Shisheh Bor, Alireza (2020). Simulation and optimization of de-icing two-phase closed thermosyphon based on CO2 work fluid. Mémoire de maîtrise électronique, Montréal, École de technologie supérieure.
Prévisualisation |
PDF
Télécharger (5MB) | Prévisualisation |
Résumé
Two phase closed Thermosyphon (TPCT) are subcategory of heat pipes based on natural circulation loop (NCL) with high performance heat transfer capacity and variety applications which are used to transfer a large range of heat through different temperatures. In general, heat pipes are a sealed closed pipe with high length-to diameter ratio, which operate based on latent heat of evaporation and condensation to transfer heat. The system equipped with capillary wick structure to facilitate the fluid transport where the gravity act as opposition or insufficient force through fluid movement. Two phase closed Thermosyphon (TPCT) is a type of heat pipe, which has no capillary wick structure and the fluid transport by gravity as a directional force. Heat pipes technology has proven their high performance and efficiency by considering all aspects of their related parameters and practical in many industries from cooling nuclear reactors to transferring heat from computer chipsets to the fan. Proper heat transfer capability with the ability to work with large range of temperature differences at both ends of the system has made the analysis of this technology very important.
What is very important when using thermosyphon is how to design and consider all the parameters and variables of the system. In addition to design complexities for different applications and considering the wicks system, optimizing and increasing the heat transfer capacity of a TPCT depends on the analysis and selection of many related parameters, including its geometric dimensions and the type and amount of work fluid needed to operate confidently. These researches could have more value when it aim is to design a system that can use and transfer geothermal energy as a clean energy source.
This research is based on the simulation a thermosyphon buried in the earth receives the heat energy needed to evaporate its work fluid from the geothermal energy and transfers this energy to the earth's surface in order to melt snow in winter through a thermosyphon mechanism. In addition, by applying numerical optimization on the dimensions and work fluid ratio inside the thermosyphon, in this article, an attempt has been made to present the results of this analysis in different categories by considering its different applications. Finally, by applying CFD analysis on the designed thermosyphon, the fluid behavior in thermosyphon is assessed under mentioned environmental conditions.
Titre traduit
Simulation et optimisation du thermosyphon fermé biphasé de dégivrage à base de fluide de travail CO2
Résumé traduit
Lors de la conception d'un thermosiphon pour transférer la chaleur du sol vers la surface afin de faire fondre la neige et la glace, de nombreux paramètres jouent un rôle dans son efficacité et son efficacité.
La recherche de dimensions géométriques appropriées pour un thermosiphon capable de transférer suffisamment de chaleur pour faire fondre la neige et l'étude du comportement du fluide à l'intérieur en fonction des conditions aux limites, fait l'objet de cette recherche.
En simulant un thermosiphon dans MATLAB basé sur la formation d'un réseau de résistances, on a tenté d'étudier la quantité de ce transfert de chaleur en fonction de ses différentes dimensions. Ensuite, en utilisant des méthodes mathématiques, une tentative a été faite pour trouver les dimensions optimales pour obtenir la quantité maximale de taux de transfert de chaleur.
Enfin, en analysant le CFD de l'une des valeurs optimales calculées, une tentative est faite pour comparer les résultats du transfert de chaleur et afficher le comportement du fluide dans le système.
Type de document: | Mémoire ou thèse (Mémoire de maîtrise électronique) |
---|---|
Renseignements supplémentaires: | "Thesis presented to École de technologie supérieure in partial fulfillment for a master’s degree with thesis in mechanical engineering". Comprend des références bibliographiques (pages 69-72) |
Mots-clés libres: | thermosiphon, TPCT, optimisation, simulation Matlab, analyse CFD |
Directeur de mémoire/thèse: | Directeur de mémoire/thèse Lamarche, Louis |
Programme: | Maîtrise en ingénierie > Génie mécanique |
Date de dépôt: | 23 sept. 2021 17:52 |
Dernière modification: | 23 sept. 2021 17:52 |
URI: | https://espace.etsmtl.ca/id/eprint/2703 |
Gestion Actions (Identification requise)
Dernière vérification avant le dépôt |