Entities + 
Acknowledgement Words 

63.51% 91.80% 87.26% 

 



9 

 

In 2008, (Schmitt et al., 2008) employed an alternative machine learning method, SLIPPER, 

which stands for Simple Learner with Iterative Pruning to Produce Error Reduction. Their 

corpus comprises 69,296 calls from a commercially deployed recent call center recorded 

between Dec 3rd, 2007 and Dec 14th, 2007. The feature set is made up by ASR features, NLU 

features and Dialog Manager features. In this work, they achieved a very good result which 

shows that their model can identify problematic calls after only five caller turns with an 

accuracy of over 90%. 

2.2.1 Related works experimented on DARPA 2000 & 2001 Corpora 

The comparison of the systems presented earlier is made difficult by the fact that researchers 

do not use the same data in their study. Therefore, in this subsection, we will review one 

paper and one thesis which both did the research of spoken dialog classification on the same 

corpus as ours. We’re thus able to compare their results with ours and evaluate our 

achievement as well.  

The first one is a paper by Helen Wright (Helen Wright Hastie et al., 2002) which developed 

a problematic dialogue identification system and tested it on DARPA 2001 Communicator 

Corpus. The corpus is composed of 1242 dialogues. All kinds of the features, used in this 

work, which are defined in PARADISE framework, consist of TaskSuccess Measure, 

Efficiency Measures and DATE. The two latter kinds of features are automatically extracted, 

whereas the former is obtained by two methods, namely hand-labelled and automatic. The 

learning scheme they applied is CART (Classification and Regression Tree) implemented by 

Wagon software. Their results are given in the following table: 
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Table 2.4 State of the art results from Hastie in 2002 

Task Completion Dialogue Recall  Precision Fmeasure 

Hand-labelled 

Hand-labelled 

Good 

Bad (Problematic) 

90.00% 

54.50% 

84.50% 

66.70% 

87.16% 

59.98% 

Automatic 

Automatic 

Good 

Bad (Problematic) 

88.50% 

66.70% 

81.30% 

58.50% 

84.74% 

62.33% 

 

The second work presented for comparison is a master thesis (Truong Le Hoang, 2008) 

which also developed software whose main goal is to automatically identify problematic 

dialogs. In this work, he used exactly the same corpora as ours (DARPA Communicator 2000 

and 2001) in order to test his system performance. The feature set that he took is a 

combination of Task Success measure, Efficiency measures with two new features, namely 

NumNegativeACKwords (that number of negative words: NO, NOP, FALSE, INCORRECT, 

WRONG, ERASE in a dialog) and NumRepetitions (that number of times the agent repeats 

the same utterance). All the features are automatically extractable. Decision Tree is the 

learning scheme he chose to build his system. Of many different decision tree algorithms, he 

developed the Basic C4.5 Tree by himself. The other learning algorithms presented in Table 

2.5 are from the library WEKA (Waikato Environment for Knowledge Analysis) which was 

developed by many machine learning experts from the University of Waikato. The table 

below shows his best results. 
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Table 2.5 State of the art result from the master thesis of Truong Le Hoang in 2008 

Decision Tree 

Algorithm 

DARPA 2000 DARPA 2001 

Accuracy 
Fmeasure on 

BAD 
Accuracy 

Fmeasure on 
BAD 

His own C4.5 Tree 72.00% 70.00% 64.00% 60.00% 

Logistic Regression Model 78.60% 75.00% 69.52% 61.00% 

One-Rule Algorithm 77.06% 71.00% 58.23% 52.00% 

C4.5 Tree 76.87% 74.00% 68.11% 60.00% 

Boosted C4.5 Trees 73.19% 71.00% 65.63% 60.00% 

Logistic Model Tree 78.60% 75.00% 69.52% 61.00% 

 

Through reviewing seven articles and one master thesis concerning the problem of telephonic 

human-machine dialogue classification, we found out the following points: 

• Most of the works used the rule learning machine schemes and their variants such as: 

RIPPER, SLIPPER, and Decision Trees except for Boufaden et al,. who tried two other 

learning machine methods: k-NN and SVM.  

• The features used for all the works are extracted from three knowledge sources: 

Automatic Speech Recognition (ASR) component, Natural Language Understanding 

(NLU) component and Dialog Manager (DM) component. Most of the features are 

automatically extractable while a few are hand-labeled. The features are mostly 

calculated based on the whole dialog level. 

• Although the works were tested on many different corpora, their results are on range of 

70%-85% of accuracy under the condition that we only consider the results experimented 

with the automatically extractable features.  

Therefore, in this thesis, we not only address to build a dialog classification system using 

new approaches as described in section 1.2 but also try to reach the performance of the state 

of art.   
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2.3 Pattern Classification 

Nowadays, information technology becomes very popular and there are a lot of applications 

in most of the fields such as science and society also. Many of these technologies that were 

and are studied and developed rapidly in the laboratory in general and the industry in 

particular are the ones based on machine learning techniques.  

2.3.1 Pattern Classification Concepts 

Pattern classification (or also known as Pattern recognition) is “the act of taking in raw data 

taking an action based on the category of the pattern” (Duda, 1999). This definition sounds 

pretty abstract and somewhat difficult to understand. But before explaining pattern 

classification more simply and in easy-to-understand way we should know several common 

terminologies used in pattern classification as follow: 

• Pattern: according to the Japanese professor, Satoshi Watanabe (Watanabe, 1985): “A 

pattern is opposite of a chaos: it is an entity vaguely defined, that could be given a 

name”. We can also understand that a pattern could be a process, an event or an abstract 

object, such as a set of measurements describing a physical object. Figure 2.2 shows 

some examples of patterns. 

• Feature (or attribute): is an intrinsic trait or characteristic of a pattern that we can use to 

discriminate a pattern from another one. There are generally two kinds of features 

including nominal feature (e.g. windy, rainy and so on) and numeric feature (e.g. length, 

age, weight and so on). 

• Class or pattern class is a set of patterns that has the same set of common features.  

• Training set (or labeled set) is a set of patterns that have been classified or described. 

Recognition systems usually learn how to recognize a pattern based on these training set. 
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Figure 2.2 Examples of patterns. 

Pattern classification generally is a process (illustrated as Figure 2.3) whose principal goal is 

to classify objects (or patterns) into categories (or classes) based on features extracted from 

the patterns. 

 

 

Figure 2.3 Concept of pattern classification. 

Pattern recognition is divided into two main methods: supervised learning and unsupervised 

learning. Supervised learning is a problem in which classes are known beforehand and data 

samples (or called training data) of each class are also available. Unsupervised learning is a 
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problem in which we don’t have any information about classes as well as number of classes 

before solving such a problem so that we must infer the information from the data. 

A complete pattern classification system usually includes five components (Figure 2.3) in 

which each part undertake a specific task.  

• Sensor is the first component of a pattern recognition system. The only duty of this 

component is to gather the pattern’s observations needed in recognition processing. 

Depending on the object that the system wants to identify, the observations could be 

images, digital signals, or waveforms. Thus, a corresponding sensor could be a camera or 

a signal recording device.  

• Pre-processing is used to refine observations collected in the previous phase. This also 

helps our system to reduce noises that we can meet while collecting data about the 

pattern. For specific problems concerning image processing, the goal of pre-processing 

becomes solving the typical sub-problems such as image digitization or segmentation and 

so on. 

• Feature extraction receives data collected and adjusted by the two previous components 

to create a set of feature values (or called a feature vector).  

• Classifier is the most important and essential component of a PR system. We thus need to 

determine the most suitable PR method among many different ones (e.g. hidden Markov 

model, neural network, support vector machine or Bayesian decision theory). Building a 

classifier consists of optimizing its parameters on a training dataset and testing it on a 

distinct testing dataset. 

• System evaluation is an indispensable component of the PR systems. This component 

evaluates the overall performance of the system and helps us seek effective methods to 

improve the performance.   
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Figure 2.4 Main components of a pattern classification system. 

2.4 Hidden Markov Model 

HMM (Hidden Markov Model) is a statistical model which can model best the observed data 

samples of a discrete-time series. HMM has been frequently applied for pattern classification 

of time-varying data sequences. Thus, HMM is used in different domains such as speech, 

handwriting, and gesture recognition and gene prediction (Huang et al., 2002). 

In the next subsection, we will describe how HMM works and how we train it. 

2.4.1 Markov chain (Huang et al., 2002) 

HMM is derived from Markov chain. This chain is a discrete random process which has the 

property that the next state is only dependent on the current state. Andrei Markov, a Russian 

mathematician, whose best known work is the theory of stochastic processes, invented the 

Markov chain. 

To start the Markov chain, we firstly define nXXXX ,..., 21=  as a sequence of random 

variables and according to the Bayes rule, we have 

 ∏
=

−=
n

i

i
in XXPXPXXXP

2

1
1121 )|()(),...,,(  (2.1) 

where 121
1

1 ,..., −
− = i

i XXXX . In the Markov model chain, we have an important assumption 

(called Markov assumption) which states: the probability of the random variable at a given 
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time depends only on the value at the preceding time. This assumption means that: 

 )|()|( 1
1

1 −
− = ii

i
i XXPXXP  (2.2) 

Apply the assumption to equation (2.1), we have 

 ∏
=

−=
n

i
iin XXPXPXXXP

2
1121 )|()(),...,,(  (2.3) 

Equation (2.3) gives us an idea that we can use the Markov chain to model time-invariant 

events by ignoring the time index i, and considering: 

 )'|()'|( 1 ssPsXsXP ii === −  (2.4) 

Now, if we assign Xi to a state, the Markov chain becomes a finite state process with 

transition between states specified by the probability function P(s|s’). Of course, the Markov 

assumption mentioned in the equation (2.2) is restated to the following: the probability that a 

Markov chain will be in a particular state at a given time depends only on the state of the 

Markov chain at the previous time. 

Generally, a Markov chain having N distinct states namely {1,…,N} fully includes the 

following parameters (note that the state at time t in the Markov chain denoted as st): 

 NjiisjsPa ttij ≤≤=== − ,1)|( 1  (2.5) 

 NiisPi ≤≤== 1)( 1π  (2.6) 

where:  

• aij is the transition probability from state i to state j 

• πi is the initial probability that the Markov chain will start in state i 

Of course, both of parameters must satisfy the basic rule of probability function as below: 
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Let’s consider a specific example so as to understand much more about Markov chain. 

Thereby, we explain why the Markov chain above is also called the observable Markov. This 

example is a simple three-state Markov chain used to describe the Dow Jones Industrial 

average. In this model, each state represents a situation of the Dow Jones average at the end 

of a day which can be one of the following states: 

• State 1 – up (in comparison to the index of previous day) 

• State 2 – down (in comparison to the index of previous day) 

• State 3 – unchanged (in comparison to the index of previous day) 

 

Figure 2.5 Markov chain for the Dow Jones Industrial average. 
From Huang (2002, p. 377) 

The parameter set for this Dow Jones Markov chain will be: 



18 

 

• A transition probability matrix 
















==

5.01.04.0

2.03.05.0

2.02.06.0

}{ ijaA  

• An initial probability matrix [ ]3.02.05.0}{ == iμμ  

The output of the process at each time instance t is a specific event which we can 

deterministically observe. It means that for each observable event 

sequence nXXXX ,..., 21= , we always determine a correspondent Markov chain state 

sequence nSSSS ,..., 21= . Example: A sequence of events “up-up-down-unchanged-down” of 

Dow Jones has a correspondent sequence of states “S1-S1-S2-S3-S2” and the probability will 

be 

P(“up-up-down-unchanged-down”) = P(S1,S1,S2,S3,S2) 

  = 0012.01.02.02.06.05.0322312111 =××××=aaaaμ  

2.4.2 Hidden Markov Model 

In the previous section, each state of the Markov chain corresponds to a deterministically 

observable event. Before advancing to the definition of the Hidden Markov Model, we 

should first take a look at Figure 2.6 which is also used to predict the variance of the Dow 

Jones Industrial average. In comparison with the Markov chain (Figure 2.5), there is a 

difference that each state doesn’t represents a fixed event anymore. In this new model, the 

output of a state is hidden and depends on the probabilistic function of a correspondent state. 

In other words, a state in HMM could rather be in one of three modes (up, down and 

unchanged) based following a probability density function. That’s why we call this model 

Hidden Markov Model which can be viewed as a double-embedded stochastic process with 

an underlying stochastic process not directly observable. 
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Figure 2.6 Hidden Markov model for the Dow Jones Industrial average. 

From Huang (2002, p. 378) 

Generally, a hidden Markov model is defined by a set of parameters as below: 

• A set of output observations },....,,{ 21 MoooO = .  

• A set of states },...,2,1{ N=Ω .  

• A transition probability matrix }{ ijaA = , where aij is the probability of transiting from 

state i to state j.  

• An output probability matrix )}({ kbB i= , where bi(k) is the probability of emitting 

symbol ok at the state i. 
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• An initial state distribution }{ iππ = .  

Since aij, bij(k) and πi are all probabilities, they must satisfy the following conditions: 

 kjikba iiij ,,0,0)(,0 ∀≥≥≥ π  (2.8) 

 1
1

=
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j
ija  (2.9) 
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i
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From now on, note that we will use either the notation },,{ πBA=Φ or the symbol Φ  only to 

indicate the whole parameter set of an HMM to avoid ambiguity. 

2.4.3 Three basic problems of HMM (Rabiner, 1989) 

In order to apply HMM to real-world applications, we firstly need to address three basic 

problems of HMM and clearly understand their solutions as well: 

1. The Evaluation Problem: Given a model Ф and a sequence of 

observations ( )TXXXX ,...,, 21= , how to compute the probability ( )ΦXP
 
that generates 

the observations? 

2. The Decoding Problem: Given a model Φ  and a sequence of 

observations ( )TXXXX ,...,, 21= , how to find out the best state sequence ( )TsssS ,...,, 21=  

in the model that generates the corresponding observation sequence? 

3. The Learning Problem: Given a model Φ and a set of observation sequences (training 

data), how to adjust the HMM parameter set to maximize the joint likelihood 
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probability ( )∏ Φ
X

XP ?  

The solutions to these problems are described in annexes I, II, III and IV. In the next 

subsection, we will briefly mention a tool which implements the HMM algorithms very 

efficiently. 

2.5 HTK Overview 

HTK which stands for Hidden Markov Model Toolkit is a tool popularly used to build and 

manipulate hidden Markov models. The principal idea of HMM is to model any time series 

event and the core of HTK also have same general purpose. Firstly, HTK was created to 

address the demands of speech recognition research and a lot of infrastructures in HTK are 

designed for this task. However, it has been useful for numerous applications such as speech 

synthesis research, character recognition and DNA sequencing research. Nowadays, HTK 

becomes very popular and is used at hundreds of sites over the world.  

HTK is actually a set of  library modules developed by C programming language. The 

software fully provides the most necessary facilities for speech analysis, HMM training, 

testing and result analysis. In addition, we can adjust HMM components easily to optimize 

the HMM’s performance. Both continuous density mixture Gaussians and discrete 

distribution are supported in HTK. Of course, a complex HMM system can be built as 

expected by using HTK.  

For more details about this toolkit, please refer to http://htk.eng.cam.ac.uk/docs/history.shtml  

2.5.1 HTK Architecture 

HTK is built into the library modules which make sure that every tool can interface to the 

outside world in exactly the same way. Each module, which consists of many tools, 

undertakes a specific task. The figure 2.7 illustrates the HTK architecture.  



22 

 

 

 

 

Figure 2.7 HTK Software architecture. 
From Young (2006, p. 15) 

HTK totally comprises 20 library modules: 

1. HShell controls user input/output and interaction with operation of HTK. 

2. HMem undertakes all management of memory. 

3. HSigP is to process the signal operations needed for speech analysis. 

4. HMath provides mathematical support. 

5. HLabel is responsible for interaction with label files. 

6. HLM is for language model files. 



23 

 

7. HNet is used for network and lattice operations. 

8. HDict is dedicated to dictionary. 

9. HVQ is for Vector Quantization codebooks. 

10. HModel specializes in HMM definitions. 

11. HWave is a library module that processes all speech input and output at the waveform 

level. 

12. HParm is similar to HWave but at the parameterized level. 

13. HAudio is a HTK utility which takes input directly from audio files. 

14. HGraf has the same utility as the HAudio but is more interactive by using a graphical 

interface.  

15. HWave in cooperation with HLabel provide multiple format files that allow data to be 

imported from other systems. 

16. HUtil support a number of utilities so as to manipulate HMMs. 

17. HTrain and HFB provide the various HTK training tools. 

18. HAdapt contains support for the various HTK Adaptation tools. 

19. HRect processes the recognition operations. 

2.5.2 HTK functionalities 

HTK fully provides the necessary tools so that we can build a HMM based continuous 

speech recognizer which usually involves in the processing steps: data preparation, training, 

testing and analysis. Relationship between these steps and HTK tools is shown in the Figure 

2.8. 
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Figure 2.8 HTK Processing stages. 

• Data preparation phase: A set of speech data files and their associated transcription are 

required for training a speech recognizer. But before they can be used in training step, we 

must convert the speech files into the appropriate parametric form and format its 

associated transcription in exactly the same way required by HTK. The tools such as 

HSLAB, HCOPY, HLIST, and HQUANT… are provided to work with speech file 

whereas the tools such as HLED and HLSTATS are used to annotate transcription.  

• Training phase: is the most important step which involves building HMMs for recognizer 

using Baum-Welch re-estimation. HEREST is tool performing this algorithm. In this 
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phase, a set of tools are provided by HTK to adjust HMMs training with the purpose of 

optimizing recognition. These are HCOMPV, HINIT, HREST, HSMOOTH, HHED and 

HEADAPT. 

• Testing phase: is step for speech recognition. For this purpose, HTK provide a tool called 

HVITE which does recognition using language models and lattices. Another tool, 

HDECODE, which supports the same task, is also available as an extension to HTK. And 

HLRECORE is a tool that accompanies HVITE (or HDECODE) to apply a more 

complex language model. Besides, HTK supplies the dictionary management tool HMAN 

which helps us construct large dictionaries. The final task in this phase which is to create 

grammar networks is assisted by the tools HBUILD and HPARSE.  

• Analysis phase: Once the HMM based speech recognizer has been built, it is necessary to 

evaluate its performance by using itself to transcribe some pre-recorded utterances. After 

that, we will match the recognizer output with the correct reference transcription to see 

how well the recognizer works. This is done by the tool named HRESULTS which is also 

provided by HTK. 

 

  



CHAPTER 3  

 

 

METHODOLOGY 

3.1 Problematic dialogue definition 

In Chapter II, we saw that there are several different methods to label a problematic dialogue 

in situation of a spoken Human-Computer dialogue. The labeling depends on the purpose of 

dialog management system.    

• First, Litman et al correlated a problematic dialogue with the performance of the ASR 

module (Litman et al., 1999). According to the opinion, a dialogue is considered 

problematic if the ASR module produces a poor performance on it.  

• Then, Langkilde et al made another definition of problematic dialogue (Langkilde et al., 

2000). On the basis of task success, problematic dialogue is a dialogue in which user is 

unable to do what he/she desires. 

• Finally, Hastie et al relied on user satisfaction in order to define a problematic dialogue 

(Hastie et al., 2002). In this definition, problematic dialogue is a dialogue in which user is 

unsatisfied with the conversation. Otherwise, non problematic dialogue is a dialogue that 

always assures the user satisfaction although the task that user desires to do would be 

probably uncompleted.  

In this work, we choose the method of labeling a problematic dialogue based on user 

satisfaction because: 

• Our work is a part of the project whose aim is to address enhancing the quality of spoken 

Human-Computer dialog using emotion management.  

• The corpus we use throughout the thesis provides user satisfaction rating which will be 

described more details in Section 3.5. 
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3.2 Dialog classification features 

This section describes briefly the set of features which has been frequently used in researches 

concerning dialog classification or problematic dialog identification. The dialog features used 

in the work that we described in section 2.2 are often divided into four subsets based on their 

own origination as follow: 

• Acoustic/ASR Features: output of the speech recognizer, number of words in the 

recognizer output, duration in seconds of the input to the recognizer, flag for touchtone 

input, input modality expected by the recognizer, grammar used the recognizer, and 

actual modality of the user utterance. 

• NLU Features: confidence measure for all possible call types, intra-utterance measure of 

the consistency between services that user appears to be requesting, measure of coverage 

of the utterance by salient grammar fragments, measure of the shift in context between 

utterances, call-type task with the highest confidence score, call-type task with the second 

highest confidence score, difference in value between the top and the next-to-top 

confidence scores. 

• Dialog Manager Features: number of utterances, number of re-prompts, percent of re-

prompt, number of confirmation, percent of confirmation, utterance duration in second, 

entire dialog duration in second. 

• Hand-Labeled Features: human transcripts of each user utterance, age and gender of each 

user, a cleaned transcript with non-word noise information-removed, the number of 

words that occurred only in the clean transcript. 

We have just taken a look at the overview of different dialog feature types that we can extract 

from the human-machine dialog system. In the next section, we will introduce the features 

we chose to use in our research. 
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3.2.1 Selection of features   

This work aims to design a completely automatic system of dialog classification. To achieve 

this, the dialog features that we use must be automatically extractable. In addition, since we 

want to give a quick response, we will work on utterance basis instead of a paragraph basis. 

Therefore, the dialog features here are derived from each utterance. Consequently, we 

adapted the features defined in the PARADISE framework to make them applicable at the 

turn level. The set of features used in our system comprises the following: 

• Utterance Position: position of each utterance in a whole dialog (e.g. second utterance) 

• Utterance Duration: duration in second of the utterance. 

• Number of Phonemes: number of phonemes of the utterance. 

• Inverse Speech Rate: inversion of measure of the speed that the utterance is spoken in 

second. 

• Num Negative Words: number of negative acknowledgment words such as cancel, 

wrong, erase and so on. 

• Num Positive Words: number of positive acknowledgment words such as yes, thanks, 

welcome and so on. 

• Response Waiting Time: waiting time expressed in second between two consecutive 

utterances. 

• Silence Time: duration of silence of the speaker. 

• Repetition Rate: level of similarity between two consecutive utterances from the same 

speaker. 

• ASR Accuracy Rate: measure of precision of ASR component when recognizing each 

user utterance. 
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Of these features, the last one (ASR Accuracy Rate) is the only one we are unable to 

automatically extract because we need corresponding transcript for each utterance in order to 

compute it. Otherwise, we can realize that all other features belong to the type of dialog costs 

(dialog efficiency and dialog qualitative) according to PARADISE framework. 

In Chapter 4, we will describe how each of these feature parameters is extracted. In the next 

section, we mention how a HMM can be used to detect the satisfaction of the user. In the 

next subsection, we will describe the algorithm and the technique used in processing the 

features extraction. 

3.2.2 The dynamic programming algorithm 

The dynamic programming is a popular algorithm (Cheriet, 1997) which solves complex 

problems by breaking them down into simpler sub-problems. This algorithm saves much 

more time than naive one. Based on algorithm approach, dynamic programming is basically 

divided into two types as follow: 

• Top-down dynamic programming is to store the results of calculations which are re-used 

after because the same calculation is a sub-problem in a larger calculation. 

• Bottom-up dynamic programming is to formulate a complex calculation as a recursive 

series of simpler calculations.  

There are a number of algorithms that use dynamic programming. Here we list some 

common algorithms: 

• The dynamic time warping algorithm for computing the global distance between two time 

series. 

• The algorithms used in bioinformatics, including sequence alignment, structure alignment 

and RNA structure prediction. 

• The Viterbi algorithm in hidden Markov models. 

• Fibonacci sequence. 
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• Sequence alignment. 

In our research we use the dynamic programming to measure optimal distance between two 

given strings of character. Suppose that we have an n-character string 

nXXXX ,...,, 21= where iX denotes the ith character in the string X. Similarity, we also have 

an m-character string mYYYY ,...,, 21= . And the dynamic programming algorithm that we use 

to solve our own problem is the following: 

Step 1: Initialization  

D[0,0] = 0 

for i = 1,2,…,n  {D[i,0] = ∞} 

for i = 1,2,…,m  {D[0,m] = ∞} 

Step 2: Iteration 

for i = 1,2,…,n  { 

 for i = 1,2,…,m  { 
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 } 

} 

Step 3: Termination 

The optimal distance between X and Y is d(X,Y) = D[n,m] 
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3.2.3 The emotional salience (Lee et al., 2002)  

The emotional salience is an approach used in emotion detection to improve the recognition 

performance. This technology is based on the information-theoretic concept of salience to 

search salient words in each utterance. A salient word with respect to a category is one which 

appears more often in that category than at in other parts of the corpus. To find the salient 

words, we need a method to measure relation between the words and emotions in the speech 

corpus. Therefore, the emotional salience is created as a measure of the amount of 

information that a specific word implies about the emotion category. The emotional salience 

( )wsal
ke  of a word w for emotion category ek is defined as mutual information between a 

specific word and an emotion class  

 
( ) ( ) ( ) ( )kkke ewiwePwWeEIwsal

k
,; ====  (3.2) 

where  

( )weP k  is the posterior probability that word w implies emotion class ek.  

( ) ( )
( )k

k
k eP

weP
ewi 2log, =  is the self mutual information.  (3.3) 

( )keP  is the prior probability of the emotion ek. 

The meaning of the emotional salience is that the bigger the emotional salience is, the higher 

the correlation between a specific word and an emotion category is. 

3.3 Selection of machine learning method 

In pattern classification field, it is not easy to know beforehand which learning scheme will 

work best for any given problem. The approach called “trial-and-error” is usually used to 

determine an appropriate scheme.  
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In the section of related work, we saw that two schemes, namely RIPPER and DT (Decision 

Tree), are often employed in the dialog classification problem. But our research approaches 

this problem with a different method. We attempted to mine only information exchanged 

between user and system for dialog classification at the utterance level and then model the 

user satisfaction through the dialog utterance. So, it is necessary to have an appropriate 

algorithm for this approach. HMM is our choice due to the following reasons: 

• HMM is a robust and strong algorithm used widely in the field of temporal pattern 

recognition such as speech recognition, gesture recognition, and gene prediction. Hence, 

we also believe that this model will work well on our problem.   

• Besides, we realize that HMM is very suitable to model our problem. Since if we 

consider an utterance sequence of dialog as an observation sequence in HMM illustrated 

like the Figure 3.1. This offers us an easier way to process modeling than the 

conventional algorithms such as RIPPER and DT.  

• In addition, the ASR component of the Human-Computer dialogue system also works on 

a HMM framework. Thus, using HMM in dialogue classification is compatible with the 

ASP component in order to facility the fusion of both information. 

• Finally, HMM provides us many means to improve and refine the algorithm performance. 

Simply, we can adjust number of states or work on the topology of states in order to 

improve the system’s performance. Using Gaussian Mixture Model for the probability 

density function of each HMM state could be made to enhance the classification of 

dialogue. In case of limitation of training data, HMM is still able to adapt to this situation 

using the parameter tying. 
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Figure 3.1 Concept of new approach using HMM. 

3.4 Corpus Collection 

This section briefly presents the data collection used for our experiments. The collection 

includes two corpora: DARPA 2000 Communication Corpus, and DARPA 2001 

Communication Corpus. They were publicly distributed by Linguistic Data Consortium 

(LDC). Firstly they were collected to serve the DARPA Communication project whose 

object is to support development of multi-modal speech-enabled dialog systems with 

advanced conversational capabilities.  

During 2000 and 2001, the two data sets were collected, in which users used the 

Communicator systems built by the research groups to plan their travel trip.  

3.4.1 DARPA 2000 Communication corpus (Walker et al., 2002) 

DARPA 2000 corpus was collected by nine systems from AT&T, BBN, University of 

Colorado, Carnegie Mellon University, IBM, Lucent Bell Labs, MIT, MITRE and SRI. The 
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collection was conducted as a controlled experiment in which the subjects, who were 

recruited in prior, called each of the nine different automated travel-planning systems over 

three 3-day periods to make simulated flight reservation.  

The experiment had been carried out over nine days at the fixed hours. The subjects talked to 

the systems in order to complete seven fixed tasks (which included three domestic one way 

trips, two domestic round trips, and two international round trips) and two open tasks that 

were to plan an intended business trip and vacation. 

As a result, this experiment produced 662 calls in which there were 225 calls for one way trip 

reservation, 300 calls to make a round trip reservation. And the remaining 137 ones are about 

the real trip. 

3.4.2 DARPA 2001 Communication corpus (Walker et al., 2002) 

DARPA 2001 corpus was collected by only eight systems because the system from MITRE 

didn’t participate in this project anymore. In 2001, the collection was more natural than the 

one in 2000 because they conducted a within-system rather than a within-subject experiment. 

They did exclude the subject recruitment for the experiment. The object of this is to allow 

users to learn their new interactive paradigm and allow systems to adapt to their users. 

Unlike the experiment in 2000, the one in 2001 had taken place for a long time (6 months) 

and the user could be continuously accessible to systems via a toll-free number. Besides, the 

experiment’s scenarios were more complex and realistic. Multi flight trip was required to be 

made in such a corpus. Moreover, they might require user to make car and hotel arrangement 

as well. 

After this experiment, they collected 1242 calls in total. This number consisted of 198 calls 

for round trip reservation, 350 calls within complex scenario. And the remaining 694 calls 

are about real trip. 

The following table summarizes the different between DARPA 2000 and DARPA 2001. 
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Table 3.1 Summary of DARPA 2000 and DARPA 2001 

 DARPA 2000 DARPA 2001 

Period 9 days 6 months 

Time Fixed Hours Continuous 

Design Within subject Within system 

Number of calls 662 1242 

Call Types 
225 One Way, 300 Round 

Trip, 137 Real  
198 Round Trip, 350 
Complex, 694 Real 

 

3.5 Labeling corpus 

In order to label the dialogues from the corpora of DARPA 2000 and DARPA 2001, we rely 

on the points that the user answers to a question set. The questions are given to the user after 

his dialogue is completed. The answers help us assess the customer satisfaction towards the 

spoken Human-Computer dialogue system. Below is the question set raised in the DARPA 

2000 and 2001 corpus: 

• Task Success: Is user’s task completed successfully? (Yes / No) 

• Task Ease – (A): In this conversation, it was easy to get the information that user wanted? 

• TTSPerf (Text To Speech Performance) – (B): In this conversation, user found it easy to 

understand what the system said? 

• User Expertise – (C): In this conversation, user knew what to say or to do at each point in 

the dialogue? 

• Expected Behavior – (D): In this conversation, the system worked the way user expected 

it to? 

• Future Use – (E): In this conversation, based on user’s experience using this system to 

get travel information, user would like to use this system regularly? 

The first question is used to determine whether user’s task is successfully done while the last 
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five questions are taken for customer satisfaction rating. In this work, we focus on these five 

questions because we address problematic dialogue on the basis of the customer satisfaction 

as mentioned in section 3.1. For each question, user will give a score whose value varies 

from 1 to 5 based on Likert-scale that is a multi-item scale. The Liker-scale format is 

presented in the Table 3.2.     

Table 3.2 Likert-scale and Inversed Likert-scale 

Likert-scale Strongly 
Disagree 

Somewhat 
Disagree 

Neutral Somewhat 
Agree 

Strongly 
Agree 

Normal 1 2 3 4 5 

Inversed  5 4 3 2 1 

 

After summing up the scores of these five answers, we have a score that expresses the actual 

user satisfaction. We call such score UserRating, and use it to define problematic dialog as 

follow: 

logDia BadThresholdUserRating <  

Since we have two different corpora using two types of Likert-scale, namely Normal Likert-

scale and Inversed Likert-scale (Table 3.2), the Thresholds that we choose to label dialogs 

have a little difference as follows:   

• In DARPA 2000, the Inversed Likert-scale is used, so determining problematic dialog 

(Bad dialog) follows the condition below  

Dialog BadUserRating > 12  

• Otherwise, in DARPA 2001, the Normal Likert-scale is used, so determining problematic 

dialog (Bad dialog) follows the condition below  

Dialog BadUserRating < 17  



CHAPTER 4  

 

 

DESIGN AND IMPLEMENTATION 

4.1 System design 

The dialog classification system that we develop is also a pattern classification system which 

usually has three main components, namely preprocessing, extraction, and classification. Our 

system is not an exception and Figure 4.1 illustrates the overall architecture of the dialog 

classification system.  

Parser

Training
Classifier

Feature 
Extractor

Machine-human dialog 
in form of a text file 

(log file)

Training Data
(DARPA 2000 & 

DARPA 2001)

Parser

Classifier

Feature 
Extractor

Classifier

 

Training phase

 

Testing phase

Dialog category
{Good, Bad}

Java 
modules

HTK 
modules

 

Figure 4.1 Overall architecture of dialog classification system.  
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As shown in the Figure 4.1, DCS includes three main components as follow: 

• Parser: this component plays the role as the preprocessing. Since the input of DCS is a 

dialog in form of a text file recording what the user and the machine agent communicated 

and the time when the dialog took place. The task of the preprocessing component is to 

parse the text file to pick up dialog information. This is why this component is called 

parser in our system. We develop the parser component using the Java programming 

language. An example about the task of the parser component is shown in the table 

below.  

Table 4.1 Example of input and output of the parser 

Input of parser Parser Output of parser 

Fri Jul 7 2000 at 12:21:44.71: New user turn began. 

Fri Jul 7 2000 at 12:21:44.71: User started 

speaking. 

User audio file: ASR0_112644.VOX 

Fri Jul 7 2000 at 12:21:47.13: User finished 

speaking. 

Recognizer heard: I KNOW THAT'S ROUND 

User said: UH NO THAT'S WRONG 

=> 

=> 

 

=> 

 

=> 

=> 

User 

12:21:44.71 

 

12:21:47.13 

 

I KNOW THAT'S ROUND 

UH NO THAT'S WRONG 

 

• Feature Extractor: this component takes input from the output of the parser component in 

order to produce a set of features used in the next component, namely classifier. 

Similarity to the parser component, the feature extractor is developed by the Java 

programming language. Table 4.2 is an example of what the feature extractor component 

does in our system. In this example, some features (such as Utterance Position, Silence 

Time and Repetition Rate) are calculated based on the previous utterance. 
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Table 4.2 Example of input and output of the feature extractor 

Input of Extractor Extractor Output of Extractor 

User 

12:21:44.71 

12:21:47.13 

I KNOW THAT'S ROUND 

UH NO THAT'S WRONG 

 Utterance Position  : 4 

Utterance Duration  : 2.42 

Number of Phonemes  : 10 

Inverse Speech Rate  : 0.22 

Number of Negative Words : 0 

Number of Positive Words : 0 

Response Waiting Time  : 0.2 

Silence Time   : 0.0 

Repetition Rate   : 0.0 

ASR Accuracy Rate  : 0.5 

 

• Classifier: this component classifies dialog into one of two classes {Good, Bad} based on 

a set of features. For the component, we use HTK ToolKit to build the classifier. 

Each component will be described in detail in Section 4.1.1, Section 4.1.2 and Section 4.1.3. 

4.1.1 The parser  

Parser is the first component of our system. It receives a dialog transcript in form of a text 

file as input. The main task of parser is to pick up important information that the feature 

extractor needs. To do so, the parser must parse the text file and remove noise and 

unnecessary information from the text file. Only useful information is kept before sending 

them to the feature extractor. The output of the parser is composed of the following fields for 

each user turn and system turn in the dialog: 

• Is system: the field is used to determine if this is a system turn or user turn. 
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• Starting time: is the time when the user (or the system) starts their own turn. 

• Finishing time: is the time when the user (or the system) finishes their own turn. 

• Utterance: here, we have two types of utterance. The first one is the user utterance which 

is transcribed in the text file by the ASR (Automatic Speech Recognition) component of 

the human-machine dialog system. The second one is the system utterance. For this 

utterance, the system simply saves to the text file what it said to the user. We thus realize 

that the user utterance could be incorrect due to limited capacity of the ASR component. 

• Human transcription:  this field contains a human transcription of exactly what the user 

said to the ASR system. This task is done by the human agent who listened to the audio 

file recording the corresponding dialog and rewrote out what they heard to the text file. 

Of course, this information only exists in the user turn. 

Figure 4.2 summarizes the input and output of the parser. 

FINISH TIMESTART TIME

UTTERANCE TRANSCRIPT

IS SYSTEM

PARSER

Dialog in form of
text file (log file)

 

Figure 4.2 Illustration for the parser function. 

In our research, we have two different corpora whose text file formats varied. So, we need 

two parsers, namely the one for the DARPA 2000 and the other one for the DARPA 2001. 
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We will describe how they parse text files of two DARPA corpora in the next subsections. 

4.1.1.1 DARPA 2000 Communicator 

The text file of the DARPA 2000 corpus has a format as displayed the Figure 4-3. According 

to this format, parser will: 

• Determine if this is a user turn or system by searching the key word “system turn began” 

or “user turn began”. 

• Extract start time of system or user by searching the key word “System started speaking” 

or “User started speaking” respectively. 

• Extract finish time of system or user by searching the key word “System finished 

speaking” or “User finish speaking” respectively. 

• Extract system utterance by searching the key word “System said”. 

• Extract user utterance by searching the key word “Recognizer heard”. 

• Extract transcript by searching the key word “User said”. 

4.1.1.2 DARPA 2001 Communicator 

The text file of the DARPA 2001 corpus has a format as displayed in Figure 4-4. This format 

is simpler than the one of DARPA 2000. Each turn lies in one line only. And the format of 

each turn is:  

[User/system] [Start time] [Finish time] [ASR: utterance] <Transcr: Transcript: > 

The last information is optional and exists in the user turn only. For this corpus, the parser 

needs to parse text file to pick up line by line, after that it will: 

• Determine if this line contains the key word “system” than this is a system turn, whereas 

this is user turn. 

• Extract one by one the remaining fields based on the order of each field as mentioned 

above.  



42 

 

 

 

 
Figure 4.3 Illustration for the text file format in DARPA 2000. 

 

 

Figure 4.4 Illustration for the text file format in DARPA 2001. 
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4.1.2 Feature extractor  

This component receives information about each turn from the parser. Based on this 

information, the feature extractor will produce a set of ten features which we call a feature 

vector. The Figure 4.5 shows the input of this component and the ten features that will be 

extracted for each turn by the feature extractor. 

 

FINISH TIMESTART TIME UTTERANCE

TRANSCRIPTIS SYSTEM

FEATURE
EXTRACTOR

Utterance
Position

Utterance
Duration

Number Of
Phonemes

Inverse 
Speech Rate

Num Negative
Words

Num Positive
Words

Response 
Waiting Time

Silence Time

Repetition 
Rate

ASR 
Accuracy Rate

 

Figure 4.5 Illustration for the feature extractor function. 

The next section describes the methods that the feature extractor uses to compute those 

features for each turn of a dialogue. In addition, we will briefly make a feature definition and 

explain why the features could be useful to our system. 

• Utterance_Position is simply the order number of each utterance in the whole dialog. 
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This feature gives our system the number of times that the user and the machine 

exchanged turns. We make the assumption that a good dialog is the one in which the user 

and the machine do not need to talk too much to understand. On the contrary, a dialog 

which has too few exchanges is not a good one. Our system therefore can evaluate how 

good a dialog is based on this feature. 

 
)1__(

1___

=
+=

PositionUtteranceFirst

PositionUtterancepreviousPositionUtterance
 (4.1) 

• Utterance_Duration is duration defined as the moment when the user (or the system) 

starts speaking and the moment when they finish their utterance. This feature always 

appears in the dialogue-evaluation-related research.  

 TimeStartingTimeFinishingDurationUtterance ___ −=  (4.2) 

• Number_of_Phonemes as the name suggests is used to count how many phonemes are 

pronounced in each utterance. As for the previous feature (Utterance duration), this is 

also a basic feature found in the research of dialog classification. Moreover, we think that 

the number of phonemes provide to our system the amount of information exchanged 

between the user and the system. 

 ( )utterancemescountPhonePhonemesofNumber =__  (4.3) 

• Inverse_Speech_Rate measures the average speed that each phoneme is emitted in an 

utterance. As a result, the speech rate is computed by dividing Utterance Duration by 

Number of Phonemes. In a situation of telephone dialog, there are various methods to 

reveal sensation and satisfaction, and we make the assumption that the speech rate is one 

of them.   

 1__

_
__

+
=

PhonemesofNumber

DurationUtterance
RateSpeechInverse

 
 (4.4) 
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Note that the one at the denominator in the above equation is used to avoid the infinitive 

value because sometimes, the Number_of_Phonemes is equal to zero meaning that 

nothing was uttered. 

• Number_of_Negative_Words counts how many times words which are considered as 

negative ones appear in an utterance. In this definition, a negative word is a one that has a 

tendency to frequently exist in bad dialogs. We choose this feature under the assumption 

that the more negative words the dialog has, the higher the probability of a dialog of 

being a bad dialog is. A method of determining positive and negative words will be 

defined in the next subsection (Section 4.1.2.1). 

 ( )utteranceiveWordscountNegatWordsNegativeofNumber =___  (4.5) 

• Number_of_Positive_Words is similarity to the feature “number of negative words” but 

now with positive words instead of negative words. 

 ( )utteranceiveWordscountPositWordsPositiveofNumber =___  (4.6) 

• Response_Waiting_Time is duration between the moment when the previous speaker 

finishes his utterance and the moment when the next speaker starts his. A casual 

conversation between two people will be considered good if no one of them has to take a 

long time to wait for the response from the other person. And the spoken dialog is not 

also an exception. This feature thus provides meaningful information to evaluate a dialog. 

 FinisheviousTurnPrStartnCurrentTurTimeWaitingsponse ..__Re −=  (4.7) 

Note that Response_Waiting_Time can be less than zero. This could happen in two cases: 

when user’s speech overlaps the system’s speech or when system’s speech overlaps the 

user’s speech. 

• Silence_Time is duration of time where the user (or the machine) doesn’t say anything to 
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the machine (or the user) while the dialog between them is still going on. The purpose of 

using such feature is to emphasize the fact that the dialog is interrupted by the silence of 

the user (or the machine) when he is supposed to say in his turn.    

 

( )
( ) FinisherTurnpreviousUsStartrTurnCurrentUsesystemofeSilenceTim

FinishstemTurnpreviousSyStarttemTurnCurrentSysuserofeSilenceTim

.. 

.. 

−=
−=

  (4.8) 

According to the feature definition, silence time is always equal or more than zero. The 

following scenario is an example in which we can calculate the Silence time. 

[U1] Machine agent (from 12:21:15.05 to 12:21:16.38): Hello, may I help you? 

[U2] User (from 12:21:17.13 to 12:21:22.32): ….. (Silence) 

[U3] Machine agent (from 12:21:24.18 to 12:21:25.39): May I help you? 

[U4] User (from 12:21:26.25 to 12:21:32.71): ….. (Silence) 

[U5] Machine agent (from 12:21:34.99 to 12:21:36.86): Do you hear me? 

In this scenario, there are two silence utterances, U2 and U4 respectively. The duration 

of these silence utterances is calculated as follows: 

SilenceTime(of U2) = U3.Start – U1.Finish = 12:21:24.18 - 12:21:16.38 = 7.9 (seconds) 

SilenceTime(of U4) = U5.Start – U3.Finish = 12:21:34.99 - 12:21:25.39= 9.6 (seconds) 

• Repetition_Rate is a ratio that shows the similarity level between two consecutive 

utterances of the same speaker (user or system). 

 

( )
( ) 100

 ,
100_Re ×−=

erancecurrentUttlength

erancecurrentUttterancepreviousUtd
Ratepetition   (4.9) 

where d(previousUtterance, currentUtterance) is to measure the difference between these 

two utterances and calculated by the dynamic programming algorithm mentioned in 

Section 3.2.2. 
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• ASR_Accuracy_Rate is a ratio computed to evaluate how well the ASR (which stands 

for Automatic Speech Recognition) recognizes what the user says to the system.  

 

( )
( ) 100

,
100__ ×−=

transcriptlength

transcriptutteranced
RateAccuracyASR   (4.10) 

where d(utterance,transcript) is the distance between utterance and corresponding 

transcript, calculated by a dynamic programming algorithm described in Section 3.2.2. 

Of course, we’re only able to extract this feature on user utterance only. For system 

utterances, a default value (100) will be assigned to the feature. 

4.1.2.1 Determination of negative and positive words  

This section introduces the method we adopt to identify negative and positive words: the 

emotional salience technique based on the mutual information. In order to determine whether 

a word is a negative or positive one, we use a training data which consists of a number of 

dialogs labeled as GOOD or BAD dialogs.  

Here, we assume that a word which appears more frequently in the GOOD dialogs is a 

positive word; vice versa a word which tends to be in BAD dialogs is a negative word. 

Firstly, we denote:  

• { }NP eeE ,=  as the set of emotional classes (eP: positive emotion, eN: negative emotion). 

• { }NwwwW ,...,, 21=  as the set of vocabularies derived from the training data. 

• N is the overall number of distinct words in both GOOD and BAD dialogs. 

• GOOD
in is number of appearances of the ith word in all the GOOD dialogs. 

• BAD
in is number of appearances of the ith word in all the BAD dialogs. 

The following table shows the steps of determining positive word and negative words. 
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Table 4.3 Method of determining positive and negative word  

Compute the prior probability of each emotion in { }NP eeE ,= . 
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 Compute the posterior probability ( )iP weP  as follow  
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 Compute the posterior probability ( )iN weP  as follow  
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 Compute the self mutual information is given by 
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 Compute the emotional salience of ith word for emotion eP and eN 
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4.1.3 The classifier  

In this study, HMM is the paradigm used to classify dialogs. In this section, we explain how 

HMM is configured for the purpose of dialog classification.  

To implement an HMM based dialog classification, we need to have two distinct HMM 

models which correspond to two classes C= {“good”, “bad”}. One model is used to 

recognize good dialogs and the other one to recognize bad dialogs. We call two models 

1Φ and 2Φ  respectively. To classify a given dialog defined by the observation sequence 

},...,,{ 21 nXXXX =  that is a set of feature vectors extracted by the Feature extractor, we 

must do the followings steps: 

• Using the Forward algorithm to compute the probability ( )1ΦXP . (see Annexe I for more 

detail) 

• Using the Forward algorithm to compute the probability ( )2ΦXP . 

• After that, we classify this dialog by choosing the best probability: 

( )}{maxarg
2,1

i
i

XPclass Φ=
=

 

Of course, before using these models for classification, given a set of training examples 

corresponding to a particular model, each model must be trained by the Forward-Backward 

algorithm (Annex IV) to get the best set of parameters },,{ πBA=Φ  for each model. Figure 

4.6 illustrates the process of HMM based dialog classification. 
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Figure 4.6 Using HMMs for dialog classification. 

The HMM topology which we initially use for dialog classification is model with two states. 

This model can get started and ended at any states. Every state has two transitions. A 

transition takes from one state to another one including itself. This HMM topology is shown 

as the following figure. 

 

Figure 4.7 HMM topology  
for dialog classification. 

    

4.2 System Development 

As mentioned in the section of system design, DCS has three main components and two of 
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them, Parser and Extractor, are developed by the Java programming language. The last 

component, Classifier, is built using HTK. This is also the most important component in 

DCS. Therefore, this section only focuses on its development. 

Building the classifier by HTK includes three phases: data preparation, training and testing. 

For each phase, HTK always provides corresponding commands which help us implement 

HMM easily and effectively (Young et al., 2006).  

4.2.1 Data preparation tool 

Data preparation phase is indispensable to use HTK. The objective of data preparation is to 

store feature vectors (observation sequence) in form of the HTK format parameter file which 

is the input of the next phases (training and classifying). The HTK format file includes a 

header followed by a contiguous sequence of samples. Each sample is a vector of 4-byte 

floats. And the HTK format header is length of 12 bytes and contains the following 

information: 

• nSamples: number of samples in file (4-byte integer), 

• sampPeriod: sample period in 100ns unit (4-byte integer), 

• sampSize: number of bytes per sample (2-byte integer), 

• parmKind: a code indicating the sample kind (2-byte integer). 

Actually, the HTK format header has more other parameters but here we only mention basic 

parameters which constitute the structure of the HTK format file used throughout our system. 

The task of this phase is done by Java programming language because HTK only supports 

creating HTK format parameter file from audio format files. 

4.2.2 Training tool 

HTK provides us two library modules for training HMMs with many commands such as 

HRest, HERest to support several training strategies. The strategy that we apply to our 

system includes the following steps: 
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• Define the topology required for each HMM by writing a prototype definition. HMM 

definition can be stored externally as simple text files and hence you can edit them by any 

text editor.  

• Initialize all of the parameters of each model in order to prepare for the step of Baum-

Welch re-estimation (Forward-Backward algorithm). HTK provides two commands 

named HCompV and HInit to do such a step.  

• Perform the Baum-Welch re-estimation procedure to estimate a set of parameters as best 

as possible that each model can obtain. HERest is created to be in charge of doing this 

task. 

• Incrementally refine HMMs obtained after re-estimate procedure thanks to many 

different methods. These could be using multiple mixture component Gaussian 

distributions or applying a variety of parameter tying. And HHed is a tool of HTK that 

help us doing this.  

4.2.3 Classifying tool 

After the training phase, we have determined the best model for each model. The models will 

be used in classification phase in order to recognize a dialog as good one or bad one. As 

previously mentioned, dialog classification is simply a task that involves in computing the 

probability given by the two models and choosing the best probability to determine which 

class the dialog belongs to. This task of our system is easily done by the HVite which is one 

of commands of the library module HRec. 
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EXPERIMENTATION 

5.1 Experiment protocol 

This section describes several popular methods used in the experiments to assess a learning 

scheme. Here, we will mention three methods as follow (Witten et al., 2005).     

5.1.1 Holdout method 

This method is used when we have a large dataset. The dataset is split into two separate 

subsets, namely called the training set and the testing set. The size of training set is always 

much larger than the one of the testing set. The advantage of this method is that it doesn’t 

take too much time for experimentation because it doesn’t do any iteration. However, its 

evaluation couldn’t be highly reliable. The cause is that the evaluation depends on which data 

points end up in the training set and which end up in the testing set. In other words, the 

evaluation depends on how the division is made. 

5.1.2 K-fold cross-validation method 

This method is used when our dataset is limited. The method works as follow:  

• Firstly, the dataset is divided into K subsets. 

• Next, the holdout method is repeated K times. Each time, one of the K subsets is used for 

testing and the remaining K-1 subsets are put together to be used as training set. 

• Finally, we average the error across all K trials. 

It’s easy to realize that the advantage of the method is to avoid the situation where the 

evaluation is dependent on how the dataset is divided. Because every data point participates 

in a testing set exactly once and also gets to be in a training set exactly K-1 times. 

However, the disadvantage is that it takes more computation time because the train/test phase 
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must be done K times. Compared to the holdout method, this method takes K times to 

complete the evaluation with assumption that the proportion between the training set and 

testing set of the two methods is identical.  

5.1.3 Leave-one-out cross-validation 

As the name suggests, the leave-one-out cross validation (LOOCV) involves using a single 

data point from the dataset as the testing data.  This is repeated until every data point is used 

once as the testing data. Hence, this method is a special case of the K-fold cross-validation 

method as the coefficient K is equal to N, number of data point in the dataset. The evaluation 

given by the LOOCV error rate looks very good, whereas the computation time is very high, 

especially for the large dataset. 

In our study, we decided to choose the second method with K=10 (the K-fold cross-

validation method) because our dialog datasets are limited. Moreover, previous experiments 

made by the other authors were also using K=10. 

5.2 Evaluation measure 

The previous section is about different methods which are dedicated to the experiments used 

in the classification problem. This section discusses the metrics that we use to evaluate the 

performance of a classifier.  

Model evaluation is the important step in the process of building a classifier. Depending on 

the particular problem, different metrics are applied to evaluate the model performance.  

First, we will introduce a confusion matrix before mentioning the evaluation measures. The 

confusion matrix is a matrix which lists the correct classification against the predicted 

classification for each class. In this case, we have only two classes, namely Good class 

(Good) and Bad class (Bad). Table 5.1 is a confusion matrix for a 2-class classification 

problem. In this table, the number of the correct predictions for each class falls along the 

diagonal of the matrix. Otherwise, the other cells are the number of misclassification error.  
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Table 5.1 Confusion matrix for 2-class classification problem 

 Actual Good Actual Bad 

Predicted Good True Positive (TP) False Positive (FP) 

Predicted Bad False Negative (FN) True Negative (TN) 

 
Based on the confusion matrix, we have the following metrics: 

• Accuracy: reflects the overall correctness of the learning scheme. 

 %100×
+++

+=
TNFNFPTP

TNTP
Accuracy  (5.1) 

• Precision of Good class (PGood): reflects the correctness of the learning scheme on 

positive class. 

 
FPTP

TP
PGood +

=  (5.2) 

• Precision of Bad class (PBad): reflects the correctness of the learning scheme on negative 

class. 

 
FNTN

TN
PBad +

=  (5.3) 

• Recall of Good class (RGood): reflects the accuracy among the Good instances. 

 
FNTP

TP
R Good +

=  (5.4) 

• Recall of Bad class (RBad): reflects the accuracy among the Bad instances. 
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FPTN

TN
R Bad +

=  (5.5) 

• F-measure: is a combination between Precision and Recall measures. And we have two 

types of F-measure as follow: 

 
GoodGood

GoodGood
Good RP

RP
F

+
= 2

 (5.6) 

 
BadBad

BadBad
Bad RP

RP
F

+
= 2

 (5.7) 

For our system which is also a 2-class classification problem (good dialog and bad dialog), 

we choose two measures to evaluate our system performance are Accuracy and Recalls of 

“Good” and “Bad” for the following purposes: 

• Accuracy is used to monitor the correctness over the overall performance of the system 

but we cannot keep track how well our learning scheme work on each class. Therefore, 

we need one more measure to do this. 

• And Recalls of Good class and Bad class are the measures that we choose to track down 

the system performance in details. 

5.3 Data validation 

This section presents the data validation of two corpora used in our experiment: DARPA 

2000 Communicator Corpus, and DARPA 2001 Communicator Corpus.  

First, there are 662 dialogs in DARPA 2000. After preprocessing the corpus by removing 

dead dialogs, damaged dialogs and unusable dialogs which lack information needed to 

extract features, only 550 dialogs remained. Then, applying the inverse Likert-scale as 

mentioned in section 3.5 with the threshold is 12, we obtain 274 Bad dialogs and 276 Good 
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dialogs. We see that the distribution of Bad dialogs and Good dialogs on the corpus is almost 

equal to 50% and 50% respectively. Thus, we can use a baseline accuracy of 50.00% for the 

DARPA 2000 Corpus. 

The second corpus has 1139 dialogs from DARPA 2001. As for the DARPA 2000 corpus, 

after preprocessing these dialogs, number of remaining dialogs was 1022. For this corpus, we 

applied the Likert-scale instead of inverse one with the threshold is 17. Finally, we got 472 

Bad dialogs, and 550 Bad dialogs. So, the distribution of this corpus is 46.18% and 53.82% 

on the Bad dialogs and Good dialogs respectively. For this corpus, we take 53.82% as 

baseline accuracy with the assumption that predictor always guesses the majority class. 

Table 5.2 Statistic on DARPA 2000 and 2001 corpora 

Corpus Total dialogs 
Removed 
dialogs 

Remaining 
dialogs 

Bad dialogs Good dialogs

DARPA 2000 662 112 550 
274 

49.82% 

276 

50.18% 

DARPA 2001 1139 117 1022 
472 

46.18% 

550 

53.82% 

  

5.4 Experimentation 

HMM have many different types of configuration, depending on the number of states on each 

model, the number of transition on each state and the probability density of the observations. 

Combination of the conditions will provide various classifiers. In our study, we decided to 

use three different HMM topologies shown in Table 5.3:  
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Table 5.3 Summarization of three types of HMM used in our system 

Alias HMM Topology Description 

1-state 

 

Number of states: 1 

Forward transition  

2-state 

half 

ergodic 

 

Number of states: 2 

Forward transition 

Backward transition 

3-state 

half 

ergodic 

Number of states: 3 

Forward transition 

Backward transition 

 

Note that we will use the alias as the name of each appropriate HMM in this literature. Of 

course, these aliases are only valid in the scope of this thesis. 

In what follows, we describe the different experimentations we have done. The two first 

experiments addresses the different topologies of HMM and improving system performance 

using the Gaussian mixture in HMMs respectively. In the second experiment, we continue to 

use the same HMM topologies but number of Gaussians at each HMM state will be 

increased. 

Finally, we do experiments to evaluate how important each feature is in our dialog 

classification system. To do so, we will choose a HMM topology with the best performance 

and the most reliable. Each feature, in turn, will be taken off and we will use the remaining 

ones for dialog classification. 
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5.5 Results and Interpretation 

This section presents the results of our experiments that we carried out in this work. We also 

give interpretation and compare our results to the most recent ones tested on the same corpus 

as ours: the paper by Helen Wright (Helen Wright Hastie et al., 2002) and the master thesis 

(Truong Le Hoang, 2008). We have already reviewed both of the works in section 2.2.1. 

In this section, in order to facilitate our presentation of the result, we denote: 

• RGood  : Recall of Good (%). 

• RBad  : Recall of Bad (%). 

• PGood  : Precision of Good (%). 

• PBad  : Precision of Bad (%). 

• FGood  : F-measure of Good (%). 

• FBad  : F-measure of Bad (%).   

• Avg  : Average of ten folds. 

• Acc  : Accuracy of classification. 

5.5.1 Effect of using the different topologies in HMMs  

As discussed above, the first experiments are carried on HMMs having different number of 

states. HMMs with one, two and three states in combination with a normal distribution 

Gaussian for the probability density function at each state are used and below are the results 

of the experiments. 
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Table 5.4 Experiment result on the 1-state HMM 

DARPA 2000 CORPUS 

Fold 1 2 3 4 5 6 7 8 9 10 Avg 

RGood 44.00 65.62 63.33 66.66 51.51 60.00 85.71 48.14 75.00 77.77 63.77

RBad  86.66 78.26 88.00 85.71 81.81 84.00 67.64 75.00 74.19 92.85 81.41

PGood  73.33 80.76 86.36 81.81 80.95 81.81 62.06 65.00 69.23 91.30 77.26

PBad  65.00 62.06 66.66 72.72 52.94 63.63 88.46 60.00 79.31 81.25 69.20

FGood 55.00 72.41 73.07 73.46 62.96 69.23 71.99 55.31 72.00 83.99 69.87

FBad 74.28 69.23 75.86 78.68 64.28 72.41 76.66 66.67 76.66 86.67 74.81

Acc 67.27 70.90 74.54 76.36 63.63 70.90 74.54 61.81 74.54 85.45 72.00

DARPA 2001 CORPUS 

Fold 1 2 3 4 5 6 7 8 9 10 Avg 

RGood 80.85 76.78 82.00 98.36 76.36 71.92 89.79 85.71 84.37 81.13 82.73

RBad  52.72 34.78 57.69 56.09 57.44 64.44 41.50 45.65 42.10 73.46 52.59

PGood  59.37 58.90 65.07 76.92 67.74 71.92 58.66 65.75 71.05 76.78 67.22

PBad  76.31 55.17 76.92 95.83 67.50 64.44 81.48 72.41 61.53 78.26 72.98

FGood 68.46 66.66 72.56 86.33 71.79 71.92 70.96 74.41 77.14 78.90 74.17

FBad 62.36 42.66 65.93 70.76 62.08 64.44 55.00 55.99 50.00 75.78 61.13

Acc 65.68 57.84 69.90 81.37 67.64 68.62 64.70 67.64 68.62 77.45 68.92
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Table 5.5 Experiment result on the 2-state half ergodic HMM 

DARPA 2000 CORPUS 

Fold 1 2 3 4 5 6 7 8 9 10 Avg 

RGood 72.00 84.37 80.00 81.48 75.75 80.00 80.95 74.07 79.16 88.88 79.66

RBad  86.66 82.60 88.00 78.57 68.18 76.00 70.58 71.42 70.96 78.57 77.15

PGood  81.81 87.09 88.88 78.57 78.12 80.76 62.96 71.42 67.85 80.00 77.67

PBad  78.78 79.16 78.57 81.48 65.21 76.00 85.71 74.07 81.48 88.00 78.84

FGood 76.59 85.71 84.21 80.00 76.92 80.38 70.83 72.72 73.07 84.21 78.65

FBad 82.53 80.85 83.01 80.00 66.66 76.00 77.41 72.72 75.86 83.01 77.99

Acc 80.00 83.63 83.63 80.00 72.72 78.18 74.54 72.72 74.54 83.63 78.36

DARPA 2001 CORPUS 

Fold 1 2 3 4 5 6 7 8 9 10 Avg 

RGood 80.85 75.00 78.00 93.44 72.72 71.92 91.83 82.14 82.81 81.13 80.98

RBad  54.54 34.78 61.53 56.09 63.82 77.77 47.16 58.69 50.00 71.42 57.58

PGood  60.31 58.33 66.10 76.00 70.17 80.39 61.64 70.76 73.61 75.43 69.27

PBad  76.92 53.33 74.41 85.18 66.66 68.62 86.20 72.97 63.33 77.77 72.54

FGood 69.09 65.62 71.56 83.82 71.42 75.92 73.77 76.03 77.94 78.18 74.67

FBad 63.82 42.10 67.36 67.64 65.21 72.91 60.97 65.06 55.88 74.46 64.20

Acc 66.66 56.86 69.60 78.43 68.62 74.50 68.62 71.56 70.58 76.47 70.19
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Table 5.6 Experiment result on the 3-state half ergodic HMM 

DARPA 2000 CORPUS 

Fold 1 2 3 4 5 6 7 8 9 10 Avg 

RGood 56.00 75.00 73.33 81.48 60.60 66.66 76.19 81.48 79.16 74.07 72.40

RBad  83.33 78.26 72.00 67.85 72.72 64.00 70.58 71.42 64.51 64.28 70.89

PGood  73.68 82.75 75.86 70.96 76.92 68.96 61.53 73.33 63.33 66.66 71.40

PBad  69.44 69.23 69.23 79.16 55.17 61.53 82.75 80.00 80.00 72.00 71.85

FGood 63.63 78.68 74.57 75.86 67.79 67.79 68.08 77.19 70.37 70.17 71.90

FBad 75.75 73.47 70.59 73.07 62.74 62.74 76.18 75.47 71.42 67.92 71.37

Acc 70.90 76.36 72.72 74.54 65.45 65.45 72.72 76.36 70.90 69.09 71.45

DARPA 2001 CORPUS 

Fold 1 2 3 4 5 6 7 8 9 10 Avg 

RGood 78.72 69.64 84.00 85.24 69.09 64.91 79.59 62.50 62.50 79.24 73.54

RBad  52.72 45.65 57.69 63.41 71.73 73.33 54.71 56.52 57.89 67.34 60.10

PGood  58.73 60.93 65.62 77.61 74.50 75.51 61.90 63.63 71.42 72.41 68.23

PBad  74.35 55.26 78.94 74.28 66.00 62.26 74.35 55.31 47.82 75.00 66.36

FGood 67.27 64.99 73.68 81.25 71.69 69.81 69.64 63.06 66.66 75.67 70.79

FBad 61.69 50.00 66.66 68.42 68.75 67.34 63.04 55.91 52.38 70.96 63.08

Acc 64.70 58.82 70.80 76.47 70.29 68.62 66.66 59.80 60.78 73.52 67.02

Based on the results obtained, we see that the best HMM topology for both of two corpora is 

the 2-state HMM. The results are 78.36% and 70.19% on DARPA 2000 and DARPA 2001 

respectively. We make some assumptions in order to explain the best results achieved on the 

2-state HMM topology:  

• Our problem is 2-category classification (GOOD dialog and BAD dialog). So, we think 

that a 2-state HMM is the most suitable to model our problem because there are two main 
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types of emotion: negative (or positive) and neutral in context of spoken dialogs 

(Vidrascu et al., 2005) then each state of 2-state HMM could presents a type of emotion. 

In other words, of these two states, there might be one state which contains salient 

emotion whereas the other one might be non salient emotion. 

• For 1-state HMM, this model is too simple that we can model the emotions within a 

dialogue in case of the Gaussian normal distribution used to model the emission 

probability density function. But if we use the Gaussian Mixture Models instead of 

normal distribution, we will see that the 1-state HMM works very well (Section 5.5.2).  

• For 3-state HMM, there could be too many states in order to model a 2-category 

classification. This might cause an ineffective classification as we saw the result (Table 

5-6).  

We also look at the deviation in accuracy of these experiments above. Generally, Table 5.6 

gives you the average deviation in accuracy of the experiments on DARPA 2000 and 

DARPA 2001 using three distinct HMM topologies (1-state HMM, 2-state HMM and 3-state 

HMM).    

Table 5.7 Standard deviation in accuracy 

 1-state HMM 2-state HMM 3-state HMM 

DARPA 2000 5.09% 3.28% 3.08% 

DARPA 2001 4.37% 4.12% 4.89% 

 

In detail, we plotted a graph (Figure 5.1) which shows all the results in accuracy of six 

experiments. In such a graph, from left to right, three first columns are DARPA 2000 (1-state 

HMM, 2-state HMM and 3-state HMM respectively), and three last columns are DARPA 

2001 (1-state HMM, 2-state HMM and 3-state HMM respectively).   
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Figure 5.1 Deviation Graph on DARPA 2000 and DARPA 2001. 

We can see that the deviations in all the experiments aren’t small and close. These deviations 

show that our system is over fitting because the system makes a good classification on 

training samples but it cannot do classification well on novel samples. In other words, it 

means that in some cases, our system cannot learn well enough and then the classification 

result is worse than average. It seems that this problem is caused by the limitation of the 

training corpora. This is a limitation of our work that we need to improve in the future work.  

5.5.2 Effect of using the Gaussian mixture in HMMs 

The experimentation comes from our desire of improving the system performance. And using 

mixtures of Gaussian (Reynolds et al., 1995; Reynolds, 1995; Reynolds et al., 2000) to model 

the emission probability density functions in HMMs is the method that we choose in order to 

do so. The data whose probability density functions is unimodal and symmetric could be 

modeled by a normal distribution Gaussian. However, in many real problems, there are many 

kinds of data that cannot adequately be modeled using only one Gaussian. Instead, it is better 

to use combination of Gaussian distributions. A mixture of Gaussians is simply a weighted 

sum of K Gaussian densities defined by 
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Figure 5.2 Example of 3-Gaussian mixture consisting of three single Gaussians 
weighted by w1, w2 and w3 respectively. 

from Resch (2008) 

In this work, we increase the number of Gaussians of each HMM state from 1 to 2, 4, 8, 16 

and 32 in turn. These experiments showed better performances on both corpora as follow: 

• For DARPA 2000, we obtained a classification accuracy of 79.27% (~1% better than 
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78.36%) for 3-state HMM with 32 Gaussian on each state.  

• For DARPA 2001, we improved classification performance up to 71.37% (more 1% 

better than 70.19%) for 1-state HMM in combination with 4 mixtures for each state. 

In comparison with previous work of Hoang (Truong Le Hoang, 2008), we see that our 

system is slightly better on both DARPA 2000 and DARPA 2001. In detail, on DARPA 

2000, the best result from Hoang’s work is 78.96% with F-measure of BAD of 0.75, whereas 

our best result reaches to 79.27% and F-measure of BAD of 0.77. Similarly, on DARPA 

2001, the best result that we obtained is 71.37% with 0.64 of F-measure of BAD against 

69.91% (0.61 of F-measure of BAD) from Hoang’s work.  

The tables 5.8, 5.9 and 5.10 will give the results in more details. 
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Table 5.8 Result of using Gaussian mixture on 1-state HMM 

Corpus 
No of 

Gaussians
1 2 4 8 16 32 

D
A

R
P

A
 2000 

RGood  63.77 78.33 93.73 92.79 96.33 94.99 

RBad  81.41 73.90 53.39 57.11 48.69 52.39 

PGood  77.26 74.93 66.79 68.33 65.26 66.76 

PBad  69.20 77.48 90.13 89.04 93.56 91.61 

FGood 69.87 76.59 78.00 78.70 77.81 78.41 

FBad 74.81 75.65 67.06 69.59 64.05 66.66 

Accuracy
72.00 

±5.09 

76.00 

±4.00 

73.45 

±5.45 

74.90 

±4.00 

72.36 

±4.43 

73.63 

±3.45 

D
A

R
P

A
 2001 

RGood  82.73 84.62 82.73 82.37 88.39 95.58 

RBad  52.59 52.96 58.12 54.87 45.19 29.55 

PGood  67.22 67.78 69.79 68.20 65.60 61.27 

PBad  72.98 74.96 74.62 73.17 77.04 87.23 

FGood 74.17 75.27 75.71 74.62 75.31 74.67 

FBad 61.13 62.07 65.34 62.71 56.97 44.15 

Accuracy
68.92 

±4.37 

70.00 

±4.78 

71.37 

±5.53 

69.60 

±4.33 

68.43 

±4.19 

65.00 

±4.55 

 



68 

 

Table 5.9 Result of using Gaussian mixture on  
2-state half ergodic HMM 

Corpus 
No of 

Gaussians
1 2 4 8 16 32 

D
A

R
P

A
 2000 

RGood  79.66 84.13 95.42 95.56 86.63 96.59 

RBad  77.15 67.73 46.01 49.46 62.42 45.40 

PGood  77.67 72.13 63.94 65.50 69.69 63.96 

PBad  78.84 81.11 91.44 91.95 82.84 93.97 

FGood 78.65 77.67 76.57 77.72 77.24 76.96 

FBad 77.99 73.82 61.22 64.32 71.19 61.22 

Accuracy
78.36 

±3.82 

75.81 

±2.62 
70.36 

±5.49 

72.36 

±5.82 

74.54 

±4.00 

70.90 

±5.82 

D
A

R
P

A
 2001 

RGood  80.98 81.43 82.25 77.10 82.65 91.60 

RBad  57.58 56.06 54.13 53.46 49.65 38.17 

PGood  69.27 68.50 67.75 65.99 65.80 63.36 

PBad  72.54 73.03 72.44 66.77 71.81 80.62 

FGood 74.67 74.41 74.30 71.11 73.27 74.91 

FBad 64.20 63.43 61.96 59.38 58.71 51.81 

Accuracy
70.19 

±4.12 

69.80 

±4.86 

69.21 

±5.96 

66.26 

±4.86 

67.45 

±3.76 

66.76 

±5.59 
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Table 5.10 Result of using Gaussian mixture  
on 3-state half ergodic HMM 

Corpus 
No of 

Gaussians
1 2 4 8 16 32 

D
A

R
P

A
 2000 

RGood  72.40 65.64 75.21 83.59 85.05 87.40 

RBad  70.89 73.67 65.31 62.98 67.49 71.52 

PGood  71.40 71.56 68.61 69.32 72.66 75.43 

PBad  71.85 67.66 72.44 79.09 81.70 84.55 

FGood 71.90 68.47 71.76 75.79 78.37 80.98 

FBad 71.37 70.54 68.69 70.12 73.92 77.49 

Accuracy
71.45 

±2.86 

69.45 

±4.65 

69.81 

±3.40 

73.09 

±4.07 

76.00 

±4.14 

79.27 

±4.73 

D
A

R
P

A
 2001 

RGood  73.54 71.97 73.21 65.55 68.52 80.34 

RBad  60.10 64.34 60.89 67.50 67.39 55.96 

PGood  68.23 70.38 68.92 70.06 71.33 68.17 

PBad  66.36 66.23 66.34 63.11 65.03 71.86 

FGood 70.79 71.17 71.00 67.73 69.90 73.76 

FBad 63.08 65.27 63.50 65.23 66.19 62.92 

Accuracy
67.02 

±4.89 

68.50 

±4.43 

67.51 

±3.68 

66.53 

±4.44 

68.10 

±4.58 

69.18 

±5.13 

 

 
Before going to the next section, we summarize the best results of ours in comparison with 

those of state of art in Table 5.11. Compared with Hoang’s results, our system totally 

performs better on both corpora. But when compared to Hastie’s results, ours just overcome 

his on identification of BAD dialogs due to F-measure on Bad. Since she didn’t mention the 

accuracy of his experiment, we cannot compare our results to hers. The comparison shows 

that our system produces a good performance on identification of problematic dialogues. 
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Table 5.11 Results in comparison with those of state of art  

CORPUS 
Evaluation 

measure (%) 
Baseline 

Our best 
results 

Hoang’s results 
(Hoang, 2008) 

Hastie’s results 
(Hastie, 2002) 

D
A

R
P

A
 

20
00

 Recall on Bad - 84.55 - - 

F-measure on Bad - 77.12 75.50 - 

Accuracy 50.18 79.27 78.60 - 

D
A

R
P

A
 2

00
1 

Recall on Bad - 58.12 - 66.70 

Recall on Good - 82.73 - 88.50 

Precision of Bad - 74.62 - 58.50 

Precision of Good - 69.79 - 81.30 

F-measure on Bad - 64.87 61.00 62.33 

F-measure on Good - 75.71 - 84.74 

Accuracy 53.82 71.37 69.52 - 

 

5.5.3 Selection of feature 

As mentioned above, this experiment is run so that we can assess the role of each feature in 

our system performance. To see how each feature affects classification performance, we will 

remove each feature in turn and do classification with the remaining ones. Since the feature 

set has 10 distinct features, we will have totally 10 experiments carried out. The HMM 

topology we choose to run the experiment is 2-state HMM with one Gaussian for each state. 

We use this topology because it obtained the best performance on both DARPA 2000 and 

DARPA 2001 as well. The results of the experiments are shown in the Table 5.12 and can be 

interpreted as follow. 

• The last row is the result tested by the 2-state HMM (one mixture on each state) and 

using 10-feature set. We put it here with a role as base line so that we can easily compare 

it to the results that will be tested by the same model but using 9-feature set (one feature 

will be removed). 
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• The other rows are results which are achieved by using 9-feature set. (E.g. the second 

row is an experiment without the feature “Utterance Position”).    

Table 5.12 Result of evaluating each feature 

Corpus DARPA 2000 DARPA 2001 

Metric 
Recall 

of Good 
Recall 
of Bad 

Accuracy 
(Deviation) 

Recall 
of Good

Recall 
of Bad 

Accuracy 
(Deviation) 

Utterance 
Position 

75.64% 76.63% 76.00% (-2.36) 68.00% 62.97% 63.98% (-6.21)

Utterance 
Duration 

75.85% 79.62% 77.45% (-0.91) 76.56% 60.94% 67.05% (-3.14)

Number of 
Phonemes 

75.05% 77.36% 76.18% (-2.18) 77.38% 62.43% 68.52% (-1.67)

Inverse 
Speech Rate 

77.05% 73.73% 75.09% (-3.27) 73.96% 62.73% 67.64% (-2.55)

Num Negative 
Words 

76.46% 72.04% 74.00% (-4.36) 76.91% 59.18% 65.49% (-4.70)

Num Positive 
Words 

68.87% 78.31% 72.36% (-6.00) 65.26% 71.25% 66.76% (-3.43)

Response 
Waiting Time 

79.66% 75.55% 77.45% (-0.91) 76.42% 59.70% 66.07% (-4.12)

Repetition 
Rate 

77.80% 77.42% 77.39% (-0.97) 76.41% 61.36% 67.45% (-2.74)

Silence      
Time 

72.08% 79.40% 73.63% (-4.73) 70.40% 66.50% 68.43% (-1.76)

ASR  
 Accuracy 

76.69% 76.99% 76.72% (-1.64) 76.27% 61.25% 67.25% (-2.94)

All features 77.67% 78.84% 78.36% 69.27% 72.54% 70.19% 

 

From the result table (Table 5.12), we realize the important points as follows:  

• For both corpora and based on the summation shown in Figure 5.3, we could see that all 

features (including Utterance Position, Num Negative Words and Num Positive Words) 

are important ones for both corpora. 
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• Whereas, if we take a look separately on distinct corpus, we will see that the role of each 

feature in each corpus is different. On DARPA 2000, our system depends much on 

Number of Negative Words, Number of Positive Words and Silence Time. On DARPA 

2001, we see that Utterance Position, Number of Negative Words and Response Waiting 

Time are the important features for the classification performance. The fact that each 

feature plays different depending on different corpora because the DARPA 2000 corpus 

was collected in the experimental context meanwhile the DARPA 2001 corpus was build 

in the real context. We have mentioned the context of both corpora in section 3.4.       

 

Figure 5.3 Feature role chart. 



CHAPTER 6  

 

 

CONCLUSION 

6.1 Conclusion 

In this work, we studied the spoken dialogue classification in the real context of telephonic 

call center. There are two types of dialogue that we try to classify: problematic dialogue 

(BAD dialog) and non-problematic dialogue (GOOD dialog). Labeling a dialogue is based on 

the user’s satisfaction which was provided by the caller after a dialogue. Our work was 

motivated by the demand of building an automatic system for detecting problematic dialog in 

the project, namely “Managing emotions in Human-Computer Dialogs” of ÉTS and CRIM in 

collaboration with Bell Canada Corp. 

Before, this problem was tackled by our colleague, Truong Le Hoang, in his master thesis. In 

his solution, he used a learning machine scheme named Decision Tree and used features at 

the dialog level as input to his system. In this work, we proposed a new approach to such a 

problem. We proposed to use features at the utterance level mined from each utterance in a 

dialogue as input of our system. We used another machine learning paradigm named Hidden 

Markov Model to model the user state of satisfaction throughout the dialog in order to 

identify problematic dialogues.  

Our final results are a set of features and a topology of Hidden Markov Model that could be 

used to classify dialogues efficiently. The feature set includes ten distinct features and most 

of them can be extracted automatically (except one feature named “ASR Accuracy Rate”) 

and useful for a real application. Our experiments show that a HMM topology with two states 

is suitable for the dialogue classification for a 2-class problem. Besides, combination of 

GMM for modeling the observation probability density function for each HMM state is a 

good idea to improve the classification performance. 

Through this work, we also found out that the feature set plays an important role in the 
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pattern classification system. We also noticed that the performance of pattern classification 

also depends on dataset. This makes difficult to compare the research’s results because they 

do not often use the same dataset.  

6.2 Future work 

In the future, we will address the following points: 

• Continuing to improve the system’s performance by adding new features. Most of the 

features in this work come from the component of dialog management. Thus, we still 

have two more components in the Human-Machine Dialog System, namely 

Acoustic/ASR and NLU component where we’re able to discover new interesting 

features for our system such as the grammar used by the recognizer, a measure of the 

shift in context between utterances (Walker et al., 2000). We also think about using the 

Mel-Frequency Cepstral Coefficients (MFCCs) extracted from the acoustic signal of the 

utterance as new features to improve the system. 

• Proposing an approach in order to solve the problem of prediction of problematic 

dialogues in the situation of Human-Machine Dialog System. Prematurely predicting 

problematic dialogues prior to the occurrence is a strategy that the Human-Machine 

Dialog System is interested in because this could be very useful for real applications. 

Since our current system is quick in responding to each utterance in the dialog, we can 

develop an automatic system of problematic dialogues based upon this idea.    

 



ANNEX I  

 

FORWARD ALGORITHM 

 

Scoring and Evaluation (Huang et al., 2002; Rabiner, 1989) 

In order to calculate the probability ( )ΦXP  of the observation 

sequence ( ),,2,1 ,...,, TXXXX = , given a model Ф, we must sum up the probabilities of all 

possible state sequences of length T that generate the observation sequence X 

 ( ) ( ) ( ) ΦΦ=Φ
S all

,SXPSPXP   (A I-1) 

For a given state sequence ( )TsssS ,...,, 21= , where 1s is the initial state, the probability of the 

state sequence can be computed by using the Markov assumption 

 ( ) ( ) ( )
TT sssss

T

tt aassPsPSP
1211

...,
2

11 −
=ΦΦ=Φ ∏ − π  (A I-2) 

We also have the joint output probability can be rewritten by applying the output-

independent assumption 

 ( ) ( ) ( ) ( ) ( ) ( )Tssstt

T
TT XbXbXbsXPSXPSXP

T
...,,, 21

1
11 21

=Φ=Φ=Φ ∏  (A I-3) 

Substituting Eq. (A I-2) and (A I-3) to the right-hand side of the Eq. (A I-1), we have 

 ( ) ( ) ( ) ( )Tssssssss XbaXbaXbXP
TTT 122111

...
S all

21 −=Φ π  (A I-4) 

Assume that we have a model with N states and T observations. According to the direct 

evaluation, there are TN possible state sequences. In addition, each state sequence requires 

T2 calculations. So we finally reach approximately TTN2 operations required to complete the 
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evaluation. Clearly, this is an unfeasible calculation, even for a small value of N and T; e.g., 

for 5=N (states), 100=T (observations), there are on the order of 

72100 1051002 ≈⋅⋅ computations. However, we have two efficient methods for computing the 

probability ( )ΦXP  that are called Forward algorithm and Backward algorithm respectively. 

 

The Forward algorithm (Huang et al., 2002) (Rabiner, 1989) 

 
Let’s define forward probability 

 
( ) ( ) ( )Φ==Φ== isXXXPisXPi ttt

t
t ,,...,,, 211α   (A I-5) 

as the probability of observation 1X to tX with the state sequence terminating in state ist =  

given the model Φ . So we can solve for ( )itα  inductively, as follows:  

 
THE FORWARD ALGORITHM 

Step 1: Initialization 

NiXbi ii ≤≤= 1)()( 11 πα  

Step 2: Induction 

NjTtXbaij tj

N

i
ijtt ≤≤≤≤






= 
=

− 1;2)()()(
1

1αα   (A I-6) 

Step 3: Termination 


=

=Φ
N

i
T iXP

1

)()|( α  

 

With T observations and N states, this algorithm requires approximately TN 2 operations. It’s 

a considerable difference compared to TTN2 operations as required by the direct calculation. 

The key of the Forward algorithm is the induction step which is illustrated in Figure-A I-1. 

And the next figure (Figure-A I-2) shows the forward probability trellis diagram. 
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Figure-A I-1 Trellis diagram illustration for calculation of the forward  
probability ( )itα  at time t from the forward probability ( ) Njjt ,...,2,1,1 =−α .  
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Figure-A I-2 Implementation of the computation of ( )itα  in term of  

a trellis of observation t and state s. 
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In order to understand better the algorithm, let’s take a look at the following example that 

describes how to implement such an algorithm step by step. Consider the three state discrete 

observation density HMM which emits the colors red, green and blue. The HMM is 

described by the following parameters: 

• The initial state probability vector  
















=

0

0

1

π   

• The transition probability matrix 
















=

0.10.00.0

7.03.00.0

0.04.06.0

A  

• The output probability matrix 
















=
















=

50.025.005.0

30.010.015.0

20.065.080.0

blueblueblue

greengreengreen

redredred

B  

• And the topology of this HMM is described by the right below figure 

 

Assume that the symbol sequence is observed as follow “X=RED, RED, BLUE”. Using the 

Forward algorithm, determine the total probability, ( )Φ|XP , of observing this symbol 

sequence where ),,( πBA=Φ .  

The solution is shown as the following diagram. 
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( ) ( )

0

2.00

3 331

=
×=

= REDbπα

  

( ) 
=

=++==Φ
3

1
4 013832.00728.0054.001152.0)(

j

jXP α

( ) ( )

8.0

8.01

1 111

=
×=

= REDbπα

( ) ( )

0

65.00

2 221

=
×=

= REDbπα ( ) ( ) ( )[ ] ( )
[ ]

208.0

65.03.00.04.08.0

212 22211212

=
××+×=

+= REDbaa ααα

( ) ( ) ( )[ ] ( )
[ ]

0.0

2.00.10.07.00.0

323 33312312

=
××+×=

+= REDbaa ααα

( ) ( )[ ] ( )
[ ]

384.0

8.06.08.0

11 11112

=
××=

= REDbaαα

( ) ( ) ( )[ ] ( )
[ ]

054.0

25.03.0208.04.0384.0

212 22221223

=
××+×=

+= BLUEbaa ααα

( ) ( ) ( )[ ] ( )
[ ]

0728.0

5.00.10.07.0208.0

323 33322323

=
××+×=

+= BLUEbaa ααα

( ) ( )[ ] ( )
[ ]

01152.0

05.06.0384.0

11 11123

=
××=

= BLUEbaαα

 
Figure-A I-3 Computing probability ( )Φ|XP  using the Forward algorithm. 

The next annex is the other algorithm to calculate the probability ( )ΦXP in reverse direction 

called backward algorithm. 



ANNEX II 

  

BACKWARD ALGORITHM 

 

Backward algorithm (Huang et al., 2002; Rabiner, 1989) 

Let’s define backward probability 

 
( ) ( ) ( )Φ==Φ== +++ isXXXPisXPi tTttt

T
tt ,,...,,, 211β  (A II-1) 

as the probability of observation 1+tX to TX with the state sequence terminating in state ist =  

given HMM Φ . So we can solve for ( )itβ  inductively, as follows:  

 

 
THE BACKWARD ALGORITHM 

Step 1: Initialization 

Nii ≤≤= 11)(1β  

Step 2: Induction 

( ) ( )

Nj

TTtjXbaj
N

j
ttjijt

≤≤

−−==
=

++

1

1,...,2,1)(
1

11 ββ
  (A II-2)

Step 3: Termination 

( )
=

=Φ
N

i
ii iXbXP

1
11 )()|( βπ  

 

Similarity to the forward algorithm, the backward requires only TN 2 operations and the 

induction step is the key of the algorithm. Each step in the inductive equation (A II-2) is 

illustrated by Figure-A II-1. 
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•
•
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2s

3s
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1+tt

( )it 1+β( )jtβ

1ja

2ja

3ja

jNa

 

Figure-A II-1: Trellis diagram illustration for calculation of the backward  
probability ( )itβ  at time t from the back probability ( ) Njjt ,...,2,1,1 =+β .  

One more time, we will redo the same example which has been done for the Forward 

algorithm in the previous annex to see more how the backward algorithm works (Seeing the 

Figure-A II-2 for the solution using the Backward algorithm). One sure thing is that the 

Backward algorithm will get the same result as the Forward algorithm.  
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( ) ( ) ( ) ( ) ( )

152875.0

5.02.07.0425.065.03.0

322 232322221

=
××+××=

+= βββ REDbaREDba

( ) ( ) ( )

1.0

5.02.00.1

33 23331

=
××=

= ββ REDba

( ) ( ) ( ) ( ) ( )

13.0

125.04.0105.06.0

211 321231112

=
××+××=

+= βββ BLUEbaBLUEba

( ) ( ) ( ) ( ) ( )

425.0

15.07.0125.03.0

322 332332222

=
××+××=

+= βββ BLUEbaBLUEba

( ) ( ) ( )

5.0

15.00.1

33 33332

=
××=

= ββ BLUEba
( ) 133 =β

( ) 123 =β

( ) 113 =β
( ) ( ) ( ) ( ) ( )

1729.0

425.065.04.013.08.06.0

211 221221111

=
××+××=

+= βββ REDbaREDba

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) 13832.0

1.02.0012875.065.00.01729.08.01

321 133122111

3

1
11

=Φ
××+××+××=

++=

=Φ 
=

XP

REDbREDbREDb

iXbXP
i

ii

βπβπβπ

βπ

 

Figure-A II-2 Computing probability ( )Φ|XP  using the Backward algorithm. 



ANNEX III 

 

VITERBI ALGORITHM 

 
Viterbi algorithm (Huang et al., 2002; Rabiner, 1989) 

The scoring and evaluation section gives us the solution of computing the probability 

( )ΦXP  given the model Φ  and the observation sequence ( )nXXXX ,...,, 21= by summing up 

the probabilities of all the possible corresponding state sequences that can generate this 

observation sequence. But we cannot determine which state sequence produces the best 

probability. In this annex, we will introduce an algorithm called Viterbi to find the most 

likely state sequence that generates the observation sequence. In other words, we will look 

for the state sequence ( )TsssS ,...,, 21=  that maximizes the probability ( )ΦXSP , . 

The main idea of the Viterbi algorithm is similar to the one of the Forward and Backward 

algorithms (Figure-A III-1). Instead of summing up probabilities that come from different 

paths to the same state is  at time t , the Viterbi algorithm takes and remembers the best path 

only.  

•
•
•

( )11−tV

1 −ttime ttime

ja1

ja2

ja3

Nja

( )21−tV

( )31−tV

( )NVt 1−

( ) ( )[ ] ( )tjijt
Ni

t XbaiVjV 1
1

max −
≤≤

=

 

Figure-A III-1 Trellis diagram illustration for calculation of ( )iVt   

at time t from ( ) NjjVt ,...,2,1,1 =− .  
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Before going into details about the algorithm, let’s define the best-path probability 

 
( ) ( )Φ== − isSXPiV t

tt
t ,, 1

11   (A III-1) 

as the probability of the most likely state sequence at time t, which generate the observation 

( )t
t XXXX ,...,, 211 = (until time t) and ends in state i. An inductive procedure for the Viterbi 

algorithm can be described as follows: 

 
THE VITERBI ALGORITHM 

Step 1: Initialization 

NiXbiV ii ≤≤= 1)()( 11 π  

0)(1 =iB  

Step 2: Induction 

1
1

( ) [ ( ) ] ( ) 2 ; 1t t ij j t
i N

V j Max V i a b X t T j N−≤ ≤
= ≤ ≤ ≤ ≤  (A III-2)

1
1

( ) max[ ( ) ] 2 ; 1t t ij
i N

B j Arg V i a t T j N−
≤ ≤

= ≤ ≤ ≤ ≤  (A III-3)

Step 3: Termination 

 [ ])(Max y probabilitbest  The
1

* iVP T
Ni≤≤

=  

 [ ])(max
1

* iVArgs T
Ni

T
≤≤

=  

Step 4: Backtracking 

 1,...,2,1)( *
11

* −−== ++ TTtsBs ttt  

 sequencebest   theis ),...,,( **
2

*
1

*
TsssS =  

 

In this section, we also present an example of carrying this algorithm out step by step. In this 

example, we reuse the same HMM and parameter set as the previous annexes. Of course, the 
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question at this time is to determine the most likely sequence that could have generated the 

symbol sequence mentioned (“O =RED, RED, BLUE”) and the corresponding probability 

by using the Viterbi algorithm. Here is the question’s solution. 

Step 1: Initialization (at t=1) 

( ) ( ) 8.08.00.11 111 =×== REDbV π  

( ) ( ) 0.065.00.02 221 =×== REDbV π  

( ) ( ) 0.02.00.03 331 =×== REDbV π  

( ) ( ) ( ) 0321 111 === BBB  

Step 2: Induction (at time 3,2=t ) 

Computations at time t = 2 and t = 3 are shown in the Table-A III-1. 

Table-A III-1 Inductive steps at time t = 2 and t = 3 

 t =2 t =3 

State 
q1 

 

 

 
 

( )

( ) ( )[ ] ( )

( ) ( )[ ] 1maxarg1

01152.05.02304.0

1

02304 6.0384.01

12
11

3

112
11

3

112

==

=×=

=

=×=

≤≤

≤≤

i
i

i
i

aiVB

BLUEbaiVMaxV

aV

 

State 
q2 

( )
( )

( ) ( )[ ] ( )
( )[ ] ( )

( ) [ ] 1)(maxarg2

208.065.032.0

1

2

0.03.00.02

32.04.08.01

21
21

2

2121

221
21

2

221

121

==

=×=
=

=

=×=
=×=

≤≤

≤≤

i
i

i
i

aiVB

REDbaV

REDbaiVMaxV

aV

aV

 
[ ]

[ ] 1)(maxarg)2(

0384.0

65.01536.0

)()()2(

0624.03.0208.0)2(

1536.04.0384.0)1(

22
21

3

222
21

3

222

122

==

=
×=

=

=×=
=×=

≤≤

≤≤

i
i

i
i

aiVB

BLUEbaiVMaxV

aV

aV

 

 t =2 t =3 
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State 
q3 

[ ]

[ ] 2)(maxarg)3(

0.0

5.00.0

)()()3(

0.00.10.0)3(

0.07.00.0)2(

31
32

2

331
32

2

331

231

==

=
×=

=

=×=
=×=

≤≤

≤≤

i
i

i
i

aiVB

REDbaiVMaxV

aV

aV

 
[ ]

[ ] 2)(maxarg)3(

0728.0

5.01456.0

)()()3(

0.00.10.0)3(

1456.07.0208.0)2(

32
32

3

332
32

3

332

232

==

=
×=

=

=×=
=×=

≤≤

≤≤

i
i

i
i

aiVB

BLUEbaiVMaxV

aV

aV

 

 

Step 3: Termination 

[ ]
[ ]

0728.0

0728.0 ,0384.0 ,01152.0

)(Max y probabilitbest  The

*

3
3i1

*

=
=

=
≤≤

P

Max

iVP

 

[ ] [ ] 3)3(),2(),1(max)(max 3333
31

*
3 ===

≤≤
VVVArgiVArgs

i

 

Step 4: Backtracking 

2)3()( 3
*
33

*
2 === BsBs  

1)2()( 2
*
22

*
1 === BsBs  

( ) sequence statebest   theis 3,2,1),,,( *
4

*
3

*
2

*
1

* == ssssS  

The Figure-A III-2 summarizes up main steps in the Viterbi algorithm for this example. 
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Figure-A III-2 Trellis of Viterbi solution. 



ANNEX IV 

 

FORWARD-BACKWARD ALGORITHM 

 

Forward-Backward algorithm (Huang et al., 2002; Rabiner, 1989) 

The first two HMM problems have a common hypothesis: given a model },,{ πBA=Φ  in 

which all parameter sets are determined. Now, we must face the most difficult problem as 

well as the most important one in HMM. That is the reverse problem which is stated as:  

Given a model },,{ πBA=Φ  in which all parameter sets are not determined yet and a set of 

observation sequences (training data), how to determine the HMM parameter set to maximize 

the joint likelihood probability ( )∏ Φ
X

XP . 

In fact, we’re not able to have a direct method to determine the HMM parameter set which 

maximizes the probability of the observation sequence. We can, however, optimize the 

model },,{ πBA=Φ using an iterative procedure called Baum-Welch algorithm (or Forward-

Backward algorithm). Firstly, we define ( )jit ,ζ as the probability of being in state is at the 

time t and state js at the time 1+t , given the model },,{ πBA=Φ  and the observation 

sequence ( )TXXXX ,...,, 21= .    

 ( ) ( )Φ=== + ,,, 1 XjsisPji tttξ  (A IV-1)
 

Figure-A IV-1 illustrates the sequence of events reaching to the conditions required by 

equation (A IV-1). 
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Figure-A IV-1 Illustration of the operations required for computation of ( )jit ,ξ  which is 

the probability of taking the transition from state is  to state js  at time 1+t . 

 
Based on the definition of forward and backward probability, we might rewrite ( )jit ,ξ  in the 

form as follow 

 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

= =
++

++++ =
Φ

=
N

i

N

j
ttjijt

ttjijtttjijt
t

jXbai

jXbai

XP

jXbai
ji

1 1
11

1111,
βα

βαβα
ξ   (A IV-2) 

 
( )

−

= =

=
1

1 1

 fromn  transitioofnumber  Expected,
T

t
i

N

j
t sjiξ   (A IV-3) 

 
( ) ji

T

t
t ssji   to fromn  transitioofnumber  Expected ,

1

1

=
−

=

ξ   (A IV-4) 

 

( )
=

===
N

j
ii jits

1
1 ,)1( at time  statein  instances  timeofnumber  Expectedˆ ξπ   (A IV-5)

 



90 

 

 

( )

( )


−

= =

−

===
1

1 1

1

1

,

,

 fromn  transitioofnumber  Expected

  to fromn  transitioofnumber  Expected
ˆ

T

t

N

j
t

T

t
t

i

ji
ij

ji

ji

s

ss
a

ξ

ξ
  (A IV-6) 

 

( )

( )
( )

( )

 
−

=

−

==

=

1

1

1

:

,

,
ˆ

 statein   timesofnumber  Expected

 symbol observing and  statein   timeofnumber  Expectedˆ

T

t

N

i
t

T

oxt

N

i
t

j

j

kj
j

ij

ij

kb

s

os
kb

kt

ξ

ξ   (A IV-7) 

Below is the forward-backward algorithm: 
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THE FORWARD-BACKWARD ALGORITHM 

Step 1: Initialization 

Choose an initial estimate },,{ πBA=Φ  

Step 2: Likelihood computation 

Compute the likelihoods ( )tiα and ( )tiβ and the posterior probabilities ( )jit ,ξ as defined 

above with Nji ,...,2,1, = and Tt ,...,2,1=  

Step 3: Parameter update 

Using the likelihood and posterior probabilities obtained in the step 2, compute 

}ˆ,ˆ,ˆ{ˆ πBA=Φ according to the re-estimation equations: 

 ( )
=

=
N

j
i ji

1
1 ,ˆ ξπ   

( )

( )


−

= =

−

==
1

1 1

1

1

,

,
ˆ

T

t

N

j
t

T

t
t

ij

ji

ji
a

ξ

ξ
  ( )

( )

( )

 
−

=

−

==
1

1

1

:

,

,
ˆ

T

t

N

i
t

T

oxt

N

i
t

j

ij

ij

kb kt

ξ

ξ
 

Step 4: Iteration 

Set Φ=Φ ˆ , repeat from step 2 until convergence  
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