ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC

MÉMOIRE PRÉSENTÉ À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

COMME EXIGENCE PARTIELLE À L'OBTENTION DE LA MAÎTRISE EN GÉNIE DE LA PRODUCTION AUTOMATISÉE M.Ing.

> PAR GHIOCEL POPA

ÉTUDES DES INTERACTIONS AÉROSERVOÉLASTIQUES POUR LE MOUVEMENT DE L'AVION DE TEST ATM AU COMPLET (LONGITUDINAL ET LATÉRAL) EN STARS

MONTRÉAL, LE 13 AOÛT 2004

© droits réservés de Ghiocel Popa

CE MÉMOIRE A ÉTÉ ÉVALUÉ PAR UN JURY COMPOSÉ DE :

M. Stéphane Hallé, président du jury Département de génie mécanique à l'École de technologie supérieure

Mme Ruxandra Botez, directrice de mémoire Département de génie de la production automatisée à l'École de technologie supérieure

Mme Nassrin Vayani, ingénieure Service Engineering chez Bombardier Aéronautique

IL A FAIT L'OBJET D'UNE PRÉSENTATION DEVANT JURY ET PUBLIC LE 10 AOÛT 2004 À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ÉTUDES DES INTERACTIONS AÉROSERVOÉLASTIQUES POUR LE MOUVEMENT DE L'AVION DE TEST ATM AU COMPLET (LONGITUDINAL ET LATÉRAL) EN STARS

Ghiocel Popa

RÉSUMÉ

Dans cette thèse, le logiciel STARS (Structural Analysis Routines) est utilisé pour effectuer les analyses aéroservoélastiques de l'avion. STARS a été conçu par Dr. Kajal K. Gupta aux laboratoires de Centre de la NASA Dryden Flight Research.

Le but de notre thèse est le développement d'un modèle complet d'un avion (longitudinal et latéral) en partant de sa géométrie connue uniquement dans le plan latéral. Le modèle de référence ATM (Aircraft Test Model) a servi de base pour la réalisation du modèle complet d'un avion. C'est un modèle d'éléments finis d'un avion étudié seulement dans son plan latéral et qui contient tous les éléments essentiels pour effectuer une analyse aéroservoélastique toujours dans son plan latéral.

Dans une première étape, on va réaliser le modèle complet de l'avion par un ensemble d'éléments finis, donc des nœuds flexibles d'une certaine masse, amortissement et rigidité. Les modes de vibrations du modèle de test de l'avion ATM au sol, donc en l'absence de forces aérodynamiques, sont les modes de flexion et de torsion pour les surfaces portantes, le fuselage et les surfaces de commande.

Deuxièmement, l'avion est considéré en vol, sous la présence des forces aérodynamiques non stationnaires généralisées. Par la suite, les coefficients aérodynamiques d'influence sont calculés en fonction de six à dix fréquences réduites et plusieurs nombres de Mach de l'avion par méthode de doublets (DLM).

Les vitesses de battement pour l'avion complet ATM en boucle ouverte sont obtenues par les méthodes d'analyse de battement k et pk et ASE (similaire à la méthode LS) en STARS, et une comparaison finale est réalisée.

On a trouvé que les vitesses et les fréquences de battement obtenues sur le modèle de l'avion complet (longitudinal et latéral) sont très proches de celles obtenues en STARS sur la moitié du modèle original ATM d'où nous pouvons conclure que notre modèle complet de l'avion est validé.

Grâce au travail réalisé dans cette thèse, on pourra, à partir de maintenant, réaliser les calculs des interactions aéroservoélastiques sur l'avion au complet.

ÉTUDES DES INTERACTIONS AÉROSERVOÉLASTIQUES POUR LE MOUVEMENT DE L'AVION DE TEST ATM AU COMPLET (LONGITUDINAL ET LATÉRAL) EN STARS

Ghiocel Popa

SOMMAIRE

L'aéroservoélasticité est une théorie multidisciplinaire qui traite les interactions entre les disciplines de l'aérodynamique, de l'aéroélasticité et de la servocommande. Les interactions aéroservoélastiques regardent premièrement les phénomènes de battement sur l'avion flexible à commande électrique.

Des logiciels plus ou moins interactifs (tels qu'ADAMS, ISAC, FAMUSS, ASTROS, ZAERO, EASY5x et STARS) ont été développés pour estimer les vitesses et les fréquences de battement pour un avion dans l'étape de conception, quand ses nombreuses propriétés de masse, d'amortissement et de rigidité doivent encore être établies.

Pour réaliser les analyses de sensibilités, il est également très utile d'étudier l'effet de variation du nombre de Mach, de la pression dynamique, de l'angle de flèche d'aile, du rapport de masses, de l'allongement d'aile, du centre de gravité et du moment d'inertie sur l'enveloppe de vol de l'avion.

Dans cette thèse, on va utiliser le logiciel STARS (Structural Analysis Routines) pour les analyses aéroservoélastiques de l'avion et on va appliquer STARS sur un modèle d'avion de test ATM. Le logiciel STARS a été conçu par Dr. Kajal K. Gupta aux laboratoires de Centre de la NASA Dryden Flight Research où il est utilisé pour l'analyse aéroservoélastique des véhicules de vol. Des résultats des essais en vol ont été ainsi analysés par STARS pour valider l'exactitude et l'efficacité des algorithmes numériques développés.

Le but de notre thèse est le développement d'un modèle complet d'un avion (longitudinal et latéral) en partant de sa géométrie connue uniquement dans le plan latéral. Le modèle de référence ATM (Aircraft Test Model) a servi de base pour la réalisation du modèle complet d'un avion. C'est un modèle d'éléments finis d'un avion étudié seulement dans son plan latéral et qui contient tous les éléments essentiels pour effectuer une analyse aéroservoélastique toujours dans son plan latéral.

Dans une première étape, on va réaliser le modèle complet de l'avion par un ensemble d'éléments finis, donc des nœuds flexibles d'une certaine masse, amortissement et rigidité. Les modes de vibrations du modèle de test de l'avion ATM sont les modes de flexion et de torsion pour les surfaces portantes (ailes et empannages), le fuselage et les

surfaces de commande (les ailerons, la gouverne de direction et le gouvernail de profondeur). On obtient un nombre de 20 modes de vibrations correspondants à un ensemble d'environ 20 fréquences en bas de 100 Hz pour l'avion au sol, donc en l'absence de forces aérodynamiques.

Deuxièmement, l'avion est considéré en vol, sous la présence des forces aérodynamiques non stationnaires généralisées. Les surfaces portantes sont divisées dans des panneaux trapézoïdaux parallèles aux vitesses de l'air et la distribution des pressions induites est calculée. Par la suite, les coefficients aérodynamiques d'influence et les forces aérodynamiques sont calculés en fonction de six à dix fréquences réduites et plusieurs nombres de Mach de l'avion par méthode de doublets (DLM).

Les vitesses de battement pour l'avion complet ATM en boucle ouverte ainsi qu'en boucle fermée, dans la présence du contrôleur, sont obtenues par les méthodes d'analyse de battement k et pk et aéroservoélastique en STARS, et une comparaison finale est réalisée entre les valeurs des vitesses de battement obtenues par toutes les trois méthodes.

On a trouvé que les vitesses et les fréquences de battement obtenues sur le modèle de l'avion complet (longitudinal et latéral) sont très proches de celles obtenues en STARS sur la moitié du modèle original ATM d'où nous pouvons conclure que notre modèle complet de l'avion est validé.

L'existence du modèle ATM complet permettra finalement la réalisation du modèle de dynamique du vol appliquée au modèle d'avion complet, et plus spécifiquement au modèle de forces aérodynamiques associées qui va conduire à vérifier la qualité de la description globale de la dynamique de l'avion dans une contexte de la dynamique du vol.

Jusqu'à maintenant, tous les calculs des interactions aéroservoélastiques ont été réalisés au Larcase sur la moitié de l'ATM dans son plan latéral. Grâce au travail réalisé dans cette thèse, on pourra, à partir de maintenant, réaliser les calculs des interactions aéroservoélastiques sur l'avion au complet (latéral et longitudinal).

STUDIES OF AEROSERVOELASTIC INTERACTIONS FOR THE MOVEMENT OF WHOLE TEST AIRCRAFT ATM (LONGITUDINAL AND LATERAL) IN THE STARS

Ghiocel Popa

ABSTRACT

The aeroservoelasticity is a multidisciplinary theory which calculates the interactions between aerodynamic forces, aeroelasticity and the servo controls. The aeroservoelastic interactions mainly concern the flutter studies on a flexible fly by wire aircraft.

More or less interactive software (such as ADAMS, ISAC, FAMUSS, ASTROS, ZAERO, EASY5x and STARS) were developed to estimate the flutter speeds and frequencies in the design stage of an aircraft, when its numerous properties of mass, damping and stiffness should still be established.

In order to carry out the sensitivities analysis, it is also very useful to study the effect of changes in Mach number, dynamic pressure, wing sweepback angle, mass ratio, aspect ratio, centre of gravity and pitching moment of inertia on the aircraft flight envelope.

In this thesis, we will use the STARS software (Structural Analysis Routines) for the aeroservoelastic analyses of an aircraft and we will apply STARS on an Aircraft Test Model ATM. The STARS software was developed by Dr. Kajal K Gupta at the NASA Dryden Flight Research Center laboratories where is used for multidisciplinary aeroservoelastic analysis of flight vehicles. Flight tests results were analysed in STARS to validate the precision and efficiency of the numerical developed algorithms.

The aim of this thesis is the development of a complete model of an aircraft (longitudinal and lateral) from its known geometry in its lateral motion. The Aircraft Test Model (ATM) was used as a basis in the realization of the complete aircraft model. This reference model is a finite elements aircraft structural model studied only in its lateral plane and contains all the essential components to carry out an aeroservoelastic analysis always in its lateral plane.

In a first stage, one will design the aircraft complete model by an assembly of finite elements, therefore by flexible nodes of a certain mass, damping and stiffness. The vibration modes of the ATM are the bending and torsion modes for the lifting surfaces (wings, horizontal tail and vertical fin), the fuselage and the control surfaces (ailerons, rudder and elevators). We obtain a number of 20 vibration modes corresponding to an assembly of 20 frequencies smaller than 100 Hz for the aircraft on the ground, therefore in the absence of aerodynamic unsteady forces.

Secondly, the aircraft is considered in flight under the presence of the generalized unsteady aerodynamic forces. The lifting surfaces are divided into trapezoidal panels parallel to the airspeeds and the induced pressure distribution is calculated. Thereafter, the aerodynamic influence coefficients and the unsteady aerodynamic forces are calculated as function of six to ten reduced frequencies and several Mach numbers by use of the Doublet Lattice Method (DLM) on the aircraft.

The flutter speeds for the complete aircraft test model ATM in open loop as well as in closed loop, in the presence of the controller, are obtained by the flutter k and pk methods and by the aeroservoelastic methods in STARS and one final comparison is realized between the values of flutter speeds obtained by these methods.

We found that the flutter speeds and frequencies obtained on the complete aircraft test model (longitudinal and lateral) are very close to those obtained in STARS on the original half model ATM from where we can conclude that our complete aircraft model is now validated.

The existence of the complete aircraft test model ATM allows finally the realization of the flight dynamics model applied to the aircraft complete test model, and more specifically to the aerodynamic unsteady forces which will lead to the validation of the quality of the global description of the aircraft dynamics in a dynamic flight context.

Until now, all the aeroservoelastic interactions calculations were realized at Larcase on the half of the aircraft test model ATM in its lateral plane. Grace to the work realized in this thesis, we will be able, starting now, to realize the calculations of the aeroservoelastic interactions on the complete aircraft (lateral and longitudinal).

REMERCIEMENTS

Je tiens à remercier aux membres du jury Monsieur Stéphane Hallé et Madame Nassrin Vayani pour leurs conseils.

J'exprime ma gratitude à Madame le Professeur Botez Ruxandra, ma directrice de recherche, pour m'avoir permis de mener ce travail de façon autonome, pour sa confiance et ses conseils.

Je remercie à Monsieur Tim Doyle de NASA Dryden Research Flight Center pour ses conseils et son aide au long de mon projet.

Je voudrais remercier au organisme gouvernamental le Conseil de recherche en sciences naturelles et en génie du Canada pour m'avoir accordé une bourse d'études supérieures.

Je tiens également à remercier à la Fondation J. Armand Bombardier et à l'École de technologie supérieure pour m'avoir accordé des bourses d'études.

Je remercie aussi à Monsieur René Lemieux pour m'avoir encouragé dans la poursuite de mes études universitaires au niveau de la maîtrise.

TABLE DES MATIÈRES

	Pa	ıge
SOMMAIRE		i
ABSTRACT		iii
REMERCIEM	ENTS	v
TABLE DES M	IATIÈRES	.vi
LISTE DES TA	BLEAUX	x
LISTE DES FIG	GURES	xii
LISTE DES AE	BRÉVIATIONS ET DES SIGLES	ΧV
CHAPITRE 1	REVUE DE LA LITTÉRATURE	1
1.1	Introduction	
1.2	Le contrôle actif de l'aéroélasticité	
1.3	Les objectifs de la commande active aéroélastique	4
1.4	Le logiciel ISAC	
1.5	Le logiciel ADAM	6
1.6	Le logiciel FAMUSS	
1.7	Le logiciel ASTROS	7
1.8	Le logiciel ZAERO	
1.9	Le logiciel EASY5x	
1.10	Le logiciel STARS	
1.11	Le logiciel MSC/Nastran	10
CHAPITRE 2	ANALYSE AÉROÉLASTIQUE	13
2.1	Méthode k	16
2.2	Méthode pk	
2.3	La méthode des moindres carrés LS	24
CHAPITRE 3	DESCRIPTION DE LA MÉTHODE DES DOUBLETS DLM	30
CHADITDE 4	DONNÉES D'ENTRÉE	34

4.1	Données d'entrée pour le fichier - solids	34
4.1.1	Paramètres de base	
4.1.1.1	Modèle structural	34
4.1.1.2	Charges et déplacements	35
4.1.1.3	Données définissant la nature de la solution requise	36
4.1.1.4	Paramètres de base supplémentaires	
4.1.1.5	Caractéristiques pour la solution de vecteurs propres	39
4.1.2	Données nodales d'entrée	
4.1.3	Entrées des éléments	41
4.1.3.1	Propriétés de base pour un élément de type ligne	43
4.1.3.2	Épaisseur pour un élément de type plaque	
4.1.3.3	Propriétés du matériau	
4.1.4	Données nodales de masse	
4.1.5	La spécification des points pour l'interpolation directe des données modales	
4.1.6	Entrée de données pour les modes rigides de commande	
4.2	Données d'entrée pour le fichier - genmass	
4.3	Données d'entrée pour le fichier - aerol	
4.3.1	Paramètres de base	
4.3.2	Indicateur pour de l'endroit des données	
4.3.3	Valeurs de référence pour le calcul des forces aérodynamiques	
4.3.4	Vitesses réduites	
4.3.5	Spécification de la vitesse de l'air pour l'analyse pk	
4.3.6	Données pour l'interpolation de forces aérodynamiques	
4.3.7	Plage d'impression pour les graphiques V-g et V-f	
4.3.8	Rapports de densités atmosphériques	
4.3.9	La spécification des modes éliminés dans les analyses de	
	battement et de divergence	57
4.3.10	Longueur et surface de référence	
4.3.11	Données géométriques des panneaux	57
4.3.12	Données des surfaces portantes	
4.3.12.1	Description	
4.3.12.2	Translation et rotation des panneaux	
4.3.12.3	Coordonnées des points définissant un panneau aérodynamique	
4.3.12.4	Les coordonnées sur l'axe des z et le nombre des frontières	
4.3.12.5	La disposition des frontières des panneaux	
4.3.13	Données du corps mince	
4.3.13.1	Coordonnées globales du système de références X, Y, et Z	63
4.3.13.2	Origine du fuselage, des éléments, et tous les panneaux	
	d'interférence complémentaires	63
4.3.13.3	La disposition des frontières des éléments du corps mince du	
	fuselage	64
4.3.13.4	Les rayons du corps mince du fuselage	64
4.3.14	Paramètres généraux pour les données aérodynamiques	64

4.3.15	Lignes d'interpolation sur les surfaces portantes	65
4.3.15.1	Ensembles des données des surfaces primaires	
4.3.15.2	Interpolation des déflexions pour les surfaces primaires et de contrôle	66
4.3.15.3	Déflexions des éléments aérodynamiques du corps mince	
4.3.16	Option d'impression pour la géométrie globale	
4.3.10 4.4	Données d'entrée pour le fichier - convert	
4.4	Données d'entrée pour le fichier - ASE DADÉ	09
4.5.1	Données d'entrée pour le fichier - ASE PADÉ Paramètres de base	
4.5.2	Coefficients de tension	
4.5.3	Masses généralisées	
4.5.4	Données de l'amortissement généralisé	
4.5.5	Fréquences naturelles	/ 1
4.5.6	Angles de l'avion, degrés de liberté	
4.5.7	Transformation des coordonnées entre la Terre et le système fixé	
4.5.0	au corps.	
4.5.8	Données des capteurs	
4.5.9	Positionnement et orientation des capteurs	12
CHAPITRE 5	LE MODÈLE DE TEST DE L'AVION ATM	73
5.1	Modèle structural	73
5.2	Modèle aérodynamique de l'ATM	80
5.3	Modèle aéroservoélastique de l'ATM	85
5.4	Différences de définition entre les deux modèles ATM	86
5.4.1	Modifications apportées dans le fichier <i>pr_solids.dat</i> (annexe 2)	86
5.4.2	Modifications apportées dans le fichier pr_genmass.dat (annexe	
5.4.3	Modifications apportées dans le fichier pr_aero_ase.dat (annexe	
CHAPITRE 6	DISCUSSION ET INTERPRÉTATION DES RÉSULTATS	90
6.1	Introduction	
6.2	Analyse de vibrations	90
6.3	Analyses aéroélastiques	94
6.3.1	Méthode k	95
6.3.2	Méthode Pk	103
6.3.3	Méthode ASE	107
6.4	Synthèse des résultats	112
CONCLUSION	IS	116
RECOMMANT	DATIONS	110

ANNEXES		120
1.	Modes élastiques du modèle ATM complet	120
2.	Le listage du fichier pr solids.dat	128
3.	Le listage du fichier pr genmass.dat	144
4.	Le listage du fichier pr_aero_ase.dat	
5.	Le listage du fichier pr aero convert.dat	
6.	Le listage du fichier pr_aero_pade.dat	
BIBLIOGRAF	PHIE	154

LISTE DES TABLEAUX

	Pa	age
Tableau I	Description des paramètres de base pour le modèle structural	.34
Tableau II	Description des paramètres de base pour les charges et déplacements	.35
Tableau III	Description des données définissant la nature de la solution requise	.36
Tableau IV	Description des paramètres de base supplémentaires	.37
Tableau V	Description des caractéristiques pour la solution de vecteurs propres	.39
Tableau VI	Arrangement des données nodales d'entrée	.40
Tableau VII	Types des éléments	.41
Tableau VIII	Propriétés de base pour un élément de type ligne	.43
Tableau IX	Épaisseur pour un élément de type plaque	.43
Tableau X	Propriétés du matériau	.44
Tableau XI	Données nodales de masse	.45
Tableau XII	L'interpolation directe des données modales	.46
Tableau XIII	Entrée de données pour les modes rigides de commande	.46
Tableau XIV	Données de génération de la matrice de masse généralisée	.47
Tableau XV	Paramètres de base	.48
Tableau XVI	Données géométriques des panneaux	.58
Tableau XVII	Translation et rotation des panneaux	.60
Tableau XVIII	Coordonnées des points définissant un panneau aérodynamique	.60
Tableau XIX	Paramètres généraux pour les données aérodynamiques	.65
Tableau XX	Paramètres de base pour approximer les forces aérodynamiques	.70
Tableau XXI	Paramètres de génération des modes rigides et de commande du modèle d'avion	.75
Tableau XXII	Modes obtenus par l'analyse de vibrations libres pour le modèle complet de l'ATM	.91

Tableau XXIII	Modes obtenus par l'analyse de vibrations libres pour le modèle ½ ATM latéral antisymétrique	92
Tableau XXIV	Analyse de vibrations libres – Modes et fréquences naturelles	93
Tableau XXV	L'amortissement pour diverses vitesses réduites	95
Tableau XXVI	Méthode k - Comparaison avec le modèle ATM	99
Tableau XXVII	Méthode pk, comparaison entre les deux modèles	.106
Tableau XXVIII	Méthode ASE, comparaison entre les deux modèles	.110

LISTE DES FIGURES

		Page
Figure 1	Représentation graphique de l'aéroservoélasticité	1
Figure 2	Contrôle aéroélastique de l'avion	3
Figure 3	Modèles des avions utilisés pour la validation du programme STARS	
Figure 4	Algorithme de la méthode pk	23
Figure 5	Illustration des éléments de type ligne et de type plaque	42
Figure 6	Modèle avion éléments finis	74
Figure 7	Translation selon l'axe des X	75
Figure 8	Translation selon l'axe des Y	75
Figure 9	Translation selon l'axe des Z	76
Figure 10	Mouvement de roulis	76
Figure 11	Mouvement de tangage	77
Figure 12	Mouvement de lacet	77
Figure 13	Déflection des ailerons	78
Figure 14	Déflection des volets de courbure	78
Figure 15	Braquage symétrique de la gouverne de profondeur	79
Figure 16	Déflection de la gouverne de direction	79
Figure 17	Modélisation aérodynamique par la méthode des doublets DLI	M80
Figure 18	Configuration des panneaux aérodynamiques	81
Figure 19	Configuration des éléments aérodynamiques	82
Figure 20	Définition du corps mince du fuselage	83
Figure 21	Lignes d'interpolation sur les surfaces portantes	84
Figure 22	Boucles de contrôle du modèle ATM ½	85
Figure 23	Méthode k, fréquence en fonction de l'amortissement	96
Figure 24	Méthode k, fréquence en fonction de la vitesse équivalente	97
Figure 25	Méthode k, L'amortissement en fonction de la vitesse équivale	ente98

Figure 26	Méthode k, L'amortissement en fonction de la vitesse équivalente 98
Figure 27	Méthode k, Mode 3 modèle complet vis-à-vis le mode 2 de
Figure 28	Méthode k, mode 8 du modèle complet vis-à-vis le mode 5 du
Figure 29	Méthode k, L'amortissement en fonction de la vitesse réduite101
Figure 30	Méthode k, mode 1 du modèle complet vis-à-vis le mode 1 du
Figure 31	Méthode k, mode 2 du modèle complet vis-à-vis le mode 2 du
Figure 32	Méthode pk, la fréquence en fonction de l'amortissement103
Figure 33	Méthode pk, la fréquence en fonction de la vitesse équivalente104
Figure 34	Méthode pk, l'amortissement en fonction de la vitesseéquivalente
Figure 35	Méthode pk, l'amortissement en fonction de la vitesse
Figure 36	Méthode pk, Mode 4 du modèle complet de l'ATM vis-à-vis le
Figure 37	Méthode pk, Mode 2 du modèle complet de l'ATM vis-à-vis le
	mode 1 du modèle ATM original107
Figure 38	Méthode ASE, la fréquence en fonction de l'amortissement108
Figure 39	Méthode ASE, la fréquence en fonction de la vitesse équivalente 108
Figure 40	Méthode ASE, l'amortissement en fonction de la vitesse
Figure 41	Méthode ASE, l'amortissement en fonction de la vitesse
	équivalente109
Figure 42	Méthode ASE, mode 14 modèle complet vis-à-vis de mode 8
Figure 43	Méthode ASE, mode 10 modèle complet vis-à-vis de mode 6
Figure 44	Méthode ASE, mode 2 modèle complet vis-à-vis de mode 1
Figure 45	Battement 1, comparaison des résultats113

Figure 46	Battement 2, comparaison des résultats	114
Figure 47	1 ^{ère} flexion symétrique de l'aile, f = 6,25 Hz	121
Figure 48	1 ^{ère} flexion de l'empennage vertical, f = 10,14 Hz	121
Figure 49	1 ^{ère} flexion verticale du fuselage, f = 12,13 Hz	121
Figure 50	1 ^{ère} flexion horizontale du fuselage, f = 12,45 Hz	122
Figure 51	1 ^{ère} flexion asymétrique de l'aile, f = 14,68 Hz	122
Figure 52	1 ^{ère} flexion de l'empennage horizontal, f = 28,50 Hz	123
Figure 53	2 ^{ème} flexion asymétrique de l'aile, f = 28,75 Hz	123
Figure 54	2 ^{ème} flexion du fuselage, f = 29.81 Hz	124
Figure 55	$1^{\text{ère}}$ torsion de l'aile, f = 30,70 Hz	124
Figure 56	1 ^{ère} torsion de l'aile, f= 32,45 Hz	125
Figure 57	2 ^{ème} flexion du fuselage, f = 35,54 Hz	125
Figure 58	1 ^{ère} torsion de l'empennage vertical, f = 35,74 Hz	126
Figure 59	2 ^{ème} flexion symétrique de l'aile, f = 37,42 Hz	126
Figure 60	3 ^{ème} flexion du fuselage, f = 51.14 H	127

LISTE DES ABRÉVIATIONS ET DES SIGLES

A_i Coefficients de Padé

 A_E Matrice des forces aérodynamiques

 $A_{(k, Mach)}$ Matrice des coefficients aérodynamiques

b Demi longueur de corde de l'aile

B Matrice modale d'amortissement

C Longueur de référence

EAS Vitesse équivalente

g Coefficient d'amortissement structural

GCS Système de coordonnée global

I Matrice identité

k Fréquence réduite, $k = \omega \bar{c}/2V$

K Matrice modale de rigidité

 K_{hh} Matrice modale de rigidité

KEAS Vitesse propre équivalente en nœuds

m Nombre de Match

 m_i Masse du noeud i

Matrice modale d'inertie ou de masse

 M_{hh} Matrice modale d'inertie dans l'espace des noeuds

p Valeur propre complexe, $p = \omega (\gamma \pm i)$

P(t) Fonction de la force externe

q Vecteur des déplacements des nœuds

 q_i Déplacement du nœud i

q_{dyn} Pression dynamique,

 Q_{hh}^{I} Partie imaginaire du coefficient de la matrice modale des forces

aérodynamiques généralisées

 Q_{hh}^{R} Partie réelle du coefficient de la matrice modale des forces

aérodynamiques généralisées

$Q_{hh}(m, k)$	Matrice des coefficients d'influence aérodynamiques
S	Variable de Laplace
S	Surface d'aile
S_n	Surface du n ^{ième} panneau
TAS	Vitesse vraie, vitesse du centre de gravité de l'avion par rapport à
	l'air non perturbé.
u_h	Vecteur modal d'amplitude
V	Vitesse
V_E	Vitesse équivalente
w(x, y)	Déflexion vers le bas sur la surface
$oldsymbol{eta_j}$	Retards aérodynamiques
γ	Coefficient de traînage, $g = 2 \gamma$
ΔC_p	Différence de pressions à travers de la surface
Δx	Translation selon l'axe des X
Δy	Translation selon l'axe des Y
Δz	Translation selon l'axe des Z
$\{\overline{\eta}\}$	Coordonnées modales généralisées
η_e	Coordonnées généralisées des modes élastiques
η_r	Coordonnées généralisées des modes rigides
η_c	Coordonnées généralisées des modes de commande
Θx	Rotation autour de l'axe des X
Θy	Rotation autour de l'axe des Y
Θ z	Rotation autour de l'axe des Z
λ	Vecteur de valeurs propres
ρ	Densité atmosphérique vraie
Φ	Vecteurs propres

Fréquence angulaire, $\omega = 2\pi f$

 ω

CHAPITRE 1

REVUE DE LA LITTÉRATURE

1.1 Introduction

L'aéroservoélasticité est concerné avec les études des phénomènes physiques impliquant les interactions significatives entre la structure flexible de l'avion, les forces aérodynamiques et les systèmes de commande. On va représenter graphiquement l'aéroservoélasticité dans la figure 1:

Figure 1 Représentation graphique de l'aéroservoélasticité

Les quatre coins du tétraèdre représentent les disciplines de l'aérodynamique, les forces d'inertie, l'élasticité ou la flexibilité de la structure et le système de commande de vol. Le phénomène physique résultant des interactions entre les quatre disciplines est intitulé aéroservoélasticité.

La base du tétraèdre est désignée sous le nom du triangle aéroélastique et représente les phénomènes aéroélastiques dynamiques tels que le battement, la réponse à une rafale, etc.

D'autres champs techniques importants sont identifiés sur les trois côtés du triangle, comme par exemple :

Mécanique de vol = Dynamique et Mécanique des fluides;

Vibrations = Dynamique et Mécanique des solides;

Aéroélasticité statique = Mécanique des fluides et Mécanique des solides.

Chacun de ces champs techniques ci haut mentionnés peut être considéré comme un aspect particulier de l'aéroélasticité.

Les trois faces du tétraèdre représentent :

- (i) le système de vol de commande automatique FCS (Flight Control System),
- (ii) les interactions servoélastiques (SE) et
- (iii) l'aéroélasticité statique influencée par les caractéristiques de servocommande.

1.2 Le contrôle actif de l'aéroélasticité

L'aéroélasticité examine l'interaction entre l'aérodynamique et la structure de l'avion, tandis que la technologie de commande des structures examine l'interaction entre le contrôle du système et de la dynamique structurale.

Le contrôle actif des systèmes aéroélastiques, connu sous le nom d'aéroservoélasticité, a comme objectif la modification du comportement aéroélastique d'un système par l'action délibérée des forces de commande sur le système aéroélastique, plus spécifiquement le

contrôle aéroélastique représente l'intersection de l'aéroélasticité et la commande de l'avion (voir la figure 2).

Figure 2 Contrôle aéroélastique de l'avion

La commande aéroélastique est beaucoup plus compliquée que la commande conventionnelle car la dynamique du système change nettement avec les conditions de vol.

Les problèmes de contrôle aéroélastique sont plus difficiles à résoudre que les problèmes aéroélastiques classiques car le système de contrôle introduit généralement une deuxième source potentielle d'instabilité.

La commande aéroélastique apporte des améliorations significatives dans les critères des performances par la réduction du niveau ambiant de vibrations, l'augmentation de la réponse aux manœuvres, la stabilisation d'un système donné autrement instable, etc.

1.3 Les objectifs de la commande active aéroélastique

La commande active aéroélastique est utilisée pour les avions à commande électrique (Fly-By-Wire). Dans le cadre de ce type de commande, on peut généralement suivre trois objectifs principaux pour concevoir les systèmes de commande active suivants : le système de suppression de battement (FSS : Flutter Suppression System), le système d'allégement des charges dues aux rafales (GLA : Gust Load Alleviation) et le système de contrôle des charges dues aux manœuvres (MLC : Maneuver Load Control).

Dans les paragraphes suivantes, on va détailler chaque objectif, donc chaque système de commande active.

Le premier et peut-être le plus discuté objectif de la commande aéroélastique est la suppression du phénomène de battement (FSS : Flutter Suppression System), par lequel l'enveloppe opérationnelle de vol de l'avion est agrandie pour une plage des vitesses et altitudes. Ceci est réalisé en stabilisant un système aéroélastique (pour une certaine vitesse et altitude) qui aurait autrement rencontré un phénomène de battement.

Le deuxième objectif de la commande aéroélastique est l'allégement des charges dues aux rafales (GLA: Gust Load Alleviation), ce qui rend le vol des passagers plus confortable en réduisant au minimum la réponse de l'avions aux charges (forces et moments) induites par les rafales. L'objectif spécifique pour obtenir l'excellent confort du vol est la réduction au minimum des accélérations agissant sur l'avion.

Le troisième objectif de la commande aéroélastique est le contrôle des charges sur l'avion soumis aux manœuvres (MLC : Maneuver Load Control).

Le but est d'améliorer la capacité de l'avion de contrôler les changements dans les charges (forces et moments) exigés pour effectuer certaines manoeuvres.

La prévision des instabilités (du phénomène de battement) dans le comportement aéroélastique des avions est très importante pour la conception de l'avion moderne à commande électrique (Fly-by-Wire) qui devrait fonctionner dans une grande enveloppe de vol. Cependant, une analyse aéroservoélastique complète est souvent difficile d'accomplir en raison des interactions complexes structurales, aérodynamiques, et de commande sur l'avion.

Afin d'obtenir les prévisions les plus précises pour des caractéristiques de vol d'un avion à commande électrique, la recherche contemporaine a tourné vers le développement des modèles informatiques intégrés capables de capturer les interactions aéroservoélastiques complexes tels qu'ISAC, ADAM, FAMUSS, ASTROS, ZAERO, EASY5x et STARS. Dans les paragraphes suivants, on va inclure les détails de ces 7 logiciels en aéroservoélasticité et du logiciel en aéroélasticité MSC/NASTRAN.

1.4 Le logiciel ISAC

Le logiciel développé dans les années 70 par la NASA Langley Research Center appelé ISAC (Interaction of Structures, Aerodynamics and Controls) est un outil efficace pour les analyses aéroservoélastiques (Tiffany, 1988). Le logiciel ISAC a été utilisé dans les projets suivants :

DAST ARW-1 (Newsom, 1983) et ARW-2 (Adams, 1984)

Le modèle d'une aile de DC-10 dans une soufflerie (Abel, 1982)

Les études de faisabilité d'une aile sous forme de X (Woods, 1990)

Les analyses d'un avion avec une aile oblique (Burken, 1986)

Les tests dans une soufflerie pour une aile flexible active AFW (Christhilf, 1992) et (Buttrill, 1990, 1992)

Les véhicules hypersoniques génériques (Raney, 1993) et (Spain, 1993)

Des tests pour des avions civils aux très hautes vitesses équipés des systèmes de commande active.

1.5 Le logiciel ADAM

Un autre logiciel pour les analyses aéroservoélastiques est ADAM (Analog and Digital Aeroservoelasticity Method) et ce programme a été développé chez Air Force Wright Aeronautical Laboratories AFWAL (Noll, 1986).

Trois exemples ont été considérés :

le X-29 A, le système de suppression active de battement pour le YF-17, qui a été testé dans un tunnel dynamique transsonique de 16 pi chez NASA Langley Research Center, et le modèle d'une aile en flèche orientée vers l'avant (Forward Swept Wing FSW) située dans une soufflerie subsonique de 5 pi. ADAM utilise des approximations des forces aérodynamiques par les méthodes des moindres carrés (Least Squares LS) dans le domaine de Laplace (où le numérateur est d'ordre 4 et le dénominateur est d'ordre 2).

1.6 Le logiciel FAMUSS

McDonnell Aircraft Company a développé, dans le but d'analyser les interactions aéroservoélastiques sur leurs avions le programme par ordinateur FAMUSS (Flexible Aircraft Modeling Using State Space). Dans ce logiciel, les approximations des forces aérodynamiques sont différentes de celles données par les autres codes aéroservoélastiques, car ici, un modèle sous forme d'espace d'état qui approche la réponse en fréquence d'une fonction de transfert pour une plage donnée des fréquences. On a obtenu un nombre plus petit des équations par l'approche utilisée en FAMUSS par Mr Dale Pitt travaillant chez Boeing que par l'approche par des fonctions rationnelles utilisé dans les autres logiciels (Pitt, 1992).

Le modèle des zéros et racines est généré à partir de la réponse d'une fonction de transfert en utilisant des techniques linéaires et non — linéaires et ce modèle est utilisé pour calculer les racines d'un système. Les racines du système sont obtenues directement à partir des données des forces aérodynamiques généralisées.

1.7 Le logiciel ASTROS

Le programme ASTROS (Chen, 2002) a été développé chez Zona Technology et les analyses et les tests aéroservoélastiques ont été réalisées pour le F-16. Dans ce logiciel, la méthode TAIC (transonic aerodynamic influence coefficient) - des coefficients d'influences aérodynamiques transsoniques - est proposée comme un outil efficient pour les calculs de battement, de l'aéroservoélasticité et de l'optimisation du design et des analyses (Chen, 2000).

Cette méthode a intégrée la méthode transsonique précédente en utilisant des bandes (TES – Transonic Equivalent Strip) avec l'approche modale AIC. On peut étudier deux cas à l'aide de la méthode ZTAIC en considérant : 1. les pressions mesurées et 2. les pressions provenant des calculs CFD. Les résultats calculés pour les points de battement et les pressions non-stationnaires sont présentés pour six modèles d'aile. Par rapport aux calculs de CFD, l'utilisation des coefficients modaux d'influence aérodynamique dans la méthode ZTAIC est démontrée par les calculs de battement pour les ailes 445.6 solides et flexibles. La méthode ZTAIC est facile à adopter dans l'environnement multidisciplinaire de design (MDO) tel qu'ASTROS. Pour les approximations des forces aérodynamiques non stationnaires du domaine de fréquence au domaine de Laplace la méthode d'état minimal a été utilisée.

1.8 Le logiciel ZAERO

Dans le logiciel ZAERO (Nam, 2001) on utilise la méthode transsonique non stationnaire non linéaire (ZTAIC) pour générer les matrices aérodynamiques du système. Les techniques de réduction de l'ordre en utilisant les décompositions orthogonales propres (POD – Proper Orthogonal Decomposition) et les méthodes d'état minimum (MIST) réduisent le système à 7 états, donc l'opération de l'algorithme va se réaliser dans une seconde. On a analysé la conception d'un système de commande adaptative

reconfiguré pour la suppression des oscillations en cycle limite (LCO) des configurations de l'avion militaire F/A-18 avec plusieurs configurations d'armement.

La suppression rapide des oscillations des cycles limites (LCO - Limit Cycle Oscillations) pour 5.6 Hz et 8.8 Hz a été démontrée avec beaucoup du succès sur 5 cas des simulations numériques étudiées.

Le système RAC est un design modulaire de contrôle tel que le contrôleur LCO doit être combiné avec le contrôle de vol des modes rigides (RBF : rigid body flight), en minimisant l'impact du système de commande de vol.

Le système RAC consiste dans une estimation des paramètres modaux (MPE : Modal Parameter Estimation) pour l'identification des systèmes ainsi que l'algorithme modifié reconfiguré de suivi du modèle (MMFR) pour le contrôle du battement et des oscillations des cycles limites rapides (demandent un temps entre 0.2 sec et 0.8 sec).

1.9 Le logiciel EASY5x

L'émergence des systèmes de contrôle de vol électroniques dans les designs des avions commerciaux ont conduit à une analyse discrète non - linéaire dans le temps dans le domaine de fréquence et temps.

L'article (Fritchman, 1993) présente et démontre une méthodologie par laquelle les modèles structuraux linéaires des avions produits par la communauté des charges dynamiques structurelles sont reformulés en utilisant EASY5x.

EASY5x fournit un environnement pour incorporer les non linéarités et la discrétisation; fournit aussi un environnement intuitif pour l'analyse des interactions avec un système de contrôle non linéaire et discret dans le temps.

Une méthode est présentée pour transformer un modèle linéaire à large échelle dans le domaine z en utilisant le logiciel EASY5x.

1.10 Le logiciel STARS

Le logiciel STARS (Structural Analysis Routines) a été développé chez NASA Dryden Flight Research Center par Dr Gupta (Gupta, 1991). STARS est un logiciel intégré et modulaire pour des analyses multidisciplinaires des véhicules de vol comprenant l'analyse structurale statique et dynamique, dynamique des fluides, transfert thermique, et analyse aéroservoélastique.

STARS a été utilisé pour l'analyse aéroservoélastique sur les avions suivants : X-29A, F-18 High Alpha Research Vehicle / Thrust Vectoring Control System, B-52 Pegasus, Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, et High Speed Civil Transport (HSCT).

Figure 3 Modèles des avions utilisés pour la validation du programme STARS

Un des projets principaux de l'équipe STARS a été la validation pratique des résultats obtenus par l'exécution du programme STARS. Une aile d'essai a été attachée à l'avion de test F-15B de Dryden et, pendant le vol, soumise au phénomène de battement, et son comportement a été enregistré par des capteurs. Les résultats des essais en vol ont été analysés pour valider l'exactitude du programme STARS.

Jusqu'ici, uniquement les logiciels de calcul aéroservoélastique ont été décrits. Tous ces logiciels utilisent les méthodes d'éléments finis pour calculer les modes de vibration de l'avion au sol en absence des forces aérodynamiques (validées par des tests de vibration au sol GVT – Ground Vibration Tests). Ces logiciels utilisent aussi les méthodes de modélisation aérodynamique de l'avion par les méthodes des doublets (DLM – Doublet Lattice Method) pour le calcul des forces aérodynamiques. Ces deux méthodes sont classiques pour les calculs aéroélastiques et sont décrites en grandes lignes dans la section suivante – pour le logiciel des calculs aéroélastiques MSC/Nastran qui utilise les mêmes méthodes.

Par contre, la différence entre les logiciels de calcul aéroservoélastique et MSC/Nastran est que tous ces logiciels utilisent, en plus, une méthode d'approximation des forces aérodynamiques du domaine de fréquence au domaine de Laplace.

1.11 Le logiciel MSC/Nastran

NASTRAN (NAsa STRuctural ANalysis) est un logiciel conçu et développé en partenariat avec la NASA pour satisfaire au besoin d'un logiciel d'éléments finis universellement disponible.

À l'origine le logiciel devait être indépendant du type d'ordinateur pour en faciliter sa diffusion. Cet objectif devait cependant se révéler utopique à cause des différences importantes, entre les différents systèmes informatiques, dans la longueur des mots de mémoire, les structures internes et les systèmes d'exploitation. Trois versions différentes ont été développées pour les ordinateurs les plus populaires, entre autre pour les systèmes IBM et CDC.

En plus de COSMIC/NASTRAN supportée par la NASA, il existe plusieurs autres versions protégées de NASTRAN. La plus populaire est MSC/NASTRAN qui a été

développée et qui est maintenue par MacNeal-Schwendler Corporation. MSC/NASTRAN est considéré comme le standard NASTRAN à cause de sa diffusion importante, de ses possibilités avancées et du service offert à la clientèle. Le programme est continuellement remis à jour.

Les analyses aéroélastiques et les solutions de conception développent la gamme des possibilités dans MSC/NASTRAN au-delà de l'analyse structurale statique et dynamique de base. L'analyse aérodynamique de MSC/NASTRAN, comme l'analyse structurale, est basée sur l'approche d'éléments finis. Les forces aérodynamiques sont appliquées sur les éléments aérodynamiques finis modélisés sous forme des panneaux ou des parallélépipèdes.

Puisque les nœuds définissant la structure ne coïncident pas habituellement avec les nœuds définissant les éléments aérodynamiques, une interpolation entre les deux sera produite, ce qui nous permet le choix des éléments structuraux et aérodynamiques sur des considérations indépendantes structurales et aérodynamiques.

L'analyse de sensibilité appliquée sur les réponses aéroélastiques exige la modification des équations employées pour exécuter l'analyse aéroélastique tout en modifiant les paramètres structuraux, tels que les aires des éléments et leurs épaisseurs. Le résultat est une prévision du changement d'une réponse particulière dû à un changement d'un paramètre.

Ces possibilités sont particulièrement utiles dans des analyses aéroélastiques puisque les effets aérodynamiques agissent avec la rigidité structurale et avec les propriétés inertielles d'une manière souvent non intuitive.

Le module aéroélastique MSC/NASTRAN supporte plusieurs théories aérodynamiques pour le régime subsonique et supersonique comme aussi pour battement. Les résultats

sont directement utilisés pour la certification des avions sous les spécifications des normes FAA (Federal Aviation Administration) et JAA (European Joint Aviation Authorities).

Les méthodes standard de l'industrie comme les analyses pk et k fournissent un ensemble d'outils compréhensifs pour la modélisation du comportement de battement dans les systèmes linéaires.

L'utilisation des logiciels spécialisés dans les analyses aéroélastiques confit une manière moins chère d'étudier les phénomènes aérodynamiques que le prototype conventionnel examiné dans les souffleries.

Ils représentent aujourd'hui pour des ingénieurs une manière rapide et commode d'étudier les structures compliquées d'avion.

CHAPITRE 2

ANALYSE AÉROÉLASTIQUE

L'équation du mouvement sous la forme matricielle, d'une structure discrétisée par la méthode des éléments finis, a la forme suivante:

$$M\ddot{q} + B\dot{q} + Kq + \frac{\rho V^2}{2} A(k,Mach)q = P(t)$$
(2.1)

$$q_{dyn} = \frac{\rho V^2}{2}$$

où M est la matrice d'inertie structurelle, B la matrice d'amortissement, K est la matrice de rigidité, q_{dyn} la pression dynamique; ρ est la densité de l'air, V est la vitesse vraie de l'avion, A(k, Mach) est la matrice des coefficients aérodynamiques calculée par la méthode des doublets pour un ensemble des fréquences réduites k_i et pour un nombre de Mach donné, q est le vecteur des déplacements des nœuds et P(t) est la fonction de la force externe qui représente une entrée de la part du pilote sur une surface de commande ou une perturbation génèré par une rafale, turbulence, etc.

Le problème de vibrations libres associé à l'équation (2.1) est décrit par l'équation suivante:

$$M\ddot{q}+Kq=0 \tag{2.2}$$

où les valeurs propres ω et les vecteurs propres Φ sont obtenus en résolvant l'équation caractéristique suivante :

$$A\Phi = \omega \Phi \tag{2.3}$$

où

$$A = \begin{bmatrix} 0 & I \\ -M^{-1}K & 0 \end{bmatrix}$$
 (2.4)

La transformation suivante sera appliquée à l'équation (2.1) :

$$q = \Phi \eta \tag{2.5}$$

On multiplie les deux côtés de l'équation (2.1) à gauche par Φ^T et on obtient l'équation suivante du mouvement généralisé de la structure de l'avion sous l'influence des forces aérodynamiques Q(k,Mach):

$$\hat{\mathbf{M}}\ddot{\boldsymbol{\eta}} + \hat{\mathbf{B}}\dot{\boldsymbol{\eta}} + \hat{\mathbf{K}}\boldsymbol{\eta} + \frac{\rho V^2}{2}\mathbf{Q}(k,Mach)\boldsymbol{\eta} = \hat{\mathbf{P}}(t)$$
 (2.6)

L'équation (2.6) est l'équation de référence pour la dynamique aéroélastique d'un avion flexible où

$$\hat{\mathbf{M}} = \Phi^{\mathsf{T}} \mathbf{M} \Phi$$
; $\hat{\mathbf{B}} = \Phi^{\mathsf{T}} \mathbf{B} \Phi$; $\hat{\mathbf{K}} = \Phi^{\mathsf{T}} \mathbf{K} \Phi$; $\hat{\mathbf{P}} = \Phi^{\mathsf{T}} \mathbf{P} \Phi$; $\mathbf{Q}(k, Mach) = \Phi^{\mathsf{T}} \mathbf{A}(k, Mach) \Phi$

L'utilisation des coordonnées généralisées nous permet de résoudre le problème généré par le placement différé entre les noeuds structuraux et les points aérodynamiques.

Les noeuds sont les points de définition de la structure flexible de l'avion et décrivent les extrémités (points de connexion) des panneaux ou des poutres.

Dans les algorithmes de calcul de forces aérodynamiques on doit calculer les points aérodynamiques et pour lesquels on connaît les valeurs des déplacements.

Dans le cas de la méthode de doublets, décrite dans le prochain chapitre, les points aérodynamiques représentent un ensemble unique des points qui sont distribués uniformément sur les surfaces portantes. Ces points ne se superposent pas généralement sur les noeuds structuraux.

En effectuant la transformation d'un système de coordonnées discrètes d'un système dans un système de coordonnées généralisées, on obtient des informations entre les deux ensembles de points (aérodynamiques et structuraux).

La matrice modale $\Phi = \left[\Phi_r \; \Phi_e \; \Phi_c\right]$ et la matrice des coordonnées généralisées $\eta = \left[\eta_r \; \eta_e \; \eta_c\right]$ incluent les mouvements rigides (r), élastiques (e) et de commande (c) du systèmes de l'avion.

La matrice des forces aérodynamiques Q(k,Mach) est calculée par la modélisation aérodynamique en utilisant la méthode des doublets DLM pour un ensemble de fréquences réduites $\{k_1,k_2,k_1,k_2,k_1,\ldots,k_n\}$ et un nombre de Mach donné.

Un élément $a_{i,j}$ de la matrice aérodynamique A(k, Mach) représente la force sur le point i dû à un déplacement d'une unité au point j, et on appelle ce point un coefficient aérodynamique d'influence.

La fréquence réduite *k* représente une mesure de l'instabilité de l'écoulement d'air et exprime la fréquence d'oscillation exprimé en rad/s multiplié par la longueur de référence et divisé par la vitesse vraie de l'avion, comme suite:

$$k = \frac{\omega b}{V} \tag{2.7}$$

Présentation des méthodes d'analyse du battement

2.1 Méthode k

La méthode k, aussi connue sous le nom de "American method", a été développée par Theodorsen (1935) qui a introduit la modélisation aérodynamique dans l'analyse des vibrations sous une forme complexe et par suite l'analyse de battement est devenue une analyse exigeant les connaissances de l'arithmétique complexe.

En même temps, Theodorsen a présenté une atténuation structurale complexe artificielle, proportionnelle à la rigidité, pour analyser le mouvement harmonique de la structure. L'analyse de battement est devenue un problème de valeurs propres doubles dans la fréquence et la vitesse qui est résolu par une méthode itérative, en utilisant la fréquence réduite du mouvement harmonique considéré comme paramètre d'itération, ce qui nous conduit aux conditions neutres stables (fréquences et des vitesses de battement) auxquelles aucun amortissement artificiel n'est plus exigé.

L'équation de base pour la méthode d'analyse du phénomène de battement k est :

$$\left[-M_{hh}\omega^2 + iB_{hh}\omega + (1+ig)K_{hh} - \left(\frac{1}{2}\rho V^2\right)Q_{hh}(k,Mach)\right]\left\{u_h\right\} = 0$$
 (2.8)

où:

M_{hh} matrice modale d'inertie ou de masse, généralement diagonale (mais pas nécessairement).

B_{hh} matrice modale d'amortissement

K_{hh} matrice modale de rigidité, généralement diagonale (mais pas nécessairement);

peut être complexe, avec l'amortissement structurel réel; la matrice est singulière au cas où des modes rigides sont analysés et pas des modes élastiques

Mach	nombre de Mach
k	fréquence réduite définie en étant $k = \omega \bar{c}/2V$
\bar{c}	longueur de référence, la corde du profil d'aile
$Q_{hh}(k, Mach)$	matrice des coefficients d'influence aérodynamiques définie pour un
	nombre de $Mach$ et une fréquence réduite k donnée
ω	fréquence angulaire, $\omega = 2\pi f$
g	coefficient d'amortissement structurel
ρ	densité de l'air
V	vitesse vraie de l'avion
\mathbf{u}_{h}	vecteur modal d'amplitude

Note: k, V et ω ne sont pas des quantités indépendantes.

Dans la méthode k, le terme aérodynamique est converti dans une masse aérodynamique équivalente :

$$\left[-\left[\mathbf{M}_{hh} + \frac{\rho}{2} \left(\frac{\overline{c}}{2k} \right)^2 \mathbf{Q}_{hh} \left(k, Mach \right) \right] \frac{\omega^2}{1 + ig} + \mathbf{B}_{hh} \frac{i\omega}{\sqrt{1 + ig}} + \mathbf{K}_{hh} \right] \left\{ u_h \right\} = 0 \quad (2.9)$$

Le terme qui contient B_{hh} dans l'équation précédente est multiplié par $\sqrt{l+ig}$ pour une convenance mathématique, et il est valide seulement dans le phénomène de battement, quand g=0. L'équation (2.9) est résolue en tant qu'un problème aux valeurs propres pour une série de valeurs pour les paramètres Mach, k et ρ . La valeur propre complexe est $\omega^2/(1+ig)$, qui peut être interprétée en fonction des valeurs réelles ω et g. La vitesse vraie V est calculée à partir de l'équation $V=\omega \overline{c}/2k$. Le phénomène de battement se produit pour les valeurs de Mach, k et ρ pour lesquelles le terme d'amortissement g=0.

Les solutions du phénomène de battement sont calculées seulement pour g = 0, puisque les termes de la force aérodynamique sont validés pour un mouvement sinusoïdal et on sait que g n'est pas un amortissement physique.

Dans le logiciel MSC/Nastran l'équation (2.9) est écrite sous la forme suivante:

$$\left[\left[\left(\frac{2k}{\overline{c}}\right)^{2} \mathbf{M}_{hh} + \frac{\rho}{2} \mathbf{Q}_{hh} \left(k, Mach\right)\right] \left(\frac{-V^{2}}{1 + \mathrm{i}g}\right) + \left(\frac{2k}{\overline{c}}\right) \mathbf{B}_{hh} \frac{\mathrm{i}V}{\sqrt{1 + \mathrm{i}g}} + \mathbf{K}_{hh} \right] \left\{u\right\} = 0 \quad (2.10)$$

La nouvelle valeur propre obtenue est:

$$p^2 = \left(\frac{-V^2}{(1+ig)}\right) \tag{2.11}$$

L'équation (2.11) peut être écrite comme suite:

$$p^{2} = -V^{2} \frac{(1-ig)}{1+g^{2}} = a+ib$$
 (2.12)

d'où

$$g = -\frac{b}{a} \tag{2.13}$$

$$V = \sqrt{-\frac{\left(a^2 + b^2\right)}{a}}\tag{2.14}$$

$$f = \frac{kV}{\pi \overline{c}} \tag{2.15}$$

Dans la version 66 du même logiciel MSC/Nastran, la valeur propre est approximée par l'équation suivante:

$$p = -V(g/2 + i) \tag{2.16}$$

d'où

$$V = \operatorname{Im}(p) \qquad g = 2\operatorname{Re}(p)/V \qquad f = \frac{kV}{\pi \overline{c}} \qquad (2.17)$$

La méthode k d'analyse de battement est un procédé itératif où les valeurs des V, g et $f=\omega/2\pi$ sont résolues pour différentes valeurs de Mach, de k, et de ρ . Les représentations graphiques de l'amortissement en fonction de la vitesse peuvent être utilisées pour calculer la vitesse d'apparition du battement, là où g devient positif en passant par zéro.

2.2 Méthode pk

La méthode pk, est connue sous le nom de "British method". Les forces aérodynamiques sont introduites dans les équations du mouvement par des termes de l'amortissement et de rigidité qui sont dépendants de la fréquence. Dans cette représentation, les termes aérodynamiques changent lentement en fonction de la fréquence réduite, contrairement à la méthode k. Un procédé itératif est nécessaire pour "aligner" la valeur propre de la fréquence avec la fréquence réduite en chaque mode.

L'équation de base pour l'analyse du battement par la méthode pk est :

$$\left[M_{hh} p^2 + \left(B_{hh} - \frac{1}{4k} \rho \overline{c} V Q_{hh}^{I} / k \right) p + \left(K_{hh} - \frac{1}{2} \rho V^2 Q_{hh}^{R} \right) \right] \left\{ u_h \right\} = 0$$
 (2.18)

où:

Q_{hh} partie imaginaire du coefficient de la matrice modale des forces aérodynamiques généralisées

Q^R_{hh} partie réelle du coefficient de la matrice modale des forces aérodynamiques généralisées

p valeur propre complexe, $p = \omega (\gamma \pm i)$

 \overline{C} longueur de référence, chorde

k fréquence réduite définie en étant $k = \omega \overline{c}/2V$

 γ coefficient de traînage, "transient decay rate coefficient"; $(g = 2 \gamma)$

 $\left\{\overline{\eta}\right\}$ coordonnées modales généralisées

On mentionne que la fréquence circulaire et la fréquence réduite ne sont pas indépendantes car $k = \omega \bar{c}/2V$, et en plus,

$$k = (\overline{c}/2V)\operatorname{Im}(p)[0,1] \tag{2.19}$$

Dans l'équation (2.18) tous les termes des matrices sont réels et cette équation peut être écrite sous la forme de l'espace d'état comme suite:

$$[A - pI] \left\{ \overline{u}_h \right\} = 0 \tag{2.20}$$

où A est la matrice réelle suivante:

$$[A] = \begin{bmatrix} 0 & I \\ -M^{-1} \left[K_{hh} - \frac{1}{2} \rho V^{2} Q_{hh}^{R} \right] & -M^{-1} \left[B_{hh} - \frac{1}{4k} \rho \overline{c} V Q_{hh}^{I} / k \right] \end{bmatrix}$$
(2.21)

et $\left\{ \overline{\eta}\right\}$ inclut maintenant les déplacements et les vitesses modaux :

$$\left\{ \begin{array}{l} \overline{\eta} \right\} = \begin{Bmatrix} \eta \\ \dot{\eta} \end{Bmatrix} \tag{2.22}$$

Les valeurs propres de la matrice [A] sont soit réelles (k = 0) où complexes conjuguées, associés par couples des racines $(k \neq 0)$. Les racines réelles indiquent des modes rigides ou des modes structuraux de divergence.

Pour les racines réelles, l'amortissement est exprimée en terme du coefficient de traînage γ , qui représente la distance mesurée dans la longueur de corde à la demi (ou double) amplitude :

$$g = 2\gamma = \frac{2p\overline{c}}{(\ln 2)V} \tag{2.23}$$

Pour une vitesse donnée, la solution satisfaisante des équations (2.18) et (2.19) est trouvée par une méthode itérative.

Pour les racines réelles, l'itération débute pour un k=0. Q_{hh}^I et Q_{hh}^R sont obtenus par l'extrapolation des valeurs Q(k, Mach) calculées auparavant. Ces valeurs sont remplacées dans l'équation (2.20), qui est résolue pour les valeurs propres de la matrice [A].

Les racines réelles uniquement (par exemple, les valeurs propres réelles de la matrice [A]) sont solutions de l'équation (2.18) car seulement elles peuvent satisfaire aussi l'équation (2.19).

L'itération débute, pour les racines complexes avec

$$k_1^{(0)} = \omega_{11}^{(0)} \left(\frac{c}{2V}\right) \tag{2.24}$$

pour le premier mode. Le coefficient Q(k, Mach) est obtenu par itérations et les valeurs propres complexes sont calculées comme suite:

$$p_{rs}^{(j)} = \omega_{rs}^{(j)} \left(\gamma_{rs}^{(j)} \pm i \right) \tag{2.25}$$

où r est le numéro du mode oscillant. Les modes sont arrangés après la fréquence $\omega_{ls} < \omega_{2s} < \dots$

La prochaine estimation de la fréquence réduite est donnée par l'équation suivante:

$$k_s^{(j)} = \omega_{ss}^{(j)} \left(\frac{\overline{c}}{2V}\right) \tag{2.26}$$

L'itération continue jusqu'à ce que la converge apparaisse. Au cas où on considère les valeurs propres complexes convergées $p_{rs}^{(c)} = \omega_{rs}^{(c)} \left(\gamma_{rs}^{(c)} \pm i \right)$ et si $p_{ss}^{(c)}$ satisfait les équations (2.18) et (2.19), alors la recherche pour le prochain mode oscillant débute avec l'incrémentation de s avec une unité, et la première estimation de la fréquence réduite devient :

$$k_s^{(0)} = \omega_{s,s-1}^{(c)} \left(\frac{\overline{c}}{2V}\right)$$
 (2.27)

L'itération va continuer ainsi pour tous les autres modes. Le critère de convergence est donné par :

$$\begin{vmatrix} k_s^{(j)} - k_s^{(j-1)} \end{vmatrix} < \varepsilon \quad \text{pour} \quad k_s^{(j-1)} < 1.0,$$
ou
$$\begin{vmatrix} k_s^{(j)} - k_s^{(j-1)} \end{vmatrix} < \varepsilon k_s^{(j-1)} \quad \text{pour} \quad k_s^{(j-1)} \ge 1.0$$
(2.28)

où ϵ est défini par utilisateur, sa valeur par défaut est 0.001, s est le numéro de mode, et j est le numéro de la présente itération.

L'avantage principal de la méthode pk par rapport à la méthode k est qu'elle produit directement les résultats, en partant de la valeur donnée de la vitesse, tandis que la méthode k exige des itérations supplémentaires pour calculer la fréquence réduite d'apparition du battement.

Son algorithme (figure 4) consiste à fixer un nombre de *Mach*, et de calculer les valeurs propres pour un nombre donné de vitesses par un processus itératif sur la fréquence réduite. Ainsi on obtient les valeurs propres du système à un nombre de *Mach* donné et pour une certaine plage de vitesses.

Figure 4 Algorithme de la méthode pk

L'essence de l'aéroélasticité est la prédiction des instabilités structurelles sur un avion. Ces instabilités se traduisent par des phénomènes de battement.

Pour un avion, par la variation du nombre de Mach et de la pression dynamique, c'est à dire par la variation de la vitesse, de l'altitude, ou des deux, le phénomène de battement arrive.

2.3 La méthode des moindres carrés LS

Dans les équations décrivant la dynamique des systèmes aéroservoélastique, tous les termes liés aux forces aérodynamiques Q(k, M) présentent de non linéarités par rapport à la fréquence réduite k. La multitude et la puissance des algorithmes d'analyse et de modélisation appliquées aux systèmes linéaires fournissent une profonde motivation à l'obtention d'un système aéroservoélastique linéaire dans le domaine de Laplace s.

Ainsi émerge l'idée de convertir la matrice des forces aérodynamiques généralisées Q du domaine de la fréquence réduite k, exprimée sous la forme Q(k, M), dans le domaine de Laplace s en approchant la matrice Q par des fonctions rationnelles de la variable de Laplace. Généralement la linéarisation fait apparaître de nouveaux états, appelés retards aérodynamiques, pour décrire la dépendance de la matrice Q par rapport à la fréquence réduite k.

Plus spécifiquement, l'équation (2.6) peut s'écrire sous la forme suivante dans le domaine de Laplace, en calculant sa transformée de Laplace :

$$\left[Ms^{2} + Bs + K + \frac{\rho V^{2}}{2} Q(s) \right] \eta(s) = 0$$
 (2.28)

où s est la variable de Laplace. Dans ce contexte, la matrice Q(s) peut être représentée par un rapport des polynômes en s.

La méthode de linéarisation par moindres carrés (Least Squares - LS) consiste à approximer la matrice des forces aérodynamiques généralisées Q par des polynômes de Padé à l'aide d'une minimisation moindres carrés. Cette linéarisation introduit des nouveaux modes aérodynamiques (aerodynamic lag terms) afin de décrire la dépendance de la matrice Q de la fréquence réduite k.

Toutes les matrices aérodynamiques sont linéarisées et présentées en polynômes matriciels fractionnels. Cependant, les équations de l'espace d'état renferment les états augmentés représentant les retards aérodynamiques. Leur nombre dépend du nombre de racines du dénominateur dans l'approximation rationnelle.

Les forces aérodynamiques Q(k, M) calculées par la méthode des doublets DLM sont exprimées sous la forme suivante :

$$Q(k) = A_0 + ikA_1 + (ik)^2 A_2 + \frac{ik}{ik + \beta_1} A_3 + \frac{ik}{ik + \beta_2} A_4 + \dots$$
 (2.29)

où les A_i sont des coefficients de dimension égale à la matrice Q et déduits de l'algorithme moindres carrés, et les β_j représentent les retards aérodynamiques introduits arbitrairement (supposant que j = 1, 2), et

$$\frac{ik}{ik + \beta_i} = \frac{k^2}{k^2 + \beta_i^2} + \frac{ik\beta_j}{k^2 + \beta_i^2}$$
 (2.30)

La séparation des parties réelles et imaginaires dans l'équation (2.29) donnera ensuite :

$$\tilde{Q}_{R}(k) = Q_{R}(k) - A_{0} = \begin{bmatrix} -k^{2}I & \frac{k^{2}}{k^{2} + \beta_{1}^{2}}I & \frac{k^{2}}{k^{2} + \beta_{2}^{2}}I \end{bmatrix} \begin{bmatrix} A_{2} \\ A_{3} \\ A_{4} \end{bmatrix} = S_{R}(k)\tilde{A}$$
(2.31)

$$\tilde{Q}_{1}(k) = Q_{1}(k)/k - A_{1} = \begin{bmatrix} 0 & \frac{\beta_{1}}{k^{2} + \beta_{1}^{2}} I & \frac{\beta_{2}}{k^{2} + \beta_{2}^{2}} I \end{bmatrix} \begin{bmatrix} A_{2} \\ A_{3} \\ A_{4} \end{bmatrix} = S_{1}(k)\tilde{A}$$
 (2.32)

Pour une petite valeur de la fréquence réduite $k=k_1$, les coefficients prennent la forme suivante:

$$A_{0} = Q_{R}(k_{1})$$

$$A_{1} = \frac{Q_{1}(k_{1})}{k_{1}} - \frac{A_{3}}{\beta_{1}} - \frac{A_{4}}{\beta_{2}}$$
(2.33)

En remplaçant l'équation (2.33) dans l'équation (2.32), on peut calculer ensuite les coefficients inconnus A_3 et A_4 . Cependant, la solution résultante reste sensible au choix de β_j . Les équations (2.30) et (2.32), données pour un nombre des fréquences réduites k_i , peuvent être re-arrangées comme suite :

$$\begin{bmatrix} \tilde{Q}_{R}(k_{2}) \\ \tilde{Q}_{I}(k_{2}) \\ \vdots \\ \tilde{Q}_{R}(k_{NF-1}) \\ \tilde{Q}_{I}(k_{NF-1}) \end{bmatrix} = \begin{bmatrix} \tilde{S}_{R}(k_{2}) \\ \tilde{S}_{I}(k_{2}) \\ \vdots \\ \tilde{S}_{R}(k_{NF-1}) \\ \tilde{S}_{I}(k_{NF-1}) \end{bmatrix} \begin{bmatrix} A_{2} \\ A_{3} \\ A_{4} \end{bmatrix}$$

$$(2.34)$$

où

$$\tilde{\tilde{Q}} = S\tilde{A}$$

et la solution donnée par la méthode des moindres carrés LS devient :

$$\tilde{\mathbf{A}} = \left[\mathbf{S}^{\mathsf{T}} \mathbf{S} \right]^{-1} \mathbf{S}^{\mathsf{T}} \tilde{\tilde{\mathbf{Q}}} \tag{2.35}$$

et on calcule, par cette dernière équation, les coefficients requis A2, A3 et A4.

Cette méthode de calcul peut être facilement appliquée pour un plus grand nombre de retards aérodynamiques que deux (la méthode LS fonctionne très bien pour la plage des termes de retard comprise entre 2 et 10 termes de retard).

Finalement, l'équation (2.6) peut être écrit comme:

$$\hat{\hat{K}}\eta + \hat{\hat{B}}\dot{\eta} + \hat{\hat{M}}\ddot{\eta} + = \frac{\rho V^2}{2} A_3 X_1 + \frac{\rho V^2}{2} A_4 X_2 + \dots = 0$$
 (2.36)

où

$$\hat{K} = \hat{K} + \frac{\rho V^2}{2} A_0$$
, $\hat{B} = \hat{B} + \frac{\rho V^2}{2} (b/V) A_1$, et $\hat{M} = \hat{M} + \frac{\rho V^2}{2} (b/V) A_2$

On va calculer ensuite:

$$X_{j} = \frac{s\eta}{\left[s + \left(\frac{V}{b}\right)\beta_{j}\right]}$$
 (2.37)

$$\dot{X}_{j} + \left(\frac{V}{b}\right)\beta_{j}X_{j} = \dot{\eta} \tag{2.38}$$

Les équations (2.36), (2.37) et (2.38) peuvent être récrites sous la forme de l'équation matricielle suivante :

$$\begin{bmatrix} I & & & \\ & \hat{M} & & \\ & & I & \\ & & & I \end{bmatrix} \begin{bmatrix} \dot{\eta} \\ \ddot{\eta} \\ \dot{X}_{1} \\ \dot{X}_{2} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 & 0 \\ -\hat{K} & -\hat{B} & -\frac{\rho V^{2}}{2} A_{3} & -\frac{\rho V^{2}}{2} A_{4} \\ 0 & I & -\frac{V}{b\beta_{1}} I & 0 \\ 0 & I & 0 & -\frac{V}{b\beta_{2}} I \end{bmatrix} \begin{bmatrix} \eta \\ \dot{\eta} \\ X_{1} \\ X_{2} \end{bmatrix}$$
(2.39)

οù

$$M'\dot{X}'=K'X' \tag{2.40}$$

d'où on peut déduire:

$$\dot{X}' = (M')^{-1} K'X' = RX'$$
 (2.41)

À ce stage, l'équation générale de la dynamique d'un système aéroélastique écrite sous une forme matricielle (2.39) est dépendante d'un seul paramètre, la vitesse vraie V. On remarque aussi que la linéarisation de la matrice des forces aérodynamiques Q est effectuée pour un nombre de Mach donné, et donc l'équation (2.39) est définie pour un nombre Mach de référence.

Le vecteur X de l'espace d'état peut être réarrangé comme suite:

$$X'' = \left[\begin{pmatrix} \eta_{r} & \eta_{e} & \dot{\eta}_{r} & \dot{\eta}_{e} & X_{1} & X_{2} \end{pmatrix} \begin{pmatrix} \eta_{\delta} & \dot{\eta}_{\delta} \end{pmatrix} \right] = \left[\hat{X} \quad \mathbf{u} \right]$$
 (2.42)

et l'équation (2.41) est écrite sous la forme suivante:

$$\begin{bmatrix} \dot{\hat{\mathbf{X}}} \\ \dot{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{1,1} & \mathbf{R}_{1,2} \\ \mathbf{R}_{2,1} & \mathbf{R}_{2,2} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{X}} \\ \mathbf{u} \end{bmatrix}$$
 (2.43)

Des méthodes d'optimisation sont introduites dans l'algorithme des moindres carrés LS dans le but de calculer les valeurs optimales de retards aérodynamiques β_i . Ces méthodes vont minimiser l'erreur quadratique d'approximation entre la matrice des forces

aérodynamiques Q(k, M) calculée par la méthode des doublets DLM (Doublet Lattice Method) et son approximation par des polynômes de Padé donnée par l'éq. (2.29).

La méthode des moindres carrés *LS* est loin d'être performante. Le but de l'introduction de cette linéarisation est de valider le principe de la linéarisation des forces aérodynamiques dans le contexte de la description globale de la dynamique de l'avion et non pas la qualité de l'approximation.

CHAPITRE 3

DESCRIPTION DE LA MÉTHODE DES DOUBLETS DLM

La méthode des doublets (*Doublet Lattice Method*) est applicable sur les ailes des différentes formes et cette méthode est utilisée aussi sur des configurations (ailes et d'autres parties de l'avion) tridimensionnelles complexes. Elle tient compte de la déformation de l'aile selon la longueur de la corde, un aspect très important quand on utilise des ailes avec un petit allongement. Elle est utilisée dans le régime subsonique. On peut introduire des corrections empiriques pour l'effet transsonique, la séparation de l'écoulement de l'air ou d'autres phénomènes qui ne sont pas très bien représentés dans la théorie linéaire de l'aérodynamique.

La méthode DLM a été premièrement présentée par Giesing, Kalman et Rodden dans les années 60 et, au cours du temps, plusieurs versions du programme pour la méthode DLM ont été réalisées. La compagnie Boeing a utilisé deux versions : la première version pour le département d'analyse de phénomène de battement et la deuxième version pour le calcul des charges dues aux rafales et aux manoeuvres. La version de la méthode DLM a été intégrée dans le logiciel MSC/NASTRAN en 1977 sous le nom N5KA et cette version résoudrait l'interférence des surfaces de portance multiples et des corps minces (Rodden, 1997). La deuxième version s'appelait N5KQ et contenait des améliorations dans l'analyse des surfaces de portance (Rodden, 1996).

Le point du départ pour la conception de la méthode des doublets DLM est l'équation différentielle du potentiel d'accélération de perturbation. En utilisant la procédure du théorème de Green, l'intégrale de volume de l'équation différentielle par rapport au temps est convertie dans une intégrale de surface (voir l'éq. (3.1)). Dans cette équation, dans laquelle le terme gauche de l'équation est connu et représente la déflexion vers le bas sur la surface géométrique, pendant que la différence inconnue de pression sur la

surface fait partie de la fonction à intégrer du côté droit, ainsi la solution générale a la forme suivante :

$$w(x,y) = \iint_{S} K(x,y;\xi,\eta:M_{*},k) \Delta C_{p} \, dS(\xi,\eta)$$
(3.1)

où $K(x,y;\xi,\eta:M_*,k)$ est la fonction des coefficients d'influence aérodynamiques et représente la déflexion vers le bas dans le point des coordonnées (x,y). Cette fonction est due à une différence de pression unitaire appliquée dans le point de coordonnées (ξ,η) et elle est exprimée en fonction du nombre de Mach et de la fréquence réduite k.

Le deuxième terme de la fonction à intégrer, ΔC_p , est la différence de pressions à travers de la surface, c'est-à-dire la pression sur l'intrados de la surface moins la pression sur l'extrados.

La partie gauche de l'équation, w(x,y), est la déflexion vers le bas sur la surface, et elle est calculée à partir du mouvement de la surface. L'intégration est effectuée sur la surface d'aile S.

La solution de l'équation (3.1) est obtenue en subdivisant la surface d'aile en panneaux trapézoïdaux et en supposant que la différence ΔC_p est constante sur chaque panneau.

Si la déflexion w(x, y) est connue à un certain point dans chaque panneau n, alors l'équation (3.1) devient :

$$w(x,y) = \sum_{n=1}^{N} \Delta C_{p_n} \iint_{S_n} K(x,y;\xi,\eta:M_{\infty},k) \, dS(\xi,\eta)$$
 (3.2)

où ΔC_{p_n} est la différence de pressions, et S_n est la surface du $n^{\text{ième}}$ panneau. L'intégrale peut être évaluée maintenant, car elle ne contient plus d'inconnues. Si un point de déflexion est défini pour chaque panneau, le résultat est un ensemble des équations avec le nombre d'inconnues égal au nombre des panneaux défini sur la surface de l'aile.

On va écrire l'équation (3.2) sous la forme matricielle suivante :

$$\mathbf{w} = [D] \{ \Delta C_p \} \tag{3.3}$$

d'où la différence de pression devient :

$$\left\{ \Delta C_p \right\} = \left[D \right]^{-1} \left\{ w \right\} \tag{3.4}$$

La matrice [D] dépend de la géométrie du modèle (des surfaces composantes), du nombre de Mach et de la fréquence réduite k. Dans le régime subsonique, chaque point de déflexion est pris au 3/4 de la corde avec la ligne centrale du panneau et on va obtenir une ligne de doublets alignée selon l'envergure. On utilise la théorie des profils minces situés dans un écoulement constant.

Une autre application de la méthode de doublets est l'intégration sur la surface entière des panneaux pour le noyau constant. Suite à cette intégration, on obtient une valeur irrégulière par la multiplication du résultat obtenu en utilisant le rapport du noyau instable au noyau régulier, ce rapport étant évalué au centre du panneau.

La surface portante est considèreé d'épaisseur nulle. Les conditions de frontière dues à l'utilisation du potentiel d'accélération consistent des déflections vers le bas seulement sur la surface d'aile. La méthode est relativement simple à utiliser pour des surfaces multiples, des différents types de géométries et des différents angles dièdres.

Dans la plupart des programmes, un corps cylindrique est également disponible pour décrire les nacelles et il est composé d'un cylindre des panneaux avec la section transversale constante. Les panneaux du cylindre sont traités sur le même mode en tant que des panneaux sur l'aile portante. Le corps est d'abord considéré comme une plaque. Les corps fermés sont considérés comme des combinaisons d'un corps de portance et d'une coque d'interférence.

La géométrie du modèle doit être choisie de telle sorte que les axes de d'articulation des gouvernes de commande et les lignes de pli se trouvent sur les frontières des panneaux. Aucune autre condition de disposition particulière n'est nécessaire pour les surfaces de commande sauf qu'on doit détenir un assez grand nombre des panneaux définis sur la surface pour définir correctement la pression. L'effet de la rotation autour de l'axe

d'articulation réside dans une discontinuité finie dans la pente de la surface et dans une singularité dans la distribution de pression, donc il est préférable d'avoir plus de panneaux sur la longueur de la corde pour mieux décrire la distribution de pression.

Les forces généralisées sont calculées en Nastran ou STARS (programmes d'éléments finis) par la méthode de doublets DLM, dans le but de calculer les vitesses et fréquences de battement sur l'avion ATM.

À partir de l'analyse des éléments finis du modèle un ensemble de formes modales est obtenu qui est interpolé pour obtenir les déplacements modaux aux points de déflexion des panneaux (à trois-quarts de la corde sur la ligne centrale du panneau).

Les déplacements sont différenciés dans le but d'obtenir les pentes dans la direction de l'écoulement, et ensuite la déflexion est calculée sous la forme suivante :

$$V\left(\frac{dz(x,y)}{dx} + ik\frac{z(x,y)}{\overline{c}}\right)$$
 (3.5)

où V est la vitesse de l'écoulement non perturbé, z(x, y) est la fonction modale de déplacement et \overline{C} la longueur de référence utilisée dans la définition de la fréquence réduite k.

Les résultats obtenus par la méthode DLM sont sensibles aux allongements des panneaux et, dans le but d'obtenir des résultats conformés, les valeurs de ces allongements devraient se trouver entre 0.6 et 1.5. Ceci signifie que l'augmentation du nombre des panneaux sur la longueur de la corde demande l'augmentation du nombre des panneaux au long de l'envergure. Cette augmentation au long de l'envergure se réalise plus rapidement qu'au long de la corde.

CHAPITRE 4

DONNÉES D'ENTRÉE

Dans ce chapitre on va présenter les données d'entrée pour tous les fichiers utilisés en STARS, principalement *solids* et *aero* (la structure et l'aérodynamique de l'avion)

- 4.1 Données d'entrée pour le fichier solids
- 4.1.1 Paramètres de base
- 4.1.1.1 Modèle structural

NN, NEL, NMAT, NMECN, NEP, NET, NLGCS, NMANGL, NSTACK, MAXLEL 119, 298, 1, 4, 22, 5, 0, 0, 0

Tableau I

Description des paramètres de base pour le modèle structural

NN	119	Nombre total des nœuds			
NEL	298	Nombre total d'éléments			
NMAT	1	Nombre total des types des matériaux des éléments			
NMECN	4	Constante définissant les matériaux élastiques NMECN = 4 pour un matériau isotrope, analyse élastique			
NEP	22	Nombre total des types des propriétés pour les éléments de type ligne (type 1)			
NET	5	Nombre total des types des propriétés pour les éléments de type plaque (types 2 et 3)			
NLGCS	0	Nombre total de systèmes des coordonnées local ou global			
NMANGL	0	Nombre total des types des angles des matériaux			
NSTACK	0	Nombre total des types de éléments de type plaque en matériau composite			
MAXLEL	0	Nombre maximum des couches dans un élément en matériau composite			

4.1.1.2 Charges et déplacements

NTMP, NPR, NSPIN, NC, NBUN, NLSEC, NCNTRL, NOUT, NEXP, NNA 0, 0, 0, 0, 0, 10, 226, 0, 0

Tableau II

Description des paramètres de base pour les charges et déplacements

	· · · · · · · · · · · · · · · · · · ·				
NTMP	0	Nombre total des types de températures des éléments			
NPR	0	Nombre total des types de pression uniforme des éléments			
NSPIN	0	Nombre total des types des rotations différents des éléments			
NC	0	Nombre des cas de charges nodales pour IPROB = 1-7			
NBUN	0	Nombre total des conditions de connectivité des déplacements nodales interdépendants			
NLSEC	0	Nombre total des conditions aux limites des éléments de type ligne, en excluant les cas des extrémités rigides pures ou articulées			
NCNTRL	11	Nombre total des modes rigides des surfaces de contrôle utilisées dans l'analyse aéroservoélastique et aussi pour générer les modes rigides parfaits du corps			
NOUT	226	Nombre total de nœuds des sorties lorsque la fonction d'interpolation modale directe est effectuée			
NEXP	0	Nombre total de pressions externes uniformes appliquées sur les membranes			
NNA	0	Nombre de nœuds CFD utilisé pour l'interpolation structurale des pressions			

4.1.1.3 Données définissant la nature de la solution requise

IPROB, IEIG, IDRS, IBAN, IPLUMP, IMLUMP, INMM, IINTP, IGLE, MATFMT

1, 1, 0, 0, 0, 1, 0, 1, 0, 2

Tableau III

Description des données définissant la nature de la solution requise

IPROB	1	Indice pour le type de problème d'analyse de vibration libre et non amortie des:
		1, structures sans rotation; 2, structures en rotation.
IEIG	1	Nombre entier définissant la solution du problème de valeurs propres:
		0 , pour la solution basée sur la méthode d'itération progressive simultanée (IPROB =1, 2, 3, 8, 9, 10 et 11);
		1, pour une technique de solution alternative basée sur le procédé de Lanczos (IPROB = 1, 2, 3, ou 9);
		2, pour la solution basée sur la séquence Sturm et la méthode d'itération inverse (pour IPROB = 4, 5, 6 et 7)
IDRS	0	Indice pour l'analyse de la réponse dynamique :
		0, aucune analyse de la réponse;
		1, exécute l'analyse de la réponse.
IBAN	0	Option pour la minimisation de la largeur de la bande :
		0, exécute la minimisation; 1, minimisation non requise.
IPLUMP	0	Indice pour les charges externes nodales :
		0, aucune entrée de la charge ;
		1, entrée de la charge nodale concentrée pour IPROB = 8 et 9.
IMLUMP	1	Indice pour la masse ponctuelle nodale:
		0, aucune masse ponctuelle;
		1, entrée de la masse nodale ponctuelle (IPROB = 1-7).

Tableau III (suite)

INMM	0	Indice pour une matrice de masse nodale de l'ordre 6:			
		0, aucune matrice de masse; 1, entrée de la matrice de masse			
		nodale (IPROB = 1-7).			
IINTP	1	Entier définissant les données modales pour l'interpolation directe: 0, l'interpolation non requise, 1, effectue l'interpolation			
		sur les données modales calculées par STARS – SOLIDS.			
IGLE	0	Indice pour l'élément général: 0, aucune entrée			
MATFMT	2	Format d'écriture de la matrice incomplète (matrice dans laquelle de nombreux éléments sont identiques, habituellement des zéros): 0, format original; 2, format incomplet			

4.1.1.4 Paramètres de base supplémentaires

IPREC, ITOLQW, IPRINT, INDATA, IERCHK, INCFOR, IEZDBC, IIDBC, IMATE, NLOOP

2, 0, 2, 0, 1, 0, 0, 1, 0, 0

Tableau IV

Description des paramètres de base supplémentaires

IPREC	2	Spécification pour la précision de la solution ; 1. précision simpl		
		2. précision double		
ITOLQW	0	Indice pour les éléments quadrilatères		
IPRINT	2	Option d'impression :		
		0, l'impression des résultats finals,		
		1, l'impression des matrices globales de rigidité (K), de masse (M)		

Tableau IV (suite)

IPRINT	2	et d'amortissement ou de Coriolis (C), et les déformations, les efforts, et les caractéristiques de convergence de racines ;
		2, l'impression des sorties comme pour IPRINT = 1 mais sans
		l'impression des matrices de K, M et C.
INDATA	0	Option de données d'entrée:
		0, Les matrices de base sont automatiquement calculées;
		1, Lire la moitié symétrique supérieure des matrices K, M et C à
		partir des fichiers d'entrée de l'utilisateur par ligne
IERCHK	1	Nombre entier définissant le niveau de vérification de l'erreur dans les données d'entrée spécifiées par l'utilisateur :
		0, Niveau habituel de vérifications des erreurs,
		1, Vérifications des données supplémentaires
INCFOR	0	Nombre entier définissant le format de données d'entrée :
		0, Format de base; 1, Format alternatif et 2, Format libre
IEZDBC	0	Nombre entier pour imposer ZDBC pour les problèmes avec zéro ou une valeur négative sur la diagonale de la matrice K :
		0, Aucune application de ZDBC; 1, Impose ZDBC
IIDBC	1	Nombre entier pour imposer la stratégie de la solution IDBC et pour transférer les charges de pressions CFD à des structures modélisées par des mèches ;
		0, pour un nombre très grand d'IDBC ou de NNA; 1, solution
		interne (option préférée)
IMATE	0	Indice pour la suppression des matrices K et M dans EIGLAN;
		0, ne les supprime pas et permet l'exécution d'EIGSOL et des
		réponses dynamiques; 1, Effacer
NLOOP	0	Nombre d'incréments (pas) dans l'application de charges externes
		(utilisée pour IPROB = 11); par défaut NLOOP = 1.

4.1.1.5 Caractéristiques pour la solution de vecteurs propres

NRMODE, NR, INORM, PU, PL, TOL, TOLQW, IRMT

1, 20, 0, 630.0, 0.0, 0.0, 0, 0

Tableau V

Description des caractéristiques pour la solution de vecteurs propres

NRMODE	Indicateur du nombre de valeurs propres et vecteurs propres à calculer :					
		1, Calcule NR les plus petites racines (et vecteurs);				
		2, Calcule toutes les racines se trouvant entre PU et PL;				
		3, Calcule toutes les racines (et vecteurs) autour d'une valeur				
		centrale PU.				
NR	20	Nombre de racines à calculer.				
INORM	0	Indice pour la normalisation de vecteurs.				
PU	630.0	Limite supérieure des racines, rad/s				
PL	0.0	Limite inférieure des racines, rad/s				
TOL	0.0	Facteur de tolérance.				
TOLQW	0	Tolérance pour le facteur de déformations.				
IRMT	0	Indice pour la transformation des modes rigides du corps:				
		0, Pas de transformation,				
		1, Exécuter la transformation.				

4.1.2 Données nodales d'entrée

Ensemble de NN données nodales dans un système de coordonnées global GCS ou local LGCS.

IN, X, Y, Z, UX, UY, UZ, UXR, UYR, UZR, ILGCS, IZDRCS, IINC

1 300,0000 200,0000 0,0000 0 0 0 0 0 0 0

Tableau VI

Arrangement des données nodales d'entrée

IN	Indice du nœud courant		
XYZ	Coordonnées du nœud courant		
UX UY UZ	Déplacements du degré de liberté, trois translations selon les axes UX,		
UXR UYR	UY, UZ et trois rotations autour des axes UXR, UYR, UZR.		
UZR	On va considérer: 0, pour mouvement libre et 1, pour mouvement		
	contraint.		
ILGCS	Nombre entier indiquant le nombre de LGCS.		
IZDRCS	Nombre entier qui définit le déplacement du zéro pour la condition		
	aux limites du système de référence (0 pour les données dans le GCS		
	ou s'il y a un nombre d'ILGCS).		
IINC	Pour la génération de noeuds par incréments : IINC = 0, pour aucun		
	incrément; et 1, pour augmenter le nombre de noeuds de l'entrée		
	précédente par I jusqu'à ce que le nombre courant de noeuds est		
	atteint. Les coordonnées des noeuds intermédiaires sont linéairement		
	interpolées.		

Notes: Un trièdre trirectangle direct (X, Y, Z) doit être choisi pour définir le système global GCS. Chaque noeud structural est supposé avoir six degrés de liberté: trois translations sur UX, UY, UZ, et trois rotations sur UXR, UYR, UZR.

4.1.3 Entrées des éléments

IET, IEN, ND1, ND2, ND3, ND4, ND5, ND6, ND7, ND8, IMPP, IEPP/ITHTH, ITMPP, IPRR, IST, INC

Le tableau VII, ci-dessous, fournit une description des données d'entrée pour divers types des éléments :

Tableau VII
Types des éléments

	Ex	empl	e :	Description
	1	2	3	Description:
IET	1	2	3	Type d'élément; 1, ligne (barre, tige, poutre); 2, plaque quadrilatère, 3 plaques triangulaires
IEN	17	1	91	Numéro d'élément
ND1	1	6	36	Nombre de noeud pour des sommets
ND2	2	7	38	
ND3	39*	2	43	
ND4	IEC <u>1</u>	1	0	IECi nombre entier qui définit l'état de l'extrémité i
ND5	IEC <u>2</u>	0	0	d'élément ligne; 0, fini rigide;
ND6	0*)	0 ^{∇)}	0^0	*) ILGCS, nombre entier définissant le LGCS associé à un élément scalaire ressort de zéro longueur ; par défaut au GCS **) Index pour la présence du mode de flexion antisymétrique (0, oui; 1, non).
ND7	0	0	0	
ND8	0	0	0	
IMPP	1	1	1	Nombre entier qui définit le type du matériau
IEPP / ITHT	IEPP	ITH	ITH	IEPP - nombre entier définissant le type de propriété pour un élément type ligne, ou ITHTH – pour un
Н	11	1	4	élément type plaque

Tableau VII (suite)

ITMPP	0	0	0	Nombre entier qui définit le type de la température d'élément
IPRR	0	0	0	Nombre entier qui définit le type de pression d'élément
IST	0	0	0	Nombre entier qui définit le type de rotation d'élément
INC	0	0	0	Nombre entier pour la génération d'élément par incrément; 0, aucun incrément; J, pour incrémenter le nombre du nœud du élément précédent par J unités jusqu'à quand le nombre du noeud du élément courant est atteint.

Notes: Un système de coordonnées cartésien (règle de la main droite) est choisi pour définir n'importe quel élément dans le système local de coordonnées LCS.

N'importe quel nœud peut être choisi comme premier sommet d'un élément; l'axe local des x est défini selon la ligne qui relie les sommets 1 et 2.

Pour les éléments type ligne, le plan local x-y est défini en étant le plan qui contient les sommets 1 et 2, et le nœud indiqué en tant que troisième point.

Les sommets des éléments de type plaques (minces et épaisses) sont habituellement numérotés dans une séquence anti-horaire une fois observés de n'importe quel point situé sur la longueur de l'axe local positif z, figure 5.

Figure 5 Illustration des éléments de type ligne et de type plaque

4.1.3.1 Propriétés de base pour un élément de type ligne

Tableau VIII

Propriétés de base pour un élément de type ligne

IEPP	1	Nombre entier définissant le type de propriétés des éléments de type ligne
A	1.50	Surface de la section transversale
JX	37.50	Moment de torsion d'inertie autour de l'axe x de l'élément $(P, \text{ périmètre de la section transversale pour } \mathbf{IPROB} = 10)$
IY	18.80	Moment de l'inertie autour de l'axe des y de l'élément
IZ	18.80	Moment de l'inertie autour de l'axe des z de l'élément
SFY		A/ASY, facteur des l'aire de cisaillement (ASY) selon l'axe des y
SFZ		A/ASZ, facteur des l'aire de cisaillement (ASZ) selon l'axe des z
AU, AL		Limite supérieure et inférieure de l'aire transversale pour une solution optimisée

SFY et SFZ sont égales à 0.0, lorsqu'il n'y a pas d'effet de l'aire de cisaillement.

4.1.3.2 Épaisseur pour un élément de type plaque

Tableau IX Épaisseur pour un élément de type plaque

ITHTH	1	Type d'épaisseur de l'élément de type plaque	
TM	0.113	Épaisseur de l'élément de type membrane	
TB		Épaisseur de l'élément en flexion	
TS	E	Épaisseur de l'élément en cisaillement transversale	
TMU, TML		Limites supérieures et inférieures de l'épaisseur de la coque pour	
		la solution optimisée	

4.1.3.3 Propriétés du matériau

IMPP, MT, ISSSR E, MU, ALP, RHO, SIGYP, HP (material de type 1)

Tableau X
Propriétés du matériau

IMPP	1	Indice du matériau
MT	1	Type du matériau : 1, isotrope (11, pour un cas de contrainte plane, 12, pour un solide en révolution).
ISSSR		Nombre entier définissant un rapport spécial de contraintes tension: 0, aucune contrainte plane; 1, contrainte plane.
E	1.0E+07	Module de Young
MU	0.3	Coefficient de Poisson
ALP	0	Coefficient de dilatation thermique pour le matériau isotrope
RHO	.259E-03	Masse volumique, < slugs/ft ³ >
SIGYP		Limite apparente d'élasticité du matériau soumis à une charge axiale unitaire; peut être ignoré ou placé à 0.0 pour une analyse élastique
НР		Pente de la courbe de contraintes solides en fonction des contraintes plastiques, présumé constante et qui peut être ignorée ou placée à 0.0 pour une analyse élastique

4.1.4 Données nodales de masse

IN, IDOF, M, IDOFE, ILGCS

39 1 0.0195 3 40 1 0.1943 3 -1

Note:

Chaque ensemble de données doit être terminé en fixant une valeur négative pour IN.

Tableau XI

Données nodales de masse

IN	39	Nombre de nœuds
M	0.0195	Masse modale
IDOF	1	IDOF et IDOFE sont les degrés de liberté de début et de fin
IDOFE	3	assignés avec la même valeur de M; la valeur par défaut pour IDOFE est IDOF.
ILGCS		Nombre entier définissant le système de coordonnées local LGCS associé à un élément de ressort scalaire d'une longueur nulle; par défaut le système global de coordonnées GCS.

4.1.5 La spécification des points pour l'interpolation directe des données modales

(Requise si NOUT $\neq 0$)

$$(IOUTP (I), (ICONP (I, J), J = 1, 6), I = 1, NOUT)$$

Lire le point de sortie et un maximum de six points de connexion :

- 1 36
- 2 36 36 41
- 3 36 41 41 41
- 4 41

Tableau XII

L'interpolation directe des données modales

IOUTP (I)	Points de so	tie sur	les	lignes	d'interpolation	des	panneaux
	aérodynamiques						-
	Nœuds des él	ments f	ĭnis	calculés	par STARS-S	OLID	S dont la
ICONP (I, J)	moyenne des déflexion au poi				e pour calculer	la va	leur de la

4.1.6 Entrée de données pour les modes rigides de commande

(Requise si NCNTRL \neq 0)

INS, IDOF, DISP, INE, ININC

Données modales de déplacement pour le nombre de modes NCNTRL.

Tableau XIII

Entrée de données pour les modes rigides de commande

INS, INE	Nombre du premier et dernier mode ; la valeur prise par défaut pour INE est INS.
IDOF	Degré de liberté, une valeur entre 1 et 6.
DISP	Déplacement associé
ININC	Nombre entier définissant une valeur nodale par accroissement ; on augmente INS par ININC jusqu'à ce que INT soit atteint.

Chaque ensemble de données doit être terminé en plaçant une valeur négative pour IN.

Notes: Les solutions k et pk peuvent être exécutées avec ou sans la considération des modes rigides de commande. Au cas où les données ne sont pas incluses, des

changements appropriés doivent être réalisés au fichier ci-dessus et aux fichiers d'entrée suivants.

4.2 Données d'entrée pour le fichier - genmass

On prépare le fichier de données genmass.dat et à la sortie on obtient la matrice de masse généralisée (M).

ISTMN, NLVN, GR

Tableau XIV

Données de génération de la matrice de masse généralisée

ISTMN	7	Nombre entier indiquant le numéro du mode de départ
NLVN	40	Total nombre des points d'interpolation de vibration latérale aérodynamique
GR	386.088	Constante de la gravitation, < in/s ² >

Les points d'interpolation de vibration latérale considères

$$(LN (I), I = 1, NLVN)$$

(Requis si NLVN > 0)

LN (I) Numéro du point d'interpolation aérodynam	ique approprié
--	----------------

Notes: L'entrée d'une valeur *GR* est nécessaire pour convertir les données de la masse généralisée en poids généralisé, acceptable comme valeur dans le module AEROS. Au cas où l'interpolation directe du programme STARS est utilisée, alors le paramètre *LN* se rapporte aux points d'interpolation aérodynamiques appropriés définis dans la section 4.3.15. Les données doivent être emmagasinées dans le fichier *genmass.dat*.

4.3 Données d'entrée pour le fichier - aerol

Paramètres du fichier STARS-AEROS-AEROL utilisé pour effectuer le calcul des forces aérodynamiques par la méthode de panneaux.

4.3.1 Paramètres de base

(LC(I), I = 1, 40)

Tableau XV

Paramètres de base

LC(1)	Nombre entier définissant le type d'algorithme pour calculer les
	vitesses de battement et divergence:
	-1, analyse de battement par l'équation de type pk ;
	0, calcul uniquement des pressions;
	1, analyse de battement par l'équation de type k et solution pour
	l'équation écrite sous forme d'espace d'état;
	2, analyse de divergence
LC(2)	Nombre maximum des modes de vibration à utiliser dans
	l'analyse: 0 ≤LC(2) ≤ 50
LC(3)	Nombre des surfaces portantes à utiliser dans l'analyse
	aérodynamique pour le calcul des forces aérodynamiques
	généralisées par la méthode des doublets DLM ou par la méthode
	de pressions constantes. $0 \le LC(3) \le 30$
LC(4)	Nombre de vitesses réduites (VBO's) utilisées dans l'analyse:
	Si LC(1) = -1, poser LC(4) = 6; pour LC(1) = 0 ou 1,
	poser 1 \leq LC(4) \leq 50; et pour LC(1) = 2, poser LC(4) = 1
	LC(4) et LC(13) s'appliquent aux vitesses réduites décrites dans
	la section 4.3.4

Tableau XV (suite)

LC(5)	Nombre de densités de l'air pour lesquelles des solutions de
	battement et de divergence seront trouvées. Les solutions
	s'expriment sous forme des vitesses, fréquences et
	amortissements. $0 \le LC(5) \le 10$. Si $LC(1) = 0$, poser $LC(5) = 0$.
LC(6)	Option d'impression pour les forces aérodynamiques testées
LC(0)	utilisées pour vérifier l'interpolation de forces aérodynamiques:
	1, Impression; 0, Non impression.
LC(7)	Option d'impression pour les pressions aérodynamiques:
	1, Impression; 0, Non impression.
LC(8)	Option d'impression pour les coefficients de portance et les
	coefficients de moment : 1, impression; 0, non impression.
LC(9)	Fréquence d'entrée, addition indépendante à la matrice
	aérodynamique q:1, faites les additions; 0, aucune addition.
LC(10)	Option d'impression pour un ensemble complet des forces
	généralisées interpolées utilisées dans l'équation de battement de
	type $k: 1$, impression; 0 , non impression.
LC(11)	Indice du mode dont la fréquence est utilisée pour normaliser le
	déterminant de l'équation de battement. La fréquence choisie a
	une valeur différente de zéro. L'indice préféré est 1.
LC(12)	Indice pour le calcul du déterminant de l'équation de battement:
	1, Pour des fréquences différentes de zéro $[\mathbf{D} = \mathbf{K}^{-1} (\mathbf{M} + \mathbf{A}_{\mathbf{E}})]$
	0, Pour des fréquences nulles $[D = (M + A_E)^{-1} K]$
	où \mathbf{K} = matrice de rigidité, \mathbf{M} = matrice de masse et $\mathbf{A}_{\mathbf{E}}$ = matrice
	des forces aérodynamiques.
	Si LC(1) = 0, poser LC(12) = 0

Tableau XV (suite)

LC(13)	Indice définissant l'interpolation des forces aérodynamiques :
	0, Aucune interpolation, calcul à chaque entrée VBO
	1, Calcul pour six VBO's, interpolation pour les autres VBO's
	Si $LC(1) = -1$, poser $LC(13) = 1$
	Si LC(1) = 0 ou 2, poser LC(13) = 0
	Si $LC(1) = 1$, poser $LC(13) = 0$ ou 1, comme désiré
LC(14)	Indice non utilisé, poser à 0.
LC(15)	Indice définissant l'échelle des vitesses utilisée dans la résolution
	de l'équation de battement.
	1, Utilisation de la vitesse vraie, TAS
	0, Utilisation de la vitesse équivalente, EAS
LC(16)	Indice définissant l'ajout de l'amortissement structural à la partie
	imaginaire de la matrice de rigidité :
	1, Ajout d'une valeur d'amortissement à tous les modes;
	-1, Ajout d'une valeur d'amortissement individuelle à chaque
	mode; 0, Aucun amortissement ajouté
LC(17)	Option d'impression pour l'affichage du nombre d'itérations
	requises pour calculer chaque valeur propre par l'analyse de
	battement $pk : 1$, impression; 0 , non impression.
LC(18)	Option pour l'extrapolation de valeurs propres dans l'équation de
	battement <i>pk</i> :
	1, utilisation des valeurs propres (racines) calculées pour deux
	vitesses précédentes pour l'évaluation initiale d'une racine;
	0, utilisation de la valeur propre (racine) calculée à la vitesse
	précédente. Si LC(1) \neq -1, poser LC(18) = 0.
L	<u> </u>

Tableau XV (suite)

LC(19)	Option pour l'arrangement en ordre croissant ou décroissant des
	racines (valeurs propres):
	1, l'arrangement est exigé; 0, l'arrangement n'est pas exigé.
	Si LC(1) \neq -1, poser LC(19) = 0
LC(20)	Option d'impression pour l'itération des racines dans l'analyse de
	battement pk ou pour les résultats intermédiaires dans l'analyse
	de battement $k:1$, impression; 0 , non impression.
LC(21)	Indicateur pour le choix de la méthode de calcul des forces
	aérodynamiques : 1, utilisation de la méthode des doublets DLM
	(régime subsonique Mach < 1) ou de la méthode de pressions
	constantes CPM (régime supersonique Mach > 1).
LC(22)	Indice définissant la génération et l'emmagasinage de la matrice
	des coefficients aérodynamiques d'influence :
	0, calculés et sauvés;
	1, lire les valeurs qui se trouvent dans un fichier déjà calculées.
LC(23)	Option d'impression pour le vecteur modal à l'entrée :
	1, impression; 0, non impression.
LC(24)	Option d'impression pour les déplacements et les pentes
	interpolées des éléments aérodynamiques :
	1, impression; 0, non impression.
LC(25)	Nombre de cycles d'élimination des modes, 0 ≤LC(25) ≤25
LC(26)	Indice définissant des analyses de battement supplémentaires :
	0, aucun cycle supplémentaire; > 0, exécution des cycles
	supplémentaires des analyses de battement avec des variations
	de la rigidité appliquées à un mode 0 ≤LC(26) ≤20
L	

Tableau XV (suite)

LC(28)	Option d'impression pour les vecteurs propres:
	1, impression, 0, non impression.
	Si $LC(1) = -1$, alors les vecteurs propres pour la racine de
	battement critique sont définis dans un intervalle de vitesses
	défini par l'utilisateur
	LC(1) = 0 ou 2, poser $LC(28) = 0$
	LC(1) = 1, les vecteurs propres pour toutes les valeurs propres
	(racines) situées entre les VBO's donnés par l'utilisateur et les
	fréquences réelles sont affichés
LC(29)	Option d'impression pour les vecteurs physiques correspondant
	aux vecteurs propres modaux.
	1, impression; 0, non impression.
LC(30)	Option d'impression pour la solution de l'analyse de la matrice de
	battement par la méthode k.
	1, impression; 0, non impression.
	Si LC(1) = -1 ou 0, poser LC(30) = 0
LC(31)	Indice définissant la nécessité des révisions sur la matrice de
	masse généralisée M et sur les fréquences modales.
	1, révisions; 0, aucune révision.
LC(32)	Indice définissant la nécessité des révisions sur la matrice de
	rigidité généralisée K .
	1, révisions; 0, aucune révision.
LC(33)	Indice définissant le type d'écoulement d'air.
	1, permanent; 0, oscillatoire.
	LC(1) = 2, poser $LC(33) = 1$
LC(34)	Non utilisé, poser à 0.
LC(35)	Non utilisé, poser à 0.

Tableau XV (suite)

LC(36)	Non utilisé, poser à 0.
LC(37)	Option d'impression pour les données géométriques des éléments
	aérodynamiques calculées par des méthodes des doublets DLM
	(Mach < 1) ou par méthodes de pressions constantes CPM
	(Mach > 1).
	1, Impression; 0, non impression.
	$LC(21) \neq 1$, poser $LC(37) = 0$
LC(38)	Unité de bande pour l'impression sous format ASCII des forces
	généralisées et de l'information associée à ces forces.
	En général, $LC(38) = 99$.
LC(39)	Non utilisé, poser à 0.
LC(40)	Non utilisé, poser à 0.

4.3.2 Indicateur pour de l'endroit des données

INV

INV	1	Nombre entier définissant la position des vecteurs d'entrée, des
		fréquences modales, et des masses généralisées:
		1, fichier binaire STARS - SOLIDS
		2, ce fichier d'entrée

4.3.3 Valeurs de référence pour le calcul des forces aérodynamiques

BR, FMACH 38.89 0.90

BR	38.89	Demi corde de référence, in. (corde aérodynamique moyenne)
FMACH	.90	Nombre de Mach de référence
		FMACH < 1.0, la méthode des doublets DLM est utilisée;
		FMACH ≥ 1.0, la méthode de pressions constantes CPM est
		utilisée ($LC(13) = 0$).

4.3.4 Vitesses réduites

(Requises si LC(1) = 1)

LC(4)	10	Nombre de vitesses réduites
VBO(I)		Vitesses réduites (= $V/b\omega$) pour le calcul de vitesses, fréquences et de l'amortissement correspondants aux phénomènes de divergence et de battement

Dans le cas où on choisit l'interpolation aérodynamique, les forces aérodynamiques seront interpolées pour chaque valeur VBO (I) en utilisant les valeurs des entrées RVBO données dans la section 4.3.6.

Si les calculs directs sont utilisés, les forces aérodynamiques seront calculées pour chaque vitesse réduite. 0 ≤LC (4) ≤30

4.3.5 Spécification de la vitesse de l'air pour l'analyse pk

(Requise si LC(1) = -1)

NV	Nombre de vitesses utilisées dans l'analyse initiale, nœuds; 1< NV ≤20
V1	Vitesse minimale à partir de laquelle on débute l'analyse, nœuds; On suggère V1 ≥200
DV	Incrément de vitesses à ajouter à la vitesse minimale durant l'analyse initiale, nœuds. On suggère DV ≤250.

4.3.6 Données pour l'interpolation de forces aérodynamiques

(Requises si LC(1) = -1 ou LC(13) = 1)

TOLI	Valeur de la tolérance utilisée pour tester l'ajustement par l'interpolation.		
	Une valeur nominale de 1.0E-03 est recommandée.		
RVBO(I)	Vitesses réduites pour lesquelles les forces aérodynamiques sont calculées et utilisées en tant qu'éléments de base pour l'interpolation des forces à d'autres vitesses réduites.		

Dans le cas où l'interpolation aérodynamique est utilisée, le RVBO devrait couvrir la marge entière de VBO's de la section 4.3.4. On utilise les approximations suivantes pour LC(1) = -1:

2. RVBO(6)
$$\geq$$
1.69 × 12.0 × VMAX / (BR × WMIN), où

$$VMAX = V1 + (NV - 1) \times DV$$
, et

WMIN = la fréquence minimum modale, rad/sec.

4.3.7 Plage d'impression pour les graphiques V-g et V-f

(Requise si LC(1) \neq 2)

GMAX, GMIN, VMAX, FMAX

.10 -.40 1400. 80.0

GMAX	La valeur maximale sur la plage d'amortissements pour le traçage de la courbe
	V-g
GMIN	La valeur minimale sur la plage d'amortissements pour le traçage de la courbe
	V-g
VMAX	La valeur maximale de l'échelle des vitesses pour tracer la courbe V-f, nœuds
FMAX	La valeur maximale de l'échelle des fréquences pour tracer la courbe V-f, Hz

4.3.8 Rapports de densités atmosphériques

(Requises si LC(1) \neq 0)

$$(RHOR(I), I = 1, LC(5))$$

1.0

RHOR	Rapport de la densité par rapport à la densité au niveau de la mer;
	$0 < \mathbf{RHOR} (\mathbf{I}) \le 10$

Une analyse de battement et/ou de divergence est réalisée à chaque rapport de densités où la matrice des forces aérodynamiques est multipliée par la racine carrée du rapport de densités.

4.3.9 La spécification des modes éliminés dans les analyses de battement et de divergence

(Requise si LC(25) \neq 0)

NOTIR	Nombre de modes supprimés dans un cycle donné modal d'élimination
NINZ	Indice du mode supprimé individuellement pour un cycle donné

Il faudrait noter que le module AEROS exécute toujours une analyse initiale sans suppressions modales avant de réaliser les analyses d'élimination des modes définies dans cette section.

4.3.10 Longueur et surface de référence

FL ACAP 77.78 15000.

FL	Longueur de la corde de référence du modèle, in. ($\mathbf{FL} = 2.0 \times \mathbf{BR}$)
ACAP	Aire de référence du modèle, in ²

4.3.11 Données géométriques des panneaux

Données géométriques des panneaux dans le but d'appliquer les méthodes DLM ou CPM

NDELT, NP, NB, NCORE, N3, N4, N7 0 27 1 5100 0 0 1

Tableau XVI

Données géométriques des panneaux

NDELT	0	Indice définissant la symétrie des éléments aérodynamiques:
		1, les éléments aérodynamiques sont symétriques par rapport à $Y=0$;
		-1, les éléments aérodynamiques sont anti-symétriques par rapport à
		Y=0;
		0 , aucune symétrie par rapport à $Y = 0$ (une seule surface).
NP	27	Nombre total des panneaux sur toutes les surfaces portantes
NB	1	Indice d'identification du fuselage:
		0, aucun fuselage;
		>0, nombre des corps minces utilisés dans l'analyse DLM;
		-1, il existe éléments du corps utilisés dans la méthode de pressions
		constantes CPM.
		Note: $0 \le NB \le 20$ pour les éléments calculés par la méthode de
		doublets
NCORE	5100	Dimension du problème, N × M, où
		N est le nombre total des éléments aérodynamiques et
		M est le nombre de modes
N3	0	Option d'impression pour les coefficients d'influence de pression:
		1, impression; 0, non impression.
N4	0	Option d'impression pour les coefficients d'influence reliant les
		pressions sur les surfaces portantes aux pressions sur les éléments du
		fuselage: 1, impression, 0, non impression.
N7	1	Indicateur spécifiant le calcul des pressions et des forces
14/	1	
		généralisées: 1, calcule, 0, arrête les calculs toute suite après que les
		coefficients d'influence soient calculés. Si $LC(1) = -1$ ou 1, poser
		N7 = 1

4.3.12 Données des surfaces portantes

Les 5 prochaines sections sont répétées pour NP ensembles des données des surfaces portantes

4.3.12.1 Description

Un ensemble de données pour NP panneaux aérodynamiques et leurs composants aérodynamiques est présenté ici.. Dans la section 4.3.12.2. on va réaliser la translation et la rotation des panneaux.

Telles coordonnées se trouvent dans le système global de l'avion et indiquent la position de l'origine du système local de coordonnées LCS (*Local Coordinate System*) pour chaque panneau. La section 4.3.12.3. contient les coordonnées des points définissant un panneau aérodynamique, et la section 4.3.12.4. définit les frontières des éléments aérodynamiques dans le panneau.

Un panneau est divisé dans un nombre de plus petits trapézoïdes, appelés "éléments aérodynamiques", par des lignes situées à un certain pourcentage de la corde du panneau et un certain pourcentage de l'envergure du panneau.

La section 4.3.12.5. définit la disposition des frontières au long de la corde du panneau, et la section 4.3.12.6. définit la disposition des frontières au long de l'envergure du panneau.

4.3.12.2 Translation et rotation des panneaux

X0, Y0, Z0, GGMAS 0 0 0 90.0

Tableau XVII Translation et rotation des panneaux

X0	0	Valeur de la translation à appliquer aux coordonnées x , in.
Y0	0	Valeur de la translation à appliquer aux coordonnées y, in.
Z0	0	Valeur de la translation à appliquer aux coordonnées z, in.
GGMAS	90.0	Rotation autour d'un axe global x, degré.
		GGMAS est un système de coordonnées auquel on va appliquer la
		règle de la main droite; un panneau situé dans un plan vertical
		exigerait une rotation positive de 90°.
		Les déflections sont appliquées au panneau aérodynamique, et
		ensuite le panneau est déplacé et tourné dans sa position.

4.3.12.3 Coordonnées des points définissant un panneau aérodynamique

Tableau XVIII Coordonnées des points définissant un panneau aérodynamique

X1	508.0	La coordonnée x du bord d'attaque intérieur du panneau, in.
X2	580.0	La coordonnée x du bord de fuite intérieur du panneau, in.
X3	532.0	La coordonnée x du bord d'attaque extérieur du panneau, in.
X4	580.0	La coordonnée x du bord de fuite extérieur du panneau, in.
<u>Y1</u>	20.0	La coordonnée y du bord intérieur du panneau, in.
Y2	80.0	La coordonnée y du bord extérieur du panneau, in.

4.3.12.4 Les coordonnées sur l'axe des z et le nombre des frontières

Les coordonnées sur l'axe des z et le nombre des frontières des éléments orientés dans la direction de l'envergure et de la corde

Z 1	La coordonnée z du bord intérieur du panneau, in.
Z 2	La coordonnée z du bord extérieur du panneau, in.
NEBS	Le nombre des frontières des éléments dans la direction de l'envergure, 2 ≤ NEBS ≤50 NEBS = 2 pour chaque panneau d'interférence du corps
NEBC	Le nombre des frontières des éléments dans la direction de la corde, 2 ≤NEBS ≤50
COEFF	0.0

4.3.12.5 La disposition des frontières des panneaux

La disposition des frontières des panneaux est arrangée selon:

4.3.12.5.1 La direction de la corde pour les panneaux aérodynamiques

TH(I),	La disposition des frontières des éléments dans la direction de la corde pour un panneau, exprimée en fraction de la corde:
	on painteau, exprimee en fraction de la corde: $0.0 \le \text{TH} \le 1.0; \text{ TH (1)} = 0.0; \text{ TH (NEBC)} = 1.0$

4.3.12.5.2 Dans le sens de l'envergure pour les panneaux aérodynamiques

$$(TAU(I), I = 1, NEBS)$$

0.0 0.3333 0.6666 1.0

TAU(I)	La disposition des frontières dans la direction de l'envergure pour un
	panneau, exprimée dans une fraction de l'envergure:
	$0.0 \le TAU \le 1.0$; $TAU(1) = 0.0$; $TAU(NEBS) = 1.0$

Les données doivent être répétées un nombre NP fois dans l'ordre suivante :

- 1). Panneaux verticaux ou un plan de symétrie (y = 0).
- 2.) Panneaux sur les autres surfaces.
- 3.) Panneaux d'interférence du corps. La largeur de ces panneaux doit être égale à la largeur d'un élément (NEBS = 2).

Il existe un nombre de (NEBS-1) × (NEBC-1) éléments aérodynamiques sur une surface primaire ou de gouverne. Les indices des éléments aérodynamiques débutent avec l'élément du bord d'attaque intérieur et augmentent lorsqu'on se déplace vers le bas en arrière d'une bande, ensuite vers l'extérieur d'une bande en finissant à l'élément du bord de fuite extérieur.

4.3.13 Données du corps mince

(Requis si NB > 0)

Les 4 prochaines sections sont répétées un nombre de NB fois pour les données du corps mince qui est défini comme étant un tronc de cône à l'angle droit et on trouve (NF-1) éléments de corps minces.

NB	L'ensemble NB des données définissant les corps minces subsoniques et]
	leurs éléments composants.	

4.3.13.1 Coordonnées globales du système de références X, Y, et Z

XBO YBO ZBO

XBO	0.0	Valeur de la translation à ajouter à la coordonnée x, in.
YBO	0.0	Valeur de la translation à ajouter à la coordonnée y, in.
ZBO	0.0	Valeur de la translation à ajouter à la coordonnée z , in.

4.3.13.2 Origine du fuselage, des éléments, et tous les panneaux d'interférence complémentaires

ZSC YSC NF NZ NY COEFF MRK1 MRK2

ZSC	0.0	La coordonnée locale z de l'axe de corps, in.
YSC	0.0	La coordonnée locale y de l'axe de corps, in.
NF	14	Le nombre des frontières des éléments du corps mince sur la
		longueur de l'axe, 2 ≤NF ≤50
NZ	0	Indicateur pour la vibration du corps dans la direction de z:
		1, Vibration du corps est considérée
		0, Vibration du corps n'est pas considérée
NY	1	Indicateur pour la vibration du corps dans la direction de y:
		1, Vibration du corps est considérée
		0, Vibration du corps n'est pas considérée
COEFF	0.0	0.0
MRK1	135	Indicateur du premier élément aérodynamique sur le premier
		panneau d'interférence associé au corps mince du fuselage
MRK2	174	Indicateur du dernier élément aérodynamique sur le dernier
		panneau d'interférence associé au corps mince du fuselage

NZ ne doit jamais égaliser NY. Les corps en vibration verticale sont entrés avant ceux de vibration latérale. Si des vibrations verticales et latérales sont désirées dans un seul corps, alors deux corps sont entrés au même endroit avec leurs NZ et NY correspondants.

4.3.13.3 La disposition des frontières des éléments du corps mince du fuselage

F(I) I=1, NF

-15.000 25.000 85.000 145.000 205.000 245.000 295.000 335.000 365.000 425.000 485.000 565.000 605.000 645.000

F(I) La coordonnée x de la frontière du fuselage définissant un élément du corps mince en coordonnées locales, in. (en débutant par le nez du corps et en se déplaçant vers l'arrière)

4.3.13.4 Les rayons du corps mince du fuselage

RAD (i), i=1, NF

0.0 10.0 20.0 20.0 20.0 40.0 40.0 40.0 40.0 30.0 30.0 20.0 20.0 15.0

RAD (i) Les rayons des éléments du corps mince du fuselage aux frontières F (J), in.

4.3.14 Paramètres généraux pour les données aérodynamiques

La disposition des frontières des éléments distribués au long de la corde des panneaux aérodynamiques.

NSTRIP NPR1 JSPECS NSV NBV NYAW1 0 0 2 16 1

Tableau XIX Paramètres généraux pour les données aérodynamiques

NSTRIP	Le nombre des éléments des panneaux distribués au long de la corde sur
	tous les panneaux. Pour $LC(8) = 0$, poser NSTRIP = 1
	La liste imprimée des coefficients de portance et de moment pour les bandes
	apparaissent pour NSTRIP > 1 . Jamais posez NSTRIP $= 0$.
NPR1	Option d'impression des pressions dans les sous-programmes QUAS ou
	FUTSOL. On utilise cette option seulement pour déboguer.
	1, impression; 0, non impression.
JSPECS	Indicateur définissant la symétrie aérodynamique par rapport à $Z=0$:
	1, les éléments aérodynamiques sont anti-symétriques (bi-plane);
	-1, les éléments aérodynamiques sont symétriques (effet au sol).
	0, aucune symétrie.
NSV	Nombre des bandes aérodynamiques se trouvant sur tous les panneaux
	verticaux dans le plan de symétrie $Y = 0$.
NBV	Nombre d'éléments situés sur tous les panneaux verticaux existant dans le
	plane $Y = 0$.
NYAW	Indicateur de symétrie par rapport à $Y = 0$: 0, si NDELT = 1 (symétrique);
	1, si NDELT = -1 (anti-symétrique); 0 ou 1, si NDELT = 0 (asymétrique).

4.3.15 Lignes d'interpolation sur les surfaces portantes

4.3.15.1 Ensembles des données des surfaces primaires

Les 2 instructions suivantes sont répétées pour un nombre de LC(3) = 5 ensembles des données des surfaces primaires

KSURF NBOXS NCS

T 16 1

KSURF	Indicateur	du nombre des surfaces de contrôle sur la surface primaire

T, cette surface a une ou plusieurs surfaces de contrôle;		
	F, cette surface n'a aucune surface de contrôle.	
NBOXS	Nombre total d'éléments sur cette surface, y inclus les éléments sur les surfaces de contrôle	
NCS	Nombre de surfaces de contrôle sur la surface primaire 0 ≤NCS ≤5	

NLINES NELAXS NICH NISP 4 0 1 1

NLINES	Nombre de lignes selon lequel les données du vecteur modal d'entrée sont	
	établies 1 ≤NLINES ≤50	
NELAXS	Indicateur définissant les composantes du vecteur d'entrée:	
	1, translation et rotation en tangage sont imposées à chaque point d'entrée;	
	0, seulement la translation est imposée.	
NICH	Indicateur définissant le type d'interpolation et/ou d'extrapolation du	
	vecteur d'entrée sur les éléments aérodynamiques distribués selon la corde:	
	0, linéaire; 1, quadratique; 2, cubique.	
NISP	Indicateur définissant le type d'interpolation et/ou d'extrapolation du	
	vecteur d'entrée sur les éléments aérodynamiques distribués selon	
	l'envergure:	
	0, linéaire; 1, quadratique; 2, cubique.	

4.3.15.2 Interpolation des déflexions pour les surfaces primaires et de contrôle

Les 2 instructions suivantes sont répétées pour NLINES sous-ensembles des données Les données du vecteur modal d'entrée sont appliquées à l'interpolation des déflexions pour les éléments aérodynamiques des surfaces primaires et de contrôle.

NGP XTERM1 YTERM1 XTERM2 YTERM2

7 502.0

2.0

542.0

100.0

NGP	Nombre de points sur la ligne du vecteur d'entrée 2 ≤NGP ≤50
XTERM1	la coordonnée x spécifiant l'extrémité intérieure de la ligne du vecteur d'entrée dans le système de coordonnées local LCS
YTERM1	la coordonnée y spécifiant l'extrémité intérieure de la ligne du vecteur d'entrée dans le système de coordonnées local LCS
XTERM2	la coordonnée x spécifiant l'extrémité extérieure de la ligne du vecteur d'entrée dans le système de coordonnées local LCS
YTERM2	la coordonnée y spécifiant l'extrémité extérieure de la ligne du vecteur d'entrée dans le système de coordonnées local LCS

YGP(I), I=1,NGP

2.0 17.0 37.0 50.0 75.0 85.0 100.0

YGP(I)	Coordonnées des points distribuées selon l'envergure selon la ligne de
	vecteur d'entrée, en allant du bord intérieur vers le bord extérieur dans le
	système de coordonnées local LCS.

Les coordonnées de la ligne de rotation de la surface de contrôle dans le système local des coordonnées LCS

(Requises si KSURF = T)

(X1(I), Y1(I), X2(I), Y2(I), I = 1,NCS) 580.0 20.0 580.0 80.0

La coordonnée X du bord d'attaque intérieur du panneau, in.

NCS	Nombre de surfaces de contrôle sur la surface primaire 0 ≤NCS ≤5
X1(I)	La coordonnée X de l'extrémité intérieure du bord d'attaque pour la I -éme
	surface de contrôle dans le système local de coordonnées LCS.

Y1(I)	La coordonnée Y de l'extrémité intérieure du bord d'attaque pour la $I^{-\text{éme}}$		
	surface de contrôle dans le système local de coordonnées LCS.		
X2(I)	La coordonnée X de l'extrémité extérieure du bord d'attaque pour la I-éme		
	surface de contrôle dans le système local de coordonnées LCS.		
Y2(I)	La coordonnée Y de l'extrémité extérieure du bord d'attaque pour la I-éme		
	surface de contrôle dans le système local de coordonnées LCS.		

4.3.15.3 Déflexions des éléments aérodynamiques du corps mince

(Requis si NB > 0)

Les deux sections prochaines de données sont répétées NB fois. Ensembles de NB données décrivant le vecteur modal d'entrée à appliquer sur les déflexions des éléments aérodynamiques du corps mince.

NGP, NSTRIP, IPANEL

Nombre des points sur la ligne d'interpolation solide pour le corps mince

NGP	13	Nombre de points sur l'axe du corps mince pour lequel les données		
		du vecteur d'entrée sont imposées, 2 ≤NGP ≤50		
NSTRIP	4	Nombre de panneaux d'interférence (ou de bandes) liés à un corps mince		
IPANEL	14	Indice du premier panneau d'interférence d'un corps mince		

Les coordonnées X de chaque point dans le sens de courant pour lequel les données modales d'entrée se trouvent dans le système de coordonnées local

(XGP(I), I=1,NGP)

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0 560.0 600.0

XGP(I)	Coordonnées de chaque point dans le sens du courant pour lequel les
	données modales d'entrée sont imposées dans le système local de
	coordonnées LCS

4.3.16 Option d'impression pour la géométrie globale

KLUGLB	0	Option d'impression pour les éléments aérodynamiques du corps
		dans le système global de coordonnées GCS.
		1, impression; 0, non impression

4.4 Données d'entrée pour le fichier - convert

Préparer le fichier "convert.dat" data file. Permet le choix des modes désirés.

IOLD, INEW

IOLD	Nombre du mode antérieur
INEW	Nombre du mode nouveau
NM	Nombre total des modes désirés pour composer les matrices généralisées réduites

La sortie est la matrice des forces généralisées réduites emmagasinée dans le fichier GFORCE_PADE.DAT qui devient l'entrée dans le module d'analyse aéroservoélastique ASE.

4.5 Données d'entrée pour le fichier - ASE PADÉ

On prépare le fichier de données *pade.dat* pour effectuer l'approximation des forces aérodynamiques non-stationnaires par des polynômes de Padé et la formulation de la matrice écrite sous la forme d'espace-état.

4.5.1 Paramètres de base

NRM, NEM, NCM, NG, NS, NK, NA, RHOR, VEL, CREF, IWNDT, NQD 6, 14, 4, 0, 3, 10, 2, 0.24708, 871.27, 3.2, 0, 0

Tableau XX

Paramètres de base pour effectuer l'approximation des forces aérodynamiques

NRM	6	Nombre de modes rigides du corps		
NEM	14	Nombre de modes élastiques		
NCM	4	Nombre de modes de commande		
NG	0	Nombre de rafales		
NS	3	Nombre de capteurs		
NK	10	Nombre de fréquences réduites		
NA	2	Nombre des termes de retard utilises dans les polynômes Padé,		
		0 ≤ NA ≤4		
RHOR	0.24708	Densité aérodynamique par rapport à la densité au niveau de la		
		mer		
VEL	871.27	La vitesse vraie, pi/s		
CREF	3.2	Corde de référence, pi		
IWNDT	0	Indice de correction de la soufflerie:		
		0, utilisation de la formulation décrite selon Rutkowski (1983)		
		1, utilisation des données de tests en soufflerie pour modifier la		
		matrice des forces aérodynamiques généralisées		
NQD	0	Nombre de vitesses dans l'analyse de battement et de divergence,		
		poser à 0 pour l'analyse d'aéroservoélasticité		

4.5.2 Coefficients de tension

BETA(I)	coefficients de tension

4.5.3 Masses généralisées

$$((GMASS(I, J), J = I, NM), I = 1, NM)$$

Les données de la matrice généralisée, moitié d'haut symétrique, en débutant par les éléments diagonales

NM	Nombre total des modes
	NM = NRM + NEM + NCM
GMASS(I)	La masse généralisée du mode I, slugs

4.5.4 Données de l'amortissement généralisé

(DAMP(I), I = 1, NM)

DAMP(I)	Amortissement généralisé appliqué au mode I
---------	---

4.5.5 Fréquences naturelles

Données de fréquences modales

(OMEGA(I), I = 1, NM)

OMEGA(I)	La fréquence naturelle du mode I, rad/sec
OMEGA(I)	La fréquence naturelle du mode I, rad/sec

4.5.6 Angles de l'avion, degrés de liberté

(Requis si NQD = 0)

PHI, THETA, PSI, US, VS, WS, PS, QS, RS, PHID, THAD, PSID, NDOF 0.0, 0.0, 871.27, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -3

4.5.7 Transformation des coordonnées entre la Terre et le système fixé au corps.

PHI	0.0	angle de roulis, deg
THETA	0.0	angle de tangage, deg
PSI	0.0	angle de lacet, deg
US, VS, WS	871.27	vitesses du corps selon les axes X , Y et Z
PS, QS, RS	0.0	vitesses angulaires
PHID, THAD, PSID	0.0	vitesses angulaires d'Euler
NDOF	-3	nombre de degrés de liberté pour l'avion : un signe
		négatif indique un cas anti-symétrique.

4.5.8 Données des capteurs

(Requises si NQD = 0 et NS > 0)

IFLSI	0	Indicateur pour l'identification des points d'interpolation du capteur dans la présence des données des tests au sol GVS.
		1, pour un cas anti-symétrique; -1, pour un cas symétrique;
		0, pour un cas non GVS.

4.5.9 Positionnement et orientation des capteurs

NB sets de données; NS - total nombre des capteurs

XS, YS, ZS, LX, MY, NZ, THX, THY, THZ

	S1	S2	S3	
XS	300	300	300	la coordonnée X du capteur, in
YS	0	0	0	la coordonnée Y du capteur, in
ZS	50	50	50	la coordonnée Z du capteur, in
LX	0	0	0	cosinus directeur pour un accéléromètre normal dans l'axe
				des X
MY	0	0	0	cosinus directeur pour un accéléromètre normal dans l'axe
				des Y
NZ	0	0	0	cosinus directeur pour un accéléromètre normal dans l'axe
				$\mathrm{des} oldsymbol{Z}$
THX	1	0	10	cosinus directeur pour le tangage autour de l'axe des X
THY	0	1	1	cosinus directeur pour le tangage autour de l'axe des Y
THZ	0	0	0	cosinus directeur pour le tangage autour de l'axe des Z

CHAPITRE 5

LE MODÈLE DE TEST DE L'AVION ATM

Le modèle de référence *ATM* (Aircraft Test Model) qui a servi de base pour la réalisation du modèle complet a été fourni par les laboratoires de Centre de la NASA Dryden Flight Research où il a été utilisé pour valider les résultats des analyses aéroservoélastiques implémentées dans STARS.

C'est un modèle d'éléments finis d'un avion étudié seulement dans son plan latéral qui contient tous les éléments essentiels pour effectuer une analyse aéroservoélastique complète : des éléments aéroélastiques (avion flexible), des surfaces de commandes (gouvernes d'aileron et de gouverne de direction) et des boucles de contrôle (lois de commande).

5.1 Modèle structural

Le repère lié aux axes de l'avion est défini selon les axes principaux de l'avion et il a son origine au nœud 39 pour les deux modèles. Dans chaque nœud on associe une inertie et une position par rapport au repère. Ainsi, 74 nœuds permettent de décrire la moitié de l'avion et 119 nœuds pour le modèle complète (figure 6). La description par éléments finis de l'avion n'a été réalisée que sur la moitié de l'avion dans le modèle originale à cause de sa symétrie par rapport au plan longitudinal.

Les revêtements des ailes ont été représentés par des éléments quadrilatéraux plats tandis que les nervures et les longerons sont modelés comme des poutres flexibles. La masse est distribuée seulement dans les nœuds situés sur la longueur du fuselage.

Le modèle d'éléments finis comprend une description élastique complète de l'avion, en distribuant sur chaque nœud les forces structurelles. Ainsi, les matrices d'inertie

structurelle M, d'amortissement structurel D et de rigidité structurelle K de l'avion sont générées.

Figure 6 Modèle avion éléments finis

Dans le tableau suivant, le terme nommé "déplacement" est défini comme suit:

$$\Delta = \frac{d_N - d_A}{12} \tag{5.1}$$

où d_N représente les coordonnées du noeud considéré dans la position initiale et d_A représente les coordonnées du même nœud déplacé suite à l'application d'une rotation autour d'un axe spécifié.

Tableau XXI

Paramètres de génération des modes rigides et de commande du modèle d'avion

Mouvement	Modes symétriques	Modes asymétriques
Modes rigides :		440
Translation selon l'axe des X	$\Delta x = -1$, tous les noeuds	
y X		
Figure 7	Translation selon l'axe d	
Translation selon l'axe des <i>Y</i>		$\Delta y = 1$, tous les noeuds
\mathbf{z}		
y Figure 8	Translation selon l'axe d	les Y

Tableau XXI (suite)

Mouvement	Modes symétriques	Modes asymétriques
Translation selon l'axe des Z	$\Delta z = -1$, tous les noeuds	
y Figure 9	Translation selon l'axe d	les Z
Mouvement de roulis (rotation autour de l'axe longitu dinal des X)		$\Theta x = -1$, détermine des déplacements Δy et Δz , pour tous les nœuds.
z x		
Figure	10 Mouvement de rouli	S

Tableau XXI (suite)

Mouvement	Modes symétriques	Modes asymétriques
Mouvement de tangage (rotation autour de l'axe des Y) ¹	$\Theta y = 1$, détermine des déplacements Δx et Δz , pour tous les nœuds.	
y x Figure	Mouvement de tanga	ige
Mouvement de lacet (rotation autour de l'axe des Z, perpendiculaire aux axes de roulis et de tangage) 1		$\Theta z = -1$, qui détermine des déplacements Δx et Δy , pour tous les nœuds.
y Figur	re 12 Mouvement de lace	et

 $^{^{1}}$ L'axe passe par le centre de gravité, situé à un x = 275 po (6985 mm).

Tableau XXI (suite)

Mouvement	Modes symétriques	Modes asymétriques		
Modes de commande :				
Déflection des ailerons	 Θy =1 pour l'aileron gauche, Θy=-1 pour l'aileron droite, qui détermine des déplacements Δz pour les nœuds situés sur les ailerons 			

Figure 13 Déflection des ailerons

Déflection des volets de Déflection des volets de déplacements Δz pour les nœuds situés sur les volets

Figure 14 Déflection des volets de courbure

Tableau XXI (suite)

Mouvement	Modes symétriques	Modes asymétriques
Braquage symétrique de la gouverne de profondeur	$\Delta z = -1$, pour les nœuds situés sur la gouverne de profondeur	

Figure 15 Braquage symétrique de la gouverne de profondeur

Déflection de la gouverne de direction	$\Theta z = -1.0$, qui détermine des déplacements Δy , pour les nœuds situes sur la gouverne de direction
--	--

Figure 16 Déflection de la gouverne de direction

5.2 Modèle aérodynamique de l'ATM

Le modèle d'avion est décomposé dans des panneaux où les forces aérodynamiques non stationnaires agissent sur chaque panneau, et ces forces sont calculées en utilisant la méthode de *DLM*. Cette méthode est décrite dans le chapitre 3.

À l'aide de la matrice de forme Φ , on transpose la matrice des forces aérodynamiques généralisées dans l'espace des modes.

Pour un nombre de Mach M et une fréquence réduite k, les forces aérodynamiques pour tous les panneaux sont regroupées pour former une matrice Q paramétrisée par le nombre de Mach M et la fréquence réduite k.

Le modèle aérodynamique de l'avion ATM est représenté à la figure 17.

Figure 17 Modélisation aérodynamique par la méthode des doublets *DLM*

La méthode des doublets est appliquée pour le modèle complet sur cinq surfaces de portance comparativement à trois surfaces utilisées pour le modèle réduit.

Chaque surface de portance est divisée en panneaux tels qu'indiqués dans la figure 18.

Le fuselage est modélisé par un cylindre de quatre panneaux avec la section transversale constante. Les informations seront introduites dans l'ordre suivant:

- 1. Panneaux verticaux ou un plan de symétrie (y = 0).
- 2. Panneaux sur les autres surfaces.
- 3. Panneaux d'interférence du corps, avec la largeur d'un élément

Figure 18 Configuration des panneaux aérodynamiques

Chaque panneau est divisé dans un nombre de plus petits trapézoïdes, appelés "éléments aérodynamiques", par des lignes situées à un certain pourcentage de la corde du panneau et un certain pourcentage de l'envergure du panneau, figure 19.

Figure 19 Configuration des éléments aérodynamiques

La numérotation des indices des éléments aérodynamiques débute avec l'élément du bord d'attaque intérieur et augmente lorsqu'on se déplace vers le bas en arrière d'une bande, ensuite vers l'extérieur d'une bande en finissant à l'élément du bord de fuite extérieur.

Les axes de rotation des gouvernes de commande se trouvent sur les frontières des panneaux.

Figure 20 Définition du corps mince du fuselage ²

Le corps du fuselage est défini comme un ensemble des troncs de cônes à l'angle droit où on spécifie les rayons du corps mince du fuselage et leurs positions x selon la longueur du fuselage sur l'axe des x. La représentation du corps mince du fuselage est donnée dans la figure 20.

Les déflexions des éléments aérodynamiques des surfaces primaires et de contrôle sont calculées en utilisant les lignes d'interpolation et en spécifiant un certain nombre de points.

² Le logiciel STARS utilise les données en système des mesures impériales.

Dans la figure 21, on a représenté les lignes d'interpolation et les autres élementes aérodynamiques sur l'aile droite.

Figure 21 Lignes d'interpolation sur les surfaces portantes

5.3 Modèle aéroservoélastique de l'ATM

Finalement, le modèle de test d'avion ATM comprend également les éléments qui caractérisent un système aéroservoélastique, c'est à dire les lois de contrôle. Dans le cadre du modèle ATM, ces lois de contrôle sont au nombre de deux, reliant les capteurs de roulis et de lacet aux ailerons et aux gouvernes de direction.

Chaque loi de contrôle incorpore la dynamique des capteurs, les filtres, les contrôleurs et la dynamique des actionneurs. L'architecture des lois de contrôle du modèle ATM est présentée à la figure 22.

Figure 22 Boucles de contrôle du modèle *ATM* ½ (Adapté de Hamza, Dina, 2003)³

-

Pour le besoin d'illustration du présent document, cette figure a été tirée et adaptée de la thèse de Mme Dina Hamza dans le cadre de la Maîtrise en génie de l'École de technologie supérieure.

5.4 Différences de définition entre les deux modèles ATM

5.4.1 Modifications apportées dans le fichier pr solids.dat (annexe 2)

1) Le nombre des éléments définis dans le modèle ATM ½ original est doublé dans le modèle ATM complet avec la seule exception présenté au point suivant 2. Dans le modèle ATM ½ original nous avons un nombre total de 149 éléments, voir la section 4.1.3.

et dans le modèle ATM complet nous doublons le nombre d'éléments

$$NELEM = 149*2 = 298$$
:

2) Les éléments suivants ne sont pas doublés dans le modèle ATM complet car il y a une seule interférence de l'aile avec le fuselage pour le modèle ATM ½ original et le modèle ATM complet (voir prochaine STARS instruction):

3) Les données de la masse des noeuds situées sur l'axe longitudinal du fuselage sont doublées pour le modèle complet ATM par rapport au modèle ATM ½ original (voir l'instruction en STARS ...)

39	1	0.0195	3		3	30	1	0.2915	3
37	1	0.0389	3		3	32	1	0.2915	3
35	1	0.0584	3		3	34	1	0.2915	3
33	1	0.0972	3		3	36	1	0.2915	3
31	1	0.1943	3		3	38	1	0.2915	3
26	1	0.2915	3		4	40	1	0.1943	3
28	1	0.2915	3						

4) L'ordre de spécification des points d'interpolation modale pour l'aile et l'empennage horizontal gauche (ATM complet) est inversé par rapport à l'ordre des points situés sur l'aile et l'empennage droite (ATM ½ original).

Modèle A	TM ½ original	Modèle ATM complet		
91 26		101 75		
92 93	26	100 75 75 80		
93 93		99 75 80 80		
94 87	93 93	98 80		
95 87	87 93	97 80 87		
96 87		96 87		
97 80	87	95 87 87 93		
98 80		94 87 93 93		
99 75	80 80	93 93		
100 75	75 80	92 93 26		
101 75		91 26		
		1		

5.4.2 Modifications apportées dans le fichier pr_genmass.dat (annexe 3)

Le paramètre ISTMN qui indique le premier mode élastique après l'enlèvement des modes rigides, a la valeur 4 dans le cas de modèle ATM ½ original et respectivement 7 dans le cas du modèle ATM complet.

Modèle ATM ½ original	Modèle ATM complet
3 modes rigides enlevés	6 modes rigides enlevés
ISTMN = 4	ISTMN = 7
4 40 386.088 2	7 40 386.088 2

5.4.3 Modifications apportées dans le fichier pr_aero_ase.dat (annexe 4)

1) L'ordre de panneaux est inversé pour l'aile et l'aileron gauche (voir le modèle ATM complet, figure 18) par rapport à l'ordre de panneaux pour l'aile et l'aileron droit (modèle ATM ½ original), comme suite:

Modèle ATM ½ original	Modèle ATM complet		
1, 2, 3, 4 (aile droite)	>	4, 3, 2, 1 pour l'aile gauche	
1, 2 (aileron droite)	>	2, 1 pour l'aileron gauche	

On aurait le même changement pour l'ordre de panneaux sur l'empennage horizontal et la gouverne de profondeur (modèle ATM ½ original par rapport au modèle ATM complet).

2) La définition des coordonnées d'un panneau située sur la partie gauche de l'avion (le modèle ATM complet) est :

300.0 350.0 **287.5** 350.0 -200.0 -150.0

par rapport à la définition des coordonnées d'un panneau situé sur la partie droite de l'avion (le modèle ½ ATM original) est :

ce qui est équivalent aux changements suivants dans le modèle ATM complet :

par rapport au modèle ATM ½ original :

$$x_1 x_2 x_3 x_4 y_1 y_2$$

3) L'ordre des données d'interpolation pour l'aile située à la partie gauche de l'avion est écrite pour l'ATM complet comme suite:

par rapport à l'ordre des données d'interpolation pour l'aile située à la partie droite de l'avion pour l'ATM ½ original :

ce qui est équivalent aux changements suivants :

ATM complet

4) Les valeurs de la longueur de référence LREF et la surface SREF sont doublées pour l'ATM complet par rapport à l'ATM ½ original comme suite:

LREF =
$$77.78$$
 SREF = 30000 .

CHAPITRE 6

DISCUSSION ET INTERPRÉTATION DES RÉSULTATS

6.1 Introduction

Dans ce chapitre, nous présentons les résultats obtenus en analysant les deux modèles par diverses méthodes aéroélastiques. Un premier modèle est l'ATM original qui est fourni avec le logiciel STARS et le deuxième est le modèle complet d'avion de test à quel modélisation est présentée dans le chapitre précédent.

Au début, on effectue l'analyse de vibrations libres sur les deux modèles et on détermine l'équivalence des modes pour les deux modèles.

Ensuite, sur les deux modèles on applique des analyses aéroélastique dans le but de déterminer la présence des phénomènes de battement et de divergence. Les résultats obtenus pour chaque modèle sont comparés entre eux pour effectuer la validation du modèle complet construit.

6.2 Analyse de vibrations

Les résultats de l'analyse libre de vibration pour le modèle complet de l'ATM sont présentés dans le tableau XXII et les modes élastiques du même modèle dans l'annexe 1.

Les premières 20 modes élastiques retenus pour le modèle complet de l'ATM correspondent à une plage de fréquences comprise entre 6,25 Hz et 51,14 Hz.

La valeur de la fréquence maximale de 51,14 Hz correspond aux derniers modes élastiques obtenus dans l'analyse libre de vibrations pour le modèle complet de l'ATM et respectivement, du modèle initial ½ ATM.

Tableau XXII

Modes obtenus par l'analyse de vibrations libres pour le modèle complet de l'ATM

Mode		uence urelle	Masse	Forme du mode de vibration	
Mode	Hz	Rad/sec	généralisée kg	For the du mode de vibration	
1	0,00	0,00	2 318,76	Translation selon l'axe des Y	Φ_{R}
2	0,00	0,00	2 725,64	Translation selon l'axe des X	Φ_{R}
3	0,00	0,00	1 982,20	Translation selon l'axe des Z	Φ_{R}
4	0,00	0,00	104,33	Rotation autour de l'axe des X	Φ_{R}
5	0,00	0,01	452,46	Rotation autour de l'axe des Y	Φ_{R}
6	0,01	0,04	482,62	Rotation autour de l'axe des Z	Φ_{R}
7	6,25	39,28	68,31	1 ^{ère} flexion symétrique de l'aile	$\Phi_{\rm E}$
8	10,14	63,71	7,43	1 ^{ère} flexion de l'empennage vertical	$\Phi_{\rm E}$
9	12,13	76,24	308,17	1ère flexion verticale du fuselage	ФЕ
10	12,45	78,21	212,87	1ère flexion horizontale du fuselage	$\Phi_{\rm E}$
11	14,68	92,26	42,20		
12	28,50	179,07	19,45	1 ^{ère} flexion de l'empennage horizontal	
13	28,75	180,65	54,93	2 ^{ème} flexion asymétrique de l'aile	
14	29,81	187,29	185,34	1 2 eme flexion du fuselage	
15	30,70	192,87	61,64	1 ^{ère} torsion de l'aile	$\Phi_{\rm E}$
16	32,45	203,88	43,42	1 ^{ère} torsion de l'aile	$\Phi_{\rm E}$
17	35,54	223,29	106,23	2 ^{ème} flexion du fuselage	$\Phi_{\rm E}$
18	35,74	224,54	2,93	1 ^{ere} torsion de l'empennage vertical	$\Phi_{\rm E}$
19	37,42	235,13	89,13	2 ^{eme} flexion de l'aile	$\Phi_{\rm E}$
20	51,14	321,31	217,04	3 ^{ème} flexion du fuselage	Φ_{E}
21	0,00	0,00	2 297,45	Translation selon l'axe des X	$\Phi_{ ext{PR}}$
22	0,00	0,00	2 298,35	Translation selon l'axe des Y	$\Phi_{ ext{PR}}$
23	0,00	0,00	2 310,15	Translation selon l'axe des Z	$\Phi_{ ext{PR}}$
24	0,00	0,00	137 211,67	Rotation autour de l'axe de roulis X	$\Phi_{ ext{PR}}$
25	0,00	0,00	466 292,89	Rotation autour de l'axe de tangage Y	Φ_{PR}
26	0,00	0,00	506 662,61	Rotation autour de l'axe de lacet Z	Φ_{PR}
27	0,00	0,00	95,57	Déflection des ailerons	$\Phi_{\rm C}$
28	0,00	0,00	95,57	Déflection des volets de courbure	Φ_{C}
29	0,00	0,00	23,04	Braquage symétrique de la gouverne de profondeur	Φ_{C}
30	0,00	0,00	10,63	Déflection de la gouverne de direction	Φ_{C}

À remarquer que seuls les modes élastiques ont une fréquence naturelle non nulle. Les modes rigides et les modes de commande n'ayant pas de rigidité structurelle, ont une fréquence naturelle nulle en l'absence de forces aérodynamiques.

Les résultats de l'analyse libre de vibration pour le modèle ATM sont présentés dans le tableau XXIII. La comparaison des modes entre les deux modèles est montrée dans le tableau XXVI à la page 99.

Tableau XXIII

Modes obtenus par l'analyse de vibrations libres pour le modèle

1/2 ATM latéral antisymétrique

Mode	_	uence urelle	Masse généralisée	Forme du mode de vibration		
	Hz	Rad/sec	kg			
1	0,00	0,00	2 318,76	Translation selon l'axe des Y	Φ_{R}	
2	0,00	0,00	104,33	Rotation autour de l'axe des X	Φ_{R}	
3	0,01	0,04	482,62	Rotation autour de l'axe des Z	Φ_{R}	
4	10,14	63,71	7,43	1ère flexion de l'empennage vertical	$\Phi_{\rm E}$	
5	12,45	78,21	212,87	1 ^{ère} flexion horizontale du fuselage		
6	14,68	92,26	42,20			
7	28,75	180,65	54,93	2 ^{ème} flexion asymétrique de l'aile	$\Phi_{\rm E}$	
8	29,81	187,29	185,34	2 ^{ème} flexion du fuselage	$\Phi_{\rm E}$	
9	32,45	203,88	43,42	1 ^{ère} torsion de l'aile	$\Phi_{\rm E}$	
10	35,74	224,54	2,93	1 ^{ère} torsion de l'empennage vertical	$\Phi_{\rm E}$	
11	51,14	321,31	217,04	3 ^{ème} flexion du fuselage	$\Phi_{\rm E}$	
12	0,00	0,00	2 298,35	Translation selon l'axe des Y	$\Phi_{ ext{PR}}$	
13	0,00	0,00	137 211,67	Rotation autour de l'axe de roulis X	$\Phi_{ ext{PR}}$	
14	0,00	0,00	506 662,61	Rotation autour de l'axe de lacet Z	$\Phi_{ ext{PR}}$	
27	0.00	0.00	05.57	Déflection des ailerons ou volets de		
27	0,00	0,00	95,57	courbure	Φ_{C}	
30	0,00	0,00	10,63	Déflection de la gouverne de direction	Φ_{C}	

Dans le tableau XXIV, les fréquences des modes symétriques et des modes antisymétriques pour le modèle complet de l'ATM sont données.

En fait, tous les modes antisymétriques représentent les 8 modes élastiques calculés par l'analyse des vibrations libres du modèle ATM original ½.

Tableau XXIV

Analyse de vibrations libres – Modes et fréquences naturelles

Modes symétriques :	Hz		
1 ^{ère} flexion symétrique de l'aile	6,25		
1ère flexion verticale du fuselage	12,13		
1ère flexion de l'empennage horizontal	28,50		
1 ^{ère} torsion de l'aile	30,70		
2 ^{ème} flexion du fuselage	35,54		
2 ^{ème} flexion de l'aile	37,42		
Modes antisymétriques :	Hz		
1ère flexion de l'empennage vertical	10,14		
1 ^{ère} flexion horizontale du fuselage	12,45		
1ère flexion asymétrique de l'aile	14,68		
2 ^{ème} flexion asymétrique de l'aile	28,75		
2ème flexion du fuselage	29,81		
1 ^{ère} torsion de l'aile	32,45		
1 ^{ère} torsion de l'empennage vertical	35,74		
3 ^{ème} flexion du fuselage	51,14		

6.3 Analyses aéroélastiques

Trois analyses ont été effectuées sur les deux modèles ATM en boucle ouverte, sans considérer la chaîne de contrôle. Ces analyses permettent traquer les phénomènes de battements qui peuvent survenir. Elles ne considèrent que les modes élastiques du modèle. Les modes rigides et de commande ne sont pas pris en considération puisque le système n'est pas bouclé.

Les deux premières analyses utilisent des méthodes d'analyse non linéaire (k et pk) par des processus itératifs sur la fréquence réduite k (chapitre 2). La troisième analyse, par la méthode ASE, s'applique au modèle linéarisé du système ATM, sur lequel la linéarisation de l'ATM est obtenue par la méthode LS (chapitre 2).

Les trois analyses sont effectuées dans les conditions de vol suivantes :

Nombre Mach de référence Mach = 0,9

Altitude de référence: z = 0 (niveau de la mer)

Corde aérodynamique moyenne b = 0.99 m (38.89 po)

Longueur de la corde de référence l = 1,97 m (77,78 po)

Aire de référence $A = 19.35 \text{ m}^2 (30\ 000 \text{ po}^2)$

Les résultats des analyses sont présentés sous la forme des graphiques de l'amortissement et de la fréquence en fonction de la vitesse équivalente.

La vitesse de battement va correspondre à un amortissement nul. Le phénomène de divergence aéroélastique se produit à une fréquence nulle pour une vitesse non nulle.

Une caractéristique importante de la représentation de l'amortissement en fonction de la vitesse est l'angle auquel la courbe critique croise le niveau d'amortissement nul.

Par exemple, un croisement sous un angle presque droit indique qu'il n'y aura aucun avertissement qu'une instabilité sera sur le point d'être produite avec seulement une légère augmentation de la vitesse, ce qui représente la plus défavorable situation.

Les analyses k et pk sont effectuées pour un certain nombre de vitesses réduites $(V/b\omega)$, à un certain rapport de densités (combinaison particulière des nombres de Mach et des altitudes).

6.3.1 Méthode k

Dans la méthode k, le nombre de fréquences réduites utilisées est 28 et leurs valeurs sont :

2,45	2,00	1,86	1,70	1,62	1,49	0,94	0,75	0,35	
9,00	7,00	5,25	4,55	4,15	3,85	3,40	3,27	3,15	2,75
	1200,00	616,75	315,77	140,00	50,00	24,07	19,00	15,00	11,11

Dans la méthode k, le changement du signe d'amortissement entre deux vitesses réduites indique la possibilité de l'apparition du phénomène du battement. Le tableau XXV indique les valeurs de l'amortissement des modes 1 à 14, pour diverses vitesses réduites et l'apparition du battement en utilisant la méthode k.

Tableau XXV

L'amortissement pour diverses vitesses réduites

	Vitesse r	Vitesse réduites:								
Modes	2.45	2.75	3.15	3.27	3.85	4.15	4.551	5.25		
1	-0,271	-0,307	-0,362	-0,382	-0,496	-0,569	-0,679	-0,889		
2	-0,734	-0,808	-0,886	-0,905	-0,979	-1,005	-1,027	-1,043		
3	-0,035	<u>-0,038</u>	0,003	0,003	0,006	0,007	0,008	-0,494		
4	-0,002	0,000	-0,041	-0,041	-0,035	-0,018	<u>-0,609</u>	0,142		
5	-0,228	-0,239	-0,248	-0,249	-0,246	-0,253	0,033	0,011		

Modes	2.45	2.75	3.15	3.27	3.85	4.15	4.551	5.25
6	-0,404	-0,386	-0,815	-0,797	-0,720	-0,678	-0,283	-0,167
7	-0,841	-0,863	-0,357	-0,347	-0,284	-0,245	-0,209	-0,359
8	-0,199	<u>-0,096</u>	0,035	0,073	0,263	0,373	0,553	0,000
9	-0,250	-0,286	-0,340	-0,357	-0,453	0,000	0,000	-0,766
10	-0,001	-0,001	0,000	0,000	0,000	-0,508	-0,590	1,103
11	-0,187	-0,207	-0,239	-0,249	-0,305	-0,338	-0,384	0,019
12	-0,020	-0,015	-0,008	0,006	0,004	0,008	0,013	-0,478
13	-0,168	-0,186	-0,211	-0,218	-0,256	-0,278	-0,314	-0,400
14	-0,003	-0,003	-0,003	-0,004	-0,004	-0,004	-0,004	0,001

L'évolution de ces 14 modes élastiques est représentée par des graphiques représentant leurs fréquences et amortissements en fonction de la vitesse équivalente.

Plus spécifiquement, l'évolution de la fréquence en fonction de l'amortissement est décrite dans la figure 23, l'évolution de la fréquence en fonction de la vitesse équivalente est décrite dans la figure 24 et l'évolution de l'amortissement en fonction de la vitesse équivalente par les figures 25 et 26.

Figure 23 Méthode k, fréquence en fonction de l'amortissement

Figure 24 Méthode k, fréquence en fonction de la vitesse équivalente

La représentation de la fréquence en fonction de la vitesse équivalente dans la figure 24, est étudiée en même temps avec la représentation de l'amortissement en fonction de la vitesse équivalente ce qui nous permet de suivre l'évolution des racines qui se croissent dans une figure ou autre. Même dans la situation des nombreuses racines les caractéristiques de base sont visualisées dans les deux graphiques.

Souvent, les modes qui sont instables dans la représentation de l'amortissement s'unissent dans la représentation de la fréquence comme dans le cas des modes 3 et 4, et 6 avec 7 (voir la figure 24).

Les phénomènes de battement sont mis en évidence dans les figure 25 et surtout dans la figure 26 où les modes élastiques 3, 4, 5 et 8 deviennent instables (amortissement positif).

Figure 25 Méthode k, L'amortissement en fonction de la vitesse équivalente

Figure 26 Méthode k, L'amortissement en fonction de la vitesse équivalente

Les représentations des courbes de l'amortissement en fonction de la vitesse pour les modes 4, 5 et 8 montrent des solutions conventionnelles pour le problème de battement. L'augmentation de la vitesse seulement avec une petite valeur peut provoquer la perte de la stabilité de l'avion, situation indiquée par le croisement de chaque courbe sous un angle presque droit.

Une alternative préférée est indiquée par le mode 3, où les valeurs d'amortissement passent légèrement au-dessus de la ligne d'amortissement critique, situation qui indique au pilote le début du phénomène avec un avertissement suffisant pour se retirer. En même temps, le mode 3 peut aussi ne pas être considéré comme un mode conventionnel de battement.

Tableau XXVI $\label{eq:modele} \mbox{M\'ethode } k \mbox{ - Comparaison avec le modèle ATM }$

M	odèle ATM	complet	Modèle ½ ATM			
Mode	Battement	Divergence	Mode	Battement	Divergence	
1 2	465,74	647,02 726,54 816,09		Mississis - North I	647,64	
4 5 6	739,95 689,74		2 3	443,18	728,69	
7 8 9	860,99		4 5	861,25	ering i] Milliografia pulling i j Vigoria Constant	
10 11 12		HAND SAME AND SAME AN	6 7		The Control of Control	
13 14			 8	POPENNIS I		

Le tableau XXVI, ci-dessus, présente les résultats aéroélastiques obtenus en appliquant la méthode k sur le modèle complet de l'ATM et le modèle ATM original. Les huit modes asymétriques du modèle ATM original, on les trouve parmi les 14 modes du modèle complet.

En ce qui concerne les résultats de l'analyse aéroélastique, on obtient des résultats rassemblés pour les phénomènes de battement et de divergence sur les deux modèles.

Un premier phénomène de battement est mis en évidence pour une valeur de la vitesse équivalente de 443,18 KEAS (224,2 m/s) pour le mode 2 du modèle ATM original et à 465,74 KEAS (235,6 m/s) pour le mode 3 du modèle complet de l'ATM (figure 27).

Figure 27 Méthode k, Mode 3 modèle complet vis-à-vis le mode 2 de l'ATM original

Le deuxième phénomène de battement est mis en évidence pour une valeur de la vitesse équivalente de 861,25 KEAS (435,7m/s) pour le mode 5 du modèle ATM et à 860,99 KEAS (435,56 m/s) pour le mode 3 du modèle complet de l'ATM, voir la figure 28.

Figure 28 Méthode k, mode 8 du modèle complet vis-à-vis le mode 5 du modèle original

Figure 29 Méthode k, L'amortissement en fonction de la vitesse réduite

La divergence se produit quand la fréquence devient zéro à une vitesse différente de zéro.

Figure 30 Méthode k, mode 1 du modèle complet vis-à-vis le mode 1 du modèle ATM

Figure 31 Méthode k, mode 2 du modèle complet vis-à-vis le mode 2 du modèle ATM

6.3.2 Méthode Pk

Les valeurs de vitesse de divergence ne sont pas trouvées par la méthode pk. Les mêmes conditions de vol utilisées pour la méthode k sont aussi applicables pour la méthode pk.

En utilisant la méthode pk le nombre de vitesses réduites utilisé est 6 et les modes rigides et de control sont aussi éliminés.

Fréquences réduites : 0,21 2,0 4,0 6,0 7,0 8,0

En utilisant la méthode *pk*, les résultats sont obtenus pour chaque mode correspondant à un nombre indiqué de vitesses équivalentes et le phénomène de battement est indiqué aussi par le changement de signe de l'amortissement.

L'évolution de la fréquence en fonction de l'amortissement est décrite dans la figure 32.

Figure 32 Méthode pk, la fréquence en fonction de l'amortissement

Figure 33 Méthode pk, la fréquence en fonction de la vitesse équivalente

Figure 34 Méthode pk, l'amortissement en fonction de la vitesse équivalente Les figures 32, 33, 34 et 35 illustrent les résultats obtenus en appliquant une analyse aéroélastique non linéaire sur le modèle ATM complet à l'aide de la méthode pk.

Figure 35 Méthode pk, l'amortissement en fonction de la vitesse équivalente

Les phénomènes de battement sont mis en évidence dans les figures 34 et 35 où les modes élastiques 2, 3 et 4 deviennent instables et les représentations de leurs courbes de l'amortissement en fonction de la vitesse montrent des solutions conventionnelles pour le problème de battement.

Une alternative préférée est indiquée par le mode 4, où les valeurs de l'amortissement passent légèrement au-dessus de la ligne d'amortissement critique, situation qui indique au pilote le début du phénomène avec un avertissement suffisant pour se retirer.

Le tableau XXVII, ci-dessous, présente les résultats aéroélastiques obtenus en appliquant la méthode pk sur le modèle complet de l'ATM et le modèle ATM original où on obtient des résultats rassemblés pour les phénomènes de battement sur les deux modèles.

Tableau XXVII

Méthode pk, comparaison entre les deux modèles

М	odèle ATM (complet	M	lodèle ATM	original
Mode	Battement	Divergence	Mode	Battement	Divergence
2	863,11		1	863,37	
3	659,10				
4	404,36		2	441,49	

Le premier phénomène de battement est mis en évidence pour la valeur de la vitesse équivalente de 441,49 KEAS (223.35 m/s) pour le mode 2 du modèle ATM original et à 404,36 KEAS (204,56 m/s) sur le mode 4 du modèle ATM complet, voir la figure 36.

Figure 36 Méthode pk, Mode 4 du modèle complet de l'ATM vis-à-vis le mode 2 du modèle ATM original

Le deuxième phénomène de battement est mis en évidence pour une valeur de la vitesse équivalente de 863,37 KEAS (436 m/s) pour le mode 1 du modèle original de l'ATM et à 863,11 KEAS (435,87 m/s) sur le mode 2 du modèle complet de l'ATM.

Figure 37 Méthode pk, Mode 2 du modèle complet de l'ATM vis-à-vis le mode 1 du modèle ATM original

6.3.3 Méthode ASE

Dans la méthode ASE, les matrices d'espace d'état sont calculées pour un nombre de vitesses équivalentes et le phénomène de battement est détecté par le changement de signe de l'amortissement. Le nombre de fréquences réduites utilisées dans la méthode ASE est 10 et leurs valeurs sont :

11 000,0 1 000,0 100,0 50,0 10,0 5,0 1,0 0,667 0,5 0,25

Les conditions de vol utilisées pour les autres méthodes sont les mêmes que dans la méthode ASE.

L'évolution de la fréquence en fonction de l'amortissement est décrite par la figure 38, ci-dessous, et l'évolution de la fréquence en fonction de la vitesse équivalente est décrite dans la figure 39.

Figure 38 Méthode ASE, la fréquence en fonction de l'amortissement

Figure 39 Méthode ASE, la fréquence en fonction de la vitesse équivalente

Figure 40 Méthode ASE, l'amortissement en fonction de la vitesse équivalente

Figure 41 Méthode ASE, l'amortissement en fonction de la vitesse équivalente

Les phénomènes de battement sont mis en évidence dans les figures 40 et 41 qui représentent les courbes de l'amortissement en fonction de la vitesse équivalente, où les modes élastiques 10, 11, 12 et 14 deviennent instables et représentent des solutions conventionnelles pour le problème de battement.

Une alternative préférée aux autres modes instables, est indiquée par le mode 14, où les valeurs d'amortissement passent légèrement au-dessus de la ligne d'amortissement critique pour revenir au-dessous de la ligne d'amortissement zéro.

Le tableau XXVIII, ci-dessous, présente les résultats aéroélastiques obtenus appliquant la méthode ASE sur les deux modèles: ATM complet et ATM original, et où nous obtenons des résultats comparables sur les deux modèles pour les phénomènes de battement.

Tableau XXVIII

Méthode ASE, comparaison entre les deux modèles

M	odèle ATM	complet	Modèle ATM original			
Mode	Divergence					
1		650,9			651,9	
2	talija in salah salah Salah salah sa	728,9	1	remiesie e Sierii. La razie e chare	728,9	
10	728.89		6	728,9		
11	592,59		7			
12	746,67					
14	474,07		8	474,1	giller i specially. Million diversity of the	

Le mode 8 du modèle ATM original, pour lequel le phénomène de battement est mis en évidence à une vitesse équivalente de 474,1 KEAS (239.42 m/s), a une évolution comparable avec le mode 14 du modèle ATM complet, où le phénomène de battement apparaît à 474,07 KEAS (239,41 m/s), voir la figure 42. Nous trouvons dans le cas du mode 10 du modèle complet vis-à-vis du mode 6 du modèle ATM, même évolution

comparable, où le phénomène de battement apparaît à 728,89 KEAS (368,09 m/s), (voir la figure 43).

Figure 42 Méthode ASE, mode 14 modèle complet vis-à-vis de mode 8 modèle ATM

Figure 43 Méthode ASE, mode 10 modèle complet vis-à-vis de mode 6 modèle ATM

Dans la figure 44, l'évolution de la fréquence en fonction de la vitesse équivalente est représentée pour le mode 2 du modèle ATM complet respectivement, pour le mode 1 du modèle ½ ATM qui représentent des solutions pour le phénomène de divergence.

Figure 44 Méthode ASE, mode 2 modèle complet vis-à-vis de mode 1 modèle ATM

6.4 Synthèse des résultats

La figure 45 montre les résultats de l'analyse aéroélastique obtenus suite à l'apparition du premier phénomène de battement en utilisant le logiciel STARS sur les deux modèles : ATM complet et ½ ATM.

Ainsi, nous obtenons le même résultat, que ce soit la vitesse équivalente ou la fréquence, par la méthode ASE pour le modèle complet de l'ATM et le modèle ATM.

Pour ce qui concerne les méthodes k et pk, on observe des différences pour les vitesses d'apparition du phénomène de battement calculées par les deux méthodes.

Du point de vue de la fréquence on constate que les résultats sont plus consistants.

Figure 45 Battement 1, comparaison des résultats pour les deux modèles en utilisant différentes méthodes

Figure 46 Battement 2, comparaison des résultats pour les deux modèles en utilisant différentes méthodes

En ce qui concerne le deuxième phénomène de battement, représenté dans la figure 46, nous pouvons observer que les résultats obtenus sont presque identiques concernant la vitesse équivalente et la fréquence, pour les deux modèles analysés par les trois méthodes (k, pk, ASE) intégrées dans le logiciel STARS.

La différence entre les résultats obtenus avec les méthodes k et pk de battement et la méthode ASE (similaire à la méthode des moindres carrés LS) est due au nombre des termes de retard qui en STARS a été fixé à 2. Cette différence est minimale lorsque le nombre des termes de retard est plus grand que 2 (par exemple, dans autres travaux, on a trouvé le meilleur nombre des termes de retard égal à 8).

CONCLUSIONS

L'aéroservoélasticité est une théorie complexe et multidisciplinaire qui englobe toutes les disciplines de la dynamique qui peuvent interagir sur un avion, tels que la modélisation par des éléments finis de la structure flexible de l'avion, la modélisation aérodynamique de l'avion et les théories des systèmes actifs de commandes de vol.

Les calculs complexes effectués ont contribué au développement des logiciels spécialisés dans des analyses aéroélastiques. Les logiciels les plus utilisés dans les laboratoires de recherche principalement situés aux États - Unis sont présentés au premier chapitre de cette thèse.

Dans le deuxième chapitre, on a traité les bases de la théorie d'aéroservoélasticité en mettant l'accent sur la présentation des méthodes d'analyse du phénomène de battement. Ainsi, on a présenté les méthode non linéaires k et pk et la méthode linéaire des moindres carrés LS, similaire à celle ASE implémentée en STARS qui est basé sur l'approche de linéarisation des forces aérodynamiques du domaine de fréquence dans le domaine de Laplace. L'implémentation analytique des méthodes k et pk dans le logiciel STARS est décrite surtout dans la documentation de MSC/Nastran.

La méthode de doublets DLM, utilisée dans les analyses du phénomène de battement pour effectuer les calculs des forces aérodynamiques, a été présentée dans le chapitre 3. Cette méthode est utilisée dans le régime subsonique, mais en appliquant certaines corrections empiriques, on pourra aussi étudier le comportement de l'avion en régime transsonique en tenant compte de la séparation de l'écoulement de l'air ou d'autres phénomènes qui ne sont pas assez bien représentés dans la théorie linéaire de l'aérodynamique.

Dans le présent étude, le logiciel STARS est utilisé et la description des paramètres utilisés en STARS se trouve dans le chapitre 4.

Le modèle complet de l'avion de test ATM est réalisé en partant du modèle de référence ATM original défini uniquement dans son plan latéral, et en utilisant les propriétés de symétries structurelles et inertielles par rapport au plan longitudinal vertical de l'avion.

Le modèle complet de l'ATM par des éléments finis est conçu à l'aide d'un logiciel de dessin assisté par ordinateur qui est aussi utilisé pour le dessin des éléments aérodynamiques. Les données sont ensuite transférées dans le format spécifique du logiciel STARS. La construction du modèle complet est décrite dans le chapitre 5.

Suite à une analyse libre de vibrations effectuée sur le modèle de avion complet ATM, on obtient les premiers 20 modes de vibrations couvrant la plage de fréquences comprise entre 6,25 Hz et 51,14 Hz. Les modes de vibrations du modèle de l'avion de test ATM sont les modes de flexion et de torsion pour les surfaces portantes (ailes et empennages), le fuselage et les surfaces de commande et ces modes sont présentées dans l'annexe 1.

Parmi les modes de vibrations du modèle de test de l'avion complet ATM, nous trouvons les modes de vibrations antisymétriques du modèle ATM original fourni avec les mêmes valeurs de la fréquence et de la masse généralisée, ce qui nous confirme la validation du modèle structurel complet ATM.

Par la suite, l'avion est considéré en vol, sous la présence des forces aérodynamiques non stationnaires généralisées. Les coefficients aérodynamiques d'influence et les forces aérodynamiques sont calculés en fonction de six à dix fréquences réduites par la méthode de doublets (DLM).

Dans le chapitre 6, les méthodes d'analyse de battement k, pk et aéroservoélastiques (LS) sont appliquées en STARS sur les deux modèles ATM original et ATM complet et

une comparaison finale est réalisée entre les valeurs des vitesses de battement obtenues par toutes ces trois méthodes sur les deux modèles.

Pour les deux phénomènes de battement détectés sur le modèle ATM ½ original, on trouve des valeurs de la vitesse et de la fréquence très proches des valeurs de la vitesse et de la fréquence sur le modèle ATM complet. En plus, la même évolution est présentée dans les représentations graphiques de l'amortissement et de la fréquence en fonction de la vitesse équivalente.

Dans le cas du deuxième phénomène de battement identifié sur le modèle ATM original, nous obtenons, par rapport au modèle ATM complet, les même valeurs de la vitesse équivalente et de la fréquence, en utilisant les méthodes d'analyse de battement k, pk, et ASE.

Les résultats sont moins favorables dans l'analyse du premier phénomène de battement identifié sur le modèle ATM original comparativement aux ceux obtenus pour le modèle ATM complet. Dans l'analyse k, la vitesse équivalente obtenue est plus grande avec 5,06% de la vitesse obtenue dans la même analyse sur le modèle ATM $\frac{1}{2}$. Dans l'analyse pk, la vitesse obtenue est plus petite de 8,45%, et dans l'analyse ASE la différence est presque nulle (0,00633%). Du point de vue de la fréquence on constate que les résultats sont presque identiques.

On a trouvé que les vitesses et les fréquences de battement obtenues sur le modèle de l'avion complet (longitudinal et latéral) sont très proches de celles obtenues en STARS sur le modèle original ATM d'où nous pouvons conclure que notre modèle complet de l'avion est validé.

Maintenant, l'ATM complet dans son ensemble modélisé en STARS sera considéré dans la recherche de phénomènes de battement, et on pourra se concentrer sur la recherche principalement dans la commande de l'ATM complet.

RECOMMANDATIONS

La réalisation du modèle complet de l'avion de test ATM, qui fait l'objet de ce mémoire, offre la possibilité d'effectuer dans l'avenir d'autres études en considérant le modèle complet (antisymétrique et symétrique) au lieu du modèle ATM original (antisymétrique).

Une des premières études proposés dans l'avenir serait la validation des résultats obtenus en utilisant le logiciel STARS, dans cette thèse, par les méthodes d'analyse aéroélastique qui ont déjà été réalisées dans le cadre des projets effectués au laboratoire LARCASE.

Ces méthodes développées au LARCASE sont réalisées en Matlab et ont été testées sur le modèle ATM antisymetrique original pour vérifier leurs implémentations correctes pour les méthodes de battement k et pk en boucle ouverte ainsi qu'en boucle fermée.

Deuxièmement, sur le modèle complet de l'ATM on pourra appliquer les deux méthodes existantes pour la conversion des méthodes d'approximation des forces aérodynamiques du domaine de fréquence (aéroélasticité) dans le domaine du temps (aéroservoélasticité).

Les deux méthodes, Least Square LS et Minimum State MS, on pourra les intégrer sur l'avion complet en boucle ouverte et en boucle fermée. Les résultats obtenus en utilisant l'intégration de LS et MS dans les méthodes de battement p et pk seront comparés avec ceux obtenues sur le modèle ½ ATM.

Le transfert du modèle complet sous le logiciel MSC/Nastran est jugé aussi utile pour effectuer des comparaisons entre les résultats obtenus par divers logiciels et pour acquérir des compétences demandées sur le marché du travail québécois, en particulier chez Bombardier Aéronautique. Cette compagnie s'intéresse aux études aéroservoélastiques en utilisant les deux logiciels MSC/Nastran et Matlab.

ANNEXE 1

Modes élastiques du modèle ATM complet

Figure 47 $1^{\text{ère}}$ flexion symétrique de l'aile, f = 6,25 Hz

Figure 49

Figure 49 $1^{\text{ère}}$ flexion verticale du fuselage, f = 12,13 Hz

Figure 50 $1^{\text{ère}}$ flexion horizontale du fuselage, f = 12,45 Hz

Figure 51 $1^{\text{ère}}$ flexion asymétrique de l'aile, f = 14,68 Hz

Figure 52 $1^{\text{ère}}$ flexion de l'empennage horizontal, f = 28,50 Hz

Figure 53 $2^{\text{ème}}$ flexion asymétrique de l'aile, f = 28,75 Hz

Figure 54 $2^{\text{ème}}$ flexion du fuselage, f = 29.81 Hz

Figure 55 $1^{\text{ère}}$ torsion de l'aile, f = 30,70 Hz

Figure 56 1^{ère} torsion de l'aile, f= 32,45 Hz

Figure 57 $2^{\text{ème}}$ flexion du fuselage, f = 35,54 Hz

1

Figure 58 $1^{\text{ère}}$ torsion de l'empennage vertical, f = 35,74 Hz

Figure 59 $2^{\text{ème}}$ flexion symétrique de l'aile, f = 37,42 Hz

Figure 60 $3^{\text{ème}}$ flexion du fuselage, f = 51,14 Hz

Le listage du fichier pr_solids.dat

\$ ATM full model 119, 298, 1, 4, 22, 5, 0, 0, 0, 0 0, 0, 0, 0, 10, 226, 0, 0 0, 0, 0, 1, 0, 1, 0, 2 1, 1, 2, 0, 2, 0, 1, 0, 0, 1, 0, 1, 20, 0, 630.0, 0.0, 0.0, 0, 0 \$ NODAL DATA 1 300,0000 200,0000 0.0000 0 0 0 0 0 0 0 0 0 2 312,5000 200,0000 0.0000 0 0 0 0 0 3 325,0000 200,0000 0,0000 0 0 0 0 0 4 337.5000 200.0000 0.0000 0 0 0 0 0 5 350.0000 200.0000 0.0000 0 0 0 0 0 6 287.5000 150.0000 0.0000 0 0 0 0 0 7 303.1250 150.0000 0.0000 0 0 0 0 0 0 8 318.7500 150.0000 0.0000 0 0 9 334.3750 150.0000 0.0000 0 0 0 0 10 350.0000 150.0000 0.0000 11 335.3750 149.0000 0.0000 12 350.0000 149.0000 0.0000 0 0 0 13 275,0000 100,0000 0.0000 0 0 0 0 0 0 14 293.7500 100.0000 0.0000 0 0 0 0 15 312.5000 100.0000 0.0000 0 0 0 0 0 0 16 331.2500 100.0000 0.0000 0 0 0 $0 \quad 0$ 0 17 332.2500 100.0000 0.0000 0 0 0 0 Ω n 18 350.0000 100.0000 0.0000 0 0 0 0 0 0 0 19 262.5000 50.0000 0.0000 0 0 0 0 0 0 20 284.3750 50.0000 0.0000 0 0 0 0 0 0 21 306.2500 50.0000 0.0000 0 0 0 0 0 0 22 328.1250 50.0000 0.0000 0 23 329.1250 51.0000 0.0000 0 0 0 24 350.0000 51.0000 0.0000 0 0 0 0 0 25 350,0000 50,0000 0.0000 0 0 0 0 0 0.0000 0 0 0 0 0 0 26 250,0000 0,0000 0 0 27 275,0000 0,0000 0.0000 0 0 0 0 0 0 0.0000 0 0 0 28 300.0000 0.0000 0 0 0 0 29 325.0000 0.0000 0.0000 0 0 0 0 0 0 0 30 350.0000 0.0000 $0.0000 \quad 0 \quad 0$ 0 0 0 0 31 200.0000 0.0000 0.0000 0 0 0 0 0 0 0 32 400.0000 0.0000 0.0000 0 0 0 0 0 33 150.0000 0.0000 0.0000 0 0 0 0 0.0000 0 0 0 34 450,0000 0.0000 0 35 100.0000 0.0000 0.0000 0 0 0 0 0 0 0 0 0.0000 0 0 0 36 500.0000 0.0000 0 0 0 37 50.0000 0.0000 0.0000 0 0 0 0 0 0 0 0 0.0000 0 0 0 0 0 0 38 560.0000 0.0000 0 0 39 0.0000 0.0000 0.0000 0 0 0 0 0 0 0 0 40 600,0000 0,0000 0.0000 0 0 0 0 0 0 0 41 520.0000 0.0000 50.0000 0 0 0 0 42 580.0000 100.0000 0.0000 0 0 0 0 0 0 0 43 555.0000 0.0000 50.0000 0 0 0 0 0 0 44 520.0000 20.0000 0.0000 0 0 0 0 0 0 45 580.0000 0.0000 20.0000 0 0 0 0 0 46 560.0000 20.0000 0.0000 0 0 0 0 47 600.0000 0.0000 20.0000 0 0 0 48 600,0000 20,0000 0,0000 0 0 0 0 0 49 540,0000 0,0000 100,0000 0 0 0 0 0 50 526.6666 46.6667 0.0000 0 0 0 0 0 0 51 580.0000 0.0000 50.0000 0 0 0 0 0 52 560,0000 46,6667 0,0000 0 0 0 0 0 53 581.0000 0.0000 21.0000 0 0 0 0 0 54 600,0000 46,6667 0,0000 0 0 0 0 0 0 55 600 0000 0.0000 21,0000 0 0 0 0 0 56 533.3331 73.3333 0.0000 0 0 0 0 0 0 0 57 565,0000 0,0000 100,0000 0 0 0 0 0 0 0 58 560,0000 73,3333 0.0000 0 0 0 0 0 0 59 580.0000 0.0000 80.0000 0 0 0 0 0 0

60 600.0000 73.3333 0.0000

61 581.0000 0.0000 79.0000

62 540,0000 100,0000 0,0000 0 0 0 0 0

0 0 0 0 0

0 0 0

0 0

0 0 0 0

0 0 0 0

\$ ELEMENT CONNECTIVITY CONDITIONS

7 2 1 0 0 0 0 1 1 0 0 6 0 0 0 0 0 0 0 0 1 10 0 0 0 5 13 14 n 0 0 6 n - 1 0 9 8 0 0 0 0 1 7 15 16 19 20 14 0 0 0 0 1 13 9 20 21 15 14 0 0 0 0 10 21 22 16 15 0 0 0 0 11 26 27 20 19 0 0 0 0 1 Λ 2 12 27 28 21 20 0 0 0 0 1 1 0 0 2 13 28 29 22 21 0 0 0 0 1 1 0 2 14 29 30 25 22 0 0 0 0 1 1 0

0 0

1275.0

```
1 220 102 101 75 0 0 0 0 0 1 3 0 0 0
                                                    1 1.5000 37.5000 18.8000 18.8000
0
                                                       0.5300
                                                             3.8000 1.9000 1.9000
                                                    2
                                                       0.7500
                                                             19.0000
                                                                    9.0000
                                                                           9.0000
  1 221 113 112 75 0 0 0 0 0 1 2 0 0 0
                                                             1.5000 0.7500 0.7500
0
                                                       0.0600
  1 222 107 106 75 0 0 0 0 0 1 3 0 0 0
                                                       0.4000
                                                             1.5000
                                                                    0.7500 0.7500
                                                      19.0000 750.0000 375.0000 375.0000
                                                       3.7500 1500.0000 750.0000 750.0000
  1 223 106 108 75 0 0 0 0 0 1 3 0 0 0
                                                    R
                                                                    0.4000 0.4000
0
                                                       0.0300
                                                             0.8000
  1 224 107 103 75 0 0 0 0 0 1 3 0 0 0
                                                    10
                                                       0.0100
                                                              0.4000
                                                                     0.2000 0.2000
                                                       1.1250 28.1250
                                                                     14.0600 14.0600
0
                                                    11
  1 225 106 102 75 0 0 0 0 0 1 3 0 0
                                                    120 11.2500
                                                                675.0
                                                                      338.0
                                                                            338.0
                                                       18.7500
                                                                900.0
                                                                      900.0
                                                                            900.0
0
                                                    121
  1 226 114 113 75 0 0 0 0 0 1 2 0
                                                       18.7500
                                                               1050.0
                                                                      1575.0
                                                                             1575.0
                                                    122
0
                                                       18.7500
                                                               1200.0
                                                                     2250.0
                                                                             2250.0
                                                   123
                                                       18.7500
                                                               1650.0
                                                                     2625.0
                                                                             2625.0
 1 227 110 109 75 0 0 0 0 0 1 3 0 0 0
                                                   124
0
                                                   125 18.7500
                                                               1875.0
                                                                     1875.0
                                                                            1875.0
                                                       18.7500
                                                               2250.0
                                                                      1125.0
 1 228 109 111 75 0 0 0 0 0 1 3 0 0 0
                                                   126
                                                                             1125.0
                                                    127
                                                       18.7500
                                                               3000.0
                                                                      1275.0
 1 229 110 107 75 0 0 0 0 0 1 3 0 0 0
                                                       18.7500
                                                               3000.0
                                                                     1275.0
                                                                             1275.0
                                                   128
                                                       18.7500
                                                               3000.0
                                                                     1275.0
                                                                             1275.0
                                                   130 16.5000
                                                                      975.0
                                                                             975.0
 1 230 109 106 75 0 0 0 0 0 1 3 0 0 0
                                                               2250.0
                                                   131 15.0000
                                                               1500.0
                                                                      675.0
                                                                             675.0
0
 1 231 115 114 75 0 0 0 0 0 1 2 0 0 0
                                                  $ SHELL ELEMENT THICKNESSES
 1 232 38 109 75 0 0 0 0 0 1 8 0 0 0
                                                    1 0.1130
0
                                                       0.0530
                                                       0.0900
 1 233 36 110 75 0 0 0 0 0 1 8 0 0 0
                                                      0.0400
                                                      0.0100
 2 234 117 113 112 116 0 0 0 0 1 2 0 0 0
0
 2 235 118 114 113 117 0 0 0 0 1 2 0 0 0
                                                  $ MATERIAL PROPERTIES
                                                    1 1
0
                                                    1.0E+07
 2 236 119 115 114 118 0 0 0 0 1 2 0 0 0
                                                            0.30
                                                                   0. .259E-03
0
 1 237 104 116 75 0 0 0 0 0 1 5 0 0 0
                                                   $ NODAL MASS DATA
                                                    39 1 0.0195 3
0
  1 238 105 117 75 0 0 0 0 0 1 5 0
                                                          0.0389
0
                                                    35
                                                       1
                                                          0.0584
  1 239 108 118 75 0 0 0 0 0 1 5 0 0 0
                                                          0.0972
0
                                                    31
                                                       1
                                                          0.1943
 1 240 111 119 75 0 0 0 0 0 1 5
                                                    26
                                                          0.2915
0
                                                    28
                                                       1
                                                          0.2915
 1 241 119 118 75 0 0 0 0 0 1 2 0 0 0
                                                    30
                                                          0.2915
0
                                                    32
                                                       1
                                                          0.2915
 1 242 118 117 75 0 0 0 0 0 1 2 0 0 0
                                                          0.2915
0
                                                    36
                                                       1
                                                          0.2915
 1 243 117 116 75 0 0 0 0 0 1 2 0 0 0
                                                    38
                                                          0.2915
0
                                                    40
                                                       1
                                                          0.1943
 1 244 111 108 75 0 0 0 0 0 1 3 0 0 0
                                                    39
                                                       1
                                                          0.0195
0
                                                    37
                                                       1
                                                          0.0389
 1 245 108 105 75 0 0 0 0 0 1 3 0 0 0
                                                    35
                                                       1
                                                          0.0584
0
                                                    33
                                                       1
                                                          0.0972
                                                          0.1943
 1 246 105 104 75 0 0 0 0 0 1 3 0 0
                                                    31
                                                    26
                                                       1
                                                          0.2915
0
 1 247 116 112 65 0 0 0 0 0 1 2 0 0 0
                                                    28
                                                          0.2915
0
                                                    30
                                                          0.2915
 1 248 117 113 65 0 0 0 0 0 1 2
                                                          0.2915
0
                                                    34
                                                       1
                                                          0.2915
  1 249 118 114 65 0 0 0 0 0 1 2 0 0 0
                                                    36
                                                          0.2915
                                                    38
                                                       1
                                                          0.2915
0
                                                                 3
                                                    40
                                                          0.1943 3
 1 250 119 115 65 0 0 0 0 0 1 2
                                                      1
                                                    -1
0
 1 251 40 111 65 0 0 0 0 0 1 8 0 0 0
0
```

\$ LINE ELEMENT BASIC PROPERTIES

\$ OUTPUT POINT SPECIFICATION FOR DIRECT INTERPOLATION OF MODAL DATA

1 36

2 36 36 41 41 41 41 68 9 9 9 4 4 41 70 4 4 9 9 9 9 15 40 4 9 9 9 9 17 4 4 9 9 9 17 4 4 9 9 9 17 4 4 9 9 9 17 4 4 9 9 9 17 4 9 9 17 4 9 17 3 25 30 7 18 36 38 7 15 10 10 38 43 43 43 43 17 7 5 5 10 10 11 43 7 7 5 5 10 10 11 43 7 7 5 5 10 10 11 43 7 7 5 5 10 10 11 43 7 7 5 5 10 10 11 43 7 7 5 5 10 10 11 43 7 7 5 5 10 10 11 45 7 15 15 11 15 15 11 18 51 82 17 18 18 17 17 23 23 17 18 18 17 17 23 25 17 17 45 51 51 18 31 11 17 23 25 17 17 45 51 51 18 31 11 17 23 25 17 18 18 21 17 17 25 18 21 17 18 51 18 18 17 17 23 25 17 18 18 21 18 18 17 17 25 18 18 21 18 18 17 17 25 18 18 24 24 18 18 18 18 18 18 18 18 18 18 18 18 18		
3 36 41 41 41	2 36 36 41	1 68 0
4 41 70 4 4 9 5 41 49 49 71 4 7 49 73 25 30 8 36 38 74 25 9 38 38 43 75 10 10 38 43 43 43 43 76 5 10 10 11 43 77 5 5 10 12 43 57 78 5 14 57 80 17 23 23 15 38 40 81 17 17 23 16 45 82 17 17 45 51 51 83 11 17 18 51 84 11 19 51 59 59 59 86 18 24 4 21 57 65 87 18 18 24 22 67 88 18 23 65 89 12 18 24 53 90 12 25 61 101 75 26 25 97 80 80 27 63 98 80 28 26 98 80 29 19 2 97 80 87 30 19 96 87 31 13 19 19 95 87 87 93 31 13 19 33 13 93 93 32 13 13 19 94 87 93 93 33 13 93 93 34 6 13 92 93 26 37 1 1 6 6 111 76 76 81 40 20 27 108 81 88		
6 41 49 49 7 49 7 49 7 49 7 49 7 49 7 49 7 30 73 25 30 74 25 9 38 38 43 75 10 10 38 43 43 43 3 76 5 10 10 11 43 77 5 5 10 12 43 57 14 57 7 79 23 14 57 15 38 40 80 17 23 23 15 38 40 81 17 17 23 18 11 17 17 45 51 51 83 11 17 19 51 59 59 59 86 18 24 24 21 57 65 82 17 88 18 18 22 26 67 88 18 88 18 89 12 18 90 12 21 57 63 28 26 29 19 26 30 19 31 13 19 19 32 56 61 30 19 31 13 19 19 39 58 78 79 39 31 13 19 19 39 39 33 34 6 13 39 27 40 20 27 40 20 27 40 20 27 40 20 27 41 20 7 41 20 7 42 2 7 7 48 2 2 7 49 2 7 47 2 7 7 48 2 2 7 49 2 7 47 2 7 7 48 2 2 7 47 2 7 7 48 2 2 7 49 2 50 28 51 21 28 51 21 28 51 3 8 8 51 3 78 8 58 3 8 8 59 3 3 8 8 51 3 78 88 58 3 3 8 58 3		
7 49 8 36 36 38 9 38 38 43 10 38 43 43 43 43 11 43 12 43 57 13 43 57 13 43 57 15 38 40 16 45 17 45 51 51 18 51 19 51 59 59 59 18 52 4 20 59 18 61 82 42 42 21 57 65 28 18 18 12 22 67 23 65 24 53 29 19 26 30 19 31 13 19 19 31 13 19 19 32 13 13 19 19 34 6 13 35 6 36 1 6 6 37 1 1 6 37 1 1 6 37 1 1 6 37 1 1 6 37 1 1 6 37 1 1 6 37 1 1 6 37 1 1 6 37 1 1 6 37 1 1 6 37 1 1 6 37 1 1 6 37 1 1 6 38 1 1 10 38 1 10 39 27 40 20 41 42 0 20 41 41 42 0 41 67 67 41 20 42 14 20 20 43 14 14 20 44 14 45 7 14 46 7 47 2 7 7 47 2 7 7 48 2 2 7 49 2 50 28 51 21 28 51 21 51 18 99 52 89 53 18 88 59 3 3 8 8 59 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		71 4
8 36 38		
9 38 38 43 43 43 43 43 175 10 10 38 43 43 43 43 176 5 10 10 11 43 177 5 5 10 11 43 177 5 5 10 11 43 177 5 5 10 11 43 177 5 5 10 11 43 177 5 5 10 11 43 57 57 179 23 180 17 23 23 181 17 17 23 18 40 18 18 17 17 23 18 11 17 17 23 18 11 17 18 51 18 51 18 41 11 19 51 59 59 59 85 24 18 18 24 24 18 18 18 18 18 19 19 51 59 59 59 85 24 18 18 24 24 18 18 18 24 25 25 61 10 175 10 17		
10 38 43 43 43 76 5 10 10 77 75 5 10 11 43 57 78 5 5 10 12 43 57 78 5 5 13 43 57 57 80 17 23 23 14 57 82 17 23 82 17 23 82 17 17 23 82 17 17 23 82 17 17 23 82 17 18 51 83 11 17 84 11 18 51 84 11 18 51 84 11 18 51 84 11 18 51 84 11 18 51 84 11 18 51 84 11 18 51 84 11 18 51 84 11 18 51 84 11 18 51 84 11 19 51 59 59 59 86 18 24 24 24 23 65 89 12 18 89 12 18 24 24 53 23 65 89 12 18 89 12 18 26 55 100 75 75 80 99 75 80 80 98 80 99 96 80 99 90 90 90 90 90 90		
11		
12 43 57		
14 57		
15 38 40 16 45 17 45 51 51 18 51 19 51 59 59 59 20 59 36 18 24 24 21 57 65 22 67 38 18 18 24 22 67 38 18 18 24 23 65 39 12 18 24 53 25 61 26 55 27 63 28 26 29 19 26 30 19 31 13 19 19 32 13 13 19 31 13 19 19 32 13 13 19 33 13 34 6 13 35 6 36 1 6 6 37 1 1 6 38 1 39 27 30 68 88 89 40 20 40 27 41 20 42 14 20 20 43 14 14 20 44 14 45 7 14 46 7 47 2 7 7 48 2 2 7 47 2 7 7 48 2 2 7 47 2 7 7 48 2 2 7 47 2 7 7 48 2 2 7 47 2 7 7 48 2 2 7 47 2 7 7 48 2 2 7 49 2 50 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 31 38 8 51 39 95 56 8 15 57 8 58 3 8 8 59 3 3 8 51 37 78 83 31 38 31 39 95 31 18 39 32 69 42 14 20 44 14 45 7 14 46 7 47 2 7 7 48 2 2 7 47 2 7 7 48 2 2 7 47 2 7 7 48 2 2 7 47 2 7 7 48 2 2 7 47 2 7 7 48 2 2 7 49 2 50 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 31 38 59 3 3 8 133 78 78 83 61 29 62 22 29 63 16 16 22 64 16 22 22 64 16 22 22 64 16 22 22 64 16 22 22 64 16 22 22 65 16 16 16 22 66 16		
16 45		
17 45 51 51 83 11 17 84 11 17 18 51 51 59 59 59 86 18 24 24 24 20 59 86 18 24 24 24 22 67 88 18 88 18 24 24 23 65 65 61 61 62 22 64 66 16 62 66 66 66 66 66		
18 51 19 51 59 59 86 11 18 52 4 20 20 59 86 118 24 24 21 57 65 87 18 18 24 24 22 67 88 18 18 24 24 24 88 18 88 18 22 26 26 26 55 100 75 75 80 80 29 19 26 55 100 75 75 80 80 29 99 75 80 80 29 88 80 29 19 26 97 80 80 29 99 75 80 80 80 20 20 19 26 37 80 80 20 20 33 13 13 13 19 99 75 80 80 80 20 20 33 13 33 33 33 33 33 33 33 33 33 33 33 33 <		
20 59		
21 57 65 87 18 18 24 23 65 89 12 18 24 53 90 12 25 61 100 75 75 80 26 55 100 75 75 80 27 63 99 75 80 80 29 19 26 98 80 30 19 96 87 31 13 19 19 95 87 87 93 32 13 13 19 94 87 93 93 33 13 19 94 87 93 <td></td> <td></td>		
22 67 23 65 24 53 24 53 25 61 27 63 28 26 29 19 26 30 19 31 13 19 19 32 13 13 19 33 13 34 6 13 35 6 36 1 6 6 37 1 1 6 37 1 1 6 37 1 1 6 37 1 1 6 37 1 1 6 37 1 1 1 6 37 1 1 1 6 37 1 1 1 6 37 1 1 1 6 37 1 1 1 6 37 1 1 1 6 37 1 1 77 48 20 27 40 20 27 41 20 41 20 42 14 20 20 43 14 14 20 44 14 45 7 14 46 7 47 2 7 7 48 2 2 7 47 2 7 7 48 2 2 7 47 2 7 7 48 2 2 7 49 2 40 20 27 41 100 88 88 94 43 14 15 15 21 55 15 55 15 55 15 55 15 55 15 55 15 56 8 15 57 8 58 3 8 8 59 3 3 8 8 59 3 3 8 8 59 3 3 8 8 59 3 3 8 8 59 3 3 90 66 26 16 62 66 16 67 96 96 67 96 96 66 16		
23 65 24 53 25 61 26 55 27 63 28 26 29 19 26 30 19 31 13 19 19 32 13 13 19 33 13 34 6 13 35 6 36 1 6 6 37 1 1 6 36 1 6 6 37 1 1 6 38 1 39 27 40 20 27 41 20 41 42 40 20 43 14 14 20 44 14 45 7 14 46 7 47 2 7 7 48 2 2 7 47 2 7 7 48 2 2 7 47 2 7 7 48 2 2 7 49 2 50 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 21 28 51 35 51 5 51 56 51 57 51 57 51 58 51 58 51 58 51 58 51 59 52 22 64 16 22 22 64 16 22 22 64 16 22 22 65 16 16 22 65 16 16 22 67 96 96 96 96		ſ
25 61 101 75 26 55 100 75 75 80 27 63 99 75 80 80 28 26 98 80 29 19 26 97 80 87 30 19 96 87 31 13 19 19 95 87 87 93 32 13 13 19 94 87 93 93 33 16 92 93 26 36 1 6 6 91 26 37 1 1 6 111 76 76 81 38 1 110 76 81 81 39 27 109 81 40 20 27 108 81 88 41 20 106 88 88 94 42 14 20 20 106 88 88 94 43 14 14 20 105 88 94 94 44 14 104 94 45 7 14 102 27 48 2 2 7 122 77 77 48 2 2 7 122 77 77 82 49 2 127 77 82 50 28 120 82 51 21 28 118 89 52 21 118 89 53 15 21 21 117 89 89 95 54 15 15 21 116 89 95 95 55 15 115 95 56 8 15 114 95 28 57 8 113 83 60 3		
26 55 100 75 75 80 80 28 26 99 75 80 80 29 19 26 97 80 87 30 19 96 87 87 93 93 31 13 19 94 87 93 93 33 13 93 93 93 93 34 6 13 92 93 26 35 6 91 26 81 81 36 1 6 111 76 81 81 39 27 100 81 81 81 39 27 108 81 88 94 41 20 27 108 81 88 42 14 20 20 106 88 88 94 43 14 14 20 105 88 94 94 44 14 10 39 27	24 53	90 12
27 63 99 75 80 80 29 19 26 97 80 87 30 19 96 87 31 13 19 95 87 87 93 32 13 13 19 94 87 93 93 33 13 93 93 93 26 91 26 36 16 6 112 76 81 81 81 81 10 76 81 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82		
28 26 98 80 29 19 26 97 80 87 30 19 96 87 93 93 93 92 93 83 83 94 94 94 93 93 93 93 93 <		
29 19 26 97 80 87 30 19 96 87 93 <t< td=""><td></td><td></td></t<>		
31 13 19 19 95 87 87 93 83 93 93 93 93 93 93 93 93 93 93 94 94 94 94 94 94 <td< td=""><td></td><td></td></td<>		
32 13 13 19 94 87 93 94 94 94 94 94 <td< td=""><td></td><td>1</td></td<>		1
33 13 93 93 93 26 91 26 26 36 1 6 6 31 76 37 1 1 6 6 111 76 76 81 81 81 88 81 110 76 81 81 81 89 82 92 93 26 99 98 92 93 26 91 26 91 26 91 26 91 26 81 81 81 81 81 81 81 81 81 81 81 81 81 81 82 82 82 82 82 82 82 84 42 14 20 20 44 14 44 14 42 10 88 88 94 94 94 44 14 104 94 94 44 14 104 94 94 89 92 123 77 77 77 82 82 82 82 82 82 82 82 8		
34 6 13 92 93 26 35 6 91 26 36 1 6 6 112 76 37 1 1 6 111 76 76 81 38 1 100 81 81 81 81 81 81 81 88 94 41 100 81 88 84 94 41 100 81 88 88 94 43 14 14 20 106 88 88 94 <t< td=""><td></td><td></td></t<>		
36 1 6 6 37 1 1 6 81 111 76 81 81 110 76 81 81 110 76 81 81 109 81 81 81 88 109 81 88 107 88 42 14 20 106 88 88 94 94 43 14 14 20 105 88 94 94 94 44 104 94 94 44 104 94 94 44 104 94 94 44 104 94 94 44 104 94 94 44 104 94 94 44 104 94 94 44 104 94 94 44 104 94 94 44 102 27 77 78 22 77 77 82 82 122 77 77 82 82 122 77 77 82 82 120 82 82 121 17 89 89 1		
37 1 1 6 81 81 38 1 110 76 81 81 39 27 109 81 40 20 27 108 81 88 41 20 106 88 88 94 43 14 14 20 105 88 94 94 44 14 104 98 98 92 92 92 94 94 92 98 98 92 98 98 98 98 98 98 98		
38 1 110 76 81 81 39 27 109 81 40 20 27 108 81 88 41 20 106 88 88 94 42 14 20 20 106 88 89 494 43 14 14 20 105 88 94 94 44 14 104 94 45 7 14 103 94 27 46 7 102 27 47 2 7 7 123 77 48 2 2 7 122 77 77 82 49 2 121 77 82 82 50 28 120 82 51 21 28 119 82 89 52 21 118 89 53 15 21 21 117 89 89 95 54 15 15 21 116 89 95 95 55 15 115 95 56 8 15 114 95 28 57 8 113 28 59 3 3 8 133 78 78 83 60 3 131 83 60 2 22 29 130 83 90 64 16 22 22 129 90 64 16 22 22 122 90 64 16 22 70 122 90 90 96 65 16 16 22 127 90 96 96 66 16 126 96		
39 27 40 20 27 41 20 42 14 20 20 43 14 14 20 44 14 105 88 94 94 44 14 104 94		
40 20 27 41 20 42 14 20 43 14 14 45 7 14 46 7 102 27 47 2 7 7 123 77 48 2 2 7 7 82 82 49 2 121 77 82 82 50 28 120 82 51 21 28 119 82 89 52 21 117 89 89 95 54 15 15 21 116 89 95 95 55 15 116 89 95 95 95 95 95 114 95 28 113 28 114 95 28 113 28 134 78 83 133 78 78 83 134 78 83 132 78 83 83 131 83 90 126		
42 14 20 20 43 14 14 20 44 14 104 94 45 7 14 103 94 27 46 7 102 27 27 47 2 7 77 82 82 77 77 82 82 82 120 82 120 82 82 120 82 121 18 89 120 82 121 18 89 125 116 89 95 95 15 15 116 89 95 95 116 89		108 81 88
43 14 14 20 44 14 104 94 45 7 14 103 94 27 46 7 102 27 27 27 27 77 82 22 123 77 77 82 82 120 82 120 82 82 120 82 82 120 82 82 120 82 82 120 82 82 120 82 82 120 82 82 120 82 82 120 82 120 82 120 82 120 82 120 82 120 82 120 82 120 82 120 82 120 82 120 82 120 82 111 89 95 15 116 89 95 95 15 15 116 89 95 95 115 95 114 95 28 113 28 133 78 78 83 133 78 78 8		
44 14 104 94 45 7 14 103 94 27 46 7 102 27 47 2 7 7 123 77 48 2 2 7 122 77 77 82 49 2 121 77 82 82 50 28 120 82 51 21 28 119 82 89 52 21 118 89 53 15 21 21 117 89 89 95 54 15 15 21 116 89 95 95 55 15 115 95 56 8 15 114 95 28 57 8 113 28 58 3 8 8 134 78 59 3 3 8 133 78 78 83 60 3 131 83 61 29 130 83 90 63 22 129 90 64 16 22 22 128 90 90 96 65 16 16 22 127 90 96 96 66 16 126 96		
45 7 14 103 94 27 46 7 102 27 47 2 7 7 123 77 48 2 2 7 77 82 82 49 2 121 77 82 82 50 28 120 82 19 82 89 51 21 28 117 89 89 95		
47 2 7 7 48 2 2 7 77 82 49 2 121 77 82 82 50 28 120 82 51 21 28 119 82 89 52 21 117 89 89 95 54 15 15 21 116 89 95 95 54 15 15 21 116 89 95 95 95 115 95 95 95 95 115 95 95 115 95 95 95 115 95 95 115 95 95 115 95 95 115 95 95 114 95 28 113 28 114 95 28 113 28 133 78 78 83 133 78 78 83 133 78 78 83 131 83 90 96 96 22 22 128 90		
48 2 2 7 77 82 49 2 121 77 82 82 50 28 120 82 51 21 28 119 82 89 52 21 118 89 53 15 21 21 117 89 89 95 54 15 15 21 116 89 95 95 55 15 115 95 114 95 28 57 8 114 95 28 113 28 58 3 8 134 78 83 59 3 3 8 133 78 78 83 60 3 131 83 90 132 78 83 83 61 29 129 90 64 16 22 22 128 90 90 96 65 16 16 22 127 90 96 <t< td=""><td></td><td></td></t<>		
49 2 50 28 51 21 52 21 53 15 21 54 15 21 55 15 56 8 15 57 8 58 3 8 59 3 3 60 3 61 29 63 22 64 16 22 65 16 16 22 129 65 16 16 22 128 90 64 16 22 26 127 90 96 65 16 16 22 66 16 126 96		
50 28 120 82 51 21 28 119 82 89 52 21 118 89 53 15 21 21 117 89 89 95 54 15 15 21 116 89 95 95 55 15 115 95 56 8 15 114 95 28 57 8 113 28 58 3 8 8 134 78 59 3 3 8 133 78 78 83 60 3 132 78 83 83 61 29 131 83 62 22 29 130 83 90 63 22 129 90 64 16 22 22 128 90 90 96 65 16 16 22 127 90 96 96 66 16 126 96		121 77 82 82
51 21 28 119 82 89 52 21 118 89 53 15 21 117 89 89 95 54 15 15 16 89 95 95 55 15 115 95 114 95 28 57 8 113 28 133 78 83 59 3 3 8 134 78 83 60 3 132 78 83 83 61 29 131 83 83 62 22 29 130 83 90 63 22 129 90 90 96 64 16 22 22 128 90 90 96 65 16 16 22 127 90 96 96 96 96		
53 15 21 21 117 89 89 95 95 116 89 95 95 116 89 95 95 116 89 95 95 115 95 115 95 114 95 28 113 28 113 28 113 28 113 28 133 78 78 83 83 132 78 83 83 132 78 83 83 83 131 83 90 131 83 90 130 83 90 90 96 129 90 90 96 98 90 96 <td< td=""><td>51 21 28</td><td>119 82 89</td></td<>	51 21 28	119 82 89
54 15 15 21 116 89 95 95 55 15 115 95 115 95 56 8 15 114 95 28 113 28 57 8 113 28 134 78 132 78 83 83 132 78 83 83 83 132 78 83 83 83 131 83 <td></td> <td></td>		
55 15 56 8 15 57 8 58 3 8 59 3 3 60 3 133 78 78 83 61 29 131 83 62 22 29 130 83 90 63 22 129 90 64 16 22 22 128 90 90 96 65 16 16 22 127 90 96 96 66 16 126 96		
56 8 15 57 8 58 3 8 59 3 3 60 3 132 78 83 61 29 131 83 62 22 29 130 83 90 63 22 129 90 64 16 22 22 128 90 90 96 65 16 16 22 127 90 96 96 66 16 126 96		
58 3 8 8 134 78 59 3 3 8 133 78 78 83 60 3 132 78 83 83 61 29 131 83 62 22 29 130 83 90 63 22 129 90 64 16 22 22 128 90 90 96 65 16 16 22 127 90 96 96 66 16 126 96	56 8 15	114 95 28
59 3 3 8 133 78 78 83 60 3 132 78 83 83 61 29 131 83 62 22 29 129 90 63 22 129 90 64 16 22 22 128 90 90 96 65 16 16 22 127 90 96 96 66 16 126 96	57 8	
60 3 61 29 62 22 63 22 64 16 22 129 65 16 16 12 12 90 90 90	38 3 8 8 59 3 3 8	
61 29 62 22 29 63 22 64 16 22 22 65 16 16 22 66 16 131 83 130 83 90 129 90 128 90 90 96 127 90 96 96 126 96	60 3	
63 22 64 16 22 22 65 16 16 22 66 16 129 90 128 90 90 96 127 90 96 96 126 96	61 29	131 83
64 16 22 22 128 90 90 96 65 16 16 22 127 90 96 96 66 16 126 96		
65 16 16 22 127 90 96 96 16 16 126 96		
66 16 126 96		
67 9 16 125 96 29	66 16	126 96
	67 9 16	125 96 29

```
124 29
                                                      197 108 111 111 111
137 99
                                                      196 111
136 99 30
                                                      207 116
135 30
                                                      206 116 117
141 79
                                                      205 117
                                                      204 117 117 118
140 79 79 84
139 79 84 84
                                                      203 118 119 119 119
138 84
                                                      202 119
                                                      213 112
147 85
146 85 91
                                                      212 113 112
                                                      211 113
145 91
144 91 91 97
                                                      210 114 114 113
                                                      209 115 114 114 114
143 91 97 97
142 97
                                                      208 115
                                                      214 39
153 86
152 86 92
                                                      224 37
                                                      215 35
151 92
150 92 92 98
                                                      216 33
149 92 98 98
                                                      217 31
148 98
                                                      218 26
154 44
                                                      219 28
155 44 50 50 50
                                                      220 30
                                                      221 32
156 50 50 56
157 56
                                                      222 34
                                                      223 36
158 56 62
                                                      225 38
159 62
160 46
                                                      226 40
161 46 52 52 52
162 52 52 58
                                                     $ RIGID BODY AND CONTROL MODE DATA
163 58
164 58 64
                                                     <--- RIGID BODY X TRANSLATION
165 64
                                                      1 1 -1.0 119 1
166 70
167 69 70 70 70
168 68 68 69
                                                     <--- RIGID BODY Y TRANSLATION
169 68
170 42 68
                                                      1 2 1.0 119 1
171 42
                                                      -1
172 74
173 73 74 74 74
                                                     <--- RIGID BODY Z TRANSLATION
174 72 72 73
                                                      1 3 -1.0 119 1
175 72
176 71 72
                                                     <--- RIGID BODY X ROTATION (ROLL)
177 71
178 48
                                                      1 2 -0.6908
179 48 54 54 54
                                                      1 3 -16.6089
180 54 54 60
                                                      1 4 -1.0000
181 60
                                                      2 2 -0.6908
                                                      2 3 -16.6089
182 60 66
                                                      2 4 -1.0000
183 66
189 100
                                                      3 2 -0.6908
188 103 100
                                                         3 -16.6089
                                                      3 4 -1.0000
187 103
186 107 107 103
                                                      4 2 -0.6908
185 111 107 107 107
                                                      4 3 -16.6089
184 111
                                                        4 -1.0000
195 101
                                                      5 2 -0.6908
194 102 101
                                                      5 3 -16.6089
193 102
                                                         4 -1.0000
                                                      6 2 -0.5181
192 106 106 102
191 109 106 106 106
                                                      6 3 -12.4567
                                                      6 4 -1.0000
190 109
201 104
                                                         2 -0.5181
                                                      7 3 -12.4567
200 104 105
199 105
                                                         4 -1.0000
                                                      8 2 -0.5181
198 105 105 108
```

8 3 -12.4567	39 4 -1.0
8 4 -1.0	40 4 -1.0
9 2 -0.5181	41 2 4.1522
9 3 -12.4567	41 3 -0.1727
9 4 -1.0	41 4 -1.0
10 2 -0.5181	42 2 -0.3454
10 3 -12.4567	42 3 -8.3045
10 4 -1.0	42 4 -1.0
11 2 -0.5147	43 2 4.1522
11 3 -12.3737	43 3 -0.1727
11 4 -1.0	43 4 -1.0
12 2 -0.5147	44 2 -0.0691
12 3 -12.3737	44 3 -1.6609
12 4 -1.0	44 4 -1.0
13 2 -0.3454	45 2 1.6609
13 3 -8.3045	45 3 -0.0691
13 4 -1.0	45 4 -1.0
14 2 -0.3454	46 2 -0.0691
14 3 -8.3045	46 3 -1.6609
14 4 -1.0	46 4 -1.0
15 2 -0.3454	47 2 1.6609
15 3 -8.3045	47 3 -0.0691
15 4 -1.0	47 4 -1.0
16 2 -0.3454	48 2 -0.0691
16 3 -8.3045	48 3 -1.6609
16 4 -1.0	48 4 -1.0
17 2 -0.3454	49 2 8.3045
17 3 -8.3045	49 3 -0.3454
17 4 -1.0	49 4 -1.0
18 2 -0.3454	50 2 -0.1612
18 3 -8.3045	50 3 -3.8754
18 4 -1.0	50 4 -1.0 51 2 4.1522
19 2 -0.1727	
19 3 -4.1522	51 3 -0.1727 51 4 -1.0
19 4 -1.0 20 2 -0.1727	52 2 -0.1612
20 2 -0.1727	52 3 -3.8754
20 4 -1.0	52 4 -1.0
21 2 -0.1727	53 2 1.7439
21 3 -4.1522	53 3 -0.0725
21 4 -1.0	53 4 -1.0
22 2 -0.1727	54 2 -0.1612
22 3 -4.1522	54 3 -3.8754
22 4 -1.0	54 4 -1.0
23 2 -0.1762	55 2 1.7439
23 3 -4.2353	55 3 -0.0725
23 4 -1.0	55 4 -1.0
24 2 -0.1762	56 2 -0.2533
24 3 -4.2353	56 3 -6.0899
24 4 -1.0	56 4 -1.0
25 2 -0.1727 25 3 4.1522	57 2 8.3045 57 3 -0.3454
25 3 -4.1522 25 4 -1.0	57 3 -0.3454 57 4 -1.0
25 4 -1.0 26 4 -1.0	58 2 -0.2533
27 4 -1.0	58 3 -6.0899
28 4 -1.0	58 4 -1.0
29 4 -1.0	59 2 6.6436
30 4 -1.0	59 3 -0.2763
31 4 -1.0	59 4 -1.0
32 4 -1.0	60 2 -0.2533
33 4 -1.0	60 3 -6.0899
34 4 -1.0	60 4 -1.0
35 4 -1.0	61 2 6.5605
36 4 -1.0	61 3 -0.2729
37 4 -1.0	61 4 -1.0
38 4 -1.0	62 2 -0.3454

62 3 -8.3045	84 3 12.4567
62 4 -1.0	84 4 -1.0
63 2 6.5605	85 2 -0.5147
63 3 -0.2729	85 3 12.3737
63 4 -1.0	85 4 -1.0
64 2 -0.3454	86 2 0.5147
64 3 -8.3045	86 3 12.3737
64 4 -1.0	86 4 -1.0
65 2 8.3045	87 2 0.3454
65 3 -0.3454	87 3 8.3045
65 4 -1.0	87 4 -1.0
66 2 -0.3454	88 2 0.3454
66 3 -8.3045	88 3 8.3045
66 4 -1.0	88 4 -1.0
67 2 6.6436	89 2 0.3454 89 3 8.3045
67 3 -0.2763 67 4 -1.0	89 4 -1.0
68 2 -0.2533	90 2 0.3454
68 3 -6.0899	90 3 8.3045
68 4 -1.0	90 4 -1.0
69 2 -0.1612	91 2 0.3454
69 3 -3.8754	91 3 8.3045
69 4 -1.0	91 4 -1.0
70 2 -0.0691	92 2 0.3454
70 3 -1.6609	92 3 8.3045
70 4 -1.0	92 4 -1.0
71 2 -0.3454	93 2 0.1727
71 3 -8.3045	93 3 4.1522
71 4 -1.0	93 4 -1.0
72 2 -0.2533	94 2 0.1727
72 3 -6.0899 72 4 -1.0	94 3 4.1522 94 4 -1.0
72 4 -1.0 73 2 -0.1612	95 2 0.1727
73 3 -3.8754	95 3 4.1522
73 4 -1.0	95 4 -1.0
74 2 -0.0691	96 2 0.1727
74 3 -1.6609	96 3 4.1522
74 4 -1.0	96 4 -1.0
75 2 0.6908	97 2 0.1762
75 3 16.6089	97 3 4.2353
75 4 -1.0000	97 4 -1.0
76 2 0.6908	98 2 0.1762
76 3 16.6089	98 3 4.2353
76 4 -1.0000 77 2 0.6908	98 4 -1.0 99 2 0.1727
	99 3 4.1522
77 3 16.6089 77 4 -1.0000	99 4 -1.0
78 2 0.6908	104 2 0.3454
78 3 16.6089	104 3 8.3045
78 4 -1.0000	104 4 -1.0
79 2 0.6908	110 2 0.0691
79 3 16.6089	110 3 1.6609
79 4 -1.0000	110 4 -1.0
80 2 0.5181	109 2 0.0691
80 3 12.4567	109 3 1.6609
80 4 -1.0000	109 4 -1.0 115 2 0.0691
81 2 0.5181 81 3 12.4567	115 2 0.0691
81 3 12.4567 81 4 -1.0000	115 4 -1.0
82 2 0.5181	107 2 0.1612
82 3 12.4567	107 3 3.8754
82 4 -1.0	107 4 -1.0
83 2 0.5181	106 2 0.1612
83 3 12.4567	106 3 3.8754
83 4 -1.0	106 4 -1.0
84 2 0.5181	114 2 0.1612

```
8 5 1
114 3 3.8754
114 4 -1.0
                                                         1 -0.2051
103 2 0.2533
                                                         3 -4.9308
103 3 6.0899
                                                      9 5 1
103 4 -1.0
                                                      10 1 -0.2591
102 2 0.2533
                                                      10 3 -6.2284
102 3 6.0899
                                                      10 5 1
                                                      11 1 -0.2085
102 4 -1.0
                                                      11 3 -5.0139
113 2 0.2533
113 3 6.0899
                                                      11 5 1
                                                      12 1 -0.2591
113 4 -1.0
100 2 0.3454
                                                      12 3 -6.2284
                                                      12 5 1
100 3 8.3045
100 4 -1.0
                                                      13 1 0
101 2 0.3454
                                                      13 3 0
                                                      13 5 1
101 3 8.3045
101 4 -1.0
                                                      14
                                                         1 -0.0648
                                                      14 3 -1.5571
112 2 0.3454
112 3 8.3045
                                                      14 5 1
                                                      15 1 -0.1295
112 4 -1.0
105 2 0.2533
                                                      15 3 -3.1142
                                                      15 5 1
105 3 6.0899
                                                      16 1 -0.1943
105 4 -1.0
108 2 0.1612
                                                      16 3 -4.6713
108 3 3.8754
                                                      16 5 1
108 4 -1.0
                                                      17
                                                         1 -0.1978
                                                      17 3 -4.7543
111 2 0.0691
111 3 1.6609
                                                      17 5 1
                                                      18 1 -0.2591
111 4 -1.0
116 2 0.3454
                                                      18
                                                         3 -6.2284
116 3 8.3045
                                                      18 5 1
                                                         1 0.0432
116 4 -1.0
                                                      19 3 1.0381
117 2 0.2533
                                                      19 5 1
117 3 6.0899
                                                      20 1 -0.0324
117 4 -1.0
                                                      20 3 -0.7786
118 2 0.1612
                                                      20 5 1
118 3 3.8754
                                                      21 1 -0.1079
118 4 -1.0
                                                      21 3 -2.5952
119 2 0.0691
119 3 1.6609
                                                      21 5 1
119 4 -1.0
                                                      22 1 -0.1835
                                                      22 3 -4.4118
-1
                                                      22 5 1
<--- RIGID BODY Y ROTATION (PITCH) AT 275 IN.</p>
                                                      23 1 -0.187
 1 1 -0.0864
 1 3 -2.0761
                                                      23 3 -4.4948
                                                      23 5 1
 1 5 1
                                                      24
                                                         1 -0.2591
 2 1 -0.1295
                                                      24 3 -6.2284
 2 3 -3.1142
                                                      24
                                                         5 1
 2 5 1
                                                         1 -0.2591
                                                      25
 3 1 -0.1727
                                                      25
                                                         3 -6.2284
 3 3 -4.1523
                                                      25 5 1
 3 5 1
 4 1 -0.2159
                                                      26
                                                         1 0.0864
                                                         3 2.0761
5 1
                                                      26
 4 3 -5.1903
   5 1
                                                      26
 5 1 -0.2591
                                                      27 1 0
                                                      27 3 0
 5 3 -6.2284
                                                      27 5 1
 5 5 1
   1 -0.0432
                                                      28 1 -0.0864
                                                      28 3 -2.0761
 6 3 -1.0381
 6 5 1
                                                      28 5 1
 7 1 -0.0972
                                                      29
                                                         1 -0.1727
                                                         3 -4.1523
    3 -2.3357
                                                      29
                                                      29 5 1
 7 5 1
                                                      30 1 -0.2591
 8 1 -0.1511
 8 3 -3.6332
                                                      30 3 -6.2284
```

30 5 1	52 5 1
31 1 0.2591	53 1 0.687
	1
31 3 6.2284	53 3 -25.4844
31 5 1	53 5 1
32 1 -0.4318	54 1 -1.1226
32 3 -10.3807	54 3 -26.9897
	1
32 5 1	54 5 1
33 1 0.4318	55 1 0.6213
33 3 10.3807	55 3 -27.0623
	55 5 1
34 1 -0.6045	56 1 -0.8923
34 3 -14.5329	56 3 -21.4534
34 5 1	56 5 1
35 1 0.6045	57 1 7.3028
35 3 14.5329	
35 5 1	57 5 1
36 1 -0.7772	58 1 -0.9845
36 3 -18.6852	58 3 -23.6679
	58 5 1
	1
37 1 0.7772	59 1 5.5901
37 3 18.6852	59 3 -25.6052
37 5 1	59 5 1
38 1 -0.9845	60 1 -1.1226
38 3 -23.6679	60 3 -26.9897
38 5 1	60 5 1
39 1 0.9499	61 1 5.5036
39 3 22.8375	61 3 -25.6848
39 5 1	61 5 1
40 1 1.1226	62 1 -0.9154
40 3 -26.9897	62 3 -22.007
40 5 1	62 5 1
41 1 3.306	63 1 5.438
41 3 -20.5188	63 3 -27.2626
41 5 1	63 5 1
42 1 -1.0535	64 1 -0.9845
42 3 -25.3288	•
42 5 1	64 5 1
43 1 3.1851	65 1 7.1819
43 3 -23.4254	65 3 -27.3352
	65 5 1
44 1 -0.8463	66 1 -1.1226
44 3 -20.3461	66 3 -26.9897
44 5 1	66 5 1
45 1 0.6074	67 1 5.521
	67 3 -27.2661
45 3 -25.3979	•
45 5 1	67 5 1
46 1 -0.9845	68 1 -1.0535
46 3 -23.6679	68 3 -25.3288
	68 5 1
47 1 0.5383	69 1 -1.0535
47 3 -27.0588	69 3 -25.3288
47 5 1	69 5 1
48 1 -1.1226	70 1 -1.0535
	1
48 3 -26.9897	70 3 -25.3288
48 5 1	70 5 1
49 1 7.3892	71 1 -1.057
49 3 -22.3524	71 3 -25.4119
49 5 1	71 5 1
	1
50 1 -0.8693	1
50 3 -20.8997	72 3 -25.4119
50 5 1	72 5 1
51 1 3.0987	73 1 -1.057
51 3 -25.5015	73 3 -25.4119
	1
51 5 1	73 5 1
52 1 -0.9845	74 1 -1.057
52 3 -23.6679	74 3 -25.4119

74 5 1	96 5 1
75 1 -0.0864	97 1 -0.187
75 3 -2.0761	97 3 -4.4948
75 5 1	97 5 1
76 1 -0.1295	98 1 -0.2591
76 3 -3.1142	98 3 -6.2284
76 5 1	98 5 1
77 1 -0.1727	99 1 -0.2591
77 3 -4.1523 77 5 1	99 3 -6.2284 99 5 1
78 1 -0.2159	104 1 -1.0535
78 3 -5.1903	104 3 -25.3288
78 5 1	104 5 1
79 1 -0.2591	110 1 -0.8463
79 3 -6.2284	110 3 -20.3461
79 5 1	110 5 1
80 1 -0.0432	109 1 -0.9845
80 3 -1.0381	109 3 -23.6679
80 5 1	109 5 1
81 1 -0.0972	115 1 -1.1226
81 3 -2.3357	115 3 -26.9897
81 5 1	115 5 1
82 1 -0.1511	107 1 -0.8693 107 3 -20.8997
82 3 -3.6332 82 5 1	107 3 -20.8997 107 5 1
83 1 -0.2051	107 3 1
83 3 -4.9308	106 1 -0.9643
83 5 1	106 5 1
84 1 -0.2591	114 1 -1.1226
84 3 -6.2284	114 3 -26.9897
84 5 1	114 5 1
85 1 -0.2085	103 1 -0.8923
85 3 -5.0139	103 3 -21.4534
85 5 1	103 5 1
86 1 -0.2591	102 1 -0.9845
86 3 -6.2284	102 3 -23.6679
86 5 1	102 5 1
87 1 0	113 1 -1.1226
87 3 0	113 3 -26.9897
87 5 1 88 1 -0.0648	113 5 1 100 1 -0.9154
88 1 -0.0648 88 3 -1.5571	100 1 -0.9134
88 5 1	100 5 22:007
89 1 -0.1295	101 1 -0.9845
89 3 -3.1142	101 3 -23.6679
89 5 1	101 5 1
90 1 -0.1943	112 1 -1.1226
90 3 -4.6713	112 3 -26.9897
90 5 1	112 5 1
91 1 -0.1978	105 1 -1.0535
91 3 -4.7543	105 3 -25.3288
91 5 1	105 5 1
92 1 -0.2591 92 3 -6.2284	108 1 -1.0535 108 3 -25.3288
92 3 -6.2284 92 5 1	108 5 1.0
93 1 0.0432	111 1 -1.0535
93 3 1.0381	111 3 -25.3288
93 5 1	111 5 1.0
94 1 -0.0324	116 1 -1.057
94 3 -0.7786	116 3 -25.4119
94 5 1	116 5 1.0
95 1 -0.1079	117 1 -1.057
95 3 -2.5952	117 3 -25.4119
95 5 1	117 5 1.0
96 1 -0.1835	118 1 -1.057 118 3 -25.4119
96 3 -4.4118	118 3 -25.4119

118 5 1.0	21 1 4.0443
119 1 -1.057	21 2 -2.7679
	,
119 3 -25.4119	21 6 -1.0
119 5 1.0	22 1 3.9688
-1	22 2 -4.5845
< RIGID BODY Z ROTATION (YAW) AT 275 IN.	22 6 -1.0
• • • • • • • • • • • • • • • • • • • •	ł .
1 1 16.5227	23 1 4.0483
1 2 -2.7670	23 2 -4.6710
1 6 -1.0	23 6 -1.0
2 1 16.4795	24 1 3.9763
2 2 -3.8050	24 2 -6.4046
2 6 -1.0	24 6 -1.0
3 1 16.4364	25 1 3.8932
3 2 -4.8431	25 2 -6.4011
	25 6 -1.0
4 1 16.3932	26 1 0.0863
4 2 -5.8812	26 2 2.0761
4 6 -1.0	26 6 -1.0
5 1 16.3500	27 1 0.0000
5 2 -6.9192	27 2 0.0000
5 6 -1.0	27 6 -1.0
6 1 12.4137	28 1 -0.0864
6 2 -1.5562	28 2 -2.0761
	i i
6 6 -1.0	28 6 -1.0
7 1 12.3596	29 1 -0.1727
7 2 -2.8538	29 2 -4.1523
7 6 -1.0	29 6 -1.0
	30 1 -0.2591
8 2 -4.1514	30 2 -6.2284
8 6 -1.0	30 6 -1.0
9 1 12.2517	31 1 0.2591
9 2 -5.4489	31 2 6.2284
9 6 -1.0	31 6 -1.0
10 1 12.1978	32 1 -0.4318
10 2 -6.7465	32 2 -10.3807
10 6 -1.0	32 6 -1.0
	33 1 0.4318
11 1 12.1652	
11 2 -5.5285	33 2 10.3807
11 6 -1.0	33 6 -1.0
12 1 12.1147	34 1 -0.6045
12 2 -6.7431	34 2 -14.5330
12 6 -1.0	34 6 -1.0
13 1 8.3045	35 1 0.6045
13 2 -0.3454	35 2 14.5330
13 6 -1.0	35 6 -1.0
14 1 8.2398	36 1 -0.7772
14 2 -1.9025	36 2 -18.6852
14 6 -1.0	36 6 -1.0
15 1 8.1750	37 1 0.7772
15 2 -3.4596	37 2 18.6852
15 6 -1.0	37 6 -1.0
16 1 8.1102	38 1 -0.9845
16 2 -5.0167	38 2 -23.6680
16 6 -1.0	38 6 -1.0
17 1 8.1068	39 1 0.9499
17 2 -5.0998	39 2 22.8375
17 6 -1.0	39 6 -1.0
18 1 8.0455	40 1 -1.1227
18 2 -6.5738	40 2 -26.9898
18 6 -1.0	40 6 -1.0
19 1 4.1955	41 1 -0.8463
19 2 0.8654	41 2 -20.3461
	41 6 -1.0
19 6 -1.0	
20 1 4.1199	42 1 7.2510
20 2 -0.9512	42 2 -25.6743
20 6 -1.0	42 6 -1.0
***	•

83

		1
43 43	1 -0.9672 2 -23.2527	
43	6 -1.0	
44	1 0.8146	
44	2 -20.4152	
44	6 -1.0	
45 45	1 -1.0536 2 -25.3289	
45	6 -1.0	
46	1 0.6765	
46	2 -23.7371	
46	6 -1.0	
47 47	1 -1.1227 2 -26.9898	
47	6 -1.0	
48	1 0.5383	
48	2 -27.0589	
48	6 -1.0	
49	1 -0.9154	
49 49	2 -22.0071 6 -1.0	
50	1 3.0061	
50	2 -21.0610	
50	6 -1.0	
51	1 -1.0536	
51 51	2 -25.3289 6 -1.0	
52	1 2.8910	
52	2 -23.8291	
52	6 -1.0	
53	1 -1.0570	
53 53	2 -25.4119 6 -1.0	
54	1 2.7528	
54	2 -27.1510	
54	6 -1.0	
55	1 -1.1227	
55 55	2 -26.9898 6 -1.0	
56	1 5.1977	
56	2 -21.7067	
56	6 -1.0	į
57	1 -1.0017	
57 57	2 -24.0832 6 -1.0	
58	1 5.1056	
58	2 -23.9212	
58	6 -1.0	1
59	1 -1.0536	1
59 59	2 -25.3289 6 -1.0	
60	1 4.9674	
60	2 -27.2431	
60	6 -1.0	1
61	1 -1.0570	
61 61	2 -25.4119 6 -1.0	
62	1 7.3892	
62	2 -22.3525	
62	6 -1.0	
63 63	1 -1.1227 2 -26.9898	
63	6 -1.0	
64	1 7.3201	
64	2 -24.0134	
64	6 -1.0	

64 6 -1.0

```
87 1 -8.3045
                                                       113 1 -7.2126
87 2 -0.3454
                                                       113 2 -26.7364
                                                       113 6 -1.0
87 6 -1.0
                                                       100 1 -9.2199
88 1 -8.3693
88 2 -1.2117
                                                       100 2 -21.6616
88 6 -1.0
                                                       100 6 -1.0
                                                       101 1 -9.2890
89 1 -8.4341
89 2 -2.7688
                                                       101 2 -23.3225
89 6 -1.0
                                                       101 6 -1.0
90 1 -8.4988
                                                       112 1 -9.4272
90 2 -4.3259
                                                       112 2 -26.6443
                                                       112 6 -1.0
90 6 -1.0
91 1 -8.5023
                                                       105 1 -7.1435
                                                       105 2 -25.0755
91 2 -4.4089
91 6 -1.0
                                                       105 6 -1.0
                                                       108 1 -4.9290
92 1 -8.5636
                                                       108 2 -25.1676
92 2 -5.8830
92 6 -1.0
                                                       108 6 -1.0
93 1 -4.1091
                                                       111 1 -2.7144
93 2 1.2108
                                                       111 2 -25.2597
93 6 -1.0
                                                       111 6 -1.0
94 1 -4.1847
                                                       116 1 -9.3615
                                                       116 2 -25.0664
94 2 -0.6058
94 6 -1.0
                                                       116 6 -1.0
                                                       117 1 -7.1470
117 2 -25.1586
95 1 -4.2602
95 2 -2.4225
                                                       117 6 -1.0
95 6 -1.0
96 1 -4.3358
                                                       118 1 -4.9324
                                                       118 2 -25.2507
96 2 -4.2391
                                                       118 6 -1.0
96 6 -1.0
                                                       119 1 -2.7179
97 1 -4.4223
                                                       119 2 -25.3428
97 2 -4.3187
97 6 -1.0
                                                       119 6 -1.0
98 1 -4.4944
                                                       -1
98 2 -6.0522
                                                      <--- FLAPERON DEFLECTION ASYM
                                                        11 3 0.0833
98 6 -1.0
99 1 -4.4113
                                                        17 3 0.0833
                                                        23 3 0.0833
99 2 -6.0557
                                                        24 3 1.8229
99 6 -1.0
                                                        18 3 1.5625
104 1 -9.3581
104 2 -24.9834
                                                        12 3 1.3020
                                                       11 5 -1.0
104 6 -1.0
110 1 -2.5072
                                                        17 5 -1.0
110 2 -20.2770
                                                        23 5 -1.0
110 6 -1.0
                                                        24 5 -1.0
                                                        18 5 -1.0
109 1 -2.6454
109 2 -23.5988
                                                        12 5 -1.0
                                                        85 3 -.0833
109 6 -1.0
                                                        91 3 -.0833
115 1 -2.7835
                                                        97 3 -.0833
115 2 -26.9206
115 6 -1.0
107 1 -4.7448
                                                        98 3 -1.8229
                                                        92 3 -1.5625
107 2 -20.7385
                                                        86 3 -1.3020
107 6 -1.0
106 1 -4.8599
                                                        85 5 1.0
                                                        91 5 1.0
                                                        97 5 1.0
106 2 -23.5067
106 6 -1.0
                                                        98 5 1.0
                                                        92 5 1.0
114 1 -4.9981
114 2 -26.8285
                                                        86 5 1.0
                                                        -1
114 6 -1.0
103 1 -6.9823
                                                       <--- FLAPERON DEFLECTION SYM
                                                       11 3 0.0833
103 2 -21.2000
103 6 -1.0
102 1 -7.0744
                                                        17 3 0.0833
                                                        23 3 0.0833
                                                        24 3 1.8229
102 2 -23.4146
                                                        18 3 1.5625
102 6 -1.0
```

```
74 3 -.0833
 12 3 1.3020
 11 5 -1.0
17 5 -1.0
23 5 -1.0
                                                                               66 3 -1.6609
60 3 -1.6609
54 3 -1.6609
                                                                               48 3 -1.6609
 24 5 -1.0
 18 5 -1.0
                                                                               119 3 -.0833
                                                                              118 3 -.0833
117 3 -.0833
116 3 -.0833
 12 5 -1.0
 85 3 0.0833
91 3 0.0833
                                                                               115 3 -1.6609
 97 3 0.0833
 98 3 1.8229
92 3 1.5625
86 3 1.3020
85 5 -1.0
                                                                               114 3 -1.6609
113 3 -1.6609
112 3 -1.6609
                                                                               -1
                                                                              <--- RUDDER DEFLECTION, T.E. NEGATIVE
 91 5 -1.0
 97 5 -1.0
                                                                               53 2 -.08333
 98 5 -1.0
92 5 -1.0
                                                                                53 6 -1.0
61 2 -.08333
 86 5 -1.0
                                                                                61 6 -1.0
                                                                                55 2 -1.66667
 -1
                                                                                55 6 -1.0
63 2 -1.66667
<--- ELEVATOR SYM
 71 3 -.0833
72 3 -.0833
73 3 -.0833
                                                                                63 6 -1.0
```

Le listage du fichier pr_genmass.dat

\$ STARS 6.1.1 AERO TEST MODES, FULL VERSION C STARS 6.1.2 ISTMN NLVN GR 7 40 386.088 2

\$ STARS 6.1.3 LATERALLY MOVING direct interpolation output NODE NUMBERS C STARS 6.1.3.1 (LN(I),I=1,NLVN) NLVN number of laterally vibrating nodes

Le listage du fichier pr_aero_ase.dat

```
AIRCRAFT TEST MODEL
                                                      0.0 0.34 0.66 1.0
SET UP FOR ASE SOLUTION.
DIRECT SURFACE INTERPOLATION.
                                                     328.125 350.0 331.25 350.0 50.0 100.0
                                                      0.0 \qquad 0.0 \ \ 4 \ \ 2 \qquad \quad 0.0
14 ELASTIC MODES FROM SOLIDS (-6 AT GENMASS)
+ 6 PERF. RIG. + 5 CONTROL
                                                      0.0
                                                           1.0
                                                      0.0 0.34 0.66
FILE FOR ASE, FOR FLUTTER USE CONVERT TO
                                                                      1.0
EXCLUDE RBC'S, FOR FRESP USE ALL
                                                     331.25 350.0 334.375 350.0 100.0 150.0
MACH NO. = 0.90
                ALTITUDE: SEA LEVEL
                                                      0.0 0.0 4 2 0.0
 1 24 5 10 1 0 0 0 0 0
                                                      0.0
                                                           1.0
 1 0 0 0 0 0 0 0 0 0
                                                      0.0 0.34 0.66
                                                                      1.0
 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 99 0 0
                                                        LHS WING / AILERON - 6 AERODYNAMIC
                                                   C
                                                   PANELS
  38.89 0.90
 11000.0 1000.0 100.0 50.0
                             10.0
                                   5.0
                                         1.0
  0.667 0.500 0.25
   .10 -.40 1400. 80.0
                                                      300.0 350.0 287.5 350.0 -200.0 -150.0
                                                      0.0 0.0 4 5 0.0
   1.0
  77.78 30000.
                                                          0.25 0.50 0.75
                                                           0.34 0.66 1.0
 0 27 15100 0 0 1
                                                      287.5 334.375 275.0 331.25 -150.0 -100.0
                                                      0.0 0.0 4 4 0.0
0.0 0.3333 0.6666 1.0
      FIN/RUDDER - 3 AERODYNAMIC PANELS
C
                                                      0.0 0.34 0.66 1.0
                90.0
  508.0 580.0 532.0 580.0
                            20.0 80.0
   0.0 0.0 4 4 0.0
                                                      275.0 331.250 262.5 328.125 -100.0 -50.0
   0.0 0.3333 0.6666 1.0
                                                      0.0 0.0 4 4 0.0
                                                      0.0 0.3333 0.6666 1.0
   0.0 0.3333 0.6666
                     1.0
                                                      0.0 0.34 0.66 1.0
                90.0
  532.0 600.0 540.0 600.0
                            80.0
                                 100.0
                                                      262.5 350.0 255.0 350.0 -50.0 -20.0
   0.0 0.0 2 5 0.0
   0.0\quad 0.2353\quad 0.4705\quad 0.7059
                                                      0.0
                                                           0.0 3 5 0.0
                             1.0
                                                      0.0 0.25 0.50 0.75 1.0
                                                           0.5 1.0
                                                      0.0
                90.0
  580.0 600.0 580.0 600.0
                                  80.0
                                                     334.375 350.0 331.25 350.0 -150.0 -100.0
   0.0 0.0 4 2
                   0.0
                                                      0.0 0.0 4 2 0.0
   0.0
        1.0
   0.0 0.3333 0.6666 1.0
                                                           1.0
                                                      0.0
                                                          0.34 0.66 1.0
   RHS WING/AILERON - 6 AERODYNAMIC
                                                     331.25 350.0 328.125 350.0 -100.0 -50.0
C
PANELS
                                                      0.0 0.0 4 2 0.0
                                                           1.0
                                                      0.0 0.34 0.66 1.0
  255.0 350.0 262.5 350.0 20.0
                                  50.0
   0.0
        0.0 3 5 0.0
   0.0 0.25 0.50 0.75 1.0
                                                       RHS HORIZONTAL TAIL / ELEVATOR - 4
                                                   C
   0.0 0.5
            1.0
                                                    AERODYNAMIC PANELS
  262.5 328.125 275.0 331.25 50.0 100.0
   0.0 0.0 4 4 0.0
                                                      520.0 580.0 527.5 580.0 20.0 50.0
   0.0 0.3333 0.6666 1.0
0.0 0.34 0.66 1.0
                                                           0.0 3 3 0.0
                                                      0.0
                                                      \begin{array}{cccc} 0.0 & 0.4167 & 1.0 \\ 0.0 & 0.5 & 1.0 \end{array}
  275.0 331.25 287.5 334.375 100.0 150.0
   0.0 0.0 4 4 0.0
                                                      527.5 580.0 540.0 580.0
                                                                               50.0 100.0
   0.0 0.3333 0.6666 1.0
                                                      0.0
                                                            0.0 4 3 0.0
   0.0 0.34 0.66 1.0
                                                      0.0 0.4167 1.0
                                                           0.34 0.66
                                                                       1.0
  287.5 350.0 300.0 350.0 150.0 200.0
   0.0 0.0 4 5 0.0
0.0 0.25 0.50 0.75 1.0
                                                      580.0 600.0 580.0 600.0 20.0
                                                                                      50.0
                                                      0.0 0.0 3 2 0.0
```

```
0.0
       1.0
                                                      C FIN/RUDDER INTERPOLATION DATA
   0.0 0.5 1.0
  580.0 600.0 580.0 600.0 50.0 100.0
   0.0 0.0 4 2 0.0
                                                       T 16 1
                                                        4 0 1 1
   0.0
       1.0
   0.0 0.34 0.66 1.0
                                                        7 502.0 2.0 542.0 100.0
                                                        2.0 17.0 37.0 50.0 75.0
                                                                                       85.0 100.0
                                                        7 542.0 2.0 560.0 100.0
C LHS HORIZONTAL TAIL / ELEVATOR - 4
                                                        2.0 17.0 37.0 50.0 75.0
                                                                                       85.0
                                                                                            100.0
                                                        7 578.0 2.0 578.0 100.0
AERODYNAMIC PANELS
                                                        2.0 17.0 40.0 50.0 73.0
                                                                                       82.0 100.0
                                                        2 598.0 82.0 598.0 100.0
  540.0 580.0 527.5 580.0 -100.0 -50.0
                                                        82.0 100.0
                                                        580.0 20.0 580.0 80.0
   0.0 0.0 4 3 0.0
                                                       2 0 1 1
   0.0 0.4167 1.0
   0.0 0.34 0.66
                    1.0
                                                        2 582.0 22.0 582.0
                                                        22.0 78.0
  527.5 580.0 520.0 580.0 -50.0 -20.0
                                                        2 598.0 22.0 598.0
                                                                               78.0
   0.0 0.0 3 3 0.0
                                                        22.0 78.0
   0.0 0.4167 1.0
0.0 0.5 1.0
                                                        T 44 1
                                                        6 0 1 1
                                                       11 252.0 2.0 302.0 200.0
  580.0 600.0 580.0 600.0 -100.0 -50.0
                                                         2.0 25.0 50.0 67.0 83.0 102.0 125.0
   0.0 0.0 4 2
                    0.0
                                                      150.0
                                                        167.0 183.0 200.0
   0.0
        1.0
                                                       11 270.0 2.0 313.0 200.0
        0.34 0.66 1.0
   0.0
                                                        2.0 25.0 50.0 67.0 83.0 102.0
  580.0 600.0 580.0 600.0 -50.0 -20.0
                                                      150.0
                                                        167.0 183.0 200.0
        0.0 3 2
                  0.0
   0.0
                                                       11 298.0 2.0 324.0 200.0
   0.0
         1.0
                                                        2.0 25.0 50.0 67.0 83.0 102.0 125.0
   0.0
        0.5
              1.0
  -5.0 600.0 -5.0 600.0 0.0 20.0
                                                        167.0 183.0 200.0
                                                       11 \quad 323.0 \quad 2.0 \quad 336.0 \quad 200.0
  -20.0 0.0 2 11
                    0.0
   0.0 0.1074 0.2149 0.3223 0.4298 0.5083
                                                        2.0 25.0 50.0 67.0 83.0 102.0 125.0
 0.5868 0.6777 0.7769 0.8678 1.0000
                                                        167.0 183.0 200.0
   0.0
       1.0
                                                        3 348.0 2.0 348.0 48.0
                                                        2.0 25.0 48.0
  -5.0 600.0 -5.0 600.0 20.0 0.0
                                                       4 348.0 152.0 348.0 200.0
   0.0 20.0 2 11
                    0.0
   0.0 0.1074 0.2149 0.3223 0.4298 0.5083
                                                       152.0 167.0 183.0 200.0
                                                       328.125 50.0 334.375 150.0
2 0 1 1
 0.5868 \quad 0.6777 \quad 0.7769 \quad 0.8678 \quad 1.0000
   0.0
       1.0
                                                        6 330.0 52.0 336.0 148.0
  -5.0 600.0 -5.0 600.0 0.0 -20.0
                                                        52.0 67.0 83.0 102.0 125.0 148.0
                                                       6 348.0 52.0 348.0 148.0
  -20.0
        0.0 2 11 0.0
                                                        52.0 67.0 83.0 102.0 125.0 148.0
   0.0 0.1074 0.2149 0.3223 0.4298 0.5083
 0.5868 0.6777 0.7769 0.8678 1.0000
                                                      CLHS WING
   0.0
        1.0
                                                       T 44 1
  -5.0 600.0 -5.0 600.0 -20.0
                                                       6 0 1 1
   0.0 20.0 2 11
                    0.0
   0.0 \quad 0.1074 \quad 0.2149 \quad 0.3223 \quad 0.4298 \quad 0.5083
                                                       11 302.0 -200.0 252.0 -2.0
 0.5868 \quad 0.6777 \quad 0.7769 \quad 0.8678 \quad 1.0000
                                                        -200.0 -183.0 -167.0 -150.0 -125.0 -102.0
   0.0
       1.0
                                                      -83.0 -67.0
                                                        -50.0 -25.0 -2.0
                    0.0135174
   0.0 0.0 14 0 1
                                                       11 313.0 -200.0 270.0 -2.0
 -15.000 25.000 85.000 145.000 205.000 245.000
                                                        -200.0 -183.0 -167.0 -150.0 -125.0 -102.0
 295.000 335.000 365.000 425.000 485.000 565.000
                                                      -83.0 -67.0
 605.000 645.000

        0.0
        10.0
        20.0
        20.0
        20.0

        40.0
        40.0
        40.0
        30.0
        30.0

                                                        -50.0 -25.0 -2.0
                                 40.0
                                 20.0
                                                       11 324.0 -200.0 298.0
                                                                                    2.0
  20.0 15.0
                                                        -200.0 -183.0 -167.0 -150.0 -125.0 -102.0
 1 0 0 2 16 0
                                                      -83.0 -67.0
```

-50.0 -25.0 -2.0	
11 336.0 -200.0 323.0 -2.0	
-200.0 -183.0 -167.0 -150.0 -125.0	-102.0
-83.0 -67.0	
-50.0 -25.0 -2.0	
3 348.0 -48.0 348.0 -2.0	
-48.0 -25.0 -2.0	
4 348.0 -200.0 348.0 -152.0	
-200.0 -183.0 -167.0 -152.0	
334.375 -150.0 328.125 -50.0	
2 0 1 1	
6 336.0 -148.0 330.0 -52.0	
-148.0 -125.0 -102.0 -83.0 -67.0	-52.0
6 348.0 -148.0 348.0 -52.0	
-148.0 -125.0 -102.0 -83.0 -67.0	-52.0

CRHS HT & RHS ELEVATOR

T 15 1 3 0 1 1 6 522.0 20.0 542.0 100.0 20.0 40.0 55.0 72.0 87.0 100.0 6 550.0 20.0 562.0 100.0 20.0 40.0 55.0 72.0 87.0 100.0 6 578.0 20.0 578.0 100.0 20.0 40.0 55.0 72.0 87.0 100.0 580.0 20.0 580.0 100.0 2 0 1 1 6 582.0 20.0 582.0 100.0 20.0 40.0 55.0 72.0 87.0 100.0 6 598.0 20.0 598.0 100.0 20.0 40.0 55.0 72.0 87.0 100.0

C LHS HT & LHS ELEVATOR

T 15 1 3 0 1 1 6 542.0 -100.0 522.0 -20.0 -100.0 -87.0 -72.0 -55.0 -40.0 -20.0 6 562.0 -100.0 550.0 -20.0 -100.0 -87.0 -72.0 -55.0 -40.0 -20.0 6 578.0 -100.0 578.0 -20.0 -100.0 -87.0 -72.0 -55.0 -40.0 -20.0 580.0 -100.0 580.0 -20.0 2 0 1 1 6 582.0 -100.0 582.0 -20.0 -100.0 -87.0 -72.0 -55.0 -40.0 -20.0 6 598.0 -100.0 598.0 -20.0 -100.0 -87.0 -72.0 -55.0 -40.0 -20.0 13 4 24 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0 560.0 600.0 0

Le listage du fichier pr_aero_convert.dat

\$ CONVERT FILE FOR ASE FLUTTER AND DIVERGENCE SOLUTION 14

\$ MODAL SELECTION AND ORDERING

- 2,2 3,3
- 4,4
- 5,5
- 6,6
- 7,7
- 8,8
- 9,9
- 10,10
- 11,11
- 12,12
- 13,13
- 14,14

Le listage du fichier pr_aero_pade.dat

```
1400.0
$ ATM ASE FLUTTER ANALYSIS, 0.9 MACH AT SEA LEVEL - VERSION I DATA
                                                                             1500.0
                                                                             1600.0
      0, 14, 0, 0, 0, 10, 2, 1.0, 1004.79, 3.2, 0, 69
                                                                             1700.0
$ TENSION COEFFICIENTS
                                                                             1800.0
   0.4 0.2
                                                                             1900.0
                                                                             2000.0
$ GENERALIZED MASS
                                                                             2050.0
 2100.0
2150.0
2200.0
 2250.0
 .2619E+01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
                                                                             2300.0
.1409E+01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
                                                                             2350.0
.4353E+01 0.0 0.0 0.0 0.0 0.0 0.0 0.0
                                                                             2400.0
                                                                             2450.0
.1320E+02 0.0 0.0 0.0 0.0 0.0 0.0
 .4289E+01 0.0 0.0 0.0 0.0 0.0
                                                                             2500.0
 .3306E+01 0.0 0.0 0.0 0.0
                                                                             2550.0
                                                                             2600.0
.2458E+00 0.0 0.0 0.0
                                                                             2650.0
 .4339E+01 0.0 0.0
                                                                             2700.0
.1493E+02 0.0
                                                                             2710.0
 .9649E+00
                                                                             2730.0
$ GENERALIZED DAMPING
                                                                             2740.0
 2750.0
 .000000000E+00 .00000000E+00 .00000000E+00 .00000000E+00
                                                                             2760.0
 00+30000000. 00+3000000000. 00+300000000. 00+300000000.
                                                                             2780.0
                                                                             2790.0
 00+300000000. 00+30000000E+00
                                                                             2800.0
$ Natural Frequencies (radians)
                                                                             2850.0
 .38029767E+02 .58852299E+02 .75191324E+02 .76748884E+02
                                                                             2875.0
 .92187600E+02 .17173952E+03 .17472884E+03 .18124707E+03
                                                                             2900.0
.18864798E+03 .19808865E+03 .20365312E+03 .21574659E+03
                                                                             2950.0
.22459191E+03 .30889060E+03
                                                                             3000.0
                                                                             3050.0
$ VELOCITIES FOR FLUTTER AND DIVERGENCE ANALYSIS
                                                                             3100.0
                                                                             3150.0
 1.0
 100.0
                                                                             3200.0
                                                                             3250.0
200.0
                                                                             3300.0
300.0
                                                                             3350.0
400.0
                                                                             3400.0
500.0
                                                                             3450.0
600.0
                                                                             3500.0
700.0
                                                                             3550.0
800.0
                                                                             3600.0
900.0
1000.0
1100.0
1200.0
1210.0
1220.0
1230.0
1240.0
1250.0
1260.0
1270.0
1280.0
1290.0
```

1300.0

BIBLIOGRAPHIE

Abel, I., Perry, B., III; Newsom, J.R., (1982), Comparison of Analytical and Wind-Tunnel Results for Flutter and Gust response of a Transport Wing with Active Controls, NASA TP 2010.

Adams, W.M. Jr., Tiffany, S.H., (1984), Design of a Candidate Flutter Suppression Control Law for DAST ARW-2, NASA TM 86257.

Burken, J.J., Alag, G.S., Gilyard, G.B., (1986), Aeroelastic Control of Oblique Wing Aircraft, NASA TM-86808.

Buttrill, C.S., Houck, J.A., Heeg, J., (1990), Hot Bench Simulation of the Active Flexible Wing Wind Tunnel Model, AIAA Paper 90-3121, Proceedings of Flight Simulation Technologies Conference, AIAA, Dayton, OH., USA.

Buttrill, C.S., Bacon, B.J., Heeg, J., Houck, J.A., Wood, D., 1992, Simulation and Model Reduction for the AFW Program, AIAA Paper 92-2081, Proceedings of the Dynamics Specialists Conference, AIAA, Dallas, TX., USA.

Chen, P.C., Sarhaddi, D., Liu, D.D., 2000, Transonic-aerodynamic-influence-coefficient approach for aeroelastic and MDO applications, Journal of Aircraft, Vol 37(1), p 85-94.

Chen, P.C., Sulaeman, E., Liu, D.D., Denegri, C.M. Jr., (2002), Influence of external store aerodynamics on flutter / LCO of a fighter aircraft, 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2002-1410, Denver, CO, USA, pp. 1-11, 22-25 April.

Christhilf, D.M., Adams, W.M., Jr., (1992), Multifunction Tests of a Frequency Domain Based Flutter Suppression System, NASA TM-107617.

Fritchman, B.M., Hammond, R.A., 1993 - New method for modeling large flexible structures, Simulation, Vol 61 (1), July, p 53-58.

Gupta, K.K., (1991), An integrated general purpose finite element structural, aeroelastic, and aeroservoelastic analysis computer program, NASA Technical Memorandum 101709.

MSC/Nastran Encyclopedia, 1998, The MacNeal-Schwendler Corporation, [En ligne]. http://www.macsch.com

Nam, C., Chen, P.C., Liu, D.D., Urnes, J., Yurkorvich, R., 2001, Adaptive reconfigurable control based on reduced order system identification for flutter and

aeroservoelastic instability suppression, Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, v 4, p 2531-2543.

Newsom, J.R., Pototzky, A.S., Abel, I., (1983), Design of the Flutter Suppression System for the DAST ARW-1R – A Status Report, NASA TM-84642.

Noll, T., Blair, M., Cerra, J., (1986), ADAM, An Aeroservoelastic Analysis Method for Analog or Digital Systems, Journal of Aircraft, Vol. 23(11).

Pitt, D.M., (1992), FAMUSS: A new aeroservoelastic modeling tool, AIAA-92-2395.

Raney, D. L., Pototzky, A.S., McMinn, J.D., Wooley, C.L., (1993), Impact of Aero-Propulsive-Elastic Interactions on Longitudinal Flight Dynamics of an Air - Breathing Hypersonic Vehicle, AIAA Paper No. 93-1367, Proceedings of the 34th Structures, Structural Dynamics, and Materials Conference, AIAA, La Jolla, CA, April 19-22.

Rodden, W.P., "The Development of the Doublet-Lattice Method," International Forum on Aeroelasticity and Structural Dynamics, June 1997.

Rodden, W.P., P. F. Taylor, and S. C. McIntosh, Jr., "Further Refinement of the Nonplanar Aspects of the Subsonic Doublet-Lattice Lifting Surface Method", 20th Congress of the International Council of the Aeronautical Sciences, Paper ICAS 96-2.8.2, September 1996; also *J. Aircraft*, Vol. 35, No.5,1998, pp. 720-727.

Rutkowski, M. J., (1983), The Vibration Characteristics of a Coupled Helicopter Rotor-Fuselage by a Finite Element Analysis, NASA TP-2118.

Spain, C.V., Zeiler, T.A., Gibbons, M.D., Soistmann, D.L., Pozefsky, P., DeJesus, R.O., Brannon, C.P., (1993), Aeroelastic Character of a National Aerospace Plane Demonstrator Concept, AIAA Paper No. 93-1314, Proceedings of the 34th Structures, Structural Dynamics, and Materials Conference, AIAA, La Jolla, CA, April 19-22.

Tiffany, S.H., Adams, W.M., (1988), Nonlinear Programming Extensions to Rational Function Approximation Methods for Unsteady Aerodynamic Forces, NASA TP-2776.

Woods, J.A., Gilbert, M.G., Weisshaar, T.A., (1990), Parametric Aeroelastic Stability Analysis of a Generic X-Wing Aircraft, Journal of Aircraft, Vol. 27(7), pp. 653-659.