
 

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 
UNIVERSITÉ DU QUÉBEC 

 
 
 
 
 
 

THESIS PRESENTED TO 
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 

 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR 
THE DEGREE OF DOCTOR OF PHILOSOPHY 

PH.D. 
 
 
 
 
 
 

BY 
Francisco VALDÉS  

 
 
 
 
 
 

DESIGN OF A FUZZY LOGIC SOFTWARE ESTIMATION PROCESS 
 
 
 
 
 
 

MONTREAL, DECEMBER 14TH, 2011 
 
 

© Copyright 2011 reserved by Francisco Valdés 
 



 



 

BOARD OF EXAMINERS 
 

THIS THESIS HAS BEEN EVALUATED 
BY THE FOLLOWING BOARD OF EXAMINERS 

 
 
 
 
 
 
M. Alain Abran, Thesis Supervisor 
Département de génie logiciel et des technologies de l'information à l’École de technologie 
supérieure 
 
Mme Sylvie Nadeau, President of the Board of Examiners 
Département de génie mécanique à l’École de technologie supérieure 
 
 
Mme Sylvie Ratté, Examiner 
Département de génie logiciel et des technologies de l'information à l’École de technologie 
supérieure 
 
M. Hakim Lounis, External Examiner 
Département d’informatique à l’Université du Québec à Montréal 
 
 
 
 
 
 
 

THIS THESIS WAS PRESENTED AND DEFENDED 
 

BEFORE A BOARD OF EXAMINERS AND PUBLIC 
 

ON DECEMBER 1ST, 2011 
 

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 



 



 

AKNOWLEDGEMENTS 

 

I have been indebted in the preparation of this thesis to my supervisor, M. Alain Abran of 
École de technologie supérieure (ÉTS) de l'université du Québec, whose patience, kindness, 
procedural guidance and encouragement, as well as his exceptional academic experience, 
have been invaluable to me. 
 
I am extremely grateful to the Conacyt, who gave me a unique opportunity and support to 
improve my professional skills and to live an invaluable experience. 
 
To Renata, Ivanna and Miranda, my daughters, my joy, my reason to keep moving. 
 
To Nancy Pino who let me know that when you really want something, you gonna get it no 
matter what. 
 
My parents, Francisco Valdés and Martha Souto, always have been a constant source of full 
support – emotional, moral and of course financial – during my studies.  
 
My brothers Hugo, Alejandro y Martha, an excellent emotional support too. 
 
I am grateful to the excellent staff of the Gélog (Software Engineering Research Laboratory 
at ETS) and to Estefanía Fuentes, the Responsable du développement Latino - américain/ 
étudiants Conacyt Office at ETS. 
 
 

 



 



 

DESIGN OF A FUZZY LOGIC SOFTWARE ESTIMATION PROCESS 
 

Francisco VALDÉS  
 

RÉSUMÉ 

 
Cette recherche décrit la conception d'un processus avec logique floue pour l'estimation des 
projets de logiciels.  
 
Il y a des études qui montrent que la plupart des projets de logiciels excèdent leur budget ou 
dépassent leur calendrier prévu, et ce même si depuis des années les organisations font des 
efforts pour augmenter le taux de réussite des projets de logiciels en rendant le processus plus 
facile à gérer et, par conséquent, plus prévisible. 
 
L'estimation du projet est un enjeu important, car c'est la base pour quantifier, allouer et gérer 
les ressources nécessaires à un projet. Lorsque les estimations de projets logiciels ne sont pas 
effectuées correctement, les organisations font face un risque élevé dans leurs projets et cela 
peut mener à des pertes pour l'organisation au lieu des profits prévus et justifiant le 
démarrage des projets. 
 
Les estimations les plus importants doivent être effectuées au début du cycle de 
développement (i.e. à la phase de conceptualisation des projets): à ce moment là,  
l'information est disponible seulement à un niveau très élevé d'abstraction, et souvent elle est 
fondée sur un certain nombre d'hypothèses non vérifiables. 
 
L'approche généralement utilisée pour estimer les projets dans l'industrie du logiciel est celle 
basée sur l'expérience des employés dans l'organisation, aussi nommée l’appoche par 
‘jugement d'experts’. Bien sûr, il y a un certain nombre de problématiques reliées à 
l’utilisation de ces jugements d’experts en estimation: par exemple, les hypothèses sont  
implicites et l'expérience est fortement liée aux experts et non pas à l'organisation.  
 
Le but de recherche de cette thèse était de concevoir un processus d'estimation de projets de 
logiciels capable de tenir compte du manque d'informations détaillées et quantitatives dans 
les premières phases du cycle de vie du développement logiciel. 
 
La stratégie choisie pour cette recherche tire partie des avantages de l'approche fondée sur 
l'expérience qui peut être utilisée dans les phases précoces de l'estimation de projets de 
logiciels, tout en tenant compte de certains des problèmes majeurs générés par cette méthode 
d'estimation par  jugements d’experts. La logique floue a été proposée comme approche de 
recherche parce que c'est une façon formelle pour gérer l'incertitude et les variables 
linguistiques disponibles dans les premières phases d’un projet de développement d’un 
logiciel: un système à base de logique floue permet d’acquérir l'expérience de l'organisation 
par l'intermédiaire des experts et de leurs définitions de règles d'inférence. 
 



VIII 

 Les objectifs de recherche spécifiques à atteindre par ce processus d'estimation  améliorée 
sont: 
A. Le processus d'estimation proposé doit utiliser des techniques pertinentes pour gérer 

l'incertitude et l'ambiguïté, comme le font les practiciens lorqu’ils utilisent leur 
‘jugement d’experts’ en estimation de projets logiciel: le processus d'estimation proposé 
doit utiliser les variables utilisées par les praticiens. 

B. Le processus d'estimation proposé doit être utile à un stade précoce du processus de 
développement logiciel. 

C. Le processus d'estimation proposée doit préserver l'expérience (ou la base de 
connaissances) pour l'organisation et inclure un mécanisme facile pour définir 
l'expérience des experts. 

D. Le modèle proposé doit être utilisable par des personnes avec des compétences distinctes 
de celles des ‘experts’ qui définissent le contexte d'origine du modèle d’estimation 
proposé.  

E. Pour l'estimation dans le contexte des premières phases, un processus d'estimation fondé 
sur la logique floue a été proposée, soit : ‘Estimation of Projects in a Context of 
Uncertainty - EPCU’’. 

 
 
Une caractéristique importante de cette thèse est l’utilisation, pour fin d’expérimentation et 
de vérification, d’informations provenant de projets provenant de l’industrie au Mexique. 
 
La phase d'expérimentation comprend trois scénarios: 
 
Scénario A. Le processus d’estimation proposé doit utiliser les techniques pertinentes pour 
une gestion de l’incertitude et de l’ambiguité afin de faciliter la tache aux intéressés de 
réaliser ses estimations. Ce processus doit prende en compte les variables que les intéressés 
utilisent. 
 
Scénario B. Ce scénario est similaire au scénario A, sauf qu’il s’agit de projets en démarrage, 
et  pour lesquels  les valeurs finales de durée et de coûts ne sont pas disponibles pour fin de 
comparaison.  
 
Scénario C. Afin de remédier au manque d'informations par rapport au scénario B, le 
scénario C consiste en une expérience de simulation. 
 
Ces expérimentations ont permis de conclure que compte tenu des projets examinés dans les 
3 scénarios, l'utilisation du processus d'estimation défini – EPCU - permet d’obtenir de 
meilleurs résultats que l'approche par opinions d'experts et peut être utilisée pour l'estimation 
précoce des projets de logiciels avec de bons résultats.  
 
Afin de gérer la quantité de calculs requis par le modèle d’estimation EPCU et pour 
l'enregistrement et la gestion des informations générées par ce modèle EPCU, un outil 
logiciel a été conçu et développé comme prototype de recherche pour effectuer les calculs 
nécessaires. 



 

DESIGN OF A FUZZY LOGIC SOFTWARE ESTIMATION PROCESS 
 

Francisco VALDÉS  
 

 
ABSTRACT 

 
This thesis describes the design of a fuzzy logic software estimation process.  
 
Studies show that most of the projects finish overbudget or later than the planned end date 
(Standish Group, 2009) even though the software organizations have attempted to 
increase the success rate of software projects by making the process more manageable 
and, consequently, more predictable. 
 
Project estimation is an important issue because it is the basis for the allocation and 
management of the resources associated to a project. When the estimation process is not 
performed properly, this leads to higher risks in their software projects, and the 
organizations may end up with losses instead of the expected profits from their funded 
projects. 
 
The most important estimates need to be made right in the very early phases of a project 
when the information is only available at a very high level of abstraction and, often, is 
based on a number of assumptions.  
 
The approach for estimating software projects in the software industry is the one typically 
based on the experience of the employees in the organization. There are a number of 
problems with using experience for estimation purposes: for instance, the way to obtain 
the estimate is only implicit, i.e. there is no consistent way to derive the estimated value, 
and the experience is strongly related to the experts, not to the organization.  
 
The research goal of this thesis is to design a software estimation process able to manage 
the lack of detailed and quantitative information embedded in the early phases of the 
software development life cycle. 
 
The research approach aims to leverage the advantages of the experience-based approach 
that can be used in early phases of software estimation while addressing some of the 
major problems generated by this estimation approach. 
 
The specific research objectives to be met by this improved software estimation process 
are: 
A. The proposed estimation process must use relevant techniques to handle uncertainty 

and ambiguity in order to consider the way practitioners make their estimates: the 
proposed estimation process must use the variables that the practitioners use. 

B. The proposed estimation process must be useful in early stages of the software 
development process. 

C. The proposed estimation process needs to preserve the experience or knowledge base 
for the organization: this implies an easy way to define and capture the experience of 
the experts. 



X 

D. The proposed model must be usable by people with skills distinct from those of the 
people who configure the original context of the proposed model. 

  
In this thesis, an estimation process based on fuzzy logic is proposed, and is referred as 
the ‘Estimation of Projects in a Context of Uncertainty - EPCU’. 
 
The fuzzy logic approach was adopted for the proposed estimation process because it is a 
formal way to manage the uncertainty and the linguistic                                    
variables observed in the early phases of a project when the estimates need to be 
obtained: using a fuzzy system allows to capture the experience from the organization’s 
experts via inference rules and to keep this experience within the organization. 
 
The experimentation phase typically presents a big challenge, in software engineering in 
particular, and more so since the software projects estimates must be done “a priori”: 
indeed for verification purposes, there is a typically large elapsed time between the initial 
estimate and the completion of the projects upon which the ‘true’ values of effort, 
duration and costs can be known with certainty in order to verify whether or not the 
estimates were the right ones. 
 
This thesis includes a number of experiments with data from the software industry in 
Mexico. These experiments are organized into several scenarios, including one with re-
estimation of real projects completed in industry, but using – for estimation purposes - 
only the information that was available at the beginning of these projects. 
 
From the experiments results reported in this thesis it can be observed that with the use of 
the proposed fuzzy-logic based estimation process, estimates for these projects are better 
than the estimates based on the expert opinion approach. 
  
Finally, to handle the large amount of calculations required by the EPCU estimation 
model, as well as for the recording and the management of the information generated by 
the EPCU model, a research prototype tool was designed and developed to perform the 
necessary calculations. 



 

INDEX 
 

Page 

INTRODUCTION 1 

CHAPITRE 1 STATE OF THE ART .................................................................................. 9 
1.1 Introduction .................................................................................................. 9 
1.2 Software engineering .................................................................................... 9 
1.3 Classification of Software Estimation Techniques .................................... 14 
1.4 Estimation Techniques in the Literature .................................................... 17 
1.5 Issues in the estimation of software project duration ................................. 18 
1.6 Estimation Models: Quality criteria ........................................................... 21 
1.7 Evolution of the Estimation Models ........................................................... 23 
1.8 Functional Size Measurement (FSM) method ........................................... 26 
1.9 Why using Fuzzy Logic for Estimation? .................................................... 29 
1.10 A number of issues in the software estimation process ............................. 36 

CHAPITRE 2 RESEARCH OBJECTIVE ......................................................................... 37 
2.1 Motivation .................................................................................................. 37 
2.2 The research goal and research objectives ................................................. 38 
2.3 Research approach ...................................................................................... 40 
2.4 Statistics ..................................................................................................... 41 
2.5 Metrology ................................................................................................... 41 
2.6 Fuzzy logic ................................................................................................. 42 
2.7 The proposed estimation process based on fuzzy logic ............................. 44 
2.8 Step 1: Identification of the Input Variables .............................................. 45 
2.9 Step 2: Specification of the Output Variable ............................................. 45 
2.10 Step 3: Generation of the Inference Rules ................................................. 45 
2.11 Step 4: Fuzzification ................................................................................... 46 
2.12 Step 5: Inference Rule Execution ............................................................... 46 
2.13 Step 5: Defuzzification ............................................................................... 46 

CHAPITRE 3 RESEARCH METHODOLOGY ............................................................... 49 

CHAPITRE 4 THE DESIGN OF THE EPCU MODEL ................................................... 53 
4.1 Introduction ................................................................................................ 53 
4.2 Description of the EPCU Process ............................................................... 56 
4.3 Step 1: Identification of the input variables ............................................... 56 
4.4 Step 2: Specification of the output variable ............................................... 57 
4.5 Step 3: Generation of the Inference Rules ................................................. 57 
4.6 Step 4: Fuzzification ................................................................................... 58 
4.7 Step 5: Inference Rule Execution ............................................................... 59 
4.8 Step 6:  Defuzzification .............................................................................. 59 
4.9 Sub-step 6.1. Obtain the strength for each fuzzy set belonging to the 

output  membership function (RSS) ........................................................... 61 
4.10 Sub-step 6.2. Obtain the fuzzy centroid of the area ................................... 61 
4.11 Overview of the roles and responsibilities in the EPCU model ................. 62 
4.12 Analysis of the measurement scale types within the EPCU model ............ 63 



XII 

4.13 Fuzzification (i.e. step 4) ............................................................................ 64 
4.14 Inference Rule execution (i.e. step 5) ......................................................... 65 
4.15 Defuzzification (step 6) .............................................................................. 66 
4.16 Sub-step 6.1. Obtain the strength for each fuzzy set belonging to the 

output membership function (RSS). ........................................................... 66 
4.17 Sub-step 6.2. Obtain the fuzzy centroid of the area. .................................. 67 
4.18 Summary .................................................................................................... 69 

CHAPITRE 5 DESIGN AND DEVELOPMENT OF A SOFTWARE PROTOTYPE FOR 
THE EPCU ESTIMATION PROCESS ..................................................... 71 

5.1 Introduction ................................................................................................ 71 
5.2 The functionality for each module ............................................................. 72 
5.3 Module: Catalogs ....................................................................................... 73 
5.4 Module: Project Information ...................................................................... 73 
5.5 Module: EPCU Model ................................................................................ 74 
5.6 Module: Portfolio Management ................................................................. 76 
5.7 Module: Reports ......................................................................................... 77 
5.8 Database ..................................................................................................... 77 
5.9 Platform and Architecture .......................................................................... 78 
5.10 Programming Approach ............................................................................. 79 
5.11 EPCU Context Definition ........................................................................... 79 
5.12 EPCU Context Use for Estimation ............................................................. 82 
5.13 Aditionnal Functionality ............................................................................ 83 

CHAPITRE 6 EXPERIMENTATION .............................................................................. 87 
6.1 Introduction ................................................................................................ 87 
6.2 Experiments Design ................................................................................... 89 
6.2.1 Roles of the participants in the experiments .............................................. 89 
6.2.2 Experimentation phases .............................................................................. 90 
6.3 Phase 1 - Involvement of the project experts for the data collection 

and preparation of the base material for the experiments .......................... 91 
6.4 Phase 2 – Involvement of the practitioners in selecting ”a priori” input 

values for each of the projects to be estimated. .......................................... 93 
6.5 Phase 3 - Scenario A. Data analysis of 16 completed projects .................. 95 
6.6 Phase 3 - Scenario B. A priori estimation data analysis ........................... 102 
6.7 Phase 3 - Scenario C. A priori estimation - Projects simulation data 

analysis ..................................................................................................... 106 
6.7.1 Experiment context and initial data analysis ............................................ 106 
6.7.1.1 Performance of the EPCU model ............................................................. 109 
6.7.2 Experience systematic replication ............................................................ 110 
6.7.3 Comparing the Estimation Performance of the EPCU Model with the 

Expert Judgment Estimation Approach .................................................... 114 

CHAPITRE 7 ADDITIONAL USES OF THE EPCU ESTIMATION PROCESS ........ 119 
7.1 Introduction .............................................................................................. 119 
7.1.1 Detailing the EPCU context ..................................................................... 119 
7.2 Additional uses for the EPCU model ....................................................... 121 
7.2.1 Portfolio-based selection .......................................................................... 122 
7.2.2 Projects priorization ................................................................................. 126 



XIII 

7.2.2.1 Prioritizing “ad hoc” Initiatives ................................................................ 126 
7.2.2.2 EPCU Model for Prioritizing Initiatives .................................................. 127 
7.2.2.3 Identification/Definition of the input variables ........................................ 128 
7.2.2.4 Specification of the output variable ......................................................... 129 
7.2.2.5 Generation of Inference Rules .................................................................. 130 
7.2.2.6 Prioritizing the project initiatives with the EPCU model ......................... 130 
7.3 Summary .................................................................................................. 132 

CONCLUSION……………. ........................................................................................... 133 

BIBLIOGRAPHY…. ....................................................................................................... 139 



 



 

TABLES LIST 
 

Page 
 

Table 1.1    Comparison of estimation techniques in terms of modeling capabilities,               
Adapted from (Gray, 1997) ............................................................................. 31 

Table 2.1    Standish Group benchmarks over the years-                                                     
Adapted from Laurenz (2010)......................................................................... 37 

Table 4.1    Overview of the roles involved in the configuration of the EPCU model ...... 62 

Table 4.2    Scale types operations, with permission   (Abran, 2010) ............................... 64 

Table 4.3    Fuzzification scale type analysis ..................................................................... 65 

Table 4.4    Rulebase execution scale type analysis .......................................................... 66 

Table 4.5    Strength for each fuzzy set belonging to the output membership function             
(RSS) scale type analysis ................................................................................ 67 

Table 4.6    Centroid scale type analysis ............................................................................ 68 

Table 6.1    The 19 projects used in the 3 scenarios .......................................................... 91 

Table 6.2    Number of people who participated as practitioners, by project .................... 95 

Table 6.4    Scenario B - project 17: Duration estimates for each participant ................. 103 

Table 6.5    Scenario B- Project 18. Effort estimates (in person-hours) for each                 
practitioner .................................................................................................... 105 

Table 6.6    Scenario B - Project 18 Risk analysis: Effort estimates generated by the EPCU 
model 105 

Table 6.7    Scenario B – Project 19: Duration Estimates generated by the                                          
EPCU model ................................................................................................. 106 

Table 6.8    Scenario C: Descriptive MRE statistics for the 5 projects (Pi) using the 
experience-based approach and the EPCU model – 84 practitioners                      
(Valdès, 2010) ............................................................................................... 108 

Table 6.9    Scenario C: Performance Estimation results using the EPCU model for                               
5 projects (Valdés, 2010) .............................................................................. 109 



XVI 

Table 6.10  Scenario C – Sub-sample sizes by classification of practioners for                               
each project ................................................................................................... 111 

Table 6.11  Scenario C: Performance of the EPCU model, by project, and by                   
practitioners’ categories ................................................................................ 112 

Table 6.12  Scenario C – Min-Max Ranges for MMRE and SDMRE for                                         
the 5 projects ................................................................................................. 114 

Table 6.13  Results obtained using the EPCU model and Expert Judgment                                        
Estimation ..................................................................................................... 116 

Table 7.1    Project Initiatives List ................................................................................... 130 

Table 7.2    EPCU Model for Project Initiatives Prioritization List: Input variables                             
values and estimated priority index .............................................................. 131 

 



 

FIGURES LIST 

 
Page 

 

Figure 0.1   Information Acquisition Process through the Software                                             
Development Phases ......................................................................................... 1 

Figure 0.2   Cone of Uncertainty -Adapted from Boehm (1981) ......................................... 3 

Figure 0.3   Effort represented by person hours [ph] intervals identified as                             
categorical data ................................................................................................. 7 

Figure 1.1   Breakdown of topics for the Software Engineering Management KA-                  
Adapted from Abran (2004) ............................................................................ 10 

Figure 1.2   Measurement Context Model (Abran, 2010) With the                                                  
Author’s authorization. ................................................................................... 12 

Figure 1.3   Measurement Context Model - Detailed Levels (Abran, 2010)                                           
with the author’s authorization. ...................................................................... 13 

Figure 1.4   Example of a strategy to estimate project duration (Bourque, 2007),                                        
with permission. .............................................................................................. 19 

Figure 1.5   Evolution of functional size measurement methods (Abran, 2010)  - With 
permission. ...................................................................................................... 27 

Figure 1.6   Basic fuzzy logic system ................................................................................ 33 

Figure 2.1   Disciplines that support the research .............................................................. 41 

Figure 2.2   The steps in a fuzzy logic estimation process ................................................ 44 

Figure 3.1.  Methodology Research Phases ....................................................................... 49 

Figure 4.1   The set of concepts for the EPCU model ....................................................... 54 

Figure 4.2   Distinct contexts for the same set of requirements ......................................... 55 

Figure 4.3   Example of a fuzzy membership function and defuzzification ...................... 58 

Figure 4.4   Output variable membership function ............................................................ 60 

Figure 4.5   Example of a fuzzy membership function and defuzzification ...................... 60 

Figure 5.1   Prototype modules for the use of the EPCU estimation process .................... 72 



XVIII 

Figure 5.2   Use case diagram  of the Catalogs module ..................................................... 73 

Figure 5.3   Use case diagram  of the Project Information module ................................... 74 

Figure 5.4   Use case diagram of the EPCU Model module .............................................. 75 

Figure 5.5   Use case diagram of the Portfolio Management module ................................ 76 

Figure 5.6   Use case diagram of the Reports module ....................................................... 77 

Figure 5.7   Relational database diagram for the EPCU prototype .................................... 78 

Figure 5.8   Architecture of the EPCU prototype tool ....................................................... 78 

Figure 5.9   Window for labeling the EPCU context and for defining the                                          
input variables ................................................................................................. 80 

Figure 5.11 Tool Prototype: Window to define the inference rules .................................. 81 

Figure 5.12 Tool Prototype: Use of specific EPCU context .............................................. 82 

Figure 5.13 Tool Prototype: Estimation scenario registration ........................................... 83 

Figure 5.14 Tool Prototype: Graphic report window ......................................................... 84 

Figure 5.15 Tool Prototype: Portfolio approach Window ................................................. 85 

Figure 6.1   Scenario A – Duration: real values and experience-based judgment                         
estimates (41 estimates without EPCU) .......................................................... 96 

Figure 6.2   Scenario A – Duration: Real value and EPCU model estimaties                                   
(41 estimates) .................................................................................................. 97 

Figure 6.3   Scenario A – Duration estimates:  EPCU model  and experience-based                              
judgments (41 estimates) ................................................................................ 98 

Figure 6.4   Scenario A – Duration: Real values, EPCU  and Expert Judgment                                
estimates (41 estimates) .................................................................................. 99 

Figure 6.5   Scenario A: MRE experience-based approach distribution                                               
(41 estimates) ................................................................................................ 101 

Figure 6.6   Scenario A: MRE EPCU approach distribution (41 estimates) .................... 101 

Figure 6.7   Scenario C : MMRE comparisons ................................................................ 117 

Figure 6.8   Scenario C : SDMRE comparison ................................................................ 117 



XIX 

Figure 7.1   EPCU contexts by development phases ....................................................... 120 

Figure 7.2   Levels of detail - examples of variables in EPCU contexts ......................... 121 

Figure 7.3   Portfolio for strategic and operational importance -                                                  
Adapted from Barton (2002) ......................................................................... 123 

Figure 7.4   Project portfolio classification for managing migration systems -                            
Adapted from Hunter (2006) ........................................................................ 124 

Figure 7.5   Candidates projects to be outsourced -                                                                       
Adapted from Amoribieta (2001) ................................................................. 125 

Figure 7.6   Representation of portfolio approach defined by 2 variables                              
relationships using EPCU model .................................................................. 125 

Figure 7.7   Results of the EPCU prioritization of Project Initiatives ............................. 132 



 



 

ABBREVIATIONS AND ACRONYMS LIST 
 
B2B Business to Business 

BRE Balanced Relative Error 

CBR Case Based Reasoning 

CFP COSMIC Function Points 

CIO Chief Information Officer 

CMM Capability Maturity Model 

CMMI Capability Maturity Model Integrated 

COBIT Control Objectives for Information and Related Technology 

COCOMO COnstructive COst MOdel 

COSMIC Common Software Measurement International Consortium 

CW Computing with Words 

DBMS Database Management System 

EMRE Magnitude of Relative Error relative to the estimate 

EPCU Estimation of Projects in a Context of Uncertainty 

EPEI Estimación de Proyectos en Entornos de Incertidumbre (Spanish 

translation of EPCU) 

FFP Full Function Points 

FISMA Finnish Software Measurement Association 

FL Fuzzy Logic 

FP Function Points 

FPA Function Points Analisys 

FSM Functional size measurement 

IBRE Inverted Balanced Relative Error 

IEC International Electrotechnical Commission 

IFPUG International Function Points User Group 

ISO International Organization for Standardization 

ITIL Information Technology Infrastructure Library 

KA Knowledge Area 

KDSI Thousands of lines of delivered source instructions 



XXII 

MMRE Mean Magnitude of Relative Error 

MOPROSOFT Modelo de Procesos para la Industria del Software (Software 

Industry Process Model) 

MRE Magnitude of Relative Error 

NESMA Netherlands Software Metrics Association 

NL Natural Languaje 

OO Object Oriented 

OTAN North Atlantic Treaty Organization (NATO) 

PMI Project Management Institute 

PNL Precisiated Natural Language 

PRED Criterion represents a proportion of a given level of accuracy 

PSP Personal Software Process 

RMS Root of the Mean Square 

SDMRE Standard Deviation of MRE 

SEI Software Engineering Institute 

SPSS Statistical Package for the Social Sciences 

SRS Software Requirements Specification 

SWEBOK Software Engineering Body of Knowledge 

TSP Team Software Process 

UCP Use Case Points 

UML Unified Modeling Language 

USA United States of America 

WG Work Group 
 

 
 

 



 

SYMBOLS AND UNITS LIST 
 
gu Generic unit asociated to the x axis in the membership function. 

mv Membership value asociated to the y axis in the memebrship functions. 

ph Person hour hour of work. 

mm Man month of work. 

 





 





 

INTRODUCTION 

Software Project Estimation in the Early Project Phases 

 

Information is acquired in a gradual way throughout the software development life cycle 

(Figure 1.1): for instance, at the conceptualization phase most of the information available is 

at a very high level of abstraction and it is often based on a number of assumptions 

(documented or implicit) which can be neither verified nor precisely described at that point in 

time. This leads to the challenge of having to make decisions on project budgets on the basis 

of incomplete and, at times, unreliable information. 

 

Consequently, software project estimates of effort and duration based on such incomplete 

and not fully reliable information should not be expected to be accurate: such estimates are to 

be associated with potentially significant ranges of variance. Still, even at this early phase of 

a software development process, management must rely on such incomplete information for 

decision making purposes.  

 

 

Figure 0.1 Information Acquisition Process through the Software Development Phases 
 

 



2 

In Figure 0.1, the x axis is the time and the y axis represents the relative quantity and detail of 

information acquired trough time (from none before a project begins, to all at the end of a 

project). 

 

There is an imperative need for the organizations to estimate in the early phases of the 

software projects in order to plan and manage business and resources:  

• on the one hand, the decision to launch a project is often determined by considering, 

in particular, the ‘perceived’ (or “subjective”) importance of the project outcome for 

the organization that is, delivering the product (a system); 

• on the other hand, and concurrently, the organization has to  minimize the risks that it 

may not be possible to complete the project within the time-to-market required.  

 

Improvements to the software estimation techniques in this context are therefore welcome in 

order to improve the decision making process and to decrease related risks. 

 

It is during the initial project phases when dealing with rough information that the most 

important estimates often need to be made: that is, when the software is conceptualized (i.e.  

in the feasibility phase when the information is often vague and imprecise). 

 

“An estimation is a prediction that is equally likely to be above or below the actual result” 

(DeMarco, 1982). 

 

Morgenshtern (2007) mentions the following usages of projects estimation: project selection, 

staffing, scheduling, monitoring and control, team performance assessment, and marketing.  

In the past 40 years, many estimation models and tools have been developed: most of these 

models focus on estimating effort, and the unit most often used is the man/month (MM). 

 

Software is different from other systems: in physical systems, the attributes are usually fully 

identified and described in terms of measures and quantities, but this is not yet so with 

software. In the early stages of software development, when a software system is 



3 

conceptualized, the information available is initially only at a very high level of abstraction, 

and it is often based on a number of assumptions which can be neither verified nor precisely 

described at that time. This has been illustrated with the cone of uncertainty (Boehm, 1981) - 

see Figure 0.2.  

 

The original conceptual basis of the cone of uncertainty was developed by Barry Boehm who 

referred to the concept as the "Funnel Curve" (Boehm, 1981); later, McConnell (2006) has 

used the expression "Cone of Uncertainty" to describe this concept. 

 

This Figure 0.2 represents that in the early phases the variability in the estimates is higher 

than in the later phases:  the variation proposed by Boehm (1981) in early phases is [-25%, 

400%] in this cone of uncertainty.  

 

 

Figure 0.2 Cone of Uncertainty -Adapted from Boehm (1981) 
 

Considering this high uncertainty context in the early phases, Morgenshtern et al. (2007) 

suggest that “estimates are, in reality, guesses regarding future performance based on 

available knowledge. As such, their accuracy is affected by the extent of uncertainty 

regarding the task to be estimated. Uncertainty is associated, inter alia, with definitions of 

requirements, choice of technological solutions, innovativeness of needs, and customer 

characteristics” (Morgenshtern, 2007). 



4 

 

An estimation technique typically used in industry is the one based on the ‘opinions’ of the 

organization’s employees, that is, an estimation technique based on their work experience. 

This experience-based estimation approach (also known as: ‘expert judgment’ or ‘intuitive 

approach’) considers informally an unspecified number of quantifiable and non-quantifiable 

variables that other estimation models based on statistical techniques cannot take into 

account.  

 

Of course, there are a number of problems with using experience to make estimates, notably 

the following ones:  

• experience is specific to the people and not to the organization;  

• estimation expertise is neither well described nor well understood;  

• this estimation expertise is hard to assess; 

• a human is implicit in the social context and the estimation is affected by this social 

factor, and 

• this estimation expertise cannot be replicated systematically. 

 

In summary, with experience-based estimation, the people expertise cannot be used without 

the people who possess it. 

 

In spite of these problems, the experience-based estimation approach is still valuable to an 

organization, and presents some advantages since it can: 

• manage qualitative and linguistic variables; 

• manage or work with uncertainty; 

• create commitment for the people or team to reach the estimated value. 

 

A challenge with this experience-based estimation approach is to figure out how to benefit 

from it and use it in combination with other estimation techniques, including algorithmic or 

non-algorithmic-based estimation techniques.  

 



5 

 

Measurement of the Inputs to the Estimation Models 

 

Any estimation model has a strong relation with the measurement process of the input 

variables used to generate the estimate. This means that the measurement process is the basis 

of the estimation model: when the measurement of the input variables for an estimation 

model is reliable, then there can be more confidence in the use of the estimation model which 

quality has been documented on the basis of past completed projects. 

 

Abran (2008) refers to an audit report on the inputs to the estimation process: this report 

should include audit results on the accuracy of and completeness of estimation inputs such 

as: the functional size of the software product, the resources needed for the development 

process and the process components themselves. The credibility of the input variables used in 

the estimation process impact the quality of outcomes of the estimation model. 

 

Measurement in software engineering is challenging, including for the following reasons: 

• Software engineering is ‘young’ (at most 40 years). The term was used for the first time by 

Fritz Bauer in the first software development conference organized by the Science 

Committee of OTAN in Garmisch (Germany), 1968. 

• Early publications about software measurement date back to the early 70’s (Santillo, 2006). 

• Most of the software attributes are currently mostly described in a qualitative manner rather 

than quantitatively (Idri, 2004) and depend on human views. 

 

In estimation models, a number of project variables such as complexity, maintainability, 

team integration and so on are of a categorical nature: for instance, complexity of software is 

often classified using ordinal categories (simple, medium complexity or very complex). One 

of the problems related to the categorical features of a software project, is that the experience 

of the humans is directly involved in their categorization process (that is, making the 

judgment call to classify it within one of the previously agreed categories). Thus the humans 

often use linguistic and categorical values (i.e. very small, small, large and very large) to 



6 

describe and evaluate such variables rather than using numerical values of a ratio scale type 

in order to quantify such software and software projects attributes. This use of linguistic and 

categorical values leads to some imprecision in both the evaluation of such variables and how 

such variables are taken into account in estimation models.  

 

Software Measurement and Fuzzy Logic 

 

Morgenshtern et al. (2007) identify four (4) dimensions that impact estimation accuracy: 

1. Project uncertainty: the amount of uncertainty perceived by those who had to estimate the 

duration of the project tasks and the effort required to carry them out.  

2. Estimation processes: the various processes that contribute, either directly or indirectly, to 

the generation of the estimated project duration and effort.  

3. Development management processes: controlling actual performance against estimates 

and updating as appropriate, carrying out systematic risk assessments to validate the 

estimates, and implementing managerial policies that promote the commitment of team 

members to the estimates that constitute their project plan.  

4. Estimator’s experience: years of experience and number of projects with similar 

technologies and systems the estimator was involved with. 

 

The project uncertainty can be described and contextualized by linguistic values: “it is not 

possible to measure it, however it is possible to contextualize it” (Valdés, 2007). A challenge 

is to convert the linguistic values to valid numerical values, preferably on a ratio scale. The 

software community often uses categorical data or intervals to represent these linguistic 

values (See Figure 0.3).  

  



7 

 

Figure 0.3 Effort represented by person hours [ph] intervals identified as categorical data 
 

In Figure 0.3, four intervals are represented: from 500 person-hours (ph) to 19,000 ph. From 

the left to right the intervals are: very low [500-1000] ph, low [1001-4000] ph, average 

[4001-10000] ph and high [10001-19000] ph. 

 

The use of intervals is based on the need to explain the reality with the available scales. “One 

way of distinguishing between real-world objects or entities is to describe their 

characteristics. Measurement is one such description. A measure is simply a mapping from 

the real, empirical world to a mathematical world, where we can more easily understand an 

entity’s attributes and relationship to other entities. The difficulty is in how the mathematical 

behavior is interpreted and what it means in the real world” (COSMIC Measurement Practice 

Commitee, 2007). 

 

In this context, classical tools for measurement (i.e. Aristotle logic, statistics) do not mimic 

the way in which the humans interpret the linguistic values: these classical tools cannot 

interpret the linguistic values as humans do since these tools were not created to handle the 

imprecision and uncertainty as the humans do. 

 

There exist a number of techniques, such as fuzzy logic, to handle quantitatively imprecision 

and uncertainty: fuzzy logic (FL) is a formal quantitative framework that captures the 

vagueness of humans’ knowledge expressed via natural language:  “Basically, fuzzy logic is 

a precise logic of imprecision and approximate reasoning. More specifically, fuzzy logic may 



8 

be viewed as an attempt at formalization/mechanization of two remarkable human 

capabilities:  

1. The capability to converse, reason and make rational decisions in an environment of 

imprecision, uncertainty, incompleteness of information, conflicting information, partiality of 

truth and partiality of possibility – in short, in an environment of imperfect information.  

2. The capability to perform a wide variety of physical and mental tasks without any 

measurements and any computations” (Zadeh, 2008).  

 

Using such techniques that can manage uncertainty may help design better software 

estimation models.  

 

Thesis organization 

 

This thesis is organized in eight chapters. Chapter 1 presents the state of the art on software 

estimation models. Chapter 2 presents the research goal and the specific research objectives. 

Chapter 3 presents the methodology designed for this research project. Chapter 4 presents the 

initial design of our proposed EPCU estimation model. Chapter 5 presents the design of the 

prototype tool built to facilitate the use of the estimation model by automating the amount of 

calculations required by the proposed EPCU model. Chapter 6 presents the experimentats set 

up to analyze the performance of the proposed estimation model and experiments results are 

also presented and discussed.  Chapter 7 presents the the conclusions  and future work.  



 

CHAPITRE 1 
 
 

STATE OF THE ART 

1.1 Introduction 

The software engineering discipline is not yet as mature as other scientific disciplines: most 

of the measures designed for software products are still based on researcher’s intuition rather 

than rigorous designs and strong experimentations. 

 

In this chapter an overview of the software engineering discipline maturity is described, 

followed by a focus on the estimation techniques, including a classification. This chapter 

includes next a discussion on the estimation of software project duration.  

 

This chapter also presents the more frequently used quality criteria for the estimation 

techniques found in the literature; it also presents an overview of the evolution of the 

estimation models, followed by the evolution of the functional size measurement methods.  

 

Finally this chapter describes the use of fuzzy logic for estimation purposes.  

 

1.2 Software engineering 

The Software Engineering discipline is not yet as mature as other scientific disciplines: most 

of the measures designed for software products are still based on researchers’ intuition rather 

than on rigorous designs and strong experimentations:  Abran (2010, 2008) presents a 

number of  analyses of the designs of COCOMO, COCOMO II, Function Points, Use Case 

Points, Halstead’s metrics (commonly referred to as ‘software science’ - (Halstead, 1977)) 

and the cyclomatic complexity number (Mccabe, 1995, 1996). These analyses illustrate a 

number of the weaknesses of these software measures. 

 



10 

The IEEE and ISO 19759 Guide to the Software Engineering Body of Knowledge - the 

SWEBOK Guide (Abran, 2004) – presents a taxonomy of all the knowledge areas (KA) 

recognized as part of the software engineering discipline. While measurement is an important 

aspect of all SWEBOK KA, it is in the Software Project Planning topic where the estimation 

topic is presented specifically, and in the Software Engineering Measurement topic where 

measurement programs are presented - see Figure 1.1.  

 

 

  

Figure 1.1 Breakdown of topics for the Software Engineering Management KA-                  
Adapted from Abran (2004) 

 



11 

The immaturity is a peculiarity of software engineering relative to the other classical 

engineering and scientific disciplines (Habra, 2008; Abran, 1998). A symptom of the lack of 

maturity is the limited number of internationally accepted software measurement methods.  

 

In mature disciplines it is possible to observe international consensus about measurement, as 

evidenced through established measurement methods and their respective etalons. In the 

software domain there exist international standards only for the functional size measurement, 

including the ISO 14143 series prescribing key concepts of the entity and the attribute to be 

measured. To date, ISO has recognized five (5) functional size measurement methods for 

software as compliant to ISO 14143: 

A. One is referred to as a 2nd generation of  functional size measurement methods: 

COSMIC – ISO 19761  

B. Four (4) are considered as 1st generation of functional size measurement methods: 

MKII: ISO 20698, IFPUG: ISO 20926, NESMA: ISO 24570 and FISMA: ISO 29881. 

 

This means that even for the measurement of the functional size of software there is not yet a 

single universally accepted way of measuring it. 

 

Hundreds of software measures (akin to software ‘metrics’) have been proposed in the 

software engineering field, but there is not yet a widely accepted framework or consensus on 

how to conduct an analysis of the measures proposed, including to make comparative studies 

of the various ‘metrics’ proposed to measure the same attribute (Habra, 2008). 

 

Indeed, the measurement in software engineering is not as mature as in other disciplines and 

some researchers are looking into metrology to improve the measurement foundations of 

software engineering (Condori-Fernandez, 2008; Habra, 2008, Abran 2010).  

 

Considering this, it would be challenging to consider software estimation more mature that 

measurement in software engineering. 

 



12 

In the literature, Habra (2008) refers to the decomposition made by Jacquet et al. (1997) who 

divide the measurement life cycle into three consecutive phases. Even while these phases are 

presented as consecutive, in practice they can be viewed as iterative – see Figure 1.2. This 

decomposition is referenced by Abran (2010) as the Measurement Context Model. 

 

In this Measurement Context Model the first phase is considered the most important: it 

consists in the definition of what will be measured and what is the objective behind it.  

   

 

Figure 1.2 Measurement Context Model (Abran, 2010) With the Author’s authorization. 
 

Two definitions need to be presented here: these definitions are related to the Measurement 

Context Model and are referenced in the International Vocabulary of Basic and General 

Terms in Metrology (ISO, 1993). 

 

“Measurement method: A measurement method is a logical sequence of operations, 

described generically, used in the performance of measurements. 

 

Measurement procedure: A measurement procedure is a set of operations, described 

specifically, used in the performance of particular measurements according to a given 

method”. 



13 

These definitions are related to the two first phases in the Measurement Context Model. 

Abran (2010) clarifies the substeps for each Measurement Context Model phase in a diagram 

– see Figure 1.3.  

 

 

 Figure 1.3 Measurement Context Model - Detailed Levels (Abran, 2010) with the author’s 
authorization. 

 

Naturally, the managers are more interested in Phase 3: Pfleeger et al. (1997) mention that 

“customers encourage product assessment because they are interested in the final product’s 

characteristics, regardless of the process that produced it”; however, if the previous phases 

are not based on sound foundations from a measurement perspective, the third one might not 

produce good results. If the measurement methods have been previously well defined and are 

available, the first phase is not necessary. 



14 

1.3 Classification of Software Estimation Techniques 

In the software engineering field, a number of estimation models and tools have been 

developed over the past 40 years in order to help predict important attributes about the 

software projects to be developed, such as the duration, effort and cost. 

A general classification of estimation models is presented in Abran (2008): 

• A priori  

• A posteriori 

 

The “a posterior” estimation model approach is built considering completed projects, when 

all the variables used as inputs to the estimation models are known, as well as the output 

variable which can be used to evaluate the models built.  

 

The “a priori” estimation model approach is used at the beginning of the projects when the 

variables used as input are often imprecise and uncertain, typically using a technique based 

on informal personal or organizational experience, and when there is, of course, no data 

available on the projects completed. 

 

In the literature there are several approaches of estimation techniques classification (Idri, 

2001; Shepperd, 1996; Idri, 2002) based on the model and the information considered to 

make the estimations. One such classification approach (Shepperd, 1996)  classifies the 

techniques into three categories: 

A. Expert judgment 

B. Algorithmic models 

C. Analogy 

 

A. The expert judgment (referred to in this thesis as an ‘experience-based’ approach) can be 

hardly considered as a technique because the means of deriving an estimate are not explicit. 

However the estimation approach typically used in industry is this one based on the 

experience of the employees in the organization: i.e. the ‘expert judgment’ based on people’s 



15 

experience. Of course, there are a number of problems with using experience to provide 

estimates. 

 

Hill et al. (2000) mention - “Perhaps the most common approach to estimating effort is to 

consider the opinions of experts. This does not require the existence of historic data and is 

particularly useful at the start of system development when requirements are vague and 

changing, and it is ballpark figures that are required”.  

 

Two approaches are described by Shore (2008): the first approach emphasizes what “should” 

be done, and assume that a rational and consistent approach is followed. The second 

approach is focused on how the organization’s individuals actually behave and make 

decisions: this corresponds to the “behavioral” view. 

 

B. The algorithmic models are the most documented in the literature. Examples of this 

category of models include COCOMO-based models (Boehm, 1981, 2001), Function Points 

based models (IFPUG, 2005; Kitchenham, 1997) and Use Case Points based models (Ribu, 

2001). Some of these models, such as COCOMO are based on inputs within pre-defined 

intervals, while other models, such as the function points based models, are derived from 

statistical or numerical analysis of some historical data set about projects completed. The 

statistical techniques most frequently documented in these algorithmic models are the 

simple/multiple/stepwise regression. Other statistical techniques used in such estimation 

models are the Bayesian approach, principal components analysis and polynomial 

interpolation. 

 

Some disadvantages for this category of algorithmic models are documented in Idri (2001, 

2002): 

• The prediction function form is pre-determined. For example: in the exponential model, 

Effort = α x sizeβ, where α represents the productivity coefficient and β represents the 

coefficient of economies/diseconomies of scale. 



16 

• This category of models needs to be adjusted to local contexts: the models are often 

obtained in some source contexts that will be different from the target contexts. 

• These algorithmic models need historic data, and many organizations do not have this 

information. Additionally, collecting such effort and cost data may be both expensive and 

time consuming (Morgenshtern, 2007). 

 

C. The analogy technique is considered as a systematic form of expert judgment. An example 

of using analogy estimation is the complex human intelligence: the analogy approach uses 

information that is more imprecise and vague than precise and certain. Some researchers 

(Myrtveit, 1999; Shepperd, 1996; Idri, 2004) are paying attention to the analogy approach 

because of its similarity with the expert judgment. The analogy approach is based on a Case 

Based Reasoning (CBR) approach (Kolodner, 1993) that includes four steps: 

• Characterization of cases. 

• Storage of past cases.  

• Retrieval of similar cases to use analogies. 

• Use the retrieved cases to solve the target case (case adaptation). 

 

The analogy technique presents some disadvantages, in particular with respect to the 

knowledge required to identify analogy cases and in the computational effort. 

 

Park (1994) has provided some insights on the software estimation processes:  

• “Estimates are made by people, not by models. They require reasoned judgment and 

commitments to organizational goals that cannot be delegated to any automated process. 

• All estimates are based on comparisons. When people estimate, they evaluate how 

something is like, and how something is unlike, things that they or others have seen 

before. 

• Before people can estimate, they must acquire knowledge. They must collect and quantify 

information from other projects, so that they can place comparative evaluations on 

demonstrably sound footings.”  



17 

1.4 Estimation Techniques in the Literature 

A significant proportion of research on software estimation has focused on linear regression 

analysis; however, this is not the unique technique that can be used to develop estimation 

models. An integrated work about these estimation techniques has been published by Gray 

(1997) who presented a detailed review of each category of models. 

 

• Least Squares Regression. “Linear least squares regression operates by estimating the 

coefficients in order to minimize the residuals between the observed data and the model's 

prediction for the ith observation. Thus all observations are taken into account, each 

exercising the same extent of influence on the regression equation, even the outliers” 

(Gray, 1997). 

 

• Robust Regression. “Robust regression analysis has been used to avoid the impact of 

outliers in the models. The general idea behind robust regression is that by changing the 

error measure (from least squares) the model can be made more resilient to outlying data 

points. There are several robust regression models” (Gray, 1997). 

 

• Neural networks. “The most common model-building technique used in the literature as 

an alternative to least mean squares regression is back-propagation trained feed-forward 

neural networks (back-propagation networks)” (Gray, 1997). “The neural networks take 

problems previously solved in order to build a decision taking system” (Ponce, 2010). 

 

• Fuzzy Systems (Adaptive). “Fuzzy systems have been used in only a few publications for 

software estimation models. A fuzzy system is a mapping between linguistic terms, such 

as “very small”, attached to variables. Thus, an input into a fuzzy system can be either 

numerical or linguistic, with the same applying to the output” (Idri, 2000, 2001, 2002; 

Gray, 1997).  

• Hybrid Neuro-Fuzzy Systems. MacDonell mentions that “researchers (Horikawa, 1992; 

Jang, 1993) have attempted to combine the strengths of neural networks and fuzzy 



18 

systems while avoiding most of the disadvantages of each. This has resulted in a wide 

range of possibilities for hybridizing the two techniques. While all of these techniques are 

different in some way, they share the same basic principles: an adaptive system that can 

deal with easily comprehended linguistic rules and that permits initialization of the 

network based on available knowledge” (Gray, 1997). 

 

• Rule Based Systems. “Rule-based systems have been used in very few cases for modeling 

software projects estimation. A rule-based system is organized around a set of rules that 

are activated by facts being present in the working memory, and that activate other facts” 

(Gray, 1997). 

 

• Case-Based Reasoning. “Is a method of storing observations, such as data about a project's 

specifications and the effort required to implement it, and then when faced with a new 

observation retrieving those stored observations closest to the new observation and using 

the stored values to estimate the new value, in this case effort. Thus a case-based 

reasoning system has a pre-processor to prepare the input data, a similarity function to 

retrieve the similar cases, a predictor to estimate the output value, and a memory updater 

to add the new case to the case base if required” (Gray, 1997). 

 

• Regression and Classification Trees. “Regression and classification trees, while based on 

the same principle, each have a different aim. Regression trees can be used when the 

output value to be predicted is from the interval domain, while classification trees (also 

known as decision trees) are used to predict the output class for an observation, that is to 

say, from the nominal or ordinal data scale. Both algorithms work by taking a known data 

set and learning the rules needed to classify it” (Gray, 1997). 

 

1.5 Issues in the estimation of software project duration 

The three major constraints on projects include typically project effort (i.e. as a substitute for 

costs), project schedule and the number of functions to be delivered (i.e. project scope). 



19 

Within this set of “triple Constraints”, the schedule or the time-to-market, is often the hardest 

to control by the managers: in addition to the other two constraints (cost, scope) which 

influence the schedule, there are a number of other project variables that may impact project 

schedule.  

 

It is generally recognized (Bourque, 2007) that requirements define the project size (scope), 

which impact the effort needed to develop it, which then drives the project duration – see 

Figure 1.4. This relation between effort and duration is not necessarily linear (Oligny, 2000). 

 

 

Figure 1.4 Example of a strategy to estimate project duration (Bourque, 2007), with 
permission. 

 

The influences of other variables may vary: some are related to the project environment and 

others to the project itself.  Bourque, 2007 illustrates one estimation strategy – Figure 1.4 – 

whereas the estimate of project duration is based on an estimate of project effort, which is 

itself based on estimate of product size and product requirements. 

 

A specific project where its software size and project effort has already been pre-defined is 

taken as an example.: if the effort for this software size is estimated at 480 person-hours, and 

if all the tasks have to be strictly executed sequentially, this project will require one person 

working 8 hours a day: this means that the project duration will be estimated at 3 months. 

However, if the project manager leadership is very poor, it is very possible that the project 

will require a longer schedule; there can be other variables that can also impact the schedule 

of the project. 



20 

In the actual competitive business context, the software development organizations are often 

more interested in time-to-market than in the cost of the software: not because the cost is not 

important, but because the opportunity of delivering a project within the promised schedule is 

crucial to adapt to the competitive environment. 

 

Morgenshtern et al. (2007) have identified some interesting estimation-related issues that 

need to be considered: 

• project uncertainty has a stronger effect on duration estimate than on effort estimation 

errors. 

• the effect of the estimators’ experience is more significant for duration estimation than for 

effort estimation. 

• effort estimation and duration estimation are driven by somewhat different processes, and 

that the respective errors are affected by different factors. 

 

From these issues, it is possible to observe that if the uncertainty cannot be managed in the 

early phases, the project duration estimation will be impacted. 

 

Estimation of project duration has often a strategic value for organizations. Most of the 

literature on estimation focuses on improving estimation of effort and does not often address 

directly the estimation of the project duration. The studies made on the duration estimation 

usually follow an approach in which the basis is the effort obtained by any kind of estimation 

model, and which forms next the basis for estimation project duration (Bourque , 2007).  

 

A simple example: for a software project that has been estimated to require 200 person-

hours, the duration can be estimated on the basis of a number of variables, such as: 

- How many developers will design and construct the software?  

- How much experience do they have with the development tools set used?  

- The cohesion of the development team, and so on.  

 



21 

The full set of variables can be combined into a complex model of relationships to produce 

an estimate of the project duration, but the estimation result is not necessary better than its 

estimation based only on the effort estimated. A project may be influenced by many 

parameters at the same time, their impact being distinct from each other: some might have a 

major impact in a specific project, while others might be almost irrelevant (Kadoda, 2000). 

 

Duration estimation is a major challenge, due for instance to the uncertainty of the 

information available to make the estimation and second on how to use the available 

information in order to obtain a result. Park (1994) referenced in Oligny et al. (2000) 

mentions that “It does imply though, that, software duration estimation is a somewhat 

complex problem and that applying these models correctly requires much expertise and 

commitment”. 

   

1.6 Estimation Models: Quality criteria 

The software measurement and estimation literature (Idri, 2000, 2001, 2004; Kolodner, 1993; 

Shepperd, 1996; Myrtveit, 1999; Shepperd, 1996; Gray, 1997, Abran, 2010) presents the 

following quality criteria to evaluate estimation models: 

• The Magnitude of Relative Error (MRE), defined usually by: 

 

 

                     (2.1) 

 

 

 

                                                    (2.2) 

 

• The prediction level Pred.  

Pred(l) = K 

N 

                                                 (2.3) 

MRE =  Actual – Estimated   

 Actual  

% MRE = 100  x Actual – Estimated   

 Actual  



22 

The Pred criterion represents a proportion of a given level of accuracy, where k is the number 

of projects in a sample of size N for which the MRE <= l. Usually, a good prediction level is 

a Pred (25%) = 75%. 

 

Considering the MRE as the base criterion, the accuracy of the estimation can also be 

measured by the Mean Magnitude of Relative Error (MMRE) and the Median Magnitude of 

Relative Error (MdMRE). The major advantage of the median over the mean is that the 

median is not sensitive to the outliers; so the median is a more appropriate as a measure of 

central tendency of a skewed distribution. 

 

Other criteria may need to be evaluated: the proportion of deviation in the estimates in 

particular because of the risk to make very erroneous estimates. This can be measured by the 

Standard Deviation of MRE (SDMRE defined as the root of the mean square error (RMS)). 

The SDMRE = RMS is defined usually by: 

 

 

                                         (2.4) 

 

 

 

These quality criteria are used throughout the documents reviewed in the literature, including 

for comparing results generated by the estimation models. 

 

In the literature, Stensrud (2002) and Gray (1999) mention some problems in the use of MRE 

as a selector between estimation models, indicating that the MRE is not independent of the 

projects size: the MRE is larger for small projects than for large projects, that means that 

MRE is negatively correlated with project size (Stensrud, 2002). 

 

These authors (Stensrud, 2002) have proposed some other alternative quality criteria such as 

the Magnitude of Relative Error relative to the Estimate (EMRE), the Balanced Relative 

 

RMS = 

  

1 

n  

(Actual i  – Estimated i )2 Σ 

 n i=1  



23 

Error (BRE) and the Inverted Balanced Relative Error (IBRE); these criteria are not very 

often used in the literature. 

 

The quality expected of the estimation results obtained by any estimation model is very 

important :  Abran (2010) mentions that “if the estimation model is used very early on in the 

life cycle when only scanty information is available (such as at the pre-feasibility stage), then 

most of the input numbers are ‘guestimates’ and are not derived from the application of 

rigorous measurement procedures; these ‘guestimates’ are indeed numbers, but with very 

little strengths in terms of precision, repeatability and reproducibility. Of course, the estimate 

(eg. the output number) produced by an estimation model based on these ‘guestimates’ in 

inputs cannot produced anything but ‘guestimates’ as output, with a level of ‘goodness’ that 

cannot of course be greater than the quality of the inputs” (Abran, 2008). 

 

1.7 Evolution of the Estimation Models 

In the literature on software estimation, a number of estimation models were identified, most 

of them algorithmic models. For instance, Boehm (1981) published the COCOMO model, 

one of the first documenting publicly the project database used: this COCOMO model used a 

set of 63 projects.  This COCOMO model has 17 attributes: two of these refer to the 

thousands of lines of delivered source instructions (KDSI) and the project type (organic, 

semi-detached, and embedded). The other 15 attributes are related to the software 

environment. 

 

The weakness of this model is that there were a lot of assumptions about the correct use of 

the model; these assumptions are challenging to meet in real projects (for example: the 

project will enjoy good management, the users requirements will not change substantially, 

etc.). Another weakness in this type of estimation models is the use of lines of code as a 

primary input which, of course, cannot be estimated accurately early in the project life cycle. 

 



24 

In 1996, Shepperd et al. (1996) made a comparison between three estimation techniques 

(analogy, linear regression and stepwise regression) using several datasets and concluded that 

it would seem that estimation by analogy is a superior technique than regression, since it can 

produce better estimation with respect to the quality criteria evaluated in the study, even 

when a statistical relation cannot be found and is a more intuitive method.  

 

However, Shepperd et al. (1996) also identified a number of problems: 

• as in algorithmic models, it is not clear what is the effect of old data points: when an 

organization develops some projects and successively introduces new technology the older 

data points will be increasingly misleading. 

• it is not clear why different sets of variables and methods used are more or less successful 

with different data sets.  

 

Myrtveit et al. (1999) made a comparison between multiple regression models, analogy 

models (using the analogy tool Angel) and the expert judgment approach using a set of 48 

projects. These authors found that the results in an experiment are sensitive to a number of 

factors, in particular to the data (cleaning data, number of data points, number of independent 

variables, interval between the smallest and the largest project, the homogeneity), the 

experimental set up and the analysis. 

 

Another finding from Myrtveit et al. (1999) is that the statistical methods produce 

information that is just one or several inputs to make a decision; there are other aspects that 

impact the estimation process, such as the experiences and the environment. When using 

human subjects, their skill level impacts on the results, and when the outliers are removed, 

the results favor the regression models. 

 

In 2000, Kadoda et al. (2000) analyzed the Case Based Reasoning (CBR) using the 

Desharnais database with 77 projects; they found, in a general way, that estimation by 

analogy generates better results than step wise regression. They also identified that the 

presence of extreme outliers can have a major impact upon estimation accuracy. So 



25 

increasing the dataset does not necessarily enhance the accuracy of the estimation models. 

Configuring a CBR prediction system is a non-trivial task: a lot of decisions need to be made 

in the configuration phase. They conclude that simple similarity measures while using CBR 

present three major inadequacies:  

• are computationally intensive,  

• the algorithm is intolerant to  noise and of irrelevant features,  

• cannot handle categorical data other than binary values. 

 

In the same year, Idri et al. (2000) introduce the use of fuzzy logic to tackle the problems of 

linguistic variables in the COCOMO model. They use the dataset of the COCOMO model 

with 63 projects.  

 

The same authors (Idri et al., 2001) developed the fuzzy analogy approach that can be used 

when the software projects area described by categorical or numerical data. This approach 

improves the classical analogy procedure and represents the data using fuzzy sets, handling 

the imprecision and uncertainty when describing a software project. 

 

In order to validate the fuzzy analogy approach, Idri et al. (2002) made a comparison about 

Fuzzy Analogy, Fuzzy COCOMO, Classical Analogy and Classical Intermediate 

COCOMO’81, and they suggested a ranking against the performance of the models analyzed:  

1. Fuzzy Analogy 

2. Fuzzy Intermediate COCOMO ‘81 

3. Classical Intermediate COCOMO ‘81 

4. Classical Analogy. 

 

This study concludes that using fuzzy logic with the estimation by analogy tolerates 

imprecision and uncertainty in its inputs (cost drivers). 

 



26 

Idri et al. (2004) extended the study previously developed, analyzing the performance of 

Fuzzy Analogy, Fuzzy COCOMO, Classical Analogy and Classical Intermediate 

COCOMO’81, and including the CBR. 

 

Until now the studies have been carried on to compare the use of algorithmic models against 

other models that are not based in statistical or numerical analysis; the result from this type of 

models - specifically those which use fuzzy logic, is that the models were tolerant to the 

imprecision and have the ability to work with uncertainty because of their use of fuzzy logic. 

 

A summary of some of the estimation models developed since the 1980’s is presented in 

Annex I and includes: the author, the estimation model or technique used, the dataset 

analyzed, some insights into the proposed work, as well as some strengths or advantages, and 

some weaknesses or disadvantages of each software estimation model.   

 

1.8 Functional Size Measurement (FSM) method 

The first Functional Size Measurement (FSM) method was proposed by Allan Albrecht of 

IBM in 1979 (Albrecht, 1979), that is Function Point Analysis (FPA). This was the first 

software measurement method without a technology bind and its design was based only on 

what the system users could see from the outside (Abran, 2010). Naturally the initial design 

of FPA is applicable only to the specific software type upon which its design was based, that 

is the ‘management information systems’ (MIS). Subsequently, a number of variants from 

the Albrecht/IFPUG FPA approach have been proposed to improve the measurement of 

software functional size, and to extend its domain of applicability – see Figure 1.5 (Abran, 

2010).   



27 

 

Figure 1.5 Evolution of functional size measurement methods (Abran, 2010)  - With 
permission. 

 

In 1994, a new Working Group 12 (WG12) of the ISO/IEC Joint Technical Committee 1, 

Sub-Committee 7 (Software Engineering) was established to seek to establish an 

international standard for functional size measurement. WG12 decided that the first step was 

to establish the basic principles of FSM. This initiative led to the publication of ISO 14143-

1:1997 (‘Information Technology – Software measurement – Functional size measurement – 

Definition of concepts’).  Other technical reports in the 14143 series cover related topics like 

conformity assessment, verification of a candidate FSM method and the definition of types of 

software domains for FSM.   

 

In the late 90’s a set of organizations from USA, Canada and Japan funded a research project 

to extend the domain of application of functional size measurement (Abran, 2010) that was 

Management Information Systems (MIS) to real-time and embedded software domain. The 

research project was conducted by Dr. A. Abran and included five steps: 

• Step 1. Literature review 

• Step 2. Proposal for an extension to FP to real-time software 

• Step 3. Field tests of the designed prototype 

• Step 4. Analysis of measurement results 

• Step 5. Public release 

 

The method initially named ‘Full Function Points’ (FFP) was released in 1997 and 

introduced new transactional function types to the traditional FPA method (Abran, 2010).  



28 

In 1998, some experts of WG12 met informally in London to initiate the next effort to 

develop a new FSM Method based on FFP  and aimed to meet the following constraints and 

objectives: 

• Starting from established FSM principles.  

• Aimed to be compliant with ISO/IEC 14143/1:1997 from the outset.   

• Considering the experience of previously developed FSM methods. 

• The re-designed FSM method had to be equally applicable to MIS/business software, to 

real-time and infrastructure software (e.g. as in operating system software) and to hybrids 

of these.  

 

From the London meeting arose the ‘COSMIC Group’: the Common Software Measurement 

International Consortium. The first official version of its method, ‘COSMIC-FFP v2.0’ was 

published in October 1999, initiating the ‘2nd  generation’ of  functional size measurement 

methods. In 2003, the version 2.2 was published as ISO 19761, and the version 3.0 in 2007. 

The latest version is the v3.0.1 and was published in May 2009. 

 

The FFP method is considered as the version 1.0 of the COSMIC method. All versions of the 

COSMIC measurement method are available on the COSMIC Group web at 

www.cosmicon.com. 

 

The COSMIC ‘Advanced and Related Topics’ document (COSMIC 2007) describes two 

approaches for approximate sizing (COSMIC ‘Advanced and Related Topics’, 2007): 

• Early sizing: this approach is to be used early in the life of a project, before the Functional 

Users Requirements (FUR) are detailed and specified. 

• Rapid sizing: this approach is to be used when there is not enough time to measure the 

required software piece using the standard method. 

 

These two approaches can be considered in the early phases of a development project. In 

both of the approximate sizing approaches, a first task is to identify artifacts of the software 

piece at some higher level of granularity (the standard level of granularity for the COSMIC 



29 

method is the functional process), and to size them using a locally-calibrated scaling factor; 

these locally-calibrated measures can next be converted to the COSMIC units (i.e. CFP) 

using a scaling factor. This solution needs an organization history data in order to obtain an 

adequate scaling factor.   

 

1.9 Why using Fuzzy Logic for Estimation?  

Fuzzy logic (FL) is a superset of conventional (Boolean) logic that has been extended to 

handle the concept of partial truth - truth values between "completely true" and "completely 

false".  It was introduced by Dr. Lotfi Zadeh of the University of Columbia in Berkeley in the 

1960's as a means to model the uncertainty of natural language (Casals, 1997; Zadeh, 1998). 

 

Because of the lack of information in the early phases of software development, most of the 

data to be collected at estimation time have to be expressed in a subjective way, using 

qualitative or linguistic variables.  

 

The way these variables are handled next in most of the algorithmic estimation models has 

been described as a weakness for such models (Idri, 2001, 2002, 2004; Shepperd, 1996). 

 

As mentioned previously, the estimation approach most often used in the industry is the 

experience-based judgment approach: based on its past experience, the estimator evaluates 

the variables present in the early phases using linguistic variables and he is capable to 

analyze qualitatively the relationships between the variables and to assess subjectively the 

impact in a quantitative way. This process may appear to be simple but, in practice, it is a 

complex process of human reasoning applied to the estimation of software projects.  

 

The benefits of using fuzzy logic have been demonstrated in a number of other knowledge 

areas, such as: control, signal decoding, pattern recognition (Ponce, 2010).  

 



30 

The use of fuzzy logic in decision support models involves some elements that can simulate 

the way in which the humans do their reasoning. If this fuzzy logic approach can be used for 

generating an estimation model, then the axioms in parametric models proposed by Park 

(1994) could be modified, or at least redefined. 

 

A number of analogies related to the insights identified by Park (1994) has led to the 

investigation of the use of fuzzy logic for software estimation purposes: 

• All estimations techniques are based on comparisons. The fuzzy logic engine is based 

on inference rules alike the humans when making their qualitative comparisons. 

• Before people can estimate, they must acquire knowledge. An important part in a 

fuzzy logic model is the “rulebase”: this is a set of inference rules that represent the 

expert knowledge. Some factors that affect duration and effort estimation are 

described in Morgenshtern (2007). 

 

In the software estimation field, the results generated considering the modeling capabilities 

comparison of distinct techniques presented by Gray et al. (1997) show the appropriateness 

of each method based on the conceptual requirements of modeling methods as presented in 

Table 1.1 where each columns represents (as in (Gray, 1997)): 

• Model free: Refers to the ability of the modeling technique to determine its own 

structure, rather than relying on the developer to provide the form of the relationship 

between inputs and outputs. As an example, when developing a regression model it is 

necessary to specify which variables should be transformed and what type of 

transformation should be used. With a neural network, an appropriate approximate 

transformation will be found by the network when training. 

• Can resist outliers: Refers to the model's robustness of estimation when faced with a 

data set containing outliers. 

• Explains output: The capability for a user to see how a model arrived at its 

conclusions. 



31 

• Suits small data sets: One of the major problems in the development of models is the 

size of the dataset: there is not always enough data. This column refers the model's 

robustness of estimation when faced with a small data set. 

• Can be adjusted for new data: Refers to the issue of whether additional data can be 

added or whether the entire model must be regenerated on the combined data set must 

be considered. 

• Reasoning process is visible: This can be important for the purpose of verification as 

well as theory building and gaining and understanding of the process being modeled. 

• Suit complex models: Is related to the issue of model-free estimation and the ability to 

add expert knowledge. 

• Include known facts: Refers to the capability to include known information into a 

model: that is, to initialize a model with known facts (expert knowledge) and then use 

data to improve and refine it. 

 

With fuzzy logic, only two criteria (criteria: “can resist outliers” and the “can be adjusted for 

new data”) are partially met, while all the other criteria are fully satisfied.  

 

This is an important insight. There are also some other studies in which the use of fuzzy logic 

offers better reality representation than the traditional techniques and, consequently, more 

confident estimates, basically because this approach can manage adequately the linguistic 

variables (Idri, 2002). 

 

Table 1.1   Comparison of estimation techniques in terms of modeling capabilities,               
Adapted from (Gray, 1997) 

Technique Model 
Free1 

Can 
resist 
outliers 

Explains 
output 

Suits 
small 
data sets 

Can be 
adjusted 
for new 
data 

Reasoning 
process is 
visible 

Suit 
complex 
models 

Include 
known 
facts 

Least 
Squares 
Regression 

 
N 

 
N 

 
P 

 
N 

 
N 

 
Y 

 
N 

 
P 

                                                 
1 (Yes = “Y”, No= “N”, Partially = “P”) 

 



32 

Technique Model 
Free 

Can 
resist 
outliers 

Explains 
output 

Suits 
small 
data sets 

Can be 
adjusted 
for new 
data 

Reasoning 
process is 
visible 

Suit 
complex 
models 

Include 
known 
facts 

Robust 
Regression 

 
N 

 
Y 
 

 
P 

 
P 

 
N 

 
Y 

 
N 

 
P 

Neural 
networks 

 
Y 

 
N 

 
N 

 
N 

 
P 

 
N 

 
Y 

 
P 

Fuzzy 
Systems 
(Adaptive) 

 
Y 

 
P 

 
Y 

 
Y 

 
P 

 
Y 

 
Y 

 
Y 

Hybrid 
Neuro-Fuzzy 
Systems 

 
Y 

 
P 

 
Y 

 
P 

 
P 

 
P 

 
Y 

 
Y 

Rule Based 
Systems 

 
N 

 
N/A 

 
Y 

 
N/A 

 
N/A 

 
Y 

 
Y 

 
Y 

Case-Based 
Reasoning 

 
Y 

 
P 

 
Y 

 
P 

 
Y 

 
P 

 
Y 

 
N 

Regression 
Trees 

 
Y 

 
Y 

 
Y 

 
P 

 
Y 

 
P 

 
Y 

 
P 

Classification 
or Decision 
Tress 

 
Y 

 
Y 

 
Y 

 
P 

 
Y 

 
P 

 
Y 

 
P 

 

Gray et al. (1997) describes a basic fuzzy system in the following way: “A fuzzy system as 

considered here, although as noted above there are different types, is made up of three main 

components, as illustrated in Figure 1.6: 

 

1. The membership functions represent how much a given numerical value for a particular 

variable fits the term being considered. In order to do this a fuzzification process is 

needed, that means a process to convert a crisp value into a membership function value.  

 

2. The rulebase which can be obtained from people with experience in specific problem 

understandings of the relationships being modeled and refined (or even obtained in the 

first case) using various data-driven adaptation techniques. The rulebase performs the 

mapping between the input membership functions and the output membership functions. 

The greater the input membership degree, the stronger the rule fired by the inference 

engine, and thus the stronger the pull towards the output membership function.  

 



33 

3. Since several different output memberships could be contained in the consequences of the 

“if-then” rules fired, a defuzzification process, the third component, is carried out to 

combine the outputs into a single label or numerical value as required”.  

 

 

 

Figure 1.6  Basic fuzzy logic system 
 

“Basically, fuzzy logic is a precise logic of imprecision and approximate reasoning. More 

specifically, fuzzy logic may be viewed as an attempt at formalization/mechanization of two 

remarkable human capabilities: 

1. The capability to converse, reason and make rational decisions in an environment of 

imprecision, uncertainty, incompleteness of information, conflicting information, 

partiality of truth and partiality of possibility – in short, in an environment of imperfect 

information.  

2. The capability to perform a wide variety of physical and mental tasks without any 

measurements and any computations” (Zadeh, 2008). 

 

There are some elements proposed by the fuzzy logic that make it useful in the management 

of uncertainty and imprecision, such as fuzzy sets theory which is basically a theory of 

classes with unsharp boundaries. Some features expressed by Zadeh (2008) are considered an 

extension of the classical set theory. Other elements are the linguistic variables and the ‘if – 



34 

then’ rules: the key idea with these elements is centered in the use of information 

compression. 

 

The representation of a linguistic variable in a fuzzy logic function is gradual (unsharp) 

between the boundaries, rather than abrupt and stepwise as in algorithmic models. 

 

The fuzzy set approach deals with linguistic variables or qualitative variables. The qualitative 

aspect is related to the scale in which the attributes are measured: a classification review in 

the literature on scale type indicates that there are five types: nominal, ordinal, interval, ratio 

and absolute (Abran, 2010). 

 

The categorical attributes have a nominal or ordinal scale type:  

• The nominal scale type is the lowest scale type level and only allows the classification 

into categories.  

• The ordinal scale type provides additional information to order the categories. 

 

It seems then to be logical that imprecision and uncertainty cannot be avoided early on in an 

estimation process, so the need of a framework to manage this uncertainty is fundamental to 

develop an estimation model for its use early in the development phases: that is why the 

fuzzy logic is selected in this research project in order to measure the independent variables 

that affect the project result. 

 

In the fuzzy logic (FL) theory some main features are described by Zadeh (2008): 

• Linguistic variables and fuzzy if-then rules 

• Fuzzy Logic-generalization 

• The concept of precisiation and cointension 

• Natural Language (NL)-computation, computing with words (CW) and precisiated natural 

language (PNL) 

• Computational theory of perceptions 

• Possibility theory 



35 

• Computation with imprecise probabilities 

• Fuzzy logic as a modeling language. 

 

Zadeh (2008) defines the precisiation as “an operation which transforms an object, p, into 

another object, p*, which is more precisely defined, in some specified sense, than p”. The 

reverse applies to imprecisiation.  

  

“In the realm of this discourse p is usually a proposition, predicate, question, command or, 

more generally, a linguistic expression which has a semantic identity, and the need to 

differentiate between the value precisiation (value precision) and the meaning precisiation 

(meaning precision). For example: 

 

X=5   value precisiation    X= small meaning imprecisiation     

X= small   meaning imprecisiation    X= small (defined by a fuzzy set) meaning precisiation     

 

The fuzzy logic features, and specifically the precisiation, allow managing and supporting the 

uncertainty associated to the qualitative variables available at the early stages in the software 

development process: this gives a more realistic model because the constraints have some 

elasticity and are not precisely defined as usually happened in the quantitative models that 

are inelastic.  

 

Even though the rationale is that in many cases precision carries a cost, in such cases, 

deliberate value imprecisiation serves a useful purpose because it provides a way of reducing 

the mentioned cost. 

 

The precisiation concept offered by fuzzy logic is also important because it is related to the 

cointension (Zadeh, 2008): that is, a measure of the degree of how the number associated fits 

to the perception of the concept. Then the cointension of p* in relation to p, C(p*,p) is a 

qualitative measure of the degree of proximity of the i-meanings of p* and p. p* is 

cointensive if the degree of proximity is high” (Zadeh, 2008). 



36 

1.10 A number of issues in the software estimation process 

Why, even after 40 years of research on software estimation, is the estimation approach most 

often used in industry still based on the experience of the estimators? 

If the early phase context of software estimation is analyzed, three basic elements are found: 

1. Imprecise or vague information. 

2. High uncertainty (the origin is the lack of information). 

3. Most of the variables to consider when estimating are linguistic variables. 

 

To tackle these issues, the estimation method up to now capable to manage the uncertainty 

and linguistic variables has been the ‘expert’ judgment in experience-based estimation. 

 

A common opinion about software engineering is that it is different from engineering and 

other sciences because the software products are intellectual products rather than physical 

objects. However this approach is not well supported. Even in other sciences the 

measurements are made using models, e.g. a representation of reality, not the physical 

objects. The problem here is to determine the right model that enables the attribute to be 

measured. An example of the use of models to measure physical phenomena is the 

ondulatory model of light: this model is determinant for the measurement of the speed of 

light (Habra, 2008). 

 

In such a context, any improvement to  an estimation technique or a new one that helps to 

model more adequately the context in which the early estimation in software developments is 

to be made is therefore welcome in order to improve the decision making process. If this new 

or improved technique solves some of the problems attached to the use of the experienced 

judgment, is an improvement. 

 



 

CHAPITRE 2 
 
 

RESEARCH OBJECTIVE 

2.1 Motivation 

There are a number of studies that show that a significant portion of the software projects 

finish over budget or late over the planned schedule (Standish Group, 2004, 2009): 

 

" …the  results show a marked decrease in project success rates, with 32% of all projects 

succeeding which are delivered on time, on budget, with required features and functions, 

44% were challenged which are late, over budget, or with less than the required features and 

functions and 24% failed which are cancelled prior to completion or delivered and never 

used" (Standish Group, 2009). 

 

In Table 2.1, it is shown how the benchmarks gathered by the same study have evolved 

through the years. 

  

Table 2.1   Standish Group benchmarks over the years-                                                 
Adapted from Laurenz (2010) 

Year 
Successful 

Project  (%) 
Overrunning 
Projects (%) 

Failed (Cancelled) 
Projects (%) 

1994 16 53 31 
1996 27 33 40 
1998 26 46 28 
2000 28 49 23 
2004 29 53 18 
2006 35 46 19 
2009 32 44 24 

 

To address these challenges, an approach often used by organizations in order to improve the 

outcomes described above, is to adopt an “operational improvement approach”: this means to 

standardize the process to develop software and to manage IT in general. Some process 



38 

improvement models focus on defined standardized processes such as: CMM (Chrissis, 

2007), CMMI (Chrissis, 2007), ITIL (Information Technology Infrastructure Library), 

COBIT (Control Objectives for Information and Related Technology) and MoProSoft 

(Modelo de Procesos para la Industria del Software). This “operational improvement 

approach" aims to increase the project’s success percentage by making the process more 

manageable and, consequently, more predictable. 

 

Morgenshtern et al. (2007) suggest that additional project management practices affect the 

project duration, and are directly related to the project duration estimation errors. The project 

management practices most often involved are: progress control, updating of work plans and 

assessing the risks in the projects.  

 

The Standish Group defines a successful project solely by adherence to an initial forecast of 

cost, time, and functionality (Laurenz, 2010). But what if the estimates are not good enough? 

Many projects may be considered as failures from a project perspective because their 

estimation at the early phases in a project is made with a high uncertainty environment, and 

without a systematic process.  

 

The research motivation of this project is to improve the software estimation process: this is a 

major challenge for any organization that develops software. 

 

2.2 The research goal and research objectives 

The research goal of this thesis is to design of a software estimation process able to manage 

the lack of detailed and quantitative information embedded in the software development 

process, and particularly in the early stages of the software development life cycle. 

 

The research strategy selected in this thesis aims to benefit from the advantages of the 

experience-based approach that can be used in early phases of software estimation while 

addressing some of the major problems of this estimation approach by experienced judgment. 



39 

The research objectives to be met by this improved software estimation process are: 

A. The proposed estimation process must use relevant techniques to handle uncertainty and 

ambiguity in order to consider the way practitioners make their estimates: the proposed 

estimation process must use the variables that the practitioners use (qualitative) in 

estimating. 

B. The proposed estimation process must be useful in early stages of the software 

development process. 

C. The proposed estimation process needs to preserve the experience or knowledge base for 

the organization: this implies an easy way to define the experience of the experts. 

D. The proposed model must be usable by people with skills distinct than the people who 

configure the original context of the proposed model. 

 

The objective “A” is related to the management of the qualitative or linguistic variables and 

the work with uncertainty that can be handled by the experience-based approach. 

 

The objective “B” specifies the moment in which the model must be useful, that is in the 

early phases.  

 

The objective “C” aims to solve problems related to the estimation expertise which belongs 

to the expert, and it is hard to assess. 

 

The objective “D” is fundamental because it is the enabler to the systematic replication of the 

expertise, and without this objective the model would be like the experience-based approach, 

bounded to the experts’ experience. 

 

The constraints that will be addressed in this research are: 

1. The information acquired in the early stages when developing a software project is rough, 

has a lot of imprecision and high uncertainty. This will not change since at these stages 

the concept of the software to be developed is defined at a very abstract level by the user. 



40 

2. The estimation process most frequently used in practice is based on the staff experience; 

unfortunately, there is not actually a way to replicate systematically this knowledge in 

order to estimate projects in an organization. 

3. Actually there is no estimation process that can tackle the information vagueness of the 

very early stages such as the feasibility stage. 

 

Even though the proposed model could be taylored for estimating distinct dependent 

variables (such as duration, effort or cost), the experimental part of this research will focus 

on estimating project duration for the following reasons: 

• The project duration has a strategic value for the organizations.  

• It is assumed that in the current high competitive industry the time-to-market is a very 

important element that drives the software development. 

• The algorithmic models actually generated use as a basis the effort in order to 

estimate duration; however the relation between effort and duration is not linear 

(Bourque, 2007). This leads to the need to use models based on effort in conjunction 

with other duration models (Oligny et al., 2000). 

 

2.3 Research approach 

To tackle the research goal, objectives and constraints defined for this research, the strategy 

selected is to design a new software estimation process using fuzzy logic as its basis.  

 

This research work will draw knowledge from four disciplines: statistics, metrology, 

software engineering and fuzzy logic - see Figure 2.1. 

  



41 

 

Figure 2.1  Disciplines that support the research 
 

2.4 Statistics 

The statistics discipline will be used to demonstrate the quality of the estimation process 

proposed. Most of the literature related to software estimation uses some quality criteria 

based on statistics (see Chapter 1). Understanding of statistics is important in order to use 

appropriately the statistical techniques and tools. 

 

2.5 Metrology 

The metrology will contribute to tackle the non uniformity in the distinct units of 

measurement; the metrology includes rigorous definitions of measurements standards and 

their management. The metrology has evolved and has been extended over the past century 

to new technological areas like electricity, photometric and time measurement (Condori-

Fernandez, 2008); in these areas, the metrology is recognized as mature and the measurement 

standards are fully known, thereby enabling their wide use. 

 

This discipline of metrology will be used to take into consideration the generally accepted 

knowledge in measurement to ensure a sound foundation to the estimation process to be 

proposed. The basic reference in this discipline is the ISO “International Vocabulary of Basic 

and General Terms in Metrology” (ISO, 2007). 

 



42 

2.6 Fuzzy logic 

The fuzzy logic discipline (Zadeh, 2008; Zadeh et al., 2008) will enable the model and the 

estimation process to handle the vagueness of the information acquired in early phases in a 

software development project. It will help to support the uncertainty about the meaning of 

linguistic values used by the “estimators” when making the estimations.  

 

The fuzzy logic first follows a path in order to convert a crisp value (a number referenced to 

a context) into fuzzy values (membership values); next these fuzzy values are evaluated with 

the inference rules defined (i.e. knowledge) using theory rules (for instance: t-norm, t-

conorm). The fuzzy values obtained need to be converted back into a crisp value that makes 

sense and can be used as a basis to take decisions. The fuzzy logic scheme to produce a crisp 

value was shown in Figure 1.6. 

 

Zadeh (2008) describes some fuzzy logic features, one of which is the fuzzy logic 

generalization (FL-generalization): this feature is related to “any bivalent-logic-based theory, 

T, may be FL-generalized, and hence upgraded, through addition to T of concepts and 

techniques drawn from fuzzy logic. 

 

For the set theory there are three basic operations: union (any valid union operator is known 

as t-conorm too), intersection (any valid intersection operator is known as t-norm too) and 

the complement.  

  

If A and B are crisp sets: 

B-A = {x | x  ε B and x ε A} 

                                                           Ā= { x | x ε A}                                                   (3.1) 

A U B = { x | x ε A or x ε B} 

A ∩ B = { x | x ε A and x ε B} 

 



43 

As for the crisp sets, for the fuzzy sets these are the distinct operators that enable the basic 

operations described above; the big difference is that for the crisp sets all the possible 

operators for the same operation lead to the same results. For the fuzzy sets, this does not 

happen because distinct operators lead to distinct values when their arguments are values 

between 0 and 1 (Casals, 1997). 

 

This behavior has generated a number of studies to explore which operator to use in the fuzzy 

sets (Milos, 1999); however, the standard operators proposed by Zadeh (1965, 1988) are used 

most often. The standard operators are: 

 

µĀ(x) = 1- µA(x) 

                                                    µA U B (x) = max { µA(x), µB (x) }                    (3.2) 

             µA ∩ B (x) = min { µA(x), µB (x) } 

 

The use of the maximum as union operator avoids the case in which an element that belongs 

to AUB has a low membership value of one of the two sets. On the opposite way, the 

minimum as intersection operator avoids that an element can belong to A∩B with a 

membership value higher than any of the sets. 

 

The inference rules are defined in the “if -then” form: 

                                                      If A and B, then Z (A ∩ B) 

                                                      If A or B, then Z (A U B)                                    (3.3) 

Where:  

• A is a fuzzy set for one input variable,  

• B is a fuzzy set for another input variable, and  

• Z is the fuzzy set for the output variable. 

 

 



44 

2.7 The proposed estimation process based on fuzzy logic 

The proposed fuzzy logic estimation process includes six steps - See Figure 2.2:  

1. Identification of the input variables,  

2. Specification of the output variable,  

3. Generation of inference rules,  

4. Fuzzification,   

5. Inference rules execution, and  

6. Defuzzification.   

 

 

Figure 2.2  The steps in a fuzzy logic estimation process 
  

The first three steps are related to the configuration of the estimation process: this 

configuration process generates an estimation model or EPCU “context” for estimating a 

specific project. The last three steps are related to the use of the model generated in order to 

obtain estimates for a specific project. 

 

 



45 

2.8 Step 1: Identification of the Input Variables  

The goal of step 1 is to get the experienced  “experts” (practitioners in a software 

development for a specific organization) to identify and assess the most significant input 

variables for a project or kind of projects, such as: software size, software complexity, team 

skills, knowledge of the software development process or its implementation phase, the 

leader’s skills, the customer or provider organization’s environment, knowledge of the tools 

to be developed in the project, customer commitment, the stakeholders involved, and so on. 

 

In this step, the experts must define next the fuzzy sets for each of the input variables they 

selected. This means that they must agree on a classification scheme for each variable, 

typically in terms of linguistic values (and only the linguistic categories that make sense to 

them in practice). For example, for the input variable complexity, its fuzzy set could be 

defined as a classification such as: low, average or high (i.e. linguistic values). It is possible 

to define more linguistic values but it is not necessarily useful in some contexts because the 

differences between each one could be too fine grained for a context (for example: very low, 

quite low and low).  

 

Also required is the definition of membership function domain(s) to represent the opinions of 

the experienced practitioners about the input variables for a specific project to be estimated 

(meaning precisiation). 

 

2.9 Step 2: Specification of the Output Variable  

The previous step 1 is repeated for the selected output variable, for example project duration. 

A classification for the output has also to be defined in a fuzzy set that represents it. 

 

2.10 Step 3: Generation of the Inference Rules  

In step 3, all the fuzzy sets belonging to each input variable must be combined in ‘if…, 

then…’ form: 



46 

If x and y, then z 

                                                             If x or y, then z;                                   (3.4) 

  

where x is a fuzzy set for one input variable, y is a fuzzy set for another input variable and z 

is the fuzzy set for the output variable. All the fuzzy sets for each input variable must be 

combined to generate the rulebase. 

 

2.11 Step 4: Fuzzification  

The goal of step 4 is to obtain fuzzified values as a consequence of opinions about those 

values put forward by an experienced practitioner. With the membership function defined for 

all the input variables, a value assignment that represents an opinion from the people needs to 

be requested for each variable. This will create fuzzy values to be used in the next step to 

execute the rulebase. 

 

2.12 Step 5: Inference Rule Execution  

The fifth step consists of executing the rulebase by substituting the fuzzy values obtained in 

the previous step. The Inference Rule execution must follow the rules of fuzzy logic (Zadeh 

operator), such as: 

 

Value (P  or  Q) = max {value (P), value(Q)} 

                                Value (P and Q) = min {value (P), value(Q) }              (3.5) 

 

2.13 Step 5: Defuzzification 

The defuzzification in step 5 is developed in order to obtain a crisp value for the final 

estimate. Examples of such defuzzification methods are: Max-Min, Max-Dot, Max-Product, 

Centroid Average, and Root Sum Square (RSS).  

 



47 

There are five (5) defuzzification methods referenced by Wong (1995), however the centroid 

average or center of gravity provides a better solution than other methods (Zadeh, 2008): 

1. Centroid average or Center of gravity 

2. Maximum center average 

3. Mean of maximun 

4. Smallest of maximum 

5. Largest of maximum 

 



 



 

CHAPITRE 3 
 
 

 RESEARCH METHODOLOGY 

 

The research methodology proposed to reach the research objectives includes five phases – 

see Figure 3.1. The first phase “Literature Review” (see Chapter 1) has collected and 

analyzed the necessary information about software measurement and software estimation. 

 

The literature review of the past 40 years has focused to acquire the necessary information on 

how to evaluate and develop software estimation models, the quality criteria to evaluate the 

estimation models and some other important issues related to this research.  

 

The other purpose for this literature review phase was to acquire information about the 

disciplines needed for this research, such as statistics, metrology, fuzzy logic and software 

engineering. 

 

The second phase of the research methodology is the “Building of the Fuzzy Logic Model”. 

The estimation model to be built will be referred to as the ‘Estimation of Projects in Context 

of Uncertainty’ - the EPCU model - and will focus on defining the Software Estimation 

Process that can provide information to the decision makers, including information about the 

quality and the confidence of the model. 

 

Figure 3.1.  Methodology Research Phases 
 



50 

It will be fundamental that the proposed model handle the qualitative or linguistic variables 

in a formal way. That is why the mathematical framework selected to develop the model is 

the fuzzy logic. 

 

The third phase of this research, “Tool development”, will focus on the design and 

development of a software prototype tool to help and simplify the storage and 

experimentation process. This decision was made because processing manually the 

information needed for the experimentation would have been a very time consuming task. 

 

The prototype tool will initially aim at statistical analyses; these kinds of studies will be 

made with the statistical tool SPSS v17 or Excel in some cases. The definition and the 

detailed design of the prototype tool will be described in chapter 5. 

 

The fourth phase of this research project, “Experimentation”, will focus on determining if the 

model developed has reached the objectives and contributes positively to the goal of the 

research. 

 

It will consist in a number of experiments to test the estimation model developed. 

 

Each of the experiments will need as inputs: 

1. The estimation model proposed,  

2. The tool in order to facilitate the experimentation, 

3. Information about projects, including information about each project at its inception, 

as well as information about these projects once completed (if it is available). 

 

To evaluate the performance of an estimation model, the following set of information is 

needed: 

• The set of information available at the very early stages of the development process. 

• The set of information available for the same projects once completed. 



51 

Usually the performance of the estimation models are evaluated with finished projects, so 

there is a need of finished projects to evaluate the performance model. 

 

Considering these issues the experimentation will be designed to test the model in a context 

similar to the context of the early phases. The experimentation proposed for this research 

will: 

1. Use the model with a set of industry projects that were already completed and for 

which the necessary information was available both at their inception as well as once 

completed. A part of this experiment will consist in collecting a set of completed 

projects that had been estimated using an experience-based approach in the Mexican 

software industry and in conjunction with the people who had participated in the 

original estimation. A fuzzy logic-based estimation model will be generated and used 

to estimate the finished projects.  

2. Use this set of completed projects to simulate an early estimation. In this “a priori” 

context, the participants will be provided with the description of the software 

requirements for a set of projects as they were described in the early project phases. 

For this experiment, it requires that a re-documentation be done by the researcher of 

the very early drafts of the preliminary statement of the scope of all the software to be 

developed. This re-documentation of the early software requirements will be based on 

the availability of project documentation in each participating organization and in the 

experts’ memories. The re-documentation has to be performed at a very high level of 

abstraction, as is typically done by users at the conceptualization or feasibility stage 

in a software development process. 

3. Use the fuzzy logic-based estimation model in order to estimate some projects in the 

real early phases. This experiment will be made in order to analyze how the model 

must be used in early phases situations. 

 

The results of these experiments will be analyzed to verify if the proposed fuzzy logic-based 

estimation process covers the other research objectives stated, including if could be usable by 



52 

people with skills distinct than the people who configure the original context of the proposed 

model and the comparison of the model performance against the experience-based approach. 

 

The last phase of the research is the preparation of conclusions and the identification of 

further work for future improvements to the estimation process proposed in this research.



 

CHAPITRE 4 
 
 

THE DESIGN OF THE EPCU MODEL 

 

4.1 Introduction  

Considering the estimation in the early phases of software development and the defined 

environment it is possible to identify the set of concepts of the fuzzy logic-based EPCU 

estimation model – see Figure 4.1:  

 

A project is influenced by many parameters (independent variables) at 

the same time, their impact being distinct from each other: some have a 

major impact in a specific project, while others might be almost 

irrelevant for this same project. This may be dependent on their 

magnitude and the relation between each other, leading to distinct 

project performance (dependent variables: time, cost, effort). 

 

If there was a way to measure exactly each input variables and to determine precisely their 

impact and the relation to each other variables, the estimation process would be simpler.  

 

However, it is known that in the very early phase of a software related project not all the 

parameters can be determined and measured exactly: most of them are qualitative and the 

uncertainty is very high because the definition of the project (i.e. the information available at 

that time) is still at a very high abstraction level (McConnell, 2006). 



54 

 

Figure 4.1  The set of concepts for the EPCU model 
 

The measurement of the inputs is a fundamental issue in the estimation process - see Figure 

4.1. No matter if the inputs are quantitative or descriptive (Abran, 2008), these inputs need to 

be reliable in order to lead a good estimation result.  

 

Considering the importance of the reliability of the input variables, there is a need to 

manipulate the input variables (linguistic) over a formal framework: this is one of the reasons 

why the fuzzy logic theory has been selected.  

 

At the beginning of a software project, there is, on the one hand, a preliminary scope 

statement, or early requirements, and different options to develop it - see Figure 4.2. These 

options represent distinct software development processes which may come from different 

software providers. At the end of the project no matter how the software has been developed, 

the functionality must be delivered:  some of the differences in project effort may come from 

some providers being cheaper than the others, or with more or less quality or with longer 

project schedule. The drivers that determine this are the parameters (input variables) and its 

influence for a specific context. 

 



55 

On the other hand, for each software provider, the size of the same set of requirements could 

be assessed qualitatively, for estimation purposes, as large by one provider, or average by 

another software provider: so there it is a need to consider the output variable in reference to 

a specific context too. 

 

Depending on the context in which a specific set of functions is developed, the dependent 

variables (such as: costs, effort, duration, quality and so on) may vary considerably - See 

Figure 4.2.  

 

The EPCU “context” is therefore defined as: 

"a set of variables (inputs and output) and the relations that affect a specific project or a set of 

similar projects". 

 

This definition is important because in the use of the EPCU model the practitioners will 

provide in input their opinions about the context of the project, rather than an estimate of the 

output variable using an intuitive approach - see Figure 4.2. 

 

 

Figure 4.2  Distinct contexts for the same set of requirements 
 



56 

4.2 Description of the EPCU Process 

The process designed in this research is referred to as an Estimation of Projects in a Context 

of Uncertainty (EPCU)  and is designed using six process steps:  

1. Identification of the input variables  

2. Specification of the output variable  

3. Generation of the inference rules 

4. Fuzzification 

5. Inference rule execution 

6. Defuzzification. 

 

Steps 1 to 3 are related to the configuration of the inputs to the EPCU model and steps 4 to 6 

are related to the use of the model once it has been defined. An overview of these six steps 

required for the fuzzy logic estimation process are described next in more details. 

 

 

4.3 Step 1: Identification of the input variables 

The purpose of this step is to elicit the most significant input variables for a project (or a kind 

of projects) from the experienced practitioners in an organization (independent variables like: 

software size, software complexity, team skills, and so on) (See Chapter 6 for examples of its 

usage). 

 

It is natural for the practitioners (and even experts) to differ in their opinions of some 

variables. To deal with this, fuzzy logic is used in a step known as fuzzification, which is 

described in step 4. 

 

In this first step experienced practitioners must define the fuzzy sets for each variable 

selected for the model, which means that they must classify the variables in terms of 

linguistic values which they can evaluate on the basis of their own experience.  

 



57 

Step 1 also requires to define the membership function domain to represent the opinions of 

the experienced practitioners about these fuzzy sets for each input variables. By the end of 

this step, the membership functions that represent the behaviors of the variables in terms of 

the fuzzy sets are defined (See Figure 4.3).  

 

4.4 Step 2: Specification of the output variable  

For step 2, the objective is to define the fuzzy sets for output variable and the membership 

function domain to represent the opinions of the experienced practitioners about the fuzzy 

sets defined for the output variable.  

 

It is recommended that the membership functions for the input or output variables be 

normalized: this implies that the value range in the “y” axis should always between 0 and 1 - 

see Figure 4.3. 

 

4.5 Step 3: Generation of the Inference Rules  

All the fuzzy sets belonging to each input variable must be combined into ‘if…, then…’ 

form: 

                                                             If x and y, then z 

                                                             If x or y, then z                                         (4.1) 

  

Where: 

• x is a fuzzy set for one input variable,  

• y is a fuzzy set for another input variable, and  

• z is the fuzzy set for the output variable, resulting from the x and y 

relationship. 

 

All the fuzzy sets for each input variable must be combined to generate the rulebase. 

 



58 

4.6 Step 4: Fuzzification  

Once the membership function is defined for all the input and output variables, and the 

relations between them are stated by the experienced practitioners, a practitioner opinion 

needs to be requested for each input variable for a specific project to be estimated. The goal 

of this step is to obtain fuzzified values as a consequence of opinions put forward by an 

experienced practitioner for each of the input variables. 

 

This means that a membership function must be evaluated with the values provided as inputs 

by the people that need to estimate the project (known as “practitioner” in the 

experimentation - Chapter 6). If the membership function defined for each input variable is 

using three fuzzy sets, the fuzzification process can look like Figure 4.3. 

 

 

Figure 4.3  Example of a fuzzy membership function and defuzzification 
 

In Figure 4.3, a crips value is assigned to an input variable (horizontal axis) by a practitioner 

in a reference (between 0 and 5) considering his own experience; this crisp value is 

transformed next in membership degrees using the membership functions for the fuzzy sets 

defined for a specific input variable. 

 



59 

The relation between the practitioner opinion and the fuzzified values is denoted by a 

function known as membership function μ(x) (Figure 4.3).  

 

The input variables used are a linguistic value (low, average or high), the range of the 

possible values or the domain function (x) is [0, 5]. If the variable is quantitative the range 

can be defined by the historic values: for example if the numbers of programmers for a 

typical project in a specific environment is from 2 to 4, the domain function is [2, 4]. For 

most of the experiments qualitative variables will be used, and the [0, 5] reference values will 

be stated. 

 

Because the membership function is normalized for all the membership functions, the range 

for the possible values for the μ(x) is [0, 1]. 

 

4.7 Step 5: Inference Rule Execution  

This fifth step consists in executing the rulebase by substituting the fuzzy values obtained for 

each input variable fuzzy set. The execution of the rulebase is made following the rules 

defined by the fuzzy logic theory, such as: 

Value (P   or  Q) = max {value (P), value(Q)} 

                                     Value (P and Q) = min  {value (P), value(Q) }                    (4.2) 

 

4.8 Step 6:  Defuzzification  

The defuzzification step aims to convert the fuzzy values related to the distinct fuzzy sets that 

describe the behavior of the output variable into a crisp value that represents a valid value for 

the output variable. 

 

Intuitively this is the inverse process to the fuzzification operation: the scale types used are 

the same. However, the output variable could have distinct units because it is the dependent 

variable (for instance, the units can be defined as calendar months for the duration as the 

output variable). 



60 

The output variable is defined as a membership function with several fuzzy sets, all of them 

in the function domain defined for each project considering the organization history and the 

expert knowledge. An example of the output variable membership function is shown in 

Figure 4.4. 

 

Figure 4.4  Output variable membership function 
 

In Figure 4.5, the shaded area means all the possible values that can take the output variable, 

considering all these areas and using the algorithm defined a crisp value is calculated.  

 

Figure 4.5  Example of a fuzzy membership function and defuzzification 
 

The EPCU estimation generated in the experiments (presented in Chapter 6) will be obtained 

using RSS and then by computing the ‘fuzzy centroid’ of the area.  



61 

This defuzzication method was selected in this research project because when using the RSS 

all the “fired” rules from the rulebase are considered for each fuzzy set defined for the output 

variable, not the maximum or the minimum value: this selection gives the best weighted 

influence to all the inference rules involved. 

 

After the use of the RSS, the computation of the fuzzy centroid of the composite area 

generated is calculated. Even though it is more complex mathematically than the other 

defuzzication methods, it provides better solutions than other methods (Zadeh et al., 2008) 

 

The two sub-steps for obtaining the crisp value are: 

1. Obtain the strength for each fuzzy set belonging to the output membership function 

(RSS). 

2. Obtain the fuzzy centroid of the area. 

 

 

4.9 Sub-step 6.1. Obtain the strength for each fuzzy set belonging to the output  
membership function (RSS)  

Considering the values obtained in the Inference Rule execution – step 5, the strength for 

each fuzzy set defined for the output variable is calculated with the following formula:  

 

                                                  FSk =       Σi Ri 
2                                                (4.3) 

 

where  FSk , is the fuzzy set defined by a same linguistic value. 

 Ri  is the rule that fired a specific fuzzy set. 

 

4.10 Sub-step 6.2. Obtain the fuzzy centroid of the area 

The weighted strengths of each output member function are multiplied by their respective 

output membership function center points and summed up. The area obtained is divided by 



62 

the sum of the weighted member function strengths, and the result is taken as the crisp 

output. 

 

                Crisp Value (FSk) = Centroid = Σ (“FSk” center * “FSk” _strength )  

                                                                         Σ (“FSk” _strength)                               (4.4) 

         

where FSk , is the fuzzy set defined by the same linguistic values. 

 

4.11 Overview of the roles and responsibilities in the EPCU model 

To clarify the two set of roles involved in A) the configuration and B) usage of the EPCU 

model, an overview is presented in Table 4.1. The left-most column presents the phase (A) 

configuration and (B), the usage; the second column to the right, the steps from 1 to 6; the 

third column, the Role 1 of those configuring and using the EPCU model; the right-most 

column, the role of the researcher in Role 2.  

 

Table 4.1   Overview of the roles involved in the configuration of the EPCU model 

Phases Step Role 1 Role 2 
A) Configuration 
of the EPCU 
model:generation 
of a specific EPCU 
context 

1. Identification 
of the input 
variables  

Experienced practitioner who 
defines, using his own experience, 
the input variables that have most 
influence on the output variable 
(i.e. project duration). 

Researcher (support): 
Participates as a guide for 
the definition provided by 
the organization’s 
experienced practitioner 

2. Specification 
of the output 
variable 

Experienced practitioner who 
defines, using his own experience, 
the range (function domain) for 
the output variable (i.e. the 
possible “time frame” – duration - 
for the project). 

Researcher (support): 
Participates as a guide for 
the definition provided by 
the organization’s 
experienced practitioner. 

3. Generation of 
the inference 
rules 

Experienced practitioner who 
defines, using his own experience, 
the relations of the input variables 
with the output variable in rules of 
the “if-then” form. 
 
 
 
 
 
 

Researcher (support): 
Participates as a guide for 
the definition provided by 
the organization’s 
experienced practitioner. 
 
 
 
 
 



63 

Phases Step Role 1 Role 2 
B) Usage of the 
EPCU model 
through the use of 
the EPCU context 
defined 

4. Fuzzification The practitioner, who must 
estimate a project, assigns a value 
for each of the input variables 
defined, considering the project to 
be estimated. 

The researcher implements 
the fuzzification – once in 
the structure of the EPCU 
model. 

5. Inference rule 
execution 

 The researcher implements 
the inference rule execution 
– once in the structure of the 
EPCU model 

6.Defuzzification 
 

 The researcher implements 
the defuzzification – once in 
the structure of the EPCU 
model 

 

In summary, the researcher defines and implements the ‘shell’ of the estimation prototype 

(see the right-most column in Table 4.1), while: 

1. the experience practitioner(s) selects the input variables for a generic context of 

estimation, and their expected ranges of variation for each type of input variables; 

2. the experience practitioner(s) select the output variable for a generic context of 

estimation, and its expected range of variation; 

3. the experience practitioner(s) define the inference rules that relate the input variables 

to the output variable; 

4. any practitioner who needs to do an estimation for a similar project within a similar 

context can next choose the specific values for the input variables defined; the EPCU 

model gives them next an estimate using the inference rules defined in the previous 

steps by the experience practitioner(s). 

 

4.12 Analysis of the measurement scale types within the EPCU model 

Dickes (1994) referenced in Abran (2010) mentions that for some attributes, like the distance 

between two points, the measurement rules are quite simple. For others, such as for abstract 

attributes, it is more complicated. In these cases, the definition is made by stating explicitly 

how the concept is decomposed into sub-concepts. 

 



64 

To analyze the scale type of the measurement steps in the EPCU model, the focus of this 

analysis must be on the following three sub-concepts (See Figure 1.6): 

• Fuzzification 

• Rules execution 

• Defuzzification 

 

A summary of the mathematical operations valid for the distinct scales types is presented in 

Table 4.2 – see also (Abran, 2010). 

  

Table 4.2   Scale types operations, with permission   (Abran, 2010) 

 

 

4.13 Fuzzification (i.e. step 4) 

In Figure 4.3, the possible values of x and μ(x) are on a ratio scale type: this scale type allows 

to build ratios among ratio scale variables. Physical measurements of height, weight, length 

are typically ratio variables. It is meaningful to say for example that 10 meters is twice as 

long as 5 meters. This is because there is a natural zero. 

 

For the scale type analysis for step 4, it is possible to consider for the x axis a ratio scale type; 

in order to extrapolate the concept, the unit of x axis is defined as a “generic unit” [gu] 

because there is not a specific unit for the qualitative variables from which the practitioner 

assigns a value that represents their opinion about the specific variable. The practitioner 



65 

expresses his opinion in a specific range that has a natural zero. For the y axis the units are 

the “membership value” [mv] obtained by the relation denoted by μ(x). 

 

Considering the scales types for each axis and the units stated in the previous paragraph, the 

fuzzication scale type analysis is shown in Table 4.3. 

Table 4.3   Fuzzification scale type analysis 

Object Operation Scale Type 

(From) 

Scale Type 

(To) 

Mathematical 

Validity 

Transformation to 

other Scale type 

Membership 

function 

Fuzzification  Ratio Ratio Yes No 

 

In the fuzzification operation, the main object is the membership function (input/output), as 

can be seen in Figure 4.3; this operation requires a value in the x axis, x ε R. This value is 

denoted as a ratio scale type with a unit [gu]. 

 

With this value a function execution is made. μ(x): this takes the x input value (ratio scale) 

and converts it to the membership function domain (a ratio scale in an specific range [0,1]). 

Then, y ε R, and the unit is [mv]. Considering the scale types in this function evaluation, an 

original ratio scale value is converted to another ratio scale value, so this is mathematically 

valid: x, y ε R. 

 

4.14 Inference Rule execution (i.e. step 5) 

As mentioned in the fuzzification analysis, for the y axis the units are the “membership 

value” [mv] obtained by the relation denoted by μ(x). In this sub-concept analyzed, the 

rulebase execution is the application to the basic operators to each defined rule; the result 

will be a membership value assigned to a fuzzy set of the output variable - this result will 

have [mv] units too.  

 

The scale types used are ratio scale types for the A fuzzy set, B fuzzy set and for the Z fuzzy 

set; this represents a membership value in each of the fuzzy sets. 



66 

Considering the scales types and the units stated, the analysis is shown in Table 4.4. 

Table 4.4   Rulebase execution scale type analysis 

Object Operation Scale Type 

(From) 

Scale Type  

(To) 

Mathematical 

Validity 

Transformation 

Basic operator Rulebase 

evaluation 

Ratio Ratio Yes No 

 

In the rules execution operation, there are membership values from the input variables and a 

basic operator defined by the fuzzy logic. As it was mentioned, the membership value has a 

ratio scale type with a unit [mv]. 

 

When applying the rules defined by the fuzzy logic, the value obtained is dependent on the 

operator, the maximum (or) or the minimum (and) membership value; so the original scale 

type is a ratio scale type with a [mv] and the final scale type is a ratio scale type with a [mv] 

too. 

 

This operation, considering the scale types, is mathematically valid. 

 

4.15 Defuzzification (step 6) 

In the defuzzification step the goal is to move from a membership value to a crisp value: it is 

the opposite process to the fuzzification. As seen previously, the x axis and the y axis are 

ratio scale types with units defined as [gu] and [mv] respectively. The defuzzification 

procedures used consist in two sub-steps that will be analyzed individually. 

 

4.16 Sub-step 6.1. Obtain the strength for each fuzzy set belonging to the output 
membership function (RSS).  

Considering the values obtained in the inference rule execution step, the strength for each 

fuzzy set defined for the output variable is obtained with the following formula:  

                                                      FSk =    Σ Ri 
2                                                     (4.5) 

 



67 

Where: 

• FSk is the fuzzy set defined by a same linguistic value. 

• Ri  is the rule that fired a specific fuzzy set. 

 

For this sub-step the scale type for each Ri is a ratio scale type with unit [mv]; this implies 

that the FSk will have a ratio scale type with a unit [mv], because the units after adding [mv]2 

+ [mv]2 = [mv]2 and ([mv]2)½ =>  FSk  = [mv]. 

 

Considering the scales types and the units stated, the analysis results are shown in Table 4.5. 

Table 4.5   Strength for each fuzzy set belonging to the output membership function (RSS) 
scale type analysis 

Object Operation Scale Type 

(From) 

Scale Type  

(To) 

Mathematical 

Validity 

Transformation 

Strength for 

each fuzzy 

RSS Ratio Ratio Yes No 

 

4.17 Sub-step 6.2. Obtain the fuzzy centroid of the area.  

The weighted strengths of each output member function are multiplied by their respective 

output membership function center points and summed up. The area obtained is divided by 

the sum of the weighted member function strengths, and the result is taken as the crisp 

output. 

 

It was stated that the FSk  or “FSk” _strength  is a ratio scale type with a membership value 

[mv] unit. The center is the x value for which the μ(x) = 1 in a triangle fuzzy set and the 

minimum value for the lowest fuzzy set and the maximum value for the highest fuzzy set. 

 

                Crisp Value (FSk) = Centroid = Σ (“FSk” center * “FSk” _strength ) 

                                                                                 Σ (“FSk” _strength)                    (4.6) 

 

Where FSk  is the fuzzy set defined by the same linguistic value. 



68 

 

Considering the description above, the “FSk” _strength is a ratio scale type and the “FSk” 

center is a ratio scale type; this allows the operations between the scale types with [mv] unit 

and [gu] unit respectively, in which the [gu] usually can be defined in terms of months or 

weeks if the output variable selected in, for example, project duration. 

 

Considering the formula to obtain the crisp value in (4.7) and using the units for the fuzzy 

sets defined, the scale types and the units analysis is made. 

 

crisp value (FSk) = (“FSk 1” center k1 [gu] * “FSk 1” _strength k1 [mv] + “FSk 2” center k2 [gu] 

* “FSk 2” _strength k2 [mv] +“ FSk 3” center k3 [gu] * “FSk 3” _strength k3 [mv] +“ FSk 4” 

center k4 [gu] * “FSk 4” _strength k4 [mv] ) / (“FSk 1” _strength k1 [mv] +“ FSk 2” _strength k2 

[mv] +“ FSk 3” _strength k3 [mv] + “FSk 4” _strength k4 [mv]) 

                                                                                                                                            (4.7) 

      

crisp value (FSk) = ([gu][mv] + [gu][mv] + [gu][mv] + [gu][mv]) / ([mv]+ [mv]+ [mv]+ 

[mv])                                                                                                                                   (4.8) 

 

crisp value (FSk) = ([gu][mv]) / ([mv]) = [gu]                                                                    (4.9) 

 

That can be months or weeks as mentioned before. 

 

In Table 4.6   the results of the scale types analysis are presented. 

Table 4.6  Centroid scale type analysis 

Object Operation Scale Type 

(From) 

Scale Type  

(To) 

Mathematical 

Validity 

Transformation 

Crisp Value Centroid Ratio Ratio Yes No 

 

As shown in this chapter, all the operations performed over the objects in the model are 

mathematically valid and the management of the units related to each scale type in the model 

is consistent. 



69 

 

4.18 Summary 

In the literature reviewed (Charette, 2005; Lavagnon, 2009; Shore, 2008; Pinto,1988; 

Fincham, 2002; Boehm, 1981; Weinberg, 1985; Jensen, 1979; Stamey, 2006; Timothy, 2006; 

Jones, 2004, 2005, 2006; Dekkers, 2005), when attempting to synthesize some insights into 

the variables most often identified as successful or failure drivers in the software projects, a 

lack of consensus on the root causes for the project successes or failures was observed: it is 

recognized that there are several project variables, some of which can be more significant 

than others. 

 

The concept of the model (Figure 4.1) mentions that in the early phases of the software 

project development - and in a specific environment - each project is influenced by many 

parameters (independent variables) at the same time, their impact being distinct from each 

other: some have a major impact in a specific project, while others might be almost 

irrelevant. This is a consequence of their magnitude and the relation between each other in 

generating a project result (dependent variable time: duration, cost, effort). 

 

The proposed fuzzy logic-based EPCU estimation process is a generic model: considering 

this and the lack of consensus about the main variables that impact specific projects, it will 

depend on the users of the EPCU model to introduce into the EPCU shell the variables that 

better reflect the context for a specific project or a set of projects in order to define an EPCU 

“context” to get an estimate. 

 

With the scale analysis, the conformity to the mathematic principles was validated, in order 

to state a solid base for the model. 

 



 



 

CHAPITRE 5 
 
 

DESIGN AND DEVELOPMENT OF A SOFTWARE PROTOTYPE FOR THE EPCU 
ESTIMATION PROCESS 

 

5.1 Introduction 

To handle the amount of calculations required by the model EPCU for all projects, as well as 

for the recording and the management of the information generated by the EPCU model, 

including estimated and actual values of the projects, a software prototype tool was designed 

and developed to perform the necessary calculations quickly and to support the EPCU 

estimation process. 

 

The prototype tool was designed initially as a set of three modules: 

1. Catalogs 

2. Project Information 

3. Model EPCU 

 

Two additional modules were added later to the prototype for: 

1. Project Portfolio Management 

2. Reports 

 

Figure 5.1 shows with a Unified Modeling Language (UML) model the packages 

representing the software modules of the prototype designed and developed. 

  

 



72 

 

Figure 5.1  Prototype modules for the use of the EPCU estimation process 
 

The module "EPCU Model" depends for its operation on the module "Catalogs"; similarly for 

the modules "Project Information" and "Project Portfolio Management”. The latter bases its 

operation on the module "EPCU Model". The project portfolio management module uses the 

EPCU model to implement a portfolio approach to software projects estimation (See Chapter 

7). 

 

Finally, the module "Reports" uses the information generated by the modules "Project 

Information" and "EPCU Model" for its operation. 

 

5.2 The functionality for each module 

Each module has a specific objective to facilitate the configuration and usage of the EPCU 

model to make estimates using the EPCU model proposed in this research. The generic 

functionality of each module is described next, together with its use case diagram. 

 



73 

5.3 Module: Catalogs 

The Catalog module maintains the various general information catalogs in the prototype, 

such as those relating to the classification of the operation units where the projects are 

undertaken (Area, Sub Area, Office), generated contexts, and so on. 

 

It also manages the catalog of scenarios: in this catalog, the information for different values 

obtained in the estimation using the EPCU model can be displayed and can be manipulated. 

The basic functionality of the module is (Figure 5.2): adding new records to a specific 

catalog, deleting them and updating the records for each of the catalogs that it handles. 

  

 

Figure 5.2  Use case diagram  of the Catalogs module 
 

 

5.4 Module: Project Information 

The Project Information module records the project information such as: name or location 

within the company, duration and actual cost. Basically it is the basis to generate reports 

filtering out the information about the projects registered in the prototype tool. 

 

The overall functionality of this module is shown in the use case diagram in Figure 5.3. 

  



74 

 

Figure 5.3  Use case diagram  of the Project Information module 
 

This module allows registering new projects for a specific operating unit; it can also provide 

updates to the information registered.  

 

An estimator may require to delete any previous project and this functionality must be 

available. 

 

For a project already registered, it is possible to estimate it using the EPCU tool prototype. 

This estimate is considered as a scenario estimate, which may be registered with the data to 

keep track of the value obtained and the assumptions considered. 

 

5.5 Module: EPCU Model 

The EPCU Model module implements the algorithm of the EPCU model: it can use the data 

recorded in the catalogs and project information modules. 

 

The algorithm of this EPCU Model module allows the estimator to perform the basic actions 

to use the model, such as: 

• Register the name, description and identifier of project contexts. 



75 

• Register the input variables, with all their features, such as: the number of fuzzy sets 

and their respective membership function, the domain of functions, etc. The fuzzy 

sets and their membership functions can also be defined automatically or 

personalized: 

- Automatically implies the division into segments of equitable ranges or domains 

of the function.  

- Personalized implies that the user specifically defines the membership function 

for each fuzzy set. 

• Register an output variable. This is developed with the same characteristics as in the 

input variables and adding the unit of measurement of the output variable. 

• Definition and recording of the inference rules representing the knowledge of the 

experts. 

• Add an input variable; if it is considered necessary to add context variables, this 

functionality involves redefining the rules of inference. 

 

Figure 5.4 shows the use case diagram of the functionality of the module EPCU Model. 

 

 

Figure 5.4  Use case diagram of the EPCU Model module 
 



76 

5.6 Module: Portfolio Management 

This module for the Management of Projects Portfolio is defined to automatically have a 

representation of a quantitative value of two variables in a Cartesian Plane; the variables 

values are gathered using the EPCU model by defining a specific EPCU context. (See 

Chapter 7, the description of the EPCU model to represent a portfolio approach). 

 

To do this, the module uses the definitions of the portfolio held in the form of catalogs. With 

these definitions, several projects based on the contexts defined for the selected portfolio can 

be analyzed. 

 

The result is plotted on a Cartesian Plane which shows the projects and their positions in the 

reference plane. 

 

 Figure 5.5 shows the use case diagram of the functionality for the Portfolio Management 

module. 

 

 

Figure 5.5  Use case diagram of the Portfolio Management module 
 



77 

5.7 Module: Reports 

The module Reports is defined to access the information recorded in the system; the 

information can be filtered based on different criteria and can be presented in tabular or 

graphical reports in various formats. 

 

 Figure 5.6 shows the use case diagram of the functionality for the Reports module. 

  

 

Figure 5.6  Use case diagram of the Reports module 
 

5.8 Database 

For registering the information generated, a relational database was designed to provide an 

adequate infrastructure. The relational diagram of the database is shown in Figure 5.7.  

 



78 

 

Figure 5.7  Relational database diagram for the EPCU prototype 
 

5.9 Platform and Architecture 

The EPCU prototype tool is designed for its use on a single computer (stand-alone) in a two-

layer scheme, managing a database SQLAnywhere 9 and a client version for Windows 

developed in PowerBuilder 10.5.  The architecture of the EPCU prototype tool is shown in 

Figure 5.8. 

  

 

Figure 5.8  Architecture of the EPCU prototype tool 
 

The architecture was defined considering that the use of a Windows-based tool would be 

more intuitive and simpler to operate; it sought to reduce the effort in defining each of the 

settings manually for use. 



79 

With the architecture defined, it could be easily scalable later to a client-server architecture 

considering an organizational database management system (DBMS) and more robustness 

requirements. 

 

5.10 Programming Approach 

The prototype tool was developed using an object-oriented approach. This approach seeks to 

reflect behavior in isolated entities promoting reuse using some key concepts such as: 

• Information Hiding 

• Polymorphism 

• Inheritance, etc. 

 

This will allow for easier maintenance of applications and an easier mechanism for 

scalability. The OO approach is broad and its benefits have been studied, documenting its 

benefits and disadvantages (Budd, 1991; Jacobson, 1998; Booch, 1996; Peñaloza, 1996; 

Sybase, 1996). 

 

5.11 EPCU Context Definition 

For the configuration of an EPCU estimation context in the prototype tool three steps are 

required: 

1. Label the EPCU Context and definition of the input variables 

2. Output variables definition 

3. Inference rules definition 

 

1- For the first step (Label the EPCU Context and definition of the input variables) the 

window in the prototype tool is shown in Figure 5.9.  

  



80 

 

Figure 5.9   Window for labeling the EPCU context and for defining the input variables 
 

Once the EPCU context is labeled and the accept button is clicked, the input variables 

definition section is enabled. The number of variables defined in the labeling of a context, 

is the number of times the variables section will allow to capture the detail for a specific 

input variable. The data necessary to define the input variables are: the number of 

linguistic values (“# Rangos”), the membership function domain, begins in (“inicia en”) 

and ends to (“termnina en”). The labels of the linguistic values are required too ("Nombre 

Rangos”).  

 

By default the membership function domain is divided into equal segments for each 

linguistic value. 

 

2- The process to define the output variable (step 2) is similar to the definitions of the input 

variables; however, in this step the measurement unit (“unidad”) of the output variable is 

required. The window for step 2 is shown in Figure 5.10. 



81 

 

Figure 5.10  Tool Prototype: Window for the definition of the output variable 

 

In order to capture the output variable data, the EPCU context must be selected first. The 

prototype tool may have several EPCU contexts. 

 

3- Once the steps 1 and 2 are defined, the definition of the inference rules is needed. To do 

step 3, the possible combinations of the linguistic values for each input variable are 

determined automatically.  

 

The inference rules are shown in a window one by one, in order to define the relation to 

the output variable - see Figure 5.11. 

  

 

Figure 5.11 Tool Prototype: Window to define the inference rules 



82 

5.12 EPCU Context Use for Estimation 

After the configuration of the EPCU context in the prototype tool, the EPCU context can be 

used at any time. In order to use any EPCU context defined, the estimator has to go through 

the following steps: 

1. Select the EPCU context to use 

2. Provide a valid value for each input variable  

3. Execute the process 

 

1. In step 1, a window with the list of the EPCU contexts available is presented, where the 

estimator selects the EPCU context to use:  the input variables associated are then shown 

(Figure 5.12). 

  

 

Figure 5.12 Tool Prototype: Use of specific EPCU context 
 

2. After the input variables are shown, the value for each one is provided by the estimator 

using the scrollbar. The minimum value is 0, the maximum is 5, and the step increment is 

0.5. (i.e. [0,5] used in this research) 



83 

3- After the values for the input variables are provided, the execution of the estimation 

process is executed (“Aplicar EPEI2”). The process makes the fuzzification, inference rules 

execution and defuzzification. The estimated value is presented next by the tool. 

 

5.13 Aditionnal Functionality 

The example of the windows used in other functionality like estimation scenario registration, 

reporting and portfolio approach, are shown in figures 5.13, 5.14 and 5.15 respectively. 

 

 

Figure 5.13 Tool Prototype: Estimation scenario registration 

                                                 
2 EPEI is the translation of the EPCU to Spanish language 



84 

  

Figure 5.14 Tool Prototype: Graphic report window 
  



85 

 

Figure 5.15 Tool Prototype: Portfolio approach Window 
 

The use of this EPCU prototype tool will permit in the next research phase to focus the 

research efforts on the analysis of the results to analyze the performance, benefits and 

constraints of the EPCU model, thereby minimizing the effort necessary for the information 

recording and manipulation of data during and after the experiments. 

 



 



 

CHAPITRE 6 
 
 

 EXPERIMENTATION 

6.1 Introduction 

The major challenge for the experimentation phase of this research is that while the software 

projects estimates must be done “a priori” in the very early phases of the projects, there is a 

typically large elapsed time before the projects themselves are completed and the ‘true’ 

values of effort, duration and costs can be known with certainty in order to verify whether or 

not the estimates were the right ones. 

 

Considering this challenge, the experimentation was designed to test the process in a context 

similar as in the early phases. Therefore, the experimentation methodology proposed 

considers three scenarios: 

• Scenario A. A specific EPCU context will be used to estimate real projects completed 

in industry, but using – for estimation purposes - only the information that was 

available at the beginning of these projects.  

o The projects selected for the experimentation are real industry projects with 

distinct features, and including the information on the early contexts of each 

project. Such early information was provided by the project leader/project 

manager or a set of persons who were involved in these projects.  

o In this scenario A, the real values of the projects at completion time are 

known: the verification of the estimates generated using experience-based 

approach and using the EPCU model will be done using the real data as is an 

“a posteriori” approach. 

 

• Scenario B. In this scenario B the estimates are made before the projects are 

developed, but the real values for these projects are therefore not available for 

comparison purposes. This is an “a priori” approach to estimation. 



88 

o In this scenario B, several rounds of estimations will be generated in order to 

get more opinions about the possible final values (sensibility analyis); these 

extra rounds of estimation are sometime called “risk analysis”.  

 

• Scenario C. In order to address the lack of information in scenario B, a simulation 

experiment will be made:  

o A subset of finished projects from the scenario A will be estimated by people 

who have not been involved in these projects (independent estimators): this 

means that the people that estimate a specific project just know the 

preliminary requirements as if the project were to be developed later (i.e. 

using only the information available at the beginning of these projects).  

o Two estimates are produced for each project and estimator: one estimate is 

made by the estimator himself using his experience-based approach and 

estimation is obtained using the EPCU model. The contexts used in the EPCU 

model were defined and tested in the Scenario A.  

o For both estimations, the people consider the description of the software 

requirements as they were described in the early phases for the real projects.  

 

These three sets of experiments provide the opportunity to analyze how the experience of the 

experts stored in the rulebase can be used by other people with distinct experience and skills 

(this is referred to in this thesis as:  experience systematic replication). 

 

On the basis of the results of these experiments, the comparison of the estimation 

performance of the EPCU model with the expert judgment estimation approach will be 

analyzed too.  

 

 



89 

6.2 Experiments Design 

6.2.1 Roles of the participants in the experiments 

Conducting the experimentation required two different roles:  

1. The expert who provides the information for the configuration of the EPCU model for the 

context of any project to be estimated (i.e. the EPCU “context”). This is the individual 

from the organization providing the information about the projects who selects and 

defines the input variables (i.e. the independent variables, the output variable (i.e. the 

dependent variable) to be estimated (here: project duration/effort), and the inference rules 

to be applied for estimating any project with the EPCU model. These participants are 

named Experts.  

2. The independent estimators: the participants who did not participate in the project and 

who had access only to the preliminary requirements of the project. Their assignment of 

values for the input variables for a specific project is requested in order to estimate 

projects using the EPCU model. These participants are named Practitioners.  

 

In some scenarios, the Practitioners and the Experts roles will be played at least by the same 

person: 

• In scenario A, the Expert(s) define the EPCU context for estimating a known project. 

The same person(s) will also act in the practitioner role for assigning the inputs 

values using the EPCU context generated, sometimes additional practitioners were 

included, however they do not play as experts. The estimate will be produced by 

the EPCU model, not by the ‘expert’. 

• In scenario B the person who plays the expert role,  will play the practitioner role too; 

sometimes there are other practitioners who do not play as experts, but for the 

projects in this scenario, the real value of the output variable (i.e. the duration of 

the project completed) is not available for comparisons. 

 

The practitioners in the scenario C will not be familiar with the details of the software 

projects or with the organization’s development contexts: the only basis that they will have 



90 

for estimation purposes will be their own experience. In this scenario C, two sets of estimates 

will be produced for the duration for a specific project: 

• Using their ‘own’ experience-based approach, and  

• Using the EPCU context generated for the specific project.  

 

6.2.2 Experimentation phases 

The experimental design consists of 3 phases: 

 

Phase 1: 

 

Involvement of project ‘experts’ for the data collection and preparation of the base material 

for the experiments, such as:  

a) the description of the software requirements as they were described in the early 

project phases. 

b) the descriptions of the input variables for each project (i.e. the software requirements 

and the context of the projects),  

c) the recording of the ‘experts’ estimates that were on records at the beginning of the 

projects and the corresponding real values upon completion of the projects, such as 

project duration. This project information is provided by the experts: most of the 

times, these experts had the responsibility of the estimation of the projects. This 

estimation was made in two ways: with a group of people related to the project and 

sometimes only by the expert (this is influenced by the size of the organization).  

 

Phase 2: 

 

Involvement of the practitioners for assigning the values to the input variables for each of the 

projects to be estimated using the corresponding EPCU context. The value assignment is 

made using experienced judgment approach (for the scenarios A and B, the same person(s) 

plays the practitioner(s) and expert(s) role(s)). 



91 

 

Phase 3: 

 

Data Analysis 

 

6.3 Phase 1 - Involvement of the project experts for the data collection and 
preparation of the base material for the experiments 

1.  Selection of a set of 19 completed projects.  

This step consisted of identifying a set of completed projects with the information necessary 

for the experimentation with the 3 scenarios: 19 projects were obtained from distinct 

organizations. All of the projects were real projects that had been completed or in feasibility 

phase in these organizations. The information for configuring the EPCU model (i.e. 

providing the context information for each project) was provided by the organization’s 

experts (for scenarios A and B, the organizations’ experts played the roles of both the experts 

and the practitioners) - see Table 6.1: 

• for the scenario A, 16 projects were used, 

• for the scenario B, 3 different projects were used, and 

• for the scenario C a subset of 5 projects from the 16 projects  in  scenario A.  

 

Table 6.1   The 19 projects used in the 3 scenarios 

 SCENARIO Number of 

PROJECTS 

Number of 

PRACTITIONERS 

Number of 

EXPERTS 

Scenario A 16 projects 41 31 

Scenario B 3 projects 13 7 

Scenario C 
(Projects 1, 3, 4, 5, 6) 

5 projects (a subset of 
the 16 projects of 
scenario A) 

84 8 

TOTAL 19 projects 138 38 

 

 

 



92 

 

2. Description of the software requirements and the development context.  

In this step, the expert provided a description of the software requirements and also described 

the context in which each project was developed.  

 

An EPCU “context” is defined as a set of variables (i.e. the inputs/output of the estimation 

process) and the relations that affect a specific project or a set of similar projects (i.e. the 

rulebase).  

 

For each distinct project, the corresponding information that was available in each 

organization at the time of the project’s inception (that is, the independent variables known at 

project’s inception when an “a priori” estimation is typically performed) were re-

documented, even though the projects were actually completed and the experts had also all 

the information on the completed project. 

 

This re-documentation of the early software requirements was based on the availability of 

project documentation in each participating organization and in the experts’ recollections, as 

illustrated with the following example: 

“The project is a .NET project to develop a B2B system for controlling the operations of 

shipping, transportation and delivery of packages for specialized organizations such as DHL 

or UPS. In addition, the B2B system must provide for contract and shipping management, 

package tracking, and so on”. 

 

The description of the context refers to the relevant factors that were present during project 

development. Most often, these factors are related to the process, the people, the 

organizational environment, and so on. For example: 

“The responsibility of the entire project was assigned to a person who had a very good 

understanding about the problem domain and of the tool in which the project was 

developed”. 

 



93 

 

3. Configuration in the EPCU prototype tool: definition of the context  

Using the information described in the previous step, the prototype tool that implements the 

EPCU model must be configured. This means that for a specific EPCU “context” a setup 

must be made in the EPCU prototype tool in order to have the possibility of generating 

estimates using the context defined in the previous step (Step 2). 

 

The configuration or tool setup was made by the researcher. The steps of setup the EPCU 

context in the prototype tool (See Chapter 5) are: 

• Assign a name for the specific context. 

• Configure the input variables involved, with the membership function provided by the 

expert. 

• Configure the output variable, whit the membership function provided by the expert. 

• Configure the rulebase to be executed during estimation. 

 

Once the context is setup in the EPCU prototype tool, using it for estimation purposes is 

relatively easy: what is needed is only the assignment of the input values by the practitioner 

role for the input variables defined for the EPCU context.  

  

6.4 Phase 2 – Involvement of the practitioners in selecting ”a priori” input values 
for each of the projects to be estimated. 

1. Collection of the values assigned by the practitioners for the input variables for each 

EPCU context used for estimating a specific project.  

For this step, the practitioners were provided with the following information: 

• a description of the software requirements (which were documented earlier in Phase 1 

by the experts),  

• a description of the development context in which each software was developed or 

will be developed (as provided in Phase 1 by the experts), and  

• a questionnaire form (Annex XII) designed to gather from the practitioners their 

assignments of values for the input variables for each EPCU context defined to 



94 

estimate each project. The value assignment is materialized within a 0 to 5 range ε R 

(see Chapter 4). In this questionnaire, an estimate of the output variable, using their 

own experience as practitioners, is requested too.  

 

Using the descriptions of the software requirements and of the development context, the 

practitioners provide an opinion on each input variable (i.e. value assignment) defined in a 

specific EPCU context generated, based on their own experience.  

 

The values assigned for the input variables were collected from 138 practitioners (See Table 

6.1) from 2005 to 2009, and estimates of the dependent output variable were generated using 

the EPCU model.  

 

The different ways in which the information from the practitioners was acquired are: 

1. Personal interviews. 

2. Electronic data collection: an email sent to people known by the researcher.  

3. Data collection within the context of courses within a continuous education program at 

an Institute in Mexico (Instituto Tecnológico Autónomo de México - ITAM). The 

questionnaires were distributed personally by the researcher. 

4. Data collection during conferences. Questionnaires were also distributed by the 

researcher at two software measurement conferences: 

• Squeeze your Metrics (Sácale jugo a tus métricas), November 5th 2008, Circuito 

Tecnológico SE-AVANTARE, México D.F. 

• Expo TI 2008, Taller de Técnicas de Estimación, November 19th y 20th 2008, 

CANACINTRA, México, Puebla. 

 

For each input variable, the participants had to select values within a range from 0 to 5 ε R  

(0 being the lowest and 5 the highest).  

 

3. Collection of the practitioners own ‘expert judgment’ estimate for the duration of 

each project: in this step, the practitioners provided a duration estimate for each project 



95 

(in months, weeks, or days) using the descriptions of the software requirements and of the 

development contexts, as well as their own experience. 

 

6.5 Phase 3 - Scenario A. Data analysis of 16 completed projects 

For this scenario A, 16 projects were estimated.  

 

Using the model configured in the prototype tool for the first 16 distinct EPCU contexts, the 

41 persons (See Table 6.1) who participated in the phase 2 as practitioners provided a value 

assignment on each input variable configured.   

 

An analysis of the performance of the EPCU model is presented next (see ANNEX II for 

more details).  

Table 6.2   Number of people who participated as practitioners, by project 

 

 

 



96 

Figures 6.1 to 6.4 are used to analyze the performance of the EPCU model. Each figure 

presents the real value of the duration of the project, as well as the value estimated by the 41 

practitioners for the first 16 of the 19 projects. The figures 6.1 to 6.4  show in the “y” axis the 

project duration in calendar months and, in the “x” axis, identification number of each of the 

the 41practitioners.  

  

Figure 6.1 presents the real value (in blue) and the duration estimates in months (in red) 

provided by the 41 practitioners using the experience-based approach. Table 6.2 shows how 

many people participated as both expert & practitioner in scenario A. 

 

 

 

Figure 6.1  Scenario A – Duration: real values and experience-based judgment estimates (41 
estimates without EPCU) 

 

In Figure 6.1, it can be observed graphically that all (100%) of the duration estimates using 

the experience-based judgment approach were underestimated against the real value: the 



97 

lowest underestimate is at 15% (practitioners 7, 8, 9) and the highest underestimate is at 83% 

(practitioners 32, 33). 

 

Figure 6.2 presents the duration estimates (in green) provided by the EPCU model for the 

values of the inputs provided by the 41 practitioners for these 16 projects (real duration 

values in blue). In this Figure 6.2, it can be observed graphically that the EPCU model:  

• underestimates the project duration for the inputs provided by 25 practitioners (i.e. 

61%), and  

• overestimates for the inputs provided by the other 16 practitioners (i.e. 39%).  

 

The smallest underestimate is 4% (practitioner 40) and the highest underestimate is 39% 

(practitioner 32) while the lowest overestimate is 3% (practitioner 4) and highest 

overestimate is 50% (practitioner 35). 

 

 

Figure 6.2  Scenario A – Duration: Real value and EPCU model estimaties (41 estimates) 
 

 



98 

Figure 6.3 presents the duration estimates provided by the 41 practitioners using the 

experience-based approach (in red), and the duration estimates provided by the EPCU model 

(in green) for the same 41 practitioners for the 16 projects.  

 

Figure 6.3  Scenario A – Duration estimates:  EPCU model  and experience-based judgments 
(41 estimates) 

 

Figure 6.4 presents next the comparison of the results from the experience-based approach 

(in red), the EPCU model approach (in green) and the real value (in blue) for the duration of 

these 16 projects. 

  

 



99 

 

Figure 6.4   Scenario A – Duration: Real values, EPCU  and Expert Judgment estimates (41 
estimates) 

 

From Figures 6.1, 6.2 and 6.3, it can be observed that there are a number of differences 

between the EPCU estimation results and the experience-based estimation results - See 

Figure 6.4:  

• 100% of the projects were underestimated by the experience-based approach, and  

• the estimates provided by the EPCU model for the same practitioners were either 

underestimated (61%) or overestimated (39%).  

 

The descriptive statistics about the MRE for both the EPCU model estimates and the 

experience-based approach are shown in Table 6.3, using the statistical tool SPSS v 17: it can 

be observed that the mean of MRE (MMRE) of 17.5% for the duration estimates for the 

EPCU model (rightmost column: MRE_EPCU) is much lower than the MRE  of 46.6% for 

the duration estimates from the experience-based approach (left column: 

MRE_EXP_JUDG:). The standard deviation (SDMRE) has a similar effect: 12.4% using the 

EPCU model and 22.7% with the experience-based approach. 



100 

Table 6.3   Scenario A: Descriptive statistics of the MRE (experience-based                          
and EPCU approach – 41 estimates) 

 
  MRE_EXP_

JUDG 

MRE_EPC

U 

N Valid 41 41 

Missing 0 0 
 Mean .4661 .1751 

Median .4900 .1490 

Mode .20a .00 

Std. Deviation .22664 .12393 

Variance .051 .015 

Skewness .018 .946 

Std. Error of 

Skewness 

.369 .369 

Kurtosis -1.311 .199 

Std. Error of Kurtosis .724 .724 

Minimum .15 .00 

Maximum .83 .50 

Sum 19.11 7.18 
 

From Table 6.3, it can be observed that the estimates using expert judgment have a greater 

dispersion than the estimates generated using the EPCU model: when the kurtosis coefficient 

is greater than 0, this means that the data are more concentrated to the mean. This is the case 

for the MRE when EPCU is used. In the Expert Judgment approach the kurtosis coefficient is 

less than 0: this mean that the data are not concentrated to the mean, confirming a high 

dispersion.  

 

The histograms of these analyses are shown in Figures 6.5 and 6.6. In these figures the x axis 

represents a MRE range determined by the tool (SPSS v 17) and the y axis represent the 

frequency, or the number of estimates in a specific range: i.e. in Figure 6.5 for the range 60% 

< MRE ≤ 70% the frequency is 12 cases with a MRE value within this high MRE range.  



101 

 

Figure 6.5  Scenario A: MRE experience-based approach distribution (41 estimates) 
 

 

Figure 6.6  Scenario A: MRE EPCU approach distribution (41 estimates) 
 

The skewness reflects the fact that there are more estimated points with smaller MRE than 

with larger MRE. The “cut-off” of the left side of the distributions in particular with the 

EPCU estimates means that there is no perfect estimate with error = 0. 



102 

In summary, in this scenario A of experiments, the EPCU estimation approach performed 

considerably better than the experience-based approach. 

 

6.6 Phase 3 - Scenario B. A priori estimation data analysis 

The purpose of this scenario B is to simulate the “a priori” approach, making several rounds 

of estimations in order to get more opinions about the value of the dependent variable (i.e. 

the output variable: project duration (for projects 17 and 19), effort (for project 18) ). 

Scenario B included 3 additional projects in which information was available only for their 

very early phase: that is, for this scenario B, the final values of the output variable for the 

development of these 3 projects are not known: two projects were never developed, and the 

third one is still in progress.  

 

Tables 6.1 and 6.2 show that 13 people were involved as practitioners for the three projects 

17 to 19. For this scenario B, 7 people play both the role of experts to define the EPCU 

context and the role of practitioners to provide the input values to the EPCU model. 6 people 

play just the practitioner role. 

 

As experts they defined the input variables to be used, the output variable and the inference 

rules: this means that they defined the EPCU context. As practitioners, they used next the 

EPCU context to provide the input variables for a specific project. 

 

The 3 projects used in this scenario were from distinct organizations; for this reason, the 

experts/practitioners who participated were distinct for each project. Each project used 

distinct EPCU context because there were distinct. 

 

The experiments procedures for each of these 3 projects are presented next. 

 

 

 



103 

Project 17 experiment 

The first project in this scenario B (project 17) consists in an Oracle data mart development. 

The estimation using the proposed EPCU model was made by 4 practitioners (a single one of 

them played the role of expert to define the EPCU context).  The 4 estimates were generated 

using the EPCU model. Each estimate reflects the point of view of each person who assigned 

the values to the input variables.   

 

In order to gather an additional estimation that considers all the opinions previously obtained 

by the experts for each of the inputs values, an average is calculated for each input variable 

using the values assigned by the 4 practitioners (Estimation using the average of the input 

variables estimat, rightmost column in Table 6.4).  

 

Table 6.4   Scenario B - project 17: Duration estimates for each participant 

  
Project 

Manager Analyst 1 Analyst 2 Analyst 3 
Average of 

inputs variables 

EPCU model 5.3 3.8 5.9 5.3 4.5 

 

Project 18 experiment 

The second project in this scenario (Project 18) is from the insurance industry. The EPCU 

context was configured and evaluated by 5 people, that mean, all 5 play the expert role 

participating in the configuration of the EPCU model as a group, next the 5 people 

individually act as  practitioners to estimate using the EPCU context configured for the 

Project 18; the ouput selected as the dependent variable was the project effort, in person-hour 

units. The estimation for this project was therefore related to the effort. The 5 practitioners 

who assigned the values for the input variables defined in the EPCU context also provided 

each an effort estimate based on their own experience, the effort gather by the 5 people in a 

estimation-work meeting using the experience-based approach. A sixth effort estimate 

(rightmost column in Table 6.5) was generated using the average of the values assigned by 

the 5 practitioners for each input variable.  

 



104 

Risk Analysis 

A risk analysis was developed in order to visualize what could happen in terms of the output 

variable if one of the input variables reaches a risky boundary.  

 

In order to simulate the presence of the risk, the researcher selected one of the boundary 

values for one variable at a time (lower [0] or higher [5]) keeping the average of the opinions 

for the other input variables. 

 

A. Individually risk analysis 

Taking as the basis the average value assigned for each input variable, one input variable at a 

time was evaluated in the risky boundary. This generated five EPCU estimates (in Table 6.6, 

these are labeled from scenarios 7 to 11). 

 

B.- Combined risk analysis 

The risk of the input variables does not necessarily need to be isolated: this means that, if one 

variable is risky, not all the other input variables are not risky, indeed, there is a high 

possibility that several variables may be also risky at the same time. 

 

In order to analyze this situation, the researcher combined the individual risk analysis to 

several variables at the same time. This generates 6 distinct EPCU estimates (in Table 6.6 

these are labeled as scenarios 12 to 17). 

 

Table 6.5 shows the first 6 opinions generated by the experts identified by the role played in 

the organization who estimate the project. In Project 18, all the estimates are in person-hours 

(For more details, see ANNEX IV). The experience-based estimation for this project in 

which all the roles described in Table 6.5 participated was 2,209 person-hours. 

 

 

 

 



105 

Table 6.5   Scenario B- Project 18. Effort estimates (in person-hours) for each practitioner 

Variables 
Operation 
Manager 

Technology 
Manager 

Sales 
Manager 

Chief Operations 
Manager 

Project 
Leader 

Average of 
input values 

EPCU model 2201.8 1561.4 1528.7 1561.3 1652.7 1687.2 
EXPERIENCE 
BASED 
ESTIMATION 2209.4 2209.4 2209.4 2209.4 2209.4 2209.4 

 

Table 6.6 shows the risk analysis estimates developed by the researcher taking as a basis the 

average of the opinions. 

 

Table 6.6   Scenario B - Project 18 Risk analysis: Effort estimates generated by the EPCU 
model 

 

Project 19 

The third project (project 19) is from the financial industry. This project has two main 

constraints: the window timeframe is about 30 months (the stakeholder (CIO) judgment 

approach) and the development team has to introduce the PSP and TSP practices (the staff 

was not familiar with these new software development practices). 

• The Personal Software Process (PSP) and Team Software Process (TSP) are software 

process improvement technologies developed by the Software Engineering Institute 

(SEI) that aim to improve the performance of software teams. The PSP and TSP 

merge concepts from the Software Capability Maturity Model (SW-CMM), statistical 

methods, and team behavioral theory into an integrated process that directly benefits 

the individuals and teams who are responsible for producing and maintaining 

software. 

Individually risk analysis  Combined risk analysis 

Variables 
Scenari

o 7 
Scenario 

8 
Scenario 

9 
Scenario 

10 
Scenario 

11 
Scenario 

12 
Scenario 

13 
Scenario 

14 
Scenario 

15 
Scenario 

16 
Scenario 

17 

EPCU 
model 1716.8 1995.3 2170.3 2050.6 2288.6 2330.2 2571.6 2685.4 2841.4 2966.1 3750.0 
EXPERIEN
CE BASED 
ESTIMATI
ON 2209.4 2209.4 2209.4 2209.4 2209.4 2209.4 2209.4 2209.4 2209.4 2209.4 2209.4 



106 

For this third project, 5 duration estimates were generated using the EPCU model: 4 directly 

by 4 practitioners (one of them play the expert role too) and 1 estimate using the average of 

the values assigned by the 4 practitioners for each input variable. The detailed data are 

presented in ANNEX V.  

 

Table 6.7 presents the duration estimates in comparison to the pre-set deadline of 30 calendar 

months.   

 

There is an important observation relating to Table 6.7: the ‘expert judgment’ value of a 30 

months deadline (i.e. duration was estimated by the CIO of the organization using his own 

experience) which led to this deadline being transformed into a constraint for this project.  

 

Table 6.7   Scenario B – Project 19: Duration Estimates generated by the EPCU model 

Practitioner 1 Practitioner 2 Practitioner 3 Practitioner 4 Average 

EPCU 40.0 38.1 54.0 32.0 39.1 

CIO Constraint 30 30 30 30 30 

 

As can be seen in Table 6.7, all duration estimates generated by the EPCU model using the 

input variables assigned by the practitioners were over the 30 months deadline: the input 

values provided by practitioner 4 led to the lowest difference (2 months after the deadline), 

while the highest difference (14 months after the deadline) came from the input values 

provided by practitioner 3. 

 

6.7 Phase 3 - Scenario C. A priori estimation - Projects simulation data analysis 

6.7.1 Experiment context and initial data analysis 

On the one hand, the purpose of scenario C is to simulate an “a priori” estimation process. 

On the other hand, scenario C is used to compare the performance of the experience-based 

estimation approach against the EPCU estimation approach. This scenario can represent a 

systematic replication of the estimation expertise (experience systematic replication) that the 



107 

experts have embedded in the EPCU model through their selection of the input variables and 

their selection of ranges of values for these variables, as well as for the output variable. 

 

A total of additional 84 practitioners participated in the experiment for this scenario C. These 

84 practitioners had not been involved with the projects to be estimated, and were not the 

same people who participated in scenarios A or B. These practitioners had a large variation 

of experience, skills and background; they were therefore classified into three categories 

according to: 

1. their professional experience, 

2. their software development experience, and 

3. whether or not their profession is IT-related. 

 

• Each of the 84 practitioners participating in the experiment filled the research 

questionnaire (ANNEX XII) and had to assign values for the input variables listed in 

it for 5 projects: these 5 projects (Projects 1, 3, 4, 5, 6) are a subset of the 16 projects 

from the scenario A.  

• Each of the practitioners also had to provide an experience-based approach estimate 

of the duration for each of these 5 projects.  

 

The full data sample is presented in ANNEX VI, ANNEX VII. ANNEX VIII. ANNEX IX, 

ANNEX X. 

 

This scenario has: 

• The practitioners own experience-based estimates (i.e. without the use of the EPCU 

model).  

• The estimates obtained for the 5 projects using the EPCU model with the value 

assignment for the input variables from the 84 practitioners. 

 



108 

The data were analyzed and the descriptive statistics were provided by the SPSS 17 statistical 

software: the results are shown in Table 6.8 where the mean of the MRE (MMRE) for each 

project are: 

A) MRE of experienced-based estimates 

• MRE_EJ_P1 = 47.8%,  

• MRE_EJ_P2 = 57.4%,  

• MRE_EJ_P3 = 111.9%,  

• MRE_EJ_P4 = 54.6%,  

• MRE_EJ_P5 = 53.6% 

 

B) MRE of EPCU model estimates 

• MRE_PCU_P1 = 54.6%   

• MRE_PCU_P2 = 16%,  

• MRE_PCU_P3 = 41.3%,  

• MRE_PCU_P4 = 34.8%,  

• MRE_PCU_P5 = 21.6% 

 

Table 6.8   Scenario C: Descriptive MRE statistics for the 5 projects (Pi) using the 
experience-based approach and the EPCU model – 84 practitioners (Valdès, 2010) 

  

MRE_EJ_P1 

MRE_EPC

U_P1 

MRE_EJ_

P2 

MRE_EPC

U_P2 

MRE_EJ_

P3 

MRE_EPC

U_P3 

MRE_EJ_

P4 

MRE_EPC

U_P4 

MRE_EJ_

P5 

MRE_EPC

U_P5 

N Valid 52 84 52 84 52 84 53 83 51 83

Missing 32 0 32 0 32 0 31 1 33 1

Mean .4779 .5462 .5740 .1596 1.1185 .4132 .5464 .3378 .5362 .2157

Median .5000 .6500 .6700 .1400 .7800 .3700 .4900 .1700 .5000 .2400

Std. Deviation .41544 .30635 .29000 .11289 1.11629 .30296 .44459 .30996 .24901 .13404

Variance .173 .094 .084 .013 1.246 .092 .198 .096 .062 .018

Skewness 1.050 .616 -.560 1.291 1.673 .365 2.860 1.249 -.207 1.334

Kurtosis 2.087 1.216 -.700 1.692 2.236 -1.229 12.760 .725 -1.053 2.839

Minimum .00 .01 .00 .01 .00 .01 .06 .05 .00 .03

Maximum 2.00 1.55 1.00 .50 4.33 .94 2.83 1.20 .97 .75



109 

The whole output for the statistic analysis with SPSS 17 is presented in ANNEX XI. 

 

6.7.1.1 Performance of the EPCU model 

The performance of the use of the EPCU model is evaluated in Table 6.9 (with 4 of the 

evaluation criteria described in Chapter 1) for the 5 projects with the information provided in 

input by the 84 practitioners.  

 

It can be observed from Table 6.9 that: 

• the best MMRE (i.e. the lowest) is obtained using the EPCU context when estimating 

project 2: 16%. 

• the worst MMRE (i.e. the highest) is obtained using the EPCU context when 

estimating project  for project 1: 55%. 

 

If the MMRE is considered as the key criterion, the best rulebase performance is for project 2 

(MMRE = 16%) and project 5 (MMRE = 22%), while projects 4, 3 and 1 have an MMRE of 

24%, 41% and 55% respectively.  

 

Considering next the coefficients of prediction better than 25%, the Pred(25%) criterion 

(bottom line of Table 6.9) are as follows:  

• The most accurate estimation is obtained with the rulebase for project 2, with a 

prediction level of 85%, and project 5, with a prediction level of 80%.  

• The least accurate estimation is obtained for project 1, with a prediction level of only 

21%. 

Table 6.9   Scenario C: Performance Estimation results using the EPCU model for 5 projects 
(Valdés, 2010) 

 Criteria & 
Projects P1 P2 P3 P4 P5 
MMRE 55% 16% 41% 34% 22% 
MdMRE 65% 14% 37% 17% 24% 
SDMRE 31% 11% 30% 31% 13% 
Pred(25%) 21% 85% 42% 58% 80% 



110 

6.7.2 Experience systematic replication 

The next set of analyses with Scenario C investigates whether or not the performance of the 

EPCU model is influenced by the expertise of the practitioners who evaluated the input 

variables of the projects to be estimated. For this type of analysis, the following sub-samples 

were identified:  

1. Practitioners with more than or equal to 10 years of professional experience (or with 

less than or equal to10 years of professional experience). 

2. Practitioners with more than 5 years in software development experience (or with less 

than or equal to 5 years in software development experience).  

3. IT related professionals (or non-IT related professionals). 

 

The sub-sample sizes for each project (including the full sample and the sub-sample for each 

classification category) are shown in Table 6.10. It is to be noted that in the questionnaires 

filled out, some of the “practitioners” did not include the information necessary to classify 

them into a specific category. Therefore:  

• the sub-sample size for each category varies from 25 to 59 practitioners, as illustrated 

in Table 6.10.  

• for project 5 in the categories “Practitioners with more than 5 years of experience in 

software development’ and “Practitioners with less than or equal to 5 years of 

experience in software development”, the sum of the sub-samples for each one is 75: 

this means that some of the people did not include the necessary information to be 

classified into one of either categories.  

• for projects P4 and P5, one practitioner did not provide all of the information for the 

inputs variables: therefore, the full sample size for projects P4 and P5 is 83 instead of 

84 practitioners. 

 

 

 

 



111 

 Table 6.10 Scenario C – Sub-sample sizes by classification of practioners for each project 
  FULL 

SAMPLE 
MORE THAN 5 
YEARS 
EXPERIENCE 
IN SOFTWARE 
DEVELOPMENT 

LESS OR 
EQUAL THAN 5 
YEARS 
EXPERIENCE 
IN SOFTWARE 
DEVELOPMENT 

MORE OR 
EQUAL THAN 10 
YEARS  
PROFESSIONAL 
EXPERIENCE 

LESS THAN 10 
YEARS  
PROFESSIONAL 
EXPERIENCE 

NON IT 
PROFESSIONALS 

IT 
PROFESSIONALS 

P1 Number of 
Practitioners  

84 31 44 45 39 25 59 

% 100% 37% 52% 54% 46% 30% 70% 

P2 Number of 

People 
84 31 44 45 39 25 59 

% 100% 37% 52% 54% 46% 30% 70% 

P3 Number of 

People 
84 31 44 45 39 25 59 

% 100% 37% 52% 54% 46% 30% 70% 

P4 Number of 

People 
83 31 43 45 38 25 58 

% 100% 37% 52% 54% 46% 30% 70% 

P5 Number of 
People  

83 31 43 45 38 25 58 

% 100% 37% 52% 54% 46% 30% 70% 

 
 

The performance of the use of the EPCU model for each of the sub-samples of data related to 

the practitioners classification that was identified in Table 6.10 is evaluated using the same 4 

criteria: MMRE, MdMRE, SDMRE and Pred(25%). 

 

The quality criteria obtained by each classification for each of the 5 projects with the 84 

practitioners for each project is shown in Table 6.11. 

 

For all the practitioner’s classification, it can be observed that the EPCU model performance 

is similar to the full sample. The highest MMRE is for Project 1, followed by Project 3, 

Project 4, Project 5 and finally Project 2. 

 

 

 

 



112 

Table 6.11 Scenario C: Performance of the EPCU model, by project, and by                   
practitioners’ categories 

 

  FULL 
SAMPLE 

MORE THAN 5 
YEARS of 

EXPERIENCE 
IN SOFTWARE 

DEVELOPMENT 

LESS THAN OR 
EQUAL TO 
YEARS of 

EXPERIENCE 
IN SOFTWARE 

DEVELOPMENT 

MORE Than OR 
EQUAL to 10 
YEARS off 

PROFESSIONAL 
EXPERIENCE 

LESS THAN 10 
YEARS of 

PROFESSIONAL 
EXPERIENCE 

NON IT 
PROFESSIONALS

IT 
PROFESSIONALS 

 Number of 
practitioners 

84 31 44 45 39 25 59 

P1 MMRE 55% 54% 55% 59% 55% 52% 56% 

MdMRE 65% 54% 63% 67% 65% 51% 67% 

SD MRE 31% 30% 33% 30% 31% 31% 30% 

Pred(25%) 21% 23% 23% 16% 46% 20% 22% 

Number of practitioners 84 31 44 45 39 25 59 

P2 MMRE 16% 17% 14% 16% 16% 18% 15% 

MdMRE 14% 14% 14% 14% 15% 17% 14% 

SD MRE 11% 11% 11% 12% 10% 11% 11% 

Pred(25%) 85% 84% 89% 82% 87% 84% 85% 

Number of practitioners 84 31 44 45 39 25 59 

P3 MMRE 41% 44% 40% 40% 43% 46% 39% 

MdMRE 37% 52% 32% 35% 38% 51% 30% 

SD MRE 30% 31% 31% 29% 32% 28% 31% 

Pred(25%) 42% 39% 45% 42% 41% 32% 46% 

Number of practitioners 83 31 43 45 38 25 58 

P4 MMRE 34% 31% 37% 32% 36% 27% 37% 

MdMRE 17% 17% 17% 17% 17% 17% 17% 

SD MRE 31% 30% 32% 31% 31% 27% 32% 

Pred(25%) 58% 61% 56% 60% 55% 64% 57% 

Number of practitioners 83 31 43 45 38 25 58 

P5 MMRE 21% 24% 19% 23% 19% 22% 21% 

MdMRE 24% 24% 21% 24% 23% 24% 24% 

SD MRE 13% 16% 11% 15% 11% 12% 14% 

Pred(25%) 80% 71% 91% 76% 87% 76% 81% 

 

 

From Table 6.11, it can be observed that the performance ofthe EPCU model presents a low 

variation, whatever the skills levels of the practitioners. In particular,  

 For Project 1 :  

• the maximum MMRE is 59% and the minimum, 52% with little variation; 

• the highest SDMRE is 33%. 

• there is a much wider range of values for Pred(25%): from 16% to 46%. 



113 

 For project 2: 

• the differences across MMREs are small (highest MMRE is 18% and the lowest is 

14%).  

• the highest SDMRE is 12%, 

• the Pred(25%) is one of the highest in this experiment (between 82% and 89%). 

 

 For project 3 :  

• the difference between the maximum and the minimum MMRE is 7% with the worst 

MMRE is 46% and the best is 39%;  

• the highest SDMRE is 32%, the best is 28%; 

• the range for the prediction criteria Pred(25%) is from 32% to 46%. 

 

 For projects 4 and 5:  

• the MMRE worst values are respectively 37% and 24%.  

• the highest SDMRE are respectively 32% and 16%  

• the Pred(25%) for project 4 varies from 55% to 64% (i.e. more than 50% of the 

sample has an error of less or equal to 25%). For project 5, the value range is better - 

from 71% to 91%. 

 

In summary, all of the SDMRE values are less than 50% and most of the MMRE are lower 

than 50% - only project 1 has its MMRE over 50%.  

 

An important observation is that the estimation exercise in scenario C was carried with 

conditions similar as when estimating in the very early stages of a development project, that 

is with high uncertainty and little information about the requirements, as it happens often in 

industry contexts. 

 

In similar situations the variation between the original estimation and the real value reported 

in some literature is greater than 50% (McConnell, 2006; Laurenz, 2010; The Standish Group 



114 

International, 2004, 2009; Project Management Institute, 2004) using just a comparison 

against the real value (MRE).  

 

The practitioners who participated in the experiment were using the EPCU context that was 

previously configured using the experience of the other people in a specific organization and 

who had played the role of expert in the experiment. The estimates are derived by using the 

EPCU context with the values assigned to the input variables by the practitioners.  

 

By comparison, it can be observed that the EPCU model enables a systematic replication: no 

matter the level of skills of the people who assign the values for the input variables, the 

EPCU model generates estimates with less dispersion (see MMRE variations and SDMRE 

variation in Table 6.11). 

 

 

Table 6.12 Scenario C – Min-Max Ranges for MMRE and SDMRE for the 5 projects 

 Max MMRE Min MMRE Max SDMRE Min SDMRE 

Project 1 59% 52% 33% 30% 

Project 2 18% 14% 12% 10% 

Project 3 46% 39% 32% 28% 

Project 4 37% 27% 32% 27% 

Project 5 24% 19% 16% 11% 

 

6.7.3  Comparing the Estimation Performance of the EPCU Model with the Expert 
Judgment Estimation Approach 

To evaluate the performance of the EPCU model against the practitioner’s “a priori” 

duration estimates (i.e. an experience-based estimation approach), the MMRE, Pred (25%), 

the SDMRE obtained for the sub-samples using both estimates (those generated by the EPCU 

model and the practitioners’ estimates) were compared. 

 



115 

The leftmost column of Table 6.13 identifies the project ID (from P1 to P5) and the second-

left column refers to the quality criteria analyzed. The third column is relative to the quality 

criteria data obtained from the results while using the EPCU model approach for the 5 

projects. The rightmost column reports the data relative to the quality criteria from the 

experience-based estimation approach. 

 

In addition, in Table 6.13, before the beginning of the data for each project, there is a row 

that indicates the number of practitioners who participated in the EPCU approach and in the 

experience-based approach. 

 

It must be noted that the information on the estimates of the practitioners using the 

experience-based estimation approach was not collected using the “Electronic data 

collection” described in Phase 2 – Involvement of the practitioners in selecting ”a priori” 

input values for each of the projects to be estimated. Only the experience-based estimates 

were gathered from the physical questionnaire: this is why the numbers of participants are 

less than 84 for the expert judgment approach. The data about the quality criteria for each 

project are presented in Table 6.13. 

 

As can be seen in Table 6.13: 

 MMRE criterion: the data obtained are considerably better (i.e. lower) for most 

projects (an improvement varying from 21% to 71%), with the exception of project 1 

(with a decrease of 7% in this criterion). See Figure 6.7. 

 SDMRE criterion: the data obtained for all projects by the EPCU model are much 

better (i.e. lower) than that obtained using Expert Judgment Estimation. The best 

improvement is for project 3: from an SDMRE of 112% for Expert Judgment 

Estimation, down to 30% for the EPCU model.  See Figure 6.8. 

 PRED(25%) criterion: the data from the Pred(25%) criterion, shows asimilar 

performance as SDMRE criterion, in the project 1, the criterion is better for the EPCU 

model than for the expert judgment approach. 

  



116 

Table 6.13 Results obtained using the EPCU model and Expert Judgment Estimation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Project ID 
Quality 
Criteria 

FULL 
SAMPLE 

using EPCU 
Practitioner experience-

based estimation 

Practitioner Number 84 52 

P1 

MMRE 55% 48% 

SDMRE 31% 42% 

Pred(25%) 21% 33% 

Practitioner Number 84 51 

P2 

MMRE 16% 57% 

SDMRE 11% 29% 

Pred(25%) 85% 24% 

Practitioner Number 84 52 

P3 

MMRE 41% 112% 

SDMRE 30% 112% 

Pred(25%) 42% 12% 

Practitioner Number 83 53 

P4 

MMRE 34% 55% 

SDMRE 31% 45% 

Pred(25%) 58% 17% 

Practitioner Number 83 51 

P5 

MMRE 22% 54% 

SDMRE 13% 25% 

Pred(25%) 80% 27% 



117 

 

Figure 6.7 Scenario C : MMRE comparisons  
  

 

 

Figure 6.8  Scenario C : SDMRE comparison  
 

In the experiment reported here, the performance of the EPCU model for most of the projects 

is significantly better than that of the experience-based estimation approach, based on the 

quality criteria used – see Figures 6.7 and 6.8. When the performance is better using the 

experience-based approach (i.e. project no. 1), the difference is relatively small: the 

performance of the two approaches can then be considered as equivalent. 



118 

 

Considering this, under similar experimental conditions the use of the EPCU model in the 

early phases is preferable to the experience-based estimation approach. This illustrates that 

the use of the EPCU model can contribute to addressing some of the weaknesses of the 

experience-based approach.



 

CHAPITRE 7 
 
 

ADDITIONAL USES OF THE EPCU ESTIMATION PROCESS 

 

7.1 Introduction 

7.1.1 Detailing the EPCU context 

For this research work, the EPCU model has been used to estimate, for most experiments, the 

duration of software projects (i.e. the dependent variable = duration). For this research, the 

experimentation was structured into 3 scenarios:  

• scenario A: 16 projects were used,  

• scenario B: 3 other distinct projects were used,  

• scenario C: a subset of 5 projects from the 16 projects from scenario A was used. 

 

The total number of projects used was 19 real projects from industry: therefore, 19 

corresponding EPCU contexts were defined to estimate the selected output variable (most 

often the project duration) required to develop these software projects. 

 

The use of the EPCU model could also be extended to define for one specific project several 

EPCU contexts: for example, one context for each phase of the development process - Figure 

7.1. 

  



120 

 

Figure 7.1  EPCU contexts by development phases 
 

Furthermore, the EPCU model could be used to generate different levels of contexts, from 

the high abstract level (ideally, the software industry) to the more specific level (development 

of a specific software piece within a software project) - see Figure 7.2.  

 

When the EPCU contexts are related to a more detailed level, the variables used could be 

more specific. For example: for the estimation of the duration for the whole life cycle of a 

project, several variables could be identified as having influence for similar projects (i.e. 

integrated team). As another example, for the specification phase, there may exist different 

variables related to the team integration that affect this particular phase (i.e. stakeholders 

commitment, knowledge of the process to implement in a software, level of leadership, and 

so on). This means that the scope of the variables selected can be related to the scope of the 

EPCU context.  

 



121 

 

Figure 7.2  Levels of detail - examples of variables in EPCU contexts 
 

7.2 Additional uses for the EPCU model 

When the concept of the EPCU model is analyzed outside of the software estimation domain, 

it can be observed that the experience-based approach could be used in several other fields of 

human activities. This has been observed by Zadeh (2008) who mentions that the fuzzy logic 

can be viewed as an attempt to formalize or mechanize two human capabilities:  

• the capability to converse, reason and make rational decisions in an environment of 

imprecision, uncertainty, incompleteness of information, conflicting information, 

partiality of truth and partiality of possibility – in short, in an environment of 

imperfect information, and  

• the capability to perform a wide variety of physical and mental tasks without any 

measurement and any computation.  

 



122 

When the experience-based approach is used, it presents some of the advantages described in 

Chapter 1, like: 

• Can manage the qualitative or linguistic variables. 

• Can manage or work with uncertainty. 

• Can create commitment for the people or team to participate. 

 

However, there are also a number of problems in this kind of approach (described in Chapter 

1, too), such as:  

• the experience is specific to the expert and not to the organization;  

• the estimation expertise is neither well described nor well understood;  

• this estimation expertise is hard to assess; 

• a human is implicit in the social context and the estimation is affected by this social 

factor: the estimation could be different from one day to another one; 

• this estimation expertise cannot be replicated systematically. 

 

The structure of our proposed EPCU fuzzy logic-based estimation model is not specific to 

software duration estimation and it could be used with different goals. Some other usages of 

the EPCU estimation model are mentioned next and could be explored in future research. 

 

7.2.1 Portfolio-based selection 

There are several studies about software projects portfolio (de Almeida, 2007) (Hunter, 2006) 

(Mendoza, 2007) (Amoribieta, 2001) (Kotler, 2001) (Barton, 2002); however, most of them 

are using linguistic variables, nominal classifications, ordinal at most. 

 

Barton (2002) proposes a portfolio-based approach — a simple method that categorizes IT 

services and aim to enable CIOs to focus on the specific services most important to the 

business. 

 



123 

Through this approach, CIOs can go beyond aligning IT with business strategy, and can use 

IT to lead and innovate new ways of doing business. The main idea is to make an assessment 

of software applications for strategic and operational importance (Figure 7.3). 

  

 

 
Figure 7.3  Portfolio for strategic and operational importance -                                           

Adapted from Barton (2002) 
  

As shown in Figure 7.3, the four quadrants are of a categorical scale type: the assessment of 

the projects with respect to their strategic value and operational importance is made with an 

experience-based approach (the quadrants are used only for a classification of the type of 

applications in terms of strategic value and operational importance). 

 

Hunter (2006) describes a portfolio approach related to the migration of the legacy systems 

and mentions that the CIO strategy to migrate legacy applications should focus on high 

business value and high business risk systems. This strategy consists of two parts – see 

Figure 7.4:  

1. To define whether to migrate legacy systems or not; if yes, it should define how and 

when.  



124 

2. To avoid that new systems with high business value and high business risk could be 

incorporated into the portfolio, constantly reviewing mainly the high-value systems.  

 

 

 
Figure 7.4  Project portfolio classification for managing migration systems -                            

Adapted from Hunter (2006) 
 

Amoribieta (2001) mentions that the focus on outsourcing is increasing in popularity and the 

primary reason are to save money; however, not all organizations can harvest the benefits 

from this business model because every organization has special features, information and 

different types of projects. The portfolio approaches that he proposes is to identify which 

projects are good candidates to outsourcing (Figure 7.5). 

  

 



125 

 

 
Figure 7.5  Candidates projects to be outsourced -                                                      

Adapted from Amoribieta (2001) 
 

Using the EPCU model to represent portfolio approaches like proposed by Amoribieta 

(2001), (Hunter, 2006) and (Barton, 2002) that were defined by the relation between two 

qualitative variables, can be represented as shown in Figure 7.6.  

   

 

 
Figure 7.6  Representation of portfolio approach defined by 2 variables relationships using 

EPCU model 
 



126 

The main advantage of the use of the EPCU model in the portfolio approach is to provide a 

quantitative approach as a substitute to the subjective approach originally described (Hunter, 

2006; Amoribieta, 2001; Kotler, 2001; Barton, 2002). 

 

7.2.2 Projects priorization 

The following section describes a case study to illustrate how the EPCU model can be used 

in prioritizing project initiatives. The case study is taken from a Mexican financial 

organization. 

 

7.2.2.1 Prioritizing “ad hoc” Initiatives  

The “ad hoc” approach used by the organization used in the case study begins at the end of 

each year when the financial institution executes its strategic planning process; in this 

process the projects to be developed by the organization over the next year will be defined 

from a list of project initiatives. 

 

The projects initiatives at this stage are only conceptualized: this means that they do not have 

a detailed business plan for each initiative. However, the people who assess the feasibility of 

the projects initiatives can provide a perception of the impact of specific variables to each 

project in contrast to the other projects being assessed. 

 

The set of people who determine the priority of the projects initiatives are the CEO, CFO, 

CIO and operations director. Each of these people (for research purposes, the people who 

determine the priorities of the projects initiatives are referred to as ‘practitioners’) have 

knowledge, skills and different information. These practitioners could have also different 

interests: some of the projects may impact directly their own area. 

 

The same set of facts or information will be provided to the practitioners of each project 

initiative. Based on their experience and considering A) how much the project will contribute 

to the profits for the organization, B) how complex is the implementation of the project and 



127 

C) the cost of the project development, they will assign a priority index to the projects 

initiatives. 

 

Obviously, depending on the experience and the focus of each of the practitioners and the 

conditions under which they determine the priority index (the social context), these indexes 

would give different ratings. To determine a unique consolidated index, the final value will 

depend on the negotiation between the practitioners: who is more convincing or who holds a 

higher position? 

 

Assuming the availability of an experience-based model to determine a priority index, and 

that it is used to prioritize the projects initiatives for the year n, what could happen for the 

next year? In the strategic planning of the next year (n +1), different people will probably 

participate in the project initiatives assessment. In this sense, it is very likely that the 

considerations made in  year n to determine the priority index will be different from those 

considered in  year (n +1), and the following (n +2…m). 

 

An “ad hoc” approach for projects initiatives assessment as described above is not like a 

systematic assessment approach, i.e. in the “ad hoc” approach, a specific project for a certain 

year could be considered with less priority (lower priority index) under certain constraints, 

while in another year it might be considered very important (high priority index) under the 

same assumptions since the experience of the practitioners who determine the priority index 

for each event could lead to the differences. 

 

7.2.2.2 EPCU Model for Prioritizing Initiatives 

The use of EPCU model enables a replicable framework of knowledge (experience 

systematic replication) by which consistent results could be obtained from the same facts; 

this is feasible with the use of fuzzy logic.  

 



128 

With the EPCU model, project initiatives could be assessed in the same way, but with inputs 

provided by different people (practitioners): in the EPCU model, the assessment model has 

already been defined previously without knowing the projects initiatives that have to be 

assessed in the strategic planning process, and it is considering how the experts make 

inferences and using a set of variables previously defined. 

 

The possibility to define the inference rules and with it to preserve the knowledge for the 

organization is a big advantage: this will help reduce the dependency on key people. 

 

The need expressed by the financial institution which wanted to be covered by its strategic 

planning process was: 

• Have a formal mechanism for evaluation of project initiatives with incomplete 

information. 

• Do not depend on the experts for the evaluation of initiatives. 

 

The steps to configure the EPCU model were carried on in conjunction with the experts from 

this organization. 

 

7.2.2.3 Identification/Definition of the input variables 

Taking into consideration the above assumptions, a context was created for this financial 

institution in the EPCU model to evaluate the initiatives. 

 

Considering the EPCU “context” definition (See Chapter 4), the input variables were defined 

in interviews with the experts, using the same procedure defined in Chapter 6 for the 

estimation of software projects. 

 

This definition is important because in the use of the EPCU model, the practitioners will 

assign a value as input, representing their opinion about the context of the project, rather than 



129 

asses/estimate directly the output variable (in this case priority index) using an intuitive 

approach. 

 

The input variables defined by the financial organization experts were: 

• profit expected to the business for the execution of a specific project,  

• the complexity considered while developing the project, and  

• the effort estimated.  

 

When the strategic planning is carried on, these variables are subjective and typically each 

project would not have its own business plan.  

 

When the projects initiatives were assessed, they were described in linguistic terms instead of 

a precise quantitative value; this means they were assessed based on experience as well as on 

opinions provided by experienced practitioners.  

 

The selected numerical range that represent the opinions of the practitioners for each of these 

variables is [0, 5], where 0 is the minimum value (lowest) and 5 is the maximum value 

(highest) - see Chapter 4, Step 4 - Fuzzification. 

 

7.2.2.4 Specification of the output variable 

The selected output variable, which is the priority index, can be defined as a percentage 

[0,100] in order to identify the projects with higher prioritization. 

 

For the output variable (the priority index) the membership function defined has four 

linguistic values (LOW, AVERAGE, HIGH, and VERY HIGH). In addition, the defined 

range is [0,100], the unit is a percentage; the highest priority for a project initiative (i.e.the 

priority index) will be close to 100. 

 



130 

7.2.2.5 Generation of Inference Rules 

Once the input variables and the output variable defined, the next step is to define the 

inference rules in order to link them.  

 

These inference rules were defined by the experts of the organization, supported by the 

researcher. 

 

7.2.2.6 Prioritizing the project initiatives with the EPCU model 

The financial institution provided a set of 11 proposed project initiatives for prioritization 

using the EPCU context defined. These initiatives were assessed in the strategic planning 

exercise for 2009. The project initiatives list is shown in Table 7.1.  

Table 7.1   Project Initiatives List 

ID Project initiative Name 

P1 AMS SEARCH SPACE MEXICO FASE2 

P2 SISPAGOS 

P3 SCOTIANÓMINA 

P4 CALIFICACIÓN CARTERA COMERCIAL 

P5 PISCO 

P6 MEJORAS AL PROCESO DE CALIFICACIÓN 

P7 CÁLCULO DE CAPITAL PARA OPICS Y SIBUR 

P8 INFORMACIÓN DE COSECHAS PARA CRÉDITOS A  

P9 BURSATILIZACIÓN DE LA CARTERA HIPOTECARI 

P10 TASA DE ACUERDO AL RIESGO 

P11 FORMULARIO OPERACIONES EN DÓLARES 

 

 

 

 



131 

Table 7.2   EPCU Model for Project Initiatives Prioritization List: Input variables values and 
estimated priority index 

ID Project initiative 

Profit expected 

to the business  

Effort 

estimated  

Complexity 

considered  Priority index 

P1 AMS SEARCH SPACE MEXICO FASE2 3.5 2 3 53%

P2 SISPAGOS 2 3.5 4 15%

P3 SCOTIANÓMINA 1.5 3 2 28%

P4 CALIFICACIÓN CARTERA COMERCIAL 4 2 2 61%

P5 PISCO 2.5 3 3 29%

P6 

MEJORAS AL PROCESO DE 

CALIFICACIÓN 5 2 2 61% 

P7 

CÁLCULO DE CAPITAL PARA OPICS Y 

SIBUR 3.5 1.5 2 68% 

P8 

INFORMACIÓN DE COSECHAS PARA 

CRÉDITOS A  2 3 3 26% 

P9 

BURSATILIZACIÓN DE LA CARTERA 

HIPOTECARI 5 2 3 57% 

P10 TASA DE ACUERDO AL RIESGO 3 2.5 3.5 35%

P11 

FORMULARIO OPERACIONES EN 

DÓLARES 3.5 2 1 69% 

 

 

With the list of project initiatives, the prioritization was made in a session with the people 

that usually determine the priority of the projects in “ad hoc” manner; for this case study, the 

experts play the practitioners role too. 

 

Using the Delphi method (Harold, 1975), the value assignment for the input variables was 

obtained for each project. Once the values assigned to the input variables for each project 

initiative, the EPCU model was executed and the priority indexes were obtained. Table 7.2 

shows the results obtained (prioritization index) using the EPCU model, and the Figure 7.7 

shows the results plotted. 

 

  



132 

 

Figure 7.7 Results of the EPCU prioritization of Project Initiatives 
 

7.3 Summary 

The proposed EPCU model is an estimation process based on fuzzy logic that mimics the 

way experts make estimates: the EPCU model has been designed to be used in the early 

stages in the project life cycle when there is high uncertainty and the information about the 

project is vague (i.e. described usually by linguistic variables). 

 

However, this situation (high uncertainty and a lack of information) is not only present in 

software estimation. In this section examples have been presented related to the projects 

portfolio approaches and the prioritization of project initiatives. 

 

As in the software estimation, the use of the EPCU model could contribute to addressing 

some of the weaknesses of the experience-based approach and could generate benefits in 

those fields. 



 

CONCLUSION  

 

The estimation of software projects is very important: the resources for the project are 

assigned and managed throughout the development life cycle of the projects on the basis of 

such estimation. 

 

Software project estimates often have to be made early in the project life cycle: this implies 

that these estimates are to be made in a highly uncertain environment on the basis of 

information that is vague and incomplete. In practice, the estimation approach most used at 

this early stage is the experience-based approach (also called: expert judgment, intuitive 

approach, “ad hoc” way, subjective way, research intuition, and so on). 

 

However, there are a number of problems with the experienced-based approach, such as: the 

expertise is specific to the people and not to the organization, and this intuitive estimation 

expertise is neither well described nor well understood. In addition, the expertise is difficult 

to assess and cannot be replicated systematically.  

 

To address some of these problems, this thesis has proposed a more formal process – the 

EPCU model, based on fuzzy logic, to leverage the experience-based approach to generate 

estimates in the early stages. 

 

The research goal of this thesis was to design a software estimation process able to manage 

the lack of detailed and quantitative information embedded in the early phases of the 

software development life cycle. 

 

The research strategy aimed to leverage the advantages of the experience-based approach that 

can be used in early phases of software estimation while addressing some of the major 

problems generated by this estimation approach by experienced-based judgments. 

 



134 

The specific research objectives to be met by this improved software estimation process 

were: 

A. The proposed estimation process must use relevant techniques to handle uncertainty and 

ambiguity in order to consider the way practitioners make their estimates: the proposed 

estimation process must use the variables that the practitioners use (qualitative). 

B. The proposed estimation process must be useful in early stages of the software 

development process. 

C. The proposed estimation process needs to preserve the experience or knowledge base for 

the organization: this implies an easy way to define the experience of the experts. 

D. The proposed model must be usable by people with skills distinct than the people who 

configure the original context of the proposed model. 

 

The proposed EPCU model (Estimation of Projects in Contexts of Uncertainty) is an 

estimation process based on fuzzy logic that mimics the way experts make estimates: the 

EPCU model has been designed to be used in the early stages in the project life cycle when 

there is high uncertainty and the information about the project is vague (i.e. described usually 

by linguistic variables). 

 

The next paragraphs summarize how each of these research objectives has been met, as 

illustrated with the outcomes of the experiments reported in Chapter 6. 

 

Objective A 

The main element of the estimation process is the use of fuzzy logic: the elements proposed 

by the fuzzy logic make it useful in the management of uncertainty and imprecision, such as 

the fuzzy sets theory which is basically a theory of classes with unsharp boundaries.  

 

With the use of fuzzy logic the research objective A was met: as its creator mentions (Zadeh, 

2008) “Basically, fuzzy logic is a precise logic of imprecision and approximate reasoning. 

More specifically, fuzzy logic may be viewed as an attempt at formalization/mechanization 

of two remarkable human capabilities: First, the capability to converse, reason and make 



135 

rational decisions in an environment of imprecision, uncertainty, incompleteness of 

information, conflicting information, partiality of truth and partiality of possibility – in short, 

in an environment of imperfect information. Second, the capability to perform a wide variety 

of physical and mental tasks without any measurements and any computations” 

 

Other considerations to use the fuzzy logic were mentioned in Gray et al. (1997) in their 

comparison of modeling capabilities of distinct techniques in the software estimation field: 

with the fuzzy logic approach, all studied criteria are fully satisfied, to the exception of only 

two criteria that are met only partially (criteria:  “can resist outliers” and the “can be adjusted 

for new data”). 

 

Objective B 

In the early phases of the project, most of the variables are linguistic, or qualitative, and more 

often the estimates are developed within an uncertainty environment. While the objective A 

can be reached with the EPCU model, it is possible to state that the EPCU model can be used 

in such early phases of the software development life cycle: in the experiments reported in 

this thesis, the performance of the EPCU estimation process for most of the projects is 

significantly better than that of the experienced-based estimation approach, based on the 

quality criteria used. When the performance is better using the experienced-based estimation 

approach, the difference is small, so the performance can then be considered equivalent. 

 

Considering this, the use of the EPCU model in the early phases is preferable to the 

experienced-based estimation approach, under similar experimental conditions - See Figure 

6.7 and Figure 6.8 and Annex XI.  

 

Objectives C and D 

One of the main weaknesses of the experienced-based estimation approach is that the 

experience belongs to the expert, so it is hard to assess such experience, and once the expert 

moves out of the organization, such a valuable experience is lost. 

 



136 

The experience-based estimation approach can be described and stored through inference 

rules, such as in the EPCU model, and can become part of an organization’s assets. This 

constitutes a valuable solution for some of the problems described with the “ad hoc” 

experience-based estimation technique. 

 

The systematic replication of estimation experience (the use of the expert’s experience by 

other people with distinct experience and skills) is a basic element in this research. The 

definition by experts of an estimation context in the EPCU model represents the experience 

through the inference rules that the experts use to make the estimation; these EPCU inference 

rules can next be used by other people who do not have the same experience level. 

 

In scenario C, for all the practitioners’ classification, it has been observed that the EPCU 

model performance is similar to the full sample. And all of the SDMRE values are less than 

50% and most of the MMRE are lower than 50% - only project 1 has its MMRE over 50%.  

 

An important observation is that the estimation experiment in scenario C was similar as when 

estimating in the very early stages with high uncertainty and little information in terms of 

requirements, as it often happens in an industry context. 

 

In similar situations the variation reported in some literature is greater than 50% (Boehm, 

1981; McConnell 2006; Standish Group, 2004) between the estimates and the real values 

(MRE).  

 

By comparison, it can be observed that the EPCU model enables a systematic replication: 

whatever the level of skills of the people who assign the values for the input variables, the 

EPCU model generates estimates with less dispersion than the experience-based approach for 

the projects analyzed. 

 

It is important to observe that while using the EPCU model does not require accurate 

historical data, it requires the experts’ experience for the set up of the configuration of the 



137 

EPCU contexts to be used for estimation purposes. Once configured, the EPCU estimation 

model can be used by people who lack experience in the type of projects to be estimated 

under a specific EPCU context.  

 

Publications to date 

 

• Valdés, F., A. Abran. 2007.  « Industry Case Studies of Estimation Models based on 

Fuzzy Sets ». In: IWSM-Mensura 2007, (UIB-Universitat de les Illes Baleares, Palma de 

Mallorca, Spain), p. 87-101.  Editors: Abran-Dumke-Màs, Publisher: Proceedings of the 

IWSM-Mensura 2007.  ISBN 978-84-8384-020-7, Nov. 5-9,  2007. 

• Valdés, F., A. Abran. 2010. « Comparing the Estimation Performance of the EPCU 

Model with the Expert Judgment Estimation Approach Using Data from Industry ». In: 

Software Engineering Research, Management and Application 2010 (SERA 2010). 

(Montreal, Canada. May 24-26, 2010), p. 227.240, chapter 15. Verlag, Berlin: ‘Studies 

in Computational Intelligence’,Vol 296, Springer. ISBN:13: 9781615209750 

• Valdés, Francisco. 20011. « La Estimación de Proyectos de Software: Un Problema una 

Solución ». Software Guru, Año 2011 No. 32 Mayo Julio 20011.  

• Valdés, Francisco. 20011. « La Estimación de Proyectos de Software: Un Problema una 

Solución ». Software Guru, Año 2011 No. 33 Agosto Octubre 20011.  

 

EPCU model current limitations 

The EPCU model defines the rule base considering the experience for a specific organization. 

The rulebase aims to represent the experience and to enable the use of that experience 

without the expert presence. When in an organization there is no expertise because a 

completely new type of project needs to be estimated, the limitations are the same as in the 

experience-based estimation approach: there is a lack of experience to define an EPCU 

context appropriate to a specific context or instantiation. This is considered as a current 

limitation of the proposed EPCU estimation process. 

 



138 

Another current limitation of the EPCU model is that the specific impact (or weight) of each 

input variable is the same; thist means that the conditions appearing in the antecedent portion 

of the production rules, all have the same degree of importance (Chen, 1993). 

 

In the practice, any input variable could be different. If this assumption can be considered in 

the model, this could allocate more flexibility to the EPCU model. It could be relevant to 

consider factors that represent the importance of the input variables in the calculation of the 

final value. This needs to be investigated in further resarch work.  

 

For the research reported in this thesis, the scope for the estimation using the EPCU context 

was the entire project: i.e.  the total project duration. Although, intuitively with more details 

more precision could be obtained because more specific variables would be considered 

(Figure 7.2). This needs further research, and this was considered as out of the scope of the 

research work reported here. 

 

The fuzzy operator used in this research was the Zadeh Operator; however it could be 

interesting as a further research to analize the performance of distinct fuzzy operators using 

the same expert’s opinions.  

 

All of the above elements illustrate how the use of the EPCU model could contribute to 

addressing some of the weaknesses of the experience-based approach and generates benefits 

to the software engineering field. 

 

 

 



 

BIBLIOGRAPHY 

Abran, Alain, A. Sellami and W. Suryn. 2003. «Metrology, Measurement and Metrics in 
Software Engineering», International Software Metrics Symposium, IEEE- 
METRICS 2003. pp. 2-11.Sydney, Australia: IEEE Computer Press, Los Alamitos. 

 
Abran, Alain, J. W. Moore, P. Bourque, R. Dupuis and L. Tripp, Guide to the Software 

Engineering Body of Knowledge - 2004 Version – SWEBOK:   IEEE-Computer 
Society Press, April 2005, 200 pages, isbn:0-7695-2330-7.    

 
Abran, Alain. 2008. Software Benchmarking, Estimation and Quality Models Based on 

Functional Size with COSMIC – ISO 19761, Draft April 2008. MGL-841: La mesure: 
Concept clef en ingénierie du logiciel: Programme de Doctorat en genie. 

 
Abran, Alain. May 2010. Software Metrics and Software Metrology, John Wiley & Sons 

Interscience and IEEE-CS Press, New Jersey, p. 328, ISBN:978-0-470-59720-0.  
 
Abran, Alain. 1998. «Software Metrics Need to Mature into Software Metrology 

(Recommendations) ». NIST Workshop on Advancing Measurements and Testing for 
Information Technology (IT). ( Gaithersburg Maryland, 1998).  

 
Albrecht, Allan J. 1979. «Measuring Application Development Productivity»,IBM 

Applications Development Symposium. (Monterey, CA, Oct 14-17, 1979), p. 83: 
GUIDE Int and Share Inc., IBM Corp. 

 
Amoribieta, Iñigo, K. Bhaunik, K. Kanakamedala, A. D. Parkhe. May 2001. Programmers 

abroad: A primer on offshore software development. Coll. «McKinsey Quarterly . 
McKinsey & Company. 

 
Barton, N. 2002. Business Innovation Through IT A Realistic Approach to Supporting 

Organizational Strategy. Compass America Inc. 
Boehm, Barry W. 1981. Software Engineering Economics, Englewood Cliffs.  NJ: Prentice-

Hall, Inc. 
 
Booch, Grady. 1996. Análisis y Diseño Orientado a Objetos con Aplicaciones. 2ª edición en 

español: Addison-Wesley. 
 
Bourque, Pierre, S. Oligny, A. Abran, B. Fourrnier. 2007. « Developing Project Duration 

Models in Software Engineering ». Journal of Computer Science and Technology, 
vol. 22,  p. 348-357. 

 
Buckley, J. J. and Y. Hayashi. 1994.  « Can Fuzzy Neural Nets Approximate Continuous 

Fuzzy Functions », Fuzzy Sets and Systems, vol. 61, p. 43-51. 
 



140 

Buglione, L., J. J. Cuadrado-Gallego and J. A. Gutiérrez de Mesa. November 2008. « Project 
Sizing and Estimating: A Case Study Using PSU, IFPUG and COSMIC ». Lecture 
Notes in Computer Science, Springer Berlin / Heidelberg, Volume 5338/2008, ISBN: 
978-3-540-89402-5. 

 
Casals, Mas i O 1997. « Sistemas difusos dinámicos para el tratamiento de información 

temporal imprecisa », Escola Tècnica Superior D’enginyeria de Telecomunicació de 
Barcelona (UPC). 

 
Charette, N. R. September 2005.  Why software fails. Coll: «Special report», IEEE Spectrum. 
Chen, Shyi-Ming. 1993. « A new Methodology for Fuzzy Control Based on Weighted Fuzzy 

Logics ». In: IEEE TENCON 93, (Beijing, 1993). 
 
Chrissis, M. B., M. Konrad and S. Shrum. 2007. CMMI Guidelines for process Integration 

and Product Integration, 2nd Edition: Addison-Wesley. 
 
Condori-Fernandez, N, O Pastor, A Abran and A Sellami. 2008.  «Introduciendo Conceptos 

de Metrologia en el Diseño de Medidas de Software». In: XI Iberamerico Workshop 
on Requirements Engineering and Environments, IDEAS 2008. (Pernambuco, Brasil, 
2008), p. 112-125. 

 
COSMIC Measurement Practice Commitee. 2007. « The COSMIC Functional Size Method 

Version 3.0, Advanced and Related Topics ». En ligne 
<http://www.cosmicon.com/portal/public/COSMIC%20Method%20v3.0%20Advanc
ed%20&%20Related%20Topics.pdf>. Consulté le September 4th 2010. 

 
De Almeida, I. 2007. «Equilibrar el riesgo». InformationWeek México, septiembre 5, 2007, 

Núm. 169.  
 
De Wit, A. 1998.  «Measurement of Project Success». Project Management Journal, 

Vol.6(3).  
 
Dekkers, C. A. 2005. «reating Requirements-Based Estimates before Requirements are 

Complete », CrossTalk The journal of the Defense Software Engineering, April 2005 
Issue. 

 
De Marco, Tom. 1982. Controlling Software Projects. Englewood Cliffs, N.J.: Prentice Hall. 
 
Dickes, P. J. Tournois, A. Fieller and J-L. Kop. 1994. La psychométrie. Coll. « Le 

Psychologue », Paris 1994 : Presses Universitaires de France (PUF).  
 
Fincham, R. 2002. «Narratives of success and failure in systems development». British 

Journal of Management. Vol. 13. 
 



141 

Gray, A. and S. MacDonell. 1997. «A Comparison of Techniques for Developing Predictive 
Models of Software Metrics».  Information and Software Technology.  Vol. 39, p. 
425-437. 

 
Gray, A. R. and S. G. MacDonell. 1997. «A comparison of model building techniques to 

develop predictive equations for software metrics». Information and Software 
Technology -  INFSOF Journal. 

 
Gray, A. and S. MacDonell. 1999. «Software Metrics Data Analysis – Exploring the Relative 

Performance of Some Commonly Used Modeling Techniques», The Information 
Science Discussion Paper Series, Number 99/11, June 1999.  

 
Habra, N, A. Abran, M. Lopez, A. Sellami. 2008. «A Framework for the Design and 

Verification of Software Measurement Methods». Journal of Systems and Software, 
Elsevier 81: 5. 633-648. 

 
Halstead, M. H. 1977. « Elements of Software Science », Elsevier, New York: North- 

Holland, 1977. 
 
Harold, A. Linstone and Turoff Murray. 1975. The Delphi Method: Techniques and 

Applications. Adisson-Wesley, ISBN: 9780201042948. 
 
Hill, J., L.C. Thomas and D. E. Allen. 2000. «Experts' estimates of task durations in software 

development projects». International Journal of Project Management. Vol. 18, n° 1, p 
13-21. Feb. 2000. 

 
Hofstede, G. 1999. «The universal and the specific in 21st-century global management». 

Organizational Dynamics. Vol. 28, n° 1, 1999. 
 
Horikawa, S., T. Furnuhashi and Y. Ucikawa. 1992. «On Fuzzy Modelling Using Fuzzy 

Neural Networks with the Back-Propagation Algorithm», IEEE Trans. Neural 
Networks 3, p 801-806 (1992). 

 
Carnegie Mellon University. Carnegie Mellon School of Computer Science, 2009. En ligne. 

<http://www.cs.cmu.edu/Groups/AI/html/faqs/ai/fuzzy/part1/faq.html>. 
 
Hunter, R. 2006. High Value, High Risk: Managing the Legacy Application Portfolio. Coll. 

«Gartner Executive Programs (EXP) para Latinoamérica», Gartner. 
 
Idri, A. and A. Abran. 2000.  «Towards A Fuzzy Logic Based Measures for Software 

Projects Similarity». In: 6th MCSEAI'2000 – Maghrebian Conference on Computer 
Sciences. (Fez, Morocco, 2000). 

 



142 

Idri, A., A. Abran and T. M. Khosgoftaar. 2001. «Fuzzy Analogy: A New Approach for 
Software Cost Estimation». In: International Workshop on Software Measurement 
(IWSM'01). (Montréal, Québec, 2001). 

 
Idri, A., A. Abran, T. M. Khosgoftaar and Robert S. 2004. « Fuzzy Case-Based Reasoning 

Models for Software Cost Estimation ». Soft Computing in Software Engineering: 
Studies in Fuzziness and Soft Computing, Springer-Verlag, 2004. 

 
Idri, A., A. Abran, T.M. Khoshgoftaar and S. Robert. 2002.  « Estimating Software Project 

Effort by Analogy Based on Linguistic Values ». In: 8th IEEE International Software 
Metrics Symposium. (Ottawa, Ontario, 2002),  p. 21-30. 

 
IFPUG. 2005. Function Point Counting Practices Manual, Version 4.2.1: International 

Function Points Users Group. 
 
Information Systems Audit and Control Association (ISACA) and IT Governance Institute 

(ITGI). 2011. Control Objectives for Information and related Technology (COBIT). 
In Le site de ISACA. En ligne.< http://www.isaca.org >. Consulté February 2010.  

 
International Function Points User Group. 2011. En ligne.< http:// www.ifpug.org>. Consulté 

February 2010, (http:// /). 
 
International Organization for Standardization (ISO). 2007.  International Vocabulary of 

Metrology – Basic and General Concepts and Associated Terms, VIM, ISO/IEC 
Guide 99-12:2007, Switzerland, 2nd edition, 1993, ISBN 92-67-01075-1. 

 
Jacobson, I., M. Christerson, P. Jonsson and G. Övergaard. 1998. Object-Oriented Software 

Engineering a Use Case Driven Aprproach. 4th printing, ESSEX Inglaterra: Addison-
Wesley. 

 
Jacquet, J.P. and  A. Abran.1997 « From software metrics to software measurement methods: 

a process model ». In: 3rd International Symposium and Forum on Software 
Engineering Standards, ISESS’97.  (Walnut Creek (CA)). 

 
Jacquet, J. P. and A. Abran. 1999.  « Metrics Validation Proposals: A Structured Analysis   

In:Software Measurement - Current Trends in Research and Practice ». In: 8th 
International Workshop on Software Measurement - IWSM 98, (Deutscher 
Universität Verlag, 1999), p. 43-59. 

  
Jang, R.J.-S. 1993. « ANFIS: Adaptive-Network-Based Fuzzy Inference System ». IEEE 

Trans. Systems, Man, and Cybernetics 23, p. 665-685. 
 
Jensen, R.W. and  C.C. Tonies. 1979.  Software Engineering. Englewood Cliffs NJ: Prentice-

Hall, Inc. 
 



143 

Jones, C. 2006.  « Social and Technical Reasons for Software Project Failures ». CrossTalk 
The journal of the Defense Software Engineering. June 2006 Issue. 

 
Jones, C. 2005. « Software Cost Estimating Methods for Large Projects ». CrossTalk The 

journal of the Defense Software Engineering. April 2005 Issue. 
 
Jones, C. 2004. « Software Project Management Practices: Failure Versus Success ». 

CrossTalk The journal of the Defense Software Engineering. October 2004 Issue. 
 
Kadoda, G., M. Cartwright, L. Chen and M. Shepperd. 2000. « Experiences Using Case-

Based Reasoning to Predict Software Project Effort ». In: EASE Conference. (Keele , 
UK, 17-19 April 2000). 

 
Kitchenham, B. 1997. « The Problem with Function Points ». IEEE Software, Vol. 14,  Issue 

2,  Mar/Apr 1997. p.29 - 31. 
 
Kolodner, J.L. 1993. Case-Based Reasoning. San Mateo, CA.: Morgan-Kaufmann 

Publishers. 
 
Kotler, Philip. 2001. Dirección de marketing, Edición del Milenio: Prentice Hall. 
 
Laurenz, E. J. and C. Verhoef. 2010. « The Rise and Fall of the Chaos Report Figures ». 

IEEE Computer Society. Vrije Universiteit Amsterdam,  IEEE 2010. 
 
Lavagnon, A. Ika.2009. « Project success as a topic in project management journals ». 

Project Management Journal, vol. 40 n° 4. 
 
Lawrence, P. S., R. Jeffery, B. Curtis and B. Kitchenham. 1997. « Status Report on Software 

». IEEE Software, vol. 14, Issue 2,  Mar/Apr 1997, p. 33 - 43. 
 
Mccabe, T. J., A. H. Watson and D. R. Wallace. 1996. Structured Testing : A Testing 

Methodology Using the Cyclomatic Complexity Metric. NIST, Special Publication 
500-235, (Gaithersburg, MD 20899-0001, September, 1996): Computer Systems 
Laboratory, National Institute of Standards and Technology. 

 
Mccabe, T. J. and A. H. Watson. 1995. Complexity in Software Development Systems 

Management Development. Auerbach. 1995. 
McConnell, S. 2006. Software Estimation: Demystifying the Black Art. Microsoft Press. 

ISBN 0-7356-0535-1. 
 
Milos, Manic. 1999. « Fuzzy Operators Weight Refinements ». In: Annual Reliability and 

Maintainability Symposium, RAMS’99. (Washington, DC USA, January 18-21 
1999), p. 245-251: IEEE Reliability Society. 

 



144 

Normalización y Certificación Electrónica A.C. 2005. Modelo de Procesos para la Industria 
del Software. Norma Oficial Mexicana, NMX-I-059/01-NYCE-2005, NMX-I-059/02-
NYE-2005. 

 
Morgenshtern, O., T. Raz and D Dovir. 2007. « Factors affecting duration and effort 

estimation errors in software development projects », Information and Software 
Technology, Vol. 49, n° 8, Aug. 2007, p. 827-837. 

 
Myrtveit I. And E. Stensrud. 1999. « A Controlled Experiment to Asses the Benefits of 

Estimating with Analogy and regression Models ». IEEE Transaction on Software 
Engineering, vol. 25, Issue: 4, p. 510-525. 25- 4 July/August, 1999.   

 
Office of Government Commerce of United Kingdom, Information Technology 

Infrastructure Library (ITIL). En ligné < http://www.ogc.gov.uk/>. 
 
Oligny, S., P. Bourque, A. Abran and B Fournier. 2000. « Exploring the Relation Between 

Effort and Duration in Software Engineering Projects » In: World Computer Congress 
2000, (Beijing China August 21-25, 2000), p.175-178, Proceedings of the World 
Computer Congress 2000. 

 
Park, R. E., W. B. Goethert and J. T. Webb. 1994. « Software cost and schedule estimating: 

A process improvement initiative ». Software Engineering Institute, Pittsburg, U.S.A, 
<http://www.sei.cmu.edu/pub/documents/94.reports/pdf/sr03.94.pdf>. Consulting in  
November 2009. 

 
Peñaloza, R. E. 1996. Apuntes, Fundamentos de Programación, 2a edición, UNAM, ENEP 

Aragón. 
 
Pinto, J. K. and, D. P. Slevin. 1988. « Project success: definitions and measurement 

techniques », Project Management Journal, vol.19, n° 1. 
 
Ponce. C. P. 2010. Inteligencia Artificial Con Aplicaciones a la Ingeniería, México: 

Alfaomega, Julio 2010. 
 
Pressman, S. R. 1993, Ingeniería de Software un Enfoque Práctico, 3a edición, España: 

McGraw-Hill. 
 
Project Management Institute (PMI). 2004., PMBOK Guide - A Guide to the Project 

Management Body of Knowledge, 3th Edition. Project Management Institute. 
 
Ribu, K. 2001. « Estimating Object-Oriented Software Projects with Use Cases ». Master of 

Science Thesis, University of Oslo, Department of Informatics, November 2001. 
 
Santillo, L. and C. Grande. 2006. « Breve storia della Misurazione del Software ».  GUFPI-

ISMA, Newsletter, Vol. 3, n° 1, 15 Gennaio 2006. 



145 

Shepperd, Martin, Chris Schofield, and Barbara Kitchenham. 1996. « Effort Estimation 
Using Analogy ». In: 18th International Conference on Software Engineering 
(ICSE18), (Berlin, 25-29 March 1996), p. 170-178. 

 
Shepperd, Martin and Chris Schofield. 1997. « Estimating Software Project Effort Using 

Analogies », IEEE Transactions on Software Engineering, Vol. 23, n° 12, p. 736 -
743, November 1997. 

 
Shore, Barry. 2008. « Systematic biases and culture in project failures », Project 

Management Journal, Vol. 39, n° 4. 
 
Smith M. and S. Tockey. 1988. An Integrated Approach to Software Requirements 

Definition Using Objects, Seattle WA: Boeing Commercial Airplane Support 
Division, p. 132. 

 
Mendoza, Artemio. 2007. « No todo lo que brilla es oro ». Software Guru, Año 03 No. 3 

Mayo Junio 2007.  
 
Stamey, K. 2006. « Why Do Projects Fail? », CrossTalk The journal of the Defense Software 

Engineering, June 2006 Issue. 
 
Stensrud, E., T. Foss, B. Kitchenham and I. Myrtveit. 2002. «  An Empirical Validation of 

the Relationship Between the Magnitude of Relative Error and Project Size ». In: 
Eighth IEEE Symposium on Software Metrics (METRICS.02). (Ottawa, Canada, 4-7 
June 2002), (Washington, DC, USA) : IEEE Computer Society 2002, ISBN 0-7695-
1339-5. 

 
Sybase Inc. 1996. Building Object-Oriented Applications In Power Builder Student Guide,  

Powersoft, Nov 1996. 
 
Standish Group International. 2009. CHAOS Summary 2009. Coll. «  Research Reports », 

The Standish Group International, Inc. 
 
Standish Group International. 2004. Extreme Chaos Report. « Research Reports », The 

Standish Group International, Inc. 
 
Timothy, B. 1991. An Introduction to Object-Oriented Programming, Corrections Edition, 

Oregon State University: Addison-Wesley Publishing Company, april 1991. 
 
Timothy, K. P. 2006. « Knowledge: The Core Problem of Project Failure », CrossTalk The 

Journal of the Defense Software Engineering, June 2006 Issue. 
 
 
 



146 

Valdés, F., A. Abran. 2007.  « Industry Case Studies of Estimation Models based on Fuzzy 
Sets ». In: IWSM-Mensura 2007, (UIB-Universitat de les Illes Baleares, Palma de 
Mallorca, Spain), p. 87-101.  Editors: Abran-Dumke-Màs, Publisher: Proceedings of 
the IWSM-Mensura 2007.  ISBN 978-84-8384-020-7, Nov. 5-9,  2007. 

 
Valdés, F., A. Abran. 2010. « Comparing the Estimation Performance of the EPCU Model 

with the Expert Judgment Estimation Approach Using Data from Industry ». In: 
Software Engineering Research, Management and Application 2010 (SERA 2010). 
(Montreal, Canada. May 24-26, 2010), p. 227.240, chapter 15. Verlag, Berlin: 
‘Studies in Computational Intelligence’,Vol 296, Springer. ISBN:13: 
9781615209750. 

 
Valdés. F. 2010. Modelando la realidad - cuantificando lo intangible, « Essay Award 2010 ». 

Fundación EVERIS. 
 
Weinberg, G. W.  1985. The Secrets of Consulting. New York: Dorset House Publishing. 
 
Wirfs-Brock, R., B. Wilkerson and L. Wiener. 1990. Designing Object-Oriented Software, 

4th printing, Englewood, NJ: Prentice-Hall. 
 
Wong, B. K., J. A. Monaco. 1995. « A bibliography of expert system applications for 

business (1984–1992) », European Journal of Operational Research, Vol. 85, Issue 2, 
p. 416–432. 

 
Zadeh, A., I. M. Fam, M. Khoshnoud and M. Nikafrouz. 2008. « Design and implementation 

of a fuzzy expert system for performance assessment of an integrated health, safety, 
environment (HSE) and ergonomics system: The case of a gas refinery Inform », 
Elsevier Science Inc. Vol. 178 Issue 22, New York, NY, USA November 2008.   
doi:10.1016/j.ins.2008.06.026. 

 
Zadeh, L. A. 1988. « Fuzzy logic ». IEEE Computer, 1:83. 
 
Zadeh, L. A. 1965. « Fuzzy sets ». Information and Control 8, p. 338–353. 
 
Zadeh, Lotfi A. 2008. « Is there a need for fuzzy logic? ». In:  Fuzzy Information Processing 

Society, NAFIPS 2008. Annual Meeting of the North American. (New York, New 
York, May 19-22, 2008). 

 
Zadeh, Lotfi A. 2008. « Is there a need for fuzzy logic? ». Information Sciences, vol. 178, 

issue 13, 1 July 2008, p. 2751-2779. 
 

 

 


