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ACQUISITION ET TRAITEMENT NUMÉRIQUE DES IMAGES POUR
L’AUTOMATISATION DU RESSUAGE

César Augusto Corrêa ALBA

RÉSUMÉ

Une défaillance mécanique dans les pièces d’aéronefs est susceptible de se produire s’il y a

des discontinuités de surface qui comprennent des régions de concentration de contraintes.

Le ressuage (FPI) est une méthode de contrôle non destructif (NDE), sensible qui permet

de vérifier la présence des indications dans la surface des matières premières ou des pièces

soumises à des efforts de service.

En général, une fois que l’inspection FPI est en cours, l’inspecteur effectue l’évaluation d’une

surface traitée en fonction de ses connaissances et de son expérience en contrôle non destructif,

la détection des défauts étant une décision qualitative selon jugement de l’inspecteur. Dans ce

cas, l’acuité de sa vision, son attitude et sa motivation peuvent compromettre l’analyse en

matière d’inspection. L’automatisation de l’inspection peut améliorer la reproductibilité de

cette méthode NDE, en ce qui concerne le classement des pièces par le système de vision

industrielle, compte tenu de l’analyse quantitative des données objectives. Les algorithmes

d’extraction des caractéristiques sont exécutés pour offrir des donnés à une procédure d’analyse

de données qui classifie les indications détectées comme des indications pertinentes ou non,

selon les spécifications ou le code. Par conséquent, les systèmes de vision par ordinateur,

lorsqu’ils sont appliqués au ressuage, améliorent la fiabilité technique globale, garantissent le

stockage automatique des données, la récupération et le retour des informations de contrôle de

la fabrication et de la maintenance des équipements.

Dans la littérature, il existe plusieurs exemples de systèmes de vision industrielle: Par exem-

ple, le système de balayage laser, tel que proposé dans Tracy et Moore (2001), est une bonne

approche pour l’automatisation et l’inspection. Dans ce système, un spot laser focalisé est dé-

placé sur la surface de l’échantillon et un photodétecteur mesure la quantité de fluorescence

dans la zone éclairée, dont la puissance est directement proportionnelle à la quantité de péné-

trant piégé dans des cavités de surface (Tracy et Moore (2001)). Une autre approche, proposée

par Armstrong (1986), est d’éclairer un échantillon traité avec une lampe UV standard dans

une cabine sombre et d’obtenir des images formées par indications fluorescentes à l’aide d’une

caméra.

Dans ce travail, un système ultraviolet de détection d’indications a été développé pour au-

tomatiser l’inspection en FPI. Seules les indications de surface peuvent être détectées par le

système. Il mesure la distance euclidienne maximum, mesure l’aire de surface et classifie la

forme des indications. Ces caractéristiques peuvent être évaluées selon les normes de qualité

prédéfinies. Les courbes de probabilité de détection ont été tracées et ont montré leur capacité

de 21.6 microns de profondeur avec 100% de fiabilité.
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IMAGE ACQUISITION AND PROCESSING IN AN ATTEMPT TO AUTOMATE
THE FLUORESCENT PENETRANT INSPECTION

César Augusto Corrêa ALBA

ABSTRACT

Mechanical failure in aircraft workpieces is likely from happening, if open to surface discon-

tinuities which comprise stress concentration regions are present. The fluorescent penetrant

inspection (FPI) is a sensitive nondestructive evaluation (NDE) method capable to verify the

presence of indications in surface of raw materials or of processed parts or parts submitted to

service charges.

In general, when FPI inspection is being conducted, an inspector performs an evaluation of a

treated surface based on his knowledge and experience in nondestructive testing, being the de-

fect detection a qualitative decision according to his/her judgment. In this case, the inspector’s

vision acuity, attitude and motivation can compromise the analysis in inspection. The automa-

tion in inspection may improve the repeatability of this NDE method, regarding that machine

vision systems classify parts considering quantitative analysis of objective data. Algorithms for

the feature extraction are run, providing features for a data analysis procedure which classifies

the detected indications as relevant or irrelevant indications according to specification or code.

Therefore, the machine vision systems, when applied to fluorescent penetrant inspection, im-

prove the overall technique reliability, guaranteeing automatic storage, retrieval and feedback

of data for controlling the manufacturing and maintenance of equipments.

In the literature, there are several examples of machine vision systems: For example, the laser

scanning systems, as proposed in Tracy and Moore (2001), is a good approach for the inspec-

tion automation. In this system, a focused laser beam spot is translated over the specimen sur-

face and a photodetector measures the amount of fluorescence in that illuminated area whose

power is directly proportional to the quantity of penetrant trapped in surface cavities (Tracy

and Moore (2001)). Other manner which was proposed by Armstrong (1986) is to illumi-

nate a treated sample with a standard UV lamp in dark booth and acquire images formed by

fluorescent bright indications using a camera.

In this work, an ultraviolet indication detection system was developed for the automation of the

inspection stage in FPI. Only open to surface indications are capable to be detected through

the system. It measures the area and maximum euclidean distance and classifies the shape

of indications. They are feasible to be evaluated according to predefined quality standards.

Metrics such as the probability of detection curves were traced, obtaining a capability of 21.6

microns of depth with 100% of reliability.
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INTRODUCTION

From 1930 to 1940, the techniques called nondestructive testing, due to the development of

aerospace industries, became notorious as an important tool for the quality control. The cost in

production and maintenance of aircrafts, if evaluated in terms of requirements for ensuring the

safe service started to have a lesser importance at that time (Betz (1963)).

In 1920, the radiography was the only NDT employed for the verification of soundness in

workpieces. It became an excellent method for the evaluation of internal discontinuities. In a

casting, forging and machined parts, fine surface cracks, seams were not detected at that time

with this technique (Betz (1963)). Around 1930’s the magnetic particle was introduced in the

market with the trade name Magnaflux and immediately became important for the analysis of

surface discontinuities in ferromagnetic workpieces. However, due to the increasing number

of parts made of nonmagnetic materials, the necessity for the development of a cost-effective,

instantaneous analysis, portable and easy NDT technique for ensuring the integrity of surfaces

became obvious (Betz (1963)).

Before liquid penetrant, several etching methods were applied for the analysis of nonmagnetic

surfaces. The inspected workpiece was often damaged by the application of acid and alkali so-

lutions and only large size discontinuities were successfully detected through it (Betz (1963)).

The oil and whiting method (OW) was the actual forerunner of the current liquid penetrant

inspection (Betz (1963)). The main purpose of OW was to detect open to surface cracks using

penetrating elements (Betz (1963)). The penetrant was a high density lubricating oil whose

trade name was "600 W" (Betz (1963)). This chemical fluid was thinned with kerosene or any

other low-density oil resulting into a dark light solution (Betz (1963)). The developer was a

mixture containing white chalk and denaturated alcohol (Betz (1963)). Even though the tech-

nique allowed significant progress, the lack of control related to the amount and concentration

of involved materials, cleaning and excess removal leaded to bad performances in detection of

shallow and thin cracks (Betz (1963)). The brightness ratio between the penetrant and whiting

mixture often did not offer good contrast for perfect seeability of indications (Betz (1963)).
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In 1938, the research laboratory of Magnaflux Corporation developed color-contrast penetrants

(Betz (1963)). The results were not satisfactory. Robert C. Switzer from the enterprise Switzer

Brothers, Inc. began the development of fluorescent dyes with ultraviolet spectrum (Betz

(1963)). On October 14th of 1941, a patent was issued in his name referring to his research

of fluorescent and color-contrast penetrant methods for detecting indications in solid materials

(Betz (1963)). In February 1942, under his approval, Magnaflux obtained full rights of the

Switzer Brothers patent. Together, Magnaflux Corporation staff including Greer Ellis Taber de

Forest, F. Catlin and R. Ward with the Switzer Brothers made significant improvements to the

research regulated in the patent. In July 1942, the fluorescent penetrant inspection started to be

an option in the market, once the product whose trade name was Zyglo became manufactured

in large scale by Magnaflux Corporation. The patent of Zyglo was only issued in July 30th of

1946 to Mr. R. Ward (Betz (1963)).

Before the release of Zyglo, several manufacturing enterprises that demanded surface inspec-

tion of nonmagnetic parts attempted to execute a technique called hot oil which was based on

leaked information from Magnaflux and Switzer Brother’s research. This method employed

hot lubricating oil as penetrant, quick excess penetrant removal aided with solvent and analysis

under black light illumination. The glare of the indications was observed by the inspector’s

eyes. Some aircraft and marine engine companies, under the pursuit of quality caused by War,

were satisfied with the hot oil performance. Nonetheless, some companies did not achieve sat-

isfactory inspection results. When Zyglo came out for purchasing, it immediately replaced the

hot oil method.

Nowadays, the penetrant testing evolved. It is widely used for ensuring high quality in aerospace

production and maintenance. It became a cost-effective, simple, fast and powerful nondestruc-

tive testing (NDT) method capable to detect the presence of open to surface discontinuities

which are either already in the raw material or resulted from the fabrication/service. The uti-

lization of fluorescent penetrants was consolidated. The fluorescent penetrant inspection (FPI)

is largely performed for guaranteeing the airworthiness of aircrafts.
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Problem Statement

A large portion of aerospace parts are made of nonmagnetic materials. In these workpieces,

the PT is the most convenient NDT method capable to detect surface discontinuities which are

high stress concentration areas and possible initiation sites for part failure. Due to this reason,

the correct PT inspection is essential for the airworthiness of aircrafts.

Even though the materials which are involved in PT such as penetrant, developer, and emul-

sifier evolved over the past years, in manual inspection, the performance is still extremely de-

pendent on the human inspectors. He/she pre/post cleans the specimen and applies the required

chemical products manually (Betz (1963)), analyzes the detected indications, being influenced

by his/her experience, vision acuity, attitude and motivation (Larson (2002)). Such process,

in these circumstances, is prone to erroneous interpretation. Once the aerospace industry de-

mands outstanding quality, the sensitivity, capability and repeatability are important concerns.

The automation provides more reproducible results, eliminating inconvenients inherent to hu-

man inspectors.

Research Goals and Contributions

This research comprises a preliminary investigation which is part of the CRIAQ MANU418

project. This main study aims at automating the fluorescent penetrant inspection (FPI), eddy

current testing (ET) and infrared thermography, improving the sensitivity, reliability and re-

peatability of the methods. The aerospace industries L-3 MAS and Pratt & Whitney Canada

are the partners involved in this research and will benefit from the development of the auto-

mated system.

For this master project, an indication detection system is developed for automating the inspec-

tion stage in FPI in an attempt to eliminate the influence of the inspector’s attitude, motivation

and vision acuity which are intrinsic to the manual process. Steps prior and posterior such as

precleaning, postcleaning, part drying & cool-off, liquid penetrant and developer application,

penetrant excess removal are not automated, being conducted manually in the experiments.
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The system acquires images of treated surfaces, detects indications, measures its maximum eu-

clidean distance and area and identifies their shape with the objective to provide discriminant

data for a classifier which accepts/rejects workpieces according to defined standards or codes.

The probability of detection curve is traced in order to verify the capability and reliability of

the system. The precision uncertainties related to the measurement of maximum euclidean

distance and area of indications are evaluated for analyzing the variability of the automated

inspection.

Organization of the dissertation

This dissertation consists of seven chapters. In chapter 1, the discontinuities which are likely to

be detected through liquid penetrant testing are described. They are analyzed in terms of causes

(e.g. manufacturing processes and/or service which generated them) and the corresponding

effects in workpieces.

In chapter 2, a general overview of nondestructive evaluation techniques that are most applied

in the aerospace industry is explained. Techniques such as liquid penetrant, magnetic particles,

eddy current, ultrasound and radiography are briefly described. A maintenance program for

the aircraft fleet is exemplified.

In chapter 3, we investigate the liquid penetrant testing in details. The physical phenomena

which are responsible for the penetrant entrapment into discontinuities are explained. The types

of penetrant, emulsifier and developer and most used methods for applying these chemicals are

presented. The metrics and reference panels for evaluating the performance in PT inspection

are introduced.

The automation of the fluorescent penetrant inspection, in terms of hardware, is analyzed in

chapter 4. Stations in automated systems for loading, cleaning and drying parts and applying

the PT chemicals to them are described. Diverse configurations of inspection systems with

ultraviolet illumination are explained, providing introduction background for the system that

has been developed for this work.
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Important factors for the FPI automation related to software for detecting indications are out-

lined in chapter 5. It introduces 3 image acquisition techniques and indicates two image seg-

mentation approaches for extracting relevant objects of the image. A feature extraction proce-

dure is suggested for obtaining characteristics such as maximum euclidean distance, area and

shape of indications.

The experimental protocol is described in chapter 6. The samples, the adopted procedure for

preparing them and the respective experiments are indicated. The steps for tracing probabil-

ity of detection curves and evaluating the system performance in terms of measurement and

classification of indications are related. The results are reported in chapter 7. Finally, our

conclusions are exposed and guidelines for future work are suggested.





CHAPTER 1

MANUFACTURING METHODS, DISCONTINUITIES AND SERVICE

DEGRADATION

The nondestructive testing methods aims at detecting and interpreting indications with certified

personnel and specialized equipment classifying them as relevant, non-relevant or false indi-

cations (American Society for Materials (2002b)). The false indications comprise all formed

due to incorrect practice of NDT technique (American Society for Materials (2002b)). For in-

stance, in penetrant testing, it would be represented by any region where the excess of penetrant

has not been well removed after the dwell time (American Society for Materials (2002b)). The

non-relevant indications consist of discontinuities that do not involve the rejection of a part.

This group includes surface roughness, sealing joint, fasteners, etc. The relevant indications

are discontinuities that may be evaluated by an inspector or machine vision system. Based on

technical specification or quality code, the part is accepted or rejected (American Society for

Materials (2002b)).

In NDT, it is important to know beforehand the history of the workpiece being inspected ( i. e.

the manufacturing processes that are involved for the part production and the service to which

it was submitted). This provides useful information for verifying critical areas and typical dis-

continuities that may be detected. Several are formed during the casting process either in the

molten metal (e. g. inclusions) or during solidification (e. g. shrinkage). An analysis of casting

ingots is important, once several imperfections and service problems found in forged, rolled,

drawn, extruded parts are attributed to conditions that already existed in the ingot, sometimes

even before the its primary reduction. In addition, the discontinuities can be formed through all

fabrication operation from the casting of the raw material to the finishing of a part. Depending

on its type and size, it can result in serious consequences (Shull (2002)). For instance, an ingot

with chemical segregation is characterized by composite structures with fragile elements. In

metals, the presence of localized regions that deviate from nominal composition can deteriorate

the corrosion, mechanical and fatigue resistances as well as fracture toughness, compromising
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the forming, machining and welding operations (American Society for Materials (2002b)). In

heat-treatable alloys, it may result in unexpected responses to heat treatments, causing the hard-

ening of soft spots, quench cracks and other discontinuities (American Society for Materials

(2002b)).

Among the NDT techniques that are dedicated to the verification of the surface integrity (which

includes PT), open to surface cracks are important to be localized. The cracks are long nar-

row discontinuities which are found internally or on the surface of materials (Shull (2002),

Callister Jr (2007), American Society for Materials (2002b)) as illustrated in figure 1.1. The

presence of open to surface discontinuities is the startup of the failure of a mechanical part,

once they act as stress concentrators sometimes leading to fracture. As long as cyclic stresses

are maintained, the cracks tend to be enlarged in the direction and orientation of the stress

concentration. If it grows at a critical level, the part must be discarded, assuming that the final

failure is reached (Callister Jr (2007)). Otherwise, if safety is an important issue, disasters as

the picture in figure 1.2 may happen (Callister Jr (2007)). Stress concentration areas in a part

could be exemplified by sharp fillets, keyways, threads, dents, scratches, roughness, corrosion,

laps, bursts, laminations, seams, stringers, the flash line, undercut, heat affected zone (HAZ),

porosities, shrinkage, etc (Callister Jr (2007), American Society for Materials (2002b)). Ther-

mal cycling during the welding and machining results in high residual stresses. During the

service, if cyclic load is applied to these regions, extremely small cracks on the surface may be

generated due to these initiation sites. Inadequate conditions of manufacturing operations like

casting, forming (see figure 1.3), machining, joining may result into cracks as well. The appli-

cation of stresses in corroded areas may also initiate these discontinuities (American Society

for Materials (2002b)).

In this chapter, some fabrication techniques and service degradation processes are explained.

The comprehension of them is crucial for the analysis of discontinuities caused during the

manufacturing and service of parts. Several types are analyzed in terms of causes and effects.

At the end, there is a summary of the main topics which are discussed in this chapter.
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Figure 1.1 Typical case of part failure due to crack propagation. A crack formed on the

top of the surface propagated slowly and a rapid fracture happened.

Reproduced from the book Callister Jr (2007)

1.1 Casting

The casting is a manufacturing process in which a fully molten metal fills, through a pouring

technique, a mold cavity that provides the shape of final part after solidification. The casting

is chosen as fabrication method, if a quite large or very complicated geometry part must be

produced, and/or if the material is an alloy whose ductility is extremely low for forming. The

most common casting techniques are the sand casting, die casting, investment casting, lost
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Figure 1.2 Oil tanker which suffered a fracture due to crack propagation.

Reproduced from Callister Jr (2007)

Figure 1.3 Forged alloy 7075-T6 part which contains shrinkage cavities and internal

cracks formed during the solidification during the casting.

Reproduced from American Society for Materials (2002b)

foam casting and continuous casting. In figures 1.4, 1.5 and 1.6, there are examples of casting

molds containing important compounds (American Society for Nondestructive Testing (1981)).
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Figure 1.4 Example of gating systems typically used in casting molds.

Reproduced from American Society for Nondestructive Testing (1981)

Figure 1.5 Casting mold containing risers for controlling shrinkage.

Reproduced from American Society for Nondestructive Testing (1981)

In a casting mold, the riser is a reservoir located outside the casting which aims at supplying

molten metal as necessary, compensating the shrinkage before the end of solidification. The

runner is a channel that allows the liquid metal to be distributed over receptacles. The gate is

a region of the runner that connects with the mold cavity. The sprue is a channel that is linked
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Figure 1.6 Casting mold containing a core which is supported by chaplets.

Reproduced from American Society for Nondestructive Testing (1981)

to the runner. The core is an element whose function is to generate an internal cavity in the

casting. The chill is a metallic component which is designed for increasing the cooling rate of

certain walls in the casting. The chaplets constitute metallic supports used for the sustentation

of the core during the pouring. They must be made by the same metal as the one filled, because,

as it is exposed to the poured metal temperature, it should melt and become part of the same

casting (American Society for Materials (2010b)).

The regular nondestructive inspection results in detection several inappropriate casting condi-

tions. For instance, the bridging and piping as depicted in figure 1.7 is usually due to high

solidification velocity or to insufficient quantity of molten metal to feed the whole mold cavity.

Another important example which indicates an incorrect casting process is the presence of cold

shut (also known as cold lap) as illustrated in figure 1.8 (b). It is a smooth, generally half-moon

shaped discontinuity which happens when two streams of molten metal do not fuse properly.

It occurs more often when there is more than an unique gating system which causes an in-

terrupted pouring technique. One metal stream solidifies before the second and consequently,

there is a lack of fusion. A third indication of improper casting technique is the presence of a

surface inclusion usually coated with oxides known as cold shot being represented in figure 1.8

(c). This is due to the extremely quick pouring and to its very small amount of base metal that

does not fuse with the casting part. Other evidence of lack of casting control is the detection

of a crack-like shaped discontinuities on the surface named as hot tears as shown in figure 1.8

(d). This indicates that the part walls were cooled at different rates. It is likely from happening,

if the mold wall thickness varies along its extension. It is the only type of crack observed in

castings. The detection through NDT of internal porosities called blowholes (depicted in figure
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1.8 (e)) and even the explosion of the casting mold, indicates that it contains elements such as

chaplets, chills, inserts, etc made with contaminant materials. Other types of porosities in the

casting are due to entrapped gases in the solidifying metal and must be unacceptable in high

safety workpiece (American Society for Materials (2002b)).

Figure 1.7 Sketch demonstrating the shrinking cavity, bridging and piping which can

occur under inappropriate solidification conditions.

Reproduced from American Society for Materials (2002b)

Figure 1.8 In (a), there is a representation of lack of fusion in a casting; in (b), of cold

shut; in (c), of cold shot; in (d), of hot tears and in (e), of blowholes.

Reproduced from American Society for Materials (2002b)

1.2 Forming (plastic deformation shaping)

The forming operations comprise all techniques which deform plastically a part through in-

duced forces or stresses without exceeding the strength of the part material. In general, metals

can be, with certain control, deformed by these techniques due to its ductility without fracture

or crack generation. This group includes manufacturing processes like forging, rolling, draw-

ing and extrusion. If the forming is conducted under hot temperatures (setting often specified
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as hot working), larger repeated deformations can be executed, once the metal is kept duc-

tile and soft. However, material is often lost and occasional surface oxidation deteriorates the

microstructure properties. On the other hand, if the same operations are performed at room

temperature (setting referred as cold working), a better material strength, mechanical proper-

ties, surface finish, and dimension control are achieved. This is explained by smaller ductility

levels caused by the higher metal strain hardness (Callister Jr (2007), American Society for

Materials (2010a)).

The forging is a process which modifies plastically a metallic piece either by successively

blowing or continuously squeezing it with localized compressive hammers and/or presses for

obtaining a desired shape. It is mostly conducted under hot temperatures. This operation is

divided into closed or open-die forging. In the former, (see figure 1.9 (a)) a force is imposed on

several dies halves whose shape contains a cavity which will deform the part into the desired

shape. In the latter, in general applied in large parts, two dies whose geometry is quite simple

are compressed (Callister Jr (2007), American Society for Materials (2010a)).

The rolling is an operation which reduces the thickness of a metallic part using pairs of rotating

rollers as depicted in figures 1.10 and 1.9 (b) . A series of roller pairs gradually reduces the

size through compressive stresses. After the last rolling step, a piece with the desired cross-

sectional area is obtained (Callister Jr (2007), American Society for Materials (2010a)).

The extrusion is a process in which a billet, using a ram, is pressed against a die orifice whose

cross-sectional outline is smaller than the original billet diameter (or height and width) as

shown in figures 1.11 and 1.9 (c). It is usually employed when the desired cross-section is

uniform along the billet length. Similarly to extrusion, the drawing reduces the stock of a

larger geometry pulling the part against a die orifice as illustrated in figure 1.9 (d) (Callister Jr

(2007), American Society for Materials (2010a)).

If safety is an important concern, an adequate program which establishes a regular NDT in-

spection of forging, rolling, extrusion and drawing operations, must be executed in the industry.

For example, a burst which is depicted in figure 1.12 determines that the forming is being con-
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Figure 1.9 The most common forming tasks. In (a), forging; in (b), rolling; in (c),

extruding; and in (d), drawing.

Reproduced from Callister Jr (2007)

Figure 1.10 This picture depicts the rolling operation. The hatched volume illustrated

on the left of the figure is flattened to the volume on the right.

Reproduced from American Society for Materials (2010a)

ducted with a force above the workpiece load capacity or at a temperature below the required.

If a forged part contains a folded surface (as illustrated in figure 1.13, there is misalignment

of the die halves in the forging operation, characterizing a discontinuity known as lap. In ad-
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Figure 1.11 This picture depicts the extrusion process. The hot billet is inserted into a

container and it is pressed by a ram against a die opening.

Reproduced from American Society for Materials (2010a)

dition, after any forming operation, the NDT may be efficient for revealing indications which

were not detected immediately after the solidification of ingots or billets. For instance, if a part

contained internal cracks, pipes, inclusions, segregations, blowholes or porosities, etc prior

to plastic deformation shaping, these discontinuities are flattened out becoming thinner and

parallel-aligned with the surface material, being referred as laminations. Through the same

manner, discontinuities called seam and stringer can be formed (American Society for Materi-

als (2002b)). The former is located on the surface of the processed part. It is long and similar

to a crack. The latter is originally just below the surface, but it can be brought to the surface,

if machining is executed. It is short and found in groups (American Society for Materials

(2002b)).

1.3 Machining

Machining processes designate the material removing operations aided with sharp cutting tools

generating particles of swarf, resulting into parts with diverse shapes and dimensions (Ameri-

can Society for Materials (2002a)). To conduct these operations, relative motion between the

tool and the part subjected to them is mandatory (American Society for Materials (2002a)).

This displacement, the shape of the cutting tool and its penetration generates a machined part
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Figure 1.12 Picture of a burst located in a forged bar.

Reproduced from American Society for Materials (2002b)

Figure 1.13 Schematics of a lap formed during the forging operation.

Reproduced from American Society for Materials (2002b)

with the desired shape (American Society for Materials (2002a)). The most important machin-

ing operations are explained below (American Society for Materials (2002a)):

1. The lathe modifies the shape of a dowel, rotating it around its own axis and translating a

sharp cutting tool which removes material at the same time. The final product is a part

whose shape is either conical or cylindrical (American Society for Materials (2002a)).

2. The milling changes any piece geometry using a rotating cutting tool (called milling cut-

ter) with diverse number of cutting teeth. It allows the manufacturing of different shaped

parts. The piece remains static in this process (American Society for Materials (2002a)).

In figure 1.14, there is an sketch of a milling cutter removing material.
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Figure 1.14 This sketch depicts the milling in the fabrication of a part.

Reproduced from American Society for Materials (2002a)

3. Through the drilling, a tool with one or several flutes called drill perforates a cylindrical

cavity in the part. The tool is rotated and it is moved in the direction of the axis of hole

which is being generated (American Society for Materials (2002a)). The figure 1.15

replicates one example of a drilling machine.

Figure 1.15 This schematics illustrates a radial drilling machine with the compounds.

Reproduced from American Society for Materials (2002a)

4. The broaching is a machining operation in which material is removed through the trans-

lation of a multiple cutting edges tool. The machined part remains static in most cases

(American Society for Materials (2002a)). It provides a good finishing quality, but it is

costly due to the price of the cutting tool. The broaching can be external and internal as

exposed in figure 1.16 (American Society for Materials (2002a)).
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Figure 1.16 These figures illustrates the broaching. In (a), the broach is removing

material internally; in (b), the broaching is executed on an external surface.

Reproduced from American Society for Materials (2002a)

The discontinuities most likely from happening during the machining operations are the cracks.

The incorrect choice of tool, tools with blunt edges and wrong machining parameters (cutting

speed, feed and depth of cut) are the main causes for their generation.

1.4 Welding and Thermal Processing

Welding is the most wordwidely used operation for joining materials such as metals in man-

ufacturing and maintenance of parts, equipments and structures. Applications of this process

go from the assembly of electronic components to complex metallic structures of ships, tube

vessels, vehicles, bridges, etc. Theorically the welding is conducted by the approximation of

at least two parts at a short distance allowing chemical bonding between atoms. For some ma-

terials and parts, the welding becomes complicated due to factors like roughness, oxide layers,

moisture, grease, dust and other contaminants. Arc and gas welding require the melting of

filler and base metal around the joint, resulting in a single joint around them. After cooling

and solidification of the heated metals, both workpieces are permanently fused together. Due

to this thermal cycle, the mechanical properties of the material in the adjacent area may have

been affected. This region is known as the heat-affected zone (HAZ), being represented in
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figure 1.17. To describe the discontinuities caused by improper setup in the welding process,

several features of a weld joint must be explained beforehand. In figure 1.18, in the face is

the weld metal which comes out on the side where the welding was executed; the toe is the

intersection between the face and the base metal surface; the leg and throat are respectively the

minimum distance among the toe and the root and between the face to root in joints such as

fillets and laps; the size of a weld (known as penetration in a butt weld) is the depth of the root

penetration (in other words, the vertical distance from the toe to the root, disregarding the root

reinforcement) (Callister Jr (2007), American Society for Materials (2002c)).

Figure 1.17 This figure represents the heat-affected zone.

Reproduced from Callister Jr (2007)

Figures 1.19, 1.20 and 1.21 show typical discontinuities that may result from incorrect welding

procedure. As illustrated in figure 1.19, the lack of fusion (LOF) indicates that the base metal

did not melt in order to fuse with the filler metal for obtaining a safe weld joint. In the case of

lack of penetration (LOP), there was not enough fusion between filler and base metals in the

root of the joint. As demonstrated in figure 1.20, the undercut is characterized as groove melted

on the base metal surface adjacent to the weld toe or root. The overlap is an excess of filler

material which has not been fused with the base metal located beyond the toe or face of a weld.

The underfill is a depression of the weld joint due to lack of filler material, being found on the

face or on the root of a weld. All of these discontinuities indicate that the welding has not been

conducted with proper electrode handling, filler metal or power parameters (American Society

for Materials (2002b)).
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Figure 1.18 Weld joint most important features. The letter A represents the leg; B, the

face; C, the root; D, the toe; E, the throat; F, the penetration; G, the face reinforcement; H,

the root reinforcement; I, the size of weld.

Reproduced from American Society for Materials (2002c)

Figure 1.19 Lack of fusion in a single-V-groove and double-V-groove weld joints and

lack of penetration in a single-V-groove and double-V-groove weld joints are represented

in (a), (b), (c) and (d) respectively.

Reproduced from American Society for Materials (2002b)

Once the welding process demands hot temperatures for melting the weld metal followed by

its cooling and solidification, the joint suffers from residual stresses caused by hot shortness.

This phenomenon, if not properly controlled, may result in cracks in the weld metal or along

the base metal near the HAZ. There are several types of welding cracks. The most common

are: transverse, longitudinal, crater, hat, underbead, toe, root, HAZ and cold cracks. The figure



22

Figure 1.20 In a fillet weld, undercut and overlap are represented in (a). In (b), undercut

and overlap are depicted in a groove weld. In (c) and (d), there is an illustration of

underfill in groove welds.

Reproduced from American Society for Materials (2002b)

1.21 exemplifies sorts of crack which may be found in welding joints (American Society for

Materials (2002b)).

Transverse cracks are due to stress contraction in the direction of the weld axis. They are

perpendicular to the axis of the weld, often open to the surface, extending to the base metal

near HAZ. They propagate into the weld or beyond the HAZ in order to relieve the residual

stresses. The underbead cracks are caused the same way, but they are located in the base metal.

The longitudinal cracks are found on the surface, extending from the root to the face, being

also consequence of stress contraction (American Society for Materials (2002b)).

Crater crack happens when the joint is not properly formed, resulting into joint craters. Re-

garding that a crater is shallow and thinner, it has a faster cooling rate than the remaining joint.

Consequently, tensile stresses appear, originating a crack. The hat cracks, as the name says,
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Figure 1.21 Crack types which may be found in a weld joint. 1) is a crater crack in weld

metal; 2), transverse crack in weld metal; 3) transverse crack in HAZ; 4) longitudinal

crack in weld metal; 5) toe crack in base metal; 6) underbead crack in base metal; 7)

fusion-line crack; 8) root crack in weld metal; 9, hat cracks in weld metal.

Reproduced from American Society for Materials (2002b)

have the shape similar to an inverted hat. This defect is located close to the weld face (about

halfway up) and extends into the weld metal. It is caused by excessive electrode voltage or

welding speed. Toe and root cracks may occur in high residual stresses welding locations.

These cracks primarily propagate through the HAZ and may extend to more ductile regions

of the base metal. The HAZ cracks are formed due to inadequate prior heating of the parts

being joined. Due to it, during the cooling of the joint, the unmelted material shrinks which

implicates in contraction stresses in the HAZ, forming cracks (American Society for Materials

(2002b)).

In addition, several material properties may be adjusted through thermal processing methods.

Annealing consists in submitting a part to high temperature (below the fusion temperature) for

a long period and letting it cool slowly. It can be an efficient method for adapting the material

microstructure according to the working requirements, relieving stresses, increasing the duc-

tility and toughness. In steels, most of the heat treatments are for hardness improvement. In
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this case, different levels of hardness are achieved according to the chosen quenching medium

(Callister Jr (2007)). In heat treatments, cracks are likely found in stress rising areas.

1.5 Service Degradation of Mechanical Parts

Aircraft components which are regularly in service are subjected to degradation. The assess-

ment of the integrity of parts must be conducted preventively. Otherwise catastrophic failure

will happen suddenly and without any warning. The fatigue is a sort of failure which is ob-

served in structures submitted to dynamic and fluctuating stresses, occurring after long periods

of cyclic load (Callister Jr (2007)). Under these conditions, fatigue cracks are formed and the

failure of a part may be developed at stress levels below the tensile or yield strength for a

static load (Callister Jr (2007)). Open to surface discontinuities aggravate these effects, once

comprise stress raising sites.

Furthermore, the corrosion deteriorates mechanical properties of workpieces, compromising

their service as well (American Society for Nondestructive Testing (1981), Callister Jr (2007)).

It consists of a degradation of metals due to the chemical action of a medium ( which can be

a liquid, gas or both) that is likely from developing along the service (American Society for

Nondestructive Testing (1981), Callister Jr (2007)). The impact of the corrosion depends on

the combination of metals and the involved corrosive agents (American Society for Nonde-

structive Testing (1981), Callister Jr (2007)). Accompanied by corrosion, the fretting is one

type of wear which compromises drastically the serviceability of workpieces (American Soci-

ety for Nondestructive Testing (1981)). It is caused by movements of mating surfaces under

load (American Society for Nondestructive Testing (1981)). The stress corrosion cracks are

susceptible to be formed if the they are submitted to cyclic and small amplitude movements,

leading to mechanical failure (American Society for Nondestructive Testing (1981)).

1.6 Summary

This chapter was an introduction to defects that are likely to occur due to improper manu-

facturing parameters and hostile service condition. Even though some internal discontinuities
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were briefly described, only surface indications are revealed through liquid penetrant testing.

For verifying the integrity of workpieces internally, radiography and ultrasound are the most

recommended methods. Therefore, PT testing is capable to detect the cold shot, laps, flash

line tears, LOP, seam and stringers. Cracks, cold shuts, porosities, inclusions, hot tears, bursts,

blowholes and LOF, if open to surface, can be observed through PT. Table 1.1 contains causes

and effects of discontinuities feasible to be detected through penetrant testing.

Table 1.1 Summary of the main defects which can be detected through PT

Discontinuity Causes Effects
Porosity Gases which are entrapped either in the

mold or in the molten metal

Low density part, more

fragile structure, stress ris-

ing area generation

Cold Shut Metal streams and poured at different ve-

locities, interrupted pouring

Stress raising area

Cold Shot Extremely quick pouring technique Fragile casting structure,

stress raising area

Hot Tear Inadequate cooling of the mold, bad mold

design

Stress raising area

Lap It is likely from happening, if misalign-

ment of hammers or die halves (forging)

or rollers (rolling)

Stress raising area

Burst Forming executed over the strength ca-

pacity of the material and over the recom-

mended temperature

Stress raising area

Seam and

Stringer

Any forming operation is conducted in a

part which contains an internal disconti-

nuity

Stress raising area

Crack Any manufacturing operation or service

condition that induce stresses in the work-

piece

Stress raising area

LOF, LOP,

Overlap, Un-

derfill and

Undercut

Incorrect electrode handling, lack of filler

metal and bad power parameters

Stress raising area





CHAPTER 2

METHODS OF NONDESTRUCTIVE EVALUATION

The nondestructive evaluation techniques (NDE) also referred as nondestructive inspection

(NDI) and nondestructive testing (NDT) comprise physical methods for analysis of material

properties without causing any sort of damage to the service and integrity of mechanical parts.

The NDE may be employed as a powerful tool for increasing reliability, guaranteeing the safety

of workpieces. The NDT equipment can be purchased in stationary/laboratory or portable

configurations. Due to it, the inspector is capable to execute analysis on site with a kit, if

workpieces are complicated to be transported to a laboratory (Shull (2002), Canadian Institute

for NDE (2010)).

The inspectors must be certified according to rules specified in the standards of country where

the inspection is being conducted. The Canadian General Standards Board (CGSB) is respon-

sible for the standard CGSB-48.9712 which is applicable in Canada. In the United States of

America, the adopted standard is SNT-TC-1A. A code which is valid for one country is, in gen-

eral, not accepted in other. The CGSB delegates to the Canadian Institute of Nondestructive

Evaluation (CINDE) the task of providing training according to CGSB-48.9712 for personnel

seeking certification. Minimum periods of experience are mandatory, varying between NDT

methods and level of certification (Canadian Institute for NDE (2010)).

In Canada, the Department of Natural Resources Canada (NRCan) is the certifying agency

which elaborates written and practical certification exams on behalf of CGSB. NRCan is re-

sponsible for judging if candidates match with all CGSB certification requirements. Only

people with successful scores in examination, minimum training and practical experience is al-

lowed to be certified. The certification in NDT is regarded as a privilege delegated to qualified

personnel (Canadian Institute for NDE (2010)).

In this chapter, a general overview of the main nondestructive techniques is described. In

section 2.1, a general program for aircraft fleet maintenance is analyzed. The techniques of
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liquid penetrant, magnetic particle, eddy current, ultrasound and radiography are respectively

explained in sections 2.2, 2.3, 2.4, 2.5 and 2.6.

2.1 Nondestructive Testing in Aircraft Fleet Maintenance

The airworthiness of a plane depends mostly on maintenance conditions to which it is sub-

mitted. Commercial airlines must pursue a trade-off among safety, continuous serviceability,

cost-effectiveness and comfortable transportation to passengers. Preventive programs must be

emphasized in aircrafts. However, sometimes, only corrective intervention is feasible (Tracy

and Moore (2001)). The maintenance of an aircraft fleet must primarily guarantee the sound-

ness of a structure, ensuring long and safe service life. Special attention must be given to

critical structure, joint areas which suffer cyclic loads (regions prone to fatigue) (Tracy and

Moore (2001)). The frequency and level of inspection must be defined in order to provide

continuous knowledge of the current state of vital structure of a plane in a fleet. Any sort of

deterioration which may result into near future failure (the most common are fatigue cracks

and corrosion) must be detected in a very early formation stage (Tracy and Moore (2001)).

According to Tracy and Moore (2001), an efficient airline maintenance program is composed

by the following stages:

1. The preflight check includes visual verification of engines, flight controls, airframe prior

to aircraft take-off;

2. The line servicing consists of, in general, detailed inspections between every 100 or 125

flight hours of aircraft components and structures;

3. The base overhaul comprises a meticulous examination of removable airframe structure

components within intervals varying from 2000 to 5000 hours of aircraft flight. Initially,

the removable components are replaced and the inspection is conducted on them. If nec-

essary, these workpieces are modified or repaired for ensuring the service safety. In this

phase of aircraft maintenance, the NDE techniques are largely employed. Among these

methods, in the aircraft maintenance, from a simple visual inspection to high complexity
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scientific analysis, a wide range of techniques is performed. The most used are the ra-

diography, fluorescent penetrant inspection, magnetic particle and ultrasound (Tracy and

Moore (2001)).

Between the discontinuities, the fatigue cracks presents the highest relevance in detection

(Tracy and Moore (2001)). The presence of corrosion, once it is normally occurring prior

to fatigue cracks, is defining the life cycle of a workpiece. Nonetheless , the aircrafts (espe-

cially the wings and fuselage) are designed based on concept of fail safe (Tracy and Moore

(2001)). It means that a plane, even if it contains cracked, warped, stretched, fractured, sheared

or snapped structures, it is capable to land with complete safety. This is achieved because its

structure is designed to support unexpected loads, stresses, fatigue and corrosion (Tracy and

Moore (2001)). Programs of inspection are adopted for monitoring and controlling critical

structure workpieces of a plane.

2.2 Liquid Penetrant Testing (PT)

The liquid penetrant testing is a NDT method largely employed for revealing surface indica-

tions. It is a very simple method, but it requires cleanliness. In general, if the specimen is

ferromagnetic, instead of PT, the inspector prefers the application of magnetic particles (Shull

(2002), American Society for Materials (2002b), NDT Resource Center (2010)).

The technique consists of the application of penetrant to a specimen which is drawn into any

open to surface discontinuity through capillary forces. After the dwell time, the excess of

penetrant is removed from the surface , the developer is applied and the part will bleed out

in regions where surface indications are located. The use of ultraviolet source in a variation

called Fluorescent Penetrant Inspection enhances the seeability of indications (Shull (2002),

American Society for Materials (2002b), NDT Resource Center (2010)). In the next chapter,

the PT is discussed in a deeper level.
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2.3 Magnetic Particle Inspection (MT)

The MT method consists of applying a magnetic field to a part for its inspection. In the mag-

netized part, the presence of a discontinuity causes a field leakage and the generation of a

magnetic dipole. If magnetic particles are applied to such a magnetized part, they will ag-

glomerate around the field leakage area. This agglomeration indicates the contour of the field

leakage, allowing the detection of the shape and the length of the indication (American Society

for Materials (2002b), Shull (2002), NDT Resource Center (2010)).

The magnetic permeability is the ability of a material to be magnetized. It is represented by the

letter μ , being mathematically defined as the ratio between the absolute magnetic permeability

of the material with respect to the one in vacuum. Based on the magnetic permeability, the

materials can be separated into three classifications (American Society for Materials (2002b),

Shull (2002), NDT Resource Center (2010)):

1) Ferromagnetic Materials: μ > 1

Comprise all materials strongly attracted by a magnet such as iron, cobalt, nickel and

almost all sorts of steel. These materials are ideal for MT inspection (American Society

for Materials (2002b), Shull (2002), NDT Resource Center (2010)).

2) Paramagnetic Materials: μ ≈ 1

This group contains materials which are slightly attracted by a magnet. It contains mate-

rials such as aluminium, chrome, stain, potassium, platinum, being not recommended for

MT inspection (American Society for Materials (2002b), Shull (2002), NDT Resource

Center (2010)).

3) Diamagnetic Materials: μ < 1
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This category is formed by materials which are slightly repelled by a magnet such as

silver, zinc, lead, copper and mercury. MT is not employed for testing (American Society

for Materials (2002b), Shull (2002), NDT Resource Center (2010)).

The magnetic permeability may vary among parts made of the same material. It is dependant of

the magnetic flux density B and the magnetic force H. In general, when the literature indicates

this property, μ is obtained under magnetic saturation. This condition is reached, increasing

the H into a level at which B remains constant. In figure 2.1, there is an hysteresis curve

which indicates the level of the magnetic flux density where the saturation condition is achieved

(American Society for Materials (2002b), Shull (2002), NDT Resource Center (2010)).

Figure 2.1 Hysteresis cycle. In the state (a), the saturation condition of B is reached.

Reproduced from NDT Resource Center (2010)

The magnetic particle is the most reliable method for revealing open to surface discontinuities,

especially fine and shallow cracks (Shull (2002)). The MT is a technique easy to conduct, not

requiring much training to inspectors. It is capable to inspect parts with diverse shapes and sizes

even if the surface is covered with a nonmagnetic coating. Nonetheless, only ferromagnetic

materials can be analyzed through MT. The method often burns and generates electrical arc in

the contact points (Shull (2002)). Typical mechanical parts inspected with magnetic particles

include steel coil springs, welds and railroad wheels (Shull (2002)). Even though the technique



32

is capable to detect indications below the surface, when the inspection is verifying the presence

of them, ultrasound and radiography are the preferred techniques (Shull (2002)).

2.4 Eddy Current Testing (ET)

The NDT method called eddy current was developed based on several technological principles

such as electromagnetic induction of coils, the change of impedance of the inspection coil

caused by small defects and metallurgy (American Society for Materials (2002b), Shull (2002),

NDT Resource Center (2010)). To understand this technique, two physical phenomena must be

explained: 1) Whenever an alternating current is employed to a conductor A, a magnetic field

a is produced in and around the conductor, being proportional to the alternating current which

provoked it. 2) In case a second conductor B is approached to the surrounding area where A

is placed, a is modified and current is induced in B. The eddy current is, thus, a circular path

current which is induced in a second conductor (NDT Resource Center (2010)). Regarding the

circuit 1 in figure 2.2, the magnetic field generates induced current in the circuit 2. The current

flow in the circuit 2 causes its own magnetic field which, as well, influences subsequently the

magnetic field of the circuit 1. Therefore, the net magnetic field in the circuit in the right is

partially generated by the current of both circuits, being proportional to them (NDT Resource

Center (2010)). In these circuits, the self inductance L1 and L2 are dependent on the number of

coil turns and the material conductivity, permeability and dimension. The mutual inductance

M of both circuits consequently varies according to this geometrical feature, being identical

for both circuits. The fluxes φ1 and φ2 are then given by NDT Resource Center (2010):

φ1 = L1 ∗ i1 + i2 ∗M (2.1)

φ2 = L2 ∗ i2 + i1 ∗M (2.2)
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Figure 2.2 ET inspection equivalent system. The circuit on the left is the "circuit 1"; the

circuit on the right, the "circuit 2".

Reproduced from NDT Resource Center (2010)

In ET, the inspection is a verification of mutual induction variations. The probe which performs

the measurement is a coil whose wire receives an alternating current. The current must be

measured with proper equipment. Regarding the figure 2.3, the probe would be electrically

equivalent to the circuit 1 in figure 2.2 and any part of conductive material where the ET is

executed represents the circuit 2 in figure 2.2 (NDT Resource Center (2010)).

Figure 2.3 ET probe executing the inspection in a conductive material.

Reproduced from NDT Resource Center (2010)

The eddy current, as already mentioned, creates its own magnetic field that influences the

primary magnetic field of the corresponding coil. Basically, variations in resistance and in coil

reactance due to the approximation of the probe to a conductive test sample provide information
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for its analysis. These data includes the quantity of material which modifies the coil’s magnetic

field, the electrical conductivity, the magnetic permeability, the presence of indications. The

liftoff, which corresponds to the distance from the coil to the conductive material being tested

has an important role in the net circuit mutual-inductance. It is the measured property that is

employed for the estimation of thickness of nonconductive coatings (NDT Resource Center

(2010)). The use of ET, can be a powerful tool for detecting discontinuities such as cracks and

damages caused by excessive heating. It can be adapted for sorting the material in terms of

conductivity, permeability and monitoring of heat treatments (American Society for Materials

(2002b), Shull (2002), NDT Resource Center (2010)).

The ET, differently to PT, MT and UT is a non-contacting method. No surface preparation

is required. It is a cost-effective, portable and sensitive NDT technique for inspection of di-

verse specimen geometries. Various material properties can be evaluated through eddy current.

However, regarding cracks, its sensitivity decreases rapidly as the crack becomes parallel to

the inspected surface. Once the probe is sensitive to diverse parameters, the interpretation of

indications is complicated.

2.5 Ultrasound (UT)

The ultrasound is a NDT technique based on the emission of sound in a frequency from

0.2 to 25MHz that propagates through a workpiece. Any unexpected change in the acous-

tic impedance (behaviour that characterizes the presence of an indication) generates certain

reflection of the emitted sound. This event is detected by a piezoelectric crystal that converts

electrical energy into mechanical energy (ultrasound) and mechanical into electrical energy as

well, being integrated to diverse signal acquisition systems for NDT inspection (American So-

ciety for Materials (2002b), Shull (2002), NDT Resource Center (2010)). Figure 2.4 depicts

the inspection through UT of a workpiece.

The ultrasonic is employed for revealing internal indications in metals and alloys. The fab-

rication and maintenance of aircrafts, piping systems, pressure vessels, jet engines, vehicles,

bridges, railroad, nuclear plant equipment which require safety demand ultrasound systems
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Figure 2.4 Workpiece inspected through ultrasound technique. Once the part contains a

discontinuity, the corresponding echo is detected by the transducer.

Reproduced from NDT Resource Center (2010)

for inspection. Internal discontinuities such as cracks, voids, inclusions bursts, flakes, lamina-

tions, shrinkage, piping and bridging are detected through UT (American Society for Materials

(2002b)).

Differently to RT, the ultrasound is not harmful to the environment or health. It can be used in

inspection of all sort of materials and complex geometries. The UT allows the perfect detec-

tion of the size and location of indications while the radiography does not provide information

related to the depth. Nonetheless, the method requires high experienced personnel. The in-

formation is not easily recorded as the radiography. In most cases, the transducer must be

in contact with the object through a coupling layer. The cracks which are longitudinal to the

ultrasound wave cannot be detected.

2.6 Radiography (RT)

The radiography is a nondestructive testing method through which variations of the specimen

thickness, density and diverse material composition causes different absorption of penetrant

radiation (American Society for Materials (2002b)). These indications are recorded in photo-

graphic films or image tubes or radiation electronic detectors (American Society for Materials

(2002b)). The material density at certain part location can be compared to the surrounding
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areas through RT (American Society for Materials (2002b)). It is widely used for inspecting

castings, weldments, forged and rolled parts contained in high pressure equipment such as boil-

ers, turbines for ensuring that they are free of internal discontinuities (American Society for

Materials (2002b)). Figure 2.5 illustrates the technique.

Figure 2.5 Radiography testing. Radiation reaches a surface containing a discontinuity.

Variations in radiation absorption are registered on a radiographic film.

Reproduced from Bray and Stanley (1997)

The method allows the record of an inspection for future comparison. It does not require prior

calibration (American Society for Materials (2002b)). The geometry of the inspected part does

not have impact on the analysis. Nonetheless, it is harmful for health, being required special

facilities and equipment to ensure the safety (American Society for Materials (2002b)). It

does not provide information about the depth of an indication (American Society for Materials

(2002b)). The orientation of linear discontinuities plays important hole in detection. The access

of both sides of the specimen is mandatory (American Society for Materials (2002b)).

2.7 Summary

The nondestructive testing aims at verifying the integrity of a part without any sort of deteri-

oration. They are employed for ensuring in raw materials or finished components the absence

of surface and internal discontinuities. Among the methods for detecting open to surface in-

dications, the magnetic particle seems to be the easiest to conduct, because it does not require

surface preparation like liquid penetrant and minimum training is mandatory for the test con-

duction. However, only workpieces made of ferromagnetic metals are feasible to be inspected
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through this technique. Through the PT method, in spite of time-consuming surface prepara-

tion, almost all materials can be inspected (exception for porous structures). Considering the

eddy current, even though none chemical application is required, the interpretation of the ob-

tained signal is complex. This is consequence of the variety of properties that can be detected

through ET.

Between the methods for revealing internal indications, the radiography requires special cau-

tion against the radiation hazard while the ultrasound is completely harmless. High level of

experience and knowledge of the technique is required for the perfect UT interpretation. On

the other hand, RT is simple to detect and interpret indications. Through the radiography, in-

spection data is easily recorded, while, in the ultrasonic, this is not so obvious. Tables 2.1 and

2.2 contain a brief description, advantages and disadvantages of the NDE methods explained

in this chapter.

Table 2.1 Summary of PT, MT, ET, UT and RT technique descriptions

Method Technique Description
PT Penetrant is drawn into open to surface discontinuities. After dwell time,

excess of penetrant is removed from the surface. Only the open to surface

discontinuities remain with dye. The developer is applied for providing

more background contrast. Visual examination of the specimen surface with

or without black light is performed to detect indications.

MT The inspected part is magnetized through diverse techniques. Ferromagnetic

particles are suspended over the surface, being concentrated around surface

where discontinuities are located due to field leakage.

ET Using an inspection coil the conductance of the inspected material is veri-

fied based on changes of the mutual inductance. Surface and near surface

indications are detected if variations in the expected mutual inductance are

observed.

UT High frequency sound is transmitted into the specimen. Any change in the

acoustic impedance along the wave transmission must be detected as a sig-

nal corresponding to an internal indication.

RT Penetrating radiation is emitted, passing through the specimen walls. The

energy of the emission is absorbed according to the material density of the

specimen. The net radiation energy is recorded on a radiographic film. In a

film, the variations of the absorbed radiation correspond to indications.
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Table 2.2 Advantages and disadvantages of PT, MT, ET, UT and RT techniques

Method Advantages Disadvantages
PT All surface discontinuities can be de-

tected in a single inspection, regard-

less of orientation. It is a cost-

effective technique capable to detect

fine and tight discontinuities. Can

be employed in inspection of a wide

range of materials.

The condition of the specimen in

terms of cleanliness is important.

Only surface openings are detected

through the technique. Parts with

porous structures cannot be assessed

with PT.

MT The most convenient method for the

detection of shallow, fine surface

cracks. It is a quick, simple and cost-

effective NDT method. It is easy to

conduct, not requiring much training.

Only workpieces made of ferro-

magnetic materials can be detected

through MT. The orientation and in-

tensity of the magnetic field is an

important factor in inspection. The

specimen must be frequently demag-

netized after testing. Parts are often

burnt. Electrical arcing may occur.

ET It is a technique sensitive to disconti-

nuities. It is highly repeatable. It is a

noncontacting method, allowing high

scanning speeds. It does not require

prior surface preparation.

The teory related to the ET requires

certain level of knowledge of mathe-

matics and electrical principles. It is

sensitive to a wide range of param-

eters, being complex the signal in-

terpretation. Only workpieces made

of conductive materials can be in-

spected.

UT Excellent technique for detecting in-

ternal indications. It is not harmful

for health or environment. It is possi-

ble to inspect all sort of materials and

complex geometries.

The technique requires inspectors

with high experience. The transducer

must be in contact with the object

through a coupling layer. All cracks

whose length lies parallel to the direc-

tion of wave travel cannot be detected

through UT.

RT Provides information such as material

density, thickness and the presence of

indications. Permanent record is eas-

ily obtained per inspection. A wide

range of materials can be inspected

through the technique.

The radiation beam employed in the

technique is dangerous, requiring spe-

cial protection equipment and facili-

ties. RT does not indicate the depth

of discontinuities. It presents limited

depth of penetration.



CHAPTER 3

THE STATE OF THE ART IN LIQUID PENETRANT INSPECTION

The liquid penetrant testing (PT) is a nondestructive evaluation method employed in the in-

spection of raw materials and component parts, revealing surface indications. For correct in-

spection, it is mandatory: (i) special cleaning of the specimen and (ii) either good eyesight

(in case of a human inspector) or efficient detection system (in case of automated inspection)

(Shull (2002), American Society for Materials (2002b), NDT Resource Center (2010)).

Through this technique, it is more likely to detect small round, deep, narrow and smooth sur-

face discontinuities. These openings trap more penetrant than small linear and shallow. The

penetrant spreads more easily over smooth surfaces, being more complicated to remove it in

rough workpieces. Due to this reason, high roughness parts are proner to result in overwashing

(NDT Resource Center (2010)).

In order to perform PT, the penetrant must wet the whole specimen surface, entering into

surface discontinuities. According to Shull (2002), this process is composed by the following

sequence of steps:

1. Detailed visual inspection of the specimen to be tested;

2. Pre-cleaning the specimen surface;

3. Penetrant application to specimen surface;

4. Dwell time;

5. Penetrant Excess Removal;

6. Developer Application;

7. Inspection.
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In the detailed visual inspection of the specimen, it must be verified its condition in terms of

cleanliness (Shull (2002)). Based on it, the part is cleaned according to inspection specifica-

tions. Contaminants such as oily films, dirt, grease, rust, paint scale, slag, welding flux and

cleaning residues compromise the effectiveness of the penetrant testing and must be removed

through a suitable method (Shull (2002)). Erroneous cleaning is one of the main causes of

failure of the technique (Shull (2002)).

After, the cleaning, the penetrant may be applied. It flows on the specimen based on surface

tension, contact angle, surface wetting, and capillarity. To visualize indications of a deter-

mined size, it takes some time for the dye to be drawn into surface discontinuities. This period

is referred as dwell time (NDT Resource Center (2010), Shull (2002), American Society for

Materials (2002b)).

Figure 3.1 Liquid Penetrant Inspection Steps. In (a), the penetrant is applied in a clean

surface; in (b), the penetrant is drawn into a discontinuity; in (c), the penetrant excess is

removed from the surface; in (d), the developer application to the surface; in (e), the

surface is ready for interpretation and detection of discontinuities.

Reproduced from Shull (2002)

Allowing suitable time for the dye entrapment, the excess of penetrant must be removed from

the part surface. Only the discontinuities must be kept with penetrant. The materials used in
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excess removal should be selected according to the nature of the penetrant (a proper emulsi-

fier which must dilute the penetrant) (NDT Resource Center (2010), Shull (2002), American

Society for Materials (2002b)).

Removing the excess of penetrant, an even thin layer of developer should be applied to the

specimen surface. The developer acts as a blotter, in discontinuity locations, being the penetrant

drawn from them, spreading over the surface. The developer is basically composed by a powder

whose function is to increase the seeability of indications. The powder draws the penetrant

from the discontinuity by merging absorption (where the penetrant is drawn into the powder

particles) and adsorption (where the penetrant adheres to the surface of the particles) (NDT

Resource Center (2010), Shull (2002), American Society for Materials (2002b)). Figure 3.1

depicts the process from the penetrant to developer application.

After the developer application, the specimen surface may be inspected. Either trained per-

sonnel or an effective vision system must identify the indications. In inspection, norms and

procedures are specified. Any divergence from the norm may be demonstrated by some indi-

cating medium (Betz (1963), Shull (2002)).

The remainder of this chapter is divided as follows: In section 3.1, the physical phenomena

which are essential for the PT such as surface tension and capillarity are defined. In section

3.2, the importance of cleaning prior to chemicals application is described. The most used

methods for removing contaminants are explained. In section 3.3, the penetrants are related

according to classifications found in the literature. The most used techniques for applying

this fluid are investigated. In section 3.4, two dwell modes, often employed in inspection,

are analyzed. The methods which are used for the excess penetrant removal are mentioned in

section 3.5. Developers, mechanism of fluorescence in penetrants, inspection, reference panels,

performance metrics and FPI in aerospace are topics emphasized in sections 3.6, 3.7, 3.8, 3.9,

3.10 and 3.11 respectively. At the end, a summary recapitulates the most important aspects

covered in this chapter.
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3.1 Physical Phenomena related to PT

The liquid penetrant testing is a nondestructive method based on two main physical phenom-

ena: the surface tension and the capillarity (also referred as capillary action or force) Shull

(2002). The surface tension is a property which is responsible for contracting a liquid into a

sphere due to cohesive forces among its surface molecules (Shull (2002), American Society

for Materials (2002b)). It counterbalances the internal hydrostatic pressure of a liquid. The

capillarity, in PT, is a force which transports a liquid into confined openings such as surface

cracks, laps, porosities, cold shuts etc and exudes from these discontinuities, resulting in sur-

face indications (Shull (2002), American Society for Materials (2002b)).

When a penetrant is applied to a solid surface of a part in PT testing, the surface tensions of the

interfaces between solid and gas, gas and liquid and liquid and solid (identified respectively

by γsg, γgl and γls) compete with the adhesive force Ad among the molecules of the liquid

and solid surfaces (Shull (2002), American Society for Materials (2002b)). The dye spreads

over the specimen until the energy balance equilibrium is reached (∑Fhorizontal = γls − γsg −
γglcos(θ) = 0) where θ is an angle formed between the liquid and solid surfaces which is

known as the contact angle or the wetting ability (Campbell and McMaster (1967), Glaskov

(1989)). The magnitude of θ is dependent on (i) the penetrant compounds and (ii) the surface

to which is applied. It indicates the degree to which the penetrant wets the inspected part (Shull

(2002), American Society for Materials (2002b)). Figure 3.2 depicts the surface tensions of the

interfaces, adhesive force and contact angle θ . According to Shull (2002), based on θ , the

liquids present:

• High Wetting Ability, if θ < 90◦. Regarding that the penetrants must coat the specimen

surface, low contact angle is a requirement (Shull (2002), American Society for Materials

(2002b));

• Low Wetting Ability, if θ > 90◦ (Shull (2002), American Society for Materials (2002b)).
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Figure 3.2 Interface among liquid, solid and gas. Ad is the attractive force from the fluid

to the solid; θ is the contact angle; γgl , γls, γsg are respectively the surface tension between

gas and liquid, liquid and gas and solid and gas.

Reproduced from Shull (2002)

The wetting ability and density of the liquids has a direct impact on the capillary action in

PT (Shull (2002), American Society for Materials (2002b)). Even though, the open to surface

discontinuities are not capillary tubes, their interaction with penetrants resembles the meniscus

rise and depression which characterizes the capillary action (Shull (2002), American Society

for Materials (2002b)). In these tubes, the rise and depression of meniscus depends on the up-

ward and downward forces (American Society for Materials (2002b)). The former is equivalent

to γgl ∗cos(θ) times the perimeter of the meniscus which is given by 2Πr where r is the menis-

cus radius (American Society for Materials (2002b)). The latter corresponds to the weight of

the liquid column given by (Πr2h)ρg where h, ρ and g are respectively the meniscus height,

the density of liquid contained in the capillary tube and the acceleration of gravity (American

Society for Materials (2002b)). If the upward force is greater, the capillary rise occurs. If they

have the same magnitude, the meniscus is not formed. In the last case, if the downward force

has the higher intensity, capillary depression happens. Figure 3.3 depicts the capillary rise and

depression.



44

Figure 3.3 Capillary action of a fluid in a container. In (a) the fluid rises a distance h in

the container forming a meniscus; in (b), it falls into the container a distance h.

Reproduced from Shull (2002)

3.2 Pre-Cleaning and Effectiveness of the PT testing

The performance in penetrant testing is directly related to the effectiveness of the pre-cleaning

methods. For instance, foreign liquids increase the surface tension and contact angle of pen-

etrants and emulsifiers (Campbell and McMaster (1967)). Oxide coatings, if do not block the

discontinuities, increase the drawing force for penetration into them. Monomolecular layer

of oil increases the infiltration velocity (Campbell and McMaster (1967)). Regarding these

concerns, a suitable technique must be conducted for eliminating all contaminants. It may not

result in corrosion and dissolution. Based on the material properties and the present foreign

particles, the workpiece may be cleaned through the following methods: detergent cleaning,

solvent cleaning, vapour degreasing, descaling (Shull (2002)). These techniques are explained

as follows:

• The detergent cleaning is basically washing the specimen with soap and water. The de-

tergents may not cause the specimen deterioration during and after testing (Shull (2002));

• The solvent cleaning is conducted by applying alcohol or hydrocarbons for removing

grease an oils. Care must be taken when applying these chemicals, because of its toxic

fumes and flammability (Shull (2002));

• The vapour degreasing consists of suspending the specimen above a hot liquid. The

vapour from the liquid enters the defects, condenses and returns to its source (Shull

(2002));



45

• The descaling consists of cleaning the workpiece employing hydrochloric, nitric or hy-

drofluoric acids and even strong alkaline solutions. It is often used to remove dust and

oxides from metallic surfaces (Shull (2002)).

These techniques previously described can be employed either isolated or combined. The

ultrasound combined with those methods can provide good results. Nonabrasive materials such

as rags and soft brushes may be used for the application of cleaning fluids without damaging

the surface. In case these approaches are not able to clean properly the specimen, abrasive

cleaning must be used (Shull (2002)).

The abrasive cleaning with techniques like peening, sanding, scrapping, grit blasting, lapping,

honing, tumble de blurring cause the material smearing. It compromises the PT inspection,

once the open to surface discontinuities can be obstructed by the removed metallic material

(Larson (2002)). It is most likely from happening in soft materials such as plastics and alu-

minium alloys. However smearing is often present in high hardness materials. The machining

operations may result in smearing particles as well (NDT Resource Center (2010)). In figure

3.4, there are three photographies which exemplify the smearing.

3.3 Penetrant types and application modes

The penetrant is a solution composed of dyestuff, light petroleum solvents or oils and an unc-

tuous liquid (Sherwin (1974)). The dyestuff is a compound which allows the dye seeability

(Sherwin (1974)). The unctuous liquid aims at dissolving the dyestuff in the mixture (Sherwin

(1974)). The oils are added for reducing the viscosity of the final penetrant (Sherwin (1974)).

In PT testing, the penetrant is the fluid which enters the discontinuities aiming at generating

indications at the corresponding locations. It is the main chemical product utilized in this NDT

method (Betz (1963)). In the literature, they are often divided into types and sensitivity lev-

els. Regarding the first classification, there are two sorts of penetrants: i) fluorescent (type I)

penetrant and ii) visible or color-contrast (type II) penetrant. The former requires blacklight

in a dark environment for revealing indications. The latter demands visible light for detecting
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Figure 3.4 Three surface crack microscope photographies with diverse magnification.

The crack opening is closed by the metallic residual particles.

Reproduced from NDT Resource Center (2010)

them. When deciding the penetrant type, surface condition, features of discontinuities, size

of workpiece, required sensitivity, time and place of inspection must be considered (American

Society for Materials (2002b)). In general, when the discontinuities are small, fluorescent dyes

are more capable to produce a detectable indication, once the human eye is more sensitive to

fluorescent emissions especially on dark background. However, when discontinuities are large,

high sensitivity may not be desired, because it can result in non-relevant indications. In this

case and in the inspection of very high roughness surfaces, the visible dyes are the most recom-

mended (NDT Resource Center (2010)). Figures 3.5 and 3.6 contain images of the inspection

with type I and II penetrants respectively.

In addition, as previously mentioned, there is other classification of penetrants based on sensi-

tivity levels related to the indication detection. They are inversely proportional to the penetrant

viscosity which is the fluid resistance to flow on a surface. It influences the ability of the dyes

to enter a discontinuity due to its effect on the penetration speed. As viscous as the fluid is, less
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sensitive it is. The most sensitive penetrants are, in general, the most expensive. According to

American Society for Materials (2002b), the five sensitivity levels are:

• Level 1/2 - Ultra Low Sensitivity,

• Level 1 - Low Sensitivity,

• Level 2 - Medium Sensitivity,

• Level 3 - High Sensitivity,

• Level 4 - Ultra High Sensitivity.

Figure 3.5 Inspection under UV light in a treated surface.

Reproduced from NDT Resource Center (2010)

The penetrant is mostly applied through two different manners (McMaster et al. (1982)): dip-

ping and spraying. Through dipping, the parts are immersed in a dip tank which contains

penetrant. They are placed inside baskets or hold by fixtures for the immersion (McMaster

et al. (1982)). In case spraying is adopted, it is applied with a spray can or spraying systems

(McMaster et al. (1982)). Figures 3.7 (a) and 3.8 respectively illustrate a basket containing

parts during the application by dipping and a manual spraying system.
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Figure 3.6 Indication formed using type II penetrant.

Reproduced from NDT Resource Center (2010)

3.4 Dwell Time and Modes

After applying the penetrant, the period during which it is drawn into surface discontinuities

through capillary forces prior to excess removal is called Dwell Time. There are two dwell

modes: the immersion dwell and the drain dwell (Sherwin (1974)). In the former mode, the

workpiece is kept immersed into a dip tank prior to excess removal (Sherwin (1974)). In the

latter mode, during the dwell time, the part is drained as illustrated in figure 3.9 and part of

the excess of liquid penetrant is reused in other inspections. Albeit penetrant manufacturers

may suggest specific dwell times for the detection of certain types of discontinuities, they must

be defined based on experimentation. The most suitable period should be specified according

to the peculiarities of the application for which the part serves. There is not enough effective

literature for supporting it (Larson (2002)).



49

Figure 3.7 Example of liquid penetrant chemicals application. In (a), there is a picture

of liquid penetrant application in a dip tank. The parts contained in the basket are

immersed in it; in (b), the dry powder is applied to the workpieces.

Reproduced from McMaster et al. (1982)

3.5 Excess Penetrant Removal and Inspection Sensitivity

In PT, the sensitivity, according to Robinson and Schmidt in Robinson and Schmidt (1984),

depends on the following factors: (i) The amount of penetrant entrapped into discontinuities

and (ii) the resulting indication brightness. In fluorescent penetrant inspection, the ability of a

dye to fluoresce only where indications are located is defined as sensitivity (Alburger (1966),

Vaerman (1985)). This implies that the penetrant must be properly removed from the surface,

enhancing the contrast among indications and background for achieving good sensitivity in

inspection. The following methods for conducting this task are listed in the literature:

• The method A consists of using penetrants whose excess is removed through water spray

jets. These dyes are often referred as water-washable dyes. It is recommended for quick
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Figure 3.8 This schematics depicts a typical hand operated electrostatic spray gun

station for the application penetrant. The parts are translated over the drip tray, an

operator applies the penetrant with the electrostatic spray gun, and an exhauster removes

penetrant particles from the air.

Reproduced from McMaster et al. (1982)

inspections. However, inadequate cleaning can result in overwashing (American Society

for Materials (2002b)).

• Through the method C, the penetrant excess is removed with solvent. It is mostly em-

ployed for localized area inspections. Solvent-removable dyes are not convenient for

high production rates. If properly conducted, it is regarded one of the most sensitive

methods (American Society for Materials (2002b)).

• The methods B and D were developed for reducing the overwashing in the excess re-

moval, which compromises the sensitivity. They consist of applying postemulsifiable

penetrants which are not removed as easy as water washable penetrants. For their re-

moval, it is required a emulsifier before rinsing. Two types of postemulsifiable pene-

trants are found in the market: Lipophilic and Hydrophilic. Inspections with the former

characterizes the method B, requiring oil-based emulsifier for allowing the penetrant re-
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Figure 3.9 Draining station picture. Part of penetrant excess is drawn back to the

penetrant application dip tank. This guarantees less penetrant waste, once part of the

excess removed is reused.

Reproduced from NDT Resource Center (2010)

moval; The use of the latter (which defines the method D), implies that the excess must

be removed through and water-soluble emulsifier, lifting the penetrant excess from the

surface with water rinse (American Society for Materials (2002b)).

3.6 Developers

The developer is an element of the PT which reveals indications for the inspectors gradually

(Betz (1963)). It behaves as a blotting agent, improving the draw of penetrant from a open to

surface discontinuity (Betz (1963)). It acts as a reflective layer increasing the amount of liquid

penetrant exposed to the eyes entrapped in an indication (Betz (1963)). Composed by white
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pigmentation, a high whiteness developer increases the contrast between the background and

indication, improving the sensitivity of the inspection (Glaskov and Bruevich (1985)).

There are four types of developer: The water-soluble, the water-suspendable, the solvent-

suspendable and the dry powder developers.

• The water-soluble developer consists of chemical components dissolved in water. Evap-

orating the water, the remaining elements results in a developer layer (Shull (2002), NDT

Resource Center (2010)).

• The water-suspendable developer consists of insoluble developer particles suspended in

water. The suspension must be agitated for keeping the concentration. Evaporating the

water, after the application, only a developer layer remains on the surface (Shull (2002),

NDT Resource Center (2010)).

• The solvent-suspendable developer comprises insoluble developer particles suspended

in a volatile solvent. In order to keep the suspension concentration, it must be constantly

agitated. After, applying the suspension, the solvent evaporates resulting in a developer

layer (Shull (2002), NDT Resource Center (2010)).

• The dry powder is the pure developer which is applied directly to the surface (Shull

(2002), NDT Resource Center (2010)). Figure 3.7 (b) illustrates the dry powder applica-

tion using a basket containing parts.

3.7 Mechanism of Fluorescence in Penetrants

In PT testing, when type I penetrants are being used in surface preparation, it is required black-

light illumination in a dark environment for revealing indications (Betz (1963)). Lamps whose

light energy is just below the visible spectrum of violet (mostly around 365nm) provide this

necessary radiation (Betz (1963)). The absorption of this exciting emission by penetrant en-

trapped in discontinuities generates their fluorescence which characterizes a variation of pene-

trant testing that is identified as Fluorescent Penetrant Inspection (FPI).
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The FPI is mostly employed when it is mandatory high sensitivity in detection. The charac-

teristic fluorescence is explained by the photon absorption of the incident energy at certain

wavelength by a fluorescent material surface which consequently re-emits light with the same

energy at either identical or longer wavelength (Larson (2002)). This happens, because the

absorbed radiation causes changes in the electronic distribution which forces changes in the

molecular structure and consequently fluorescent light is emitted (Graham (1967)).

3.8 Inspection and Evaluation

The liquid penetrant testing allows the inspector or machine vision system to detect surface

discontinuities. This includes all cracks, porosities, inclusions, segregations, laps, etc which

can be found directly on the surface. Whenever an indication is revealed, the inspector must

investigate its pattern in order to define which discontinuity it may represent, its actual dimen-

sions and what consequences will happen if the corresponding part is placed in service (Tracy

and Moore (2001)).

The evaluation of indications is usually based on quantitative data extracted from them. In case

of PT, this information is represented by their dimensions which are generally larger than the

actual discontinuity (Tracy and Moore (2001)). Based on the inspector’s experience, he/she

may identify the corresponding type and the approximate height/width. Analyzing this data,

the effect of them may be evaluated (Tracy and Moore (2001)).

Examples of patterns usually observed in PT are illustrated in figure 3.10. Laps can be repre-

sented by long, continuous indications as exemplified in (a) and (b) (Tracy and Moore (2001)).

If this discontinuity is submitted to successive forging, a welded lap can be formed, resulting

into indications as depicted in (c) (Tracy and Moore (2001)). Furthermore, the patterns in (a)

and (b) can be interpreted as cracks (Tracy and Moore (2001)). The sketched shape in (b) can

be classified as a cold shut as well (Tracy and Moore (2001)). Subsurface cracks with intermit-

tent openings to surface and seams without adequate amount of entrapped penetrant may result

in the same indication drawn in (c) (Tracy and Moore (2001)). The porous surface appear-

ance illustrated in (d), may be interpreted as porosities caused by entrapped gases in casting or
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welding if applicable or surface shrinkage cavities formed during the solidification in casting

operations (Tracy and Moore (2001)).

Figure 3.10 Schematics representing often detected indication patterns. In (a), an

opening which may be a surface crack; in (b), a thin indication which may represent a

tight open to surface crack or a surface cold shut; in (c), there is a partially welded lap; in

(d), the indications rounded in the shape of bubble may be porosities or pits.

Reproduced from Tracy and Moore (2001)

3.9 Comparators and Reference Panels

For the analysis of inspection system and materials performance, the development of programs

for the quality control are highly recommended (Tracy and Moore (2001)). In the market,

reference panels with a wide range of crack sizes are available, being suitable to utilize them

as parameter for comparisons. Applying liquid penetrant, developer, emulsifier(if applicable)

onto these standard references, recipe dependent amounts of these chemicals can be defined

for obtaining a desired seeability/brightness ratio, according to crack dimensions (Tracy and

Moore (2001)).

Using the twin NiCr tapered test panel, as depicted in the figure 3.11, it is feasible to develop a

side-by-side comparison between two diverse sets of PT chemicals (2 sets of liquid penetrants,

developers, emulsifiers)(Tracy and Moore (2001)). This panel is divided into two identical

sections of cracks separated by a parallel line placed in the intersection of the two sections
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(Tracy and Moore (2001)). The emulsification, dwell and development times can be adjusted

using this panel comparing the sections with different settings (Tracy and Moore (2001)).

Figure 3.11 In (a), there is a schematics of twin NiCr tapered test panel; in (b), the effect

of two different penetrant is evaluated with the twin panels.

Reproduced from Shull (2002)

Other option for comparing penetrant testing settings is the use of the twin penetrant system

monitor (PSM) panel. This panel was designed by Pratt Whitney Aircraft Corporation. It

is widely used in the observation of anomalies in systems. It is made of stainless steel with

100, 150 and 2.3 millimeters of width, height and thickness respectively (Tracy and Moore

(2001)). In each side of this panel, five star-shaped cracks are generated through an inden-

tation similar to the applied in hardness testing. They are formed and organized vertically

according to the length as illustrated in figure 3.12. The cracks 1, 2, 3, 4 and 5 measure respec-

tively 0.38x0.79mm, 1.17x1.57mm, 1.91x2.36mm, 3.18x4.34mm and 4.57x6.35mm (Vasquez

(1997), Vasquez (2002)). This panel, likewise the NiCr tapered panel in figure 3.11, may alert

inspectors/machine vision systems for contaminants in chemicals like penetrant, developer,
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emulsifier. It may provide useful information concerning the change of these components,

considering that they influence directly the seeability of indications (Tracy and Moore (2001)).

Figure 3.12 In (a), twin known defect test panels with 5 star-shaped cracks each; in (b),

there are two pictures of the PT patterns of two cracks contained in the panels of (a).

Reproduced from Shull (2002)

3.10 The Capability and Reliability in PT inspection

The liquid penetrant inspection can be evaluated based on the smallest detectable surface dis-

continuity length (or width or depth) (Tracy and Moore (2001)). This factor, named as detection

threshold, is dependent on various parameters related to the specimen, chemicals involved,

application technique, contamination, dwell time, etc (Tracy and Moore (2001)). The most

common metric for quantifying the capability of a liquid penetrant procedure is the probability

of detection (POD) curve (American Society for Materials (2002b), Rummel (1998), Grills

(2001)). It can be traced, if diverse probabilities of detections according to length (or width or

depth) of surface discontinuities are obtained (Tracy and Moore (2001)).

In figure 3.13, there is a example of curve POD(%) X crack length (mm) extracted from Tracy

and Moore (2001). In Tracy and Moore (2001), it is recommended that the detection threshold

should be the point where the curve crosses 90% of POD. In this case, it was set to 3.5 mil-

limeters of length. This value represents the capability of the procedure or inspection system

with a reliability of 90% (the respective probability of detection) which is regarded as metric
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of repeatability and reproducibility in detection of cracks. The confidence level for the 3.5

millimeter crack is obtained according to the crack distribution used in the referred experiment

(Tracy and Moore (2001)).

Figure 3.13 Example of Probability of Detection (%) X Actual crack length (mm(in.))

curve whose detection threshold was set 3.5 millimeters (0.14 inches) of crack length.

Reproduced from Tracy and Moore (2001)

3.11 Fluorescent Penetrant Inspection in Aerospace

In nonmagnetic aircraft workpieces, the fluorescent penetrant inspection is largely employed

in the detection of open to surface indications. Parts which comprise the wings, the fuselage,

the turbines, compressors, the engines of planes are inspected through PT. Aircraft structures

made of honeycomb core (such as illustrated in figure 3.14) are verified through FPI for pre-

venting the water entry (Tracy and Moore (2001)). Among the aircraft fleet most often detected

indications, in Tracy and Moore (2001), two categories are specified for their classification:

1. Linear Indications comprises all indications whose length is either equal or greater than

three times the width;
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2. Rounded Indications comprises the remainder detected indications.

Figure 3.14 This schematics represents a typical aircraft wing structure made of

aluminium honeycomb core and graphite epoxy skin.

Reproduced from Tracy and Moore (2001)

For the improvement of the technique in the inspection of certain materials and workpieces,

variations in the standard fluorescent penetrant inspection are often employed in aerospace.

Two examples are reported below:

• Chelating Agent: Adding a chelating agent to penetrant, can be an efficient approach to

detect specific metals. It binds to specific metallic ions, resulting into the fluorescence

under visible spectrum, if illuminated by ultraviolet radiation. According to Tracy and

Moore (2001), this compound is used for detecting aluminium, bismuth, cadmium, cop-

per, iron, magnesium, nickel, zinc in aerospace workpieces. It is employed as well to

verify the presence of corrosion initiation sites in parts (Tracy and Moore (2001)).

• Ultrasonic Pumping: Certain aerospace workpieces which are previously tested through

PT and destroyed demonstrate that the penetrant was drawn into minute cracks. However,

it did not exude at a rate above the dimensional threshold of fluorescence. Therefore, no

indication was detected (Tracy and Moore (2001)). It is usually observed in parts on
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service which often contain acids, chromates and combustion byproducts in very tiny

discontinuities, compromising the seeability (Tracy and Moore (2001)). The ultrasonic

pumping is an alternative for enhancing the indication seeability. According to Tracy and

Moore (2001), the investment cast bearing housing found in aircraft components welded

to high temperature strength sheet material (nickel-chromium-iron-molybdenum alloy

resistant to oxidation and stress corrosion cracking) obtains better inspection results with

ultrasound pumping.

3.12 Safety Concerns

The penetrant testing requires special attention to involved materials. Injuries to inspectors

may occur, if proper equipment which ensures the safety in inspection is not provided. This

concern is related to the ultraviolet light employed in FPI and chemicals related to the overall

PT testing (NDT Resource Center (2010)).

Ultraviolet radiation also referred as black light comprises invisible light whose wavelength

varies from 180 to 400 nanometers. Excessive exposure of UV light around 320 nanometers

and shorter wavelengths may cause skin and eye damages. It may accelerate wrinkling, increas-

ing the risk of skin cancer. Nonetheless, the standard UV lamps utilized in FPI are designed

to provide light around 365 nanometers (wavelength where, in general, the penetrants are de-

veloped to fluoresce). Therefore, the lamps employed in inspection may not provoke injuries

(NDT Resource Center (2010)).

Among the chemicals involved in the processing of a specimen prior to inspection, the pene-

trant and developer remove oils from the skin. In some cases, it can become so dry, causing

dermatosis, being vulnerable to infection. Thus, gloves are highly recommended in order to

prevent this inconvenience. Furthermore, if products containing solvents ( i. e. non-aqueous

developers and solvent removable penetrants and other products for pre/post cleaning), hydro-

carbon, ketones and alcohols are being employed in the PT, suitable ventilation is mandatory,

once these chemicals are flammable and toxic (Canadian Institute for NDE (2010)).
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3.13 Summary

The liquid penetrant testing (PT) is a simple, cost-effective, and sensitive nondestructive eval-

uation technique largely employed in aerospace, automotive, marine, petrochemical, electri-

cal power, electronics, metal production, metal fabrication and composites industries (Shull

(2002)). It is a powerful method for detecting open to surface indications in nonporous materi-

als and workpieces (Betz (1963), Shull (2002)). It is conducted through the following sequence

of ordered steps (Betz (1963), Shull (2002)):

• Pre-cleaning) If the specimen contains contaminants, the part must be cleaned through a

suitable method (Shull (2002));

• Penetrant Application) The liquid penetrant is applied to the part surface. Through cap-

illary forces, it is transported into open to surface discontinuities (Shull (2002));

• Excess Removal) After suitable Dwell Time, the penetrant is removed from the specimen

surface. Only the discontinuities must remain with entrapped penetrant(Shull (2002));

• Developer Application) An even thin coating is applied to the specimen surface, enhanc-

ing the contrast among the indications and background (Shull (2002));

• Inspection) The specimen is inspected and indications are detected. If type I penetrant

is being used, it must be conducted under blacklight illumination in a dark environment.

In case type II penetrant is being utilized, minimum visible illumination is required for

inspection (Shull (2002)).

Comparing with other NDT techniques, the PT is economical and easy to learn (Shull (2002)).

Portable testing kit are available in the market, being easily transported by one single inspec-

tor to remote sites (Tracy and Moore (2001), Betz (1963), Shull (2002)). Reliable analysis is

obtained with few false indications if personnel with experience conducts the inspection (Shull

(2002)). The penetrant testing is feasible to be automated, increasing the inspection repeatabil-

ity (Shull (2002)).
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Furthermore, this method presents several disadvantages. For instance, extreme tight discon-

tinuities are usually not detected, once penetrant is barely entrapped into them (Betz (1963)).

The cleanliness of the part prior to penetrant application is mandatory, because contaminants

compromise the inspection (Betz (1963)). The temperature and humidity have a direct impact

in the sensitivity of the method (Shull (2002)). The technique requires suitable ventilation for

the safety of inspectors (Shull (2002)).





CHAPTER 4

FLUORESCENT PENETRANT INSPECTION - INSPECTION SYSTEM

CONFIGURATIONS - AUTOMATION FEASIBILITY

The fluorescent penetrant equipment must be chosen considering aspects related to the part

being inspected and the overall production. The material which the part is made is essential

for defining the cleaning method and liquid penetrant used. The part may not be damaged due

to chemical attack resulted from reaction between either part surface and the liquid penetrant

or the part surface and the solution applied in cleaning (pre-cleaning and postcleaning) or

penetrant excess removal(emulsifier). The size and weight of the part define the method for

applying the penetrant. When parts are large, heavy and difficult to manipulate, the application

of penetrant with spray is mostly recommended. On the other hand, if parts are light and small-

sized, the immersion into dip tanks is suggested, once it spreads the penetrant more uniformly

(Tracy and Moore (2001)).

Considering the overall production, it must be defined how the parts arrive for testing. Accord-

ing to the production rate, it must be evaluated the equipment level, the required number and

skill of operators and inspectors. Whether a testing line reach a point where manual testing

operations cannot follow the required production rates, the automation is recommended. The

automation allows a better control of the process, minimizing the possibility of overprocessing

or underprocessing (Tracy and Moore (2001)). It provides the advantage of obtaining reliable

and reproducible results. It increases the inspection speed to a level that cannot be achieved by

human inspectors (Tracy and Moore (2001)).

The fluorescent penetrant testing equipment can be separated into three categories (Tracy and

Moore (2001)):
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a. Category I) Simple, hand operated, portable equipment that can be moved about easily

as needed. Figure 4.1 exposes one example of equipment of this category (McMaster et

al. (1982));

b. Category II) Larger and complete stationary equipment that can either be universal in the

variety of parts it can accommodate or be specialized to inspect specific types of parts

and generally designed to function as an integral part of production line. In figure 4.2,

there is an example of stationary non-automated FPI stations;

c. Category III) It is composed of stationary equipment, being either universal or specific in

terms of variety of parts being inspected with either fully or semi-automated equipment.

In Armstrong (1986), a fully automated FPI system was developed for the inspection of

aircraft compressor blades, increasing the inspection resolution in 300%. The penetrant

and developer were applied through electrostatic spray guns, blades were handled by

robots and transported in a motorized conveyor. During the inspection, the part was

illuminated with an UV lamp and images were acquired with a video camera.

The liquid penetrant testing kits are included in category I, being suitable for conducting

portable crack analysis. These kits are small sized, low weight and contain fluorescent pen-

etrant materials such as application brush, swabs, cleaning rags, penetrant liquid, developer,

emulsifier and a portable ultraviolet lamp (Tracy and Moore (2001)). The inspectors must be

trained beforehand. It is highly recommended previous experience in FPI.

If the production testing rate is higher, but it still can be managed with human inspectors,

category II equipment is more suitable. In this case, it is also mandatory human inspectors

with experience and training in FPI (Tracy and Moore (2001)).

In case either the production rate reaches a point that human inspectors cannot respond or the

required inspection accuracy is so high, the category III equipment is recommended. Through

this configuration, it will be achieved more easily the desired sensitivity, reliability and repeata-

bility (Tracy and Moore (2001)).
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Figure 4.1 Magnaflux portable kit for the fluorescent penetrant inspection. The kit

contains all required chemicals for the FPI, UV lamp and an instructions manual.

Reproduced from McMaster et al. (1982)

4.1 Automated Fluorescent Penetrant Inspection System

In this section, it is described a general example of automated fluorescent penetrant inspection

system. It is composed by the following stations:

a. Part Loading Station) In this station, a human operator places parts on carriers which are

loaded onto the inspection line conveyor. A computer may be integrated to the station

for enrolling the part into the inspection process and tracking the carrier of the part being

inspected (Adair et al. (1998), Tracy and Moore (2001)).

b. Pre-cleaning Station) After passing by the loading station, the carrier is moved by the

conveyor into the pre-cleaning station. In this module, the parts are cleaned using fluids

( which can be detergent, alkaline or acid solution) and vapour (in this case, a hot liq-

uid is dispensed). Before and after each fluid application, an air knife must be placed

for preventing contamination the next cleaning solution. Per cleaning fluid employed

to the specimen, a piping system has to be installed. Each is composed by an electric
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Figure 4.2 Stationary non automated fluorescent penetrant inspection system

configuration widely used in non mechanized industry. In 1, there is a representation of a

dip tank for the penetrant application; in 2, a drain pan is used for draining the excess of

liquid penetrant allowing the desired dwell time (drain dwell mode); in 3, there is a rinse

tank for excess penetrant removal; in 4, there is a drier; in 5, there is a small station for the

developer application and in 6, there is an inspection booth with black light lamp.

Reproduced from McMaster et al. (1982)

motor driven pump, a steam jet heater and a valve. The piping system aims at provid-

ing cleaning fluid according to pressure and temperature cleaning recipes to a manifold

which sprays the fluid onto the parts. The mechanical force provided by the fluid valves

helps removing surface contaminants. The electrical, hydraulic and pneumatic interfaces

among the facility and the pre-cleaning station is controlled by the station main control

panel. It also allows communication between the remaining station controlling comput-

ers. Each fluid spray pressure and temperature is recipe dependent. These parameters

may be configured differently for diverse parts. An electric motor driven exhaust fan
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must be installed for removing humid air from inside the station (Adair et al. (1998),

Tracy and Moore (2001)). Furthermore, an automatic washing machine such as the ex-

ample illustrated in figure 4.3 can be adapted for the mechanization and standardization

of this station (McMaster et al. (1982)).

Figure 4.3 Automatic washing machine that can be used for pre-cleaning and

post-cleaning processes.

Reproduced from McMaster et al. (1982)

c. Drier Station) After passing by the pre-cleaning station, the part goes to a drier station

through a conveyor. It is a cabinet whose walls are insulated and the interior is electrically

heated with the temperature being controlled by an adjustable thermostat. It is equipped

with fans built into unit which expels the wet air replacing the cabinet with dry air. Only

water is evaporated in the drier (Adair et al. (1998), Tracy and Moore (2001)).

d. Penetrant Application Station) After conducting the part cleaning recipe, the carrier is

moved by the conveyor into the penetrant application station. It can be organized into,

at least, two configurations: (i) the penetrant is applied through electrostatic sprays and

(ii) the penetrant is applied through a dip tank. In case configuration (i) is adopted, elec-
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trostatic spray guns fed with liquid penetrant wet the part surface with liquid penetrant

(as illustrated in figure 4.4). They are controlled by the station main computer. If config-

uration (ii) is chosen, a robot controlled by the station main control computer removes

the part from the carrier and immerses it into a dip tank. After a few seconds, the part is

replaced by the robot into the carrier. In both configurations, air knives and mist collec-

tors may be installed for preventing the drifting of liquid penetrant out of the application

module (Adair et al. (1998), Tracy and Moore (2001)).

Figure 4.4 Picture of an automatic electrostatic spray gun system controlled by a

computer processor. This automated system guarantees the repeatability required for the

inspection of high safety workpieces.

Reproduced from McMaster et al. (1982)

e. Dwell Station) After applying the penetrant, the carrier is moved to the dwell station.

The entry of a carrier generates a signal to a timer in a controlling computer. The exit

carrier stop remains activated until the dwell time expiration. At the end, the carrier
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stop is released and it is moved to the next station (Adair et al. (1998), Tracy and Moore

(2001)).

f. Penetrant Excess Removal Station) After the dwell time, penetrant excess must be re-

moved in a subsequent station. The carrier is moved to the penetrant excess removal

station. It is a closed cabinet with rolling curtains to prevent the washing liquid from

drifting outside the enclosure. This process depends on the penetrant type being used. In

case it is water-soluble, the washing is executed by streams of water from moving spray

nozzles. In case the penetrant is postemulsifiable (either lipophilic or hydrophilic), the

emulsifier is employed through solution streams from spray nozzles. A piping system

composed by an electric motor driven pump, a steam jet heater and a valve must be in-

stalled in order to provide water and postemulsifiable solution at proper temperature and

pressure (Adair et al. (1998), Tracy and Moore (2001)).

g. Developer Application Station) In this station, the developer must be applied using au-

tomatic electrostatic spray guns. Air knives and mist collectors are installed to eliminate

its drifting out of the spray application module (Adair et al. (1998), Tracy and Moore

(2001)). The developer layer thickness is an important factor in inspection. If it is too

thick, it is complicated for a liquid penetrant to flow from a discontinuity to part surface.

On the other hand, if it is too thin, it may result in lack of contrast between indications

and part surface. Non-uniform developer application leads to non-representative detec-

tion (Brasche et al. (2009), Sekerin and Kornev (1997), Migoun et al. (2002)). Thus, the

quantity and uniformity of the layer (which is controlled by either by the spray translation

and rotation or part rotation and translation) are recipe dependent parameters.

h. Fluorescent Penetrant Inspection Station) After treating the surface with chemicals, the

part is prepared for inspection. It must be conducted through an automated system. This

stage is detailed in section 4.2.
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4.2 Ultraviolet Inspection Systems

In the literature, there are several examples of automated systems for the FPI inspection. They

consist of ultraviolet scanners and camera-based systems. The UV scanners are composed of

four basic elements: (i) an UV light source; (ii) a photodetector sensitive to visible light and

not to ultraviolet radiation; (iii) signal conditioning and (iv) pattern recognition hardware and

software required to decode the produced signal. In addition, materials handling accessories are

necessary for moving parts to and from the scanner to loading/unloading equipment. Rejected

and approved parts must be marked or separated after inspection (Tracy and Moore (2001)).

In the ultraviolet laser-scanning system proposed in Tracy and Moore (2001), a focused UV

laser spot illuminates only a D millimeters diameter area of a part treated with chemicals in

one cycle and a photodetector verifies the presence of any fluorescent spot in the place where

the UV light is being projected. If the level of fluorescence in the area covered by the beam is

low, no indication is detected by the photodetector. Otherwise, if a larger amount of fluores-

cent radiation is acquired, it demonstrates that the laser spot strikes an indication (Tracy and

Moore (2001)). In order to scan the whole surface, the direction of the laser spot is changed

continuously through the mirrors (as depicted in figure 4.5), being the spot translated in x and

y axes in steps of D millimeters. The photodetector must follow the illumination trajectory

provided by the mirrors. Similarly in Burkel (1990), the fluorescent patterns are captured by

a fibber-optic bundle and detected by a photomultiplier detector (depicted in figure 4.6). As

the example illustrated in figure 4.5, the laser spot is displaced over the part surface by mirror

rotations. The spot diameter is the resolution in both systems.

Furthermore, in Armstrong (1986), a camera-based system for the inspection in FPI was devel-

oped. It composed of (i) a mercury vapour ultraviolet light source which illuminates the part

being inspected, (ii) a camera that acquires images of the treated specimen in a single snapshot,

(iii) a robot arm for handling and positioning the inspected workpiece in front of the camera

and (iv) a digital image processing system for identifying the relevant features of the acquired

images. This fully automated system improved the inspection results, eliminating errors inher-



71

Figure 4.5 Laser-scanning system. The laser spot is translated over the surface aided by

a scanning mirror. A light-collecting mirror transmits fluorescent indications to a

photocell. The signal captured by the photocell is conditioned by an amplifier and

threshold gate.

Reproduced from Tracy and Moore (2001)

ent to human inspectors. The resolution of the inspection system is given by the number of

pixels of the camera sensor.

4.3 Summary

In this chapter, the fluorescent penetrant inspection has been discussed. Portable, stationary

and automated equipments for conducting this technique have been exemplified. A hypothetic

fully automated FPI line has been explained.

Ultraviolet image acquisition and processing systems are capable to automate the inspection

in FPI. The analysis of workpieces by a machine vision system must be performed in a light

blocking booth under only blacklight illumination. Automatic electrostatic spray guns, wash-
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Figure 4.6 Laser-scanning system developed by General Electric. The rotation of the

scanning mirror translates the focused spot over the treated surface.

Reproduced from Burkel (1990)

ing machines, robots, conveyors, etc comprise equipment for allowing the automation of the

part pre/post cleaning, application of PT chemicals and specimen handling.

Even though the automation is capable to reduce drastically the variability in inspection, nowa-

days several challenges are still present mechanized FPI. For instance, automatic washing ma-

chines are set for cleaning parts according to recipes defined experimentally. Unexpected con-

taminants or excessive amounts of impurities may require the modification of the cleaning

parameters/method. Moreover, the automated processes are developed for the analysis of de-

termined parts and discontinuities. If specifications related to the part and detected indications

are changed, these systems may become obsolete, if they are not flexible enough to be adapted

to future needs in inspection.



CHAPTER 5

DIGITAL IMAGE ACQUISITION AND PROCESSING

In the chapters 1, 2, 3, the manufacturing processes, service degradation, nondestructive eval-

uation and the state of the art in penetrant testing were discussed respectively. In chapter 4,

some approaches for the automation of the fluorescent penetrant inspection were described.

Nonetheless, the image acquisition and image processing which are mandatory for a machine

vision system were not discussed previously in details. Therefore, it is necessary to analyze

these subjects in an attempt to define a procedure for extracting features.

The extraction of data suitable for a classifier from an image requires the following steps: image

acquisition, image filtering, image segmentation and feature extraction. The image acquisition

comprises all techniques which generate an image from an imaging sensor. The image filtering

is responsible for accepting or discarding image elements of certain frequencies, smoothing

and/or sharpening images for enhancing the elements which are verified in image segmentation,

removing noise. The image segmentation comprises image processing operations that separate

objects or regions which are capable to provide important information for the application. It

can be a point, a line, an edge or pixels detected by thresholding in a region of interest (ROI)

or in the whole image. The feature extraction, as the name says, consists of extracting features

from the segmented objects getting suitable data for a classifier.

The image processing operations are mostly performed either in the frequency domain or in

the spatial domain. The spatial domain refers to image processing using information from

the pixel directly. The frequency domain requires primarily the conversion of an image into

the frequency domain. Then, the image processing operations are conducted and an inverse

transformation is performed for converting it back to the spatial domain. The spatial domain,

regarding that all operations are direct, is less memory-consuming that frequency domain op-

erations (Gonzalez and Woods (2008)).
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In this chapter, in the first section, techniques employed for acquiring images are described.

In section 5.2, image filtering techniques are explained for obtaining images free of noise,

enhancing objects of interest in image. The sections 5.3 and 5.4, two image segmentation

techniques are described. In section 5.5, a feature extraction algorithm is analyzed as an attempt

for providing features to an image classifier. At the end, there is a summary which covers the

main topics exposed in this chapter.

5.1 Image Acquisition

For the detection of indications, through optical means, images must be acquired using a cam-

era or a single photodetector or a line of photodetectors Gonzalez and Woods (2008). With

a camera, a single snapshot provides a matrix of pixel intensities. Using a photodetector, it

must be translated in x and y axes and the intensities acquired after each displacement form

as well a matrix of pixel intensities, resulting into an image. If the image acquisition is car-

ried with a sensor which is a line of photodetectors, in each acquisition shot, an 1XN array

is obtained where N is the number of photodetectors that composes the sensor disposed in a

line. Therefore, translating this array of photodetectors in the direction perpendicular to the

sensor extension and acquiring the signal at each sensor displacement, an image is generated

also (Gonzalez and Woods (2008)).

In an image, the pixel intensity is the information provided by the acquisition system. In FPI

inspection, if a specimen has been properly processed, defect free areas remain dark under UV

illumination. However, if a discontinuity traps fluorescent chemicals and it is illuminated by

ultraviolet radiation, this zone becomes bright in an image. Based on these facts, the pixel in-

tensity can be extracted as preliminary information for the indication size measurement. Figure

5.1 depicts image digitization of a part submitted to fluorescent penetrant inspection.

5.2 Image Filtering

In Gonzalez and Woods (2008), the filters in frequency and spatial domains are divided into

smoothing and sharpening filters which are respectively known also as lowpass and highpass
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Figure 5.1 This schematics depicts the effect of the digitization. In (a), there is an

example of workpiece with defects indicated in black. In (b), the pixels in the image are

indicated by the red lines. In (c), the fluorescent green regions illustrate where defects are

illuminated and trapped by liquid penetrant and developer. In (d), the digitized intensity

per pixel obtained during image acquisition

filters. The smoothing filters are mostly used for reducing the noise, attenuating isolated image

anomalies. The sharpening filters, on the other hand, enhances abrupt changes in the image,

highlighting details (Gonzalez and Woods (2008)).

In the frequency domain, the smoothing operations are represented by all sort of frequency

lowpass filters which includes Butterworth lowpass and Gaussian lowpass filters (Gonzalez

and Woods (2008)). A simple multiplication between the transformed image and these filters,

removes noise from the edges (Gonzalez and Woods (2008)). In the spatial domain, the con-

volution of the image with averaging lowpass masks obtains the same results (Gonzalez and

Woods (2008)). In figure 5.2, there is an example of non-weighted and weighted averaging

masks (Gonzalez and Woods (2008)).
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The sharpening of an image in the spatial domain, according to Gonzalez and Woods (2008) is

accomplished by the extraction of image gradients which measure the magnitude and direction

of the greatest change in intensity in a small neighbourhood of a pixel. The gradients can be

computed by convolving Sobel, Prewitt, Roberts, etc operator masks. The horizontal compo-

nents of the Sobel and Prewitt operator masks, given by TX are represented in figure 5.3. The

vertical, given by TY are illustrated in figure 5.4. The convolution of an image with TX results

into SH ; the convolution of the same image with TY, into SV . The gradient magnitude r(x,y) is

calculated as demonstrated in equation 5.1. The orientation of the corresponding point given

by θ(x,y) is obtained through equation 5.2.

r(x,y) =
√

SH(x,y)2 +SV (x,y)2 (5.1)

θ(x,y) = atan(SV/SH) (5.2)

Figure 5.2 Examples of smoothing masks. In (a), there is a nonweighted averaging

mask; in (b), there is a weighted averaging mask.

Reproduced from Gonzalez and Woods (2008)

In the frequency domain, similar sharpening results can be obtained by applying frequency

highpass filters. The most employed are the Butterworth highpass and Gaussian highpass fil-

ters.
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Figure 5.3 Masks which are convolved with images for obtaining horizontal gradients.

In (a), Prewitt operator mask; and in (b), Sobel operator mask.

Reproduced from Gonzalez and Woods (2008)

Figure 5.4 Masks which are convolved with images for obtaining vertical gradients. In

(a), Prewitt operator mask; and in (b), Sobel operator mask.

Reproduced from Gonzalez and Woods (2008)

5.3 Image Segmentation Based on Edge Detection

In order to measure the maximum euclidean distance and area of an indication, it is necessary

to provide to the software beforehand information related to its extension. The detection of the

boundaries based on transitions (the edges) can be a good approach. In Gonzalez and Woods

(2008), the authors recommend three fundamental steps for the detection of edges:

a. Image smoothing for noise reduction - The smoothing operations improve the results in

the detection of edges (Gonzalez and Woods (2008));

b. Detection of Edge Points - Operation which extracts all points that can be classified as

edges (Gonzalez and Woods (2008));
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c. Edge Localization - this step aims at selecting, among candidate points, only the mem-

bers which truly represent the edge (Gonzalez and Woods (2008)).

The edges can be classified into three by intensity profiles: the step edge, the ramp edge and

the roof edge (Gonzalez and Woods (2008)). A step edge (illustrated in figure 5.5(a)) is a

transition between two pixel intensity levels whose distance which separates them is only one

pixel. This type is the most suitable for pattern recognition, because it provides clear distinction

from the image background and does not require any filtering operation (Gonzalez and Woods

(2008)). However, in most real life situations, they are more likely detected either as a ramp

edge or roof edge profiles (Gonzalez and Woods (2008)). In the former case (depicted in 5.5

(b)), the slope of the ramp depicts how blurred it is (Gonzalez and Woods (2008)). It cannot

be represented by only one pair of adjacent pixels, being a set of transition points. The latter

case, represented by figure 5.5 (c) is mostly obtained when objects like pipes are being imaged

(Gonzalez and Woods (2008)). In the case of liquid penetrant indications, the edges, in general,

are represented by the ramp edge profile.

Figure 5.5 Edge profiles representation. In (a), there is a representation of a step edge;

in (b), of a ramp edge; and in (c), of roof edge.

Reproduced from Gonzalez and Woods (2008)

The edges are extracted detecting changes in intensity. According to Gonzalez and Woods

(2008), the extraction of gradients in spatial domain, as explained in section 5.2, is a good

approach for accomplishing this task. However, in most real digital image processing cases,

the resulted pixels do not completely represents the edges due to noise in the image, being

required an edge linking algorithm for generating the whole indication boundary.



79

5.4 Image Segmentation Based on Thresholding

The processing required for linking edges to form a boundary can be avoided if all pixels which

constitute a single indication are segmented. This can be obtained by employing segmentation

based on thresholding. In this case, the indications are regions of pixels which contain intensi-

ties above the background.

The figure 5.6 contains a histogram reproduced from Gonzalez and Woods (2008) which repre-

sents the quantity of pixels found in the image according to specific intensities. This histogram

demonstrates two dominant groups of pixels which depicts the intensity of the background and

the intensity of the objects of interest. In this case, the thresholding can be employed for select-

ing objects whose intensity is above certain segmentation threshold. These objects would be

part of the class 1 while the background would be part of class 0 as represented by the equation

5.3. The effect of the segmentation threshold setup is depicted in figure 5.7.

Figure 5.6 Ideal histogram representation whose intensity distribution of the

background (the left distribution) is well separated from the indication distribution (the

right distribution). In this case, the segmentation threshold must be set to the intensity T .

Reproduced from Gonzalez and Woods (2008)

g(x,y) =

⎧⎨
⎩

1 if f (x,y)> T

0 otherwise

⎫⎬
⎭ (5.3)
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Figure 5.7 This figure depicts the effect of the segmentation threshold setup. The same

sample sketched in figure 5.1 was considered for this analysis. The squares in fluorescent

green illustrate the segmented pixels according to the set segmentation threshold. In (a),

(b) and (c), it was respectively adjusted to 100, 200 and 253.

5.5 Feature Extraction

In the previous sections, image acquisition approaches, filtering techniques and two methods

for segmenting objects that represent indications were described. Regarding that, in inspection,

a data analysis procedure must evaluate each detected indication based on its characteristics, a

feature extraction method must be defined for providing quantitative information to a classifier.

Using the segmentation described in section 5.3, the obtained boundaries are used for this task.

However, the thresholding must be applied to the boundaries beforehand. In case segmentation

of section 5.4 is adopted, all detected pixels are information for the feature extraction. For

assigning a boundary of a group of pixels as an indication, the following procedure extracted

from Gonzalez and Woods (2008) is proposed:

• Step 1: As demonstrated in figure 5.8, in a thresholded image with an indication, as de-

picted in (a), the uppermost, leftmost point is defined as the starting point b0 as illustrated

in (b). The point c0 will be always a background point (class 0) placed on the west of

b0. From the point c0, in clockwise direction, the 8 neighbours of b0 are verified if the
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corresponding class is 1. The first class 1 pixel found is assigned to the variable b1. The

background pixel just before b1 is assigned to the variable c1. The variables b1 and b0

are kept in the memory for the step 4 (Gonzalez and Woods (2008)).

• Step 2: The variables b1 and c1 are assigned respectively to the variables b and c (Gon-

zalez and Woods (2008)).

• Step 3: All pixels neighbours of b, starting at c are examined in clockwise direction.

These pixels from c are assigned to the variables n1, n2,...,n8. If a kth pixel is a member

of class 1, nk and nk−1 are respectively assigned to b and c (see figure (c)) (Gonzalez and

Woods (2008)).

• Step 4: The step 3 is repeated until b = b0 and the subsequent boundary point is equal to

b1 (Gonzalez and Woods (2008)).

Figure 5.8 Boundary extraction algorithm example. In (a), there is an example of an

image which indicates the classes of the pixels. The pixels in blank belong to class 0; the

others, to class 1. In (b), with the starting point b0, from c0, in clockwise direction, the

first b0’s neighbour which belong to class 1 is searched; in (c), after assigning c = c1 and

b = b1, from c, in clockwise direction, the first b’s neighbour which belongs to class 1 is

searched; in (d), the subsequent search for b’s neighbours; and in (e), the detected

boundary is colored in gray.

Reproduced from Gonzalez and Woods (2008)

All pixel locations that were assigned to the variables b0 and b1 and all bs detected in the step 3

form the ath indication boundary that comprises the set Ba = {(xi,yi)}i=N−1
i=0 whose cardinality

is given by N. With the ith and jth points contained in the set Ba, the euclidean distance in

pixels is calculated through the equation 5.4. Having the euclidean distance for all possible

combinations of pairs of Ba points, using the highest value that has been obtained, the maxi-

mum euclidean distance in millimetres for the ath indication is given by equation 5.5. Using

the pair of elements of Ba that resulted in the maximum euclidean distance, a line y = ax+b is
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fit. This line starts in one extremity of the boundary and ends in the other. In the line midpoint,

a normal line is traced. The two points where the normal line crosses the boundary are used

for calculating the width of the indication in pixels according to equation 5.6. If the maximum

euclidean distance is at least three times greater than the width, the shape of the indication is

labelled as linear. Otherwise, it is classified as rounded. The indication area is given by equa-

tion 5.7 where PB and PI are the number of pixels which form the indication boundary and the

number of pixels inscribed in the boundary. (xnormali,ynormali) and (xnormal j ,ynormal j) are the

coordinates of the two points where the normal line that crossed the indication boundary. R is

the width of the field of view in millimeters divided by the number of columns that form a raw

image in the application.

euclidean distancei j in pixels =
√

(xi − x j)2 +(yi − y j)2 (5.4)

maximum euclidean distance in mm=maximum euclidean distance in pixels∗ (R) (5.5)

widthi j in pixels =
√

(xnormali − xnormal j)
2 +(ynormali − ynormal j)

2 (5.6)

area of indication in pixels = (PB+PI)∗ (R)2 (5.7)

5.6 Summary

In this chapter, we were concentrated on image acquisition and processing techniques for au-

tomating the inspection in FPI. The feature extraction procedure in section 5.5 is an approach

for obtaining characteristics such as maximum euclidean distance, area and shape of an indi-

cation. It is based on the location of pixels which represents its boundary.
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Even though the boundary extraction is essential for the feature extraction technique which

was explained, prior to this stage, the image should be filtered followed by segmentation. Ac-

cording to Gonzalez and Woods (2008), the image filtering removes noise and spurious pixels

of the image. The segmentation selects the objects in an image which are feasible to provide

characteristics in feature extraction. In this chapter, two strategies for image segmentation have

been described applied to the detection of indications: I) segmentation based on edge detec-

tion; and II) segmentation based on thresholding. The former method requires an edge linking

algorithm prior to feature extraction. The latter method is simpler, obtaining separated clusters

of pixels which represent unique indications.

Therefore, in our evaluation, based on our limited review of literature, the most suitable image

acquisition and processing includes the following ordered steps for the detection, measurement

and classification of FPI indications:

• Step 1 - Image acquisition using a camera or a photodetector or an array of photodetector;

• Step 2 - Image filtering by averaging mask convolution;

• Step 3 - Image segmentation based on thresholding;

• Step 4 - Feature extraction based on boundary determination.





CHAPTER 6

EXPERIMENTAL PROTOCOL

In the previous chapters, background about materials science, manufacturing processes, ser-

vice degradation, nondestructive testing, penetrant testing, automation of fluorescent penetrant

inspection and digital image acquisition and processing have been discussed. These subjects

comprise introductory information for conducting experiments related to the development of

system for this work. In this chapter, the experimental protocol is described in details. It is

composed of the description of the proposed systems, samples and experiments.

The proposed system whose given name is Indication Detection System (IDS) comprises of an

optical sensor which detects open to surface indications, measuring the corresponding area in

mm2, maximum euclidean distance in mm and classifies its shape as either linear or rounded.

Using this system, three experiments have been conducted as follows:

• Experiment I, for setting parameters such as α and C. These variables have been de-

scribed in section 6.1;

• Experiment II, for tracing probability of detection curves according to the selected seg-

mentation threshold evaluating the capability and reliability of the system;

• Experiment III, for evaluating the performance of the system related to the measurement

of the maximum euclidean distance, area and shape classification of indications.

This chapter has been divided as follows: In section 6.1, the system IDS has been described.

The optical hardware and software which analyzes indications have been related. In sections

6.2 and 6.3, the samples that have been verified through experiments have been reported. In

section 6.4, the steps for preparing them have been defined. In sections 6.5, 6.6 and 6.7, the

methodologies for conducting respectively the experiments I, II and III have been explained.

At the end, in section 6.8, a summary has been written recapitulating briefly the experimental

protocol.



86

6.1 Indication Detection System (IDS)

The system IDS that has been utilized in the experiments is composed of three different mod-

ules as follows:

• First Module) - The image acquisition hardware which is comprised of an analog CCD

640X480 black/white camera, a framegrabber board that converts the analog image pro-

vided by the camera into a digital image, a 2/3 inch objective with 12mm of focal length

for focusing the camera CCD on the light emitted from a surface area of 100mmX74mm

and a filter which transmits only light within 510-560 nanometers. These components

are positioned perpendicular to the inspected surface. They are placed 179 millimeters

away from the inspected object;

• Second Module) - The illumination hardware which consists of a 24W UV, 365 nanome-

ters lamp separated C millimeters to the specimen inclined in an angle α with respect to

the specimen surface. Figure 6.1 contains a schematics which illustrates how the hard-

ware of the first and second modules have been positioned;

• Third Module) - An image acquisition, processing and indication analysis software. It

grabs analog images, converting them into 255 graylevel images; it filters the digitized

image removing noise; it detects indications, calculating their maximum euclidean dis-

tance, area and classifying their shape (either as linear or rounded according to the criteria

in section 5.5). In subsection 6.1.1, this software has been better described.

6.1.1 Software of Image Acquisition, Image Filtering and Detection of Indications

The software which has been developed for conducting experiments has been divided into three

different procedures: one for image acquisition; a second for filtering the digitized image,

removing noise; and a third for detecting indications, measuring the area, maximum euclidean

distance and classifying the shape of them.
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Figure 6.1 This figure illustrates the proposed system for conducting experiments for

this work. The distance C and the angle α are the parameters which have been selected

through the experiments described in section 6.5. The distance A has been set to 179mm

The image acquisition procedure (which has been named as Procedure I) captures images from

a 640X480 analog CCD camera. The framegrabber board which is connected to the camera

converts the acquired image into an 8-bit (255 graylevel) image. The Procedure I returns the

digitized image which is the input signal for the subsequent procedure.

The image filtering procedure that has been identified as Procedure II filters the input digital

image by convolving the weighted averaging filter described in section 5.2. It removes spurious

pixels, enhancing the contrast between indications and the background of the image.

The Procedure III, which aims at detecting indications, measuring the area and maximum eu-

clidean distance and classifying the shape of them, firstly segments the filtered image based

on thresholding (as explained in section 5.4). The background and indications after segmen-

tation are represented respectively by the classes 0 and 1. The resulting clusters of pixels

which have been segmented as object of class 1 correspond to unique indications. Running

the feature extraction procedure described in section 5.5 as function of an indication starting

point (ISP) and the segmented image, the maximum euclidean distance, area and shape of
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indications are returned. In this work, it has been extracted through the starting points ex-

traction (SPE) algorithm. It aims at defining them for the boundary extraction in the image

I = {im(x,y)}x=W−1,y=H−1
x=0,y=0 where im(x,y), W and H are respectively the (x,y) pixel class,

width and height of I. The starting points are defined through the following steps:

• Step I - In a row y, the algorithm searches in I for the leftmost pixel whose class is 1. If

it is detected, the corresponding location (x,y) is enrolled to the set SP = {(xi,yi)}i=N−1
i=0

and step II is conducted. In case all pixels of this row belong to class 0, the step VI is

executed. N is the SP’s cardinality.

• Step II - In the same row y, analyzing I from the column where the leftmost pixel of class

1 has been found to the right of the row, the first pixel whose class is 0 is searched. If it

is detected and if its column is smaller than W −1, the step III is conducted. Otherwise,

the step IV is executed.

• Step III - In the same row y, analyzing I from the column of the pixel which has been

detected in the previous step to the right of the row, the leftmost pixel whose class is 1 is

searched. If it is detected, its location (x,y) is enrolled to the set SP = {(xi,yi)}i=N−1
i=0 . If

either x =W −1 or none pixel of class 1 has been found, the step VI is run. Otherwise,

the step IV is executed.

• Step IV - In the same row y, analyzing I from the column of the pixel detected in the

previous step to the right of the row, the first pixel whose class is 0 is searched. If it is

detected and if its column is smaller than W −1, the step V is conducted. Otherwise, the

step VI is run.

• Step V - The steps III and IV are run in a loop until the condition for executing the step

VI is satisfied.

• Step VI - If y is smaller than H −1, y = y+1 and the procedure is executed again from

the step I. Otherwise the detection of ISPs has been concluded. This procedure must run,

verifying all rows of the thresholded image.
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The set SP comprises the starting points used to begin the feature extraction. If a point in SP has

been previously detected as part of other indication boundary, it is ignored and the procedure

described in section 5.5 is not run for the corresponding coordinate.

These procedures have been run together or separated depending on the experiment. In the pa-

rameter setting which has been described in section 6.5 only the Procedure I has been executed.

In the Experiment II, a preliminary evaluation based on histograms has been conducted only

with the Procedure II. The POD curves have been traced running the Procedure II followed by

Procedure III. In the Experiment III, the three procedures have been performed.

6.2 Sample Description for setting the parameters α and C and plotting POD curves

For setting the parameters α and C and plotting POD curves, three sensitivity test panels made

of brass, manufactured by Eishin Kagaku Inc. have been evaluated. They have been described

as follows:

• The first test panel which has been called as Coarse Test Panel (see figure 6.2) contains

30 cracks around 70 millimeters of length, 2 microns of width and 50.2 microns of depth;

• The second test panel whose given name is Medium Test Panel (see figure 6.3) presents

33 cracks measuring around 70 millimeters of length, 1 micron of width and 21.6 microns

of depth;

• The third test panel that has been named as Fine Test Panel (see figure 6.4) has 85 cracks

around 70 millimeters of length, 1 micron of width and 10.8 microns of depth.

6.3 Sample Description for the Measurement of Area, Maximum Euclidean Distance

and Shape Classification of Indications

For the evaluation of the system performance related to the shape classification and measure-

ment of the area and maximum euclidean distance of indications, three weld joint references

made of steel, containing open to surface discontinuities have been analyzed. All of them have

been manufactured by the company Flawtech. They have been described below:
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Figure 6.2 Radiography of Coarse Test Panel containing open to surface cracks used to

trace a POD curve.

• The first reference has three rounded discontinuities which are porosities formed during

the welding. The uppermost, the one located in the middle and the last have been iden-

tified respectively as Discontinuity I, Discontinuity II and Discontinuity III. The man-

ufacturer has not informed the length and width of each separately. It has been only

mentioned that the total flaw length is 10mm;

• The second contains a lack of fusion and a centerline crack. As a convention, these

discontinuities have been related as Discontinuity IV and Discontinuity V. The length of

the former and the latter are 18mm and 8mm respectively;

• The third weld joint reference contains a toe crack whose length is 20mm that has been

reported as Discontinuity VI in the experiments.

6.4 Sample Preparation

The inspection in FPI requires prior and post surface preparation. Even though the laboratory

where the chemicals have been applied have allowed the control of temperature and pressure of
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Figure 6.3 Radiography of the Medium Test Panel containing open to surface cracks

used to trace a POD curve.

the water and drying oven, the overall part preparation has been conducted manually. The full

automation of the chemical’s application would have provided higher repeatability. Nonethe-

less, in order to ensure certain level of control, the application of penetrant, emulsifier and

developer has been executed as the following recipe:

a. Prior to penetrant application, the samples are cleaned. The parts are immersed during 1

hour in acetone, followed by 1 hour of ultrasound cleaning;

b. Each part is immersed in a dip tank containing type I method D penetrant. Dwell time is

set to 1 hour;

c. The samples are pre-rinsed with a coarse water spray under pressure of 35PSI and tem-

perature of 27◦C. The water spray is placed 30cm away from the part inclined in a angle

of 45◦. This step must be conducted under blacklight illumination;
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Figure 6.4 Radiography of Fine Test Panel containing open to surface cracks used to

trace a POD curve.

d. The parts are immersed in a dip tank containing emulsifier. An emulsification time of 90

seconds is allowed;

e. The excess of penetrant is removed with a coarse water spray under pressure of 40PSI

and temperature of 21◦C. The water spray is placed 30cm away from the part inclined in

a angle of 45◦. Periodically, it must be verified under blacklight illumination if all excess

has been removed from the surface;

f. The part is dried in an oven set at a temperature of 71◦C. The part must be verified each

30 seconds, if there is remaining water from excess removal. The part is removed when

dry;

g. Nonaquous developer is applied by spraying. The spray can be placed 50cm away from

the part. Ten minutes is allowed for the development time and the specimen is ready for

analysis.
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6.5 Experiment I - Selection of the most suitable angle α and distance C in image ac-

quisition

Setting the illumination parameters α and C has a direct impact in the light power in image

acquisition. They should be adjusted in order to optimize the incident UV intensity for the

detection of indications. Shallow and thin discontinuities, for example, entrap less liquid pen-

etrant than deep and wide ones, being necessary higher ultraviolet power for the seeability

of indications. On the other hand, into the latter discontinuity type more liquid penetrant is

drawn, being susceptible to result in indications with extreme glare if it contains excessive

incident light power. Therefore, the decision of the most suitable α and C must avoid the

following possible inconveniences:

• The excessive glare mostly seen in deep and wide indications, if extreme UV power is

being provided;

• The lack of UV power in shallow and thin indications, compromising the seeability.

These two inconveniences have been regarded in the experiment for the choice of the most

suitable α and C. This experiment has been divided into two parts:

• The Part I consists of verifying the impact of setting the angle α with C adjusted to 30

centimeters. With α set to 10◦, 25◦, 45◦, 65◦and 75◦, the three sensitivity test panels have

been prepared four times as specified in section 6.4. After each preparation, an image per

sensitivity test panel has been captured running the Procedure I. The setting of α whose

images have obtained the best quality has been adopted for the analysis which has been

described in Part II.

• The Part II aims at evaluating the influence of the C adjustment. Using the chosen

α , with C set to 10, 20, 40 and 50 centimeters, the sensitivity test panels have been

prepared four times through the same recipe, acquiring an image per panel after each

single preparation executing the Procedure I. After comparing these images with the
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ones acquired with the selected α and C=30 centimeters, the most suitable setting of C

has been adopted. The distance C has been chosen aiming at achieving the best image for

the detection of indications. Through this experiment, the images have been evaluated

qualitatively. In other words, no quantitative metric has been analyzed for choosing α

and C. It has been based only on subjective judgment.

6.6 Experiment II - Probability of Detection Curves Plot

The probability of detection curves allow an evaluation of the capability and reliability of

the nondestructive evaluation equipment and personnel which conducts the NDE. This per-

formance metric applied to the system of this project depends on the manner that the image

has been acquired, filtered and segmented. Regarding that the segmentation in Procedure III

extracts the relevant objects from a filtered image, it is important to know beforehand the dis-

tribution of its graylevel intensities. All images of the sensitivity test panels which have been

acquired with the chosen α and C in the previous experiment using the Procedure I have been

filtered with the Procedure II for this experiment. Histograms of these filtered images have

been traced for providing information about the intensity range that separates the indications

from background. Three segmentation threshold values within this interval have been adopted

for the POD curve plot.

Executing the Procedure III with the filtered images using the three segmentation thresholds

separately have allowed the plot of three POD curves. The value whose POD curve has

achieved the best capability and reliability has been selected for the measurement of area,

maximum euclidean distance and shape classification of indications. The POD curve for a

segmentation threshold T has been plotted according to the steps below:

• Step 1. - One filtered image of the coarse test panel is inspected with Procedure III

using T. Regarding that this panel contains 30 cracks, the number of detected cracks is

recorded. This number is divided by 30, obtaining the probability of detection in % of

the corresponding image.
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• Step 2. - The final probability of detection in % for the coarse panel is calculated for the

remaining three filtered images of the coarse sensitivity panel. The average of the POD

of the four images is the final POD of the coarse sensitivity test panel in %.

• Step 3. - For the images of the medium and fine sensitivity test panels, the probabilities

of detection are calculated as specified in Steps 1 and 2. Nonetheless, the medium and

fine test panels contain 33 and 85 cracks respectively. The POD in % must take into

account these values instead of 30 cracks.

6.7 Experiment III - Measurement of Area, Maximum Euclidean Distance and Shape

Classification Experiments

Regarding that the developed system aims at measuring the maximum euclidean distance, the

area and classifying the shape of indications, it is relevant to conduct experiments to evaluate

its performance based on these measurements and classifications. The samples which have

been described in section 6.3 have been utilized for this analysis. Each has been prepared

five times as specified in section 6.4. After each preparation, an image per sample has been

acquired through Procedure I, followed by image filtering through Procedure II, succeeded by

the measurement of maximum euclidean distance, area and shape classification of indications

through Procedure III. The measurements of area and maximum euclidean distance and shape

classification have been recorded. The precision uncertainties, using the student method, have

been calculated with 90% of confidence level.

6.8 Summary

In this chapter, important aspects related to the experiments for concluding this dissertation

have been described. Primarily, the tests which have been conducted for positioning the ultra-

violet lamp for optimizing the inspection have been explained. The methodology for plotting

the probability of detection curves that provide means to evaluate the capability and reliability

of the detection system has been proposed. The measurements of area and maximum euclidean

distance of indications followed by the respective precision uncertainty calculation have been
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analyzed accordingly to the description that has been written in this chapter. Table 6.1 contains

a summary of the experiments which have been proposed.

The system IDS acquires images in an area of 100mmX74mm. It digitizes it resulting in

digital images with 640X480 pixels. Each pixel in the image corresponds to and area of

0.15mmX0.15mm of the surface being inspected. R is equivalent to 0.15mm.

Table 6.1 Summary of the proposed experiments

Experiment Brief Description of the Experiment
I, Part I For an angle α , the coarse, medium and fine sensitivity test panels have been

prepared four times with the required chemicals. After each preparation,

images of the treated panels have been acquired. Angles such as 10◦, 25◦,

45◦, 65◦and 75◦have been analyzed.

I, Part II With the selected angle in the previous experiment, for a distance C, the

coarse, medium and fine sensitivity test panels have been prepared four

times with the required chemicals. After each preparation, images of the

treated panels have been acquired. Distances C such as 10cm, 20cm, 40cm
and 50cm have been analyzed. The system configuration which have ob-

tained the best image quality has been adopted for the remaining experi-

ments that have been mentioned in this chapter.

II After deciding the most suitable α and C configuration, using the images of

the adopted system which have been acquired in the previous experiments,

three POD curves have been traced. The segmentation threshold whose

POD curve provides the best results has been adopted for the Experiment

III.

III The area, the maximum euclidean distance and shape of the five disconti-

nuities which have been described in section 6.3 have been evaluated five

times. Prior to each evaluation, the samples have been prepared with the PT

chemicals.



CHAPTER 7

RESULTS, ANALYSIS AND DISCUSSION

In the previous chapter, several experiments have been proposed. Firstly, a methodology for

setting the angle α and distance C has been suggested as an attempt to optimize the image

quality in inspection. Secondly, a procedure for selecting the most suitable threshold value

for segmentation based on probability of detection curves (POD) has been written, specifying

meticulously the steps for tracing these graphics. At the end, the basis for an analysis of

measurements of area, maximum euclidean distance and classification of indications contained

in diverse samples has been introduced.

This chapter aims at presenting the results of the experiments mentioned previously. The set-

ting of the illumination angle and distance between the specimen and ultraviolet light source,

the plot of probability of detection curves for determining the capability and reliability of the

developed system and the measurement of area, maximum euclidean distance and classifica-

tion of shape of indications have been conducted, evaluating the samples and proposed system.

Graphics, figures, tables of measurements, precision uncertainties have provided relevant in-

formation for an analysis of the obtained results. The performance of the developed system has

been discussed, emphasizing critically positive and negative aspects of the developed system.

This chapter has been organized as follows: In sections 7.1 and 7.2, the influence in the image

quality of the angle α and the distance C has been analyzed. Based on an evaluation of the

impact of these parameters, a configuration for the remaining experiments has been chosen. In

section 7.3, the probability of detection curves have been presented, quantifying the capability

and reliability of the developed system. In section 7.4, the system performance related to the

measurement of the area, maximum euclidean distance and shape classification of indications

has been exposed. At the end, in section 7.5, the results have been discussed.
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7.1 Analysis of the influence of the illumination angle in image acquisition

After acquiring images with α varying from 10◦to 75◦, it is possible to conclude that as large

as the angle is, more brightness is added to the image, once more ultraviolet light power is

provided to the inspected surface. In figure 7.1, an image of the coarse sensitivity test panel

acquired with C and α set respectively to 30 centimeters and 75◦has been depicted. This

picture and the remaining images of the coarse sensitivity test panel with α adjusted to 75◦and

65 ◦and C=30 centimeters have presented excessive glare on its center (as exposed in the area

inscribed in the red rectangle of figure 7.1), blurring this zone, compromising the overall image

resolution. The images of the coarse panel with C equal to 30 centimeters and α positioned to

45◦, 25◦and 10◦which have been shown in figures 7.2, 7.3 and 7.4 respectively have obtained

a more homogeneous brightness distribution. The images of the coarse crack sensitivity panel

with α set to 25◦and 10◦are darker than the ones which have been acquired with larger angles.

Figure 7.1 Image of the coarse sensitivity test panel that has been acquired through IDS.

The angle α and C have been set to 75◦and 30 centimeters respectively.

Furthermore, the lack of UV light power compromises the detection as well. For instance, re-

garding the fine sensitivity test panel, once its discontinuities entrap less liquid penetrant, more

light power is mandatory for the seeability of indications. The figures 7.5 and 7.6 whose images

have been acquired with α set to 25◦and 10◦respectively contain indications with low bright-

ness. In figures 7.7 and 7.8 (whose images have been obtained with α set to 65◦and 45◦), even

tough the light source has not provided enough power for the perfect indication’s observation,
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Figure 7.2 Image of the coarse sensitivity test panel that has been acquired through IDS.

The angle α and C have been set to 45◦and 30 centimeters respectively.

Figure 7.3 Image of the coarse sensitivity test panel that has been acquired through IDS.

The angle α and C have been set to 25◦and 30 centimeters respectively.

the image quality is better. The images of the medium sensitivity test panel which have been

exposed in figures 7.9 and 7.10 have illustrated indications with intermediate level of bright-

ness when compared with images that have been captured of the fine and coarse sensitivity

panels according to the corresponding angle.

After acquiring images with different α configurations, setting it to 45 ◦seems to be the best

choice. This adjustment has avoided the excessive glare in medium and coarse crack panels

and has obtained the third best indication brightness in the fine test panels.
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Figure 7.4 Image of the coarse sensitivity test panel that has been acquired through IDS.

The angle α and C have been set to 10◦and 30 centimeters respectively.

Figure 7.5 Image of the fine sensitivity test panel that has been acquired through IDS.

The angle α and C have been set to 25◦and 30 centimeters respectively.

7.2 Analysis of the influence of the distance C in image acquisition

After evaluating the influence of the angle α in image acquisition, the distance from the sample

to the UV lamp C has been analyzed in terms of impact on the image quality. With α set to 45◦,

images of the coarse, medium and fine sensitivity test panels have been exposed in the previous

section with C equal to 30 centimeters. In order to complete the analysis of the influence of the

distance C, images with different settings of C have been acquired and discussed. The angle α

has been adjusted to 45◦in all remaining acquisitions.
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Figure 7.6 Image of the fine sensitivity test panel that has been acquired through IDS.

The angle α and C have been set to 10◦and 30 centimeters respectively.

Figure 7.7 Image of the fine sensitivity test panel that has been acquired through IDS.

The angle α and C have been set to 65◦and 30 centimeters respectively.

When the ultraviolet lamp has been positioned very close to the coarse and medium sensitivity

test panels (e.g. C=10 or 20 centimeters), the images have presented excessive glare on its cen-

ter as illustrated in figures 7.11 7.14. With C equal to 30, 40 and 50 centimeters (as exposed in

figures 7.2, 7.15, 7.12 and 7.13 respectively), the images have not obtained extreme brightness

regions.

In the images of the fine test panel, indications have been observed in a larger area with C

set to 40 centimeters and 50 centimeters (figures 7.16 and 7.17) in comparison with the ones

captured with C equal to 30 (see figure 7.8), 20 and 10 (see figure 7.18) centimeters. This
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Figure 7.8 Image of the fine sensitivity test panel that has been acquired through IDS.

The angle α and C have been set to 45◦and 30 centimeters respectively.

Figure 7.9 Image of the medium sensitivity test panel that has been acquired through

IDS. The angle α and C have been set to 25◦and 30 centimeters respectively.

has happened, because the ultraviolet lamp provides a divergent beam. As farther as the lamp

has been positioned, more spread the light has been, illuminating a larger surface area of the

panels, reducing the irradiance. The ultraviolet light power on image center has been decreased

as long as the distance C has been increased. It is possible to realize it, just comparing figures

7.16, 7.17 and 7.18). When C has been adjusted to 40 centimeters, the incident UV light has

been diverged moderately and has not resulted in excessive glare during the illumination of the

coarse sensitivity panel. A considerable number of cracks in the medium and fine sensitivity

test panel have been observed with these configurations. Therefore, regarding all acquired

images that have been exposed in this section, we have considered the images with C set to 40
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Figure 7.10 Image of the medium sensitivity test panel that has been acquired through

IDS. The angle α and C have been set to 75◦and 30 centimeters respectively.

Figure 7.11 Image of the coarse sensitivity test panel that has been acquired through

IDS. The angle α and C have been set to 45◦and 10 centimeters respectively.

centimeters the most suitable for the detection. For the remaining experiments of this work,

the UV lamp has been positioned 40 centimeters from the specimen in an inclination of 45◦.

7.3 Probability of Detection Curves of the Detection System

After presenting and analyzing diverse images with different angles α and distances C, in the

previous section, we have agreed that the best configuration of these parameters contained

α =45◦and C=40 centimeters. Regarding that the proposed detection algorithm employs the

thresholding in a filtered image followed by boundary extraction, tracing histograms prior to

select the best threshold value is highly recommended. Figures 7.19, 7.20 and 7.21 are the
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Figure 7.12 Image of the coarse sensitivity test panel that have been acquired through

IDS. The angle α and C have been set to 45◦and 40 centimeters respectively.

Figure 7.13 Image of the coarse sensitivity test panel that has been acquired through

IDS. The angle α and C have been set to 45◦and 50 centimeters respectively.

corresponding filtered images of the figures 7.12, 7.15 and 7.16 respectively. Figures 7.22,

7.23 and 7.24 contain the filtered image histograms. Figures 7.25, 7.26 and 7.27 contain the

magnified histograms of figures 7.22, 7.23 and 7.24.

In the histogram of the figure 7.22, the distribution of pixels have presented two peaks: I) in

the graylevel 0 and II) in the graylevel 255. The former represents the rate of the pixels con-

tained in the background. The latter whose percentage is much lower (2%) depicts the amount

of the indication pixels contained in the image. The histogram in figure 7.23 identically have

illustrated two peaks in the same graylevels. However, regarding that the corresponding image
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Figure 7.14 Image of the medium sensitivity test panel that has been acquired through

IDS. The angle α and C have been set to 45◦and 10 centimeters respectively.

Figure 7.15 Image of the medium sensitivity test panel that has been acquired through

IDS. The angle α and C have been set to 45◦and 40 centimeters respectively.

is darker, due to smaller amount of penetrant entrapped into discontinuities, in graylevels 0

and 255, respectively higher and lower percentage of pixels have been obtained. The figure

7.24 which depicts the last exposed histogram in this work has demonstrated an unique peak of

61.84% for the background pixels. The figures 7.22 and 7.23 have indicated that the threshold

for segmenting the indications must be set between graylevels 0 and 255. The histogram in fig-

ure 7.24 only have demonstrated that the indication’s brightness is distributed over all possible

pixel intensities, not having a clear separation between indications and background. Although

not all histograms of test panels are exposed in this chapter, with α=45◦and C = 40cm, the

remaining graphics have presented almost identical behaviour.
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Figure 7.16 Image of the fine sensitivity test panel that has been acquired through IDS.

The angle α and C have been set to 45◦and 40 centimeters respectively.

Figure 7.17 Image of the fine sensitivity test panel that has been acquired through IDS.

The angle α and C have been set to 45◦and 50 centimeters respectively.

Based on these histograms, three probability of detection curves POD(%)X Depth(microns)

have been traced. The first with segmentation threshold set to 70; the second, to 150; and the

third, to 200. The four images of each sensitivity test panel which have been acquired with

α and C respectively adjusted to 45◦and 40 centimeters have been used for the POD curve

tracing. With the segmentation threshold set to 70, 150 and 200, we computed the probability

of detections as shown in tables 7.1, 7.2 and 7.3. The corresponding POD curves are plotted

respectively in figures 7.28, 7.29 and 7.30.
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Figure 7.18 Image of the fine sensitivity test panel that has been acquired through IDS.

The angle α and C has been set to 45◦and 10 centimeters respectively.

Figure 7.19 Image that illustrates the effect of the convolution of a weighted averaging

mask to the image in figure 7.12

Among these POD graphics, the curve with the threshold set to 70 has obtained the highest

probability of detection rates. All cracks from the coarse and medium sensitivity test panels

Table 7.1 Probabilities of detection obtained with each inspected panel with the

threshold set to 70

Depth (microns) Probabilities of Detection
- 1 2 3 4 Average

10.8 11.8 21.2 17.7 10.6 15.3

21.6 100.0 100.0 100.0 81.8 95.5

50.2 100.0 100.0 100.0 100.0 100.0
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Figure 7.20 Image that illustrates the effect of the convolution of a weighted averaging

mask to the image in figure 7.15

Figure 7.21 Image that illustrates the effect of the convolution of a weighted averaging

mask to the image in figure 7.16

have been detected with this setting. Low average POD rate has been reached for the fine

sensitivity test panel. Adjusting the threshold to 150, not all cracks in all inspections have been

Table 7.2 Probabilities of detection obtained with each inspected panel with the

threshold set to 150

Depth (microns) Probabilities of Detection
- 1 2 3 4 Average

10.8 7.1 3.5 4.7 2.4 4.4

21.6 90.9 81.8 78.8 84.8 84.1

50.2 93.3 100.0 100.0 100.0 98.3
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Figure 7.22 Histogram that has been traced based on the filtered image demonstrated

figure 7.19

Figure 7.23 Histogram that has been traced based on the filtered image demonstrated in

figure 7.20

Table 7.3 Probabilities of detection obtained with each inspected panel with the

threshold set to 200

Depth (microns) Probabilities of Detection
- 1 2 3 4 Average

10.8 1.2 0.0 0.0 0.0 0.3

21.6 60.6 60.6 75.8 69.7 66.7

50.2 86.7 93.3 100.0 86.7 91.7
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Figure 7.24 Histogram that has been traced based on the filtered image demonstrated in

figure 7.21

Figure 7.25 Magnified histogram that has been traced based on the filtered image in

figure 7.19

discerned in the coarse and medium crack panels. Nonetheless, satisfactory values have been

achieved. The inspection of the fine sensitivity test panel with this threshold has had a very

poor performance. The setting of the threshold to 200 has resulted in even worse probabilities

of detection.
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Figure 7.26 Magnified histogram that has been traced based on the filtered image in

figure 7.20

Figure 7.27 Magnified histogram that has been traced based on the filtered image in

figure 7.21

7.4 Measurement of Maximum Euclidean Distance, Area and Classifying Shapes of In-

dications

In the previous section, three POD curves based on three different thresholds have been illus-

trated. Regarding that the curve with the segmentation threshold set to 70 has obtained the

better results, we have adopted 70 as value for the experiments exposed in this section. As
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Figure 7.28 Probability of detection curve obtained with the threshold set to 70

Figure 7.29 Probability of detection curve obtained with the threshold set to 150

Figure 7.30 Probability of detection curve obtained with the threshold set to 200
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an attempt to evaluate the ability of the system to measure the area and maximum euclidean

distance of indications in millimeters and to classify their shapes, the samples which have been

described in section 6.3 have been analyzed through the software exposed in subsection 6.1.1.

Figure 7.31 contains the five acquired images of each discontinuity which have been obtained

running the Procedure I. The corresponding images which have resulted from executing the

Procedure II followed by Procedure III are illustrated in figure 7.32. Per acquired image, the

measurements of area, maximum euclidean distance and shape classification of indications are

exposed in tables 7.4, 7.5 and 7.6. Note that precision uncertainty specified in tables 7.5 and

7.6 is calculated, using the student method, with a 90% confidence interval.

Figure 7.31 Images of the samples described in section 6.3 that have been acquired

through IDS
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Figure 7.32 Images that have been obtained after running the Procedures II and III with

the ones in figure 7.31

Table 7.4 Shape Classification Table. L and R stand for linear and rounded respectively.

The classifications (a),...,(e) are related to the images (a),...,(e) in figures 7.31 and 7.32

- Classification
Discontinuity (a) (b) (c) (d) (e)

I R R R R R

II R R R R R

III L L L L L

IV L L L L L

V L L L L L

VI L L L L L

7.5 Discussion

In chapter 6, experiments related to the setting of parameters α and C, the tracing of a POD

curve and the measurement of area, maximum euclidean distance and shape classification of



115

Table 7.5 Area in mm2 obtained with the threshold set to 70. The abbreviations Avg.,

Disc., S.D. and P.U. stand for respectively Average, Discontinuity, Standard Deviation

and Precision Uncertainty calculated with 90% of level of confidence. The measurements

(a), (b),...,(e) are related to the images (a), (b),...,(e) in figures 7.31 and 7.32

Disc. Measurements (mm2) S.D.(mm2) P.U.(mm2) P.U.(%)

- (a) (b) (c) (d) (e) Avg - - -

I 10.34 9.45 8.85 9.17 7.49 9.06 1.04 0.99 10.95

II 4.51 6.55 6.05 6.00 4.37 5.49 0.99 0.94 17.16

III 6.41 7.25 5.28 7.37 5.04 6.27 1.08 1.03 16.44

IV 52.93 104.13 86.45 52.91 53.79 70.04 23.88 22.77 32.51

V 13.94 22.51 25.55 7.73 5.73 15.09 8.77 8.36 55.40

VI 127.17 126.98 87.12 69.56 58.07 93.78 32.11 30.61 32.64

Table 7.6 Maximum euclidean length in mm obtained with the threshold set to 70. The

abbreviations Avg., Disc., S.D. and P.U. stand for respectively Average, Discontinuity,

Standard Deviation and Precision Uncertainty calculated with 90% of level of confidence.

The measurements (a),...,(e) are related to the images (a),...,(e) in figures 7.31 and 7.32

Disc. Measurements (mm) S.D.(mm) P.U.(mm) P.U.(%)

- (a) (b) (c) (d) (e) Avg - - -

I 4.41 4.13 4.23 4.04 3.83 4.13 0.21 0.20 4.95

II 2.66 3.41 2.99 2.91 2.88 2.97 0.27 0.26 8.78

III 4.44 4.23 4.02 4.21 4.05 4.19 0.17 0.16 3.77

IV 22.03 28.66 26.68 24.05 22.78 24.84 2.77 2.64 10.63

V 9.78 11.19 12.47 9.16 8.53 10.23 1.6 1.52 14.88

VI 29.2 32.04 25.9 26.8 25.25 27.84 2.79 2.66 9.54

indications have been proposed. In the previous sections, the results of those experiments have

been demonstrated. In this section, the obtained results have been discussed.

Concerning the selection of the angle α and the distance C, the image quality in terms of how

defined the indications have been displayed per parameter setting has been the most important

factor taken into account. For adjusting them, a subjective evaluation has been conducted. The

system with α and C set respectively to 45◦and 40 centimeters has obtained the best quality

images. This configuration has been adopted for performing the subsequent experiments.
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According to Tracy and Moore (2001) for the evaluation of the capability and reliability of the

system, the probability of detection curves are the best tool. Regarding that the segmentation

procedure employs thresholding, the impact of its adjustment has been verified. Using the

segmentation threshold set to 70, the capability of the system has achieved 21.6 microns with

100% of reliability. Adjusting it to 150, the capability has only reached 50.2 microns with

98.3% of reliability. Setting it to 200, the same capability has been obtained with a worse

reliability. Based on these results, assigning it to 70 has resulted in the best performance.

The values which have been employed for tracing the probability of detection curves have

been selected based on the histograms in figures 7.22 and 7.23. These graphics exhibit peaks

too widely spread. If they would have presented the intensity peaks of the background and

indications distinguished by a smaller range of pixels (e. g. the peak of the background pixels

around 40 graylevel and the peak of the indication pixels around 120 graylevel), it would have

been feasible to choose the segmentation threshold more precisely. Nonetheless, the obtained

separation has indicated that there is a good contrast between the background and indications in

images which have been acquired from the coarse and medium sensitivity test panel. Regarding

that the histogram in figure 7.24 has only illustrated one peak, the same assumption is not valid

for the filtered images of the fine sensitivity test panel.

Furthermore, the performance in measurement of area, maximum euclidean distance and shape

classification of indications has been verified in this chapter. Observing the table 7.6, with the

exception of Discontinuity V, values either equal or below 10% of the precision uncertainties

of the maximum euclidean distance have been obtained. It demonstrates that low variability

has been obtained in most of these measurements. A precision uncertainty of 14.88%, which

has been calculated for the Discontinuity V, is not the ideal value, but it is still a good result.

On the other hand, analyzing table 7.5, half of the samples (Discontinuity IV, Discontinuity

V and Discontinuity VI) have obtained precision uncertainties above 30% for the inspections

of area. Only the measurements of the Discontinuity I have resulted in 10%. Regarding the

classification of the indication’s shape that has been exposed in table 7.4, very good results

have been achieved. All linear indications have been correctly classified. Among the rounded
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ones, only the Discontinuity III has been identified as linear by IDS. Nonetheless, observing

the figures 7.31 and 7.32, the maximum euclidean distance of the indication is 3 times greater

than the width in all images. Therefore, even though it is rounded, due to the presented length

and width, the indication has been correctly regarded as linear.

All variability in measurements, especially high (e.g. in cases that the precision uncertainties

are above 30%), is due to pre/post-cleaning, penetrant/developer/emulsifier applications which

have been conducted manually. In other words, the amount of penetrant that has been entrapped

into discontinuities, the concentration of developer that has been applied differs among chemi-

cal applications. This is the main explanation for the variation in area and maximum euclidean

distance in the experiments.





CONCLUSION

This dissertation has been focused on the development of image acquisition and processing ap-

proaches for automating the inspection in FPI. Towards the building of the system, our efforts

have been mostly concentrated on: i)optimizing the illumination angle α and distance from the

ultraviolet lamp to the specimen C in an attempt to acquire the most suitable image; ii) devel-

oping a feature extraction algorithm which calculates the maximum euclidean distance, area

and classifies the shape of indications; iii) conducting experiments for evaluating the overall

system performance.

After conducting experiments for optimizing α in image acquisition, varying it from 10◦to 75◦,

it is possible to conclude that as long as this angle has been increased, more brightness has been

added. This has happened, because, setting it to 65◦and 75◦, more ultraviolet light power has

been provided to the specimen than adjusting it to 45◦, 25◦and 10◦. The most suitable images,

in our evaluation, have been obtained with 45◦. This adjustment has avoided the excessive

glare in coarse sensitivity test panel and the lack of ultraviolet light power in fine sensitivity

test panel. Unfortunately, inclinations greater than 75◦could not have been evaluated, due to

shade caused by the interception of the ultraviolet rays by the camera. Adjusting α smaller

than 10◦has resulted in very poor incident ultraviolet light power, not being regarded for the

parameter optimization.

The impact of the adjustment of the distance C in acquisition has been evaluated as well for

the illumination parameter optimization. It is possible to infer that positioning the ultraviolet

lamp very close to the coarse and medium sensitivity test panels (e.g. C=10 or 20 centimeters)

has resulted in images with excessive glare on its center and lack of light power on the other

sides. Setting this distance to 30, 40 and 50 centimeters, the brightness has been more homoge-

neously distributed, illuminating a larger surface area of the panels. These diverse light power

distributions are consequences of the divergent beam provided by the UV lamp. As farther

as it has been placed, more spread and uniform the illumination has been, reducing the UV

irradiance. Adjusting the light source to 40 centimeters, the incident UV radiation has been
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moderately spread, the images of the coarse sensitivity test panel have not presented extreme

brightness, the cracks have been properly observed in inspections of the medium sensitivity

test panel and suitable UV light intensity has been supplied for the observation of indications

in fine sensitivity test panel. Therefore, in our evaluation, the most adequate configuration has

been obtained with α and C set respectively to 45◦and 40 centimeters.

Selecting the most suitable illumination parameters is extremely important in detection, mea-

surement and classification of indications. However, the instrument which performs these tasks

is a software that has been developed for this project. It acquires images, filters them, segments

relevant objects and extracts features for data analysis. Regarding that the adopted segmenta-

tion procedure employs thresholding in filtered images, intensity distributions must be verified

for choosing the best segmentation threshold value. The histograms provide this information.

They have been traced for this purpose based on filtered images of the sensitivity test panels.

Two intensity peaks have been illustrated in the graphics of the coarse and medium sensitivity

test panels in this work: One around graylevel 0; and a second around intensity 255. This

separation has demonstrated that there has had a good contrast between the background and

indications in the filtered images of these panels. On the other hand, the represented intensity

peaks have been too widely separated, being difficult to define a small range of intensities for

segmenting the indication pixels. Therefore, the histograms have provided only an overview

of the distribution of pixels, demonstrating that the segmentation threshold must be adjusted

within 0 and 255 graylevel. Due to this reason, values such as 70, 150 and 200 (graylevels be-

tween 0 and 255) have been chosen for the plotting curves POD (%) X Depth (microns). The

threshold whose POD curve has obtained the best capability and reliability has been adopted

for the remaining experiments of this project. Furthermore, considering that the histogram in

figure 7.24 has only depicted one peak, the same observations are not valid for the filtered

images of the fine sensitivity test panels.

The probability of detection curves POD(%)X Depth(microns) have been traced for the eval-

uation of the capability and reliability of the system. The former represents the smallest dis-

continuity that can be detected and the latter is the corresponding probability of detection. By
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adjusting the segmentation threshold to 70 the best results have been obtained. More represen-

tative curves would have been plotted, in case a greater number of sensitivity test panels have

been inspected for this experiment.

The automated detection that has been developed for this project presents several advantages

when compared to manual process. For instance, an inspector using a calliper can easily mea-

sure the maximum euclidean distance and classify the shape in inspection. However, for the

correct verification, the calliper must be handled and positioned by him/her in parallel with the

indication being evaluated. Otherwise, a wrong measurement is being performed. In addition,

the area, depending on the geometry, is not easily measured with this instrument. On the other

hand, using the system IDS, the measurement is not compromised by these inconvenients. It

performs non-contact evaluations and the area, maximum euclidean distance and shape are eas-

ily obtained. The speed of the process is increased allowing better performance. The system is

capable to, only in the inspection stage, eliminate inconvenients inherent to human inspectors

such as lack of vision acuity, attitude and motivation.

In spite of all mentioned advantages, the automation of FPI presents disadvantages as well.

Automated systems may become obsolete, if manufacturing/maintenance specifications are

modified. In other words, this system has been developed for detecting indications with a

minimum depth in workpieces with certain roughness. In case these requirements are altered,

the current configuration (α = 45◦, C = 40cm and segmentation threshold=70), depending on

the level of the change, may not be suitable anymore for the inspection.

The developed system has demonstrated the ability to detect open to surface indications with

a capability of 21.6 microns of depth with 100% of reliability. It has classified correctly their

shapes either as linear (if the maximum euclidean distance is three times greater the width) or as

rounded (otherwise). Excellent performance has been achieved, in the measurements of max-

imum euclidean distance in millimeters. High variability has been obtained in the inspection

of area. The lack of control in penetrant/developer application, pre/post cleaning has been the

main cause for the variation in the experiments, not being related to the inspection stage itself.
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Automating the whole specimen preparation process may drastically increase the repeatability.

Therefore, the system IDS is capable to approve/reject workpieces based on features such as

maximum euclidean distance, area and shape of indications.

Future Works

The results obtained in the dissertation were encouraging for the full automation of the flu-

orescent penetrant inspection. Nonetheless, several aspects which are capable to contribute

for the development of a complete mechanized FPI system were not emphasized. Therefore,

guidelines for future investigation include:

• Developing automated systems for precleaning, postcleaning, drying, excess removal,

applying liquid penetrant and developer in order to improve the overall sensitivity, relia-

bility and repeatability of FPI;

• Evaluating other image acquisition approaches such as (i) using a single photodetector

and (ii) utilizing an array of photodetectors disposed in a line ;

• Changing the current illumination concept. Ultraviolet lasers comprise coherent radia-

tion which may provide a more homogeneous UV light distribution;

• Measuring the capability of the system with a curve probability of detection (%) X dis-

continuity length. In this project, only the capability related to the discontinuity depth

was evaluated. A better evaluation of the system performance would have been con-

ducted, in case of assessment of the discontinuity length impact in detection.
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